WO2011013199A1 - Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism - Google Patents
Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism Download PDFInfo
- Publication number
- WO2011013199A1 WO2011013199A1 PCT/JP2009/063412 JP2009063412W WO2011013199A1 WO 2011013199 A1 WO2011013199 A1 WO 2011013199A1 JP 2009063412 W JP2009063412 W JP 2009063412W WO 2011013199 A1 WO2011013199 A1 WO 2011013199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- chamber
- injection
- valve
- compression
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0007—Injection of a fluid in the working chamber for sealing, cooling and lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
- F04C29/124—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/39—Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2509—Economiser valves
Definitions
- the present invention relates to, for example, a heat pump apparatus having an injection circuit and an injection-compatible compressor having an injection mechanism.
- the present invention also relates to a method for manufacturing a scroll compressor having an injection mechanism.
- a scroll compressor having an injection mechanism when the valve of the injection circuit (the third expansion valve 14 shown in FIG. 1 in Patent Document 1) is closed and the injection operation is not performed, the refrigerant in the compression chamber is compressed during the injection circuit. It will flow out to the side. That is, when the injection operation is not performed, the injection circuit becomes a dead volume in the compression process, leading to a decrease in compression efficiency. Also, when the pressure in the compression chamber becomes transiently higher than the pressure of the refrigerant that has left the condenser, the refrigerant being compressed in the compression chamber flows out of the injection circuit to the condenser side.
- An object of the present invention is to prevent, for example, a refrigerant in the middle of compression in the compression chamber from flowing out to the injection circuit side.
- the heat pump device is, for example, A main refrigerant circuit in which a compressor, a radiator, a first expansion valve, and an evaporator are sequentially connected; An injection circuit provided between the radiator and the first expansion valve in the main refrigerant circuit and an injection pipe provided in the compressor, and provided with a second expansion valve; When the opening of the second expansion valve decreases, the flow path from the injection pipe to the compression chamber of the compressor is closed, and when the opening of the second expansion valve increases, the compression from the injection pipe of the compressor A mechanism for opening a flow path to the chamber is provided.
- the mechanism operates by a pressure difference between the refrigerant flowing through the main refrigerant circuit and the refrigerant flowing through the injection circuit.
- the mechanism is A refrigerant inflow chamber provided in the middle of the flow path and into which refrigerant flows from the injection circuit via the injection pipe;
- An on-off valve chamber provided between the refrigerant inflow chamber and the compression chamber in the flow path and connected to the refrigerant inflow chamber and the compression chamber, and a connection port with the refrigerant inflow chamber;
- a connection port with the compression chamber is formed in the same plane in the room, and the connection port with the refrigerant inflow chamber is opened and closed by a pressure difference between the refrigerant on the refrigerant inflow chamber side and the refrigerant on the compression chamber side.
- an on-off valve chamber provided with the on-off valve.
- An injection-compatible compressor is, for example, A compression section that forms a compression chamber and compresses the suction refrigerant of the suction pressure sucked into the compression chamber to a discharge pressure;
- a refrigerant injection unit that injects the injection refrigerant into an intermediate pressure unit in which the intake refrigerant has an intermediate pressure higher than the suction pressure and lower than the discharge pressure, and
- the refrigerant injection part is A refrigerant inflow chamber into which the injection refrigerant flows from outside;
- An on-off valve chamber connected to the refrigerant inflow chamber and the intermediate pressure portion of the compression chamber, wherein a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure portion are in the same plane in the room
- an on-off valve chamber provided with an on-off valve that opens and closes a connection port with the refrigerant inflow chamber by a pressure difference between the refrigerant on the refrigerant inflow chamber side and the refrig
- the on-off valve is a plate-like member provided so as to be movable in a predetermined movement direction in the on-off valve chamber, and is connected to the intermediate pressure portion when the connection port with the refrigerant inflow chamber is closed. It is a plate-like member in which a hole is formed at a position overlapping with the mouth.
- a guide hole is formed in the on-off valve, and a guide rod provided in the on-off valve chamber and extending in the moving direction is provided to penetrate the guide hole.
- the on-off valve chamber is formed in a cylindrical shape in which a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure part are formed on the bottom surface,
- the on-off valve is a circular plate-like member in which the guide hole is formed, and is provided so as not to rotate around the guide rod when the guide rod is engaged with the guide hole. .
- the on-off valve chamber is formed in a cylindrical shape in which a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure part are formed on the bottom surface,
- the on-off valve has a circular shape with a diameter smaller than a circle on the bottom surface of the on-off valve chamber, and has a guide hole having substantially the same size and the same shape as the outer periphery of the guide rod.
- the on-off valve is a leaf spring.
- the compression section includes an orbiting scroll having an orbiting spiral tooth formed on an upper surface side of an orbiting base plate, and a fixed spiral tooth that meshes with the orbiting spiral tooth of the orbiting scroll to form the compression chamber.
- the refrigerant inflow chamber is a room formed inside from the side of the fixed base plate,
- the on-off valve chamber is a chamber formed on the upper surface side of the fixed base plate.
- the on-off valve chamber is a chamber in which a depression formed on the upper surface side of the fixed base plate is covered with a back plate.
- the compression unit forms a compression chamber in which the swinging spiral teeth of the swing scroll and the fixed spiral teeth of the fixed scroll mesh with each other,
- the on-off valve chamber is provided corresponding to each compression chamber of the paired compression chamber.
- the injection-compatible compressor further includes: A sealed container that houses the compression section and the refrigerant injection section; And an injection pipe that is provided through the side surface of the sealed container and allows the injection refrigerant to flow into the refrigerant inflow chamber from the outside.
- the sealed container has a lower container and an upper container that forms a sealed space in combination with the lower container,
- the injection pipe is provided through the side surface of the lower container.
- the method for manufacturing an injection-compatible scroll compressor according to the present invention is, for example,
- the swing spiral teeth are formed on one side of the swing base plate,
- a fixed spiral tooth is formed on one side of the fixed base plate, Forming a side hole in the side of the fixed base plate, Forming a recess on the other side of the fixed base plate,
- a first communication hole that communicates the bottom surface of the recess and the side hole, and a second communication hole that communicates the bottom surface of the recess and the one surface side of the fixed base plate are formed in the fixed base plate.
- An opening / closing valve that opens and closes the first communication hole is disposed in the recess formed in the fixed base plate,
- a back plate is attached to the fixed base plate so as to close the opening of the recess in which the on-off valve is disposed,
- the swing base plate on which the swing spiral teeth are formed is disposed in a sealed container,
- the fixed base plate on which the fixed spiral teeth are formed is disposed in the sealed container so as to form a compression chamber by meshing the fixed spiral teeth and the swing spiral teeth.
- the heat pump device Since the heat pump device according to the present invention opens and closes the flow path from the injection pipe to the compression chamber according to the opening of the second expansion valve, the refrigerant in the compression chamber in the compression chamber is injected into the injection circuit when the injection operation is not performed. Can be prevented from leaking into.
- FIG. 1 is a longitudinal sectional view of a scroll compressor 100 according to Embodiment 1.
- the upper enlarged view (3) of the scroll compressor 100 shown in FIG. The figure which shows the heat pump apparatus which has an injection circuit.
- coolant of the heat pump apparatus shown in FIG. The figure which showed the relative position of the rocking scroll 2 with respect to the fixed scroll 1 every 90 degree
- the disassembled perspective view which shows the structure of the injection chamber 1f.
- FIG. 4 is a longitudinal sectional view of a scroll compressor 100 according to a second embodiment.
- injection means that the liquid refrigerant (two-phase refrigerant) or gas refrigerant (high-pressure side) after exiting the condenser is returned to the middle of the compressor compression chamber and recompressed.
- the liquid refrigerant (two-phase refrigerant) or gas refrigerant (on the high pressure side) after exiting the condenser is called an injection refrigerant.
- the term “after exiting the condenser” may be the refrigerant after passing through a predetermined expansion valve, a predetermined heat exchanger, or the like, not immediately after leaving the condenser.
- the condenser may be read as a radiator, a heat exchanger that gives heat to the load side, or a gas cooler.
- FIG. 1 is a longitudinal sectional view of a scroll compressor 100 according to the first embodiment.
- the scroll compressor 100 is an injection-compatible compressor having an injection mechanism.
- FIGS. 2 to 4 are enlarged top views of the scroll compressor 100 shown in FIG. 1, and all show the same portion.
- FIG. 2 is a diagram for explaining the fixed scroll 1 in particular.
- FIG. 3 is a diagram specifically illustrating the orbiting scroll 2.
- FIG. 4 is a diagram for explaining the compliant frame 3 and the guide frame 4 in particular.
- components that are not originally visible are indicated by broken lines.
- the scroll compressor 100 includes a fixed scroll 1, an orbiting scroll 2, a compliant frame 3, a guide frame 4, an electric motor 5, a subframe 6, a main shaft 7, and an Oldham mechanism 8 in an airtight container 10. It is stored and formed.
- the fixed scroll 1 and the orbiting scroll 2 are collectively referred to as a compression unit.
- the fixed scroll 1 will be described with reference to FIGS.
- the outer peripheral portion of the fixed scroll 1 is fastened and fixed to the guide frame 4 with bolts.
- a plate-like spiral tooth 1 b (fixed spiral tooth) is formed on one surface side (lower side in FIG. 2) of the base plate portion 1 a of the fixed scroll 1.
- a compression chamber 20 is formed by meshing a spiral tooth 1b of the fixed scroll 1 and a spiral tooth 2b (oscillating spiral tooth) of the swing scroll 2 described later.
- Two Oldham guide grooves 1c are formed in a substantially straight line on the outer peripheral portion on the one surface side (the lower side in FIG. 2) of the base plate portion 1a.
- a claw 8b of the Oldham mechanism 8 is engaged with the Oldham guide groove 1c so as to be slidable back and forth.
- a discharge port 1d is provided at substantially the center of the base plate portion 1a so as to penetrate the base plate portion 1a. Further, from the side part of the base plate part 1a, the outside of the closed container 10 is provided via an injection pipe 41 (refrigerant inlet) provided through the closed container 10 in the side part of the base plate part 1a. A refrigerant inflow chamber 1e into which the injection refrigerant flows from the injection circuit is formed. Further, on the opposite surface side (upper side in FIG. 2) of the base plate portion 1a, there are two on-off valve chambers 1f (check valve chambers) in which the openings of the two depressions are covered with the back plate 31 and sealed. Is formed.
- each on-off valve chamber 1f On the lower surface of each on-off valve chamber 1f, a connection port with an inflow chamber communication passage 1g (inflow chamber communication hole, first communication hole) communicating with the refrigerant inflow chamber 1e, and a compression chamber communication passage 1h ( A compression chamber communication hole and a second communication hole) are formed. Further, an on-off valve 30 (check valve) is accommodated in each on-off valve chamber 1f. The on-off valve 30 and the back plate 31 will be described in detail later.
- a mechanism for injecting the injection refrigerant into the compression chamber such as the refrigerant inflow chamber 1e, the inflow chamber communication passage 1g, the on-off valve chamber 1f, the compression chamber communication passage 1h, the on-off valve 30, the back plate 31, and the like is referred to as a refrigerant injection portion.
- a plate-like spiral tooth 2 b having substantially the same shape as the spiral tooth 1 b of the fixed scroll 1 is formed on one surface side (the upper side in FIG. 3) of the base plate portion 2 a of the orbiting scroll 2.
- the compression chamber 20 is formed when the spiral tooth 1 b of the fixed scroll 1 and the spiral tooth 2 b of the orbiting scroll 2 are engaged with each other.
- An Oldham guide groove 2e having a phase difference of about 90 degrees from the Oldham guide groove 1c of the fixed scroll 1 is almost straight on the outer peripheral portion of the base plate portion 2a opposite to the spiral tooth 2b (the lower side in FIG. 3). Two are formed on the line.
- a claw 8a of the Oldham mechanism 8 is engaged with the Oldham guide groove 2e so as to be slidable back and forth.
- a hollow cylindrical boss 2f is formed at the center of the base plate 2a opposite to the spiral teeth 2b (lower side in FIG. 3), and the inside of the boss 2f swings. It becomes the bearing 2c.
- a rocking shaft portion 7b at the upper end of the main shaft 7 is engaged with the rocking bearing 2c.
- a space between the rocking bearing 2c and the rocking shaft portion 7b is referred to as a boss space 15a.
- a thrust surface 2d is formed on the outer diameter side of the boss portion 2f. The thrust surface 2d is slidable against the thrust bearing 3a of the compliant frame 3.
- a space formed between the thrust surface 2d of the orbiting scroll 2 and the compliant frame 3 on the outer diameter side of the boss portion 2f is referred to as a boss portion outer diameter space 15b.
- a space formed between the base plate portion 2a of the orbiting scroll 2 and the compliant frame 3 on the outer diameter side of the thrust bearing 3a is referred to as a base plate outer diameter portion space 15c.
- the base plate outer diameter space 15c is a low pressure space of the suction gas atmospheric pressure (suction pressure).
- the base plate portion 2a is provided with a bleed hole 2j penetrating from the surface on the fixed scroll 1 side (upper surface in FIG. 3) to the surface on the compliant frame 3 side (lower surface in FIG. 3). .
- the base plate 2a is provided with a bleed hole 2j that allows the compression chamber 20 and the space on the thrust surface 2d side to communicate with each other.
- the extraction hole 2j is arranged so that the circular locus drawn by the opening (lower opening 2k) on the compliant frame 3 side of the extraction hole 2j during normal operation is always within the thrust bearing 3a of the compliant frame 3. Has been. Therefore, the refrigerant does not leak from the bleed hole 2j to the boss portion outer diameter space 15b or the base plate outer diameter space 15c.
- the compliant frame 3 and the guide frame 4 will be described with reference to FIGS.
- upper and lower cylindrical surfaces 3 d and 3 e provided on the outer peripheral portion are supported in a radial direction by cylindrical surfaces 4 a and 4 b provided on the inner peripheral portion of the guide frame 4.
- a main bearing 3c and an auxiliary main bearing 3h for supporting the main shaft 7 driven to rotate by the electric motor 5 in the radial direction are formed.
- a space formed between the guide frame 4 and the compliant frame 3 and partitioned vertically by ring-shaped sealing materials 16a and 16b is referred to as a frame space 15d.
- ring-shaped seal grooves for accommodating the sealing materials 16a and 16b are formed at two locations on the inner peripheral surface of the guide frame 4.
- the seal groove may be formed on the outer peripheral surface of the compliant frame 3.
- the compliant frame 3 passes through from the thrust bearing 3a side to the frame space 15d side at a position facing the lower opening 2k of the bleed hole 2j so that the bleed hole 2j and the frame space 15d are constantly or intermittently provided.
- a communication hole 3s that communicates is formed.
- the compliant frame 3 is provided with an adjustment valve space 3p in which a valve 3t for adjusting the pressure in the boss outer diameter space 15b, a valve presser 3y, and an intermediate pressure adjustment spring 3m are housed.
- the intermediate pressure adjusting spring 3m is accommodated in the adjusting valve space 3p in a state of being contracted from the natural length.
- a space between the compliant frame 3 and the guide frame 4 on the outer diameter side of the valve 3t is referred to as a valve outer diameter space 15e.
- the compliant frame 3 is formed with a reciprocating sliding portion 3x on the outer diameter side of the thrust bearing 3a, in which the Oldham mechanism annular portion 8c reciprocates.
- the reciprocating sliding portion 3x is formed with a communication hole 3n that communicates the valve outer diameter space 15e and the base plate outer diameter space 15c.
- the outer peripheral surface of the guide frame 4 is fixed to the sealed container 10 by shrink fitting or welding. However, a notch is provided in the outer peripheral portion of the guide frame 4, and a flow path through which the refrigerant discharged from the discharge port 1 d flows to the discharge pipe 43 is secured.
- the upper fitting cylindrical surface 4 a is engaged with an upper fitting cylindrical surface 3 d formed on the outer peripheral surface of the compliant frame 3.
- a lower fitting cylindrical surface 4b is formed on the inner surface of the guide frame 4 on the motor 5 side (lower side in FIG. 4).
- the lower fitting cylindrical surface 4 b is engaged with a lower fitting cylindrical surface 3 e formed on the outer peripheral surface of the compliant frame 3.
- a rocking shaft portion 7b that is rotatably engaged with the rocking bearing 2c of the rocking scroll 2 is formed on the main shaft 7 on the rocking scroll 2 side (the upper side in FIG. 1).
- a main shaft portion 7c that is rotatably engaged with the main bearing 3c and the auxiliary main bearing 3h of the compliant frame 3 is formed below the swing shaft portion 7b.
- a sub-shaft portion 7d that is rotatably engaged with the sub-bearing 6a of the sub-frame 6 is formed on the opposite side of the main shaft 7 (lower side in FIG. 1).
- the rotor 5a of the electric motor 5 is shrink-fitted between the auxiliary shaft portion 7d and the main shaft portion 7c described above, and the stator 5b is provided around the rotor 5a.
- a high-pressure oil supply hole 7g is provided in the main shaft 7 so as to penetrate in the axial direction.
- an oil pipe 7 f communicating with the high-pressure oil supply hole 7 g is press-fitted into the lower end surface of the main shaft 7.
- Low-pressure suction refrigerant enters the compression chamber 20 formed by the spiral teeth 1 b of the fixed scroll 1 and the spiral teeth 2 b of the swing scroll 2 from the suction pipe 42.
- the injection refrigerant that has flowed in from the outside through the injection pipe 41 is injected into the compression chamber 20 from the compression chamber communication passage 1h via the refrigerant inflow chamber 1e, the inflow chamber communication passage 1g, and the on-off valve chamber 1f. Note that the injection refrigerant is not injected into the compression chamber 20 when the injection operation is not performed.
- the main shaft 7 is driven by the electric motor 5 and the swing scroll 2 is driven.
- the orbiting scroll 2 does not rotate by the Oldham mechanism 8 but performs a revolving motion (eccentric turning motion) to perform a compression operation for gradually reducing the volume of the compression chamber 20.
- a revolving motion eccentric turning motion
- the suction refrigerant becomes high pressure and is discharged into the sealed container 10 from the discharge port 1 d of the fixed scroll 1.
- the discharged refrigerant is discharged out of the sealed container 10 from the discharge pipe 43. That is, the inside of the sealed container 10 is at a high pressure.
- the inside of the sealed container 10 becomes a high pressure during steady operation. Due to this pressure, the refrigerating machine oil 11 accumulated at the bottom of the sealed container 10 flows through the oil pipe 7f and the high-pressure oil supply hole 7g toward the rocking scroll 2 (upper side in FIG. 1).
- the high-pressure refrigerating machine oil is guided to the boss portion space 15a, is reduced to an intermediate pressure Pm1 higher than the suction pressure and lower than the discharge pressure, and flows into the boss portion outer diameter space 15b.
- the high-pressure oil flowing through the high-pressure oil supply hole 7g is guided between the main bearing 3c and the main shaft portion 7c from a lateral hole provided in the main shaft 7.
- the refrigerating machine oil introduced between the main bearing 3c and the main shaft portion 7c is reduced between the main bearing 3c and the main shaft portion 7c to an intermediate pressure Pm1 higher than the suction pressure and lower than the discharge pressure, and the boss portion outer diameter space 15b.
- the refrigerating machine oil that has reached the intermediate pressure Pm1 in the outer diameter space 15b of the boss part is the firing of the refrigerant that has been dissolved in the refrigerating machine oil, and generally has two phases of gas refrigerant and refrigerating machine oil.
- the refrigerating machine oil that has become the intermediate pressure Pm1 in the boss portion outer diameter space 15b flows through the adjustment valve space 3p into the valve outer diameter space 15e.
- the refrigerating machine oil that has flowed into the valve outer diameter space 15e is discharged to the inside of the Oldham mechanism annular portion 8c through the communication hole 3n.
- the refrigeration oil overcomes the force applied by the intermediate pressure regulating spring 3m, pushes up the intermediate pressure regulating valve 3t, and flows into the valve outer diameter space 15e.
- the refrigerating machine oil having an intermediate pressure Pm1 in the boss portion outer diameter space 15b is supplied to the thrust surface 2d of the orbiting scroll 2 and the sliding portion of the thrust bearing 3a of the compliant frame 3, and the Oldham mechanism annular portion 8c. It is discharged inside.
- the refrigerating machine oil discharged inside the Oldham mechanism annular portion 8c is supplied to the sliding surface of the Oldham mechanism annular portion 8c and the sliding surfaces of the claws 8a and 8b of the Oldham mechanism 8, and then the outer diameter portion of the base plate Open to the space 15c.
- Ps is a suction atmosphere pressure, that is, a low pressure.
- the lower opening 2k of the bleed hole 2j communicates with an opening (upper opening 3u shown in FIG. 4) on the thrust bearing 3a side of the communication hole 3s provided in the compliant frame 3 constantly or intermittently. .
- the refrigerant gas being compressed from the compression chamber 20 is guided to the frame space 15 d through the extraction holes 2 j of the orbiting scroll 2 and the communication holes 3 s of the compliant frame 3. Since this refrigerant gas is being compressed, it is an intermediate pressure Pm2 that is higher than the suction pressure and lower than or equal to the discharge pressure.
- the frame space 15d is a closed space sealed by the upper seal material 16a and the lower seal material 16b, and therefore compressed in response to pressure fluctuations in the compression chamber 20 during normal operation.
- the chamber 20 and the frame space 15d have a slight flow in both directions. That is, the compression chamber 20 and the frame space 15d are in a state of breathing.
- Ps is a suction atmosphere pressure, that is, a low pressure.
- the compliant frame 3 has a total of (A) the force resulting from the intermediate pressure Pm1 in the boss portion outer diameter space 15b and (B) the pressing force from the orbiting scroll 2 via the thrust bearing 3a ( A + B) acts as a downward force.
- C + D acts as an upward force.
- the upward force (C + D) is set to be greater than the downward force (A + B).
- the compliant frame 3 is lifted to the fixed scroll 1 side (upper side in FIG. 1). That is, in the compliant frame 3, the upper fitting cylindrical surface 3d is guided by the upper fitting cylindrical surface 4a of the guide frame 4, and the lower fitting cylindrical surface 3e is guided by the lower fitting cylindrical surface 4b of the guide frame 4. As a result, it is lifted to the fixed scroll 1 side (upper side in FIG. 1). That is, the compliant frame 3 floats to the fixed scroll 1 side (upper side in FIG. 1) and is pressed against the orbiting scroll 2 via the thrust bearing 3a.
- the orbiting scroll 2 Since the compliant frame 3 is pressed against the orbiting scroll 2, the orbiting scroll 2 is also lifted to the fixed scroll 1 side (upper side in FIG. 1) like the compliant frame 3. As a result, the tooth tip of the spiral tooth 2b of the swing scroll 2 and the tooth bottom (base plate portion 1a) of the fixed scroll 1 come into contact with each other, the tooth tip of the spiral tooth 1b of the fixed scroll 1 and the swing scroll 2 To the tooth bottom (base plate portion 2a).
- FIG. 5 is a diagram illustrating an example of a circuit configuration of a heat pump apparatus having an injection circuit.
- FIG. 6 is a Mollier diagram of the state of the refrigerant in the heat pump apparatus shown in FIG.
- the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant pressure.
- the heating operation includes not only heating used for air conditioning, but also hot water supply that heats water to make hot water.
- the gas-phase refrigerant (point 1 in FIG. 6) that has become high temperature and high pressure in the compressor 51 (the scroll compressor 100) is discharged from the discharge pipe 43 of the compressor 51, and is a heat exchanger 52 that is a condenser and serves as a radiator. It is liquefied by heat exchange (point 2 in FIG. 6). At this time, air or water is warmed by heat radiated from the refrigerant, and heating or hot water is supplied.
- the liquid-phase refrigerant liquefied by the heat exchanger 52 is decompressed to an intermediate pressure by the first expansion valve 53 (decompression mechanism) and becomes a gas-liquid two-phase state (point 3 in FIG. 6).
- the refrigerant in the gas-liquid two-phase state at the first expansion valve 53 is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 59, cooled and liquefied (point 4 in FIG. 6).
- the liquid phase refrigerant liquefied by the receiver 59 branches and flows to the internal heat exchanger 54, the third expansion valve 55 side (main flow), and the second expansion valve 56 side (branch flow, injection circuit).
- the liquid-phase refrigerant flowing through the main flow is heat-exchanged by the internal heat exchanger 54 with the refrigerant flowing through the tributary that has been decompressed by the second expansion valve 56 and is in a gas-liquid two-phase state, and further cooled (point 5 in FIG. ).
- the liquid-phase refrigerant cooled by the internal heat exchanger 54 is decompressed by the third expansion valve 55 (decompression mechanism) and becomes a gas-liquid two-phase state (point 6 in FIG. 6).
- the refrigerant in the gas-liquid two-phase state by the third expansion valve 55 is heat-exchanged and heated by the heat exchanger 57 serving as an evaporator (point 7 in FIG. 6).
- the refrigerant heated by the heat exchanger 57 is further heated by the receiver 59 (point 8 in FIG. 6), and is sucked into the compressor 51 from the suction pipe.
- the refrigerant flowing through the tributary is depressurized by the second expansion valve 56 (decompression mechanism) (point 9 in FIG. 6) and heat exchanged by the internal heat exchanger 54 (point 10 in FIG. 6). ).
- the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 54 flows into the refrigerant inflow chamber 1e of the fixed scroll 1 from the injection pipe 41 of the compressor 51 in the gas-liquid two-phase state.
- the refrigerant (point 8 in FIG. 6) flowing through the main flow and sucked from the suction pipe 42 is compressed and heated to an intermediate pressure ( Point 11 in FIG.
- the opening of the second expansion valve 56 is closed. That is, when the injection operation is performed, the opening of the second expansion valve 56 is larger than the predetermined opening, but when the injection operation is not performed, the opening of the second expansion valve 56 is set to a predetermined value. The opening is smaller than.
- coolant inflow chamber 1e of the compressor 51 is interrupted
- the opening degree of the second expansion valve 56 is controlled by electronic control, for example.
- the four-way valve 58 is set in the direction of the broken line.
- the gas-phase refrigerant (point 1 in FIG. 6) that has become high-temperature and high-pressure in the compressor 51 (the scroll compressor 100) is discharged from the discharge pipe 43 of the compressor 51, and is heat-exchanged by the heat exchanger 57 serving as a condenser.
- To liquefy (point 2 in FIG. 6).
- the liquid-phase refrigerant liquefied by the heat exchanger 57 is reduced to an intermediate pressure by the third expansion valve 55, and becomes a gas-liquid two-phase state (point 3 in FIG. 6).
- the refrigerant that has become a gas-liquid two-phase state by the third expansion valve 55 is heat-exchanged by the internal heat exchanger 54, cooled and liquefied (point 4 in FIG. 6).
- the refrigerant that has become a gas-liquid two-phase state by the third expansion valve 55 and the liquid-phase refrigerant that has been liquefied by the internal heat exchanger 54 are decompressed by the second expansion valve 56, and the gas-liquid two-phase Heat is exchanged with the refrigerant in the state (point 9 in FIG. 6).
- heat-exchanged by the internal heat exchanger 54 flows in a branched manner to the receiver 59 side (main flow) and the internal heat exchanger 54 side (branch flow, injection circuit).
- the liquid-phase refrigerant flowing through the main stream is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 59 and further cooled (point 5 in FIG. 6).
- the liquid-phase refrigerant cooled by the receiver 59 is decompressed by the first expansion valve 53 and becomes a gas-liquid two-phase state (point 6 in FIG. 6).
- the refrigerant in the gas-liquid two-phase state by the first expansion valve 53 is heat-exchanged and heated by the heat exchanger 52 serving as an evaporator (point 7 in FIG. 6).
- the refrigerant absorbs heat, thereby cooling the air, water, etc., cooling, making cold water or ice, or freezing. Then, the refrigerant heated by the heat exchanger 57 is further heated by the receiver 59 (point 8 in FIG. 6), and is sucked into the compressor 51 from the suction pipe. On the other hand, as described above, the refrigerant flowing through the tributary is decompressed by the second expansion valve 56 (point 9 in FIG. 6) and is heat-exchanged by the internal heat exchanger 54 (point 10 in FIG. 6).
- the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 54 flows into the refrigerant inflow chamber 1e of the fixed scroll 1 from the injection pipe 41 of the compressor 51 in the gas-liquid two-phase state.
- the compression operation in the compressor 51 is the same as in the heating operation.
- the opening of the second expansion valve 56 is closed and the injection refrigerant flowing into the refrigerant inflow chamber 1e of the compressor 51 is shut off as in the heating operation.
- the injection operation is usually performed in the heating operation. Therefore, normally, the injection operation is not performed during the cooling operation. In addition, even during the heating operation, the injection operation is not always performed. For example, when the outside air temperature is equal to or lower than a predetermined temperature (for example, 2 ° C.), or the rotation speed of the compressor is a predetermined frequency (for example, 60 Hz). ) In the above case, the heating capacity can be increased by performing the injection operation, and a heat pump device with good heating and hot water supply performance can be obtained. When there is no need for the injection operation, the opening of the second expansion valve 56 is closed and the injection operation is not performed even during the heating operation.
- the criterion for determining whether or not to perform the injection operation may not be the above-described criterion.
- the injection operation may be performed during the cooling operation.
- the heat exchanger 52 may be a heat exchanger that performs heat exchange between a gas-phase refrigerant that has become high temperature and pressure or a liquid-phase refrigerant that has become low temperature and low pressure and a liquid such as water, It may be a heat exchanger that performs heat exchange between a gas-phase refrigerant having a high temperature and a high pressure or a liquid-phase refrigerant having a low temperature and a low pressure and a gas such as air. That is, the heat pump apparatus described in FIGS. 5 and 6 may be an air conditioner, a hot water supply apparatus, a refrigeration apparatus, or a refrigeration apparatus.
- FIG. 7 is a view showing the relative position of the orbiting scroll 2 with respect to the fixed scroll 1 every 90 degrees, with the suction completion state being 0 degrees.
- a pair of compression chambers 20a, 20b is formed by the engagement of the spiral teeth 1b of the fixed scroll 1 and the spiral teeth 2b of the swing scroll 2.
- the compression chambers 20a and 20b are collectively referred to as the compression chamber 20.
- the compression chamber 20 moves to the center while gradually decreasing in volume as the orbiting scroll 2 rotates as the main shaft 7 rotates. That is, the refrigerant sucked into the compression chamber 20 is gradually compressed by the revolving motion of the swing scroll 2 as the main shaft 7 rotates, and moves to the center while increasing the pressure.
- the compression chamber 20 communicates with the discharge port 1d provided in the central portion, the compressed refrigerant is discharged into the sealed container 10 from the discharge port 1d.
- the time point of 0 degree is a state where the suction of the refrigerant is completed as described above.
- the refrigerant is sucked into the compression chamber 20 from the suction pipe 42, and the compression chamber 20 is sealed.
- the main shaft 7 rotates 90 degrees from the time of 0 degrees (the time when the refrigerant suction is completed)
- the volume of the compression chamber 20 is slightly reduced and the compression chamber 20 is moved slightly closer to the center.
- the compression chamber 20 communicates with the compression chamber communication path 1h. Therefore, if the injection operation is performed, the injection refrigerant flows from the compression chamber communication path 1h.
- the injection refrigerant is injected into the intermediate pressure portion.
- the main shaft 7 rotates 180 degrees, 270 degrees, and 360 degrees from the point of time when the refrigerant suction is completed.
- the compression chamber 20 communicates with the compression chamber communication path 1h. Therefore, during this time, while the injection refrigerant flows into the compression chamber 20 from the compression chamber communication path 1h, the refrigerant in the compression chamber 20 is compressed and gradually moves toward the center.
- the compression chamber 20 ends the communication with the compression chamber communication path 1h. Thereafter, until the compression chamber 20 communicates with the discharge port 1d, the refrigerant in the compression chamber 20 is compressed without any refrigerant flowing into the compression chamber 20 from the outside.
- the rotation of the main shaft 7 exceeds 450 degrees from the time when the refrigerant suction is completed, the compression chamber 20 communicates with the discharge port 1d, and the compressed refrigerant is discharged into the sealed container 10 from the discharge port 1d.
- the compression chambers 20a and 20b are configured to communicate with one compression chamber communication path 1h that communicates with different on-off valve chambers 1f. That is, as described above, the two on-off valve chambers 1 f are formed in the base plate portion 1 a of the fixed scroll 1. The one on-off valve chamber 1f of the two on-off valve chambers 1f and the compression chamber 20a communicate with each other, and the other on-off valve chamber 1f and the compression chamber 20b communicate with each other.
- FIG. 8 is an exploded perspective view showing the configuration of the on-off valve chamber 1f.
- the two on-off valve chambers 1f are sealed by fastening a back plate 31 with bolts 34 in two cylindrical recesses provided on the opposite side to the spiral teeth 1b of the base plate portion 1a of the fixed scroll 1. It is formed.
- one back plate 31 that covers both openings of the two depressions is covered. Of course, you may make it cover the separate backplate 31 for every hollow.
- the connection port with the inflow chamber communication path 1g and the connection port with the compression chamber communication path 1h are formed on the lower plane of each recess.
- the inflow chamber communication passage 1g communicates with the refrigerant inflow chamber 1e formed from the side portion of the base plate portion 1a toward the inside. Further, the compression chamber communication passage 1h communicates with the surface on the spiral tooth 1b side. That is, the compression chamber communication path 1 h communicates with the compression chamber 20. That is, a connection port to the refrigerant inflow chamber 1e and a connection port to the compression chamber 20 are formed on the lower plane of each recess.
- Each on-off valve chamber 1f is provided with an on-off valve 30 formed in a circular plate shape having a diameter substantially the same as or slightly smaller than the inner diameter of the recess.
- the on-off valve 30 is formed with a passage hole 30a and a guide hole 30b.
- the on-off valve 30 is disposed at a position where the passage hole 30a overlaps the connection port with the compression chamber communication path 1h.
- the on-off valve 30 is arranged in the on-off valve chamber 1f by inserting a guide projection 31a (guide rod) formed on the back plate 31 into the guide hole 30b.
- the guide protrusion 31a is a protrusion that extends in a bar shape in a direction perpendicular to the surface on which the inflow chamber communication passage 1g and the compression chamber communication passage 1h are formed (vertical direction and vertical direction in FIG. 1).
- the guide hole 30b is formed in a keyhole shape, and the guide protrusion 31a is also formed in a key shape. Therefore, the on-off valve 30 can be moved in the on-off valve chamber 1f in the direction perpendicular to the surface direction of the fixed base plate (up and down direction in FIG. 1), but the guide hole 30b and the guide protrusion 31a mesh with each other, The guide projection 31a is not rotated about the axis.
- the position of the passage hole 30a disposed at a position communicating with the compression chamber communication path 1h does not shift.
- the on-off valve 30 is shifted in the horizontal direction by making the on-off valve 30 a circular shape having substantially the same diameter as the inner diameter of the recess, or by making the guide hole 30b substantially the same size and shape as the outer periphery of the guide projection 31a. There is nothing.
- the on-off valve 30 has a circular shape having substantially the same diameter as the inner diameter of the recess, the outer periphery of the on-off valve 30 and the inner wall of the recess may be rubbed to cause burrs.
- the opening / closing valve 30 has a circular shape with a diameter slightly smaller than the inner diameter of the recess, and that the guide hole 30b has the same shape and the same shape as the outer periphery of the guide protrusion 31a.
- the recess is a columnar shape and the on-off valve 30 is a circular plate shape, which is easy to process and manufacture, the on-off valve 30 can be rotated by devising the shape of the guide hole 30b and the guide protrusion 31a. There was a need to prevent.
- the depressions may be prismatic and the on / off valve 30 may be polygonal to prevent the on / off valve 30 from rotating.
- FIG. 9 is a view showing the vicinity of one on-off valve chamber 1f when performing the injection operation.
- the gas-liquid two-phase injection refrigerant flows from the injection pipe 41 into the refrigerant inflow chamber 1e formed in the base plate portion 1a of the fixed scroll 1.
- the injection refrigerant that has flowed into the refrigerant inflow chamber 1e flows into the two inflow chamber communication passages 1g, respectively.
- the pressure of the injection refrigerant flowing into the refrigerant inflow chamber 1e is higher than the pressure of the refrigerant in the compression chamber 20 (in particular, the position where the compression chamber communication passage 1h communicates in the compression chamber 20, that is, the intermediate pressure portion). high. Therefore, the injection refrigerant that has flowed into the inflow chamber communication passage 1g pushes up the on-off valve 30 provided in the on-off valve chamber 1f to the back plate 31 side (upper side in FIG. 9). As a result, the injection refrigerant that has flowed into the inflow chamber communication passage 1g flows into the on-off valve chamber 1f.
- the compression chamber 20 communicates with the compression chamber communication passage 1h
- the injection refrigerant in the on-off valve chamber 1f flows into the compression chamber 20 through the compression chamber communication passage 1h.
- FIG. 10 is a view showing the vicinity of one on-off valve chamber 1f when the injection operation is not performed. As described with reference to FIGS. 5 and 4, when the injection operation is not performed, the second expansion valve 56 in the heat pump device is closed. Therefore, the injection refrigerant does not flow into the refrigerant inflow chamber 1e.
- the pressure in the compression chamber 20 (in particular, the position where the compression chamber communication passage 1h communicates in the compression chamber 20, that is, the intermediate pressure portion) is higher than the refrigerant pressure from the refrigerant inflow chamber 1e to the on-off valve chamber 1f,
- the refrigerant in the compression chamber 20 flows backward to the on-off valve chamber 1f via the compression chamber communication passage 1h.
- the refrigerant that has flowed into the on-off valve chamber 1 f flows into the on-off valve chamber 1 f through the passage hole 30 a of the on-off valve 30.
- the refrigerant that has flowed from the compression chamber 20 into the on-off valve chamber 1f passes the on-off valve 30 to the inflow chamber communication passage 1g side (lower side of FIG. 10). To the side).
- the inflow chamber communication passage 1g is closed by the on-off valve 30. Therefore, the refrigerant that has flowed into the on-off valve chamber 1f does not flow out from the inflow chamber communication passage 1g to the refrigerant inflow chamber 1e.
- the on-off valve 30 is pushed up to the back plate 31 side, The on-off valve 30 is in an open state. Then, the injection refrigerant flows into the on-off valve chamber 1f from the inflow chamber communication passage 1g, and flows into the compression chamber 20 through the compression chamber communication passage 1h.
- the on-off valve 30 opens and closes due to a pressure difference between the refrigerant pressure on the refrigerant inflow chamber 1e side (inflow chamber communication path 1g) and the refrigerant pressure in the compression chamber 20 (compression chamber communication path 1h).
- the refrigerant in the compression chamber 20 can be prevented from flowing back to the injection circuit. If the on-off valve 30 is not provided, the refrigerant in the compression chamber 20 flows back to the injection circuit, and the volume from the compression chamber communication path 1h to the second expansion valve 56 becomes a dead volume in compression. The efficiency is greatly reduced. That is, the dead volume can be significantly reduced by using the on-off valve 30, and the compression efficiency can be increased.
- the on / off valve 30 prevents the refrigerant from flowing out to the injection circuit.
- the pressure in the refrigerant inflow chamber 1e gradually decreases.
- the on-off valve 30 pushed up to the back plate 31 side (the upper side of FIGS. 9 and 10) It goes down to the communication passage 1g side (the lower side of FIGS. 9 and 10).
- the on / off valve 30 When the pressure in the compression chamber 20 becomes higher than the pressure in the refrigerant inflow chamber 1e, the on / off valve 30 is connected to the inflow chamber communication path by the refrigerant that has passed from the compression chamber 20 through the passage hole 30a and flowed into the on-off valve chamber 1f. It is pressed to the 1g side (the lower side of FIGS. 9 and 10). That is, the on-off valve 30 operates only by the pressure difference and gravity, and operates without using any spring force such as a coil spring. Therefore, it is very reliable and can be manufactured at low cost.
- connection port with the inflow chamber communication passage 1g and a connection port with the compression chamber communication passage 1h are formed on the lower surface of the on-off valve chamber 1f. Therefore, as described above, when shifting from the state where the injection operation is performed to the state where the injection operation is not performed, in addition to the pressure difference, the on-off valve 30 is moved by the gravity to the inflow chamber communication passage 1g side (lower side of FIGS. Side).
- a connection port with the inflow chamber communication passage 1g and a connection port with the compression chamber communication passage 1h may be provided on the side surface or the upper surface of the on-off valve chamber 1f.
- the on-off valve 30 moves only by the pressure difference, but the movement of the on-off valve 30 may be supported by a coil spring or the like. That is, when the pressure in the compression chamber 20 and the pressure in the refrigerant inflow chamber 1e are approximately the same pressure by a coil spring or the like, the on-off valve 30 is pressed against the inflow chamber communication passage 1g, thereby allowing the injection operation. When switching from the state of performing the operation to the state of not performing the injection operation, the on-off valve 30 may be easily moved to the inflow chamber communication path 1g side.
- connection port to the inflow chamber communication passage 1g and the connection port to the compression chamber communication passage 1h are formed on the lower surface of the on-off valve chamber 1f, a coil spring is provided between the on-off valve 30 and the back plate 31. Etc. may be provided to support the operation in which the on-off valve 30 is lowered toward the inflow chamber communication passage 1g (the lower side in FIGS. 9 and 10).
- the inflow chamber communication passage 1g communicating with the refrigerant inflow chamber 1e and the compression chamber communication passage 1h communicating with the compression chamber 20 are provided on the same surface in the on-off valve chamber 1f. Therefore, the on-off valve 30 can have a simple configuration.
- the fixed scroll 1, the orbiting scroll 2 and the like are formed in the shape described above.
- the spiral tooth 1b, the base plate portion 1a of the fixed scroll 1 a hole serving as the refrigerant inflow chamber 1e, two depressions, a hole serving as the inflow chamber communication passage 1g, and the compression chamber communication. Machining to form a hole to become the passage 1h is performed, the opening / closing valve 30 is disposed in the formed depression, and the back plate 31 is attached.
- a hole serving as the refrigerant inflow chamber 1e, two depressions, a hole serving as the inflow chamber communication passage 1g, and a hole serving as the compression chamber communication passage 1h are all straight on the base plate portion 1a of the fixed scroll 1. It can be formed by performing a general cutting process. What is the order of machining to form the spiral tooth 1b, the hole serving as the refrigerant inflow chamber 1e, the two depressions, the hole serving as the inflow chamber communication passage 1g, and the hole serving as the compression chamber communication passage 1h. May be in any order. Next, as shown in FIG.
- the sub-frame 6, the electric motor 5, the main shaft 7, the guide frame 4, the compliant frame 3, and the Oldham mechanism 8 are disposed in the lower container 10 a of the sealed container 10, and the swing scroll 2 is arranged to engage with the main shaft 7. Further, the fixed scroll 1 is arranged so that the compression chamber 20 is formed between the swing scroll 2.
- the injection pipe 41 is attached to the lower container 10a so as to be connected to the refrigerant inflow chamber 1e
- the suction pipe 42 is attached to the lower container 10a so as to be connected to the suction port of the compression chamber 20, and the discharge pipe 43 is attached.
- the upper container 10b is attached to the lower container 10a and sealed. Thereby, the scroll compressor 100 is manufactured.
- the scroll compressor 100 it is possible to prevent backflow of refrigerant in the middle of compression to the injection circuit and increase in dead volume in the compression process.
- the connection port of the inflow chamber communication path 1g and the compression chamber communication path 1h to the on-off valve chamber 1f is provided on the same surface of the on-off valve chamber 1f, and the on-off valve 30 is connected to the inflow chamber communication path. It opens and closes by the pressure difference between the pressure on the 1g side and the pressure on the compression chamber communication path 1h side. Therefore, the on-off valve 30 can move smoothly to open and close, and the reliability can be improved.
- the on-off valve chamber 1f can be formed compactly.
- the opening / closing can be controlled by the pressure difference between the pressure in the compression chamber 20 and the pressure in the refrigerant inflow chamber 1e without using a coil spring.
- the number of parts can be reduced.
- a refrigerant inflow chamber 1e, two depressions, an inflow chamber communication passage 1g, and a compression chamber communication passage 1h are formed in a straight line with respect to the base plate portion 1a of the fixed scroll 1, and are opened and closed.
- the valve 30 is installed and the back plate 31 is covered with a back plate 31 to form an on-off valve chamber 1f. That is, in the scroll compressor 100, a straight hole is simply opened and the on-off valve 30 and the back plate 31 are installed. Therefore, for example, complicated processing such as providing a groove for the refrigerant flow path in the valve seat portion of the on-off valve is unnecessary. Therefore, the number of processing steps can be reduced.
- a refrigerant inflow chamber 1 e is provided from the side of the base plate portion 1 a of the fixed scroll 1 toward the inside. Therefore, since the injection pipe 41 may be attached to the side portion of the base plate portion 1a of the fixed scroll 1, the injection pipe 41 can be attached to the lower container 10a. That is, it is not necessary to attach the injection pipe 41 to the upper container 10b. Therefore, the work of attaching the upper container 10b to the lower container 10a is very easy. Further, since the injection pipe 41 may be attached to the side portion of the base plate portion 1 a of the fixed scroll 1, the injection pipe 41 is provided on the side portion of the sealed container 10.
- the pipe connected to the injection pipe 41 may be disposed on the side portion of the sealed container 10 and does not need to be disposed on the upper side of the sealed container 10.
- the scroll compressor 100 can save the space above the sealed container 10 compared to the compressor that requires the piping connected to the injection pipe 41 to be disposed above the sealed container 10, and the heat pump device can be made compact. Can be realized.
- FIG. 1 a scroll compressor 100 using an on-off valve 32 constituted by a leaf spring will be described.
- FIG. 11 is a longitudinal sectional view of the scroll compressor 100 according to the second embodiment.
- the scroll compressor 100 according to Embodiment 2 shown in FIG. 11 is different from the scroll compressor 100 according to Embodiment 1 shown in FIG.
- the on-off valve 32 configured by a leaf spring is used.
- the on-off valve 32 is provided so as to cover the inflow chamber communication passage 1g.
- the injection refrigerant flows into the on-off valve chamber 1f from the inflow chamber communication passage 1g, and flows into the compression chamber 20 through the compression chamber communication passage 1h.
- the on-off valve 32 is pressed toward the inflow chamber communication passage 1g. Therefore, the refrigerant that flows backward from the compression chamber 20 and flows into the on-off valve chamber 1f does not flow out from the inflow chamber communication passage 1g to the refrigerant inflow chamber 1e.
- the back plate 33 can have a simple configuration.
- the scroll compressor 100 according to the second embodiment using the on-off valve 32 configured by a leaf spring can obtain the same effects as those of the scroll compressor 100 according to the first embodiment. it can.
- the scroll compressor according to the above embodiment is The fixed scroll and the orbiting scroll are meshed with each other in the sealed container, and the orbiting scroll is revolved without rotating with respect to the fixed scroll, thereby being compressed in the compression chamber formed by the plate-like spiral teeth of both scrolls.
- Refrigerant is discharged from the discharge port provided at the center of the fixed scroll to the discharge space on the back surface of the fixed scroll, and the refrigerant has an intermediate pressure between the pressure of the refrigerant flowing into the compression chamber and the pressure of the refrigerant discharged from the compression chamber.
- an on-off valve chamber that houses two on-off valves and two on-off valves in the middle of the refrigerant inflow chamber that passes through the inside from the side of the fixed scroll and flows into the compression chamber through the compression chamber communication passage. And having one back plate.
- the scroll compressor 100 has been described as an example of an injection-compatible compressor.
- the injection-compatible compressor is not limited to this, and may be another compressor as long as it is a compressor having an injection mechanism such as a rotary compressor.
- the example in which the refrigerant inflow chamber 1e, the on-off valve chamber 1f, and the like are provided in the base plate portion 1a of the fixed scroll 1 in the scroll compressor 100 has been described.
- the present invention is not limited to this, and a refrigerant inflow chamber 1e, an on-off valve chamber 1f, and the like may be provided separately from the base plate portion 1a of the fixed scroll 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
また、圧縮室内の圧力が過渡的に凝縮器を出た冷媒の圧力よりも高くなったときにも、圧縮室内で圧縮されている途中の冷媒がインジェクション回路を凝縮器側へ流出する。
この発明は、例えば、圧縮室内の圧縮途中の冷媒がインジェクション回路側へ流出することを防ぐことを目的とする。 In a scroll compressor having an injection mechanism, when the valve of the injection circuit (the third expansion valve 14 shown in FIG. 1 in Patent Document 1) is closed and the injection operation is not performed, the refrigerant in the compression chamber is compressed during the injection circuit. It will flow out to the side. That is, when the injection operation is not performed, the injection circuit becomes a dead volume in the compression process, leading to a decrease in compression efficiency.
Also, when the pressure in the compression chamber becomes transiently higher than the pressure of the refrigerant that has left the condenser, the refrigerant being compressed in the compression chamber flows out of the injection circuit to the condenser side.
An object of the present invention is to prevent, for example, a refrigerant in the middle of compression in the compression chamber from flowing out to the injection circuit side.
圧縮機と、放熱器と、第1膨張弁と、蒸発器とが順次接続された主冷媒回路と、
前記主冷媒回路における前記放熱器と前記第1膨張弁との間と、前記圧縮機に設けられたインジェクションパイプとを繋ぎ、第2膨張弁が設けられたインジェクション回路とを備え、
前記第2膨張弁の開度が小さくなると前記圧縮機の前記インジェクションパイプから圧縮室までの流路を閉鎖し、前記第2膨張弁の開度が大きくなると前記圧縮機の前記インジェクションパイプから前記圧縮室までの流路を開放する機構を設けたことを特徴とする。 The heat pump device according to the present invention is, for example,
A main refrigerant circuit in which a compressor, a radiator, a first expansion valve, and an evaporator are sequentially connected;
An injection circuit provided between the radiator and the first expansion valve in the main refrigerant circuit and an injection pipe provided in the compressor, and provided with a second expansion valve;
When the opening of the second expansion valve decreases, the flow path from the injection pipe to the compression chamber of the compressor is closed, and when the opening of the second expansion valve increases, the compression from the injection pipe of the compressor A mechanism for opening a flow path to the chamber is provided.
前記流路の途中に設けられ、前記インジェクション回路から前記インジェクションパイプを介して冷媒が流入する冷媒流入室と、
前記流路のうち前記冷媒流入室と前記圧縮室との間において、前記冷媒流入室と前記圧縮室とに接続されて設けられた開閉弁室であって、前記冷媒流入室との接続口と前記圧縮室との接続口とが室内の同一面内に形成され、前記冷媒流入室側の冷媒と前記圧縮室側の冷媒との間の圧力差により前記冷媒流入室との接続口を開閉する開閉弁が設けられた開閉弁室と
を備えることを特徴とする。 The mechanism is
A refrigerant inflow chamber provided in the middle of the flow path and into which refrigerant flows from the injection circuit via the injection pipe;
An on-off valve chamber provided between the refrigerant inflow chamber and the compression chamber in the flow path and connected to the refrigerant inflow chamber and the compression chamber, and a connection port with the refrigerant inflow chamber; A connection port with the compression chamber is formed in the same plane in the room, and the connection port with the refrigerant inflow chamber is opened and closed by a pressure difference between the refrigerant on the refrigerant inflow chamber side and the refrigerant on the compression chamber side. And an on-off valve chamber provided with the on-off valve.
圧縮室を形成し、前記圧縮室に吸入された吸入圧の吸入冷媒を吐出圧まで圧縮する圧縮部と、
前記圧縮部が形成した前記圧縮室において、前記吸入冷媒が前記吸入圧よりも高く前記吐出圧よりも低い中間圧となる中間圧部へインジェクション冷媒を注入する冷媒注入部とを備え、
前記冷媒注入部は、
外部から前記インジェクション冷媒が流入する冷媒流入室と、
前記冷媒流入室と前記圧縮室の前記中間圧部とに接続された開閉弁室であって、前記冷媒流入室との接続口と前記中間圧部との接続口とが室内の同一面内に形成され、前記冷媒流入室側の冷媒と前記中間圧部側の冷媒との間の圧力差により前記冷媒流入室との接続口を開閉する開閉弁が設けられた開閉弁室とを備えることを特徴とする。 An injection-compatible compressor according to the present invention is, for example,
A compression section that forms a compression chamber and compresses the suction refrigerant of the suction pressure sucked into the compression chamber to a discharge pressure;
In the compression chamber formed by the compression unit, a refrigerant injection unit that injects the injection refrigerant into an intermediate pressure unit in which the intake refrigerant has an intermediate pressure higher than the suction pressure and lower than the discharge pressure, and
The refrigerant injection part is
A refrigerant inflow chamber into which the injection refrigerant flows from outside;
An on-off valve chamber connected to the refrigerant inflow chamber and the intermediate pressure portion of the compression chamber, wherein a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure portion are in the same plane in the room And an on-off valve chamber provided with an on-off valve that opens and closes a connection port with the refrigerant inflow chamber by a pressure difference between the refrigerant on the refrigerant inflow chamber side and the refrigerant on the intermediate pressure portion side. Features.
ことを特徴とする。 The on-off valve is a plate-like member provided so as to be movable in a predetermined movement direction in the on-off valve chamber, and is connected to the intermediate pressure portion when the connection port with the refrigerant inflow chamber is closed. It is a plate-like member in which a hole is formed at a position overlapping with the mouth.
ことを特徴とする。 A guide hole is formed in the on-off valve, and a guide rod provided in the on-off valve chamber and extending in the moving direction is provided to penetrate the guide hole.
前記開閉弁は、前記ガイド孔が形成された円形板状の部材であり、前記ガイド棒が前記ガイド孔と噛み合うことにより、前記ガイド棒を軸として回転しないように設けられた
ことを特徴とする。 The on-off valve chamber is formed in a cylindrical shape in which a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure part are formed on the bottom surface,
The on-off valve is a circular plate-like member in which the guide hole is formed, and is provided so as not to rotate around the guide rod when the guide rod is engaged with the guide hole. .
前記開閉弁は、前記開閉弁室の底面の円よりも小さい径の円形であり、前記ガイド棒の外周とほぼ同一寸法で同一形状のガイド孔が形成された
ことを特徴とする。 The on-off valve chamber is formed in a cylindrical shape in which a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure part are formed on the bottom surface,
The on-off valve has a circular shape with a diameter smaller than a circle on the bottom surface of the on-off valve chamber, and has a guide hole having substantially the same size and the same shape as the outer periphery of the guide rod.
ことを特徴とする。 The on-off valve is a leaf spring.
前記冷媒流入室は、前記固定台板の側部から内部に形成された部屋であり、
前記開閉弁室は、前記固定台板の上面側に形成された部屋である
ことを特徴とする。 The compression section includes an orbiting scroll having an orbiting spiral tooth formed on an upper surface side of an orbiting base plate, and a fixed spiral tooth that meshes with the orbiting spiral tooth of the orbiting scroll to form the compression chamber. A fixed scroll formed on the lower surface side of the fixed base plate,
The refrigerant inflow chamber is a room formed inside from the side of the fixed base plate,
The on-off valve chamber is a chamber formed on the upper surface side of the fixed base plate.
ことを特徴とする。 The on-off valve chamber is a chamber in which a depression formed on the upper surface side of the fixed base plate is covered with a back plate.
前記開閉弁室は、前記対をなす圧縮室の各圧縮室に対応して設けられた
ことを特徴とする。 The compression unit forms a compression chamber in which the swinging spiral teeth of the swing scroll and the fixed spiral teeth of the fixed scroll mesh with each other,
The on-off valve chamber is provided corresponding to each compression chamber of the paired compression chamber.
前記圧縮部と前記冷媒注入部とを内部に収納する密閉容器と、
前記密閉容器の側面部を貫通して設けられ、外部から前記冷媒流入室へ前記インジェクション冷媒を流入させるインジェクションパイプと
を備えることを特徴とする。 The injection-compatible compressor further includes:
A sealed container that houses the compression section and the refrigerant injection section;
And an injection pipe that is provided through the side surface of the sealed container and allows the injection refrigerant to flow into the refrigerant inflow chamber from the outside.
前記インジェクションパイプは、前記下側容器の側面部を貫通して設けられた
ことを特徴とする。 The sealed container has a lower container and an upper container that forms a sealed space in combination with the lower container,
The injection pipe is provided through the side surface of the lower container.
揺動渦巻歯を揺動台板の一方面側に形成し、
固定渦巻歯を固定台板の一方面側に形成し、
前記固定台板の側部に側部穴を形成し、
前記固定台板の他方面側に、窪みを形成し、
前記窪みの底面と前記側部穴とを連通する第1連通孔と、前記窪みの底面と前記固定台板の前記一方面側とを連通する第2連通孔とを前記固定台板に形成し、
前記固定台板に形成された前記窪みに、前記第1連通孔を開閉する開閉弁を配置し、
前記開閉弁が配置された前記窪みの開口部を塞ぐようにバックプレートを前記固定台板に取り付け、
前記揺動渦巻歯を形成した前記揺動台板を密閉容器内に配置し、
前記固定渦巻歯と前記揺動渦巻歯とを噛み合わせて圧縮室を形成するように、前記固定渦巻歯を形成した前記固定台板を前記密閉容器内に配置し、
前記密閉容器の外部から前記圧縮室へ吸入冷媒を流入させる吸入パイプを前記圧縮室の吸入口に接続し、
前記密閉容器の外部から前記側部穴へインジェクション冷媒を流入させるインジェクションパイプを前記側部穴に接続する
ことを特徴とする。 The method for manufacturing an injection-compatible scroll compressor according to the present invention is, for example,
The swing spiral teeth are formed on one side of the swing base plate,
A fixed spiral tooth is formed on one side of the fixed base plate,
Forming a side hole in the side of the fixed base plate,
Forming a recess on the other side of the fixed base plate,
A first communication hole that communicates the bottom surface of the recess and the side hole, and a second communication hole that communicates the bottom surface of the recess and the one surface side of the fixed base plate are formed in the fixed base plate. ,
An opening / closing valve that opens and closes the first communication hole is disposed in the recess formed in the fixed base plate,
A back plate is attached to the fixed base plate so as to close the opening of the recess in which the on-off valve is disposed,
The swing base plate on which the swing spiral teeth are formed is disposed in a sealed container,
The fixed base plate on which the fixed spiral teeth are formed is disposed in the sealed container so as to form a compression chamber by meshing the fixed spiral teeth and the swing spiral teeth.
Connecting a suction pipe for allowing the suction refrigerant to flow into the compression chamber from the outside of the sealed container, to the suction port of the compression chamber;
An injection pipe for injecting an injection refrigerant into the side hole from the outside of the sealed container is connected to the side hole.
なお、以下の説明において、インジェクションとは、凝縮器を出た後の(高圧側の)液冷媒又は二相冷媒又はガス冷媒を圧縮機の圧縮室の途中に戻して、再圧縮することである。また、凝縮器を出た後の(高圧側の)液冷媒又は二相冷媒又はガス冷媒をインジェクション冷媒と呼ぶ。なお、凝縮器を出た後とは、凝縮器を出た直後でなく、所定の膨張弁や所定の熱交換器等を通った後の冷媒であってもよい。なお、凝縮器とは、放熱器、負荷側に熱を与える熱交換器又はガスクーラーと読み替えてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following description, injection means that the liquid refrigerant (two-phase refrigerant) or gas refrigerant (high-pressure side) after exiting the condenser is returned to the middle of the compressor compression chamber and recompressed. . Further, the liquid refrigerant (two-phase refrigerant) or gas refrigerant (on the high pressure side) after exiting the condenser is called an injection refrigerant. The term “after exiting the condenser” may be the refrigerant after passing through a predetermined expansion valve, a predetermined heat exchanger, or the like, not immediately after leaving the condenser. The condenser may be read as a radiator, a heat exchanger that gives heat to the load side, or a gas cooler.
図1は、実施の形態1に係るスクロール圧縮機100の縦断面図である。スクロール圧縮機100は、後述するように、インジェクション機構を有するインジェクション対応圧縮機である。
また、図2から図4は、図1に示すスクロール圧縮機100の上部拡大図であり、いずれも同じ部分を示す図である。図2は、特に固定スクロール1を説明するための図である。図3は、特に揺動スクロール2を説明するための図である。図4は、特にコンプライアントフレーム3とガイドフレーム4とを説明するための図である。なお、図1から図4では、本来見えない構成要素を破線で示す。
FIG. 1 is a longitudinal sectional view of a
FIGS. 2 to 4 are enlarged top views of the
図1に示すように、スクロール圧縮機100は、固定スクロール1、揺動スクロール2、コンプライアントフレーム3、ガイドフレーム4、電動機5、サブフレーム6、主軸7、オルダム機構8が密閉容器10内に収納されて形成される。なお、固定スクロール1と揺動スクロール2とを総称して圧縮部と呼ぶ。 First, the configuration of the
As shown in FIG. 1, the
固定スクロール1の外周部はガイドフレーム4にボルトによって締結され、固定されている。
固定スクロール1の台板部1aの一方面側(図2の下側)には、板状の渦巻歯1b(固定渦巻歯)が形成されている。固定スクロール1の渦巻歯1bと、後述する揺動スクロール2の渦巻歯2b(揺動渦巻歯)とが噛み合うことにより、圧縮室20が形成される。
台板部1aの前記一方面側(図2の下側)の外周部にはオルダム案内溝1cがほぼ一直線上に2個形成されている。オルダム案内溝1cにはオルダム機構8の爪8bが往復摺動自在に係合されている。 The fixed
The outer peripheral portion of the fixed
A plate-
Two
また、台板部1aの側部から内部には、台板部1aの側部に密閉容器10を貫通して設けられたインジェクションパイプ41(冷媒流入口)を介して、密閉容器10の外部のインジェクション回路からインジェクション冷媒が流入する冷媒流入室1eが形成されている。
また、台板部1aの反対の面側(図2の上側)には、2つの窪みの開口部がバックプレート31によって蓋をされ密閉された2つの開閉弁室1f(逆止弁室)が形成されている。各開閉弁室1fの下面には冷媒流入室1eと連通する流入室連通路1g(流入室連通孔、第1連通孔)との接続口と、圧縮室20と連通する圧縮室連通路1h(圧縮室連通孔、第2連通孔)との接続口とが形成されている。さらに、各開閉弁室1f内には開閉弁30(逆止弁)が収納されている。
なお、開閉弁30やバックプレート31などについて、詳しくは後述する。
また、冷媒流入室1e、流入室連通路1g、開閉弁室1f、圧縮室連通路1h、開閉弁30、バックプレート31等、インジェクション冷媒を圧縮室へ注入する機構を冷媒注入部と呼ぶ。 A
Further, from the side part of the base plate part 1a, the outside of the
Further, on the opposite surface side (upper side in FIG. 2) of the base plate portion 1a, there are two on-off
The on-off
A mechanism for injecting the injection refrigerant into the compression chamber, such as the refrigerant inflow chamber 1e, the inflow
揺動スクロール2の台板部2aの一方面側(図3の上側)には、固定スクロール1の渦巻歯1bと実質的に同一形状の板状の渦巻歯2bが形成されている。上述したように、固定スクロール1の渦巻歯1bと、揺動スクロール2の渦巻歯2bとが噛み合うことにより、圧縮室20が形成される。
台板部2aの渦巻歯2bと反対の面側(図3の下側)の外周部には、固定スクロール1のオルダム案内溝1cとほぼ90度の位相差を持つオルダム案内溝2eがほぼ一直線上に2個形成されている。オルダム案内溝2eにはオルダム機構8の爪8aが往復摺動自在に係合されている。 The
A plate-
An
また、ボス部2fの外径側には、コンプライアントフレーム3のスラスト軸受3aと圧接摺動可能なスラスト面2dが形成されている。なお、ボス部2fの外径側において、揺動スクロール2のスラスト面2dとコンプライアントフレーム3との間に形成された空間をボス部外径空間15bと呼ぶ。また、スラスト軸受3aの外径側において、揺動スクロール2の台板部2aとコンプライアントフレーム3との間に形成された空間を台板外径部空間15cと呼ぶ。台板外径部空間15cは、吸入ガス雰囲気圧(吸入圧)の低圧空間となっている。
また、台板部2aには、固定スクロール1側の面(図3の上側の面)からコンプライアントフレーム3側の面(図3の下側の面)までを貫通する抽気孔2jが設けられる。つまり、台板部2aには、圧縮室20とスラスト面2d側の空間とを連通する抽気孔2jが設けられる。なお、抽気孔2jのコンプライアントフレーム3側の開口部(下開口部2k)が通常運転時に描く円軌跡が、コンプライアントフレーム3のスラスト軸受3aの内部に常時収まるように、抽気孔2jは配置されている。そのため、抽気孔2jからボス部外径空間15bや台板外径部空間15cへ冷媒が漏れることがない。 A hollow
A
Further, the
コンプライアントフレーム3は、外周部に設けられた上下2つの円筒面3d,3eを、ガイドフレーム4の内周部に設けた円筒面4a,4bにより半径方向に支持されている。コンプライアントフレーム3の中心部には、電動機5により回転駆動される主軸7を半径方向に支持する主軸受3cと補助主軸受3hとが形成されている。
ここで、ガイドフレーム4とコンプライアントフレーム3との間に形成され、上下をリング状のシール材16a、16bで仕切られた空間をフレーム空間15dと呼ぶ。なお、ガイドフレーム4の内周面にシール材16a、16bを収納するリング状のシール溝が2ヶ所に形成されている。しかし、このシール溝はコンプライアントフレーム3の外周面に形成されていてもよい。
コンプライアントフレーム3には、抽気孔2jの下開口部2kと対峙する位置に、スラスト軸受3a側からフレーム空間15d側までを貫通して、常時もしくは間欠的に抽気孔2jとフレーム空間15dとを連通する連通孔3sが形成されている。
また、コンプライアントフレーム3には、ボス部外径空間15bの圧力を調整する弁3t、弁押さえ3y、中間圧調整スプリング3mが収納された調整弁空間3pが設けられている。中間圧調整スプリング3mは、調整弁空間3pに自然長より縮められた状態で収納されている。なお、弁3tの外径側におけるコンプライアントフレーム3とガイドフレーム4との間の空間を、弁外径空間15eと呼ぶ。
また、コンプライアントフレーム3には、スラスト軸受3aの外径側に、オルダム機構環状部8cが往復摺動運動する往復摺動部3xが形成されている。往復摺動部3xには、弁外径空間15eと台板外径部空間15cとを連通する連通孔3nが形成されている。 The
In the
Here, a space formed between the
The
The
The
ガイドフレーム4の内側面の固定スクロール1側(図4の上側)には、上嵌合円筒面4aが形成されている。上嵌合円筒面4aは、コンプライアントフレーム3の外周面に形成された上嵌合円筒面3dと係合されている。
また、ガイドフレーム4の内側面の電動機5側(図4の下側)には、下嵌合円筒面4bが形成されている。下嵌合円筒面4bは、コンプライアントフレーム3の外周面に形成された下嵌合円筒面3eと係合されている。 The outer peripheral surface of the
On the fixed
A lower fitting
主軸7の揺動スクロール2側(図1の上側)には、揺動スクロール2の揺動軸受2cと回転自在に係合する揺動軸部7bが形成されている。揺動軸部7bの下側には、コンプライアントフレーム3の主軸受3c及び補助主軸受3hと回転自在に係合する主軸部7cが形成されている。
主軸7の逆側(図1の下側)には、サブフレーム6の副軸受6aと回転自在に係合する副軸部7dが形成されている。副軸部7dと上述した主軸部7cとの間に電動機5の回転子5aが焼嵌され、その周囲に固定子5bが設けられている。
また、主軸7の内部には、軸方向に貫通して設けられた高圧油給油穴7gが設けられている。さらに、主軸7の下端面には、高圧油給油穴7gと連通するオイルパイプ7fが圧入されている。 The
A rocking
On the opposite side of the main shaft 7 (lower side in FIG. 1), a
In addition, a high-pressure
低圧の吸入冷媒は、吸入パイプ42から固定スクロール1の渦巻歯1bと揺動スクロール2の渦巻歯2bとにより形成される圧縮室20に入る。また、外部からインジェクションパイプ41を介して流入したインジェクション冷媒が、冷媒流入室1e、流入室連通路1g、開閉弁室1fを経て、圧縮室連通路1hから圧縮室20へ注入される。なお、インジェクション運転を行わない場合には、インジェクション冷媒は圧縮室20へ注入されない。
電動機5により主軸7が駆動され、揺動スクロール2が駆動する。揺動スクロール2は、オルダム機構8によって自転運動せず、公転運動(偏芯旋回運動)して、圧縮室20の容積を徐々に減少させる圧縮動作をする。この圧縮動作により吸入冷媒は高圧となり、固定スクロール1の吐出ポート1dより密閉容器10内に吐出される。吐出された冷媒は、吐出パイプ43から密閉容器10外に放出される。つまり、密閉容器10内は、高圧となる。 Next, the operation of the
Low-pressure suction refrigerant enters the
The
また、高圧油給油穴7gを流れる高圧油は、主軸7に設けられた横穴から主軸受3cと主軸部7cとの間に導かれる。主軸受3cと主軸部7cとの間に導かれた冷凍機油は、主軸受3cと主軸部7cとの間で吸入圧より高く吐出圧以下の中間圧Pm1まで減圧され、ボス部外径空間15bへ流れる。
なお、ボス部外径空間15bの中間圧Pm1となった冷凍機油は、冷凍機油に溶解していた冷媒の発砲で、一般にはガス冷媒と冷凍機油との2相になっている。 As described above, the inside of the sealed
The high-pressure oil flowing through the high-pressure
The refrigerating machine oil that has reached the intermediate pressure Pm1 in the
また、ボス部外径空間15bの中間圧Pm1となった冷凍機油は、揺動スクロール2のスラスト面2dとコンプライアントフレーム3のスラスト軸受3aの摺動部へ給油され、オルダム機構環状部8cの内側へ排出される。
そして、オルダム機構環状部8cの内側排出された冷凍機油は、オルダム機構環状部8cの摺動面とオルダム機構8の爪8a,8bの摺動面とに給油された後、台板外径部空間15cへ開放される。 The refrigerating machine oil that has become the intermediate pressure Pm1 in the boss portion
The refrigerating machine oil having an intermediate pressure Pm1 in the boss portion
The refrigerating machine oil discharged inside the Oldham mechanism
なお、冷媒ガスが導かれるといっても、フレーム空間15dは上シール材16aと下シール材16bとで密閉された閉空間であるため、通常運転時には圧縮室20の圧力変動に呼応して圧縮室20とフレーム空間15dとは双方向に微少な流れを有する。つまり、圧縮室20とフレーム空間15dとは、いわば呼吸しているような状態となる。 Further, the
Even if the refrigerant gas is guided, the
一方、コンプライアントフレーム3には、(C)フレーム空間15dの中間圧Pm2に起因する力と、(D)下端面の高圧雰囲気に露出している部分に作用する高圧に起因する力との合計(C+D)が上向きの力として作用する。
そして通常運転時には、上向きの力(C+D)が下向きの力(A+B)より大きくなるように設定されている。 Here, the
On the other hand, for the
During normal operation, the upward force (C + D) is set to be greater than the downward force (A + B).
コンプライアントフレーム3が揺動スクロール2に押し付けられているため、揺動スクロール2も、コンプライアントフレーム3と同様に固定スクロール1側(図1の上側)に浮き上がった状態となる。その結果、揺動スクロール2の渦巻歯2bの歯先と、固定スクロール1の歯底(台板部1a)とが接触するとともに、固定スクロール1の渦巻歯1bの歯先と、揺動スクロール2の歯底(台板部2a)とが接触する。 During normal operation, since the upward force (C + D) is set to be greater than the downward force (A + B), the
Since the
図5は、インジェクション回路を有するヒートポンプ装置の回路構成の一例を示す図である。図6は、図5に示すヒートポンプ装置の冷媒の状態についてのモリエル線図である。図6において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。 Next, operation | movement of a heat pump apparatus (refrigeration cycle apparatus) provided with the
FIG. 5 is a diagram illustrating an example of a circuit configuration of a heat pump apparatus having an injection circuit. FIG. 6 is a Mollier diagram of the state of the refrigerant in the heat pump apparatus shown in FIG. In FIG. 6, the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant pressure.
圧縮機51(スクロール圧縮機100)で高温高圧となった気相冷媒(図6の点1)は、圧縮機51の吐出パイプ43から吐出され、凝縮器であり放熱器となる熱交換器52で熱交換されて液化する(図6の点2)。このとき、冷媒から放熱された熱により空気や水などが温められ、暖房や給湯がされる。
熱交換器52で液化された液相冷媒は、第1膨張弁53(減圧機構)で中間圧まで減圧され、気液二相状態になる(図6の点3)。第1膨張弁53で気液二相状態になった冷媒は、レシーバー59で圧縮機51へ吸入される冷媒と熱交換され、冷却されて液化される(図6の点4)。レシーバー59で液化された液相冷媒は、内部熱交換器54、第3膨張弁55側(本流)と、第2膨張弁56側(支流,インジェクション回路)とに分岐して流れる。
本流を流れる液相冷媒は、第2膨張弁56で減圧され気液二相状態となった支流を流れる冷媒と内部熱交換器54で熱交換されて、さらに冷却される(図6の点5)。内部熱交換器54で冷却された液相冷媒は、第3膨張弁55(減圧機構)で減圧されて気液二相状態になる(図6の点6)。第3膨張弁55で気液二相状態になった冷媒は、蒸発器となる熱交換器57で熱交換され、加熱される(図6の点7)。そして、熱交換器57で加熱された冷媒は、レシーバー59でさらに加熱され(図6の点8)、吸入パイプ42から圧縮機51に吸入される。
一方、支流を流れる冷媒は、上述したように、第2膨張弁56(減圧機構)で減圧されて(図6の点9)、内部熱交換器54で熱交換される(図6の点10)。内部熱交換器54で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプ41から固定スクロール1の冷媒流入室1eへ流入する。
圧縮機51内での圧縮動作について詳しくは後述するが、圧縮機51内では、本流を流れ吸入パイプ42から吸入された冷媒(図6の点8)が、中間圧まで圧縮、加熱される(図6の点11)。中間圧まで圧縮、加熱された冷媒(図6の点11)と、インジェクション冷媒(図6の点8)とが合流して、温度が低下する(図6の点12)。そして、温度が低下した冷媒(図6の点12)が、さらに圧縮、加熱され高温高圧となり、吐出される(図6の点1)。 First, the operation during heating operation will be described. During the heating operation, the four-
The gas-phase refrigerant (
The liquid-phase refrigerant liquefied by the
The liquid-phase refrigerant flowing through the main flow is heat-exchanged by the
On the other hand, as described above, the refrigerant flowing through the tributary is depressurized by the second expansion valve 56 (decompression mechanism) (
Although the compression operation in the
ここで、第2膨張弁56の開度は、例えば、電子制御により制御される。 Note that when the injection operation is not performed, the opening of the
Here, the opening degree of the
圧縮機51(スクロール圧縮機100)で高温高圧となった気相冷媒(図6の点1)は、圧縮機51の吐出パイプ43から吐出され、凝縮器となる熱交換器57で熱交換されて液化する(図6の点2)。熱交換器57で液化された液相冷媒は、第3膨張弁55で中間圧まで減圧され、気液二相状態になる(図6の点3)。第3膨張弁55で気液二相状態になった冷媒は、内部熱交換器54で熱交換され、冷却され液化される(図6の点4)。内部熱交換器54では、第3膨張弁55で気液二相状態になった冷媒と、内部熱交換器54で液化された液相冷媒を第2膨張弁56で減圧させて気液二相状態になった冷媒(図6の点9)とを熱交換させている。内部熱交換器54で熱交換された液相冷媒(図6の点4)は、レシーバー59側(本流)と、内部熱交換器54側(支流,インジェクション回路)とに分岐して流れる。
本流を流れる液相冷媒は、レシーバー59で圧縮機51に吸入される冷媒と熱交換されて、さらに冷却される(図6の点5)。レシーバー59で冷却された液相冷媒は、第1膨張弁53で減圧されて気液二相状態になる(図6の点6)。第1膨張弁53で気液二相状態になった冷媒は、蒸発器となる熱交換器52で熱交換され、加熱される(図6の点7)。このとき、冷媒が吸熱することにより空気や水などが冷やされ、冷房されたり、冷水や氷を作ったり、冷凍がされる。
そして、熱交換器57で加熱された冷媒は、レシーバー59でさらに加熱され(図6の点8)、吸入パイプ42から圧縮機51に吸入される。
一方、支流を流れる冷媒は、上述したように、第2膨張弁56で減圧されて(図6の点9)、内部熱交換器54で熱交換される(図6の点10)。内部熱交換器54で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプ41から固定スクロール1の冷媒流入室1eへ流入する。
圧縮機51内での圧縮動作については、暖房運転時と同様である。 Next, operation during cooling operation will be described. During the cooling operation, the four-
The gas-phase refrigerant (
The liquid-phase refrigerant flowing through the main stream is heat-exchanged with the refrigerant sucked into the
Then, the refrigerant heated by the
On the other hand, as described above, the refrigerant flowing through the tributary is decompressed by the second expansion valve 56 (
The compression operation in the
もちろん、インジェクション運転するか否かの基準は、上記の基準でなくてもよく、例えば、冷房運転時にインジェクション運転しても構わない。 Here, the injection operation is usually performed in the heating operation. Therefore, normally, the injection operation is not performed during the cooling operation. In addition, even during the heating operation, the injection operation is not always performed. For example, when the outside air temperature is equal to or lower than a predetermined temperature (for example, 2 ° C.), or the rotation speed of the compressor is a predetermined frequency (for example, 60 Hz). ) In the above case, the heating capacity can be increased by performing the injection operation, and a heat pump device with good heating and hot water supply performance can be obtained. When there is no need for the injection operation, the opening of the
Of course, the criterion for determining whether or not to perform the injection operation may not be the above-described criterion. For example, the injection operation may be performed during the cooling operation.
図7は、固定スクロール1に対する揺動スクロール2の相対位置を、吸入完了状態を0度として90度毎に示した図である。
固定スクロール1の渦巻歯1bと揺動スクロール2の渦巻歯2bとが噛み合うことにより対をなす圧縮室20a,20bが形成される。なお、圧縮室20a,20bを総称して圧縮室20と呼ぶ。圧縮室20は、主軸7の回転に伴い揺動スクロール2が回転することにより、徐々に容積が小さくなりながら中央部へ移動する。つまり、圧縮室20に吸入された冷媒は、主軸7の回転に伴い揺動スクロール2が公転運動することにより、徐々に圧縮されて、圧力を高めながら中央部へ移動する。そして、圧縮室20が中央部に設けられた吐出ポート1dと連通すると、圧縮された冷媒が吐出ポート1dから密閉容器10内へ吐出される。 The compression operation of the
FIG. 7 is a view showing the relative position of the
A pair of
0度の時点(冷媒吸入完了時点)から主軸7が90度回転すると、圧縮室20の容積が少し小さくなるとともに、圧縮室20が少し中央部寄りに移動する。そして、この時点で、圧縮室20は、圧縮室連通路1hと連通する。そのため、インジェクション運転をしているのであれば、圧縮室連通路1hからインジェクション冷媒が流入する。つまり、吸入パイプ42から圧縮室20へ吸入された吸入冷媒が、吸入された時点の吸入圧(低圧)よりも高く、吐出ポート1dから吐出される時点の吐出圧(高圧)よりも低い中間圧になる中間圧部へ、インジェクション冷媒は注入される。
さらに冷媒吸入完了時点から180度、270度、360度と主軸7が回転する。この間は、圧縮室20は、圧縮室連通路1hと連通している。そのため、この間は、圧縮室連通路1hからインジェクション冷媒が圧縮室20へ流入しつつ、圧縮室20内の冷媒が圧縮されて徐々に中央部寄りに移動する。
主軸7の回転が冷媒吸入完了時点から360度を過ぎると、圧縮室20は、圧縮室連通路1hとの連通を終了する。そして、これ以降、圧縮室20が吐出ポート1dと連通するまで、外部から圧縮室20への冷媒の流入がないまま、圧縮室20内の冷媒は圧縮される。
そして、主軸7の回転が冷媒吸入完了時点から450度を過ぎると、圧縮室20は吐出ポート1dと連通して、圧縮された冷媒が吐出ポート1dから密閉容器10内へ吐出される。 The time point of 0 degree is a state where the suction of the refrigerant is completed as described above. At the time of 0 degree, the refrigerant is sucked into the
When the
Further, the
When the rotation of the
When the rotation of the
図8は、開閉弁室1fの構成を示す分解斜視図である。なお、図8では、本来見えない構成要素を破線で示す。
2つの開閉弁室1fは、固定スクロール1の台板部1aの渦巻歯1bとは逆側に設けられた2つの円柱形の窪みに、バックプレート31を被せボルト34によって締結して密閉されて形成される。ここでは、2つの窪みの両方の開口部を塞ぐ1つのバックプレート31を被せている。もちろん、窪み毎に別々のバックプレート31を被せるようにしてもよい。
なお、各窪みの下側の平面には、流入室連通路1gとの接続口と圧縮室連通路1hとの接続口とが形成されている。流入室連通路1gは、台板部1aの側部から内部へ向かって形成された冷媒流入室1eと連通する。また、圧縮室連通路1hは、渦巻歯1b側の面と連通する。つまり、圧縮室連通路1hは、圧縮室20と連通する。すなわち、各窪みの下側の平面には、冷媒流入室1eとの接続口と、圧縮室20との接続口とが形成されている。 Next, the configuration of the on-off
FIG. 8 is an exploded perspective view showing the configuration of the on-off
The two on-off
In addition, the connection port with the inflow
なお、ガイド突起部31aは、流入室連通路1gと圧縮室連通路1hとが形成された面と垂直方向(図1の上下方向、鉛直方向)に棒状に伸びた突起である。また、ガイド孔30bが鍵穴型に形成されるとともに、ガイド突起部31aも鍵型に形成されている。そのため、開閉弁30は、開閉弁室1f内で固定台板の面方向と垂直方向(図1の上下方向)に移動可能であるが、ガイド孔30bとガイド突起部31aとが噛み合うことにより、ガイド突起部31aを軸として回転しない状態となる。つまり、圧縮室連通路1hと連通する位置に配置された通過孔30aの位置がずれることがない。
また、開閉弁30を窪みの内径とほぼ同一径の円形とするか、あるいはガイド孔30bをガイド突起部31aの外周とほぼ同一寸法及び同一形状とすることで、水平方向に開閉弁30がずれることがない。なお、開閉弁30を窪みの内径とほぼ同一径の円形とした場合には、開閉弁30の外周と窪みの内壁とが擦れて、バリが生じる虞がある。そのため、開閉弁30を窪みの内径よりも少し小さい径の円形とするとともに、ガイド孔30bをガイド突起部31aの外周とほぼ同一寸法で同一形状とすることが望ましい。
また、ここでは、窪みを円柱形とし、開閉弁30を円形の板状として、加工し易く、製造し易い形状にしたため、ガイド孔30bやガイド突起部31aの形状の工夫により開閉弁30の回転を防止する必要があった。しかし、窪みを角柱状とし、開閉弁30を多角形にして、開閉弁30の回転を防止してもよい。 Each on-off
The
Moreover, the on-off
In addition, here, since the recess is a columnar shape and the on-off
図9は、インジェクション運転を行う場合の一方の開閉弁室1f付近を示す図である。
インジェクション運転を行う場合には、気液二相状態のインジェクション冷媒が、インジェクションパイプ41から固定スクロール1の台板部1aの内部に形成された冷媒流入室1eへ流入する。冷媒流入室1eへ流入したインジェクション冷媒は、2つの流入室連通路1gへそれぞれ流入する。
ここで、通常は、冷媒流入室1eへ流入したインジェクション冷媒の圧力が圧縮室20内(特に、圧縮室20において圧縮室連通路1hが連通した位置、すなわち中間圧部)の冷媒の圧力よりも高い。そのため、流入室連通路1gへ流入したインジェクション冷媒は、開閉弁室1fに設けられた開閉弁30をバックプレート31側(図9の上側)へ押し上げる。その結果、流入室連通路1gへ流入したインジェクション冷媒が開閉弁室1fへ流入する。そして、圧縮室20が圧縮室連通路1hと連通したときに、開閉弁室1fのインジェクション冷媒は、圧縮室連通路1hを通じて圧縮室20へ流入する。 The operation of the on-off
FIG. 9 is a view showing the vicinity of one on-off
When performing the injection operation, the gas-liquid two-phase injection refrigerant flows from the
Here, normally, the pressure of the injection refrigerant flowing into the refrigerant inflow chamber 1e is higher than the pressure of the refrigerant in the compression chamber 20 (in particular, the position where the compression
図5,4に基づき説明したように、インジェクション運転を行わない際には、ヒートポンプ装置における第2膨張弁56は閉である。そのため、冷媒流入室1eへインジェクション冷媒は流入してこない。
しかし、圧縮室20内(特に、圧縮室20において圧縮室連通路1hが連通した位置、すなわち中間圧部)の圧力が冷媒流入室1eから開閉弁室1fまでの冷媒の圧力より高いため、圧縮室20が圧縮室連通路1hと連通したときに、圧縮室連通路1hを介して圧縮室20内の冷媒が開閉弁室1fへ逆流する。
この場合、開閉弁室1fへ流入した冷媒は、開閉弁30の通過孔30aを通って、開閉弁室1fへ流入する。しかし、圧縮室20内の圧力が冷媒流入室1e内の圧力よりも高いため、圧縮室20から開閉弁室1fへ流入した冷媒は、開閉弁30を流入室連通路1g側(図10の下側)へ押し付ける。その結果、流入室連通路1gは開閉弁30によって塞がれる。したがって、開閉弁室1fへ流入した冷媒は、流入室連通路1gから冷媒流入室1eへ流出しない。 FIG. 10 is a view showing the vicinity of one on-off
As described with reference to FIGS. 5 and 4, when the injection operation is not performed, the
However, since the pressure in the compression chamber 20 (in particular, the position where the compression
In this case, the refrigerant that has flowed into the on-off
一方、インジェクション運転を行っていない場合のように、冷媒流入室1e側の冷媒の圧力が圧縮室20内の冷媒の圧力よりも低い場合には、開閉弁30は流入室連通路1g側へ押し付けられ、開閉弁30は閉じた状態となる。そのため、圧縮室20から逆流して開閉弁室1fへ流入した冷媒は、流入室連通路1gから冷媒流入室1eへ流出しない。
すなわち、開閉弁30は、冷媒流入室1e側(流入室連通路1g)の冷媒の圧力と、圧縮室20内(圧縮室連通路1h)の冷媒の圧力との圧力差によって開閉する。 That is, when the pressure of the refrigerant on the refrigerant inflow chamber 1e side is higher than the pressure of the refrigerant in the
On the other hand, when the pressure of the refrigerant on the refrigerant inflow chamber 1e side is lower than the pressure of the refrigerant in the
That is, the on-off
なお、仮に開閉弁30が設けられていない場合には、圧縮室20内の冷媒がインジェクション回路に逆流してしまい、圧縮室連通路1hから第2膨張弁56までの容積が圧縮における死容積となり、効率は大幅に低下する。つまり、開閉弁30を用いることにより死容積を大幅に低減することができ、圧縮効率を高めることができる。 Thereby, even when the injection operation is not performed, the refrigerant in the
If the on-off
つまり、開閉弁30は、圧力差と重力とのみにより動作しており、コイルバネ等のバネ力を一切用いることなく動作している。そのため、信頼性が非常に高く、また低コストで作ることができる。 In addition, when shifting from the state in which the injection operation is performed to the state in which the injection operation is not performed, the pressure in the refrigerant inflow chamber 1e gradually decreases. When the pressure in the
That is, the on-off
まず、固定スクロール1や揺動スクロール2等を上述した形状に形成する。
特に、固定スクロール1については、渦巻歯1bと、固定スクロール1の台板部1aに、冷媒流入室1eとなる穴と、2つの窪みと、流入室連通路1gとなる孔と、圧縮室連通路1hとなる孔とを形成する機械加工を施すとともに、形成した窪みに開閉弁30を配置し、バックプレート31を取り付ける。なお、固定スクロール1の台板部1aに、冷媒流入室1eとなる穴と、2つの窪みと、流入室連通路1gとなる孔と、圧縮室連通路1hとなる孔とは、いずれも直線的な削り加工をすることで形成できる。また、渦巻歯1bと、冷媒流入室1eとなる穴と、2つの窪みと、流入室連通路1gとなる孔と、圧縮室連通路1hとなる孔とを形成する機械加工の順序はどのような順序であってもよい。
次に、図1に示すように、密閉容器10の下側容器10aに、サブフレーム6、電動機5、主軸7、ガイドフレーム4、コンプライアントフレーム3、オルダム機構8を配置するとともに、揺動スクロール2を主軸7に係合するように配置する。また、揺動スクロール2との間に圧縮室20が形成されるように固定スクロール1を配置する。そして、インジェクションパイプ41を冷媒流入室1eと接続されるように下側容器10aに取り付け、吸入パイプ42を圧縮室20の吸入口に接続されるように下側容器10aに取り付け、吐出パイプ43を下側容器10aに取り付けるとともに、下側容器10aに上側容器10bを取り付け、密閉する。
これにより、スクロール圧縮機100が製造される。 A method for manufacturing the
First, the fixed
In particular, for the fixed
Next, as shown in FIG. 1, the
Thereby, the
特に、スクロール圧縮機100では、流入室連通路1gと圧縮室連通路1hとの開閉弁室1fへの接続口が、開閉弁室1fの同じ面に設けられ、開閉弁30が流入室連通路1g側の圧力と圧縮室連通路1h側の圧力との圧力差で開閉する。そのため、開閉弁30がスムーズに移動して開閉でき、信頼性を向上できる。また、開閉弁室1fをコンパクトに形成できる。さらに、スクロール圧縮機100では、コイルスプリングを用いることなく、圧縮室20内の圧力と冷媒流入室1eの圧力との圧力差により開閉を制御することもできるので、コイルスプリングを用いた開閉弁に比べ、部品数の削減を図ることもできる。
また、スクロール圧縮機100では、固定スクロール1の台板部1aに対して、単に直線状に、冷媒流入室1e、2つの窪み、流入室連通路1g、圧縮室連通路1hを形成し、開閉弁30を設置して、バックプレート31で蓋をして開閉弁室1fを形成している。つまり、スクロール圧縮機100では、直線状の穴を開け、開閉弁30とバックプレート31とを設置するだけである。そのため、例えば、開閉弁の弁座部に対して冷媒流路の溝を設ける等の複雑な加工が不要である。そのため、加工工数の低減を図ることができる。 As described above, according to the
In particular, in the
In the
また、インジェクションパイプ41を固定スクロール1の台板部1aの側部に取り付ければよいので、インジェクションパイプ41を密閉容器10の側部に設けられる。そのため、インジェクションパイプ41に接続する配管は、密閉容器10の側部に配置すればよく、密閉容器10の上側に配置する必要がない。一般に、圧縮機を備えるヒートポンプ装置を小型化する場合、いわゆる室外機において密閉容器10の上下側のスペースに余裕がなくなる。ここで、スクロール圧縮機100であれば、インジェクションパイプ41に接続する配管を密閉容器10の上側に配置しなければならない圧縮機に比べ、密閉容器10の上側のスペースを節約でき、ヒートポンプ装置の小型化が可能となる。 Further, a refrigerant inflow chamber 1 e is provided from the side of the base plate portion 1 a of the fixed
Further, since the
実施の形態2では、板バネにより構成された開閉弁32を用いるスクロール圧縮機100について説明する。
In the second embodiment, a
実施の形態2に係るスクロール圧縮機100では、上述したように、板バネにより構成された開閉弁32を用いる。開閉弁32は、流入室連通路1gを覆うように設けられる。
インジェクション運転を行っている場合のように、冷媒流入室1e側の冷媒の圧力が圧縮室20内の冷媒の圧力よりも高い場合には、開閉弁32はバックプレート33側へ押し曲げられる。そして、流入室連通路1gからインジェクション冷媒が開閉弁室1fへ流入し、圧縮室連通路1hを通って圧縮室20内へ流入する。
一方、インジェクション運転を行っていない場合のように、冷媒流入室1e側の圧力が圧縮室20内の圧力よりも低い場合には、開閉弁32は流入室連通路1g側へ押し付けられる。そのため、圧縮室20から逆流して開閉弁室1fへ流入した冷媒は、流入室連通路1gから冷媒流入室1eへ流出しない。 FIG. 11 is a longitudinal sectional view of the
In the
When the pressure of the refrigerant on the refrigerant inflow chamber 1e side is higher than the pressure of the refrigerant in the
On the other hand, when the pressure on the refrigerant inflow chamber 1e side is lower than the pressure in the
以上の実施の形態に係るスクロール圧縮機は、
密閉容器内に、固定スクロール及び揺動スクロールを噛み合わせ、固定スクロールに対して揺動スクロールを自転なしに公転運動させることにより、両スクロールの板状渦巻歯で形成される圧縮室で圧縮された冷媒を、固定スクロール中心部に設けた吐出ポートから、固定スクロール背面の吐出空間に吐出し、また圧縮室へ流入される冷媒の圧力と圧縮室から吐出された冷媒の圧力との中間圧の冷媒を圧縮過程の中間部へインジェクションすることが可能なスクロール圧縮機において、
固定スクロールの側面から内部を貫通し圧縮室連通路を通して圧縮室に流入する冷媒流入室の途中に2つの開閉弁と2つの開閉弁を収納する開閉弁室を有し、また開閉弁室を密閉する1つのバックプレートを有することを特徴とする。 The above is summarized as follows.
The scroll compressor according to the above embodiment is
The fixed scroll and the orbiting scroll are meshed with each other in the sealed container, and the orbiting scroll is revolved without rotating with respect to the fixed scroll, thereby being compressed in the compression chamber formed by the plate-like spiral teeth of both scrolls. Refrigerant is discharged from the discharge port provided at the center of the fixed scroll to the discharge space on the back surface of the fixed scroll, and the refrigerant has an intermediate pressure between the pressure of the refrigerant flowing into the compression chamber and the pressure of the refrigerant discharged from the compression chamber. In a scroll compressor capable of injecting into the middle part of the compression process,
There is an on-off valve chamber that houses two on-off valves and two on-off valves in the middle of the refrigerant inflow chamber that passes through the inside from the side of the fixed scroll and flows into the compression chamber through the compression chamber communication passage. And having one back plate.
また、上記説明では、スクロール圧縮機100における固定スクロール1の台板部1aに、冷媒流入室1eや開閉弁室1f等を設ける例を説明した。しかし、これに限らず、固定スクロール1の台板部1aとは別に、冷媒流入室1eや開閉弁室1f等を設ける構成としてもよい。 In the above description, the
In the above description, the example in which the refrigerant inflow chamber 1e, the on-off
Claims (15)
- 圧縮機と、放熱器と、第1膨張弁と、蒸発器とが順次接続された主冷媒回路と、
前記主冷媒回路における前記放熱器と前記第1膨張弁との間と、前記圧縮機に設けられたインジェクションパイプとを繋ぎ、第2膨張弁が設けられたインジェクション回路とを備え、
前記第2膨張弁の開度が小さくなると前記圧縮機の前記インジェクションパイプから圧縮室までの流路を閉鎖し、前記第2膨張弁の開度が大きくなると前記圧縮機の前記インジェクションパイプから前記圧縮室までの流路を開放する機構を設けたことを特徴とするヒートポンプ装置。 A main refrigerant circuit in which a compressor, a radiator, a first expansion valve, and an evaporator are sequentially connected;
An injection circuit provided between the radiator and the first expansion valve in the main refrigerant circuit and an injection pipe provided in the compressor, and provided with a second expansion valve;
When the opening of the second expansion valve decreases, the flow path from the injection pipe to the compression chamber of the compressor is closed, and when the opening of the second expansion valve increases, the compression from the injection pipe of the compressor A heat pump device comprising a mechanism for opening a flow path to a chamber. - 前記機構は、前記主冷媒回路を流れる冷媒と前記インジェクション回路を流れる冷媒との間の圧力差で動作することを特徴とする請求項1に記載のヒートポンプ装置。 The heat pump device according to claim 1, wherein the mechanism operates by a pressure difference between a refrigerant flowing through the main refrigerant circuit and a refrigerant flowing through the injection circuit.
- 前記機構は、
前記流路の途中に設けられ、前記インジェクション回路から前記インジェクションパイプを介して冷媒が流入する冷媒流入室と、
前記流路のうち前記冷媒流入室と前記圧縮室との間において、前記冷媒流入室と前記圧縮室とに接続されて設けられた開閉弁室であって、前記冷媒流入室との接続口と前記圧縮室との接続口とが室内の同一面内に形成され、前記冷媒流入室側の冷媒と前記圧縮室側の冷媒との間の圧力差により前記冷媒流入室との接続口を開閉する開閉弁が設けられた開閉弁室と
を備えることを特徴とする請求項1に記載のヒートポンプ装置。 The mechanism is
A refrigerant inflow chamber provided in the middle of the flow path and into which refrigerant flows from the injection circuit via the injection pipe;
An on-off valve chamber provided between the refrigerant inflow chamber and the compression chamber in the flow path and connected to the refrigerant inflow chamber and the compression chamber, and a connection port with the refrigerant inflow chamber; A connection port with the compression chamber is formed in the same plane in the room, and the connection port with the refrigerant inflow chamber is opened and closed by a pressure difference between the refrigerant on the refrigerant inflow chamber side and the refrigerant on the compression chamber side. The heat pump device according to claim 1, further comprising an on-off valve chamber provided with an on-off valve. - 圧縮室を形成し、前記圧縮室に吸入された吸入圧の吸入冷媒を吐出圧まで圧縮する圧縮部と、
前記圧縮部が形成した前記圧縮室において、前記吸入冷媒が前記吸入圧よりも高く前記吐出圧よりも低い中間圧となる中間圧部へインジェクション冷媒を注入する冷媒注入部とを備え、
前記冷媒注入部は、
外部から前記インジェクション冷媒が流入する冷媒流入室と、
前記冷媒流入室と前記圧縮室の前記中間圧部とに接続された開閉弁室であって、前記冷媒流入室との接続口と前記中間圧部との接続口とが室内の同一面内に形成され、前記冷媒流入室側の冷媒と前記中間圧部側の冷媒との間の圧力差により前記冷媒流入室との接続口を開閉する開閉弁が設けられた開閉弁室とを備えることを特徴とするインジェクション対応圧縮機。 A compression section that forms a compression chamber and compresses the suction refrigerant of the suction pressure sucked into the compression chamber to a discharge pressure;
In the compression chamber formed by the compression unit, a refrigerant injection unit that injects the injection refrigerant into an intermediate pressure unit in which the intake refrigerant has an intermediate pressure higher than the suction pressure and lower than the discharge pressure, and
The refrigerant injection part is
A refrigerant inflow chamber into which the injection refrigerant flows from outside;
An on-off valve chamber connected to the refrigerant inflow chamber and the intermediate pressure portion of the compression chamber, wherein a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure portion are in the same plane in the room And an on-off valve chamber provided with an on-off valve that opens and closes a connection port with the refrigerant inflow chamber by a pressure difference between the refrigerant on the refrigerant inflow chamber side and the refrigerant on the intermediate pressure portion side. A featured injection compatible compressor. - 前記開閉弁は、前記開閉弁室内を所定の移動方向へ移動可能に設けられた板状の部材であって、前記冷媒流入室との接続口を閉鎖した場合に、前記中間圧部との接続口と重なる位置に孔が形成された板状の部材である
ことを特徴とする請求項4に記載のインジェクション対応圧縮機。 The on-off valve is a plate-like member provided so as to be movable in a predetermined movement direction in the on-off valve chamber, and is connected to the intermediate pressure portion when the connection port with the refrigerant inflow chamber is closed. 5. The injection-compatible compressor according to claim 4, wherein the compressor is a plate-like member having a hole formed at a position overlapping the mouth. - 前記開閉弁には、ガイド孔が形成され、前記開閉弁室内に設けられ前記移動方向に伸びたガイド棒が、前記ガイド孔を貫通して設けられた
ことを特徴とする請求項5に記載のインジェクション対応圧縮機。 The guide valve according to claim 5, wherein a guide hole is formed in the opening / closing valve, and a guide rod provided in the opening / closing valve chamber and extending in the moving direction is provided through the guide hole. Injection compatible compressor. - 前記開閉弁室は、前記冷媒流入室との接続口と前記中間圧部との接続口とが底面に形成された円柱形に形成され、
前記開閉弁は、前記ガイド孔が形成された円形板状の部材であり、前記ガイド棒が前記ガイド孔と噛み合うことにより、前記ガイド棒を軸として回転しないように設けられた
ことを特徴とする請求項6に記載のインジェクション対応圧縮機。 The on-off valve chamber is formed in a cylindrical shape in which a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure part are formed on the bottom surface,
The on-off valve is a circular plate-like member in which the guide hole is formed, and is provided so as not to rotate around the guide rod when the guide rod is engaged with the guide hole. The injection-compatible compressor according to claim 6. - 前記開閉弁室は、前記冷媒流入室との接続口と前記中間圧部との接続口とが底面に形成された円柱形に形成され、
前記開閉弁は、前記開閉弁室の底面の円よりも小さい径の円形であり、前記ガイド棒の外周とほぼ同一寸法で同一形状のガイド孔が形成された
ことを特徴とする請求項6に記載のインジェクション対応圧縮機。 The on-off valve chamber is formed in a cylindrical shape in which a connection port with the refrigerant inflow chamber and a connection port with the intermediate pressure part are formed on the bottom surface,
The on-off valve is a circle having a diameter smaller than a circle on the bottom surface of the on-off valve chamber, and a guide hole having the same shape and the same size as the outer periphery of the guide rod is formed. The injection-compatible compressor described. - 前記開閉弁は、板バネである
ことを特徴とする請求項4に記載のインジェクション対応圧縮機。 The injection-compatible compressor according to claim 4, wherein the on-off valve is a leaf spring. - 前記圧縮部は、揺動台板の上面側に揺動渦巻歯が形成された揺動スクロールと、前記揺動スクロールの前記揺動渦巻歯と噛みあって前記圧縮室を形成する固定渦巻歯が固定台板の下面側に形成された固定スクロールとを有し、
前記冷媒流入室は、前記固定台板の側部から内部に形成された部屋であり、
前記開閉弁室は、前記固定台板の上面側に形成された部屋である
ことを特徴とする請求項4に記載のインジェクション対応圧縮機。 The compression section includes an orbiting scroll having an orbiting spiral tooth formed on an upper surface side of an orbiting base plate, and a fixed spiral tooth that meshes with the orbiting spiral tooth of the orbiting scroll to form the compression chamber. A fixed scroll formed on the lower surface side of the fixed base plate,
The refrigerant inflow chamber is a room formed inside from the side of the fixed base plate,
5. The injection-compatible compressor according to claim 4, wherein the on-off valve chamber is a chamber formed on an upper surface side of the fixed base plate. - 前記開閉弁室は、前記固定台板の上面側に形成された窪みがバックプレートにより蓋をされ形成された部屋である
ことを特徴とする請求項10に記載のインジェクション対応圧縮機。 11. The injection-compatible compressor according to claim 10, wherein the on-off valve chamber is a chamber formed by a recess formed on an upper surface side of the fixed base plate being covered with a back plate. - 前記圧縮部は、前記揺動スクロールの前記揺動渦巻歯と前記固定スクロールの前記固定渦巻歯とが噛み合って対をなす圧縮室を形成し、
前記開閉弁室は、前記対をなす圧縮室の各圧縮室に対応して設けられた
ことを特徴とする請求項10に記載のインジェクション対応圧縮機。 The compression unit forms a compression chamber in which the swinging spiral teeth of the swing scroll and the fixed spiral teeth of the fixed scroll mesh with each other,
The injection-compatible compressor according to claim 10, wherein the on-off valve chamber is provided corresponding to each compression chamber of the paired compression chambers. - 前記インジェクション対応圧縮機は、さらに、
前記圧縮部と前記冷媒注入部とを内部に収納する密閉容器と、
前記密閉容器の側面部を貫通して設けられ、外部から前記冷媒流入室へ前記インジェクション冷媒を流入させるインジェクションパイプと
を備えることを特徴とする請求項4に記載のインジェクション対応圧縮機。 The injection-compatible compressor further includes:
A sealed container that houses the compression section and the refrigerant injection section;
The injection-compatible compressor according to claim 4, further comprising an injection pipe that is provided through a side surface portion of the sealed container and allows the injection refrigerant to flow into the refrigerant inflow chamber from the outside. - 前記密閉容器は、下側容器と、前記下側容器と組み合わさって内部に密閉空間を形成する上側容器とを有し、
前記インジェクションパイプは、前記下側容器の側面部を貫通して設けられた
ことを特徴とする請求項13に記載のインジェクション対応圧縮機。 The sealed container has a lower container and an upper container that forms a sealed space in combination with the lower container,
The compressor for injection according to claim 13, wherein the injection pipe is provided so as to penetrate a side surface portion of the lower container. - 揺動渦巻歯を揺動台板の一方面側に形成し、
固定渦巻歯を固定台板の一方面側に形成し、
前記固定台板の側部に側部穴を形成し、
前記固定台板の他方面側に、窪みを形成し、
前記窪みの底面と前記側部穴とを連通する第1連通孔と、前記窪みの底面と前記固定台板の前記一方面側とを連通する第2連通孔とを前記固定台板に形成し、
前記固定台板に形成された前記窪みに、前記第1連通孔を開閉する開閉弁を配置し、
前記開閉弁が配置された前記窪みの開口部を塞ぐようにバックプレートを前記固定台板に取り付け、
前記揺動渦巻歯を形成した前記揺動台板を密閉容器内に配置し、
前記固定渦巻歯と前記揺動渦巻歯とを噛み合わせて圧縮室を形成するように、前記固定渦巻歯を形成した前記固定台板を前記密閉容器内に配置し、
前記密閉容器の外部から前記圧縮室へ吸入冷媒を流入させる吸入パイプを前記圧縮室の吸入口に接続し、
前記密閉容器の外部から前記側部穴へインジェクション冷媒を流入させるインジェクションパイプを前記側部穴に接続する
ことを特徴とするインジェクション対応スクロール圧縮機の製造方法。 The swing spiral teeth are formed on one side of the swing base plate,
A fixed spiral tooth is formed on one side of the fixed base plate,
Forming a side hole in the side of the fixed base plate,
Forming a recess on the other side of the fixed base plate,
A first communication hole that communicates the bottom surface of the recess and the side hole, and a second communication hole that communicates the bottom surface of the recess and the one surface side of the fixed base plate are formed in the fixed base plate. ,
An opening / closing valve that opens and closes the first communication hole is disposed in the recess formed in the fixed base plate,
A back plate is attached to the fixed base plate so as to close the opening of the recess in which the on-off valve is disposed,
The swing base plate on which the swing spiral teeth are formed is disposed in a sealed container,
The fixed base plate on which the fixed spiral teeth are formed is disposed in the sealed container so as to form a compression chamber by meshing the fixed spiral teeth and the swing spiral teeth.
Connecting a suction pipe for allowing the suction refrigerant to flow into the compression chamber from the outside of the sealed container, to the suction port of the compression chamber;
A method for manufacturing an injection-compatible scroll compressor, characterized in that an injection pipe for allowing an injection refrigerant to flow into the side hole from the outside of the hermetic container is connected to the side hole.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/063412 WO2011013199A1 (en) | 2009-07-28 | 2009-07-28 | Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism |
EP09847791.2A EP2461122B1 (en) | 2009-07-28 | 2009-07-28 | Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism |
KR1020117031134A KR101312762B1 (en) | 2009-07-28 | 2009-07-28 | Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism |
JP2011524561A JP5389173B2 (en) | 2009-07-28 | 2009-07-28 | HEAT PUMP DEVICE, INJECTION COMPRESSION COMPRESSOR, AND INJECTION SUPPORT SCROLL COMPRESSOR |
CN200980160586.5A CN102472528B (en) | 2009-07-28 | 2009-07-28 | Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/063412 WO2011013199A1 (en) | 2009-07-28 | 2009-07-28 | Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011013199A1 true WO2011013199A1 (en) | 2011-02-03 |
Family
ID=43528876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063412 WO2011013199A1 (en) | 2009-07-28 | 2009-07-28 | Heat pump device, compressor with injection mechanism, and method of manufacturing scroll compressor with injection mechanism |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2461122B1 (en) |
JP (1) | JP5389173B2 (en) |
KR (1) | KR101312762B1 (en) |
CN (1) | CN102472528B (en) |
WO (1) | WO2011013199A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012172581A (en) * | 2011-02-21 | 2012-09-10 | Mitsubishi Electric Corp | Scroll compressor and heat pump device |
JP2012184873A (en) * | 2011-03-04 | 2012-09-27 | Mitsubishi Electric Corp | Refrigeration apparatus |
JP2016011620A (en) * | 2014-06-27 | 2016-01-21 | 三菱電機株式会社 | Scroll compressor |
CZ305898B6 (en) * | 2012-06-11 | 2016-04-27 | Mitsubishi Electric Corporation | Screw-type compressor |
WO2017130401A1 (en) * | 2016-01-29 | 2017-08-03 | 三菱電機株式会社 | Scroll compressor and heat pump device |
WO2017141342A1 (en) * | 2016-02-16 | 2017-08-24 | 三菱電機株式会社 | Scroll compressor |
WO2019069441A1 (en) * | 2017-10-06 | 2019-04-11 | 三菱電機株式会社 | Refrigeration cycle device |
KR20210012293A (en) * | 2019-07-24 | 2021-02-03 | 한온시스템 주식회사 | Scroll compressor |
JPWO2021157121A1 (en) * | 2020-02-03 | 2021-08-12 | ||
WO2022038730A1 (en) * | 2020-08-20 | 2022-02-24 | 三菱電機株式会社 | Scroll compressor |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102953992A (en) * | 2012-11-27 | 2013-03-06 | 大连三洋压缩机有限公司 | Scroll compressor with injection channel |
CN105952638A (en) * | 2016-06-21 | 2016-09-21 | 广东美的暖通设备有限公司 | Scroll compressor and air-conditioner |
CN106122010A (en) * | 2016-08-22 | 2016-11-16 | 广东美的暖通设备有限公司 | Screw compressor and refrigeration plant |
WO2018096825A1 (en) * | 2016-11-24 | 2018-05-31 | パナソニックIpマネジメント株式会社 | Compressor having injection function |
DE102016125400A1 (en) * | 2016-12-22 | 2018-06-28 | OET GmbH | Method for producing a scroll compressor |
EP3748163B1 (en) * | 2018-01-30 | 2023-07-05 | Mitsubishi Electric Corporation | Scroll compressor |
CN111852852A (en) * | 2019-04-26 | 2020-10-30 | 艾默生环境优化技术(苏州)有限公司 | Scroll compressor |
CN114072580B (en) * | 2019-07-16 | 2023-06-23 | 三菱电机株式会社 | Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a |
KR20210012292A (en) * | 2019-07-24 | 2021-02-03 | 한온시스템 주식회사 | Scroll compressor |
EP3812589B1 (en) * | 2019-10-21 | 2023-07-19 | Emerson Climate Technologies GmbH | Compressor cooling with suction fluid |
JP7437520B2 (en) * | 2020-03-23 | 2024-02-22 | ハンオン システムズ | scroll compressor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0343691A (en) * | 1989-07-07 | 1991-02-25 | Mitsubishi Electric Corp | Scroll compressor |
JPH07269475A (en) * | 1994-03-31 | 1995-10-17 | Sanyo Electric Co Ltd | Scroll compressor |
JPH11107945A (en) * | 1997-10-06 | 1999-04-20 | Matsushita Electric Ind Co Ltd | Scroll compressor |
JP2008101559A (en) * | 2006-10-20 | 2008-05-01 | Hitachi Appliances Inc | Scroll compressor and refrigeration cycle using the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3043691B2 (en) * | 1997-11-17 | 2000-05-22 | アルインコ株式会社 | Mounting device for loading stage for frame scaffold |
JP4529118B2 (en) * | 2003-12-25 | 2010-08-25 | 日立アプライアンス株式会社 | Scroll compressor for helium |
JP2006112708A (en) * | 2004-10-14 | 2006-04-27 | Mitsubishi Electric Corp | Refrigerating air conditioner |
US7647790B2 (en) * | 2006-10-02 | 2010-01-19 | Emerson Climate Technologies, Inc. | Injection system and method for refrigeration system compressor |
-
2009
- 2009-07-28 JP JP2011524561A patent/JP5389173B2/en not_active Expired - Fee Related
- 2009-07-28 WO PCT/JP2009/063412 patent/WO2011013199A1/en active Application Filing
- 2009-07-28 CN CN200980160586.5A patent/CN102472528B/en not_active Expired - Fee Related
- 2009-07-28 EP EP09847791.2A patent/EP2461122B1/en not_active Not-in-force
- 2009-07-28 KR KR1020117031134A patent/KR101312762B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0343691A (en) * | 1989-07-07 | 1991-02-25 | Mitsubishi Electric Corp | Scroll compressor |
JPH07269475A (en) * | 1994-03-31 | 1995-10-17 | Sanyo Electric Co Ltd | Scroll compressor |
JPH11107945A (en) * | 1997-10-06 | 1999-04-20 | Matsushita Electric Ind Co Ltd | Scroll compressor |
JP2008101559A (en) * | 2006-10-20 | 2008-05-01 | Hitachi Appliances Inc | Scroll compressor and refrigeration cycle using the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP2461122A4 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012172581A (en) * | 2011-02-21 | 2012-09-10 | Mitsubishi Electric Corp | Scroll compressor and heat pump device |
JP2012184873A (en) * | 2011-03-04 | 2012-09-27 | Mitsubishi Electric Corp | Refrigeration apparatus |
CZ305898B6 (en) * | 2012-06-11 | 2016-04-27 | Mitsubishi Electric Corporation | Screw-type compressor |
JP2016011620A (en) * | 2014-06-27 | 2016-01-21 | 三菱電機株式会社 | Scroll compressor |
WO2017130401A1 (en) * | 2016-01-29 | 2017-08-03 | 三菱電機株式会社 | Scroll compressor and heat pump device |
JPWO2017130401A1 (en) * | 2016-01-29 | 2018-08-23 | 三菱電機株式会社 | Scroll compressor and heat pump device |
WO2017141342A1 (en) * | 2016-02-16 | 2017-08-24 | 三菱電機株式会社 | Scroll compressor |
JPWO2017141342A1 (en) * | 2016-02-16 | 2018-09-13 | 三菱電機株式会社 | Scroll compressor |
WO2019069441A1 (en) * | 2017-10-06 | 2019-04-11 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2019069441A1 (en) * | 2017-10-06 | 2020-04-02 | 三菱電機株式会社 | Refrigeration cycle device |
KR20210012293A (en) * | 2019-07-24 | 2021-02-03 | 한온시스템 주식회사 | Scroll compressor |
JP2022536398A (en) * | 2019-07-24 | 2022-08-15 | ハンオン システムズ | scroll compressor |
JP7425811B2 (en) | 2019-07-24 | 2024-01-31 | ハンオン システムズ | scroll compressor |
US11971030B2 (en) | 2019-07-24 | 2024-04-30 | Hanon Systems | Scroll compressor |
KR102688671B1 (en) * | 2019-07-24 | 2024-07-26 | 한온시스템 주식회사 | Scroll compressor |
JPWO2021157121A1 (en) * | 2020-02-03 | 2021-08-12 | ||
WO2021157121A1 (en) * | 2020-02-03 | 2021-08-12 | パナソニックIpマネジメント株式会社 | Compressor with injection mechanism |
JP7398642B2 (en) | 2020-02-03 | 2023-12-15 | パナソニックIpマネジメント株式会社 | Compressor with injection mechanism |
US12038008B2 (en) | 2020-02-03 | 2024-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Compressor with injection mechanism |
WO2022038730A1 (en) * | 2020-08-20 | 2022-02-24 | 三菱電機株式会社 | Scroll compressor |
JPWO2022038730A1 (en) * | 2020-08-20 | 2022-02-24 | ||
JP7305055B2 (en) | 2020-08-20 | 2023-07-07 | 三菱電機株式会社 | scroll compressor |
Also Published As
Publication number | Publication date |
---|---|
EP2461122A1 (en) | 2012-06-06 |
CN102472528A (en) | 2012-05-23 |
EP2461122A4 (en) | 2016-04-13 |
KR101312762B1 (en) | 2013-09-27 |
KR20120024858A (en) | 2012-03-14 |
JP5389173B2 (en) | 2014-01-15 |
EP2461122B1 (en) | 2018-12-19 |
JPWO2011013199A1 (en) | 2013-01-07 |
CN102472528B (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5389173B2 (en) | HEAT PUMP DEVICE, INJECTION COMPRESSION COMPRESSOR, AND INJECTION SUPPORT SCROLL COMPRESSOR | |
US7914267B2 (en) | Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism | |
KR100862825B1 (en) | Defroster of refrigerant circuit | |
EP2578886B1 (en) | Scroll compressor and air conditioner including the same | |
JP6355453B2 (en) | Scroll compressor | |
US8172558B2 (en) | Rotary expander with discharge and introduction passages for working fluid | |
WO2011055444A1 (en) | Heat pump device, two-stage compressor, and method of operating heat pump device | |
JP2008101559A (en) | Scroll compressor and refrigeration cycle using the same | |
US7607319B2 (en) | Positive displacement expander and fluid machinery | |
JP2009209928A (en) | Compressor and refrigeration device | |
JP6541804B2 (en) | Scroll compressor and heat pump device | |
JP2012172581A (en) | Scroll compressor and heat pump device | |
WO2011089638A1 (en) | Positive displacement expander and refrigeration cycle device using the positive displacement expander | |
WO2023144953A1 (en) | Compressor and refrigeration cycle device | |
JP2009036140A (en) | Scroll compressor and air conditioner | |
JP7536174B2 (en) | Scroll compressor and refrigeration cycle device | |
WO2022149225A1 (en) | Compressor | |
WO2023170901A1 (en) | Scroll compressor and refrigeration cycle device | |
WO2020255243A1 (en) | Compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980160586.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09847791 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011524561 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117031134 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009847791 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |