[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011010510A1 - Image-capturing lens - Google Patents

Image-capturing lens Download PDF

Info

Publication number
WO2011010510A1
WO2011010510A1 PCT/JP2010/059739 JP2010059739W WO2011010510A1 WO 2011010510 A1 WO2011010510 A1 WO 2011010510A1 JP 2010059739 W JP2010059739 W JP 2010059739W WO 2011010510 A1 WO2011010510 A1 WO 2011010510A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
glass substrate
imaging lens
spacer
imaging
Prior art date
Application number
PCT/JP2010/059739
Other languages
French (fr)
Japanese (ja)
Inventor
大造 林田
克彦 稗田
耕平 勝田
昭衛 辻
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2011523586A priority Critical patent/JPWO2011010510A1/en
Publication of WO2011010510A1 publication Critical patent/WO2011010510A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an imaging lens. More specifically, the present invention relates to an imaging lens that can be manufactured in a state without thermal deformation or the like even by a manufacturing process including a heating process, or exhibits excellent heat resistance in a solder reflow process.
  • an imaging lens unit using an imaging lens group composed of a plurality of imaging lenses such as an imaging lens unit of a camera
  • an imaging lens unit using an imaging lens in which a member for performing an inter-lens distance and optical axis alignment is formed on the imaging lens, etc. has been developed (Patent Document 1).
  • solder reflow process is often employed as a process for miniaturizing various electronic components or modules and mounting them on a substrate with high productivity.
  • the electronic components on the substrate are heated at a high temperature of 220 to 270 ° C. to melt and bond the solder. Therefore, durability in the solder reflow process is required for optical components such as lenses, prisms, and transparent covers that are mounted on electronic modules, particularly optical modules such as cameras and lights.
  • Non-Patent Document 1 an imaging lens in which a lens structure is formed of plastic on both surfaces of a glass substrate at a wafer level and a manufacturing method thereof have been proposed. ing. In this imaging lens, a spacer portion for adjusting the interval when the imaging lenses are overlapped is formed.
  • the present invention provides an imaging lens that can be manufactured in a state free from thermal deformation or the like even by a manufacturing process including a heating step, or has excellent heat resistance in a reflow step, and an imaging lens group and a camera module comprising the imaging lens group.
  • the issue is to provide.
  • the present inventors diligently studied the structure of the imaging lens in order to solve the above problems.
  • the spacer and the lens are in contact with each other for the convenience of the manufacturing process, so that the area of the glass substrate surface where the plastic is in contact is increased. Therefore, the inventors have found that the glass substrate warps and the plastic part is peeled off due to the heat history of the heating process and reflow process of the manufacturing process and the difference in linear expansion between the plastic and glass.
  • the inventors of the present invention are imaging lenses in which a plastic lens part and a plastic spacer are formed on at least one surface of a flat glass substrate.
  • An imaging lens in which a total ratio of an area of a portion where the lens portion is in contact with the glass substrate and an area of a portion where the spacer is in contact with the glass substrate to a surface area is 50% or less, It has been found that it has excellent heat resistance against the manufacturing process and solder reflow process.
  • the lens portion and the spacer are not in contact with each other on the surface of the glass substrate.
  • the spacer is in contact with the glass substrate at a plurality of locations on the surface of the glass substrate.
  • the lens part formed on one surface of the glass substrate has a convex lens surface, and the lens part formed on the other surface has a concave lens surface. preferable.
  • the spacer has an alignment portion for aligning the imaging lens surface direction and the imaging lens direction when the imaging lenses are stacked.
  • an imaging lens group can be manufactured by superimposing the imaging lenses.
  • a camera module can be manufactured using this imaging lens group. Furthermore, a mobile phone, a personal computer, a portable information communication device, a digital camera, an automobile, a security camera, and the like equipped with this camera module can be manufactured.
  • an imaging lens having excellent heat resistance in a manufacturing process and a solder reflow process an imaging lens group including the imaging lens, a camera module using the imaging lens group, and a product such as a mobile phone equipped with the camera module are provided. Can be provided.
  • FIG. 1A is a front view of the imaging lens 1.
  • FIG. 1B is a plan view of the imaging lens 1.
  • FIG. 2A is a plan view of the imaging lens 11.
  • FIG. 2B is a plan view of the imaging lens 21.
  • FIG. 3A is a plan view of the imaging lens group 61.
  • FIG. 3B is a cross-sectional view of the imaging lens group 61 taken along the line AA.
  • FIG. 4A is a front view of the imaging lens 41.
  • FIG. 4B is a plan view of the imaging lens 41.
  • FIG. 5A is a front view of the imaging lens 51.
  • FIG. 5B is a plan view of the imaging lens 51.
  • the imaging lens according to the present invention is formed by forming a plastic lens portion and a plastic spacer on at least one surface of a glass substrate.
  • this imaging lens in each surface of the glass substrate, with respect to the area of the surface, the area of the portion where the lens portion is in contact with the glass substrate and the portion where the spacer is in contact with the glass substrate The total ratio with the area is 50% or less.
  • FIG. 1 shows an imaging lens 1 which is a specific example of the imaging lens according to the present invention.
  • FIG. 1A is a front view of the imaging lens 1
  • FIG. 1B is a plan view of the imaging lens 1.
  • the imaging lens 1 includes a glass substrate 2, a lens portion 3a and a lens portion 3b, and eight spacers 4. Four of the lens portion 3 a and the eight spacers 4 are provided on the upper surface of the glass substrate 2, and the remaining four of the lens portion 3 b and the eight spacers 4 are provided on the lower surface of the glass substrate 2. It has been.
  • the glass substrate 2 is a flat plate having a square planar shape.
  • a lens portion 3 a and a lens portion 3 b are provided at the center of the glass substrate 2 so as to sandwich the glass substrate 2.
  • the lens portions 3a and 3b are made of plastic.
  • the shape of the portion where the lens portions 3a and 3b are in contact with the glass substrate 2 is circular.
  • the lens portion 3 a has a spherical shape that is convex upward toward the glass substrate 2. That is, the lens portion 3a has a lens surface that is a convex surface.
  • the lens portion 3 b has a peripheral surface portion that stands from the lower surface of the glass substrate 2 and a lower surface that forms part of a spherical surface that is concave toward the lower side of the glass substrate 2. That is, the lens part 3b has a concave lens surface.
  • the eight spacers 4 are made of plastic and have a cylindrical shape.
  • the spacers 4 are respectively provided at the four corners of the upper surface and the lower surface of the glass substrate 2.
  • Two of the eight spacers 4 are provided so as to sandwich the glass substrate 2 between the upper surface and the lower surface of the glass substrate 2 with their axes aligned.
  • the portion of the surface of the glass substrate where the lens portion is in contact with the glass substrate with respect to the area of the surface is smaller.
  • the area ratio is preferably 50% or less, and more preferably 40% or less.
  • the area ratio is larger than 50%, the plastic expands and contracts due to the heat history in the heating process and the solder reflow process in the lens manufacturing, and the glass substrate warps and the plastic part peels off from the glass substrate. That is, when the area ratio is 50% or less, the warpage and peeling can be suppressed, and heat resistance is improved.
  • the area of the upper and lower surfaces of the glass substrate 2 is S, the area of the upper surface of the glass substrate 2 that is in contact with the lens portion 3a and the area of the lower surface that is in contact with the lens portion 3b. S1 and the area of the portion where the spacer 4 is in contact with the upper and lower surfaces of the glass substrate 2 as Ss,
  • the area ratio on the upper surface of the glass substrate is different from the area ratio on the lower surface, it is preferable that the above relationship is established on both the upper surface and the lower surface of the glass substrate.
  • the area ratio is preferably 20% or more from the viewpoint of downsizing the imaging lens unit.
  • the lens portion and the spacer are not in contact with each other on the surface of the glass substrate from the viewpoint of further improving the heat resistance.
  • an imaging lens in which the lens portion and the spacer are not in contact with each other on the surface of the glass substrate has the lens portion and the spacer on the glass substrate.
  • the heat resistance is superior to imaging lenses that are in contact with each other. This is because the linear expansion coefficient is different between the glass substrate and the plastic that is the material of the lens part and the spacer, so the smaller the diameter length of the part in contact with the plastic on the glass substrate surface is, the closer the glass substrate is to the plastic.
  • the lens portion 3 a and the four spacers 4 are not in contact with each other on the upper surface of the glass substrate 2, and the lens portion 3 b and the four spacers 4 are in contact with each other on the lower surface of the glass substrate 2.
  • the imaging lens 1 includes the glass substrate 2, the lens portion 3a, the lens portion 3b, and the eight spacers 4 in the same manner as the imaging lens 1, but at least one of the spacers 4 is the lens portion 3a or the lens portion.
  • the heat resistance described above is superior to 3b or both, and an imaging lens in contact with each other on the upper surface or the lower surface of the glass substrate 2 or both.
  • the spacer is preferably in contact with the glass substrate at a plurality of locations on the surface of the glass substrate. That is, even if the area of the portion in contact with the spacer is the same on the surface of the glass substrate, the heat resistance is improved in an embodiment in which two or more portions are present rather than an embodiment in which the portion is one.
  • the spacer itself may be divided into a plurality of parts, each of which may be in contact with the glass substrate, or one spacer may be in contact with a plurality of locations on the glass substrate. Good.
  • the imaging lens 1 As for the imaging lens 1, four spacers 4 are provided on the upper and lower surfaces of the glass substrate 2 without contacting each other. That is, in the imaging lens 1, the spacers are in contact with each other at four locations on the upper surface and the lower surface of the glass substrate. For this reason, the imaging lens 1 includes a glass substrate 2, a lens portion 3 a, a lens portion 3 b, and eight spacers 4, similar to the imaging lens 1, but two or more of the spacers 4 are the upper surface of the glass substrate 2. Alternatively, the heat resistance is superior to imaging lenses that are in contact with each other on the lower surface or both. (Glass substrate)
  • the glass substrate in the imaging lens of the present invention is a member that holds the lens portion and the spacer.
  • the glass substrate is not particularly limited as long as it is a glass substrate used for ordinary optical components, electronic components, displays, and the like, and examples thereof include FK glass, BK glass, LaK glass, TEMPAX glass, D263T glass, and B270 glass. It is done.
  • the thickness of the glass substrate is arbitrarily determined by the optical design described later, and is usually 200 ⁇ m to 800 ⁇ m. If the glass is thinner than 200 ⁇ m, problems of warpage and crushing are likely to occur, and if it is thicker than 800 ⁇ m, the optical performance of the lens may be lowered.
  • planar shape of the glass substrate 2 in the imaging lens 1 is a square
  • the planar shape of the glass substrate is arbitrarily determined by the optical design described later, and may be a rectangle, a circle, or the like in addition to a square. There may be.
  • the size of the glass substrate is also arbitrarily determined by the optical design described later.
  • the length of one side is usually 2 mm to 10 mm.
  • the lens portion in the imaging lens of the present invention is a member that exhibits an optical effect in the imaging lens.
  • the material of the lens part is plastic.
  • the plastic forming the lens part is not particularly limited as long as it is a plastic having sufficient transparency and refractive index as a lens, but from the viewpoint of processability to an uneven surface shape, a thermoplastic transparent plastic, a thermosetting transparent plastic, and A photocurable transparent plastic is preferred.
  • a plastic having a linear expansion coefficient of 40 ppm / ° C. to 100 ppm / ° C. is used as the transparent plastic used in the lens portion of the present invention
  • a glass substrate, a plastic lens portion, and a plastic spacer portion are used.
  • the area ratio is as described above, warping and peeling can be suppressed, and heat resistance is improved.
  • Particularly preferred is 60 to 90 ppm / ° C.
  • Tg is preferably 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • thermoplastic transparent plastic a thermoplastic plastic having transparency when molded into a lens shape can be used without particular limitation.
  • cyclic olefin plastics suitable for optical applications acrylic plastics such as polymethyl methacrylate plastics, polycarbonate plastics, polyester plastics, polyarylate plastics, polysulfone plastics, polyethersulfone plastics, polyparaphenylene plastics, polyarylene ethers
  • acrylic plastics such as polymethyl methacrylate plastics, polycarbonate plastics, polyester plastics, polyarylate plastics, polysulfone plastics, polyethersulfone plastics, polyparaphenylene plastics, polyarylene ethers
  • phosphine oxide plastic polyimide plastic, polyetherimide plastic, and polyamideimide plastic.
  • thermosetting transparent plastic a thermosetting plastic having transparency when molded into a lens shape can be used without any particular limitation. Specifically, epoxy plastic, silicone plastic, acrylic plastic, etc. suitable for optical applications, etc. Is mentioned.
  • a photocurable plastic having transparency when molded into a lens shape can be used without particular limitation, and specific examples include epoxy plastics and acrylic plastics suitable for optical applications. .
  • cyclic olefin plastics such as COP (Cyclic Olefin Polymer) and COC (Cyclic Olefin Copolymer), polycarbonate plastic, polyester plastic, and thermosetting silicone plastic.
  • COP Cyclic Olefin Polymer
  • COC Cyclic Olefin Copolymer
  • polycarbonate plastic polycarbonate plastic
  • polyester plastic polycarbonate plastic
  • thermosetting silicone plastic thermosetting silicone plastic.
  • UV curable epoxy plastic and light (UV) curable acrylic plastic are preferable.
  • the diameter, height, and shape of the lens portion can be arbitrarily determined by optical design calculation from the sensor size, pixel size, and performance (number of pixels) of the imaging sensor of the camera module including the imaging lens.
  • the lens diameter is 1 to 5 mm and the lens height is 50 to 1000 ⁇ m.
  • the shape is usually convex or concave like the lens portion 2a and lens portion 2b in the imaging lens 1, and the lens portion formed on one surface of the glass substrate has a convex lens surface, and the other It is preferable that the lens portion formed on the surface of the lens has a concave lens surface in that the imaging performance of the lens is improved and a clear image can be obtained when the lens and the lens group are incorporated in a camera module. .
  • the diameter, height and shape of the lens portions formed on both surfaces of the glass substrate may be the same or different.
  • the volume of the lens part formed on the upper surface of the glass substrate is the same as that of the lens part formed on the lower surface, the distortion of the glass substrate is suppressed by suppressing the asymmetry of the thermal distortion occurring above and below the glass substrate. It is preferable at the point which can suppress.
  • the lens portion is usually formed on both sides of the glass substrate, but may be formed only on one side of the glass substrate.
  • the spacer in the imaging lens of the present invention is provided in order to keep the distance between the lens portions formed in the two imaging lenses adjacent to each other at a predetermined length when two or more imaging lenses are stacked. It is a member.
  • the material of the spacer in the imaging lens of the present invention is plastic.
  • Tg is 100 ° C. or higher, preferably 120 ° C. or higher, and more preferably 120 ° C. or higher in order to have heat resistance without dimensional change in the solder reflow process. Is preferably 140 ° C. or higher, and examples thereof include the same plastics used for lens formation. Other examples include heat-resistant engineering plastics such as liquid crystal polymers (Liquid Crystal Polymer: LCP), polyphenylene sulfide plastic (PPS), polyether ether ketone plastic (PEEK), and polyphthalamide (PPA).
  • LCP liquid crystal polymers
  • PPS polyphenylene sulfide plastic
  • PEEK polyether ether ketone plastic
  • PPA polyphthalamide
  • the plastic forming the lens portion and the plastic forming the spacer may be the same or different.
  • the height of the spacer is arbitrarily determined by optical design calculation from the sensor size, pixel size, and performance (number of pixels) of the imaging sensor of the camera module including the imaging lens, and is usually 100 to 1000 ⁇ m.
  • the shape of the spacer is not particularly limited as long as the above imaging lens structure condition is satisfied. Specifically, a cylindrical shape, a prismatic shape, a cylindrical shape, and the like are preferable from the viewpoint of ease of manufacture.
  • An imaging lens 1 having a cylindrical spacer 4 is as shown in FIG.
  • FIG. 2A shows a plan view of the imaging lens 11 having a prismatic spacer.
  • the imaging lens 11 includes a glass substrate 2, a lens portion 3 a and a lens portion 3 b, and eight spacers 14. About the glass substrate 2, the lens part 3a, and the lens part 3b, it is the same as that of the case of the imaging lens 1.
  • FIG. The spacer 14 is a quadrangular prism type and is installed at a position corresponding to the spacer 4 in the imaging lens 1.
  • FIG. 2B shows a plan view of the imaging lens 21 having a cylindrical spacer.
  • the imaging lens 21 includes a glass substrate 2, a lens unit 3 a and a lens unit 3 b, and two spacers 24. About the glass substrate 2, the lens part 3a, and the lens part 3b, it is the same as that of the case of the imaging lens 1.
  • FIG. The spacer 24 is a cylindrical type. The spacer 24 is installed on the upper surface of the glass substrate 2 so as to surround the lens portion 3 a with its one end opening being in contact with the glass substrate 2. Similarly, the spacer 24 is installed on the lower surface of the glass substrate 2 so as to surround the lens portion 3b.
  • the shape of the spacer provided on the upper surface of the glass substrate and the shape of the spacer provided on the lower surface may be the same or different.
  • the spacer does not have to have a constant cross-sectional area parallel to the glass substrate in a direction perpendicular to the glass substrate plane, and may be different as long as the object of the present invention is achieved.
  • the area of the cross section of the spacer may gradually decrease or increase in the vertical direction from the surface of the glass substrate, or the shape thereof may change. Therefore, the shape may be such that a cross section parallel to the glass substrate is divided into a plurality of sections as it goes toward the glass substrate surface. If the spacer is divided in this way, even if it is a single spacer, the spacer can be installed at a plurality of locations on the surface of the glass substrate. Since the contact area is reduced and the spacer can be brought into contact with the glass substrate at a plurality of locations on the surface of the glass substrate, the heat resistance of the imaging lens can be improved.
  • the number of spacers is not particularly limited as long as the above functions of the spacer are ensured, and even if two or more spacers are provided on the upper and lower surfaces of the glass substrate, respectively, like the imaging lens 1 and the imaging lens 11.
  • one spacer may be provided on each of the upper surface and the lower surface of the glass substrate.
  • the spacer is divided and installed on the surface of the glass substrate. That is, when the total installation area of the spacers on the glass substrate is the same, the imaging lens having a plurality of spacers is more advantageous in terms of the heat resistance than the imaging lens having one spacer.
  • the shape of each spacer may be the same and different.
  • the spacer of the imaging lens of the present invention has an alignment portion for facilitating alignment in the imaging lens surface direction and the imaging lens direction when the imaging lenses are overlapped to form a lens group. It is preferable.
  • FIG. 3A shows a plan view of an imaging lens group 61 formed by superimposing three imaging lenses 31 as a specific example of the imaging lens having a spacer having an alignment portion.
  • FIG. 3B is a cross-sectional view of the imaging lens group 61 taken along the line AA in FIG.
  • the imaging lens 31 includes a glass substrate 2, a lens portion 3a and a lens portion 3b, four spacers 34a, and four spacers 34b.
  • the lens portion 3 a and the four spacers 34 a are provided on the upper surface of the glass substrate 2, and the lens portion 3 b and the four spacers 34 b are provided on the lower surface of the glass substrate 2.
  • the spacer 34 a and the spacer 34 b are installed at positions corresponding to the spacer 4 in the imaging lens 1.
  • the spacer 34a includes a columnar support portion 34aI installed on the glass substrate 2, and an alignment portion 34aII provided on the upper surface thereof, which is a convex portion having a cross-sectional shape parallel to the glass substrate 2.
  • the spacer 34b includes a columnar support portion 34bI installed on the glass substrate 2 and an alignment portion 34bII provided on the lower surface thereof.
  • the alignment part 34bII is a hollow cylinder whose cross-sectional shape parallel to the glass substrate 2 extends from the top surface to the bottom surface of a cylindrical body having a peripheral surface that forms one peripheral surface together with the peripheral surface of the support portion 34bI. It is a part formed.
  • the alignment portion 34aII and the alignment portion 34bII are designed to be fitted.
  • the alignment portion 34aII and the alignment portion 34bII are fitted and the upper surface of the alignment portion 34aII is in contact with the lower surface of the support portion 34bI, the lower surface of the alignment portion 34bII is in contact with the upper surface of the support portion 34aI.
  • the alignment portion 34aII of the spacer 34a and the alignment portion 34bII of the spacer 34b are fitted, the spacer 34a and the spacer 34b form one cylinder.
  • the cross-shaped convex portions 34aII of the four spacers 34a included in the one imaging lens 31 are respectively aligned with the cross-shaped concave portions 34bII of the four spacers 34b included in the other imaging lens 31.
  • an imaging lens group including two imaging lenses 31 is formed.
  • another imaging lens 31 is superimposed on the imaging lens group to form an imaging lens group 61 including three imaging lenses 31.
  • an imaging lens group including four or more imaging lenses 31 can be formed by superimposing the imaging lens 31 on the imaging lens group 61.
  • an imaging lens group may be formed.
  • the sectional shape of the concave portion and the convex portion is not particularly limited, and the alignment portion 34aII and In addition to the cross shape such as the alignment portion 34bII, a circular shape, a triangular shape, a square shape, an X shape, an L shape, or the like may be used.
  • the cross-sectional shape of the concave and convex portions of the alignment portion is preferably a cross shape.
  • the alignment unit in the imaging lens according to the present invention may be of a type other than the above-described fitting type as long as the alignment and optical axis alignment in the lens surface direction of each imaging lens can be facilitated. It doesn't matter.
  • the number of alignment portions included in the imaging lens of the present invention is not particularly limited as long as alignment in the lens surface direction and optical axis alignment of each imaging lens can be facilitated.
  • the shape and style of each alignment portion may be the same or different.
  • a light shielding layer may be formed on a portion other than the effective surface of the glass substrate surface. Examples of the material of the light shielding layer include a plastic in which a metal and a light shielding material are dispersed.
  • the metal light-shielding layer can be provided without particular limitation as long as it is a portion other than the effective surface of the glass substrate surface, for example, between the glass substrate outside the effective surface of the imaging lens of the present invention, the lens portion and the spacer, It can be formed by adhering to a glass substrate.
  • the light shielding layer made of plastic is provided in a portion other than the effective surface of the glass substrate surface without being adhered to the glass substrate.
  • a light shielding layer formed by hollowing out a part from a layer covering the entire surface of the glass substrate so as not to cover the lens optical surface may be provided so as to cover the lens part.
  • the “effective surface of the glass substrate surface” and the “effective surface of the imaging lens” mean that the imaging lens of the present invention and the lens group thereof are mounted on the camera module and imaged from the real image side to the imaging sensor side. This is the surface through which the light bundle passes.
  • the “effective surface of the glass substrate surface” and the “effective surface of the imaging lens” can be obtained in advance by optical design of the lens shape.
  • Examples of the metal used for the light shielding layer include trivalent chromium and anodized.
  • Examples of the method for forming the metal light-shielding layer include methods such as plating and anodic oxidation.
  • plastic used for the light shielding layer after dispersing carbon particles etc. as a light shielding material in polyester, polyimide, cyclic olefin plastic, fluorine plastic, etc., on the film, on the plastic film, examples thereof include those coated with acrylic plastic, epoxy plastic or the like in which the light shielding material is dispersed.
  • a method for forming a plastic light-shielding layer include a method of attaching the light-shielding plastic film to the upper surface of the lens.
  • the thickness of the light shielding layer is not particularly limited as long as the above functions are ensured, and is usually 0.1 to 10 ⁇ m in the case of a metallic light shielding layer and 5 to 100 ⁇ m in the case of a film-like plastic.
  • a light shielding sheet or a light shielding plate may be placed outside the effective surface between the imaging lenses of the imaging lens group.
  • an AR coating for preventing light reflection on the lens surface may be formed to improve performance.
  • AR coating is performed by forming two or more low-refractive layers and high-refractive-index layers on the surface of the lens portion by sputtering or the like.
  • the manufacturing method of the imaging lens of the present invention is not particularly limited as long as the structure of the imaging lens of the present invention is formed. As a method for forming the lens portion, the imprint method is most preferable because it is simple.
  • a method of forming a lens when the plastic forming the lens is a thermoplastic, first, a thermoplastic sheet, pellet or powder is melted and fixed to one or both sides of the glass substrate, or It fixes by dripping or coating the solution which melt
  • the plastic forming the lens is a thermosetting plastic
  • a plastic liquid layer is formed on the glass substrate by dropping or coating the plastic liquid before curing onto the glass substrate, and a mold corresponding to the desired lens shape
  • a lens part having a desired shape is formed on the surface of the glass substrate by thermal imprinting.
  • the plastic forming the lens is a photo-curable plastic
  • a plastic liquid layer is formed on the glass substrate by dropping or coating the plastic liquid before curing onto the glass substrate, and a transparent gold corresponding to the desired lens shape.
  • a lens part having a desired shape is formed on the surface of the glass substrate by optical imprinting using a mold.
  • Examples of the method for forming the spacer include a method in which a plastic previously molded into a spacer shape is bonded to a predetermined position on a glass substrate with a UV adhesive or the like, and a method in which the molded body is heated and fused.
  • the plastic forming the spacer is preferably the same as the plastic forming the lens portion, and the method of forming the spacer by imprint molding simultaneously with the imprint molding of the lens portion is preferable because the number of steps is small and the position adjustment is easy.
  • Imaging Lens Group The imaging lens group of the present invention is formed by overlapping the imaging lenses.
  • FIG. 3 shows an imaging lens group 61 as a specific example of the imaging lens group of the present invention.
  • the imaging lens group 61 a plurality of imaging lenses are superposed using a positioning unit.
  • the method of superimposing imaging lenses is not limited. There are no particular restrictions. The number of imaging lenses to be superimposed can be appropriately determined according to the purpose.
  • the imaging lens group of the present invention can be used for a camera module or the like.
  • the camera module using the imaging lens group of the present invention can be mounted on products such as a mobile phone, a personal computer, a portable information communication device, a digital camera, an automobile, and a security camera. By mounting this camera module on these products, the productivity of these products can be improved.
  • Solder Reflow Resistance evaluation was performed as follows using a reflow furnace (STR-2010N2M-III type) manufactured by Senju Metal Industry Co., Ltd. (Temperature setting) About reflow temperature setting, it set as follows based on JEDEC specification J-STD-020D.
  • the amount of plastic after drying is 1.1 times the design amount necessary to form the lens and spacer.
  • the mixture was added dropwise and heated at 80 ° C. for 12 hours under vacuum.
  • press molding is performed at 205 ° C. for 10 minutes to produce the imaging lens 41 shown in FIG. did.
  • FIG. 4A is a front view of the imaging lens 41
  • FIG. 4B is a plan view of the imaging lens 41.
  • FIG. The imaging lens 41 includes a glass substrate 42, a lens portion 43 a that is a convex lens, a lens portion 43 b that is a concave lens, and eight columnar spacers 44.
  • the basic structure of the imaging lens 41 is the same as that of the imaging lens 1.
  • the size of the glass substrate 42 4 mm ⁇ 4 mm ⁇ 0.3 mm Diameter of lens part 43a and lens part 43b: 2 mm Lens part 43a height: 0.3 mm Lens part 43b height: 0.4 mm Spacer 44 diameter: 1 mm Spacer 44 height: 0.5 mm
  • the area ratio of the lens portion of the obtained imaging lens 41 and the plastic portion of the spacer was 39% on both the upper surface and the lower surface.
  • an imaging lens 51 shown in FIG. 5 was created in the same manner except that the amount of dropped plastic and the mold were changed so that the imaging lens shown in FIG. 5 was obtained.
  • FIG. 5A is a front view of the imaging lens 51
  • FIG. 5B is a plan view of the imaging lens 51.
  • the imaging lens 51 includes a glass substrate 52, a lens portion 53 a that is a convex lens, a lens portion 53 b that is a concave lens, and two spacers 54.
  • the glass substrate 52 is the same as the glass substrate 42 of the imaging lens 41.
  • the lens portion 53a and one spacer 54, and the lens portion 53b and another spacer 54 are integrally formed.
  • the spacer 54 includes a flat plate portion 54a and a prismatic portion 54b.
  • the flat plate portion 54 a has a square planar shape, and the length of one side thereof is shorter than the length of one side of the upper surface and the lower surface of the glass substrate 52.
  • the prismatic part 54b is a quadrangular prism, and four prismatic parts 54b are respectively provided at the four corners of the upper surface of the flat plate part 54a.
  • One spacer 54 is on the upper surface of the glass substrate 52, each side of the upper surface of the flat plate portion 54 a is parallel to one side of the upper surface of the glass substrate 52, and the distance between the four sets of parallel sides is the same. Are arranged as follows.
  • another spacer 54 is disposed on the lower surface of the glass substrate 52.
  • a lens portion 53 a is formed at the center of the flat plate portion 54 a of the spacer 54 disposed on the upper surface of the glass substrate 52.
  • a lens portion 53 b is formed at the center of the flat plate portion 54 a of the spacer 54 disposed on the lower surface of the glass substrate 52.
  • the size of the glass substrate 52 4 mm ⁇ 4 mm ⁇ 0.3 mm Diameter of lens part 53a and lens part 53b: 2 mm Lens part 53a height: 0.3 mm Lens part 53b height: 0.4 mm Spacer 54 diameter: 1 mm
  • the thickness of the flat plate portion 54a 0.5 mm Size of the surface of the glass substrate 52 where the lens portion 53a, the lens portion 53b, and the spacer 54 are in contact: 3.65 mm ⁇ 3.65 mm
  • the area ratio of the lens portion of the imaging lens 51 and the plastic portion of the spacer was 83% on both the upper surface and the lower surface.
  • the heat resistance improves as the total ratio of the area of the part where the lens part is in contact with the glass substrate and the area of the part where the spacer is in contact with the glass substrate to the area of the glass substrate is smaller I found out that
  • the imaging lens of the present invention which is superior in heat resistance compared to a conventional imaging lens in which a plastic lens part and a plastic spacer are formed on both surfaces of a flat glass substrate, is mounted on a mobile phone, a mobile personal computer, etc. It can be used as a lens for a small camera module, and is particularly suitable for an imaging lens that requires durability in a solder reflow process.
  • Imaging lens 2 Glass substrate 3a, 3b Lens part 4 Spacer 11 Imaging lens 14 Spacer 21 Imaging lens 24 Spacer 31 Imaging lens 34a, 34b Spacer 34aI Support part 34aII Positioning part 34bI Supporting part 34bII Positioning part 41 Imaging lens 42 Glass board 43a Lens unit 43b Lens unit 44 Spacer 51 Imaging lens 52 Glass substrate 53a Lens unit 53b Lens unit 54 Spacer 54a Flat plate unit 54b Square column unit 61 Imaging lens group

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Disclosed is an image-capturing lens wherein a lens section composed of a resin and a spacer composed of a resin are formed at least on one surface of a glass substrate. The ratio of the total of the area of the portion where the lens section is in contact with the glass substrate and the area of the portion where the spacer is in contact with the glass substrate to the area of each surface of the glass substrate is 50 % or lower. Thus, the image-capturing lens having excellent heat resistance in the manufacturing process and a solder reflow step, and an image-capturing lens group, a camera module and the like , which are composed of the image-capturing lens, are provided.

Description

撮像レンズImaging lens
 本発明は、撮像レンズに関する。詳しくは、本発明は、加熱工程を含む製造プロセスによっても熱変形等のない状態で製造することができ、またはんだリフロー工程において優れた耐熱性を示す撮像レンズに関する。 The present invention relates to an imaging lens. More specifically, the present invention relates to an imaging lens that can be manufactured in a state without thermal deformation or the like even by a manufacturing process including a heating process, or exhibits excellent heat resistance in a solder reflow process.
 従来、カメラの撮像レンズユニットなど、複数の撮像レンズからなる撮像レンズ群を用いる撮像レンズユニットは、レンズ部を成形した後、レンズ間距離を所定の長さに保つためのスペーサー部を形成して、さらに各レンズの光軸が一致するように位置を合わせて各レンズを固定するという煩雑なプロセスを経て製造されていた。このような撮像レンズ群を用いる撮像レンズユニットの製造プロセスを簡略化する方法として、撮像レンズにレンズ間距離と光軸合わせを行うための部材が形成されている撮像レンズを用いた撮像レンズユニットなどが開発されている(特許文献1)。 Conventionally, an imaging lens unit using an imaging lens group composed of a plurality of imaging lenses, such as an imaging lens unit of a camera, has a spacer part for maintaining a predetermined distance between lenses after molding the lens part. Further, it has been manufactured through a complicated process of fixing each lens by aligning the positions so that the optical axes of the lenses coincide with each other. As a method for simplifying the manufacturing process of an imaging lens unit using such an imaging lens group, an imaging lens unit using an imaging lens in which a member for performing an inter-lens distance and optical axis alignment is formed on the imaging lens, etc. Has been developed (Patent Document 1).
 一方、近年の電子機器の製造においては、各種の電子部品またはモジュールを小型化し、かつ生産性良く基板上に実装するプロセスとして、はんだリフロー工程が多く採用されている。はんだリフロー工程では、はんだの溶融と接着のため、基板上の電子部品は220~270℃の高温で加熱される。そのため、電子モジュール、とくにカメラ、ライト等の光学モジュールに搭載されるレンズ、プリズムおよび透明カバーといった光学部品には、はんだリフロー工程での耐久性が求められている。 On the other hand, in recent manufacture of electronic devices, a solder reflow process is often employed as a process for miniaturizing various electronic components or modules and mounting them on a substrate with high productivity. In the solder reflow process, the electronic components on the substrate are heated at a high temperature of 220 to 270 ° C. to melt and bond the solder. Therefore, durability in the solder reflow process is required for optical components such as lenses, prisms, and transparent covers that are mounted on electronic modules, particularly optical modules such as cameras and lights.
 近年、カメラモジュール用の耐リフローの撮像レンズに関して、非特許文献1に示されるように、ウエハーレベルで、ガラス基板両面にプラスチックでレンズ構造が形成されてなる撮像レンズ、およびその製造法が提案されている。この撮像レンズにおいては、撮像レンズを重ね合わせるときの間隔調整用のスペーサー部分が形成される。 In recent years, regarding a reflow-resistant imaging lens for a camera module, as shown in Non-Patent Document 1, an imaging lens in which a lens structure is formed of plastic on both surfaces of a glass substrate at a wafer level and a manufacturing method thereof have been proposed. ing. In this imaging lens, a spacer portion for adjusting the interval when the imaging lenses are overlapped is formed.
 しかし、従来のこのタイプの撮像レンズにおいては、スペーサーおよびレンズ部がプラスチックでガラス基板上に形成されている場合、製造プロセスの加熱工程やリフロー工程においてガラス基板の反りやプラスチック部分の剥離が起こるという問題があった。 However, in this type of conventional imaging lens, when the spacer and the lens portion are made of plastic and formed on a glass substrate, the glass substrate warps and the plastic part peels off during the heating process and reflow process of the manufacturing process. There was a problem.
特開2004-88713号公報JP 2004-88713 A
 本発明は、加熱工程を含む製造プロセスによっても熱変形等のない状態で製造することができ、またはんだリフロー工程においても優れた耐熱性を有する撮像レンズ、ならびにそれからなる撮像レンズ群およびカメラモジュールを提供することを課題とする。 The present invention provides an imaging lens that can be manufactured in a state free from thermal deformation or the like even by a manufacturing process including a heating step, or has excellent heat resistance in a reflow step, and an imaging lens group and a camera module comprising the imaging lens group. The issue is to provide.
 本発明者らは、上記課題を解決すべく、撮像レンズの構造を鋭意検討した。その結果、従来の上記タイプの撮像レンズにおいては、製造プロセスの都合上、スペーサーとレンズとが接触した形状となっており、そのためにガラス基板表面におけるプラスチックが接触している部分の面積が大きくなっていることから、製造プロセスの加熱工程やリフロー工程の熱履歴、およびプラスチックとガラスとの線膨張差などに起因してガラス基板の反りやプラスチック部分の剥離が起こるという知見を得た。 The present inventors diligently studied the structure of the imaging lens in order to solve the above problems. As a result, in the conventional imaging lens of the above type, the spacer and the lens are in contact with each other for the convenience of the manufacturing process, so that the area of the glass substrate surface where the plastic is in contact is increased. Therefore, the inventors have found that the glass substrate warps and the plastic part is peeled off due to the heat history of the heating process and reflow process of the manufacturing process and the difference in linear expansion between the plastic and glass.
 本発明者らはこの知見に基づき、平板のガラス基板の少なくとも片面に、プラスチックからなるレンズ部およびプラスチックからなるスペーサーが形成されてなる撮像レンズであって、前記ガラス基板のそれぞれの面において、その面の面積に対する、前記レンズ部が前記ガラス基板と接触している部分の面積と前記スペーサーが前記ガラス基板と接触している部分の面積との合計の比率が50%以下である撮像レンズが、製造プロセスやはんだリフロー工程に対して耐熱性に優れることを見出した。 Based on this knowledge, the inventors of the present invention are imaging lenses in which a plastic lens part and a plastic spacer are formed on at least one surface of a flat glass substrate. An imaging lens in which a total ratio of an area of a portion where the lens portion is in contact with the glass substrate and an area of a portion where the spacer is in contact with the glass substrate to a surface area is 50% or less, It has been found that it has excellent heat resistance against the manufacturing process and solder reflow process.
 本発明の撮像レンズにおいて、前記レンズ部とスペーサーとが前記ガラス基板の表面において互いに接していないことが好ましい。 In the imaging lens of the present invention, it is preferable that the lens portion and the spacer are not in contact with each other on the surface of the glass substrate.
 本発明の撮像レンズにおいて、前記スペーサーが前記ガラス基板と、該ガラス基板の表面の複数箇所において接触していることが好ましい。 In the imaging lens of the present invention, it is preferable that the spacer is in contact with the glass substrate at a plurality of locations on the surface of the glass substrate.
 本発明の撮像レンズにおいて、前記ガラス基板の一方の面に形成されたレンズ部が凸面からなるレンズ面を有し、もう一方の面に形成されたレンズ部が凹面からなるレンズ面を有することが好ましい。 In the imaging lens of the present invention, the lens part formed on one surface of the glass substrate has a convex lens surface, and the lens part formed on the other surface has a concave lens surface. preferable.
 本発明の撮像レンズにおいて、前記スペーサーが、前記撮像レンズを積層するときに撮像レンズ面方向および撮像レンズ間方向の位置合わせをするための位置合わせ部を有することが好ましい。 In the imaging lens of the present invention, it is preferable that the spacer has an alignment portion for aligning the imaging lens surface direction and the imaging lens direction when the imaging lenses are stacked.
  また、前記撮像レンズを重ね合わせることにより撮像レンズ群を作製できる。 In addition, an imaging lens group can be manufactured by superimposing the imaging lenses.
 この撮像レンズ群を用いてカメラモジュールを製造することができる。さらには、このカメラモジュールを搭載した携帯電話、パーソナルコンピューター、携帯用情報通信機器、デジタルカメラ、自動車および防犯用カメラ等を製造することができる。 A camera module can be manufactured using this imaging lens group. Furthermore, a mobile phone, a personal computer, a portable information communication device, a digital camera, an automobile, a security camera, and the like equipped with this camera module can be manufactured.
 本発明によれば、製造プロセス、はんだリフロー工程において耐熱性に優れる撮像レンズ、およびそれからなる撮像レンズ群、該撮像レンズ群を用いたカメラモジュール、および該カメラモジュールを搭載した携帯電話等の製品を提供することができる。 According to the present invention, an imaging lens having excellent heat resistance in a manufacturing process and a solder reflow process, an imaging lens group including the imaging lens, a camera module using the imaging lens group, and a product such as a mobile phone equipped with the camera module are provided. Can be provided.
図1(a)は、撮像レンズ1の正面図である。図1(b)は、撮像レンズ1の平面図である。FIG. 1A is a front view of the imaging lens 1. FIG. 1B is a plan view of the imaging lens 1. 図2(a)は、撮像レンズ11の平面図である。図2(b)は、撮像レンズ21の平面図である。FIG. 2A is a plan view of the imaging lens 11. FIG. 2B is a plan view of the imaging lens 21. 図3(a)は、撮像レンズ群61の平面図である。図3(b)は、撮像レンズ群61のA-A断面図である。FIG. 3A is a plan view of the imaging lens group 61. FIG. 3B is a cross-sectional view of the imaging lens group 61 taken along the line AA. 図4(a)は、撮像レンズ41の正面図である。図4(b)は、撮像レンズ41の平面図である。FIG. 4A is a front view of the imaging lens 41. FIG. 4B is a plan view of the imaging lens 41. 図5(a)は、撮像レンズ51の正面図である。図5(b)は、撮像レンズ51の平面図である。FIG. 5A is a front view of the imaging lens 51. FIG. 5B is a plan view of the imaging lens 51.
撮像レンズ
 本発明に係る撮像レンズは、ガラス基板の少なくとも片面にプラスチックからなるレンズ部およびプラスチックからなるスペーサーが形成されてなる。この撮像レンズにおいては、前記ガラス基板のそれぞれの面において、その面の面積に対する、前記レンズ部が前記ガラス基板に接触している部分の面積と前記スペーサーが前記ガラス基板に接触している部分の面積との合計の比率が50%以下である。
Imaging Lens The imaging lens according to the present invention is formed by forming a plastic lens portion and a plastic spacer on at least one surface of a glass substrate. In this imaging lens, in each surface of the glass substrate, with respect to the area of the surface, the area of the portion where the lens portion is in contact with the glass substrate and the portion where the spacer is in contact with the glass substrate The total ratio with the area is 50% or less.
 以下、本発明について具体的に説明する。
(撮像レンズの構造)
 図1に、本発明に係る撮像レンズの一具体例である撮像レンズ1を示した。図1(a)は撮像レンズ1の正面図であり、図1(b)は撮像レンズ1の平面図である。
Hereinafter, the present invention will be specifically described.
(Structure of imaging lens)
FIG. 1 shows an imaging lens 1 which is a specific example of the imaging lens according to the present invention. FIG. 1A is a front view of the imaging lens 1, and FIG. 1B is a plan view of the imaging lens 1.
 撮像レンズ1は、ガラス基板2と、レンズ部3aおよびレンズ部3bと、8個のスペーサー4とからなっている。レンズ部3aおよび8個のスペーサー4のうちの4個はガラス基板2の上面に設けられており、レンズ部3bおよび8個のスペーサー4のうちの残りの4個はガラス基板2の下面に設けられている。 The imaging lens 1 includes a glass substrate 2, a lens portion 3a and a lens portion 3b, and eight spacers 4. Four of the lens portion 3 a and the eight spacers 4 are provided on the upper surface of the glass substrate 2, and the remaining four of the lens portion 3 b and the eight spacers 4 are provided on the lower surface of the glass substrate 2. It has been.
 撮像レンズ1においては、ガラス基板2は平面形状が正方形である平板である。ガラス基板2の中央部に、ガラス基板2を挟むようにレンズ部3aおよびレンズ部3bが設けられている。レンズ部3aおよび3bは、プラスチック製である。レンズ部3aおよび3bがガラス基板2に接触している部分の形状は円形である。レンズ部3aは、ガラス基板2の上方に向かって凸状の球面形状を有する。つまりレンズ部3aは、凸面からなるレンズ面を有する。レンズ部3bは、ガラス基板2の下面から立った周面部と、ガラス基板2の下方に向かって凹状の球面の一部を形成する下面とを有する。つまりレンズ部3bは、凹面からなるレンズ面を有する。 In the imaging lens 1, the glass substrate 2 is a flat plate having a square planar shape. A lens portion 3 a and a lens portion 3 b are provided at the center of the glass substrate 2 so as to sandwich the glass substrate 2. The lens portions 3a and 3b are made of plastic. The shape of the portion where the lens portions 3a and 3b are in contact with the glass substrate 2 is circular. The lens portion 3 a has a spherical shape that is convex upward toward the glass substrate 2. That is, the lens portion 3a has a lens surface that is a convex surface. The lens portion 3 b has a peripheral surface portion that stands from the lower surface of the glass substrate 2 and a lower surface that forms part of a spherical surface that is concave toward the lower side of the glass substrate 2. That is, the lens part 3b has a concave lens surface.
 8個のスペーサー4はプラスチック製であり、円柱形である。スペーサー4は、ガラス基板2の上面および下面の4つのコーナー部にそれぞれ設けられている。8個のスペーサー4の2個ずつは、それぞれの軸線を一致させて、ガラス基板2の上面および下面に、ガラス基板2を挟むように設けられている。 The eight spacers 4 are made of plastic and have a cylindrical shape. The spacers 4 are respectively provided at the four corners of the upper surface and the lower surface of the glass substrate 2. Two of the eight spacers 4 are provided so as to sandwich the glass substrate 2 between the upper surface and the lower surface of the glass substrate 2 with their axes aligned.
 本発明の撮像レンズにおいては、レンズの光学性能、構造維持の点から許される範囲内で、ガラス基板のそれぞれの面において、その面の面積に対する、レンズ部がガラス基板と接触している部分の面積とスペーサーがガラス基板と接触している部分の面積との合計の比率(以下、単に面積割合ともいう)が小さいほど好ましい。具体的には、その面積割合が50%以下であることが好ましく、40%以下であることがより好ましい。 In the imaging lens of the present invention, within the range permitted from the viewpoint of maintaining the optical performance and structure of the lens, the portion of the surface of the glass substrate where the lens portion is in contact with the glass substrate with respect to the area of the surface. It is preferable that the total ratio of the area and the area of the portion where the spacer is in contact with the glass substrate (hereinafter also simply referred to as area ratio) is smaller. Specifically, the area ratio is preferably 50% or less, and more preferably 40% or less.
 前記面積割合が50%より大きいと、レンズ製造における加熱工程やはんだリフロー工程における熱履歴により、プラスチックが膨張収縮し、ガラス基板の反りや、ガラス基板からプラスチック部分が剥離する問題が生じる。つまり前記面積割合が50%以下であると、前記反りや剥離を抑制することができ、耐熱性が向上する。 When the area ratio is larger than 50%, the plastic expands and contracts due to the heat history in the heating process and the solder reflow process in the lens manufacturing, and the glass substrate warps and the plastic part peels off from the glass substrate. That is, when the area ratio is 50% or less, the warpage and peeling can be suppressed, and heat resistance is improved.
 撮像レンズ1についていえば、ガラス基板2の上面および下面の面積をS、ガラス基板2の上面におけるレンズ部3aが接触している部分の面積および下面におけるレンズ部3bが接触している部分の面積をSl、ガラス基板2の上面および下面におけるスペーサー4が接触している部分の面積をSsとした場合、 Speaking of the imaging lens 1, the area of the upper and lower surfaces of the glass substrate 2 is S, the area of the upper surface of the glass substrate 2 that is in contact with the lens portion 3a and the area of the lower surface that is in contact with the lens portion 3b. S1 and the area of the portion where the spacer 4 is in contact with the upper and lower surfaces of the glass substrate 2 as Ss,
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 である。ガラス基板の上面における面積割合と下面における面積割合とが相違する場合には、ガラス基板の上面および下面の両方において、上記の関係が成立していることが好ましい。 It is. When the area ratio on the upper surface of the glass substrate is different from the area ratio on the lower surface, it is preferable that the above relationship is established on both the upper surface and the lower surface of the glass substrate.
 また、前記面積割合は、撮像レンズユニットの小型化の観点から、20%以上であることが好ましい。 In addition, the area ratio is preferably 20% or more from the viewpoint of downsizing the imaging lens unit.
 また、本発明の撮像レンズにおいて、レンズ部とスペーサーとが、ガラス基板の表面において互いに接していないことが、上記の耐熱性をさらに向上させる点で好ましい。つまり、前記面積割合が50%以下の同じ値を有する撮像レンズであっても、レンズ部とスペーサーとがガラス基板の表面において互いに接していない撮像レンズは、レンズ部とスペーサーとがガラス基板上で互いに接している撮像レンズよりも上記の耐熱性が優れている。これは、ガラス基板とレンズ部およびスペーサーの材料であるプラスチックとでは線膨張係数が異なるので、ガラス基板表面におけるプラスチックが接触している部分の径長が小さい方が、ガラス基板とプラスチックとの密着性の点で有利になるからであると考えられる。なお上記効果は、レンズ部とスペーサーとがガラス基板の表面において互いに接していなければ得られ、ガラス基板の表面から離れた位置で接していても構わない。 Further, in the imaging lens of the present invention, it is preferable that the lens portion and the spacer are not in contact with each other on the surface of the glass substrate from the viewpoint of further improving the heat resistance. In other words, even in the case of an imaging lens having the same area ratio of 50% or less, an imaging lens in which the lens portion and the spacer are not in contact with each other on the surface of the glass substrate has the lens portion and the spacer on the glass substrate. The heat resistance is superior to imaging lenses that are in contact with each other. This is because the linear expansion coefficient is different between the glass substrate and the plastic that is the material of the lens part and the spacer, so the smaller the diameter length of the part in contact with the plastic on the glass substrate surface is, the closer the glass substrate is to the plastic. This is considered to be advantageous in terms of sex. The above effect is obtained as long as the lens portion and the spacer are not in contact with each other on the surface of the glass substrate, and may be in contact with each other at a position away from the surface of the glass substrate.
 撮像レンズ1についていえば、ガラス基板2の上面においてはレンズ部3aと4つのスペーサー4とが互いに接しておらず、またガラス基板2の下面においてはレンズ部3bと4つのスペーサー4とが互いに接していない。このため撮像レンズ1は、撮像レンズ1と同様にガラス基板2とレンズ部3aおよびレンズ部3bと8個のスペーサー4とからなっているが、スペーサー4の1個以上がレンズ部3aもしくはレンズ部3bまたはその両方と、ガラス基板2の上面もしくは下面またはその両方において互いに接している撮像レンズに比較して、上記の耐熱性が優れている。 Regarding the imaging lens 1, the lens portion 3 a and the four spacers 4 are not in contact with each other on the upper surface of the glass substrate 2, and the lens portion 3 b and the four spacers 4 are in contact with each other on the lower surface of the glass substrate 2. Not. For this reason, the imaging lens 1 includes the glass substrate 2, the lens portion 3a, the lens portion 3b, and the eight spacers 4 in the same manner as the imaging lens 1, but at least one of the spacers 4 is the lens portion 3a or the lens portion. The heat resistance described above is superior to 3b or both, and an imaging lens in contact with each other on the upper surface or the lower surface of the glass substrate 2 or both.
 また、上記と同様の理由により、スペーサーがガラス基板と、ガラス基板表面の複数箇所において接触していることが好ましい。つまりガラス基板の表面において、スペーサーが接触している部分の面積が同じであっても、その部分が1個である態様よりも2個以上存在する態様の方が上記の耐熱性が向上する。このような態様としては、スペーサー自体が複数個に分割されていて、その各々がガラス基板に接触している態様でもよく、また1個のスペーサーがガラス基板の複数箇所において接触している態様でもよい。 Also, for the same reason as described above, the spacer is preferably in contact with the glass substrate at a plurality of locations on the surface of the glass substrate. That is, even if the area of the portion in contact with the spacer is the same on the surface of the glass substrate, the heat resistance is improved in an embodiment in which two or more portions are present rather than an embodiment in which the portion is one. As such an embodiment, the spacer itself may be divided into a plurality of parts, each of which may be in contact with the glass substrate, or one spacer may be in contact with a plurality of locations on the glass substrate. Good.
 撮像レンズ1についていえば、ガラス基板2の上面および下面において、それぞれ4つのスペーサー4が互いに接触することなく設けられている。つまり撮像レンズ1においては、スペーサーが、ガラス基板の上面および下面においてそれぞれ4箇所で接触している。このため撮像レンズ1は、撮像レンズ1と同様にガラス基板2とレンズ部3aおよびレンズ部3bと8個のスペーサー4とからなっているが、スペーサー4の2個以上が、ガラス基板2の上面もしくは下面またはその両方において互いに接している撮像レンズに比較して、上記の耐熱性が優れている。
(ガラス基板)
 本発明の撮像レンズにおけるガラス基板は、レンズ部およびスペーサーを保持する部材である。前記ガラス基板としては、通常の光学部品、電子部品およびディスプレイ等に使用されるガラス基板であれば特に制限はなく、例えばFKガラス、BKガラス、LaKガラス、TEMPAXガラス、D263Tガラス、B270ガラスが挙げられる。
As for the imaging lens 1, four spacers 4 are provided on the upper and lower surfaces of the glass substrate 2 without contacting each other. That is, in the imaging lens 1, the spacers are in contact with each other at four locations on the upper surface and the lower surface of the glass substrate. For this reason, the imaging lens 1 includes a glass substrate 2, a lens portion 3 a, a lens portion 3 b, and eight spacers 4, similar to the imaging lens 1, but two or more of the spacers 4 are the upper surface of the glass substrate 2. Alternatively, the heat resistance is superior to imaging lenses that are in contact with each other on the lower surface or both.
(Glass substrate)
The glass substrate in the imaging lens of the present invention is a member that holds the lens portion and the spacer. The glass substrate is not particularly limited as long as it is a glass substrate used for ordinary optical components, electronic components, displays, and the like, and examples thereof include FK glass, BK glass, LaK glass, TEMPAX glass, D263T glass, and B270 glass. It is done.
 ガラス基板の厚みは、後述の光学設計により任意に定められ、通常200μm~800μmである。ガラスが200μmより薄いと反りや破砕の問題が生じやすく、800μmより厚いとレンズの光学性能が低下する場合がある。 The thickness of the glass substrate is arbitrarily determined by the optical design described later, and is usually 200 μm to 800 μm. If the glass is thinner than 200 μm, problems of warpage and crushing are likely to occur, and if it is thicker than 800 μm, the optical performance of the lens may be lowered.
 撮像レンズ1におけるガラス基板2の平面形状は正方形であるが、本発明の撮像レンズにおいては、ガラス基板の平面形状は、後述の光学設計により任意に定められ、正方形の他、長方形、円形等であってもよい。 Although the planar shape of the glass substrate 2 in the imaging lens 1 is a square, in the imaging lens of the present invention, the planar shape of the glass substrate is arbitrarily determined by the optical design described later, and may be a rectangle, a circle, or the like in addition to a square. There may be.
 ガラス基板の大きさについても、後述の光学設計により任意に定められ、その平面形状が正方形である場合、一辺の長さは通常2mm~10mmである。
(レンズ部)
 本発明の撮像レンズにおけるレンズ部は、該撮像レンズにおいて光学的効果を発現する部材である。前記レンズ部の材料はプラスチックである。レンズ部を形成するプラスチックについては、レンズとして充分な透明性と屈折率を有するプラスチックであれば特に限定されないが、凹凸面形状への加工性の観点から熱可塑性透明プラスチック、熱硬化性透明プラスチックおよび光硬化性透明プラスチックが好ましい。
The size of the glass substrate is also arbitrarily determined by the optical design described later. When the planar shape is a square, the length of one side is usually 2 mm to 10 mm.
(Lens part)
The lens portion in the imaging lens of the present invention is a member that exhibits an optical effect in the imaging lens. The material of the lens part is plastic. The plastic forming the lens part is not particularly limited as long as it is a plastic having sufficient transparency and refractive index as a lens, but from the viewpoint of processability to an uneven surface shape, a thermoplastic transparent plastic, a thermosetting transparent plastic, and A photocurable transparent plastic is preferred.
 本発明のレンズ部に使用される透明プラスチックとして、その線膨張係数が40ppm/℃~100ppm/℃であるプラスチックを使用する場合、ガラス基板と、プラスチックからなるレンズ部およびプラスチックからなるスペーサー部との面積の比率が上記の通りであると反りや剥離を抑制することができ、耐熱性が向上する。特に好ましくは、60~90ppm/℃である。 When a plastic having a linear expansion coefficient of 40 ppm / ° C. to 100 ppm / ° C. is used as the transparent plastic used in the lens portion of the present invention, a glass substrate, a plastic lens portion, and a plastic spacer portion are used. When the area ratio is as described above, warping and peeling can be suppressed, and heat resistance is improved. Particularly preferred is 60 to 90 ppm / ° C.
 また、はんだリフロー工程において光学特性が変化することのない耐熱性を有するためにはTgが100℃以上、好ましくは120℃以上、更に好ましくは140℃以上であることが好ましい。 Also, in order to have heat resistance that does not change the optical properties in the solder reflow process, Tg is preferably 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
 熱可塑性透明プラスチックとしては、レンズ形状に成形した際に透明性を有する熱可塑性プラスチックを特に限定なく用いることができる。具体的には光学用途に好適な環状オレフィン系プラスチック、ポリメチルメタクリレートプラスチック等のアクリルプラスチック、ポリカーボネートプラスチック、ポリエステルプラスチック、ポリアリレートプラスチック、ポリサルホンプラスチック、ポリエーテルサルホンプラスチック、ポリパラフェニレンプラスチック、ポリアリーレンエーテルフォスフィンオキシドプラスチック、ポリイミドプラスチック、ポリエーテルイミドプラスチック、ポリアミドイミドプラスチックなどを挙げることができる。 As the thermoplastic transparent plastic, a thermoplastic plastic having transparency when molded into a lens shape can be used without particular limitation. Specifically, cyclic olefin plastics suitable for optical applications, acrylic plastics such as polymethyl methacrylate plastics, polycarbonate plastics, polyester plastics, polyarylate plastics, polysulfone plastics, polyethersulfone plastics, polyparaphenylene plastics, polyarylene ethers Examples thereof include phosphine oxide plastic, polyimide plastic, polyetherimide plastic, and polyamideimide plastic.
 熱硬化性透明プラスチックとしては、レンズ形状に成形した際に透明性を有する熱硬化性プラスチックを特に限定なく用いることができ、具体的には光学用途に好適なエポキシプラスチック、シリコーンプラスチック、アクリルプラスチックなどが挙げられる。 As the thermosetting transparent plastic, a thermosetting plastic having transparency when molded into a lens shape can be used without any particular limitation. Specifically, epoxy plastic, silicone plastic, acrylic plastic, etc. suitable for optical applications, etc. Is mentioned.
 光硬化性透明プラスチックとしては、レンズ形状に成形した際に透明性を有する光硬化性プラスチックを特に限定なく用いることができ、具体的には光学用途に好適なエポキシプラスチック、アクリルプラスチックなどが挙げられる。 As the photocurable transparent plastic, a photocurable plastic having transparency when molded into a lens shape can be used without particular limitation, and specific examples include epoxy plastics and acrylic plastics suitable for optical applications. .
 これらのうち、特にレンズとしての光学特性、加工特性に優れることから、COP(Cyclic Olefin Polymer)、COC(Cyclic Olefin Copolymer)のような環状オレフィン系プラスチック、ポリカーボネートプラスチック、ポリエステルプラスチック、熱硬化型シリコーンプラスチック、光(UV)硬化型エポキシプラスチック、光(UV)硬化型アクリルプラスチックが好ましい。 Among these, the optical characteristics and processing characteristics of lenses are particularly excellent, so cyclic olefin plastics such as COP (Cyclic Olefin Polymer) and COC (Cyclic Olefin Copolymer), polycarbonate plastic, polyester plastic, and thermosetting silicone plastic. Light (UV) curable epoxy plastic and light (UV) curable acrylic plastic are preferable.
 レンズ部の径、高さおよび形状は、その撮像レンズからなるカメラモジュールの撮像センサのセンササイズ、ピクセルサイズ、性能(画素数)から光学設計計算により任意に定めることができる。通常、レンズ径は1~5mm、レンズ高さは50~1000μmの範囲である。形状は通常、撮像レンズ1におけるレンズ部2aおよびレンズ部2bのように、凸または凹形状であり、ガラス基板の一方の面に形成されたレンズ部が凸面からなるレンズ面を有し、もう一方の面に形成されたレンズ部が凹面からなるレンズ面を有することが、レンズの撮像性能を向上させ、そのレンズおよびレンズ群をカメラモジュールに組み込んだ際に鮮明な画像が得られるという点で好ましい。 The diameter, height, and shape of the lens portion can be arbitrarily determined by optical design calculation from the sensor size, pixel size, and performance (number of pixels) of the imaging sensor of the camera module including the imaging lens. Usually, the lens diameter is 1 to 5 mm and the lens height is 50 to 1000 μm. The shape is usually convex or concave like the lens portion 2a and lens portion 2b in the imaging lens 1, and the lens portion formed on one surface of the glass substrate has a convex lens surface, and the other It is preferable that the lens portion formed on the surface of the lens has a concave lens surface in that the imaging performance of the lens is improved and a clear image can be obtained when the lens and the lens group are incorporated in a camera module. .
 ガラス基板の両面に形成されるレンズ部の径、高さおよび形状は同じであっても異なっていてもよい。ただし、ガラス基板の上面に形成されるレンズ部と下面に形成されるレンズ部の体積が同じであることが、ガラス基板の上下で発生する熱歪みの非対称性を抑制することによりガラス基板の歪みを抑えることができる点で好ましい。 The diameter, height and shape of the lens portions formed on both surfaces of the glass substrate may be the same or different. However, since the volume of the lens part formed on the upper surface of the glass substrate is the same as that of the lens part formed on the lower surface, the distortion of the glass substrate is suppressed by suppressing the asymmetry of the thermal distortion occurring above and below the glass substrate. It is preferable at the point which can suppress.
 レンズ部は、通常ガラス基板の両面に形成されるが、ガラス基板の片面のみに形成されていてもよい。
(スペーサー)
 本発明の撮像レンズにおけるスペーサーは、該撮像レンズを2つ以上積層したときに、相互に隣接する2つの撮像レンズに形成されているレンズ部間の距離を所定の長さに保つために設けられる部材である。
The lens portion is usually formed on both sides of the glass substrate, but may be formed only on one side of the glass substrate.
(spacer)
The spacer in the imaging lens of the present invention is provided in order to keep the distance between the lens portions formed in the two imaging lenses adjacent to each other at a predetermined length when two or more imaging lenses are stacked. It is a member.
 本発明の撮像レンズにおけるスペーサーの材料はプラスチックである。スペーサーを形成するプラスチックとしては、前記レンズを形成する透明プラスチックと同様に、はんだリフロー工程において寸法変化することのない耐熱性を有するために、Tgが100℃以上、好ましくは120℃以上、更に好ましくは140℃以上であることが好ましく、レンズ形成に用いられるプラスチックと同様のものを挙げることができる。それ以外では、液晶ポリマー(Liquid Crystal Polymer :LCP)、ポリフェニレンサルファイドプラスチック(PPS)、ポリエーテルエーテルケトンプラスチック(PEEK)、ポリフタルアミド(PPA)等の耐熱性エンジニアリングプラスティックを挙げることができる。レンズ部を形成するプラスチックとスペーサーを形成するプラスチックとは同じであってもよいし、異なっていてもよい。 The material of the spacer in the imaging lens of the present invention is plastic. As the plastic forming the spacer, Tg is 100 ° C. or higher, preferably 120 ° C. or higher, and more preferably 120 ° C. or higher in order to have heat resistance without dimensional change in the solder reflow process. Is preferably 140 ° C. or higher, and examples thereof include the same plastics used for lens formation. Other examples include heat-resistant engineering plastics such as liquid crystal polymers (Liquid Crystal Polymer: LCP), polyphenylene sulfide plastic (PPS), polyether ether ketone plastic (PEEK), and polyphthalamide (PPA). The plastic forming the lens portion and the plastic forming the spacer may be the same or different.
 スペーサーの高さは、その撮像レンズからなるカメラモジュールの撮像センサのセンササイズ、ピクセルサイズ、性能(画素数)から光学設計計算により任意に定められ、通常100~1000μmである。 The height of the spacer is arbitrarily determined by optical design calculation from the sensor size, pixel size, and performance (number of pixels) of the imaging sensor of the camera module including the imaging lens, and is usually 100 to 1000 μm.
 スペーサーの形状について、前記の撮像レンズ構造の条件を満たす限り特に制限はない。具体的には、製造の容易さから、円柱型、角柱型および筒状型等が好ましい。円柱型のスペーサー4を有する撮像レンズ1は図1に示したとおりである。 The shape of the spacer is not particularly limited as long as the above imaging lens structure condition is satisfied. Specifically, a cylindrical shape, a prismatic shape, a cylindrical shape, and the like are preferable from the viewpoint of ease of manufacture. An imaging lens 1 having a cylindrical spacer 4 is as shown in FIG.
 角柱型のスペーサーを有する撮像レンズ11の平面図を図2(a)に示した。撮像レンズ11は、ガラス基板2と、レンズ部3aおよびレンズ部3bと、8個のスペーサー14とからなっている。ガラス基板2、レンズ部3aおよびレンズ部3bについては、撮像レンズ1の場合と同様である。スペーサー14は四角柱型であり、撮像レンズ1におけるスペーサー4に対応する位置に設置されている。 FIG. 2A shows a plan view of the imaging lens 11 having a prismatic spacer. The imaging lens 11 includes a glass substrate 2, a lens portion 3 a and a lens portion 3 b, and eight spacers 14. About the glass substrate 2, the lens part 3a, and the lens part 3b, it is the same as that of the case of the imaging lens 1. FIG. The spacer 14 is a quadrangular prism type and is installed at a position corresponding to the spacer 4 in the imaging lens 1.
 筒状型のスペーサーを有する撮像レンズ21の平面図を図2(b)に示した。撮像レンズ21は、ガラス基板2と、レンズ部3aおよびレンズ部3bと、2個のスペーサー24とからなっている。ガラス基板2、レンズ部3aおよびレンズ部3bについては、撮像レンズ1の場合と同様である。スペーサー24は筒状型である。スペーサー24は、ガラス基板2の上面に、その一端開口をガラス基板2に当接させて、レンズ部3aを取り囲むように設置されている。スペーサー24は、ガラス基板2の下面においても同様に、レンズ部3bを取り囲むように設置されている。 FIG. 2B shows a plan view of the imaging lens 21 having a cylindrical spacer. The imaging lens 21 includes a glass substrate 2, a lens unit 3 a and a lens unit 3 b, and two spacers 24. About the glass substrate 2, the lens part 3a, and the lens part 3b, it is the same as that of the case of the imaging lens 1. FIG. The spacer 24 is a cylindrical type. The spacer 24 is installed on the upper surface of the glass substrate 2 so as to surround the lens portion 3 a with its one end opening being in contact with the glass substrate 2. Similarly, the spacer 24 is installed on the lower surface of the glass substrate 2 so as to surround the lens portion 3b.
 ガラス基板の上面に設けられたスペーサーの形状と下面に設けられたスペーサーの形状とは同じであっても異なっていてもよい。 The shape of the spacer provided on the upper surface of the glass substrate and the shape of the spacer provided on the lower surface may be the same or different.
 また、スペーサーは、ガラス基板に平行な断面の面積がガラス基板平面に垂直な方向において一定である必要はなく、本発明の目的が達成される限り異なっていてもよい。たとえば、スペーサーの断面の面積が、ガラス基板の表面からその垂直方向において漸次小さくなったり、大きくなったり、その形状が変化したりしていてもよい。したがって、ガラス基板に平行な断面がガラス基板表面に向かうに従って複数個に分割されているような形状であってもよい。スペーサーがこのように分割されている形状であれば、1つのスペーサーであっても、スペーサーを、ガラス基板の表面の複数箇所において設置することができるので、前述のとおり、プラスチック部とガラス部の接する面積が小さくなり、またスペーサーをガラス基板と、ガラス基板表面の複数箇所において接触させることができるため、撮像レンズの耐熱性を向上させることができる。 In addition, the spacer does not have to have a constant cross-sectional area parallel to the glass substrate in a direction perpendicular to the glass substrate plane, and may be different as long as the object of the present invention is achieved. For example, the area of the cross section of the spacer may gradually decrease or increase in the vertical direction from the surface of the glass substrate, or the shape thereof may change. Therefore, the shape may be such that a cross section parallel to the glass substrate is divided into a plurality of sections as it goes toward the glass substrate surface. If the spacer is divided in this way, even if it is a single spacer, the spacer can be installed at a plurality of locations on the surface of the glass substrate. Since the contact area is reduced and the spacer can be brought into contact with the glass substrate at a plurality of locations on the surface of the glass substrate, the heat resistance of the imaging lens can be improved.
 スペーサーの個数については、スペーサーの上記機能が確保される限り特に制限はなく、撮像レンズ1および撮像レンズ11のように、ガラス基板の上面および下面にそれぞれ2個以上のスペーサーが設けられていてもよく、撮像レンズ21のように、ガラス基板の上面および下面にそれぞれ1個のスペーサーが設けられていてもよい。ただし前述のとおり、スペーサーはガラス基板の表面において複数に分割されて設置されていることが好ましい。すなわち、スペーサーのガラス基板への設置面積の合計が同じである場合、スペーサーの個数が1個である撮像レンズよりも複数個である撮像レンズの方が、上記耐熱性の点で有利である。ガラス基板の上面または下面に複数のスペーサーが設けられている場合、各スペーサーの形状は同じであって異なっていてもよい。 The number of spacers is not particularly limited as long as the above functions of the spacer are ensured, and even if two or more spacers are provided on the upper and lower surfaces of the glass substrate, respectively, like the imaging lens 1 and the imaging lens 11. As in the case of the imaging lens 21, one spacer may be provided on each of the upper surface and the lower surface of the glass substrate. However, as described above, it is preferable that the spacer is divided and installed on the surface of the glass substrate. That is, when the total installation area of the spacers on the glass substrate is the same, the imaging lens having a plurality of spacers is more advantageous in terms of the heat resistance than the imaging lens having one spacer. When a plurality of spacers are provided on the upper surface or the lower surface of the glass substrate, the shape of each spacer may be the same and different.
 また、本発明の撮像レンズのスペーサーは、撮像レンズを重ね合わせてレンズ群としたときに、撮像レンズ面方向および撮像レンズ間方向の位置合わせを容易とするための位置合わせ部を有していることが好ましい。図3(a)に、位置合わせ部を有するスペーサーを備えた撮像レンズの一具体例である撮像レンズ31を3個重ね合わせて形成された撮像レンズ群61の平面図を示した。また図3(b)は、撮像レンズ群61の、図3(a)におけるA-A断面図である。 In addition, the spacer of the imaging lens of the present invention has an alignment portion for facilitating alignment in the imaging lens surface direction and the imaging lens direction when the imaging lenses are overlapped to form a lens group. It is preferable. FIG. 3A shows a plan view of an imaging lens group 61 formed by superimposing three imaging lenses 31 as a specific example of the imaging lens having a spacer having an alignment portion. FIG. 3B is a cross-sectional view of the imaging lens group 61 taken along the line AA in FIG.
 撮像レンズ31は、ガラス基板2と、レンズ部3aおよびレンズ部3bと、4個のスペーサー34aおよび4個のスペーサー34bとからなっている。レンズ部3aおよび4個のスペーサー34aはガラス基板2の上面に設けられており、レンズ部3bおよび4個のスペーサー34bはガラス基板2の下面に設けられている。ガラス基板2、レンズ部3aおよびレンズ部3bについては、撮像レンズ1の場合と同様である。スペーサー34aおよびスペーサー34bは、撮像レンズ1におけるスペーサー4に対応する位置に設置されている。 The imaging lens 31 includes a glass substrate 2, a lens portion 3a and a lens portion 3b, four spacers 34a, and four spacers 34b. The lens portion 3 a and the four spacers 34 a are provided on the upper surface of the glass substrate 2, and the lens portion 3 b and the four spacers 34 b are provided on the lower surface of the glass substrate 2. About the glass substrate 2, the lens part 3a, and the lens part 3b, it is the same as that of the case of the imaging lens 1. FIG. The spacer 34 a and the spacer 34 b are installed at positions corresponding to the spacer 4 in the imaging lens 1.
 スペーサー34aは、ガラス基板2に設置する円柱状の支持部34aIと、その上面に設けられた、ガラス基板2に平行な断面の形状が十字型である凸部である位置合わせ部34aIIとからなる。スペーサー34bは、ガラス基板2に設置する円柱状の支持部34bIと、その下面に設けられた位置合わせ部34bIIとからなる。位置合わせ部34bIIは、支持部34bIの周面とともに1つの周面を形成する周面を有する円柱体に、その上面から底面に至る、ガラス基板2に平行な断面の形状が十字型である空洞を形成してなる部位である。位置合わせ部34aIIと位置合わせ部34bIIとは嵌合するように設計されている。また位置合わせ部34aIIと位置合わせ部34bIIとが嵌合し、位置合わせ部34aIIの上面が支持部34bIの下面に当接したとき、位置合わせ部34bIIの下面は支持部34aIの上面に当接する。スペーサー34aの位置合わせ部34aIIとスペーサー34bの位置合わせ部34bIIとが嵌合したとき、スペーサー34aとスペーサー34bとは1つの円柱を形成する。 The spacer 34a includes a columnar support portion 34aI installed on the glass substrate 2, and an alignment portion 34aII provided on the upper surface thereof, which is a convex portion having a cross-sectional shape parallel to the glass substrate 2. . The spacer 34b includes a columnar support portion 34bI installed on the glass substrate 2 and an alignment portion 34bII provided on the lower surface thereof. The alignment part 34bII is a hollow cylinder whose cross-sectional shape parallel to the glass substrate 2 extends from the top surface to the bottom surface of a cylindrical body having a peripheral surface that forms one peripheral surface together with the peripheral surface of the support portion 34bI. It is a part formed. The alignment portion 34aII and the alignment portion 34bII are designed to be fitted. Further, when the alignment portion 34aII and the alignment portion 34bII are fitted and the upper surface of the alignment portion 34aII is in contact with the lower surface of the support portion 34bI, the lower surface of the alignment portion 34bII is in contact with the upper surface of the support portion 34aI. When the alignment portion 34aII of the spacer 34a and the alignment portion 34bII of the spacer 34b are fitted, the spacer 34a and the spacer 34b form one cylinder.
 2つの撮像レンズ31が重ね合わされたとき、一方の撮像レンズ31が有する4つのスペーサー34aの十字型の凸部34aIIが、他方の撮像レンズ31が有する4つのスペーサー34bの十字型の凹部34bIIにそれぞれ嵌合することにより、2つの撮像レンズ31からなる撮像レンズ群が形成される。同様にもう1つの撮像レンズ31が前記撮像レンズ群に重ね合わされることにより、3つの撮像レンズ31からなる撮像レンズ群61が形成される。さらに同様に撮像レンズ31を撮像レンズ群61に重ね合わせて、4つ以上の撮像レンズ31からなる撮像レンズ群を形成することもできる。 When the two imaging lenses 31 are overlapped, the cross-shaped convex portions 34aII of the four spacers 34a included in the one imaging lens 31 are respectively aligned with the cross-shaped concave portions 34bII of the four spacers 34b included in the other imaging lens 31. By fitting, an imaging lens group including two imaging lenses 31 is formed. Similarly, another imaging lens 31 is superimposed on the imaging lens group to form an imaging lens group 61 including three imaging lenses 31. Similarly, an imaging lens group including four or more imaging lenses 31 can be formed by superimposing the imaging lens 31 on the imaging lens group 61.
 撮像レンズ31と同様に、凹部を有する位置合わせ部と凸部を有する位置合わせ部との嵌合により位置合わせを行う場合であっても、1つの撮像レンズに凹部を有する位置合わせ部と凸部を有する位置合わせ部との両方を設ける必要はなく、凹部を有する位置合わせ部のみを備えた撮像レンズと凸部を有する位置合わせ部のみを備えた撮像レンズとを交互に重ね合わせることによって位置合わせを行い、撮像レンズ群を形成してもよい。 Similar to the imaging lens 31, even when the alignment is performed by fitting the alignment portion having the concave portion and the alignment portion having the convex portion, the alignment portion and the convex portion having the concave portion in one imaging lens It is not necessary to provide both of the alignment unit having a concave portion, and the imaging lens having only the alignment portion having the concave portion and the imaging lens having only the alignment portion having the convex portion are overlapped alternately. And an imaging lens group may be formed.
 位置合わせ部34aIIおよび位置合わせ部34bIIのように、凹部を有する位置合わせ部および凸部を有する位置合わせ部においては、その凹部および凸部の断面形状には特に制限はなく、位置合わせ部34aIIおよび位置合わせ部34bIIのような十字型の他、円型、三角型、四角型、×型およびL字型等であってもよい。位置合わせ部の凹部および凸部の断面形状は十字型であることが好ましい。 As in the alignment portion 34aII and the alignment portion 34bII, in the alignment portion having the concave portion and the alignment portion having the convex portion, the sectional shape of the concave portion and the convex portion is not particularly limited, and the alignment portion 34aII and In addition to the cross shape such as the alignment portion 34bII, a circular shape, a triangular shape, a square shape, an X shape, an L shape, or the like may be used. The cross-sectional shape of the concave and convex portions of the alignment portion is preferably a cross shape.
 また、本発明の撮像レンズにおける位置合わせ部の様式は、各撮像レンズのレンズ面内方向の位置合わせ及び光軸併せを容易とすることができれば、上記のような嵌合式以外の様式であっても構わない。 In addition, the alignment unit in the imaging lens according to the present invention may be of a type other than the above-described fitting type as long as the alignment and optical axis alignment in the lens surface direction of each imaging lens can be facilitated. It doesn't matter.
 本発明の撮像レンズが有する位置合わせ部の個数は、各撮像レンズのレンズ面内方向の位置合わせ及び光軸併せを容易とすることができれば、特に制限はない。撮像レンズが複数の位置合わせ部を有する場合、各位置合わせ部の形状および様式等は同じであっても異なっていてもよい。
(他の構成要素)
 本発明の撮像レンズでは、撮像レンズの性能向上のため、レンズの有効面外での光散乱および乱反射を防ぐため、ガラス基板表面の有効面以外の部分に遮光層が形成されていてもよい。遮光層の材料としては、金属および遮光性材料を分散させたプラスチック等が挙げられる。金属製の遮光層は、ガラス基板表面の有効面以外の部分であれば特に制限なく設けることができ、たとえば本発明の撮像レンズの有効面外のガラス基板とレンズ部およびスペーサーとの間に、ガラス基板に接着させて形成することができる。プラスチック製の遮光層は、ガラス基板表面の有効面以外の部分に、ガラス基板に接着させないで設けられる。たとえば、ガラス基板全面を覆う層から、レンズ光学面を覆わないように一部をくりぬいて形成される遮光層をレンズ部に被せるように設けることができる。
The number of alignment portions included in the imaging lens of the present invention is not particularly limited as long as alignment in the lens surface direction and optical axis alignment of each imaging lens can be facilitated. When the imaging lens has a plurality of alignment portions, the shape and style of each alignment portion may be the same or different.
(Other components)
In the imaging lens of the present invention, in order to improve the performance of the imaging lens, in order to prevent light scattering and irregular reflection outside the effective surface of the lens, a light shielding layer may be formed on a portion other than the effective surface of the glass substrate surface. Examples of the material of the light shielding layer include a plastic in which a metal and a light shielding material are dispersed. The metal light-shielding layer can be provided without particular limitation as long as it is a portion other than the effective surface of the glass substrate surface, for example, between the glass substrate outside the effective surface of the imaging lens of the present invention, the lens portion and the spacer, It can be formed by adhering to a glass substrate. The light shielding layer made of plastic is provided in a portion other than the effective surface of the glass substrate surface without being adhered to the glass substrate. For example, a light shielding layer formed by hollowing out a part from a layer covering the entire surface of the glass substrate so as not to cover the lens optical surface may be provided so as to cover the lens part.
 ここで「ガラス基板表面の有効面」および「撮像レンズの有効面」とは、本発明の撮像レンズおよびそのレンズ群をカメラモジュールに搭載して撮像する際に、実像側から撮像センサ側に向けて光線束が通る面のことである。この「ガラス基板表面の有効面」および「撮像レンズの有効面」は、予めレンズ形状の光学設計により求めることができる。 Here, the “effective surface of the glass substrate surface” and the “effective surface of the imaging lens” mean that the imaging lens of the present invention and the lens group thereof are mounted on the camera module and imaged from the real image side to the imaging sensor side. This is the surface through which the light bundle passes. The “effective surface of the glass substrate surface” and the “effective surface of the imaging lens” can be obtained in advance by optical design of the lens shape.
 遮光層に使用される金属としては、3価クロム、アルマイト等が挙げられる。金属製の遮光層の形成方法としては、めっき処理、陽極酸化などの方法が挙げられる。 Examples of the metal used for the light shielding layer include trivalent chromium and anodized. Examples of the method for forming the metal light-shielding layer include methods such as plating and anodic oxidation.
 遮光層に使用されるプラスチックとしては、ポリエステル、ポリイミド、環状オレフィンプラスチック、フッ素プラスチック等に遮光性材料としてカーボン粒子等を分散させた後、フィルム上にしたもの、また、上記プラスチックのフィルム上に、上記遮光性材料を分散させたアクリルプラスチック、エポキシプラスチック等をコートしたものを挙げることができる。プラスチック製の遮光層の形成方法としては、上記の遮光性を有するプラスチックのフィルムをレンズの上面の貼付する等の方法が挙げられる。 As the plastic used for the light shielding layer, after dispersing carbon particles etc. as a light shielding material in polyester, polyimide, cyclic olefin plastic, fluorine plastic, etc., on the film, on the plastic film, Examples thereof include those coated with acrylic plastic, epoxy plastic or the like in which the light shielding material is dispersed. Examples of a method for forming a plastic light-shielding layer include a method of attaching the light-shielding plastic film to the upper surface of the lens.
 遮光層の厚みとしては、上記機能が確保される限り特に制限はなく、金属性遮光層の場合、通常0.1~10μm、フィルム状のプラスチックの場合、5~100μmである。 The thickness of the light shielding layer is not particularly limited as long as the above functions are ensured, and is usually 0.1 to 10 μm in the case of a metallic light shielding layer and 5 to 100 μm in the case of a film-like plastic.
 また撮像レンズ群の撮像レンズ間の有効面外に遮光シート、遮光板を置いてもよい。 Further, a light shielding sheet or a light shielding plate may be placed outside the effective surface between the imaging lenses of the imaging lens group.
 本発明の撮像レンズにおいては、性能向上のため、レンズ表面での光反射を防ぐためのARコート(Anti-Reflection treatment coating)が形成されていてもよい。例えば、スパッタ法等を用いてレンズ部の表面に低屈折層および高屈折率層を2層以上形成することによりARコートがなされる。
(撮像レンズの製造方法)
 本発明の撮像レンズの製造方法は、本発明の撮像レンズの構造が形成されれば特に制限はない。レンズ部の形成方法としては、インプリント法が簡便である点で最も好ましい。
In the imaging lens of the present invention, an AR coating (Anti-Reflection treatment coating) for preventing light reflection on the lens surface may be formed to improve performance. For example, AR coating is performed by forming two or more low-refractive layers and high-refractive-index layers on the surface of the lens portion by sputtering or the like.
(Method for manufacturing imaging lens)
The manufacturing method of the imaging lens of the present invention is not particularly limited as long as the structure of the imaging lens of the present invention is formed. As a method for forming the lens portion, the imprint method is most preferable because it is simple.
 具体的には、レンズの形成方法として、レンズを形成するプラスチックが熱可塑性プラスチックの場合、まずガラス基板の片面もしくは両面に、熱可塑性プラスチックのシート、ペレットまたは粉末を溶融させて固着するか、または熱可塑プラスチックを溶解させた溶液を滴下もしくはコートし、乾燥することにより固着する。次に、所望するレンズ形状に相当する金型を用い熱インプリントにより、ガラス基板表面に所望の形状を有するレンズ部を形成する。 Specifically, as a method of forming a lens, when the plastic forming the lens is a thermoplastic, first, a thermoplastic sheet, pellet or powder is melted and fixed to one or both sides of the glass substrate, or It fixes by dripping or coating the solution which melt | dissolved the thermoplastic plastic, and drying. Next, a lens portion having a desired shape is formed on the surface of the glass substrate by thermal imprinting using a mold corresponding to the desired lens shape.
 レンズを形成するプラスチックが熱硬化性プラスチックの場合、硬化前のプラスチック液をガラス基板上に滴下もしくはコートすることにより、ガラス基板上にプラスチック液層を形成し、所望するレンズ形状に相当する金型を用い熱インプリントにより、ガラス基板表面に所望の形状を有するレンズ部を形成する。 When the plastic forming the lens is a thermosetting plastic, a plastic liquid layer is formed on the glass substrate by dropping or coating the plastic liquid before curing onto the glass substrate, and a mold corresponding to the desired lens shape A lens part having a desired shape is formed on the surface of the glass substrate by thermal imprinting.
 レンズを形成するプラスチックが光硬化性プラスチックの場合、硬化前のプラスチック液をガラス基板上に滴下もしくはコートすることにより、ガラス基板上にプラスチック液層を形成し、所望するレンズ形状に相当する透明金型を用い光インプリントにより、ガラス基板表面に所望の形状を有するレンズ部を形成する。 When the plastic forming the lens is a photo-curable plastic, a plastic liquid layer is formed on the glass substrate by dropping or coating the plastic liquid before curing onto the glass substrate, and a transparent gold corresponding to the desired lens shape. A lens part having a desired shape is formed on the surface of the glass substrate by optical imprinting using a mold.
 スペーサーの形成方法としては、予めスペーサー形状に成形したプラスチックを、UV接着剤等でガラス基板上の所定の位置に接着する方法、該成形体を加熱して融着する方法等が挙げられるが、スペーサーを形成するプラスチックを、レンズ部を形成するプラスチックと同じとし、前記レンズ部のインプリント成形時に同時にスペーサーをインプリント成形により形成する方法が工程数が少なく、かつ位置調整が容易なため好ましい。
撮像レンズ群
 本発明の撮像レンズ群は、前記撮像レンズを重ね合わせることにより形成される。図3に本発明の撮像レンズ群の一具体例である撮像レンズ群61を示した。撮像レンズ群61においては、位置合わせ部を用いて複数の撮像レンズを重ね合わせているが、本発明の撮像レンズ群においては、所望の光学的機能が確保される限り、撮像レンズの重ね合わせ方には特に制限はない。重ね合わせる撮像レンズの個数は、目的に応じて適宜決定することができる。
Examples of the method for forming the spacer include a method in which a plastic previously molded into a spacer shape is bonded to a predetermined position on a glass substrate with a UV adhesive or the like, and a method in which the molded body is heated and fused. The plastic forming the spacer is preferably the same as the plastic forming the lens portion, and the method of forming the spacer by imprint molding simultaneously with the imprint molding of the lens portion is preferable because the number of steps is small and the position adjustment is easy.
Imaging Lens Group The imaging lens group of the present invention is formed by overlapping the imaging lenses. FIG. 3 shows an imaging lens group 61 as a specific example of the imaging lens group of the present invention. In the imaging lens group 61, a plurality of imaging lenses are superposed using a positioning unit. However, in the imaging lens group of the present invention, as long as a desired optical function is ensured, the method of superimposing imaging lenses is not limited. There are no particular restrictions. The number of imaging lenses to be superimposed can be appropriately determined according to the purpose.
 本発明の撮像レンズ群は、カメラモジュール等に使用することができる。 The imaging lens group of the present invention can be used for a camera module or the like.
 また、本発明の撮像レンズ群を使用したカメラモジュールは、携帯電話、パーソナルコンピューター、携帯用情報通信機器、デジタルカメラ、自動車および防犯用カメラ等の製品に搭載することができる。このカメラモジュールをこれら製品に搭載することにより、これら製品の生産性の向上を図ることができる。 The camera module using the imaging lens group of the present invention can be mounted on products such as a mobile phone, a personal computer, a portable information communication device, a digital camera, an automobile, and a security camera. By mounting this camera module on these products, the productivity of these products can be improved.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
 耐はんだリフロー性評価
 耐はんだリフロー性評価を、千住金属工業株式会社製リフロー炉(STR-2010N2M-III型)を用い下記の通りに実施した。
(温度設定)
 リフロー温度設定について、JEDEC規格J-STD-020Dに準拠して以下の通りに設定した。
Solder Reflow Resistance Evaluation Solder reflow resistance evaluation was performed as follows using a reflow furnace (STR-2010N2M-III type) manufactured by Senju Metal Industry Co., Ltd.
(Temperature setting)
About reflow temperature setting, it set as follows based on JEDEC specification J-STD-020D.
  コンベア速度:25.3cm/min
  各加温ゾーンの温度設定
  第1ゾーン:305℃
  第2ゾーン:240℃
  第3ゾーン:240℃
  第4ゾーン:245℃
  第5ゾーン:318℃
(リフロー炉内の実側温度)
  余熱領域(150℃~200℃):100秒
  鉛フリーはんだ溶融温度(217℃)以上の温度領域:114秒
  255℃以上の温度領域:34秒
  最大温度:265℃
  室温→最大温度までの加熱時間:5分05秒
  鉛フリーはんだ溶融温度(217℃)→255℃までの昇温速度:1.4℃/秒
  255℃→はんだ溶融温度(217℃)までの冷却速度:1.7℃/秒
(リフロー炉通過試験)
 炉内の温度が安定した後、ガラスエポキシ基板上にレンズサンプルを乗せ、イミドテープでサンプルを固定し、レンズサンプルに直接熱がかかるようリフロー炉のコンベアに上向きに乗せ炉内を通過させた。この操作を3回実施した。
(試験評価)
 リフロー炉を通過させたレンズサンプルを、形状測定器(Talor Hobson Precision製、Form Taly Surf Series 2)でレンズのガラス基板の反りを確認した。
Conveyor speed: 25.3 cm / min
Temperature setting for each heating zone 1st zone: 305 ° C
Second zone: 240 ° C
Third zone: 240 ° C
Fourth zone: 245 ° C
Zone 5: 318 ° C
(Real side temperature in reflow furnace)
Residual heat range (150 ° C to 200 ° C): 100 seconds Lead free solder melting temperature (217 ° C) or higher temperature range: 114 seconds 255 ° C or higher temperature range: 34 seconds Maximum temperature: 265 ° C
Heating time from room temperature to maximum temperature: 5 minutes 05 seconds Lead-free solder melting temperature (217 ° C) → Temperature rise rate to 255 ° C: 1.4 ° C / second 255 ° C → Cooling to solder melting temperature (217 ° C) Speed: 1.7 ° C / second (reflow furnace passage test)
After the temperature in the furnace was stabilized, the lens sample was placed on a glass epoxy substrate, the sample was fixed with an imide tape, and the lens sample was placed upward on a conveyor of a reflow furnace so that heat was directly applied to the lens sample, and passed through the furnace. This operation was performed three times.
(Test evaluation)
The lens sample that passed through the reflow furnace was checked for warpage of the glass substrate of the lens with a shape measuring instrument (Talor Hobson Precision, Form Taly Surf Series 2).
 また、ガラス基板とレンズ部の界面をマイクロスコープ(キーエンス社製)で観察し、ガラス基板とレンズ部の密着性(ガラス基板からのレンズ部の剥離の有無)を評価した。
(実施例)
 ガラス基板として厚み0.3mmのD263Tガラス(ショット社製)上の両面に、レンズおよびスペーサーの形成用プラスチックとして環状オレフィン系プラスチックであるARTON(JSR製、線膨張係数:69ppm/K、Tg:165℃)の25wt%トルエン溶液を、ガラス基板上のレンズ部およびスペーサー部が形成される部分に、乾燥後のプラスチック量がレンズおよびスペーサーを形成するのに必要な設計量の1.1倍量となるよう滴下し、真空下80℃で12時間加熱した。次に、熱インプリント装置および、図4に示すような撮像レンズとなるようにインプリントするための金型を用い、205℃で10分間加圧成形して図4に示す撮像レンズ41を作成した。
Further, the interface between the glass substrate and the lens part was observed with a microscope (manufactured by Keyence Corporation), and the adhesion between the glass substrate and the lens part (presence or absence of peeling of the lens part from the glass substrate) was evaluated.
(Example)
ARTON (manufactured by JSR, linear expansion coefficient: 69 ppm / K, Tg: 165) as a plastic for forming lenses and spacers on both sides of D263T glass (manufactured by Schott) having a thickness of 0.3 mm as a glass substrate 25 wt% toluene solution at a temperature of 1.1 ° C. in a portion of the glass substrate where the lens portion and spacer portion are formed, and the amount of plastic after drying is 1.1 times the design amount necessary to form the lens and spacer. The mixture was added dropwise and heated at 80 ° C. for 12 hours under vacuum. Next, using a thermal imprint apparatus and a mold for imprinting so as to form an imaging lens as shown in FIG. 4, press molding is performed at 205 ° C. for 10 minutes to produce the imaging lens 41 shown in FIG. did.
 図4(a)は撮像レンズ41の正面図であり、図4(b)は撮像レンズ41の平面図である。撮像レンズ41は、ガラス基板42と、凸レンズであるレンズ部43aおよび凹レンズであるレンズ部43bと、8個の円柱状のスペーサー44とからなっている。撮像レンズ41の基本的な構造は撮像レンズ1と同様である。 4A is a front view of the imaging lens 41, and FIG. 4B is a plan view of the imaging lens 41. FIG. The imaging lens 41 includes a glass substrate 42, a lens portion 43 a that is a convex lens, a lens portion 43 b that is a concave lens, and eight columnar spacers 44. The basic structure of the imaging lens 41 is the same as that of the imaging lens 1.
 ガラス基板42の大きさ:4mm×4mm×0.3mm
 レンズ部43aおよびレンズ部43bの直径:2mm
 レンズ部43aの高さ:0.3mm
 レンズ部43bの高さ:0.4mm
 スペーサー44の直径:1mm
 スペーサー44の高さ:0.5mm
 得られた撮像レンズ41のレンズ部およびスペーサーのプラスチック部分の面積割合は上面および下面とも39%であった。
The size of the glass substrate 42: 4 mm × 4 mm × 0.3 mm
Diameter of lens part 43a and lens part 43b: 2 mm
Lens part 43a height: 0.3 mm
Lens part 43b height: 0.4 mm
Spacer 44 diameter: 1 mm
Spacer 44 height: 0.5 mm
The area ratio of the lens portion of the obtained imaging lens 41 and the plastic portion of the spacer was 39% on both the upper surface and the lower surface.
 得られたレンズの耐リフロー性評価の結果、ガラス基板の反りおよび、プラスチックとガラス基板との剥離は見られなかった。
(比較例)
 実施例において、図5に示すような撮像レンズとなるように、滴下プラスチック量および金型を変更した以外は同様にして図5に示す撮像レンズ51を作成した。
As a result of evaluation of reflow resistance of the obtained lens, warpage of the glass substrate and peeling between the plastic and the glass substrate were not observed.
(Comparative example)
In the example, an imaging lens 51 shown in FIG. 5 was created in the same manner except that the amount of dropped plastic and the mold were changed so that the imaging lens shown in FIG. 5 was obtained.
 図5(a)は撮像レンズ51の正面図であり、図5(b)は撮像レンズ51の平面図である。撮像レンズ51は、ガラス基板52と、凸レンズであるレンズ部53aおよび凹レンズであるレンズ部53bと、2個のスペーサー54とからなっている。ガラス基板52は、撮像レンズ41のガラス基板42と同じである。レンズ部53aと1つのスペーサー54、およびレンズ部53bともう1つのスペーサー54とはそれぞれ一体に形成されている。スペーサー54は、平板部54aと角柱部54bとからなる。平板部54aは、平面形状が正方形であり、その一辺の長さはガラス基板52の上面および下面の一辺の長さよりも短い。角柱部54bは、四角柱形であり、4個の角柱部54bがそれぞれ平板部54aの上面の四隅に設けられている。1つのスペーサー54は、ガラス基板52の上面に、平板部54aの上面の各辺がガラス基板52の上面の一辺と平行になり、かつ平行になった4組の辺間の距離が同じになるように配置されている。同様に、もう1つのスペーサー54がガラス基板52の下面に配置されている。ガラス基板52の上面に配置されたスペーサー54の平板部54aの中央部にはレンズ部53aが形成されている。ガラス基板52の下面に配置されたスペーサー54の平板部54aの中央部にはレンズ部53bが形成されている。 FIG. 5A is a front view of the imaging lens 51, and FIG. 5B is a plan view of the imaging lens 51. The imaging lens 51 includes a glass substrate 52, a lens portion 53 a that is a convex lens, a lens portion 53 b that is a concave lens, and two spacers 54. The glass substrate 52 is the same as the glass substrate 42 of the imaging lens 41. The lens portion 53a and one spacer 54, and the lens portion 53b and another spacer 54 are integrally formed. The spacer 54 includes a flat plate portion 54a and a prismatic portion 54b. The flat plate portion 54 a has a square planar shape, and the length of one side thereof is shorter than the length of one side of the upper surface and the lower surface of the glass substrate 52. The prismatic part 54b is a quadrangular prism, and four prismatic parts 54b are respectively provided at the four corners of the upper surface of the flat plate part 54a. One spacer 54 is on the upper surface of the glass substrate 52, each side of the upper surface of the flat plate portion 54 a is parallel to one side of the upper surface of the glass substrate 52, and the distance between the four sets of parallel sides is the same. Are arranged as follows. Similarly, another spacer 54 is disposed on the lower surface of the glass substrate 52. A lens portion 53 a is formed at the center of the flat plate portion 54 a of the spacer 54 disposed on the upper surface of the glass substrate 52. A lens portion 53 b is formed at the center of the flat plate portion 54 a of the spacer 54 disposed on the lower surface of the glass substrate 52.
 ガラス基板52の大きさ:4mm×4mm×0.3mm
 レンズ部53aおよびレンズ部53bの直径:2mm
 レンズ部53aの高さ:0.3mm
 レンズ部53bの高さ:0.4mm
 スペーサー54の直径:1mm
 平板部54aの厚み:0.5mm
 ガラス基板52の表面における、レンズ部53a、レンズ部53bおよびスペーサー54が接触している部分の大きさ:3.65mm×3.65mm
 撮像レンズ51のレンズ部とスペーサーのプラスチック部分の面積割合は上面および下面とも83%であった。
The size of the glass substrate 52: 4 mm × 4 mm × 0.3 mm
Diameter of lens part 53a and lens part 53b: 2 mm
Lens part 53a height: 0.3 mm
Lens part 53b height: 0.4 mm
Spacer 54 diameter: 1 mm
The thickness of the flat plate portion 54a: 0.5 mm
Size of the surface of the glass substrate 52 where the lens portion 53a, the lens portion 53b, and the spacer 54 are in contact: 3.65 mm × 3.65 mm
The area ratio of the lens portion of the imaging lens 51 and the plastic portion of the spacer was 83% on both the upper surface and the lower surface.
 得られたレンズのリフロー評価の結果、ガラス基板の反りおよび、プラスチックとガラス基板との剥離が見られた。 As a result of reflow evaluation of the obtained lens, warpage of the glass substrate and peeling between the plastic and the glass substrate were observed.
 以上のことから、ガラス基板の面積に対する、レンズ部がガラス基板に接触している部分の面積とスペーサーがガラス基板に接触している部分の面積との合計の比率が小さいほど、耐熱性が向上することがわかった。 From the above, the heat resistance improves as the total ratio of the area of the part where the lens part is in contact with the glass substrate and the area of the part where the spacer is in contact with the glass substrate to the area of the glass substrate is smaller I found out that
 従来の平板のガラス基板の両面にプラスチックからなるレンズ部とプラスチックからなるスペーサーが形成されてなる撮像レンズと比較し、耐熱性に優れる本発明の撮像レンズは、携帯電話、モバイルパソコン等に搭載される小型カメラモジュール用レンズとして使用でき、特に、はんだリフロー工程の耐久性が求められる撮像レンズに好適である。 The imaging lens of the present invention, which is superior in heat resistance compared to a conventional imaging lens in which a plastic lens part and a plastic spacer are formed on both surfaces of a flat glass substrate, is mounted on a mobile phone, a mobile personal computer, etc. It can be used as a lens for a small camera module, and is particularly suitable for an imaging lens that requires durability in a solder reflow process.
1  撮像レンズ
2  ガラス基板
3a、3b  レンズ部
4  スペーサー
11  撮像レンズ
14  スペーサー
21  撮像レンズ
24  スペーサー
31  撮像レンズ
34a、34b  スペーサー
34aI  支持部
34aII  位置合わせ部
34bI  支持部
34bII  位置合わせ部
41  撮像レンズ
42  ガラス基板
43a  レンズ部
43b  レンズ部
44  スペーサー
51  撮像レンズ
52  ガラス基板
53a  レンズ部
53b  レンズ部
54  スペーサー
54a  平板部
54b  角柱部
61  撮像レンズ群
DESCRIPTION OF SYMBOLS 1 Imaging lens 2 Glass substrate 3a, 3b Lens part 4 Spacer 11 Imaging lens 14 Spacer 21 Imaging lens 24 Spacer 31 Imaging lens 34a, 34b Spacer 34aI Support part 34aII Positioning part 34bI Supporting part 34bII Positioning part 41 Imaging lens 42 Glass board 43a Lens unit 43b Lens unit 44 Spacer 51 Imaging lens 52 Glass substrate 53a Lens unit 53b Lens unit 54 Spacer 54a Flat plate unit 54b Square column unit 61 Imaging lens group

Claims (13)

  1.   ガラス基板の少なくとも片面にプラスチックからなるレンズ部およびプラスチックからなるスペーサーが形成されてなる撮像レンズであって、前記ガラス基板のそれぞれの面において、その面の面積に対する、前記レンズ部が前記ガラス基板と接触している部分の面積と前記スペーサーが前記ガラス基板と接触している部分の面積との合計の比率が50%以下であることを特徴とする撮像レンズ。 An imaging lens in which a lens portion made of plastic and a spacer made of plastic are formed on at least one surface of a glass substrate, and the lens portion is in each surface of the glass substrate, and the lens portion corresponds to the surface of the glass substrate. An imaging lens, wherein a total ratio of an area of a contact portion and an area of a portion where the spacer is in contact with the glass substrate is 50% or less.
  2.  前記レンズ部とスペーサーとが前記ガラス基板の表面において互いに接していないことを特徴とする請求項1に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the lens portion and the spacer are not in contact with each other on the surface of the glass substrate.
  3.  前記スペーサーが前記ガラス基板と、該ガラス基板の表面の複数箇所において接触していることを特徴とする請求項1または2に記載の撮像レンズ。 The imaging lens according to claim 1 or 2, wherein the spacer is in contact with the glass substrate at a plurality of locations on the surface of the glass substrate.
  4.  前記ガラス基板の一方の面に形成されたレンズ部が凸面からなるレンズ面を有し、もう一方の面に形成されたレンズ部が凹面からなるレンズ面を有することを特徴とする請求項1~3のいずれかに記載の撮像レンズ。 The lens portion formed on one surface of the glass substrate has a convex lens surface, and the lens portion formed on the other surface has a concave lens surface. 4. The imaging lens according to any one of 3.
  5.  前記スペーサーが、前記撮像レンズ同士を積層するときに撮像レンズ面方向及び撮像レンズ間方向の位置合わせをするための位置合わせ部を有することを特徴とする請求項1~4に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 4, wherein the spacer has an alignment portion for aligning the imaging lens surface direction and the imaging lens direction when the imaging lenses are stacked.
  6.   請求項1~5のいずれかに記載の撮像レンズを重ね合わせてなることを特徴とする撮像レンズ群。 An imaging lens group comprising the imaging lenses according to claim 1 superimposed on each other.
  7.  請求項6に記載の撮像レンズ群を用いたことを特徴とするカメラモジュール。 A camera module using the imaging lens group according to claim 6.
  8.  請求項7に記載のカメラモジュールを搭載したことを特徴とする携帯電話。 A mobile phone comprising the camera module according to claim 7.
  9.  請求項7に記載のカメラモジュールを搭載したことを特徴とするパーソナルコンピューター。 A personal computer having the camera module according to claim 7 mounted thereon.
  10.  請求項7に記載のカメラモジュールを搭載したことを特徴とする携帯用情報通信機器。 A portable information communication device comprising the camera module according to claim 7.
  11.  請求項7に記載のカメラモジュールを搭載したことを特徴とするデジタルカメラ。 A digital camera having the camera module according to claim 7 mounted thereon.
  12.  請求項7に記載のカメラモジュールを搭載したことを特徴とする自動車。 An automobile equipped with the camera module according to claim 7.
  13.  請求項7に記載のカメラモジュールを搭載したことを特徴とする防犯用カメラ。 A security camera comprising the camera module according to claim 7.
PCT/JP2010/059739 2009-07-24 2010-06-09 Image-capturing lens WO2011010510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523586A JPWO2011010510A1 (en) 2009-07-24 2010-06-09 Imaging lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009173564 2009-07-24
JP2009-173564 2009-07-24

Publications (1)

Publication Number Publication Date
WO2011010510A1 true WO2011010510A1 (en) 2011-01-27

Family

ID=43498986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059739 WO2011010510A1 (en) 2009-07-24 2010-06-09 Image-capturing lens

Country Status (3)

Country Link
JP (1) JPWO2011010510A1 (en)
TW (1) TW201126220A (en)
WO (1) WO2011010510A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159839A (en) * 2011-01-31 2012-08-23 Lg Innotek Co Ltd Lens assembly and camera module
JPWO2015025970A1 (en) * 2013-08-20 2017-03-02 株式会社ダイセル Wafer lens, wafer lens array, wafer lens laminate, and wafer lens array laminate
WO2018100893A1 (en) * 2016-11-30 2018-06-07 株式会社ダイセル Lens module for imaging device, and method for producing lens module
CN111106136A (en) * 2019-11-22 2020-05-05 深圳阜时科技有限公司 Manufacturing method of optical sensing device and optical sensing device
WO2021033623A1 (en) * 2019-08-20 2021-02-25 Agc株式会社 Optical element, optical unit, and manufacturing method for optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512857B2 (en) * 2012-06-18 2014-06-04 シャープ株式会社 CAMERA MODULE, ELECTRONIC DEVICE MOUNTING THE CAMERA MODULE, AND METHOD FOR PRODUCING THE CAMERA MODULE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320788A (en) * 1993-05-11 1994-11-22 Kyocera Corp Imaging device
JP2001066403A (en) * 1999-07-19 2001-03-16 Eastman Kodak Co Optical assembly and process for producing lens system
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2004165910A (en) * 2002-11-12 2004-06-10 Canon Inc Equipment with pickup device
JP2005539276A (en) * 2002-09-17 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CAMERA DEVICE AND METHOD FOR MANUFACTURING CAMERA DEVICE AND WAFER SCALE PACKAGE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320788A (en) * 1993-05-11 1994-11-22 Kyocera Corp Imaging device
JP2001066403A (en) * 1999-07-19 2001-03-16 Eastman Kodak Co Optical assembly and process for producing lens system
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2005539276A (en) * 2002-09-17 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CAMERA DEVICE AND METHOD FOR MANUFACTURING CAMERA DEVICE AND WAFER SCALE PACKAGE
JP2004165910A (en) * 2002-11-12 2004-06-10 Canon Inc Equipment with pickup device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159839A (en) * 2011-01-31 2012-08-23 Lg Innotek Co Ltd Lens assembly and camera module
US9395517B2 (en) 2011-01-31 2016-07-19 Lg Innotek Co., Ltd. Lens assembly and camera module
JPWO2015025970A1 (en) * 2013-08-20 2017-03-02 株式会社ダイセル Wafer lens, wafer lens array, wafer lens laminate, and wafer lens array laminate
WO2018100893A1 (en) * 2016-11-30 2018-06-07 株式会社ダイセル Lens module for imaging device, and method for producing lens module
JPWO2018100893A1 (en) * 2016-11-30 2018-11-29 株式会社ダイセル Lens module for imaging apparatus and method for manufacturing the same
US11099347B2 (en) 2016-11-30 2021-08-24 Daicel Corporation Lens module for imaging device, and method for producing lens module
WO2021033623A1 (en) * 2019-08-20 2021-02-25 Agc株式会社 Optical element, optical unit, and manufacturing method for optical element
CN111106136A (en) * 2019-11-22 2020-05-05 深圳阜时科技有限公司 Manufacturing method of optical sensing device and optical sensing device

Also Published As

Publication number Publication date
JPWO2011010510A1 (en) 2012-12-27
TW201126220A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
US11543567B2 (en) Camera module including liquid lens, optical device including the same, and method of manufacturing camera module including liquid lens
US7901972B2 (en) Camera module and method of manufacturing the same
JP5568599B2 (en) Lens unit, manufacturing method thereof, and camera module including the same
US20110221950A1 (en) Camera device, wafer scale package
WO2011010510A1 (en) Image-capturing lens
WO2009101928A1 (en) Lens unit, image capturing lens, image capturing device, and portable terminal
TWI621891B (en) Dual-molded circular optical element, imaging lens assembly, imaging device, and electronic device
US20120194923A1 (en) Lens assembly and camera module
US20100033608A1 (en) Camera module and method of manufacturing the same
TWI410672B (en) Miniature image capture lens
JP2010282179A (en) Wafer-level lens module and imaging module with the same
TW201415069A (en) Wafer level lens, lens sheet and manufacturing method thereof
JP2009251366A (en) Method for manufacturing imaging lens, imaging lens, and imaging apparatus
CN110596868B (en) Optical unit and laminate
CN102045494A (en) Camera module and making method thereof
KR102702928B1 (en) Liquid lens, camera module and optical device/instrument including the same
US10390436B2 (en) Camera module and flexible printed board
KR20130003460A (en) Lens assembly and camera module having the same
KR101349510B1 (en) Lens unit, method of fabricating the same and camera module having the same
WO2009125662A1 (en) Imaging lens manufacturing method, imaging lens, and imaging device
KR101980657B1 (en) The manufacturing method of lens assembly
KR101826712B1 (en) Method of fabricating lens unit
JP2011138088A (en) Wafer-level lens array, lens module and imaging unit
JP2010181791A (en) Microlens substrate, method for producing the same and liquid crystal panel
KR101980634B1 (en) Lens unit, and camera module having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523586

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802131

Country of ref document: EP

Kind code of ref document: A1