[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011010636A1 - 水分交換用中空糸膜モジュール - Google Patents

水分交換用中空糸膜モジュール Download PDF

Info

Publication number
WO2011010636A1
WO2011010636A1 PCT/JP2010/062171 JP2010062171W WO2011010636A1 WO 2011010636 A1 WO2011010636 A1 WO 2011010636A1 JP 2010062171 W JP2010062171 W JP 2010062171W WO 2011010636 A1 WO2011010636 A1 WO 2011010636A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
hollow
cylindrical porous
gas
Prior art date
Application number
PCT/JP2010/062171
Other languages
English (en)
French (fr)
Inventor
敏勝 片桐
拓素 井加田
洋平 日高
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP10802256.7A priority Critical patent/EP2457640B1/en
Priority to JP2011523656A priority patent/JP5523458B2/ja
Priority to CN201080031460.0A priority patent/CN102470321B/zh
Priority to US13/381,529 priority patent/US9048469B2/en
Publication of WO2011010636A1 publication Critical patent/WO2011010636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04171Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal using adsorbents, wicks or hydrophilic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/033Specific distribution of fibres within one potting or tube-sheet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a moisture exchange hollow fiber membrane module suitable for use in, for example, a fuel cell system, and more particularly to a technique for improving humidification efficiency with respect to humidified gas.
  • a fuel cell As a fuel cell, a laminated body in which separators are laminated on both sides of a flat membrane electrode assembly (MEA) is used as a unit cell, and a fuel cell stack in which several unit cells are laminated, for example, several hundred layers.
  • MEA flat membrane electrode assembly
  • the membrane electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of electrodes constituting a positive electrode (air electrode, cathode) and a negative electrode (fuel electrode, anode).
  • Patent Document 1 discloses that an anode exhaust gas after use in which the partial pressure of water vapor is increased by adding power generation generated water as water vapor to the fuel gas in the fuel gas flow path is used as a humidified gas, and unused fuel.
  • a fuel cell system for humidifying gas is disclosed.
  • the membrane electrode structure tends to become thinner as the performance of the fuel cell becomes higher, and the phenomenon that the water generated by the electrochemical reaction and coming out to the air electrode side moves to the fuel electrode side seems to occur. It has become. For this reason, when the fuel gas is humidified, a wet state of the fuel electrode becomes excessive, and a phenomenon called flooding occurs in which contact between the fuel and the fuel electrode is hindered. On the other hand, on the air electrode side, it is known that there are cases in which the electrochemical reaction is not so hindered even when the degree of wetting is excessive. Therefore, recently, a technique for humidifying the oxidant gas rather than humidifying the fuel gas has been emphasized.
  • Patent Document 2 supplies dry unused oxidant gas to one space of a humidifier partitioned by a water vapor permeable membrane
  • a technique is disclosed in which exhausted oxidant gas (off-gas) after being used is supplied to the space of the water to move moisture from the off-gas to the oxidant gas via a water vapor permeable membrane.
  • Patent Documents 3 to 6 a hollow fiber membrane is filled in a humidifier, and an unused oxidant gas is circulated inside the hollow of the hollow fiber membrane.
  • a technique is disclosed in which off-gas is circulated so as to be in contact with the outer wall of the hollow fiber membrane and moisture is transferred through the hollow fiber membrane. According to these techniques, since a large number of fine hollow fiber membranes are filled in the humidifier, the contact area for performing moisture movement is remarkably increased, compared with the technique described in Patent Document 1. Humidification efficiency is improved.
  • the hollow fiber membrane swells due to moisture absorption during the movement of moisture, when filling the humidifier, it is necessary to provide a gap between the hollow fiber membranes in advance in consideration of dimensional changes. It cannot be packed closely. In this way, there is a gap between the hollow fiber membranes, and the hollow fiber membranes can be elastically deformed. Therefore, when off-gas is introduced into the humidifier, the off-gas is introduced into the hollow fiber at the introduction portion where the gas flow rate is the highest. The film is pushed away, and a gap is formed. Since the off gas flows as a bypass path through the gap, there is a problem that the humidification efficiency is lowered because the gas cannot be uniformly circulated in the humidifier.
  • Patent Document 4 manufactures a number of hollow fiber membranes that are bundled and fixed together with a rigid rod, and fills the humidifier with the hollow fiber membranes. The movement of is suppressed. Further, in the techniques described in Patent Documents 5 and 6, by providing a partition plate in the humidifier, an off-gas flow path is guided, and the bias of the hollow fiber membrane in a specific direction is suppressed.
  • Patent Document 4 the technique described in Patent Document 4 is not preferable because it requires a large number of hollow fiber membranes bundled together with a rigid rod, which increases the number of steps.
  • the techniques described in Patent Documents 5 and 6 although the movement of the hollow fiber membrane can be suppressed as compared with the conventional technique, it is difficult to suppress even the deviation in the region partitioned by the partition plate, In addition, because the gas needs to be circulated, the partition plate cannot be made completely closed, and the deviation in the opening cannot be suppressed.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and of course, it is possible to sufficiently humidify the dry unused fuel cell gas supplied into the hollow fiber membrane. It is intended to provide a moisture exchange hollow fiber membrane module capable of suppressing the unevenness of the hollow fiber membrane filled in the humidifier and uniformly distributing the wet off-gas after use of the fuel cell in the humidifier. It is aimed.
  • the hollow fiber membrane module for moisture exchange of the present invention has a cylindrical outer case, a cylindrical inner case enclosed coaxially with the outer case, and a space enclosed between the outer case and the inner case, A plurality of hollow fiber membranes extending in the axial direction and filled; a seal portion in which the plurality of hollow fiber membranes are fixed at both ends of the cylindrical structure and the space is sealed; and an inner case or An introduction port provided in one of the outer cases, a discharge port provided in the other of the heel inner case or the outer case, and one end side of the heel hollow fiber membrane to the other end side through the hollow interior of the hollow fiber membrane A first fluid path extending from the inlet to the second fluid path extending from the inlet to the outlet through the outside of the hollow fiber membrane and between the plurality of hollow fiber membranes extending into the space. And is coaxial with the outer and inner cases. It is characterized in that it comprises a and a cylindrical porous body.
  • the moisture exchange hollow fiber membrane module having the above configuration, for example, dry unused gas (oxidant gas or fuel gas) is circulated in the first fluid path passing through the inside of the hollow fiber membrane, and the outside of the hollow fiber membrane.
  • a cylindrical porous body is provided in the space filled with the hollow fiber membrane when, for example, the wet off-use off gas is circulated through the second fluid path passing through the gas to move the moisture of the off gas to the unused gas. Therefore, the hollow fiber membrane is restrained in the region surrounded by the cylindrical porous body, and the movement of the hollow fiber membrane is suppressed even in the vicinity of the inlet where the gas flow rate is large. Thereby, since the gap between the hollow fiber membrane and the inner case is not formed, the off-gas can circulate uniformly in the hollow fiber membrane module and exchange water efficiently.
  • At least one end of the cylindrical porous body surrounding the hollow fiber membrane is fixed by a seal portion. According to such an aspect, since the movement of the cylindrical porous body is suppressed even when a force is applied during the flow of gas, damage to the hollow fiber membrane due to friction between the cylindrical porous body and the hollow fiber membrane is suppressed.
  • a plurality of cylindrical porous bodies having different diameters can be provided coaxially in the case, the introduction port can be provided in the inner case, and the discharge port can be provided in the outer case.
  • the interval between the cylindrical porous body provided on the innermost side of the plurality of cylindrical porous bodies and the inner case is smaller than any of the intervals between the other cylindrical porous bodies.
  • the movement of the hollow fiber membrane can be particularly suppressed in the region between the cylindrical porous body provided on the innermost side and the inner case, that is, the inner portion where the gas flow velocity is the highest.
  • the introduction port can be provided in the outer case and the discharge port can be provided in the inner case.
  • the interval between the cylindrical porous body provided on the outermost side of the plurality of cylindrical porous bodies and the outer case is smaller than any of the intervals between the other cylindrical porous bodies. According to such an aspect, the movement of the hollow fiber membrane can be particularly suppressed in the region between the cylindrical porous body provided on the outermost side and the outer case, that is, in the outer portion having the largest gas flow rate.
  • the hollow fiber membrane and the cylindrical porous body can be brought into contact with each other during operation of the moisture exchange hollow fiber membrane module, and formation of a gap along the inner case is reliably suppressed. .
  • a mesh is preferably used because it is possible to achieve both restraint of the hollow fiber membrane and gas flow.
  • the hollow fiber membrane is held and restrained by the cylindrical porous body in the portion near the inlet where the bias is most likely to occur among the hollow fiber membranes filled in the module. It is possible to suppress the unevenness of the hollow fiber membrane and to distribute the off gas in the module uniformly.
  • M Hollow fiber membrane module for moisture exchange, 10 ... Outer case, 11 ... Hollow fiber membrane, 12 ... Gas inlet, 13 ... Gas outlet, 14 ... seal part, 15 ... Inner case, 20 ... Unused gas (low wetness), 21 ... Unused gas (after water exchange), 22: Off-gas after use (high humidity), 23 ... Off-gas after use (after water exchange), 30: cylindrical porous body, 31 ... 1st cylindrical porous body, 32 ... 2nd cylindrical porous body, 33 ... Third cylindrical porous body.
  • a moisture exchange hollow fiber membrane module M has an outer case 10 formed in a cylindrical shape, and an inner case 15 coaxially with the outer case 10 is provided in the outer case 10. Is arranged.
  • the hollow fiber membrane 11 is filled in parallel with the axial direction of the outer case 10 and the inner case 15. Since the plurality of hollow fiber membranes 11 expand upon moisture absorption, the hollow fiber membranes 11 are filled through a predetermined interval in order to absorb the dimensional change.
  • Both ends of the hollow fiber membrane 11 are fixed to the outer case 10 and the inner case 10 by seal portions 14.
  • the hollow fiber membrane 11 is partially omitted, but the hollow fiber membrane 11 extends between the seal portions 14 at both ends.
  • the seal portion 14 is formed by embedding the outside of the hollow fiber membrane 11 in the filling space with a synthetic resin or the like, and seals only the filling space from the outside. That is, the seal portion 14 is in the filling space and fixes the hollow fiber membrane 11 at both ends of the cylindrical structure of the outer case 10 and the inner case 15.
  • the hollow interior of the hollow fiber membrane 11 is not sealed, and both ends of the hollow fiber membrane 11 communicate with the outside.
  • a path from the one end side (arrow 20) of the hollow fiber membrane 11 to the other end side (arrow 21) via the hollow interior of the hollow fiber membrane is defined as a first fluid path.
  • the gas inlet 12 is provided in the inner case 15, and the gas outlet 13 is provided in the outer case 10 which is on the downstream side of the inlet 12 and is opposed thereto.
  • a path from the inlet 12 (arrow 22) in the filling space to the outlet 13 (arrow 23) via the outside of the hollow fiber membrane 11 is defined as a second fluid path. That is, the introduction port 12 is provided in the inner case 15 that is one of the inner case 15 and the outer case 10.
  • a discharge port 13 is provided in the outer case 10 which is the other of the inner case 15 and the outer case 10 where the introduction port 12 is not provided.
  • a dry unused gas 20 of the fuel cell is introduced into the first fluid path, and an off gas 22 that is an exhaust gas after the gas is used in the fuel cell is used.
  • the dry unused gas 20 passes through the hollow fiber membrane 11, and the wet off-gas 22 after use passes outside the hollow fiber membrane 11 in the filling space.
  • the hollow fiber membrane 11 prevents gas exchange between the inside and the outside, but can move only moisture through the fine holes present on both sides thereof, so that moisture is transferred from the high wet side to the low wet side.
  • FIG. 4 is a diagram for explaining problems in a conventional moisture exchange hollow fiber membrane module.
  • the hollow fiber membrane 11 is fixed in the filling space with a predetermined interval in the dry state in order to change the size by being wet. Further, the hollow fiber membrane 11 has a property of elastically deforming. Therefore, as shown in FIG. 4, when the off gas 22 is introduced from the introduction port 12, the pressure increases on the side of the inner case 15 where the gas flow velocity is the highest, and the off gas 22 pushes the hollow fiber membrane 11 and deforms. A gap is generated along the line 15. The off-gas moves to the downstream side (right side in the drawing) via this gap as shown by the arrow 24, and then flows toward the discharge port 13 and is discharged.
  • the off-gas does not pass through the voids of the hollow fiber membrane 11 on the upstream side (left side in the figure), and moisture movement is performed only on the downstream side, so that the utilization rate and humidification efficiency of the hollow fiber membrane 11 are low. There was a problem.
  • FIG. 5 is a diagram showing an embodiment of the moisture exchange hollow fiber membrane module of the present invention that can solve the above-described conventional problems.
  • the components other than the cylindrical porous body 30 are the same as those in FIGS. 1 to 3, so the description of the common parts is omitted here and is unique to the first embodiment. A structure, an effect
  • a cylindrical porous body 30 is provided coaxially with the outer case 10 and the inner case 15 in the filling space, and is interposed between the plurality of hollow fiber membranes 11.
  • the cylindrical porous body 30 has an opening ratio that allows a sufficient flow of off-gas, has rigidity that does not deform even when subjected to gas pressure of off-gas, and has corrosion resistance that can withstand long-term use. Consists of materials.
  • the cylindrical porous body 30 is made of, for example, a mesh made of a metal such as stainless steel or plastic, and both ends thereof are fixed by being embedded in the seal portion 14.
  • the method for forming the seal portion 14 in the present invention is not particularly limited, and any fixing means can be used.
  • the filling space is filled with the hollow fiber membrane 11 and the cylindrical porous bodies 30 to 33 with the end portions of the outer case 10 and the inner case 15 standing, and the lower end portion is immersed and fixed in resin.
  • potting is adopted in which the top and bottom are reversed and the other end is similarly immersed and fixed in the resin.
  • the soaked resin seals the inside and outside of the hollow fiber membrane 11, but since the distance between the hollow fiber membranes 11 is smaller than the diameter of the hollow fiber membrane 11, the resin is soaked by capillary action. The height is different and the inside is sealed shallower than the outside of the hollow fiber membrane 11. For this reason, by cutting and removing this portion, the inside of the hollow fiber membrane 11 can be communicated with the outside of the module, the resin can remain only outside the hollow fiber membrane 11, and the filling space can be sealed.
  • the expansion coefficient due to the wetness of the hollow fiber membrane 11 is grasped in advance.
  • the hollow fiber membranes 11 and between the hollow fiber membranes 11 and the cylindrical porous body 30 are in contact with each other so that there is no gap between them.
  • Each is arranged so as to be filled with high density or with a reduced gap.
  • the hollow fiber membrane 11 and the cylindrical porous body 30 are disposed with a void (gap) therebetween.
  • a known hollow fiber membrane can be selected.
  • polymers such as phenol sulfonic acid, polystyrene sulfonic acid, polytrifluorostyrene sulfonic acid, perfluorocarbon sulfonic acid, etc.
  • examples include an ion exchange membrane and a hollow fiber membrane such as a polymer resin or ceramic.
  • the cylindrical porous body 30 when the off-gas is introduced into the filling space from the introduction port 12, the cylindrical porous body 30 has a plurality of hollow fiber membranes even if the hollow fiber membrane 11 near the introduction port 12 receives gas pressure. 11 is surrounded, the movement of the hollow fiber membrane 11 between the cylindrical porous body 30 and the inner case 15 is suppressed. Thereby, since it is suppressed that a clearance gap is formed along the inner case 15, the off-gas flows uniformly from the upstream side to the downstream side in the filling space. Thereby, the utilization factor and humidification efficiency of the hollow fiber membrane 11 are improved.
  • the hollow fiber membrane 11 and the cylindrical porous body 30 are arranged with a predetermined gap in consideration of the expansion coefficient of the hollow fiber membrane 11 in advance, During operation, the hollow fiber membrane 11 and the cylindrical porous body 30 can be brought into contact with each other, and the formation of a gap along the inner case 15 is reliably suppressed.
  • FIG. 6 shows another embodiment of the moisture exchange hollow fiber membrane module of the present invention, and is a view showing an example in which a plurality of cylindrical porous bodies are provided.
  • the first cylindrical porous body 31, the second cylindrical porous body 32, and the third cylindrical porous body 33 are provided coaxially with the outer case 10 and the inner case 15 in the filling space. It has been.
  • the cylindrical porous bodies 31 to 33 are made of a mesh made of corrosion-resistant metal or plastic, and both ends are fixed by being embedded in the seal portion 14.
  • the interval between the inner case 15 and the first cylindrical porous body 31 is A 1
  • the interval between the first cylindrical porous body 31 and the second cylindrical porous body 32 is A 2
  • the second cylindrical shape is A 3
  • most inner distance a 1 of is set smaller than any of the other intervals a 2 and a 3.
  • the first tubular shape as in the first embodiment. Since the porous body 31 surrounds the innermost hollow fiber membrane 11, the movement of the hollow fiber membrane 11 is suppressed. In addition, since the second cylindrical porous body 32 and the third cylindrical porous body 33 further surround the outer hollow fiber membrane 11, the movement of the outer hollow fiber membrane 11 can also be suppressed. Thereby, the utilization factor and humidification efficiency of the hollow fiber membrane 11 are further improved as compared with the first embodiment.
  • the gas flow rate is the largest near the off-gas inlet 12 and the thrust received by the hollow fiber membrane 11 tends to be large. Therefore by minimizing the A 1, it is possible to suppress the amount of movement of the hollow fiber membrane 11 to a minimum.
  • the plurality of cylindrical porous bodies are not limited to the first to third cylindrical porous bodies, and any number of the first to nth (n is an integer of 2 or more) cylindrical porous bodies may be used. Can be provided. At that time, it is also similar to the spacing A 1 is preferably smaller than any of the other intervals A 2 ⁇ A n, A 1 ⁇ A 2 ⁇ ⁇ A n-1 ⁇ A n is more preferred.
  • the introduction port 12 provided in the inner case 15 and the discharge port 13 provided in the outer case 10 do not limit the gas flow direction to this direction. And a mode of discharging the gas from the inlet 12 is also included.
  • the outermost distance A 3 is the side where the gas is introduced, is preferably smaller than any more inner spacing A 2 and A 1 of, A 3 ⁇ A 2 ⁇ A 1 is even more preferred.
  • the moisture exchange hollow fiber membrane module of the present invention is limited to a cylindrical shape.
  • the cross section may be a polygonal cylinder. That is, the outer case 10 may be rectangular as shown in FIGS. 7A, 7B, 7C, hexagonal as shown in FIGS. 7D and 8E, and eight as shown in FIG.
  • the cross section including a pentagon and a decagon may be a polygonal cylinder.
  • the inner case 15 may be rectangular as shown in FIGS. 7A and 7C, or may be hexagonal as shown in FIG.
  • the cylindrical porous body may be rectangular as shown in FIGS. 7A and 7B, or may be hexagonal as shown in FIGS. 7D and 7E, and includes pentagons, octagons, and decagons.
  • the cross section may be a polygonal cylinder.
  • the moisture of the off-gas discharged from the fuel cell can be reused for humidification of the unused oxidant gas, and an appropriate humidification amount of the fuel cell can be obtained by increasing the humidification efficiency in moisture exchange. Therefore, it is extremely promising when applied to an on-vehicle fuel cell system that requires strict and stable operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)

Abstract

 中空糸膜内に供給される乾燥した酸化剤ガスを充分加湿することができ、充填された中空糸膜の偏りを抑制し、湿潤したオフガスを均一に流通させることができる水分交換用中空糸膜モジュールを提供する。 筒状外部ケースと、外部ケースと同軸的に内包された筒状内部ケースと、外部および内部ケースとの間の充填空間に軸方向に延在させて充填された複数の中空糸膜と、充填空間の両端において複数の中空糸膜を固定して充填空間を封止したシール部と、内部または外部ケースの一方に設けられた導入口と、外部または内部ケースの他方に設けられた排出口と、中空糸膜の一端側から中空糸膜の中空内部を経由して他端側に至る第1流体経路と、導入口から中空糸膜の外側を経由して排出口に至る第2流体経路と、充填空間内に延在し中空糸膜の間に介挿され外部および内部ケースと同軸的に配置された筒状多孔体とを備えた水分交換用中空糸膜モジュール。

Description

水分交換用中空糸膜モジュール
 本発明は、たとえば燃料電池システムに用いて好適な水分交換用中空糸膜モジュールに係り、特に、被加湿ガスに対する加湿効率を向上させる技術に関する。 
 燃料電池としては、平板状の膜電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が単位セルとされ、複数の単位セルが例えば数百層積層されて燃料電池スタックとして構成された燃料電池が知られている。膜電極構造体は、正極(空気極、カソード)および負極(燃料極、アノード)を構成する一対の電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。このような燃料電池によると、例えば、燃料極側のガス拡散電極に面するガス流路に燃料ガスを流し、空気極側のガス拡散電極に面するガス流路に酸化剤ガスを流すと電気化学反応が起こり、発電が生じる。 
 ここで、上記のような電気化学反応を安定させるためには、膜電極構造体が湿潤していることが望ましい。たとえば、特許文献1には、燃料ガス流路内で燃料ガスに発電生成水が水蒸気となって加わることにより、水蒸気分圧が上昇した使役後のアノード排出ガスを加湿ガスとし、未使役の燃料ガスを加湿する燃料電池システムが開示されている。 
 ところで、近年、燃料電池の高性能化に伴って膜電極構造体は薄くなる傾向にあり、電気化学反応で生成され空気極側に出てくる水が燃料極側へ移動するという現象が生じるようになってきた。このため、燃料ガスを加湿すると燃料極の湿潤状態が過剰となり、燃料と燃料極との接触が妨げられるフラッディングと呼ばれる現象が生じる。一方、空気極側は、湿潤の程度が過剰でも電気化学反応にはさほど差し障りがない場合のあることが知られている。したがって、最近では、燃料ガスを加湿するよりも酸化剤ガスを加湿する技術が重要視されてきている。 
 酸化剤ガスを加湿する従来の自動車用燃料電池システムとして、たとえば、特許文献2には、水蒸気透過膜で区切られた加湿器の一方の空間に乾燥した未使役の酸化剤ガスを供給し、他方の空間に湿潤した使役後の酸化剤ガスの排気(オフガス)を供給して、水蒸気透過膜を介してオフガスから酸化剤ガスへ水分を移動させる技術が開示されている。 
 しかしながら、上記技術では、略平面状の水蒸気透過膜を介してその両側からガスを接触させて水分移動を行うため、接触領域が小さく、連続的に供給される酸化剤ガスに対して水分移動が間に合わず、加湿効率が十分ではないという問題があった。 
 このような問題に対して、たとえば、特許文献3~6には、加湿器内に中空糸膜を充填して、未使役の酸化剤ガスを中空糸膜の中空内部に流通させるともに使役後のオフガスを中空糸膜外壁に接触するように流通させて、中空糸膜を介して水分移動を行う技術が開示されている。これらの技術によれば、加湿器内に微細な中空糸膜が多数充填されているので、水分移動を行うための接触領域は著しく増加しており、特許文献1に記載の技術と比較して加湿効率は向上している。 
 しかしながら、中空糸膜は、水分移動の際の吸湿によって膨潤するため、加湿器内に充填する際にはその寸法変化を考慮して、中空糸膜間に予め空隙を設けて充填しなければならず、密に充填することができない。このように、中空糸膜間には空隙があり、また、中空糸膜は弾性的に変形可能であるため、加湿器内にオフガスを導入すると、ガス流速が最も大きい導入部分においてオフガスが中空糸膜を押し退けて、隙間が形成されてしまう。オフガスは、この隙間をバイパス路として流れてしまうため、加湿器内を均一に流通させることができず、加湿効率が低下するという問題があった。 
 このような問題に対して、特許文献4に記載の技術では、数本の中空糸膜を剛性棒と共に束ねて固定したものを多数製造し、これを加湿器に充填することで、中空糸膜の移動を抑制している。また、特許文献5および6に記載の技術では、加湿器内に仕切り板を設けることによって、オフガスの流路を導き、また、中空糸膜の特定の方向への偏りを抑制している。 
実開昭61-3671号公報 特開平6-132038号公報 特願2002-147802号公報 特願2004-311287号公報 特願2005-40675号公報 特願2007-323982号公報
 しかしながら、特許文献4に記載の技術では、中空糸膜を剛性棒と共に束ねたものを多数製造する必要があるため、工程数が増大して好ましくない。また、特許文献5および6に記載の技術では、従来よりは中空糸膜の移動は抑制することができるものの、仕切り板で区切られた領域内での偏りまでも抑制することは困難であり、また、ガスを流通させる必要上、仕切り板を完全に閉じた構造とすることはできず、その開口部分における偏りを抑制することはできない。 
 したがって、本発明は、上記従来技術の課題を解決するためになされたもので、中空糸膜内に供給される乾燥した燃料電池未使役のガスを充分に加湿することができるのは勿論のこと、加湿器内に充填された中空糸膜の偏りを抑制して、湿潤した燃料電池使役後のオフガスを加湿器内で均一に流通させることができる水分交換用中空糸膜モジュールを提供することを目的としている。 
 本発明の水分交換用中空糸膜モジュールは、筒状の外部ケースと、外部ケースと同軸的に内包された筒状の内部ケースと、外部ケースと内部ケースとの間で囲われた空間に、軸方向に延在させて充填された複数の中空糸膜と、 空間にありかつ筒状構造の両端において、複数の中空糸膜を固定して上記空間を封止したシール部と、内部ケースまたは外部ケースのうち一方に設けられた導入口と、 内部ケースまたは外部ケースのうち他方に設けられた排出口と、 中空糸膜の一端側から中空糸膜の中空内部を経由して他端側に至る第1流体経路と、導入口から、上記空間でありかつ中空糸膜の外側を経由して排出口に至る第2流体経路と、上記空間内に延在して複数の中空糸膜の間に介挿され、外部ケースおよび内部ケースと同軸的に配置された筒状多孔体とを備えることを特徴としている。 
 上記構成の水分交換用中空糸膜モジュールにあっては、中空糸膜内を経由する第1流体経路に例えば乾燥した未使役のガス(酸化剤ガスあるいは燃料ガス)を流通させ、中空糸膜外を経由する第2流体経路に例えば湿潤した使役後のオフガスを流通させてオフガスの水分を未使役のガスに移動させるにあたり、中空糸膜が充填されている空間に筒状多孔体が設けられているので、中空糸膜はこの筒状多孔体によって囲まれている領域内で拘束されており、ガス流速が大きい導入口近傍であっても中空糸膜の移動が抑制される。これにより、中空糸膜と内部ケースとの隙間が形成されないので、オフガスは中空糸膜モジュール内を均一に流通し、効率良く水分交換を行うことができる。 
 中空糸膜を囲む筒状多孔体は、少なくともその一端をシール部で固定されていることが好ましい。このような態様によれば、ガスの流通に際して力が加わっても筒状多孔体の移動が抑制されるため、筒状多孔体と中空糸膜の摩擦による中空糸膜の損傷が抑制される。 
 筒状多孔体は、互いに径が異なる複数個をケース内に同軸的に設けることができ、導入口は内部ケースに設け、排出口は外部ケースに設けることができる。この場合、複数の筒状多孔体のうち最も内側に設けられた筒状多孔体と内部ケースとの間隔が、他の筒状多孔体どうしの間隔のいずれよりも小さいことが好ましい。このような態様によれば、最も内側に設けられた筒状多孔体と内部ケースとの間の領域、すなわち最もガス流速が大きい内側部分での中空糸膜の移動を特に抑制することができる。また、逆に、導入口は外部ケースに設け、排出口は内部ケースに設けることもできる。この場合は、複数の筒状多孔体のうち最も外側に設けられた筒状多孔体と外部ケースとの間隔が、他の筒状多孔体どうしの間隔のいずれよりも小さいことが好ましい。このような態様によれば、最も外側に設けられた筒状多孔体と外部ケースとの間の領域、すなわち最もガス流速が大きい外側部分での中空糸膜の移動を特に抑制することができる。 
 中空糸膜の乾燥状態では、中空糸膜どうしの間および中空糸膜と筒状多孔体との間に形成される空隙部を有し、中空糸膜の膨潤状態では、互いに接触することで空隙部を減少させることが好ましい。このような態様によれば、水分交換用中空糸膜モジュールの運転時にあって中空糸膜と筒状多孔体を互いに接触させることができ、内部ケースに沿った隙間の形成が確実に抑制される。 
 筒状多孔体としては、例えばメッシュを使用すると、中空糸膜の拘束とガスの流通を両立することができて、好ましい。 
 本発明によれば、モジュール内に充填された中空糸膜のうち最も偏りが生じ易い導入口付近の部分において中空糸膜が筒状多孔体に保持されて拘束されているので、オフガスの流通による中空糸膜の偏りを抑制し、モジュール内のオフガスを均一に流通させることができる。 
水分交換用中空糸膜モジュールを示す透視斜視図である。 図1の水分交換用中空糸膜モジュールを示す側方断面図である。 図1の水分交換用中空糸膜モジュールを示す正面図である。 従来の水分交換用中空糸膜モジュールにおける中空糸膜の偏りを示す側方断面図である。 本発明の一実施形態に係る水分交換用中空糸膜モジュールにおける筒状多孔体の配置を示す模式図である。 本発明の他の実施形態に係る水分交換用中空糸膜モジュールにおける筒状多孔体の配置を示す模式図である。 本発明の外部ケース、内部ケースおよび筒状多孔体の変更例を示す断面図である。
M…水分交換用中空糸膜モジュール、 
10…外部ケース、 
11…中空糸膜、 
12…ガス導入口、 
13…ガス排出口、 
14…シール部、 
15…内部ケース、 
20…未使役のガス(低湿潤)、 
21…未使役のガス(水分交換後)、 
22…使役後のオフガス(高湿潤)、 
23…使役後のオフガス(水分交換後)、 
30…筒状多孔体、 
31…第1筒状多孔体、 
32…第2筒状多孔体、 
33…第3筒状多孔体。 
 以下、図面を参照して本発明の実施の形態を説明する。まず、実施形態の説明に先立ち、本発明を適用することができる水分交換用中空糸膜モジュールの一般的な構成について、図1~3を参照して説明する。図1~3に示すように、水分交換用中空糸膜モジュールMは、筒状に形成された外部ケース10を有し、この外部ケース10内には、外部ケース10と同軸的に内部ケース15が配置されている。 
 外部ケース10の内側であってかつ内部ケース15の外側の空間(すなわち、外部ケース10と内部ケース15との間で囲われた空間。以下、充填空間と略称する場合がある)には、複数の中空糸膜11が、外部ケース10および内部ケース15の軸方向と平行に充填されている。複数の中空糸膜11は、吸湿に際して膨張するため、その寸法変化を吸収するために、所定の間隔を介して充填されている。 
 中空糸膜11の両端は、シール部14によって外部ケース10および内部ケース10に固定されている。図1では、中空糸膜11は部分的に省略して図示しているが、中空糸膜11は両端のシール部14間に延在している。シール部14は、上記充填空間における中空糸膜11の外側を合成樹脂等で埋設したものであり、充填空間のみを外部に対して封止するものである。すなわちシール部14は、上記充填空間にあり、かつ外部ケース10および内部ケース15という筒状構造の両端において中空糸膜11を固定している。ここで、中空糸膜11の中空内部は封止されておらず、中空糸膜11の中空内部は両端とも外部に連通している。本実施形態では、中空糸膜11の一端側(矢印20)から中空糸膜の中空内部を経由して他端側(矢印21)に至る経路を第1流体経路と定義する。 
 内部ケース15には、ガスの導入口12が設けられており、導入口12の下流側であってかつ対向する外部ケース10には、ガスの排出口13が設けられている。本実施形態では、導入口12(矢印22)から充填空間内でありかつ中空糸膜11の外側を経由して排出口13(矢印23)に至る経路を第2流体経路と定義する。つまり、内部ケース15と外部ケース10のうちいずれか一方である内部ケース15に、導入口12が設けられている。そして、内部ケース15と外部ケース10のうち、導入口12が設けられなかった他方である外部ケース10に、排出口13が設けられている。
 上記の水分交換用中空糸膜モジュールMにおいては、例えば、乾燥した燃料電池未使役のガス20を第1流体経路に導入するとともに、このガスを燃料電池で使役した後の排気ガスであるオフガス22を第2流体経路に導入するので、乾燥した未使役のガス20が中空糸膜11内を通過すると同時に、湿潤した使役後のオフガス22は充填空間内の中空糸膜11の外側を通過する。中空糸膜11は、内外のガス交換は阻止するが、その両面に存在する微細な孔を通じて水分のみを移動させることができるため、高湿潤側から低湿潤側への水分移動が行われる。このようにして、第1流体経路および第2流体経路に導入された乾燥した未使役のガス20および湿潤した使役後のオフガス22それぞれにおいては、水分が移動し、加湿された未使役のガス21および湿度が低下した使役後のオフガス23となって排出される。 
 図4は、従来の水分交換用中空糸膜モジュールにおける問題点を説明するための図である。上述したように、中空糸膜11は、湿潤によって寸法変化するために、乾燥状態にあっては所定の間隔を以って充填空間内に固定されている。また、中空糸膜11は、弾性的に変形する性質を有している。そのため、図4に示すように、オフガス22が導入口12から導入されると、ガス流速が最も大きい内部ケース15側で圧力が高まり、オフガス22は中空糸膜11を押し退けて変形させ、内部ケース15に沿って隙間が生じてしまう。オフガスは、矢印24で示すようにこの隙間を経由して下流側(図において右側)へ一気に移動し、その後、排出口13へ向かって流通して排出されてしまう。このように、オフガスは上流側(図において左側)においては中空糸膜11の空隙を通過せず、下流側のみで水分移動が行われるため、中空糸膜11の利用率および加湿効率が低いという問題があった。 
第1実施形態 
 図5は、上述した従来の問題を解決することができる本発明の水分交換用中空糸膜モジュールの一実施形態を示す図である。なお、図5の水分交換用中空糸膜モジュールは、筒状多孔体30以外の構成要素は図1~3と共通であるため、ここでは共通部分の説明は省略し、第1実施形態特有の構成、作用および効果について説明する。 
 図5に示すように、充填空間内には、筒状多孔体30が外部ケース10および内部ケース15と同軸的に設けられており、複数の中空糸膜11の間に介挿されている。筒状多孔体30は、オフガスを十分に流通させることができる開孔率を有し、オフガスのガス圧力を受けても変形しない剛性を有し、かつ長期の使用に耐え得るような耐食性を有する材料で構成されている。筒状多孔体30は、例えばステンレス鋼等の金属やプラスチックからなるメッシュで構成され、その両端部をシール部14に埋設されることで固定されている。 
 本発明におけるシール部14を形成する方法としては特に限定されず、任意の固定手段を用いることができる。本実施形態では、外部ケース10および内部ケース15の端部を立てた状態で充填空間に中空糸膜11および筒状多孔体30~33を充填して、下端部を樹脂に浸漬して固定し、続いて上下を反転させて他端部も同様にして樹脂に浸漬して固定するポッティングを採用している。ポッティングの際、浸漬した樹脂は、中空糸膜11の内外を封止してしまうが、中空糸膜11の径よりも中空糸膜11どうしの間隔の方が小さいため、毛細管現象により樹脂の浸漬高さが異なり、中空糸膜11の外部と比較して内部の方が浅く封止される。このため、この部分を切断除去することにより、中空糸膜11内部はモジュール外界に連通させて、中空糸膜11外部のみに樹脂を残存させ、充填空間を封止することができる。 
 本実施形態においては、中空糸膜11の湿潤による膨張率を予め把握しておく。そして膨張率が最大に達した際に中空糸膜11の移動を抑制するため、中空糸膜11どうしの間、および中空糸膜11と筒状多孔体30の間が互いに接触して隙間無く密に充填されるよう、あるいは隙間が減って密度が高く充填されるようにそれぞれが配置されている。一方乾燥状態においては、これらの間に空隙部(隙間)をもって中空糸膜11と筒状多孔体30が配置されている。 
 本発明における中空糸膜11としては、公知の中空糸膜を選択することができ、具体的には、フェノールスルホン酸、ポリスチレンスルホン酸、ポリトリフルオロスチレンスルホン酸、パーフルオロカーボンスルホン酸等の高分子イオン交換膜で構成されたものや、高分子樹脂系あるいはセラミック系等の中空糸膜が挙げられる。 
 本実施形態によれば、導入口12からオフガスが充填空間内に導入される際に導入口12近傍の中空糸膜11がガス圧力を受けても、筒状多孔体30が複数の中空糸膜11を取り囲んでいるので、筒状多孔体30と内部ケース15との間の中空糸膜11の移動が抑制される。これにより、内部ケース15に沿って隙間が生じることが抑制されるので、オフガスは充填空間内において上流側から下流側へ向かって均一に流通する。これにより、中空糸膜11の利用率および加湿効率が向上する。 
 特に、本実施形態では、予め中空糸膜11の膨張率を考慮した所定の空隙を以って中空糸膜11と筒状多孔体30が配置されているので、水分交換用中空糸膜モジュールの運転時にあっては中空糸膜11と筒状多孔体30を互いに接触させることができ、内部ケース15に沿った隙間の形成が確実に抑制される。 
第2実施形態 
 図6は、本願発明の水分交換用中空糸膜モジュールの他の実施形態を示すものであり、筒状多孔体を複数設けた例を示す図である。図6に示すように、充填空間内には、第1筒状多孔体31、第2筒状多孔体32および第3筒状多孔体33が、外部ケース10および内部ケース15と同軸的に設けられている。筒状多孔体31~33は、第1実施形態と同様に、耐食性のある金属やプラスチックからなるメッシュで構成され、両端部をシール部14に埋設されることで固定されている。 
 上記実施形態においては、内部ケース15と第1筒状多孔体31との間隔をA、第1筒状多孔体31と第2筒状多孔体32との間隔をA、第2筒状多孔体32と第3筒状多孔体33との間隔をAと定義した場合、最も内側の間隔Aが、他の間隔AおよびAのいずれよりも小さく設定されている。 
 本実施形態によれば、導入口12からオフガスが充填空間内に導入される際に導入口12近傍の中空糸膜11がガス圧力を受けても、第1実施形態と同様に第1筒状多孔体31が最も内側の中空糸膜11を取り囲んでいるので、中空糸膜11の移動が抑制される。加えて、第2筒状多孔体32および第3筒状多孔体33がさらに外側の中空糸膜11を囲んでいるので、外側の中空糸膜11の移動をも抑制することができる。これにより、第1実施形態よりも中空糸膜11の利用率および加湿効率がさらに向上する。 
 特に、本実施形態では、オフガスの導入口12近傍が最もガス流速が大きく、中空糸膜11の受ける推力が大きいためその移動量も大きくなる傾向がある。そこでAを最小とすることによって、中空糸膜11の移動量を最小に抑えることができる。 
 本実施形態においては、少なくともAが最小であれば、AおよびAの関係は限定されず、例えばA=A、A<A、A>Aのいずれであってもよい。しかしながら、導入されるオフガスのガス流速は外側に行くにつれ減衰するので、A<A<Aであることが特に好ましい。 
変形例 
 本発明においては、複数の筒状多孔体は第1~第3筒状多孔体には限定されず、第1~第n(nは2以上の整数)の任意の数の筒状多孔体を設けることができる。その際、間隔Aが他の間隔A~Aのいずれよりも小さいことが好ましく、A<A<・・・<An-1<Aがさらに好ましいことも同様である。 
 上記説明においては、第1流体経路に乾燥した未使役のガスを流し、第2流体経路に湿潤した使役後のオフガスを流した例を説明したが、本発明はこの態様のみに限定されるものではなく、第1流体経路に湿潤した使役後のオフガスを流し、第2流体経路に乾燥した未使役のガスを流して水分交換を行うことも可能である。 
 また、内部ケース15に設けられた導入口12および外部ケース10に設けられた排出口13は、ガスの流通方向をこの方向に限定するものではなく、本発明は、排出口13から逆にガスを導入して導入口12からガスを排出する態様をも含む。なお、この場合は、図6において、ガスが導入される側である最も外側の間隔Aが、より内側の間隔AおよびAのいずれよりも小さいことが好ましく、A<A<Aがさらに好ましいことになる。 
 さらに、上記説明では、外部ケース10、内部ケース15および筒状多孔体30~33が円筒形である場合を例にとり説明したが、本発明の水分交換用中空糸膜モジュールは円筒形に限定されるものではなく、例えば断面が多角形の筒状とすることもできる。すなわち、外部ケース10は、図7の(a)、(b)、(c)のように四角形でもよいし、(d)、(e)のように六角形、そして(f)のように八角形でもよく、五角形や十角形も含んだ断面が多角形の筒状とすることもできる。内部ケース15は、図7の(a)や(c)のように四角形でもよいし、(d)のように六角形でもよく、五角形や八角形、十角形も含んだ断面が多角形の筒状とすることもできる。また、筒状多孔体も、図7の(a)や(b)のように四角形でもよいし、(d)や(e)のように六角形でもよく、五角形や八角形、十角形も含んだ断面が多角形の筒状とすることもできる。これら外部ケース10、内部ケース15および筒状多孔体30~33の断面形状の組み合わせは、図7に示すように、四角形と円筒と六角形等、自由に組み合わせることが可能である。
 本発明によれば、燃料電池から排出されるオフガスの水分を未使役の酸化剤ガスの加湿に再利用することができ、また、水分交換における加湿効率を高めることにより燃料電池の適正な加湿量での運転が可能となるから、厳格な安定運転が要求される車載用燃料電池システムに適用して極めて有望である。 

Claims (6)

  1.  筒状の外部ケースと、 
     前記外部ケースと同軸的に内包された筒状の内部ケースと、 
     前記外部ケースと前記内部ケースとの間で囲われた空間に、軸方向に延在させて充填された複数の中空糸膜と、 
     前記空間にありかつ筒状構造の両端において、前記複数の中空糸膜を固定して前記空間を封止したシール部と、
     前記内部ケースまたは前記外部ケースのうち一方に設けられた導入口と、 
     前記内部ケースまたは前記外部ケースのうち他方に設けられた排出口と、 
     前記中空糸膜の一端側から前記中空糸膜の中空内部を経由して他端側に至る第1流体経路と、 
     前記導入口から、前記空間でありかつ前記中空糸膜の外側を経由して前記排出口に至る第2流体経路と、 
     前記空間内に延在して複数の前記中空糸膜の間に介挿され、前記外部ケースおよび前記内部ケースと同軸的に配置された筒状多孔体と
    を備えることを特徴とする水分交換用中空糸膜モジュール。 
  2.  前記筒状多孔体は、少なくとも一端を前記シール部で固定されていることを特徴とする請求項1に記載の水分交換用中空糸膜モジュール。 
  3.  径の異なる複数の筒状多孔体が前記空間内に同軸的に設けられ、 
     前記内部ケースに前記導入口が設けられ前記外部ケースに前記排出口が設けられ、複数の筒状多孔体のうち最も内側に設けられた筒状多孔体と前記内部ケースとの間隔が、他の筒状多孔体どうしの間隔のいずれよりも小さいことを特徴とする請求項1または2に記載の水分交換用中空糸膜モジュール。 
  4.  前記外部ケースに前記導入口が設けられ前記内部ケースに前記排出口が設けられ、複数の筒状多孔体のうち最も外側に設けられた筒状多孔体と前記外部ケースとの間隔が、他の筒状多孔体どうしの間隔のいずれよりも小さいことを特徴とする請求項1または2に記載の水分交換用中空糸膜モジュール。 
  5.  前記中空糸膜の乾燥状態では、中空糸膜どうしの間および中空糸膜と前記筒状多孔体との間に形成される空隙部を有し、前記中空糸膜の膨潤状態では、互いに接触することで前記空隙部を減少させることを特徴とする請求項1~4のいずれかに記載の水分交換用中空糸膜モジュール。 
  6.  前記筒状多孔体は、メッシュであることを特徴とする請求項1~5のいずれかに記載の水分交換用中空糸膜モジュール。 
PCT/JP2010/062171 2009-07-24 2010-07-20 水分交換用中空糸膜モジュール WO2011010636A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10802256.7A EP2457640B1 (en) 2009-07-24 2010-07-20 Hollow-fiber membrane module for moisture exchange
JP2011523656A JP5523458B2 (ja) 2009-07-24 2010-07-20 水分交換用中空糸膜モジュール
CN201080031460.0A CN102470321B (zh) 2009-07-24 2010-07-20 水分交换用空心丝膜模块
US13/381,529 US9048469B2 (en) 2009-07-24 2010-07-20 Hollow-fiber membrane module for moisture exchange

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009173489 2009-07-24
JP2009-173489 2009-07-24

Publications (1)

Publication Number Publication Date
WO2011010636A1 true WO2011010636A1 (ja) 2011-01-27

Family

ID=43499108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062171 WO2011010636A1 (ja) 2009-07-24 2010-07-20 水分交換用中空糸膜モジュール

Country Status (5)

Country Link
US (1) US9048469B2 (ja)
EP (1) EP2457640B1 (ja)
JP (1) JP5523458B2 (ja)
CN (1) CN102470321B (ja)
WO (1) WO2011010636A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122902A (ja) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd 燃料電池膜モジュールの製造方法
JP2017511249A (ja) * 2014-03-24 2017-04-20 コーロン インダストリーズ インク 中空繊維膜モジュール
WO2022255085A1 (ja) * 2021-06-02 2022-12-08 Nok株式会社 中空糸膜モジュール及び除加湿装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014011445B4 (de) * 2014-08-07 2016-06-02 Mann + Hummel Gmbh Filtereinrichtung mit Hohlfasern
KR101766011B1 (ko) * 2015-04-30 2017-08-07 현대자동차주식회사 연료전지용 막가습기
CN118043125A (zh) 2021-08-23 2024-05-14 帕克-汉尼芬公司 燃料电池加湿灌封粘合剂罩套

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613671U (ja) 1984-06-13 1986-01-10 三洋電機株式会社 燃料電池の出力端子装置
JPH0286817A (ja) * 1988-05-27 1990-03-27 Kuraray Co Ltd 中空糸型流体処理装置
JPH06132038A (ja) 1992-10-20 1994-05-13 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2002102663A (ja) * 2000-09-29 2002-04-09 Kunitaka Mizobe 水蒸気移動制御装置の検査方法
JP2002147802A (ja) 2000-11-06 2002-05-22 Nok Corp 加湿装置
JP2002289229A (ja) * 2001-03-22 2002-10-04 Nok Corp 加湿器およびその使用方法
JP2002303435A (ja) * 2001-03-30 2002-10-18 Honda Motor Co Ltd 加湿モジュール
JP2003164735A (ja) * 2001-11-29 2003-06-10 Nok Corp 中空糸膜モジュール
JP2004311287A (ja) 2003-04-09 2004-11-04 Nissan Motor Co Ltd 加湿装置
JP2005040675A (ja) 2003-07-24 2005-02-17 Nok Corp 中空糸膜モジュール
JP2006003069A (ja) * 2004-05-03 2006-01-05 Daimler Chrysler Ag 水分透過型の中空糸膜の束を備えた水分交換モジュール
JP2007323982A (ja) 2006-06-01 2007-12-13 Matsushita Electric Ind Co Ltd 燃料電池システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007601A (en) * 1975-10-16 1977-02-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tubular sublimator/evaporator heat sink
DE2617985C3 (de) * 1976-04-24 1979-02-22 Draegerwerk Ag, 2400 Luebeck Atemluftanfeuchter für Beatmungsvorrichtungen
JPS6142874A (ja) 1984-08-03 1986-03-01 Hitachi Ltd 燃料電池発電システム
US4666469A (en) * 1985-05-29 1987-05-19 The Dow Chemical Company Hollow fiber membrane device with inner wrap
US5013331A (en) * 1989-06-30 1991-05-07 E. I. Du Pont De Nemours And Company Permeator with selectable flow rates
US5176725A (en) * 1991-07-26 1993-01-05 Air Products And Chemicals, Inc. Multiple stage countercurrent hollow fiber membrane module
JPH09192442A (ja) * 1996-01-16 1997-07-29 Mitsubishi Rayon Co Ltd 脱湿用中空糸膜モジュール
US6136073A (en) * 1998-11-02 2000-10-24 Mg Generon Boreside feed modules with permeate flow channels
JP3927344B2 (ja) 2000-01-19 2007-06-06 本田技研工業株式会社 加湿装置
JP2001202975A (ja) * 2000-01-19 2001-07-27 Honda Motor Co Ltd 燃料電池用加湿装置
NL1021913C2 (nl) 2002-11-13 2004-05-14 Jb Ventures B V Filtermodule.
KR100569681B1 (ko) 2003-11-17 2006-04-10 주식회사 코오롱 침지형 중공사막 모듈
JP2007309574A (ja) * 2006-05-18 2007-11-29 Toyota Motor Corp 加湿器およびそれを備える燃料電池システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613671U (ja) 1984-06-13 1986-01-10 三洋電機株式会社 燃料電池の出力端子装置
JPH0286817A (ja) * 1988-05-27 1990-03-27 Kuraray Co Ltd 中空糸型流体処理装置
JPH06132038A (ja) 1992-10-20 1994-05-13 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2002102663A (ja) * 2000-09-29 2002-04-09 Kunitaka Mizobe 水蒸気移動制御装置の検査方法
JP2002147802A (ja) 2000-11-06 2002-05-22 Nok Corp 加湿装置
JP2002289229A (ja) * 2001-03-22 2002-10-04 Nok Corp 加湿器およびその使用方法
JP2002303435A (ja) * 2001-03-30 2002-10-18 Honda Motor Co Ltd 加湿モジュール
JP2003164735A (ja) * 2001-11-29 2003-06-10 Nok Corp 中空糸膜モジュール
JP2004311287A (ja) 2003-04-09 2004-11-04 Nissan Motor Co Ltd 加湿装置
JP2005040675A (ja) 2003-07-24 2005-02-17 Nok Corp 中空糸膜モジュール
JP2006003069A (ja) * 2004-05-03 2006-01-05 Daimler Chrysler Ag 水分透過型の中空糸膜の束を備えた水分交換モジュール
JP2007323982A (ja) 2006-06-01 2007-12-13 Matsushita Electric Ind Co Ltd 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2457640A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122902A (ja) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd 燃料電池膜モジュールの製造方法
KR101382672B1 (ko) 2011-12-09 2014-04-07 기아자동차주식회사 연료전지 막 모듈 제조방법
US9314744B2 (en) 2011-12-09 2016-04-19 Hyundai Motor Company Method and device for producing a membrane module for a fuel cell and membrane modules produced thereby
JP2017511249A (ja) * 2014-03-24 2017-04-20 コーロン インダストリーズ インク 中空繊維膜モジュール
WO2022255085A1 (ja) * 2021-06-02 2022-12-08 Nok株式会社 中空糸膜モジュール及び除加湿装置

Also Published As

Publication number Publication date
EP2457640A4 (en) 2013-12-25
EP2457640B1 (en) 2015-03-11
JP5523458B2 (ja) 2014-06-18
JPWO2011010636A1 (ja) 2012-12-27
CN102470321B (zh) 2016-03-16
US20120111967A1 (en) 2012-05-10
CN102470321A (zh) 2012-05-23
EP2457640A1 (en) 2012-05-30
US9048469B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
KR102002386B1 (ko) 중공사막 모듈
JP5523458B2 (ja) 水分交換用中空糸膜モジュール
US10478779B2 (en) Hollow fiber membrane module
JP2021523536A (ja) 燃料電池用膜加湿器
US8435693B2 (en) Fuel cell stack
JP2009301889A (ja) 燃料電池スタック
JP5710127B2 (ja) 水分交換用中空糸膜モジュール
JP2005158670A (ja) 燃料電池システム
JP5308950B2 (ja) 水分交換用中空糸膜モジュール
JP5222246B2 (ja) 水分交換用中空糸膜モジュール
KR101976901B1 (ko) 연료전지 단위셀
JP5350966B2 (ja) 加湿用モジュール
JP2009199741A (ja) 燃料電池及び加湿器
JP5350971B2 (ja) 加湿用モジュール
JP2005235418A (ja) 固体高分子型燃料電池
JP2009087844A (ja) 燃料電池の発電セル構造及び発電セルの湿潤調整方法
JP5308949B2 (ja) 水分交換用中空糸膜モジュール
JP2007220611A (ja) 燃料電池の加湿装置
JP5243328B2 (ja) 燃料電池スタック
JP2010123432A (ja) 燃料電池
JP2008146897A (ja) 燃料電池用セパレータおよび燃料電池
JP2010015805A (ja) 燃料電池
JP2007205678A (ja) 加湿装置
JP2004152516A (ja) 固体高分子型燃料電池
JP5350965B2 (ja) 加湿用モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031460.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523656

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13381529

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010802256

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE