[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011001469A1 - 無線通信制御方法および無線通信装置 - Google Patents

無線通信制御方法および無線通信装置 Download PDF

Info

Publication number
WO2011001469A1
WO2011001469A1 PCT/JP2009/003056 JP2009003056W WO2011001469A1 WO 2011001469 A1 WO2011001469 A1 WO 2011001469A1 JP 2009003056 W JP2009003056 W JP 2009003056W WO 2011001469 A1 WO2011001469 A1 WO 2011001469A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
communication device
wireless communication
handover
retransmission
Prior art date
Application number
PCT/JP2009/003056
Other languages
English (en)
French (fr)
Inventor
鈴木正昭
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011520669A priority Critical patent/JP5423794B2/ja
Priority to PCT/JP2009/003056 priority patent/WO2011001469A1/ja
Priority to EP09846764.0A priority patent/EP2451215A4/en
Publication of WO2011001469A1 publication Critical patent/WO2011001469A1/ja
Priority to US13/334,915 priority patent/US9025565B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling

Definitions

  • the present invention relates to a wireless communication control method and a wireless communication apparatus.
  • layer 2 (data link layer) mainly performs interconnection between terminals and data link control for transferring data without error.
  • Layer 2 includes MAC (Media Access Control) layer, RLC (Radio) It consists of three sub-layers, the Link Control (PD) layer and the PDCP (Packet Data Convergence Protocol) layer, and the functional units of each sub-layer perform individual processing.
  • MAC Media Access Control
  • RLC Radio
  • PD Link Control
  • PDCP Packet Data Convergence Protocol
  • the mode of processing performed by the functional units of these sublayers follows the values set in the layer 2 parameters. For example, the upper limit of the information storage capacity of the buffer used in each process and the timing for performing the retransmission process are determined based on the layer 2 parameters.
  • these layer 2 parameters are set by the functional unit of layer 3 which is the upper layer.
  • the layer 3 functional unit determines the type of communication service such as voice call or information streaming, and sets the layer 2 parameters based on the communication rate, latency allowable time, and the like defined for the communication service.
  • the layer 2 parameter of the wireless communication device in communication is statically set in advance based on the communication service, etc., and becomes an appropriate value even if the state of the wireless propagation path deteriorates and the communication state deteriorates. The fixed value was not changed.
  • FIG. 1 is a schematic diagram of a radio communication system composed of a base station and a mobile station.
  • the base stations 320, 330, 340, and 350 perform wireless communication with mobile stations that exist in the respective cells 321, 331, 341, and 351.
  • Base stations 320, 330, 340, and 350 are each connected to core network CNW.
  • the base stations 320 and 330 and the base stations 340 and 350 constitute different radio communication systems, and communication between the two systems is performed via the core network CNW.
  • Examples of the case where the radio propagation path changes include a case where the mobile station 310 moves at a high speed while the base station 320 and the mobile station 310 are communicating, and a case where the mobile station 310 moves away from the base station 320.
  • the uplink signal interferes with the signal of the adjacent base station 330 and affects the radio communication in the cell 331. give.
  • the base station 320 suppresses the uplink transmission power of the mobile station 311 in order to reduce this interference. That is, the radio propagation path between the two stations that has already deteriorated at the cell edge where the mobile station 311 and the base station 320 are separated further deteriorates due to the power suppression function of the base station 320.
  • unreachable data that the mobile station 310 could not receive is transferred to the handover source base station 320 by the inter-base station data forwarding process.
  • the amount of data transferred at this time can be adjusted by changing the layer 2 parameters, but conventionally these adjustments have not been made.
  • Patent Documents 1 to 4 as prior art.
  • Patent Document 1 describes that when HARQ transmission fails, packet data is fragmented and retransmitted based on the radio channel state, the presence or absence of handover, and the like.
  • Patent Document 2 describes that in adaptive modulation control in which a modulation scheme is changed according to CQI information indicating the state of a wireless environment, adaptive modulation control is performed by reflecting the direction of change in the wireless environment in the CQI information. Yes.
  • Patent Document 3 describes that in adaptive modulation control in which a modulation scheme is changed according to CQI information indicating the state of a wireless environment, the timing for transmitting CQI information is changed during handover.
  • Patent Document 4 describes that when the wireless environment is deteriorated, a long transmission interval per unit of packet is set.
  • handover for example, when a plurality of communicating mobile stations are handed over at the same time due to movement by train, for example, data forwarding processing based on the default layer 2 parameter settings is executed at the same time. And delay occurs.
  • layer 2 parameters are set based on the result of layer 3 processing decision, and then follow the changes in radio propagation path and handover to operate. It is preferable to be changed.
  • an object of the present invention is to provide a wireless communication control method and a wireless communication apparatus that set a layer 2 parameter to an appropriate value following a state change or handover of a wireless propagation path.
  • the transmission side radio communication device and the reception side radio communication A parameter for data link control is set in the apparatus, and the set parameter is changed using a change in the state of the radio propagation path as a trigger.
  • the parameter for data link control is a parameter of a layer 2 protocol.
  • FIG. 4 is a block diagram illustrating a configuration example of a functional unit that performs reception processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS. 2 and 3 of the wireless communication device according to the first embodiment.
  • FIG. 4 is a block diagram illustrating a configuration example of a functional unit that performs transmission processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS.
  • FIG. 6 is a diagram illustrating a data format processed by functional units 431 (531), 432 (532), and 433 (533) of each sublayer of layer 2.
  • FIG. FIG. 6 is a chart showing layer 2 parameters related to the present embodiment and setting examples of typical communication services.
  • 10 is a sequence flow showing the first half of a layer 2 parameter setting changing operation based on a change in the SIR value of the wireless communication device in the present embodiment.
  • 10 is a sequence flow showing the second half of the layer 2 parameter setting changing operation based on the change of the SIR value of the wireless communication apparatus in the present embodiment.
  • 6 is a chart showing a specific example of parameter values of layer 2 that are dynamically changed in the present embodiment.
  • FIG. 4 is a conceptual diagram of retransmission processing on a transmission side (base station) and a reception side (mobile station).
  • FIG. 6 is a diagram illustrating information processing in a retransmission buffer 26 and a reassembly buffer 281 in FIG. It is a figure showing the division
  • FIG. 4 is a block diagram illustrating a configuration example of a functional unit that performs reception processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS. 2 and 3 of the wireless communication device according to the second embodiment.
  • FIG. 4 is a block diagram illustrating a configuration example of a functional unit that performs transmission processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS. 2 and 3 of the wireless communication device according to the second embodiment.
  • FIG. 2 is a block diagram showing a configuration example of a radio communication device on the mobile station side.
  • FIG. 3 is a block diagram showing a configuration example of the radio communication device on the base station side.
  • the mobile station side wireless communication device 410 includes a layer 1 functional unit 420, a layer 2 functional unit 430, and a layer 3 or higher layer functional unit 440.
  • the functional unit 420 of the layer 1 includes a reception processing unit 421, a transmission processing unit 422, and a duplexer 423. Then, the functional unit 420 of layer 1 switches the shared antenna 424 appropriately for transmission and reception by the function of the duplexer 423, and controls wireless communication with the base station side.
  • the reception processing unit 421 performs demodulation processing, decoding processing, CRC check processing, and the like on the received signal
  • the transmission processing unit 422 performs CRC addition processing, encoding processing, modulation processing, and the like on the transmission information.
  • the layer 2 functional unit 430 includes a MAC functional unit 431, an RLC functional unit 432, and a PDCP functional unit 433. Each functional unit sequentially processes the transmission / reception information, and performs control for interconnecting terminals and transferring data without error.
  • the upper layer functional unit 440 includes a layer 3 functional unit and other functional units specific to mobile radio communication. As described above, when the layer 3 function unit activates a communication service or the like, it sets the layer 2 parameters to values that depend on the communication service.
  • the reception processing unit 421 of the mobile station receives downlink information from the base station via the duplexer 423, and performs processing such as demodulation processing on the received signal. Thereafter, the received signal is subjected to processing such as error detection by the functional unit 430 of the layer 2, and is output to the functional unit 440 of the higher layer.
  • the functional unit 430 of the layer 2 divides information with respect to image information and voice information such as communication services input from the functional unit 440 of the upper layer. Processing is performed and output to the transmission processing unit 422. Then, the transmission processing unit 422 performs modulation processing or the like on the input information, and transmits uplink information to the base station side via the duplexer 423.
  • FIG. 3 shows a configuration example of the base station side wireless communication apparatus 510 installed on the base station side. 3 is different from the mobile station side wireless communication apparatus 410 of FIG. 2 in that the upper layer functional unit 540 is connected to the core network CNW.
  • the logical configurations of the layer 1 functional unit 420 (520) and the layer 2 functional unit 430 (530) that constitute the lower layer of the wireless communication device are the same. .
  • FIG. 4 is a block diagram illustrating a configuration example of a functional unit that performs reception processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS. 2 and 3 of the wireless communication device according to the first embodiment.
  • FIG. 5 is a block diagram illustrating a configuration example of a functional unit that performs transmission processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS. 2 and 3 of the wireless communication device according to the first embodiment.
  • the functional units shown in FIGS. 4 and 5 are connected together at terminals A to F as a unit.
  • FIGS. 4 and 5 mainly show the common functional units of both stations.
  • FIG. 4 and FIG. 5 will be described without distinguishing between the base station side and the mobile station side regarding the wireless communication apparatus.
  • the functional unit 430 (530) of the layer 2 of the wireless communication device illustrated in FIGS. 4 and 5 includes the layer 2 receiving unit 1, the layer 2 transmitting unit 2, and the retransmission request control unit 7 as functional units. Furthermore, the functional unit 430 (530) of layer 2 is SIR (Signal to Interference Indication) detection unit 3, handover control unit 4, parameter setting change unit 5, and storage unit 9 as functional units. These functional units are realized by hardware or software.
  • SIR Signal to Interference Indication
  • DL (DownLink) -MAC, DL-RLC, and DL-PDCP shown on the layer 2 receiving unit 1 side are the MAC function unit 431 (531) and RLC function unit 432 (532 in FIG. 2 and FIG. ), Corresponding to the PDCP function unit 433 (533), and represents the range of processing performed for each sublayer on the receiving side.
  • UL (UpLink) -MAC, UL-RLC, and UL-PDCP described on the layer 2 transmission unit 2 side represent the range of processing performed for each sublayer on the transmission side.
  • FIG. 6 is a diagram illustrating a data format processed by the functional units 431 (531), 432 (532), and 433 (533) of each sublayer of layer 2.
  • Each functional unit shown in the range R3 in FIG. 6 corresponds to the functional unit shown in FIGS. 2 and 3, and a broken line indicates a boundary thereof.
  • the arrow shown in the range R1 indicates the direction of transmission processing and reception processing.
  • the data format of the transmission / reception information shown in range R2 differs between the MAC function unit 431 (531), RLC function unit 432 (532), and PDCP function unit 433 (533).
  • PDU Protocol Data Unit
  • RLC PDU Radio Link Control Protocol Data Unit
  • PDCP PDU Packe Data Unit
  • upper layer function section 440 (540) divides the transmission information into IP packets 601, and outputs them to PDCP function section 433 (533).
  • PDCP function unit 433 (533) adds PDCP header PH to IP packet 601, and Processing is performed as the PDU 602, and these are output to the RLC function unit 432 (532).
  • the RLC function unit 432 (532) processes the input information and adds the RLC header RH to the RLC.
  • PDU 603 is generated and output to MAC function unit 431 (531).
  • the MAC function unit 431 (531) combines a plurality of input RLC PDUs 603 and further adds a MAC header MH to them.
  • a PDU 604 is generated and output to the layer 1 functional unit 420 (520).
  • the functional unit 420 (520) of layer 1 transmits the reception information to the MAC.
  • the PDU 604 is output to the MAC function unit 431 (531).
  • the MAC function unit 431 (531) separates the input MAC PDU 604 into a plurality of RLC PDUs 603 and outputs them to the RLC function unit 432 (532).
  • the RLC function unit 432 (532) processes the input information and adds the PDCP header PH to the PDCP
  • the PDU 602 is generated and output to the PDCP function unit 433 (533).
  • the PDCP function unit 433 (533) processes the input information and outputs it as an IP packet 601 to the upper layer function unit 440 (540).
  • FIG. 7 is a chart showing layer 2 parameters related to the present embodiment and setting examples of typical communication services.
  • column 1 the sublayer name of layer 2 is shown.
  • Column 2 shows parameter ID numbers in ascending order.
  • column 3 parameter names for each sublayer are shown.
  • Column 4 describes an example of layer 2 parameter values set for each typical communication service.
  • “BE” represents best-effort communication
  • “VoIP” represents IP telephone communication
  • “Streaming” represents streaming communication that sequentially plays back content such as transmitted video.
  • these parameter values are not set in consideration of changes in the radio propagation path, but are set statically based on each communication service. On the other hand, in the present embodiment, these values are dynamically changed following the change of the radio propagation path.
  • reference symbols P2 and P4 to P16 relating to each function unit correspond to the ID numbers of the parameters in FIG. This is performed based on the parameters P2, P4 to P16. Also, the parameters P1 and P3 are not shown in FIGS. 4 and 5 because they are not parameters related to the functional units in FIGS.
  • the layer 2 parameter setting changing operation of the wireless communication apparatus in the present embodiment will be described with reference to FIGS. Details of processing in each functional unit will be described according to the changing operation.
  • FIG. 8 is a sequence flow showing the first half of the layer 2 parameter setting changing operation based on the change in the SIR value of the wireless communication apparatus in the present embodiment.
  • FIG. 9 is a sequence flow showing the second half of the layer 2 parameter setting changing operation based on the change of the SIR value of the wireless communication apparatus in the present embodiment.
  • the partial flows between FIGS. 8 and 9 are connected at terminals J1 and J2, respectively.
  • the numbers in parentheses described in each step in FIGS. 8 and 9 indicate the reference numerals of the functional units in FIGS. 4 and 5 that execute the step.
  • the radio communication apparatus includes a SIR measurement unit (not shown) in the functional unit 420 (520) of layer 1 shown in FIG.
  • SIR is CQI (Channel Corresponds to “Quality Indication” and represents the ratio of the power of the received signal to the interference signal.
  • the change in the SIR value corresponds to the change in the state of the radio propagation path, and the layer 2 parameter is dynamically changed based on the change in the SIR value.
  • Both the base station and mobile station can perform SIR measurement. Then, one side determines the parameter value of layer 2 based on the SIR measurement result as the transmission side, and requests the opposite reception side to change the setting of the parameter of layer 2 to the determined value. In response to the request, the receiving side changes the layer 2 parameters of its own station. Then, after confirming that the layer 2 parameter on the receiving side has been changed, the transmitting side changes the layer 2 parameter of the local station to the same value as that on the receiving side.
  • the base station performs SIR measurement and requests the layer 2 parameter setting change, and the mobile station is set as the receiving side according to the sequence flow shown in FIG. 8 and FIG. The operation will be described.
  • the SIR measurement unit measures the SIR value of the uplink signal from the mobile station at a specified timing, and outputs the SIR value to the SIR detection unit 3.
  • the SIR detection unit 3 is a functional unit that detects a change in the state of the radio propagation path.When the SIR value input as the state of the radio propagation path indicates a certain level, the SIR value is displayed in the parameter setting change unit 5. A layer 2 setting change signal Q indicating a change in level is output (step S1).
  • the parameter change request generation unit 52 in the parameter setting change unit 5 determines the layer 2 parameter value corresponding to the layer 2 setting change signal Q.
  • FIG. 10 is a chart showing specific examples of layer 2 parameter values that are dynamically changed in the present embodiment.
  • FIG. 10 shows a specific example in the best effort communication (BE) shown in FIG.
  • Columns 1 to 3 in FIG. 10 are the same as columns 1 to 3 in FIG. 7, respectively, and “BE” shown in column 4 of FIG. 7 is shown in column 4 as “conventional BE” for comparison. ing.
  • these parameter sets are defined corresponding to each of a plurality of states of the radio propagation path, further defined for each communication service, and stored in the storage unit 9 as a parameter table. Then, the parameter change request generation unit 52 refers to these tables when determining the layer 2 parameter values. Note that each communication service application may dynamically store the parameter table in the storage unit 9 at the time of activation.
  • the parameter value of layer 2 of both stations is set as the value of parameter set 1.
  • the SIR detector 3 on the base station side sets the layer 2 setting change signal Q indicating that the SIR is greater than 15 dB and less than 20 dB as a parameter.
  • the parameter setting change unit 5 refers to the parameter table with the input of the layer 2 setting change signal Q as a trigger, and determines the parameter value of layer 2 whose setting is changed to the value indicated by the parameter set 2.
  • the parameter change request generation unit 52 of the base station indicates that the layer 2 parameter value on the mobile station side is changed to the parameter value (parameter set) determined in the above procedure, and the determined parameter A parameter change request including a value is generated (step S2). Based on this parameter change request, the mobile station changes the layer 2 parameter value of its own station.
  • the layer 2 Information is sent to the functional unit 430 (530) of the first layer, and the parameters of layer 2 are set. Therefore, a delay occurs until the layer 2 parameter setting is completed.
  • a layer 2 parameter change request is transmitted between the layer function units 432 (532). As a result, the time required for the layer 2 parameter setting is reduced.
  • a parameter change request is transmitted using a control PDU generated in the RLC layer or a MAC control block generated in the MAC layer.
  • Fig. 11 shows an example of the data format of a PDU generated in the RLC layer.
  • D / C of the first bit Bit1 of the first octet Oct1 is an identifier representing whether the PDU is data information or control information, “0” represents data information, and “1” represents control information.
  • TYPE of the second bit Bit2 to the fourth bit Bit4 represents the type of PDU, and for example, “000” is defined as the parameter change request described above, and “001” is defined as the parameter change confirmation corresponding to the parameter change request. Also, “Poll” “Timer”, “Rx Window size”, and the like are values specifically set as parameters of layer 2 shown in column 3 of FIG.
  • the mobile station In response to a parameter change request from the base station, the mobile station returns a parameter change confirmation.
  • the control PDU indicating the parameter change confirmation generated is “D / C” set to “1”, “TYPE” ”Is“ 001 ”and has the parameter value of the layer 2 set in the mobile station.
  • PDUs used in the present embodiment there are data PDUs for transmitting various content information such as communication services and status PDUs indicating retransmission information such as delivery messages (ACK / NACK).
  • the data PDU includes various content information such as a communication service.
  • Status PDU is a type of control PDU.
  • the “D / C” is “1”, and for example, “010” is defined in “TYPE” to distinguish it from other control PDUs.
  • the status PDU includes information related to retransmission such as a delivery message (ACK / NACK).
  • FIG. 12 shows an example of the data format of the MAC control block.
  • “LCID” of the first bit Bit1 to the fifth bit Bit5 of the first octet Oct1 is an information identification ID. Allocation of “LCID” is under study. For example, “11000” that is still pending is defined as a parameter change request, and “11001” is defined as a parameter change confirmation.
  • “Timer”, “Rx Window size”, and the like are values specifically set as Layer 2 parameters.
  • the parameter change request generated by the parameter change request generator 52 of the base station is the control PDU or MAC control block shown in FIG.
  • the data format is transmitted to the mobile station.
  • the processing is transferred to the MAC control block generation unit 221.
  • the processing is transferred to the control PDU generation unit 231 (step S3).
  • the MAC control block generation unit 221 generates a MAC control block based on the parameter change request, adds header information and the like, and outputs the MAC control block 222 to the MAC combination unit 222 (step S4).
  • the control RLC generation unit 231 generates a control PDU based on the parameter change request. And RLC The PDU generation unit 23 adds header information and the like to the generated control PDU, generates an RLC PDU having a predetermined data format to be processed by the RLC function unit 432 (532) shown in FIG. (Step S5).
  • the MAC PDU combining unit 222 combines RLC PDUs received from a plurality of channels. For example, when transmitting various content information such as a communication service, a plurality of data PDUs are output from the RLC retransmission control unit 28, and RLC A plurality of RLC PDUs to which header information or the like is added via the PDU generation unit 23 are input to the MAC PDU combination unit 222.
  • the MAC PDU combining unit 222 as shown in FIG. 6, RLC indicating a layer 2 parameter change request
  • the PDU or MAC control block is combined with another RLC PDU to generate a MAC PDU having a predetermined data format to be processed by the MAC function unit 431 (531) (step S6).
  • the MAC PDU retransmission control unit 21 uses the MAC generated by the MAC PDU combining unit 222.
  • the PDU is temporarily stored in the retransmission buffer 211, and further the MAC PDU is output to the layer 1 functional unit 520 (step S7).
  • the PDU is transmitted as transmission data to the mobile station via the layer 1 functional unit 520.
  • a MAC PDU including a PDU or a MAC control block is input to the MAC PDU separation unit 111.
  • the MAC PDU separation unit 111 of the mobile station converts the input MAC PDU into a plurality of RLCs as shown in FIG. Separated into PDUs (step S8).
  • the RLC PDU (R) is output to the PDU type analysis unit 121.
  • the MAC PDU separation unit 111 receives the input MAC
  • the MAC control block (M) is output to the MAC control block analyzing unit 112 (step S9).
  • the processing after the PDU type analysis unit 121 is multiplexed in the same manner as the multiplexing shown by the MAC PDU combining unit 222.
  • multiple separated RLC The PDUs are output to the PDU type analysis units 121 of a plurality of channels, and thereafter processed simultaneously in parallel.
  • the description of “LCN n” output from the MAC PDU demultiplexing unit 111 in FIG. This represents that a plurality of RLC PDUs separated by the PDU separation unit 111 are output to the PDU type analysis unit 121 of each channel.
  • the PDU type analysis unit 121 determines whether the input RLC PDU indicates a control PDU or a data PDU. In this determination, the PDU type analysis unit 121 refers to “D / C” of the first bit Bit1 of the first octet Oct1 shown in the data format of the PDU of FIG.
  • the RLC PDU When “D / C” is “1”, the RLC PDU is determined to be a control PDU (C), and the process is transferred to the control PDU type analysis unit 122. If “D / C” is “0”, RLC The PDU is determined to be data PDU (D), and the processing is transferred to the poll check unit 13 (steps S10 and S11). The processing after the poll check unit 13 in the case of the data PDU (step S12) will be described later.
  • the control PDU type analysis unit 122 determines whether the input RLC PDU (control PDU) is a control PDU indicating a parameter change request or a status PDU indicating a data retransmission request. In this determination, the control PDU type analysis unit 122 refers to “TYPE” of the second bit Bit2 to the fourth bit Bit4 shown in the data format of the PDU in FIG.
  • control PDU When “TYPE” is “000”, the control PDU is determined to be a control PDU (L2) indicating a parameter change request, and the process is transferred to the parameter change request analyzing unit 53.
  • control PDU When “TYPE” is “010”, the control PDU is determined to be a status PDU (S) indicating a data retransmission request, and the process is transferred to the ACK / NACK analysis unit 14 (steps S13 and S14). The processing after the ACK / NACK analysis unit 14 in the case of status PDU (step S15) will be described later.
  • the MAC control block analysis unit 112 determines whether the received MAC control block represents a parameter change request or other processing request. In this decision, the MAC The control block analysis unit 112 refers to “LCID” of the first bit Bit1 to the fifth bit Bit5 of the first octet Oct1 of the MAC control block shown in the data format of FIG.
  • the MAC control block is determined to be a MAC control block representing a parameter change request, and the process is moved to the parameter change request analysis unit 53 (step S16).
  • “Padding” processing is assigned to “11111” of “LCID”.
  • MAC When the control block analysis unit 112 detects “11111” as “LCID”, the process proceeds to “Padding” processing (not shown).
  • the parameter change request analysis unit 53 sets the layer 2 parameter L2P to the layer 2 parameter value indicated by the input control PDU or MAC control block (step S17).
  • the parameter change confirmation generation unit 54 generates a parameter change confirmation indicating that the own layer 2 parameter value has been changed to the requested parameter value (step S18).
  • the parameter change confirmation is generated in the data format of either the control PDU (C) or the MAC control block (M) as in step S3 (step S19).
  • the “TYPE” of the control PDU indicating the parameter change confirmation is “001”
  • the MAC The “LCID” of the control block is “11001”.
  • the PDU is transmitted as transmission data to the base station via the layer 1 functional unit 420.
  • predetermined processing is performed on the received data in the functional unit 520 of layer 1, and RLC indicating the parameter change confirmation generated in the mobile station
  • a MAC PDU including a PDU or a MAC control block is input to the MAC PDU separation unit 111.
  • RLC indicating parameter change confirmation input to the MAC PDU separation unit 111 in the processing of steps S24 to S32 in the base station Processing similar to the processing performed in steps S8 to S16 is performed on the PDU or the MAC PDU including the MAC control block.
  • the RLC PDU or MAC control block indicating parameter change confirmation indicates that “TYPE” represents “001” in the determination of the control PDU type analysis unit 122, and the MAC In the determination by the control block analysis unit 112, “LCID” represents “11001”. Then, after these determinations, the process is transferred to the parameter change confirmation check unit 51.
  • the parameter change confirmation check unit 51 checks the parameter change confirmation indicated by the input control PDU or MAC control block (step S33).
  • the parameter change request generation unit 51 confirms that the setting on the receiving side has been performed as requested based on the check result of the parameter change confirmation checking unit 51, and then adjusts the layer 2 parameter value L2P of its own station to the receiving side. (Step S34).
  • the layer 2 parameter settings of the base station and the mobile station are changed using the change in the state of the radio propagation path as a trigger.
  • the mobile station side parameter is set first, and after confirming the setting, the base station side parameter is set.
  • the mobile station side may be set after the base station side is set. .
  • the base station determines a corresponding parameter set using a change in the state of the radio propagation path as a trigger, changes the parameter of its own layer 2 to the value indicated by the determined parameter set, and then requests the mobile station to change the parameter. Send. Then, the mobile station changes its own parameter based on the parameter change request, and transmits a parameter change confirmation to the base station as confirmation.
  • FIG. 13 is a sequence flow showing a transmission / reception operation of service information and the like in the wireless communication apparatus of this embodiment.
  • FIG. 14 shows an ARQ (Automatic Repeat Request: Automatic in the transmission / reception operation of FIG. It is a sequence flow showing retransmission control by Repeat Request).
  • the flow between FIG. 13 and FIG. 14 is connected at terminals J3, J4, and J5, respectively.
  • the numbers in parentheses described in each step indicate the reference numerals of the functional units in FIGS. 4 and 5 that execute the step.
  • Service information is transmitted and received in the same manner at both the base station side and the mobile station side.
  • the base station is the transmitting side and the mobile station is the receiving side.
  • the layer 2 transmission unit 2 of the base station performs transmission processing on the transmission information. Then, the layer 2 reception unit 1 of the mobile station performs reception processing on the reception information. Furthermore, if correct information cannot be received by the mobile station due to a transmission error, retransmission control by ARQ is performed.
  • ARQ is an automatic error control technique for achieving highly reliable data communication. If the mobile station receives the information correctly, it returns an acknowledgment message (ACK) to the base station. If the mobile station fails to receive the data correctly due to a transmission error, the mobile station receives an undelivered acknowledgment message (NACK). return it. When the base station receives “NACK” or fails to receive “ACK” within a specified time, the base station retransmits the same corresponding data. Then, this retransmission is repeated until “ACK” is received or the number of retransmissions reaches a specified number.
  • ACK acknowledgment message
  • NACK undelivered acknowledgment message
  • the PDCP transmission processing unit 27 of the base station receives information based on the communication service from the upper layer functional unit 440, temporarily stores the information in the SDU buffer 271, and further stores the information. RLC as appropriate The data is output to the PDU retransmission control unit 28 (step S41).
  • the RLC PDU retransmission control unit 28 temporarily stores information input from the PDCP transmission processing unit 27 in the retransmission buffer 26. In addition, RLC The PDU retransmission control unit 28 appropriately reads (copies) information to be transmitted from the information stored in the retransmission buffer 26 into the reassembly buffer 281 and adds management information.
  • a control PDU (C) representing data control information or a data PDU (D) representing data information is generated according to the content of the information (steps S42 to S45).
  • the value of “D / C” is set to “1”
  • the value of “D / C” is set to “0”.
  • control PDU (C) representing the data control information generated here depends on various contents, for example, and is shown in the data format of the PDU in FIG. A unique value is defined for "TYPE".
  • the buffer monitoring unit 25 monitors the amount of information stored in the retransmission buffer 26 and outputs the storage rate to the polling management unit 24. In addition, the buffer monitoring unit 25 defines an upper limit of the information storage capacity of the retransmission buffer 26.
  • the polling management unit 24 manages polling in the base station for asking the mobile station whether there is a transmission request to the base station. Polling is periodically performed at a prescribed timing or based on the accumulation rate of the retransmission buffer 26 input from the buffer monitoring unit 25 described above. When these polling conditions occur, the polling manager 24 A polling request is issued to the PDU generator 23.
  • the RLC PDU generation unit 23 adds header information or the like to the control PDU or data PDU generated by the RLC PDU retransmission control unit 28, and has the specified data format RLC shown in FIG. Generate a PDU. If a polling request is generated from the polling management unit 24, the polling bit of the header information of the RLC PDU is set to “valid” (step S46). RLC with the polling bit set to "valid" The mobile station that has received the PDU returns a status PDU having information related to retransmission such as “ACK / NACK” to the base station based on the functions of the poll check unit 13 and the retransmission request control unit 7 described later.
  • the MAC PDU combining unit 222 combines RLC PDUs received from a plurality of channels to obtain a MAC that is a predetermined data unit.
  • a PDU is generated (step S47). As described above, the processing up to the generation of the RLC PDU in step S46 is multiplexed and performed in parallel by a plurality of channels.
  • the MAC PDU retransmission control unit 21 uses the MAC generated by the MAC PDU combining unit 222.
  • the PDU is temporarily stored in the retransmission buffer 211, and further, the MAC PDU is output to the layer 1 functional unit 520 (step S48).
  • the MAC PDU having information based on the communication service is transmitted to the mobile station as transmission data via the layer 1 functional unit 520.
  • the MAC unit having information based on the communication service generated by the base station, in which the processing for the received data is performed by the functional unit 420 of the layer 1 The PDU is input to the MAC PDU separation unit 111.
  • the MAC PDU separation unit 111 converts the received MAC PDU into a plurality of RLCs as shown in FIG. Separated into PDUs, these RLC PDUs are output to the PDU type analysis unit 121 (step S49). As described above, the processing after the PDU type analysis unit 121 is multiplexed.
  • the PDU type analysis unit 121 determines whether the input RLC PDU represents a control PDU or a data PDU. In this determination, the PDU type analysis unit 121 refers to “D / C” of the first bit Bit1 of the first octet Oct1 shown in the data format of the PDU of FIG.
  • the RLC PDU is determined to be a control PDU (C), and the process is transferred to the control PDU type analysis unit 122. If “D / C” is “0”, RLC The PDU is determined to be data PDU (D), and the processing is transferred to the poll check unit 13 (steps S50 and S51).
  • the control PDU type analysis unit 122 refers to the “TYPE” shown in the data format of FIG. 11 of the input RLC PDU (control PDU), and detects the control PDU indicating the data control information depending on the various contents described above. . Then, the processing is moved to a function unit (not shown) that performs processing corresponding to the control PDU (step S63-2).
  • the poll check unit 13 refers to the polling bit of the input RLC PDU (data PDU) and checks whether there is polling from the transmission side (step S53). And if polling is "invalid”, RLC Processing is transferred to the PDU reception control unit 15. If the polling is “valid”, the process is transferred to the retransmission request control unit 7.
  • the RLC PDU reception control unit 15 temporarily stores the input RLC PDU in the reordering buffer 161. Also, the information sent from the sender does not always arrive in order, so RLC The PDU reception control unit 15 changes the order (reordering).
  • the RLC PDU reception control unit 15 appropriately reads (copies) information stored in the reordering buffer 161 into the reassembly buffer 162, adds management information, and adds PDCP.
  • the PDU is appropriately output to the PDCP reception processing unit 18 (step S53).
  • the buffer monitoring unit 17 monitors the amount of information stored in the reordering buffer 161.
  • the buffer monitoring unit 17 also stores the RLC stored in the reordering buffer 161.
  • the buffer monitoring unit 17 defines the upper limit of the information storage capacity of the reordering buffer 161.
  • the PDCP reception processing unit 18 performs processing on the input PDCP PDU and outputs an IP packet to the upper layer function unit 440 (step S54).
  • step S52 if the polling is “valid”, the process proceeds to the retransmission request control unit 7.
  • the subsequent processing is retransmission control by ARQ.
  • the retransmission request control unit 7 is a functional unit related to retransmission control in the mobile station.
  • the retransmission request control unit 7 of the mobile station responds to the polling detection by the poll check unit 13 and causes the base station to retransmit the information based on the missing information detected by the buffer monitoring unit 17 described above.
  • the status PDU generation unit 71 generates a status PDU having information about the generated ACK / NACK list and other retransmissions, and RLC
  • the data is output to the PDU generation unit 23 (step S55).
  • the subsequent processing at steps S56 to S58 of the mobile station is the same as the processing at S46 to S48 of the base station described above.
  • the status PDU is the MAC containing the status PDU
  • the PDU is transmitted to the base station side through the layer 1 functional unit 420 and input to the MAC PDU separation unit 111 on the base station side as a MAC PDU including a status PDU.
  • the status PDU has “D / C” shown in the data format of FIG. 11 as “1” and is classified as one of the control PDUs (C).
  • the data is input to the control PDU type analysis unit 122 via the PDU separation unit 111 and the PDU type analysis unit 121 (steps S59 to S61). Note that the processing after step S52-2 is not performed in the base station on the transmission side.
  • the control PDU type analysis unit 122 determines whether the input RLC PDU (control PDU) represents a data retransmission request (status PDU (S)) or another control PDU (C) (step S63).
  • the other control PDU (C) is, for example, a control PDU representing data control information depending on content.
  • TYPE shown in the data format of FIG. 11 is referred to, and when the received control PDU is a status PDU (S), the processing is transferred to the ACK / NACK analysis unit 14 (step S64). . If the received control PDU is another control PDU (C), the process is transferred to a functional unit (not shown) that performs the process corresponding to the control PDU (step S65).
  • the ACK / NACK analysis unit 14 is a functional unit that is paired with the retransmission request control unit 7 and is related to retransmission control in the base station.
  • the ACK / NACK analysis unit 14 refers to the ACK / NACK list of the status PDU from the mobile station and detects whether or not the already transmitted information has been correctly delivered to the mobile station. If the ACK / NACK analysis unit 14 detects “NACK” from the ACK / NACK list, the RLC The PDU retransmission control unit 2 is requested to retransmit information corresponding to “NACK” to the mobile station (step S66).
  • the RLC PDU retransmission control unit 28 retransmits information corresponding to the information indicating “NACK” in response to a request from the ACK / NACK analysis unit 14 (step S67). As described above, the information transmitted from the layer 2 transmission unit 2 is temporarily stored in the retransmission buffer 26.
  • the RLC PDU retransmission control processing unit 28 reads (copies) the retransmission information corresponding to “NACK” as appropriate into the reassembly buffer 281 with reference to the retransmission buffer 26, and adds management information. Then, a control PDU (C) representing data control information or a data PDU (D) representing data information is generated according to the content of the information. Also RLC The PDU retransmission control processing unit 28 deletes information corresponding to “ACK” from the retransmission buffer 26 and releases the buffer.
  • C control PDU
  • D data PDU
  • steps S68 to S73 at the base station is the same as the processing of steps S43 to S48 of the base station described above, and retransmission information is sent to the functional unit 520 of layer 1 by the MAC. It is output as a PDU and transmitted to the mobile station.
  • FIG. 15 is a conceptual diagram of retransmission processing on the transmission side (base station) and the reception side (mobile station).
  • RLC generated by the RLC function unit 532 of the base station
  • the PDUs (RP1, RP2,...) are combined by the MAC function unit 531 and transmitted to the mobile station as MAC PDUs (MP1, MP2,).
  • Figure 15 shows that a transmission error occurred due to degradation of the radio propagation path between the base station and the mobile station, and the mobile station This represents the case where PDUs (RP2, RP3, RP4) could not be received correctly.
  • the mobile station In response to polling from the base station, the mobile station returns an ACK / NACK list Ls to the base station.
  • RP1-ACK in the ACK / NACK list Ls is RLC.
  • RP2-NACK indicates that the RLC PDU (RP2) could not be correctly received by the mobile station.
  • the ACK / NACK analysis unit 14 of the base station analyzes the received ACK / NACK list Ls. And base station RLC Based on the analysis result, the PDU retransmission control unit 28 appropriately reads (copies) information corresponding to “NACK” from the retransmission buffer 26 to the reassembly buffer 281 and adds management information to the RLC. Output to the PDU generator 23. Then, the RLC PDU generator 23 regenerates RLC PDUs (RP2, RP3, RP4) by adding header information and the like.
  • the RLC PDU retransmission control processing unit 28 of the base station erases the information of RLC PDUs (RP1, RP5) corresponding to “ACK” from the retransmission buffer 26, and releases the buffer.
  • FIG. 16 is a diagram showing information processing in the retransmission buffer 26 and the reassembly buffer 281 in FIG.
  • FIG. 17 is a diagram illustrating division of information when information is retransmitted.
  • transmission information E1 input from the PDCP transmission processing unit 27 is temporarily stored in the retransmission buffer 26.
  • the information is appropriately read (copied) into the reassembly buffer 281.
  • management information is added to each read information.
  • a control PDU or data PDU is generated based on the information, and RLC is generated.
  • the data is output to the PDU generation unit 23.
  • the information Pi2, Pi3, Pi4 stored in the retransmission buffer 26 of FIG. 16 is the RLC for which “NACK” is returned in FIG. This is information held in PDUs (RP2, RP3, RP4) and is retransmitted to the mobile station.
  • information Pi2, Pi3,... Corresponding to FIG. 17, information Pi2 of the data length A2 is read (copied) as it is into the reassembly buffer 281 at the first transmission, and management information is added to the RLC shown in FIG. It is transmitted to the mobile station as PDU (RP2). Similarly, information Pi3 of data length A3 is transmitted as RLC PDU (RP3).
  • the information Pi2 read into the reassembly buffer 281 is divided into data lengths Pi2-1, Pi2-2, and Pi2-3. Further, the information Pi3 is divided in the same manner. Then, as shown in FIG. 17, information T1, T2, T3... Having data lengths a, b, c... Shorter than the initial transmission information A2, A3 is generated. These data lengths a, b, c... Are set according to the state of the radio propagation path.
  • the pieces of information T1, T2, T3,... Thus divided need to be managed in a unified manner, and management information Hm is added to each in the reassembly buffer 281 as shown in FIG. And RLC with shorter data length than the first transmission information A PDU is transmitted to the mobile station.
  • the information transmitted after being divided from the base station is temporarily stored in the reordering buffer 161 of the mobile station, and is read into the reassembly buffer 162 and recombined as appropriate.
  • the base station when retransmission control by ARQ is performed, the base station performs division processing on the initial transmission information, and the mobile station performs combination processing thereof, so the processing load and processing time of both stations increase.
  • the management information Hm is added to each of the divided information, the information transfer load, the processing load for information management, and the processing time increase.
  • the parameter value of layer 2 is dynamically changed according to the radio propagation path.
  • Parameters P1, P2, and P14 are parameters related to the forwarding process at the time of handover and are not changed according to the change of the radio propagation path, and will be described in the layer 2 setting change operation at the time of handover described later.
  • Parameter P3 (RLC mode) is a parameter indicating the data transfer method based on the communication service. “AM” represents “confirmed data transfer”, “UM” represents “non-confirmed data transfer”, and “TM” represents “transparent data transfer”.
  • the setting of best effort communication (BE) is “AM” and is constant regardless of the change in SIR.
  • the buffer monitoring unit 25 defines the upper limit (buffer size) of the information storage capacity of the retransmission buffer 26 based on the value set in the parameter P5 (Tx Window size).
  • P5 Tx Window size
  • the division processing in the reassembly buffer 281 is performed on all information staying in the retransmission buffer 26.
  • the processing load and processing time for the division processing increase if the buffer size is large.
  • the management information Hm is added to each of the divided information, if the buffer size is large, the information transfer amount between both stations increases.
  • the buffer size of the retransmission buffer 26 by setting the parameter P5 (Tx Window size) small when the radio propagation path deteriorates.
  • the parameter P5 is changed from “128” to “64” when the SIR value is 15 dB or less.
  • the buffer size of the retransmission buffer 26 is halved. For example, when the retransmission buffer 26 is filled with the staying information, the processing load and processing time associated with the division processing are halved.
  • the retransmission buffer 26 when the retransmission buffer 26 is filled with the staying information, the input of new transmission information input from the PDCP transmission processing unit 27 to the retransmission buffer 26 is suppressed by flow control.
  • the buffer size is doubled to secure a free space in the buffer. New transmission information is input to the retransmission buffer 26, and transmission processing is performed on them. That is, this change improves the followability to the state of the radio propagation path.
  • the polling management unit 24 uses the parameter P6 (Widow based polling), parameter P7 (Poll Window), parameter P8 (Poll Timer), parameter P9 (Poll_prohibit Timer), parameter P10 (poll) Send polling based on (prohibit).
  • the mobile station returns a status PDU having an ACK / NACK list to the base station in response to polling from the base station. Then, the base station retransmits information corresponding to “NACK” based on the ACK / NACK list.
  • the base station since retransmission control by ARQ leads to an increase in processing load and the like, it is preferable to reduce the frequency of polling when the radio propagation path deteriorates.
  • the polling management unit 24 receives the accumulation rate of information accumulated in the retransmission buffer 26 from the buffer monitoring unit 25. Further, the upper limit of the accumulation rate is set in the parameter P7. The polling management unit 24 transmits polling when the accumulation rate of information in the retransmission buffer 26 reaches the upper limit of the accumulation rate indicated by the parameter P7. In the parameter P6, an “ON” or “OFF” value indicating whether or not to enable transmission of polling based on the above-described accumulation rate is set.
  • the parameter P6 when the SIR value is 15 dB or less, the parameter P6 is changed from “OFF” to “ON”, and the parameter P7 is changed to “50”. That is, when the wireless communication environment is good, the amount of information staying in the retransmission buffer 26 is small, so polling based on the accumulation rate is not transmitted. Then, when the wireless communication environment deteriorates, polling is transmitted when the accumulation rate of the retransmission buffer 26 reaches 50% so that the information retained in the retransmission buffer 26 is deleted early.
  • the parameter P8 sets the time interval for polling transmission.
  • the value of parameter P8 is set larger as the SIR value deteriorates. That is, when the radio channel is deteriorated, the polling frequency is reduced.
  • polling is transmitted based on the accumulation rate of information in the retransmission buffer 26 or the passage of a certain time interval.
  • a time interval until the next polling is transmitted is set.
  • the parameter P10 is set to an “ON” or “OFF” value indicating whether or not the setting of the parameter P9 is valid.
  • the parameter P10 when the SIR value is 15 dB or less, the parameter P10 is set to “ON” from “OFF”, and the parameter P9 is set to a larger value as the radio propagation path deteriorates.
  • the SIR value is greater than 15 dB, the parameter 6 is set to “OFF”, so that polling transmission based on the information accumulation rate of the retransmission buffer 26 is not performed.
  • the parameter P10 is also set to “OFF” accordingly. Only when the SIR value is 15 dB or less, since the parameter 6 is set to “ON”, polling is transmitted by the occurrence of either the information accumulation rate of the retransmission buffer 26 or a certain time interval.
  • the parameter P9 value is set to match the radio propagation path in order to avoid an increase in processing load due to the occurrence of polling transmission in a short cycle due to the occurrence of each condition.
  • the retransmission request control unit 7 sends the parameter P12 (Status prohibit Timer) and a status PDU having an ACK / NACK list in response to polling based on the parameter P13 (STATUS prohibit).
  • parameter P12 the time interval at which the status PDU is transmitted is set. That is, after the status PDU is transmitted in response to the polling, the status PDU is not transmitted even if the polling is received until the time set by the parameter P12 elapses.
  • This setting allows the mobile station to adjust the time interval for transmitting the status PDU to the base station in response to polling, for example, even when the base station erroneously transmits polling in a short cycle.
  • the parameter P13 is set to an “ON” or “OFF” value indicating whether or not to enable the setting of the parameter P12.
  • the parameter P13 when the SIR value becomes 15 dB or less, the parameter P13 is changed from “OFF” to “ON”.
  • the value of parameter P12 is set to be larger as the SIR value deteriorates. That is, when the radio communication environment is good, the mobile station always transmits a status PDU to the base station in response to polling from the base station. And when a radio propagation path deteriorates, the transmission frequency of status PDU is reduced. That is, retransmission control by ARQ is reduced.
  • the buffer monitoring unit 17 defines the upper limit (buffer size) of the information storage capacity of the reordering buffer 161 based on the value set in the parameter P4 (Rx window size).
  • the value of parameter P4 is set to be equal to or greater than the value of parameter P5.
  • the value of parameter P4 is set to the same value as the value of parameter P5, and the buffer sizes of retransmission buffer 26 and reordering buffer 161 always match.
  • the order of stored information is changed. This is because information transmitted from the base station is not always stored in the reordering buffer 161 of the mobile station in order due to a transmission error or the like.
  • the parameter P11 (Reordering) applied to the RLC PDU reception control unit 15 timer) is set with a waiting time until the unreceived information is accumulated in order to change the order of the accumulated information in the reordering buffer 161. That is, RLC After the waiting time set in the parameter P11 elapses, the PDU reception control unit 15 does not wait for unreceived information, and changes the order only with the accumulated existing information.
  • the parameter P11 is set to a larger value as the radio propagation path deteriorates.
  • the waiting time may be short because there is a high probability that information is stored in the reordering buffer 161 of the mobile station in order.
  • the probability is low. Therefore, in order to avoid a deterioration in information quality, when the radio propagation path is deteriorated, the waiting time for unreceived information is set to be long.
  • Hybrid Automatic Repeat Request Hybrid Automatic (Repeat Request) is a method that uses the data already received on the receiving side and suppresses the frequency of retransmission by ARQ in Layer 2 by retransmitting only the data that the receiving side could not receive correctly. .
  • the functional unit 420 (520) of Layer 1 in FIGS. 2 and 3 has a HARQ retransmission control unit (not shown), and after reaching the number of times that retransmission by HARQ is set in the parameter P15, Retransmission control by ARQ is performed.
  • the MAC PDU retransmission control unit 21 counts the number of retransmissions of the HARQ retransmission control unit in the functional unit 420 (520) of layer 1, and if the number of retransmissions reaches the value set in the parameter P15, the HARQ retransmission control unit 21 Stops retransmission control by HARQ in the control unit.
  • the retransmission information transmitted by the HARQ retransmission control unit may be generated from information temporarily stored in the retransmission buffer 211.
  • the parameter P15 is set to a larger value as the radio propagation path deteriorates.
  • the processing load of both stations is further reduced by reducing the number of retransmissions by ARQ as described above and further reducing the number of retransmissions by HARQ.
  • the parameter P16 (buffer retention amount correction coefficient) applied to the MAC PDU retransmission control unit 21 is set with a ratio for multiplying the retention amount of information in each buffer such as the SDU buffer 271 and the retransmission buffers 26 and 211.
  • the parameter 16 is a parameter set only for the mobile station.
  • the MAC PDU retransmission control unit 21 of the mobile station actually measures the amount of information retained in each buffer and sequentially transmits it to the base station as a buffer status. Then, the base station allocates an uplink radio band to the mobile station based on the received buffer status and the state of the radio propagation path. A wider band is allocated to a mobile station where information is particularly accumulated.
  • the parameter P16 when the SIR value is 15 dB or less, the parameter P16 is changed from “1” to “1/4”. That is, when the wireless communication environment is good, the amount of information remaining in the mobile station is small, and the actually measured amount of retention is transmitted to the base station as a buffer status.
  • the value of the parameter P16 is set to “1/4”, and a value smaller than the actual staying amount is transmitted to the base station as a buffer status.
  • FIG. 18 is a diagram illustrating inter-base station forwarding processing at the time of handover.
  • Base stations 720 and 730 are connected via a core network CNW, and constitute one radio communication system.
  • the mobile station 710 communicating with the base station 720 at the end of the cell 721 sequentially receives information TD from the base station 720.
  • the ACK / NACK list Ls is transmitted from the mobile station 710 to the base station 720 based on retransmission control by ARQ.
  • the base station 720 sends retransmission information RP2, RP3, RP4 corresponding to “NACK” to the mobile station 710 from the information Pi2, Pi3, Pi4 accumulated in the retransmission buffer 26 shown in FIG. 16 and the received ACK / NACK list Ls. Send. However, when the mobile station 710 is handed over, the base station 720 transmits the retransmission information RP2, RP3, and RP4 to the handover destination base station 730 as forwarding data FD.
  • the forwarding data FD also includes IP information stored in the SDU buffer 271 of the base station 720.
  • the handover destination base station 730 saves the transmitted forwarding data FD in each buffer, and takes over the transmission processing performed by the handover source base station 720 to the mobile station 710.
  • the forwarding data FD is transmitted from the handover source base station 720 to the handover destination base station 730 by handover, but the increase in the amount of forwarding data transmitted and received is caused by the processing load, processing time, This leads to an increase in transfer load. For this reason, the amount of forwarding data is preferably as small as possible.
  • Parameter set 5 differs from parameter set 4 in that the value of parameter P2 (reception window size) is “512”.
  • FIG. 19 is a sequence flow showing an example of layer 2 parameter setting change in handover.
  • the mobile station 710, base stations 720 and 730, and core network CNW in FIG. 19 correspond to each element in FIG. Moreover, the broken line arrow of a figure represents a connecting point.
  • FIG. 19 shows how the connection between the mobile station 710 and the core network CNW via the base station 720 is switched to the connection between the mobile station 710 and the core network CNW via the base station 730 in the present embodiment.
  • the flow is shown.
  • handover occurs while each station 710, 720, 730 is operating with the parameter value of layer 2 indicated by “conventional BE” in column 4 shown in FIG.
  • the layer 2 parameter values of the stations 710, 720, and 730 are changed to the values indicated by the parameter set 5.
  • the same layer 2 parameter value (parameter set 5) is set in each station 710, 720, 730.
  • different parameter values may be set for the stations 710, 720, and 730 based on the roles of the stations 710, 720, and 730 in the forwarding process at the time of handover and the functions according to the layer 2 parameters.
  • the handover control unit 4 detects the state where the mobile station is handed over as a change in the radio propagation path instead of the SIR detection unit 3 shown in FIG. To do.
  • the handover control unit 4 of each station transmits and receives a signal related to the handover.
  • the radio communication apparatus includes a handover signal transmission / reception unit (not shown) in functional unit 420 (520) of layer 1 shown in FIG. 2 or FIG.
  • the handover signal transmission / reception unit is an external interface for signals transmitted / received by the handover control unit 4, and the handover control unit 4 of each station transmits / receives a signal related to handover via each other's handover signal transmission / reception unit.
  • the mobile station 710 at the cell edge measures the downlink reception sensitivity (SIR value) of the base station 720 at any time under measurement control of the handover source base station 720, and reports the result to the handover source base station 720 (step S101, S102).
  • SIR value downlink reception sensitivity
  • the handover source base station 720 receives the report and determines whether or not to execute the forwarding process based on the measurement result of the downlink reception sensitivity (SIR value) indicated by the report (step S103).
  • SIR value downlink reception sensitivity
  • the base station 720 When executing the forwarding process, the base station 720 transmits a forwarding request indicating that the forwarding process is to be executed to the handover destination base station 730 (step S104).
  • the handover destination base station 730 receives the forwarding request from the handover source base station 720, and in response to this, the handover destination base station 730 performs initial setting of the own station for forwarding processing, etc. S105). Then, the handover destination base station 730 returns a forwarding confirmation indicating that the initial setting or the like has been completed to the handover source base station 720 (step S106).
  • the handover control unit 4 shown in FIG. 4 in the handover source base station 720 receives a forwarding confirmation from the handover destination base station 730 to detect a state in which the mobile station is handed over.
  • the handover control unit 4 transmits a handover command HOcom indicating execution of the forwarding process to the mobile station 710 (step S107).
  • the handover command HOcom has information on the base station 730 that is the handover destination.
  • the handover control unit 4 in the base station 720 outputs a handover determination signal HO to the parameter setting change unit 5 in response to the forwarding confirmation.
  • the parameter change required generation unit 52 in the parameter setting change unit 5 uses the input of the handover determination signal HO as a trigger, refers to the parameter table in the storage unit 9, and sets the parameter value of the layer 2 of the own station to the value indicated by the parameter set 5. Change (step S108).
  • the PDCP transmission processing unit 27 defines the upper limit (buffer size) of the information storage capacity of the SDU buffer 271 based on the value set in the parameter P2. By setting the value of the parameter P2 to half, the buffer size of the SDU buffer 271 is halved, and the IP information input to and accumulated in the SDU buffer 271 by flow control is reduced.
  • the value of the parameter P5 is set to half of “128” to “64”, the buffer size of the retransmission buffer 26 is halved, and the retransmission information staying in the retransmission buffer 26 is reduced.
  • These pieces of information are information transmitted to the handover destination base station 730 as forwarding data at the time of handover as described above. That is, the amount of forwarding data is reduced by setting the values of the parameter P2 and the parameter P5 to be small.
  • the frequency of polling from the base station 720 to the mobile station 710 is reduced by changing the parameter value of the other layer 2 to the value indicated by the parameter set 5, and the frequency of retransmission by ARQ during the forwarding process is reduced. Reduced.
  • parameter P14 related to the PDCP transmission processing unit 27 is set to an “ON” or “OFF” value indicating whether to transmit the IP information stored in the SDU buffer 271 as forwarding data.
  • parameter P3 RLC When (mode) is “AM”, since the accumulated IP information is transmitted as forwarding data, the parameter P14 is not changed in the present embodiment. In the forwarding process, the parameter P14 only needs to be set in the base station 720 that is the handover source.
  • the forwarding data to be transmitted includes the retransmitted information that has stayed and the new IP information as described above.
  • IP information may be newly input from the core network CNW to the handover destination base station 730.
  • Pieces of information are temporarily stored in a buffer (not shown) of the PDCP function unit 533 shown in FIG. 3 in the course of reception processing of the handover destination base station 730. However, since these pieces of information do not always arrive in order, the order is changed (reordered).
  • parameter P1 an “ON” or “OFF” value is set to determine whether or not this order change is valid.
  • the parameter P1 is always “ON” and is not changed.
  • the parameter change request generation unit 52 in the parameter setting change unit 5 responds to the handover determination signal HO and sets the layer 2 parameter value in the same manner as the process of step 2 shown in FIG. A parameter change request indicating that the value is changed to the value shown in the parameter set 5 is generated. Then, the processing from steps S1 to S7 shown in FIG. 8 is performed, and transmission data including a parameter change request is transmitted to the mobile station 710 (step S109).
  • the handover control unit 4 of the mobile station 710 receives the handover command HOcom and outputs a handover decision signal HO to the parameter setting change unit 5 of the own station.
  • the parameter change request analyzing unit 53 in the parameter setting changing unit 5 is a parameter change indicating that the layer 2 parameter value transmitted from the base station 720 is changed to the value shown in the parameter set 5 in response to the handover determination signal HO. Wait for the request to be entered.
  • the mobile station 710 receives the transmission data including the parameter change request, and the mobile station 710 performs the processing from steps S8 to S16 shown in FIG. 8, and the parameter change request analysis unit 53 sends a parameter change request. Entered.
  • the parameter change request analyzing unit 53 changes the parameter LP2 of the own layer 2 to the value of the parameter set 5 indicated by the input parameter change request, similarly to step S17 (step S110).
  • This setting reduces the frequency of transmission of status PDUs including at least the ACK / NACK list from the mobile station 710 to the base stations 720 and 730, and the frequency of retransmission by ARQ during the forwarding process.
  • the handover control unit 4 of the mobile station 710 identifies the handover destination base station 730 from the handover destination information included in the handover command HOcom input from the base station 720. Then, the mobile station 710 synchronizes with the handover destination base station 730. Further, the handover control unit 4 transmits to the handover destination base station 730 a mobile station handover setting confirmation HOconf indicating that the setting of the layer 2 parameter in the mobile station 730 based on the handover is completed.
  • the parameter change confirmation generation unit 54 of the mobile station 710 generates a parameter change confirmation indicating that the layer 2 parameter value of the own station has been changed to the value of the parameter set 5 as in step S18 of FIG. Then, the processing from steps S19 to S23 shown in FIG. 8 is performed, and transmission data including parameter change confirmation is transmitted to the handover destination base station 730 (step S111).
  • the handover control unit 4 of the base station 730 In response to reception of the mobile station handover setting confirmation HOconf, the handover control unit 4 of the base station 730 outputs a handover determination signal HO to the parameter setting change unit 5 of the own station.
  • the parameter change confirmation check unit 51 in the parameter setting change unit 5 waits for input of a parameter change confirmation transmitted from the mobile station 710 in response to the handover determination signal HO.
  • the base station 730 receives the transmission data including the parameter change confirmation, and the base station 730 performs the processing from step S24 to S32 shown in FIG. 9, and the parameter change confirmation check unit 51 confirms the parameter change confirmation. Entered.
  • the parameter change confirmation check unit 51 changes the parameter LP2 of the own layer 2 to the value of the parameter set 5 indicated by the input parameter change confirmation, similarly to steps S33 and S34 (step S112).
  • This setting reduces the transmission frequency of the status PDU including the ACK / NACK list from at least the base station 730 to the base station 720 and the mobile station 710, and reduces the frequency of retransmission by ARQ during the forwarding process.
  • the handover source base station 720 transmits a parameter change request to the mobile station 710 (Step S109), and then starts forwarding processing, and starts transmitting forwarding data to the handover destination base station 730 (Step S109). S113). As described above, since the values of the parameter P2 and the parameter P5 of the layer 2 are set small in the base station 720, the amount of forwarding data to be transmitted is reduced.
  • the handover destination base station 730 starts accumulating the forwarding data received in its own buffer (step S114).
  • the handover destination base station 730 changes the setting of the layer 2 parameter after the accumulation of forwarding data is started, but this setting is processed in parallel in the background.
  • the handover destination base station 730 informs the handover source base station 720 of that fact, and then the handover source base station 720 Transmission of forwarding data may be started.
  • the handover destination base station 730 outputs a path switching request to the communication server in the core network CNW via the driver (step S115).
  • the communication server reports to the handover source base station 720 that the path switching process is to be performed, and performs the path switching process (step S116). Then, the communication server outputs a path switching confirmation to the handover destination base station 730 as a response to the path switching request (step S117).
  • the handover destination base station 730 outputs a buffer or resource release request to the handover source base station 720 in response to the path switching confirmation (step S118).
  • the handover source base station 720 In response to the release request, the handover source base station 720 starts releasing the buffer in parallel while transmitting forwarding data. Then, after transmitting all the forwarding data, the handover source base station 720 reports the completion of the forwarding process to the handover destination base station 730 (step S120), and releases all resources related to the forwarding process (step S120). .
  • the layer 2 parameter value of each station is changed to an appropriate value, thereby reducing the amount of forwarding data and the frequency of retransmission by ARQ or HARQ, The processing load, processing time, transfer load, etc. at each station are reduced.
  • a handover command HOcom is transmitted to the mobile station 710 and a mobile station handover setting confirmation HOconf is transmitted to the handover destination base station 730 as a handover-specific signal indicating execution of the forwarding processing.
  • the transmission / reception of the parameter change request and the parameter change confirmation corresponds to the transmission / reception of the handover command HOcom and the mobile station handover setting confirmation HOconf. For this reason, these handover-specific signals do not necessarily have to be transmitted and received.
  • the transmission side that has decided to change the layer 2 setting changes the parameter value of the layer 2 that is changed as a parameter change request to the reception side as shown in FIG. 11 and FIG. Explicitly transmitted by PDU or MAC control block. Then, the parameter change confirmation is similarly returned from the reception side to the transmission side.
  • each station stores the parameter table shown in FIG. 10 in its own storage unit 9 shown in FIG.
  • each station measures the SIR value, and when the SIR value indicates a certain specified level, the parameter table stored in the storage unit 9 of the own station is referred to and the layer 2 of the own station is referred to. Implicitly change the parameter value of.
  • the parameter setting change unit 5 when the SIR detection unit 3 in FIG. 4 shows a certain specified level of the SIR value input from the SIR measurement unit (not shown), the parameter setting change unit 5 The layer 2 setting change signal Q indicating the change in the level of the SIR value is output. Then, the parameter change request generating unit 52 in the parameter setting changing unit 5 uses the input of the layer 2 setting change signal Q as a trigger to refer to the parameter table in the storage unit 9 and to correspond to the layer 2 corresponding to the layer 2 setting change signal Q. Determine the parameter value (parameter set). Then, the parameter change request generating unit 52 changes the parameter LP2 of the own layer 2 to the determined value.
  • the parameter values of the layer 2 of each station need to be set and changed almost the same at the same time.
  • the SIR measurement unit (not shown) of each station simultaneously uses the same SIR value for each SIR. It is necessary to output to the detector 3.
  • the base station when an implicit layer 2 parameter value is set, the base station always refers to the downlink SIR value measured by the mobile station by the measurement control described above. Thereby, the base station can grasp the change of the SIR value of the mobile station, and can estimate from the tendency that the parameter value of the layer 2 of the mobile station has been changed implicitly. If the base station estimates that the parameter value of layer 2 of the mobile station has been changed, the base station implicitly changes the parameter value of layer 2 of its own station.
  • each station does not need to transmit the parameter change request and the parameter change confirmation. Then, the mobile station 710 and the handover destination base station 730 implicitly change the layer 2 parameter value to the value indicated by the parameter set 5 in FIG. 10 in response to the handover command HOcom and the mobile station handover setting confirmation HOconf, respectively. To do.
  • layer 2 parameter values can be set implicitly. In this case, processing load and delay due to generation of a parameter change request or parameter change confirmation are eliminated. Furthermore, the problem of an increase in retransmission processing due to degradation of the radio propagation path and a mismatch between layer 2 parameter values set in the base station and the mobile station are solved.
  • FIG. 20 is a block diagram illustrating a configuration example of a functional unit that performs reception processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS. 2 and 3 of the wireless communication device according to the second embodiment.
  • FIG. 21 is a block diagram illustrating a configuration example of a functional unit that performs transmission processing in the functional unit 430 (530) of the layer 2 illustrated in FIGS. 2 and 3 of the wireless communication device according to the second embodiment.
  • the functional units shown in FIGS. 20 and 21 are connected together at terminals A to H as a unit.
  • the difference from the radio communication apparatus in the first embodiment shown in FIGS. 4 and 5 is that the radio communication apparatus shown in FIGS. 20 and 21 has a retransmission rate measurement unit 8 instead of the SIR detection unit 3.
  • the same or corresponding components are denoted by the same reference numerals.
  • the second embodiment will be described below with the base station as the transmitting side and the mobile station as the receiving side, as in the first embodiment, except for the description described above.
  • the retransmission rate control unit 8 is a functional unit that detects a change in the state of the radio propagation path.
  • the number of retransmissions by ARQ of the PDU retransmission control unit 28 is monitored to measure the retransmission rate of ARQ
  • the number of retransmissions by HARQ of the MAC PDU retransmission control unit 211 is monitored, and the retransmission rate of HARQ is calculated.
  • the retransmission rate control unit 8 monitors the retransmission request (ACK / NACK) by ARQ of the retransmission request control unit 7 in the mobile station, and calculates the retransmission rate of ARQ.
  • the retransmission rate control unit 8 monitors the HARQ retransmission request of the HARQ reception processing unit (not shown) in the layer 1 functional unit 420 in FIG. 2 in the mobile station, and calculates the HARQ retransmission rate.
  • the change in the retransmission rate corresponds to the change in the radio propagation path, and the layer 2 parameter value is dynamically changed based on the change in the retransmission rate.
  • the retransmission rate measurement unit 8 of the base station is the RLC PDU retransmission control unit 28 or the MAC.
  • the parameter setting changing unit 5 indicates the layer 2 setting change signal Q indicating the change of the retransmission rate. Is output.
  • the layer 2 setting change signal Q indicating the change in the retransmission rate and the layer 2 setting change signal Q indicating the change in the level of the SIR value output from the SIR detection unit 3 described in the first embodiment are mutually wireless environments. And is substantially the same in the layer 2 parameter value changing operation. That is, the process of outputting the layer 2 setting change signal Q corresponds to step 1 shown in FIG.
  • the parameter change request generation unit 52 in the parameter setting change unit 5 of the base station uses the input of the layer 2 setting change signal Q as a trigger to refer to the parameter table defined in the storage unit 9, and Determine the parameter value of layer 2 corresponding to Q.
  • FIG. 10 shows an example of the parameter table.
  • the retransmission rate X is specified in four stages along with the SIR value, and the parameter values of layer 2 corresponding to each are set as parameter sets 1 to 4, respectively. Is defined.
  • the parameter change request generation unit 52 generates a parameter change request indicating that the layer 2 parameter value on the mobile station side is changed to the parameter value (parameter set) determined in the above procedure. This process corresponds to step 2 shown in FIG.
  • the layer 2 parameter values of the base station and the mobile station are changed according to the sequence flow shown in FIGS.
  • the retransmission rate control unit 8 monitors the retransmission request control unit 7 and the HARQ reception processing unit (not shown), and similarly shows a certain level of retransmission rate. Then, a layer 2 setting change signal Q indicating a change in the retransmission rate is output to the parameter setting changing unit 5 of the own station. Similarly, a parameter change request is transmitted from the mobile station to the base station.
  • each station When each station measures the retransmission rate and indicates a certain level of retransmission rate, it refers to the parameter table stored in its own storage unit 9 and implicitly sets the parameter value of its own layer 2 Change to
  • the retransmission rate measurement unit 8 in FIG. 20 measures the retransmission rate of ARQ or HARQ, and indicates a specified level with a retransmission rate.
  • the layer 2 setting change signal Q indicating the change in the retransmission rate is output to the parameter setting changing unit 5.
  • the parameter change request generating unit 52 in the parameter setting changing unit 5 refers to the storage unit 9 to determine the layer 2 parameter value (parameter set) corresponding to the layer 2 setting change signal Q, and the layer 2 parameter Change the value LP2 to the determined value.
  • the parameter values of the layer 2 of each station need to be set and changed almost simultaneously, but for this purpose, the retransmission rate measuring unit 8 of each station needs to measure the same retransmission rate at the same time.
  • the base station retransmission rate measurement unit 8 The PDU retransmission control unit 211 monitors the number of retransmissions by HARQ, and the retransmission rate measurement unit 8 of the mobile station monitors the retransmission request corresponding to the number of retransmissions by HARQ of the HARQ reception processing unit (not shown). Calculate the retransmission rate.
  • the retransmission rate measuring unit 8 of the base station monitors the number of retransmissions by ARQ of the RLC PDU retransmission control unit 28, and the retransmission rate measuring unit 8 of the mobile station
  • the retransmission request (ACK / NACK) corresponding to the number of retransmissions by ARQ is monitored, and the retransmission rate of ARQ is calculated for each.
  • the base station and the mobile station can calculate the same retransmission rate by monitoring the “retransmission count” and “retransmission request” corresponding to each of the base station and the mobile station. Therefore, when the layer 2 parameter value is changed according to the retransmission rate X of the parameter table of FIG. 10, the base station and the mobile station simultaneously change the setting.
  • the layer 2 parameter value can be dynamically changed based on the change in the retransmission rate corresponding to the change in the radio propagation path.
  • the second embodiment may be used in combination with the setting change of the parameter value of layer 2 based on the change of the SIR value of the first embodiment.
  • the parameter value of layer 2 is appropriately changed based on both the change of the SIR value corresponding to the change of the radio propagation path and the change of the retransmission rate. It is set to a more appropriate value for the change.
  • a cross check based on the SIR value and the retransmission rate is also possible.
  • the radio communication apparatus determines that the radio propagation path is good and the retransmission rate is increased due to malfunction of the transmission / reception circuit, and the layer 2 parameter setting is changed. I will not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線伝搬路を通して送信側無線通信装置と受信側無線通信装置が接続される移動無線システムにおける通信制御方法において、送信側無線通信装置と受信側無線通信装置に、データリンク制御のためのパラメータを設定し、設定されたパラメータとして例えばレイヤ2のパラメータを無線伝搬路の状態変化をトリガとして変更する。

Description

無線通信制御方法および無線通信装置
 本発明は、無線通信制御方法および無線通信装置に関する。
 W-CDMA(Wideband-Code Division Multiple
Access)移動通信システムのOSI参照モデルに従う無線インターフェースの階層において、レイヤ2(データリンク層)では、主に端末間の相互接続や、データを誤りなく転送するデータリンク制御が行われる。
 また、レイヤ2は、MAC(Media Access Control)レイヤ、RLC(Radio
Link Control)レイヤ、PDCP(Packet Data Convergence Protocol)レイヤの3つのサブレイヤから構成されており、各々のサブレイヤの機能部が個別の処理を行う。
 これらサブレイヤの機能部が行う処理の態様は、レイヤ2のパラメータに設定される値に従う。例えばレイヤ2のパラメータに基づいて、各処理で使用されるバッファの情報蓄積容量の上限や、再送信処理を行うタイミングが決まる。
 従来、これらのレイヤ2のパラメータは、上位レイヤであるレイヤ3の機能部により設定されている。レイヤ3の機能部は、音声通話や情報のストリーミング等の通信サービスの種類を判定し、その通信サービスに規定された通信レートやレイテンシの許容時間等に基づいてレイヤ2のパラメータを設定する。
 つまり、従来、通信中の無線通信装置のレイヤ2のパラメータは、通信サービス等に基づいて予め静的に設定され、無線伝搬路の状態が劣化して通信状況が悪化しても適切な値に変更されず固定値のままであった。
 図1は、基地局と移動局で構成される無線通信システムの模式図である。基地局320、330、340、350は、それぞれのセル321、331、341、351内に存在する移動局と無線通信を行う。基地局320、330、340、350は、それぞれコアネットワークCNWと接続されている。また、基地局320、330と基地局340、350はそれぞれ異なる無線通信システムを構成し、両システム間の通信はコアネットワークCNWを介して行われる。
 無線伝搬路が変化する場合として、例えば、基地局320と移動局310が通信中に、移動局310が高速移動する場合や、移動局310が基地局320から離れる場合が挙げられる。
 また、図1に示すように移動局311が基地局320のセル端で通信している場合、その上り信号は、隣接する基地局330の信号と干渉し、セル331内の無線通信に影響を与える。
 そこで、W-CDMA移動通信方式を採用するIMT-2000方式のS3Gシステムでは、基地局320は、この干渉を低減するために、移動局311の上り送信電力を抑制する。つまり、移動局311と基地局320が離れているセル端で既に劣化している両局間の無線伝搬路は、基地局320の電力抑制機能により、さらに劣化する。
 また、移動局310が、セル321からセル331に移動し、ハンドオーバが生じた場合、移動局310が受信できなかった未到達のデータは、基地局間データフォワーディング処理により、ハンドオーバ元の基地局320からハンドオーバ先の基地局330へ転送される。この際に転送されるデータ量等は、レイヤ2のパラメータを変更することにより調整可能であるが、従来は、これらの調整は行われていなかった。
 先行技術として、例えば特許文献1~4がある。
 特許文献1には、HARQ送信失敗時に無線チャネル状態やハンドオーバの有無等に基づいてパケットデータを断片化して再送信する旨が記載されている。
 特許文献2には、無線環境の状態を示すCQI情報に応じて変調方式を変える適応変調制御において、そのCQI情報に無線環境の変化の方向を反映させて適応変調制御を行う旨が記載されている。
 特許文献3には、無線環境の状態を示すCQI情報に応じて変調方式を変える適応変調制御において、ハンドオーバ時はCQI情報を送信するタイミングを変える旨が記載されている。
 特許文献4には、無線環境が劣化した場合、パケットの単位当たりの送信間隔を長く設定する旨が記載されている。
特開2008-118640号公報 特開2006-157133号公報 特開2006-246089号公報 特開2007-300509号公報
 しかしながら、無線伝搬路が変化した場合、レイヤ2のパラメータに設定された値に基づいて様々な伝送負荷や遅延が生じる。例えば、無線伝搬路の劣化により通信エラーが続いても、既定のレイヤ2のパラメータ設定値に基づいて再送信処理が継続して行われるため伝送負荷が増加する。
 ハンドオーバに関しては、例えば電車による移動により複数の通信中の移動局が同時にハンドオーバする際に、既定のレイヤ2のパラメータ設定値に基づくデータフォワーディング処理が同時に実行されるため、基地局間での伝送負荷や遅延が生じる。
 このような伝送負荷や遅延の課題を解決するために、レイヤ2のパラメータは、レイヤ3が処理判定した結果に基づいて設定された後、さらに無線伝搬路の変化やハンドオーバに追従して、動的に変更されることが好ましい。
 そこで、本発明の目的は、無線伝搬路の状態変化やハンドオーバに追従してレイヤ2のパラメータを適切な値に設定する無線通信制御方法および無線通信装置を提供することにある。
 上記課題を達成する本発明に従う一つの態様によれば、無線伝搬路を通して送信側無線通信装置と受信側無線通信装置が接続される移動無線システムにおいて、前記送信側無線通信装置と受信側無線通信装置に、データリンク制御のためのパラメータを設定し、前記設定されたパラメータを前記無線伝搬路の状態変化をトリガとして変更することを特徴とする。
 さらに、上記課題を達成する態様として、上記一の態様において、前記データリンク制御のためのパラメータは、レイヤ2プロトコルのパラメータであることを特徴とする。
 上記の発明によれば,無線伝搬路の状態変化やハンドオーバに追従してレイヤ2のパラメータを適切な値に設定する無線通信制御方法および無線通信装置を提供することができる。
基地局と移動局とで構成される無線通信システムの模式図である。 移動局側の無線通信装置の構成例を表すブロック図である。 基地局側の無線通信装置の構成例を表すブロック図である。 第1の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における受信処理を行う機能部の構成例を表すブロック図である。 第1の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における送信処理を行う機能部の構成例を表すブロック図である。 レイヤ2の各サブレイヤの機能部431(531)、432(532)、433(533)で処理されるデータ形式を示す図である。 本実施の形態に関係するレイヤ2のパラメータと代表的な通信サービスにおけるそれらの設定例を表した図表である。 本実施の形態における無線通信装置のSIR値の変化に基づくレイヤ2のパラメータ設定変更動作の前半を表すシーケンスフローである。 本実施の形態における無線通信装置のSIR値の変化に基づくレイヤ2のパラメータ設定変更動作の後半を表すシーケンスフローである。 本実施の形態において動的に変更されるレイヤ2のパラメータ値の具体例を表す図表である。 RLCレイヤで生成されるPDUのデータフォーマットの一例である。 MACコントロールブロックのデータフォーマットの一例である。 本実施の形態の無線通信装置におけるサービス情報等の送受信動作を表すシーケンスフローである。 図13の送受信動作におけるARQ(自動再送要求:AutomaticRepeat Request)による再送信制御を表すシーケンスフローである。 送信側(基地局)と受信側(移動局)での再送信処理の概念図である。 図5の再送バッファ26およびリアセンブリバッファ281における情報の処理を表す図である。 情報が再送信される場合の情報の分割を表す図である。 ハンドオーバ時の基地局間フォワーディング処理を示す図である。 ハンドオーバにおけるレイヤ2のパラメータ設定変更例を示すシーケンスフローである。 第2の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における受信処理を行う機能部の構成例を表すブロック図である。 第2の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における送信処理を行う機能部の構成例を表すブロック図である。
 以下、図面に従って実施の形態について説明する。但し、技術的範囲はこれらの実施の形態に限定されず、特許請求の範囲に記載された事項とその均等物まで及ぶものである。
 図2は、移動局側の無線通信装置の構成例を表すブロック図である。
 図3は、基地局側の無線通信装置の構成例を表すブロック図である。図2において、移動局側無線通信装置410は、レイヤ1の機能部420、レイヤ2の機能部430、そしてレイヤ3以上の上位レイヤの機能部440を有する。
 レイヤ1の機能部420は、受信処理部421と送信処理部422とデュプレクサ423を有する。そして、レイヤ1の機能部420は、デュプレクサ423の機能により共用アンテナ424を送信用と受信用に適宜切り替え、基地局側との無線通信を制御する。
 具体的に受信処理部421は、受信信号に対し復調処理、復号化処理、CRCチェック処理等を行い、送信処理部422は、送信情報に対しCRC付加処理、符号化処理、変調処理等を行う。
 レイヤ2の機能部430は、MAC機能部431、RLC機能部432、PDCP機能部433を有する。各機能部は、送受信情報に対して順次処理を行い、端末間の相互接続や、データを誤りなく転送するための制御を行う。
 上位レイヤの機能部440は、レイヤ3の機能部とその他の移動体無線通信に固有の機能部を有する。上述したようにレイヤ3の機能部は、通信サービス等を起動する際に、レイヤ2のパラメータをそれら通信サービスに依存する値に設定する。
 移動局の受信処理部421は、基地局からの下り情報をデュプレクサ423を介して受信し、その受信信号に対して復調処理等の処理を行う。その後、受信信号はレイヤ2の機能部430で誤り検出等の処理を受け、上位レイヤの機能部440に出力される。
 逆に、移動局から基地局へ上り情報を送信する場合、レイヤ2の機能部430は、上位レイヤの機能部440から入力される通信サービス等の画像情報や音声情報に対して、情報の分割処理等を行い、送信処理部422に出力する。そして、送信処理部422は、入力される情報に対して、変調処理等を行い、デュプレクサ423を介して上り情報を基地局側に送信する。
 また、図3は、基地局側に設置される基地局側無線通信装置510の構成例を示す。図3の基地局側無線通信装置510は、上位レイヤの機能部540がコアネットワークCNWに接続されている点において、図2の移動局側無線通信装置410と相違する。
 つまり、両局の構成は細部では異なるものの、無線通信装置の下位レイヤを構成するレイヤ1の機能部420(520)とレイヤ2の機能部430(530)の論理的な構成は、同様である。
 [第1の実施の形態]
 図4は、第1の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における受信処理を行う機能部の構成例を表すブロック図である。
 図5は、第1の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における送信処理を行う機能部の構成例を表すブロック図である。図4、図5に示す各機能部は、一体として端子A~Fにおいてそれぞれ接続されている。
 上述したように無線通信システムの基地局側と移動局側にそれぞれ配置される無線通信装置のレイヤ2の機能部430(530)は同様の構成をとる。このため、図4、図5には、それら両局が有する共通の機能部が主に示されている。以下、特に記載のない限り、無線通信装置に関して基地局側と移動局側との区別せずに図4、図5の構成を説明する。
 図4、図5に示す無線通信装置のレイヤ2の機能部430(530)は、レイヤ2受信部1とレイヤ2送信部2と再送要求制御部7を機能部として有する。さらに、レイヤ2の機能部430(530)は、SIR(Signal
to Interference Indication)検出部3とハンドオーバ制御部4とパラメータ設定変更部5と記憶部9を機能部として有する。そして、これらの各機能部は、ハードウェアまたはソフトウェアで実現される。
 図4において、レイヤ2受信部1側に示されたDL(DownLink)-MAC、DL-RLC、DL-PDCPは、図2、図3のMAC機能部431(531)、RLC機能部432(532)、PDCP機能部433(533)に対応し、受信側でサブレイヤごとに行われる処理の範囲を表す。同様に、図5において、レイヤ2送信部2側に記載されたUL(UpLink)-MAC、UL-RLC、UL-PDCPは、送信側でサブレイヤごとに行われる処理の範囲を表す。
 図6は、レイヤ2の各サブレイヤの機能部431(531)、432(532)、433(533)で処理されるデータ形式を示す図である。図6の範囲R3に示す各機能部は図2、図3に示す機能部と対応し、破線はその境界を示す。範囲R1に示す矢印は送信処理と受信処理の方向を示す。範囲R2に示す送受信情報のデータ形式は、MAC機能部431(531)、RLC機能部432(532)、PDCP機能部433(533)において異なり、それぞれの機能部でMAC
PDU(Protocol Data Unit)、RLC PDU、PDCP PDUが生成される。
 送信処理において、上位レイヤの機能部440(540)は、送信情報をIPパケット601に分割して、PDCP機能部433(533)に出力する。PDCP機能部433(533)は、IPパケット601にPDCPヘッダPHを付加してPDCP
PDU602として処理を行い、それらをRLC機能部432(532)に出力する。RLC機能部432(532)は、入力情報を処理し、RLCヘッダRHを付加してRLC
PDU603を生成し、それらをMAC機能部431(531)に出力する。MAC機能部431(531)は、入力される複数のRLC PDU603を結合し、さらにそれらにMACヘッダMHを付加したMAC
PDU604を生成し、それをレイヤ1の機能部420(520)に出力する。
 また、受信処理において、レイヤ1の機能部420(520)は、受信情報をMAC
PDU604としてMAC機能部431(531)に出力する。MAC機能部431(531)は、入力されるMAC PDU604を複数のRLC PDU603に分離し、それらをRLC機能部432(532)に出力する。RLC機能部432(532)は、入力情報を処理し、PDCPヘッダPHを付加してPDCP
PDU602を生成し、それをPDCP機能部433(533)に出力する。PDCP機能部433(533)は、入力情報を処理し、IPパケット601として上位レイヤの機能部440(540)に出力する。
 次に、各機能部での処理に関わるレイヤ2のパラメータについて説明する。
 図7は、本実施の形態に関係するレイヤ2のパラメータと代表的な通信サービスにおけるそれらの設定例を表した図表である。欄1には、レイヤ2のサブレイヤ名が示されている。欄2には、昇順につけたパラメータのID番号が示されている。欄3には、各サブレイヤごとのパラメータ名が示されている。欄4には、代表的な通信サービスごとに設定されるレイヤ2のパラメータ値の一例が記載されている。
 「BE」はベストエフォート通信、「VoIP」はIP電話による通信、「Streaming」は送信される動画等のコンテンツを逐次再生するストリーミング方式による通信を表す。前述したように、これまではこれらのパラメータ値は、無線伝搬路の変化を考慮して設定されるのではなく、各通信サービスに基づいて静的に設定されている。これに対して本実施の形態では、無線伝搬路の変化に追従して、これらの値が動的に変更される。
 また、図4、図5において、各機能部にかかる参照符号P2、P4~P16は、図7のパラメータのID番号と対応しており、各機能部での処理は、それぞれにかかるレイヤ2のパラメータP2、P4~P16に基づいて行われる。また、パラメータP1、P3は、図4、図5の各機能部にかかるパラメータではないため、図4、図5には示されていない。
 図4、図5を参照しながら、まず、本実施の形態における無線通信装置のレイヤ2のパラメータ設定変更動作を説明する。また、その変更動作に従い各機能部における処理の詳細を説明する。
 [SIR値の変化に基づくレイヤ2のパラメータ設定変更動作]
 図8は、本実施の形態における無線通信装置のSIR値の変化に基づくレイヤ2のパラメータ設定変更動作の前半を表すシーケンスフローである。
 図9は、本実施の形態における無線通信装置のSIR値の変化に基づくレイヤ2のパラメータ設定変更動作の後半を表すシーケンスフローである。図8、図9間の部分フローは端子J1、J2においてそれぞれ接続されている。また、図8、図9の各ステップ中に記載された括弧内の数字は、そのステップを実行する図4、図5の各機能部の符号を示している。
 本実施の形態の無線通信装置は、図2または図3に示すレイヤ1の機能部420(520)に図示しないSIR測定部を有する。SIRは、CQI(Channel
Quality Indication)と対応し、受信信号の電力対干渉信号の比を表わす。本実施の形態では、このSIR値の変化が、無線伝搬路の状態変化に対応し、レイヤ2のパラメータが、SIR値の変化に基づいて動的に変更される。
 基地局と移動局は、いずれもSIR測定を行うことができる。そして、一方が、送信側としてSIR測定結果に基づきレイヤ2のパラメータ値を決定し、レイヤ2のパラメータをその決定した値に設定変更する旨を対向する受信側に要求する。受信側は、その要求を受け、自局のレイヤ2のパラメータを変更する。そして、送信側は、受信側のレイヤ2のパラメータが変更されたことを確認した後、自局のレイヤ2のパラメータを受信側と同じ値に変更する。
 以下、基地局がSIR測定を行いレイヤ2のパラメータの設定変更を要求する送信側、そして移動局を受信側として図8、図9に示すシーケンスフローに従い図4、図5に示す各機能部の動作を説明する。
 基地局において、SIR測定部は、移動局からの上り信号のSIR値を規定のタイミングで測定し、そのSIR値をSIR検出部3に出力する。
 SIR検出部3は、無線伝搬路の状態変化を検出する機能部であり、無線伝搬路の状態として入力されるSIR値がある規定のレベルを示した場合、パラメータ設定変更部5に、SIR値のレベルの変化を示すレイヤ2設定変更信号Qを出力する(ステップS1)。
 パラメータ設定変更部5内のパラメータ変更要求生成部52は、レイヤ2設定変更信号Qに対応するレイヤ2のパラメータ値を決定する。
 図10は、本実施の形態において動的に変更されるレイヤ2のパラメータ値の具体例を表す図表である。図10には、図7に示したベストエフォート通信(BE)における具体例が示されている。図10の欄1~3は、それぞれ図7の欄1~3と同じであり、欄4には、比較のために「従来BE」として、図7の欄4に示す「BE」が示されている。
 欄5には、「SIR>20dB」「20dB≧SIR」>15dB」「15dB≧SIR>10dB」「10dB≧SIR」の4段階のSIR値のレベルが規定されており、それぞれに対応するレイヤ2のパラメータ値が、パラメータセット1~4として定義されている。そして、無線伝搬路が劣化するほど、対応するパラメータセットの番号は大きくなる。なお、パラメータセット5には、後述するハンドオーバ時に設定されるレイヤ2のパラメータ値が定義されている。
 このように、これらのパラメータセットは、無線伝播路の複数の状態のそれぞれに対応して定義されており、さらに、通信サービスごとに定義され、記憶部9にパラメータテーブルとして記憶されている。そして、パラメータ変更要求生成部52は、レイヤ2のパラメータ値を決定する際にこれらのテーブルを参照する。なお、各通信サービスのアプリケーションが、起動時に記憶部9にパラメータテーブルを動的に記憶してもよい。
 例えば、基地局が移動局からの上り信号のSIRを測定し、その値が20dBより大きい場合に、両局のレイヤ2のパラメータ値はパラメータセット1の値で設定されている。その後、無線状態が劣化し、15dBより大きく20dB以下になった場合に、基地局側のSIR検出部3は、SIRが15dBより大きく20dB以下になったことを示すレイヤ2設定変更信号Qをパラメータ設定変更部5に出力する。そして、パラメータ設定変更部5は、レイヤ2設定変更信号Qの入力をトリガとしてパラメータテーブルを参照し、設定変更するレイヤ2のパラメータ値をパラメータセット2が示す値に決定する。
 なお、図10に示される再送率Xと各パラメータ値の詳細に関しては後述する。
 図8、図9に戻り、基地局のパラメータ変更要求生成部52は、移動局側のレイヤ2パラメータ値を上記手順で決定したパラメータ値(パラメータセット)に変更する旨を示し、その決定したパラメータ値を含むパラメータ変更要求を生成する(ステップS2)。移動局は、このパラメータ変更要求に基づき、自局のレイヤ2のパラメータ値を変更する。
 基地局のパラメータ変更要求生成部52が生成したこのパラメータ変更要求を移動局側に送信する手段として、レイヤ3の機能部440(540)が行う通信サービスに基づく従来の送信を利用することが可能である。
 しかしこの場合、両局のレイヤ1、2の機能部420(520)、430(530)を介して互いのレイヤ3の機能部440(540)間で情報の交換が行われた後に、レイヤ2の機能部430(530)に情報が送られ、レイヤ2のパラメータが設定される。そのため、レイヤ2のパラメータ設定が完了するまでに遅延が生じる。
 そこで、本第1の実施の形態では、レイヤ3の機能部440(540)を介さずに、両局のレイヤ2の機能部430(530)内のMACレイヤ機能部431(531)間またはRLCレイヤ機能部432(532)間でレイヤ2のパラメータ変更要求が送信される。これにより、レイヤ2のパラメータ設定までにかかる時間が短縮される。
 具体的に、パラメータ変更要求の送信には、RLCレイヤで生成されるコントロールPDU、またはMACレイヤで生成されるMACコントロールブロックが用いられる。
 図11は、RLCレイヤで生成されるPDUのデータフォーマットの一例である。第1オクテットOct1の第1ビットBit1の「D/C」は、PDUがデータ情報かコントロール情報かを表す識別子であり、「0」はデータ情報、「1」はコントロール情報を表す。
 第2ビットBit2~第4ビットBit4の「TYPE」は、PDUの種別を表し、例えば「000」を前述したパラメータ変更要求、「001」をパラメータ変更要求に対応するパラメータ変更確認と定義する。また、以降に続く「Poll
Timer」「Rx Window サイズ」等は、図10の欄3に示すレイヤ2のパラメータとして具体的に設定する値である。
 例えば前述したパラメータ変更要求を示すコントロールPDUは、「D/C」が「1」、「TYPE」が「000」であり、移動局に設定するレイヤ2のパラメータ値を有する。
 また、基地局からのパラメータ変更要求に対して、移動局はパラメータ変更確認を返すが、この場合に生成されるパラメータ変更確認を示すコントロールPDUは、「D/C」が「1」、「TYPE」が「001」であり、移動局に設定したレイヤ2のパラメータ値を有する。
 その他、本実施の形態で使用されるPDUとして、通信サービス等の各種コンテンツ情報を送信するためのデータPDUと送達メッセージ(ACK/NACK)等の再送信情報を示すステータスPDUがある。
 データPDUは、「D/C」が「0」であり、「TYPE」には例えば通信サービス別の種類に応じた値が定義される。そして、データPDUは、通信サービス等の各種コンテンツ情報を有する。
 ステータスPDUは、コントロールPDUの一種である。その「D/C」は「1」であり、「TYPE」には他のコントロールPDUと区別するために例えば「010」が定義される。そして、ステータスPDUは送達メッセージ(ACK/NACK)等の再送信に関する情報を有する。
 図12は、MACコントロールブロックのデータフォーマットの一例である。第1オクテットOct1の第1ビットBit1~第5ビットBit5の「LCID」は、情報の識別IDである。「LCID」の割り当ては検討されており、例えば未だ保留されている「11000」をパラメータ変更要求用とし、「11001」をパラメータ変更確認用と定義する。また、図11に示したPDUのデータフォーマットの一例と同様に、「Poll
Timer」「Rx Window サイズ」等は、レイヤ2のパラメータとして具体的に設定される値である。
 図4、図5及び図8、図9に戻り、本実施の形態では、基地局のパラメータ変更要求生成部52が生成したパラメータ変更要求は、図11、図12に示すコントロールPDUまたはMACコントロールブロックのいずれかのデータフォーマットで移動局に送信される。そして、MACコントロールブロック(M)の場合はMACコントロールブロック生成部221に、コントロールPDU(C)の場合は、コントロールPDU生成部231に処理が移される(ステップS3)。
 MACコントロールブロック生成部221は、パラメータ変更要求に基づきMACコントロールブロックを生成し、ヘッダ情報等を付加してMAC結合部222に出力する(ステップS4)。
 コントロールRLC生成部231は、パラメータ変更要求に基づきコントロールPDUを生成する。そして、RLC
PDU生成部23は、生成されたコントロールPDUにヘッダ情報等を付加し、図6に示したRLC機能部432(532)が処理する所定のデータ形式であるRLC PDUを生成し、MAC結合部222に出力する(ステップS5)。
 MAC PDU結合部222は、複数のチャネルから受信したRLC PDUを結合する。例えば通信サービス等の各種コンテンツ情報の送信の際に、RLC再送制御部28から複数のデータPDUが出力され、RLC
PDU生成部23を介してヘッダ情報等が付加された複数のRLC PDUが、MAC PDU結合部222に入力される。
 さらに、これらの処理は多重化されており、複数チャネルにより同時並行して行われる。図5のMAC PDU結合部222に入力される「LCN=n」の記載は、その態様を示しており、複数チャネルで生成されたRLC PDUがMAC
PDU結合部222に入力されることを表す。
 MAC PDU結合部222は、図6に示したようにレイヤ2のパラメータ変更要求を示すRLC
PDUまたはMACコントロールブロックを他のRLC PDUと結合し、MAC機能部431(531)が処理する所定のデータ形式であるMAC PDUを生成する(ステップS6)。
 MAC PDU再送制部21は、MAC PDU結合部222が生成したMAC
PDUを再送バッファ211に一時保存し、さらに、レイヤ1の機能部520にMAC PDUを出力する(ステップS7)。
 そして、パラメータ変更要求を示すRLC PDUまたはMACコントロールブロックを含むMAC
PDUは、レイヤ1の機能部520を介して送信データとして移動局に送信される。移動局では、レイヤ1の機能部420で受信データに対する所定の処理が行われ、基地局で生成されたパラメータ変更要求を示すRLC
PDUまたはMACコントロールブロックを含むMAC PDUが、MAC PDU分離部111に入力される。
 移動局のMAC PDU分離部111は、入力されたMAC PDUを図6に示すように複数のRLC
PDUに分離する(ステップS8)。そして、それらRLC PDU(R)をPDUタイプ解析部121に出力する。また、MAC PDU分離部111は、入力されたMAC
PDUにパラメータ変更要求を示すMACコントロールブロック(M)が含まれていた場合は、そのMACコントロールブロック(M)をMACコントロールブロック解析部112に出力する(ステップS9)。
 また、PDUタイプ解析部121以降の処理は、MAC PDU結合部222で示した多重化と同様に多重化されている。つまり、分離した複数のRLC
PDUは複数のチャネルのPDUタイプ解析部121に出力され、以降、同時並行処理される。図4のMAC PDU分離部111から出力される「LCN=n」の記載は、その態様を示しており、MAC
PDU分離部111で分離された複数のRLC PDUが、各チャネルのPDUタイプ解析部121に出力されることを表す。
 PDUタイプ解析部121は、入力されたRLC PDUが、コントロールPDUを示すかデータPDUを示すかを判定する。この判定において、PDUタイプ解析部121は、図11のPDUのデータフォーマットで示した第1オクテットOct1の第1ビットBit1の「D/C」を参照する。
 そして、「D/C」が「1」の場合は、RLC PDUはコントロールPDU(C)と判定され、コントロールPDUタイプ解析部122に処理が移される。また、「D/C」が「0」の場合は、RLC
PDUはデータPDU(D)と判定され、ポールチェック部13に処理が移される(ステップS10、S11)。なお、データPDUの場合のポールチェック部13以降の処理(ステップS12)に関しては後述する。
 コントロールPDUタイプ解析部122は、入力されるRLC PDU(コントロールPDU)がパラメータ変更要求を示すコントロールPDUかデータの再送要求を示すステータスPDUかを判定する。この判定において、コントロールPDUタイプ解析部122は、図11のPDUのデータフォーマットで示した第2ビットBit2~第4ビットBit4の「TYPE」を参照する。
 そして、「TYPE」が「000」の場合は、コントロールPDUがパラメータ変更要求を示すコントロールPDU(L2)と判定し、パラメータ変更要求解析部53に処理が移される。また、「TYPE」が「010」の場合は、コントロールPDUはデータの再送要求を示すステータスPDU(S)と判定され、ACK/NACK解析部14に処理が移される(ステップS13、S14)。なお、ステータスPDUの場合のACK/NACK解析部14以降の処理(ステップS15)に関しては後述する。
 MAC コントロールブロック解析部112は、受信したMACコントロールブロックがパラメータ変更要求を表すかその他の処理要求等を表すかを判定する。この判定において、MAC
コントロールブロック解析部112は、図12のデータフォーマットで示したMAC コントロールブロックの第1オクテットOct1の第1ビットBit1~第5ビットBit5の「LCID」を参照する。
 そして、「LCID」が「11000」の場合は、MAC コントロールブロックはパラメータ変更要求を表すMACコントロールブロックと判定され、パラメータ変更要求解析部53に処理が移される(ステップS16)。なお、その他の処理要求として、例えば「LCID」の「11111」には「Padding」処理が割当てられている。MAC
コントロールブロック解析部112が「LCID」として「11111」を検出した場合は図示しない「Padding」処理に処理が移される。
 パラメータ変更要求解析部53は、レイヤ2のパラメータL2Pを入力されたコントロールPDUまたはMACコントロールブロックが示すレイヤ2のパラメータ値に設定する(ステップS17)。
 パラメータ変更確認生成部54は、自局のレイヤ2パラメータ値を要求されたパラメータ値に変更した旨を表すパラメータ変更確認を生成する(ステップS18)。
 パラメータ変更確認は、ステップS3と同様に、コントロールPDU(C)かMACコントロールブロック(M)のいずれかのデータフォーマットで生成される(ステップS19)。
 なお、上述したようにパラメータ変更確認を示すコントロールPDUの「TYPE」は「001」であり、MAC
コントロールブロックの「LCID」は「11001」である。
 以降、移動局でのステップS20~S23の処理において、パラメータ変更確認に対し、ステップS4~S7でパラメータ変更要求に対して行われた処理と同様の処理が行われる。
 そして、パラメータ変更確認を示すRLC PDUまたはMACコントロールブロックを含むMAC
PDUは、レイヤ1の機能部420を介して送信データとして基地局に送信される。基地局では、レイヤ1の機能部520で受信データに対する所定の処理が行われ、移動局で生成されたパラメータ変更確認を示すRLC
PDUまたはMACコントロールブロックを含むMAC PDUが、MAC PDU分離部111に入力される。
 以降、基地局でのステップS24~S32の処理において、MAC PDU分離部111に入力されるパラメータ変更確認を示すRLC
PDUまたはMACコントロールブロックを含むMAC PDUに対し、ステップS8~S16で行われた処理と同様の処理が行われる。
 ただし、パラメータ変更確認を示すRLC PDUまたはMACコントロールブロックは、コントロールPDUタイプ解析部122の判定では、「TYPE」は「001」を表し、MAC
コントロールブロック解析部112の判定では、「LCID」は「11001」を表す。そして、それらの判定後、パラメータ変更確認チェック部51に処理が移される。
 パラメータ変更確認チェック部51は、入力されたコントロールPDUまたはMACコントロールブロックが示すパラメータ変更確認をチェックする(ステップS33)。
 パラメータ変更要求生成部51は、パラメータ変更確認チェック部51のチェック結果に基づき受信側の設定が要求通りに行われたことを確認した後で、自局のレイヤ2パラメータ値L2Pを受信側に合わせて変更する(ステップS34)。
 以上のように、無線伝搬路の状態変化をトリガとして、基地局と移動局のレイヤ2のパラメータの設定が変更される。また、上記の設定では、まず移動局側のパラメータが設定され、その設定を確認した後に、基地局側のパラメータが設定されたが、基地局側が設定された後に移動局側が設定されてもよい。
 つまり、基地局は、無線伝搬路の状態変化をトリガとして、対応するパラメータセットを決定し、自局のレイヤ2のパラメータをその決定したパラメータセットが示す値に変更した後に移動局にパラメータ変更要求を送信する。そして、移動局は、そのパラメータ変更要求に基づいて自局のパラメータを変更し、その確認として基地局にパラメータ変更確認を送信する。
 次に、サービス情報等の送受信動作に従いレイヤ2の各パラメータが関与する機能部の詳細を説明する。
 [サービス情報等の送受信動作]
 図13は、本実施の形態の無線通信装置におけるサービス情報等の送受信動作を表すシーケンスフローである。
 図14は、図13の送受信動作におけるARQ(自動再送要求:Automatic
Repeat Request)による再送信制御を表すシーケンスフローである。図13、図14間のフローは端子J3、J4、J5においてそれぞれ接続されている。また、各ステップ中に記載された括弧内の数字は、そのステップを実行する図4、図5の各機能部の符号を表す。
 サービス情報等の送受信は、基地局側と移動局側の両局で同様に行われる。以下、基地局が送信側、移動局が受信側として説明する。
 サービス情報等の送受信動作では、基地局のレイヤ2送信部2が、送信情報に対して送信処理を行う。そして、移動局のレイヤ2受信部1が、受信情報に対して受信処理を行う。さらに、送信エラーにより移動局で正しい情報を受信できなかった場合、ARQによる再送信制御が行われる。
 ARQとは、信頼性の高いデータ通信を達成するための自動誤り制御手法である。移動局は、情報を正しく受信できた場合、基地局に対して送達確認メッセージ(ACK)を返し、送信エラーによりデータを正しく受信できなかった場合、基地局に対して未送達確認メッセージ(NACK)を返す。そして、基地局は、「NACK」を受信した場合、または規定の時間内に「ACK」を受信できなかった場合に、対応する同じデータを再送信する。そして、「ACK」を受信するか、再送信回数が規定の回数に達するまでこの再送信を繰り返す。
 サービス情報等の送受信動作において、基地局のPDCP送信処理部27は、上位レイヤの機能部440から通信サービスに基づく情報を受信し、それらの情報をSDUバッファ271に一時保存し、さらにそれらの情報を適宜RLC
PDU再送制御部28に出力する(ステップS41)。
 RLC PDU再送制御部28は、PDCP送信処理部27から入力される情報を再送バッファ26に一時保存する。さらに、RLC
PDU再送制御部28は、再送バッファ26に保存された情報から送信する情報をリアセンブリバッファ281に適宜読み込み(コピーし)、管理情報を付加する。
 そして情報の内容に応じてデータ制御情報を表すコントロールPDU(C)またはデータ情報を表すデータPDU(D)を生成する(ステップS42~S45)。図11のPDUのデータフォーマットで示したように、コントロールPDUの場合、「D/C」の値は「1」、データPDUの場合、「D/C」の値は「0」に設定される。
 なお、ここで生成されるデータ制御情報を表すコントロールPDU(C)は、例えば各種コンテンツに依存し、前述したパラメータ変更要求を示すPDUやステータスPDUとは異なり、図11のPDUのデータフォーマットで示した「TYPE」に独自の値が定義される。
 バッファ監視部25は、再送バッファ26の情報蓄積量を監視し、その蓄積率をポーリング管理部24に出力する。また、バッファ監視部25は、再送バッファ26の情報蓄積容量の上限を規定する。
 ポーリング管理部24は、基地局において、移動局に対して基地局への送信要求がないかを尋ねるポーリングの管理を行う。ポーリングは規定のタイミングで定期的に行われるか、前述したバッファ監視部25から入力される再送バッファ26の蓄積率に基づいて行われる。これらのポーリングの条件が発生した場合、ポーリング管理部24は、RLC
PDU生成部23にポーリングの要求を出す。
 RLC PDU生成部23は、RLC PDU再送制御部28で生成されるコントロールPDUまたはデータPDUに対してヘッダ情報等を付加し、図6に示す規定のデータ形式であるRLC
PDUを生成する。また、ポーリング管理部24からポーリングの要求が発生した場合は、RLC PDUのヘッダ情報のポーリングビットを「有効」にする(ステップS46)。ポーリングビットが「有効」であるRLC
PDUを受信した移動局は、後述するポールチェック部13および再送要求制御部7の機能に基づき「ACK/NACK」等の再送信に関する情報を有するステータスPDUを基地局に返す。
 MAC PDU結合部222は、複数のチャネルから受信したRLC PDUを結合し、所定のデータ単位であるMAC
PDUを生成する(ステップS47)。上述したようにステップS46のRLC PDUの生成までの処理は、多重化されており、複数チャネルにより同時並行して行われる。
 MAC PDU再送制部21は、MAC PDU結合部222が生成したMAC
PDUを再送バッファ211に一時保存し、さらに、レイヤ1の機能部520にMAC PDUを出力する(ステップS48)。
 そして、通信サービスに基づく情報を有するMAC PDUは、レイヤ1の機能部520を介して送信データとして移動局に送信される。移動局では、レイヤ1の機能部420で受信データに対する規定の処理が行われ、基地局で生成された通信サービスに基づく情報を有するMAC
PDUが、MAC PDU分離部111に入力される。
 MAC PDU分離部111は、受信したMAC PDUを図6に示すように複数のRLC
PDUに分離し、それらRLC PDUをPDUタイプ解析部121に出力する(ステップS49)。上述したように、PDUタイプ解析部121以降の処理は多重化されている。
 PDUタイプ解析部121は、入力されたRLC PDUが、コントロールPDUを表すかデータPDUを表すかを判定する。この判定において、PDUタイプ解析部121は、図11のPDUのデータフォーマットで示した第1オクテットOct1の第1ビットBit1の「D/C」を参照する。
 そして、「D/C」が「1」の場合は、RLC PDUはコントロールPDU(C)と判定され、コントロールPDUタイプ解析部122に処理が移される。また、「D/C」が「0」の場合は、RLC
PDUはデータPDU(D)と判定され、ポールチェック部13に処理が移される(ステップS50、S51)。
 コントロールPDUタイプ解析部122は、入力されたRLC PDU(コントロールPDU)の図11のデータフォーマットで示した「TYPE」を参照し、前述した各種コンテンツに依存したデータ制御情報を示すコントロールPDUを検出する。そして、そのコントロールPDUに対応する処理を行う図示しない機能部に処理が移される(ステップS63-2)。
 ポールチェック部13は、入力されたRLC PDU(データPDU)のポーリングビットを参照し、送信側からのポーリングの有無をチェックする(ステップS53)。そして、ポーリングが「無効」の場合、RLC
PDU受信制御部15に処理が移される。また、ポーリングが「有効」の場合、再送要求制御部7に処理が移される。
 RLC PDU受信制御部15は、入力されたRLC PDUをリオーダリングバッファ161に一時保存する。また、送信側から送られてくる情報は常に順序どおりには到達するとは限らないため、RLC
PDU受信制御部15は、その順序の入れ替え(リオーダリング)を行う。
 さらに、RLC PDU受信制御部15は、リオーダリングバッファ161に保存された情報をリアセンブリバッファ162に適宜読み込み(コピーし)、管理情報を付加して、PDCP
PDUとして適宜PDCP受信処理部18に出力する(ステップS53)。
 バッファ監視部17は、リオーダリングバッファ161の情報蓄積量を監視する。また、バッファ監視部17は、リオーダリングバッファ161に蓄積されたRLC
PDUのシーケンス番号やオクテット番号を参照し、欠落情報として未到達のRLC PDUや正確に受信されなかったRLC PDUを検出する。さらに、バッファ監視部17は、リオーダリングバッファ161の情報蓄積容量の上限を規定する。
 PDCP受信処理部18は、入力されたPDCP PDUに対する処理を行い、IPパケットを上位レイヤの機能部440に出力する(ステップS54)。
 ステップS52に戻り、ポーリングが「有効」の場合、処理は再送要求制御部7に移される。
 以降の処理は、ARQによる再送信制御である。
 再送要求制御部7は、移動局における再送信制御に関係する機能部である。移動局の再送要求制御部7は、ポールチェック部13でのポーリングの検出に応答し、前述したバッファ監視部17が検出した欠落情報に基づいて、基地局に情報の再送信を実行させるためのACK/NACKリストを生成する。そして、ステータスPDU生成部71は、生成されたACK/NACKリストとその他の再送信に関する情報を有するテータスPDUを生成し、RLC
PDU生成部23に出力する(ステップS55)。
 その後の移動局のステップS56~S58での処理は、上述した基地局のS46~S48での処理と同様である。ステータスPDUは、ステータスPDUを含むMAC
PDUとしてレイヤ1の機能部420を介して基地局側に送信され、基地局側のMAC PDU分離部111にステータスPDUを含むMAC PDUとして入力される。
 ステータスPDUは、図11のデータフォーマットに示す「D/C」が「1」であり、コントロールPDU(C)の一つとして分類されているため、入力されたステータスPDUは、MAC
PDU分離部111、PDUタイプ解析部121を介し、コントロールPDUタイプ解析部122に入力される(ステップS59~S61)。なお、送信側である基地局では、ステップS52-2以降の処理は行われない。
 コントロールPDUタイプ解析部122は、入力されたRLC PDU(コントロールPDU)がデータの再送要求(ステータスPDU(S))を表すかその他のコントロールPDU(C)を表すかを判定する(ステップS63)。その他のコントロールPDU(C)とは、例えばコンテンツに依存したデータ制御情報を表すコントロールPDUである。
 この判定には、図11のデータフォーマットで示した「TYPE」が参照され、受信したコントロールPDUがステータスPDU(S)である場合は、ACK/NACK解析部14に処理が移される(ステップS64)。また、受信したコントロールPDUがその他のコントロールPDU(C)の場合は、そのコントロールPDUに対応する処理を行う図示しない機能部に処理が移される(ステップS65)。
 ACK/NACK解析部14は、再送要求制御部7と対となる、基地局における再送信制御に関係する機能部である。ACK/NACK解析部14は、移動局からのステータスPDUのACK/NACKリストを参照し、既に送信した情報が移動局に正確に送達されたか否かの検出を行う。そして、ACK/NACK解析部14は、ACK/NACKリストから「NACK」を検出した場合、RLC
PDU再送制御部2に対して、「NACK」に対応する情報の移動局への再送信を要求する(ステップS66)。
 RLC PDU再送制御部28は、ACK/NACK解析部14からの要求に応じて「NACK」を示した情報に対応する情報を再送信する(ステップS67)。前述したとおり、再送バッファ26にはレイヤ2送信部2から送信される情報が一時保存されている。
 そこで、RLC PDU再送制御処部28は、再送バッファ26を参照して「NACK」に対応する再送情報をリアセンブリバッファ281に適宜読み込み(コピーし)、管理情報を付加する。そして、情報の内容に応じてデータ制御情報を表すコントロールPDU(C)またはデータ情報を表すデータPDU(D)を生成する。また、RLC
PDU再送制御処部28は、再送バッファ26から「ACK」に対応する情報を消去し、バッファを解放する。
 以降、基地局でのステップS68~S73の処理は、上述した基地局のステップS43~S48の処理と同様であり、再送情報は、レイヤ1の機能部520にMAC
PDUとして出力され、移動局に送信される。
 ここで、ARQによる再送信制御と再送信される情報について説明する。
 図15は、送信側(基地局)と受信側(移動局)での再送信処理の概念図である。基地局のRLC機能部532で生成されたRLC
PDU(RP1、RP2・・)は、MAC機能部531で結合され、MAC PDU(MP1、MP2・・)として移動局に送信される。図15は、基地局と移動局間の無線伝搬路の劣化により送信エラーが発生し、移動局がRLC
PDU(RP2、RP3、RP4)を正しく受信できなかった場合を表す。移動局は基地局からのポーリングに応答してACK/NACKリストLsを基地局に返す。
 例えばACK/NACKリストLsの「RP1-ACK」は、RLC
PDU(RP1)が移動局で正しく受信できたことを表し、「RP2-NACK」は、RLC PDU(RP2)が移動局で正しく受信できなかったことを表す。基地局のACK/NACK解析部14は、受信したACK/NACKリストLsを解析する。そして、基地局のRLC
PDU再送制御部28は、その解析結果に基づき、「NACK」に対応する情報を再送バッファ26からリアセンブリバッファ281に適宜読み込み(コピーし)、管理情報を付加してRLC
PDU生成部23に出力する。そして、RLC PDU生成部23は、ヘッダ情報等を付加してRLC PDU(RP2、RP3、RP4)を再生成する。そして、それらは、MAC
PDU(MP_R)として移動局に送信される。また、基地局のRLC PDU再送制御処部28は、再送バッファ26から「ACK」に対応するRLC PDU(RP1、RP5)の情報を消去し、バッファを解放する。
 無線伝搬路が劣化すると、送信エラーが発生し、上記のようなARQによる再送信制御が行われるが、再送信した情報も再び送信エラーになる可能性が高い。また、通常は、送信データ長が長いほど送信エラーの起こる確率は高い。そこで、ARQによる再送信制御では、再送信される情報は、基地局で短いデータ長の情報に分割され、分割された情報ごとに再送信される。
 以下に、分割された情報の再送信に関して説明する。
 図16は、図5の再送バッファ26およびリアセンブリバッファ281における情報の処理を表す図である。
 図17は、情報が再送信される場合の情報の分割を表す図である。図16において、PDCP送信処理部27から入力される送信情報E1は、再送バッファ26に一時蓄積保存される。それらの情報は、初回送信される場合、適宜リアセンブリバッファ281に読み込まれる(コピーされる)、リアセンブリバッファ281では、読み込まれた情報毎に管理情報が付加される。そして、それらの情報に基づきコントロールPDUまたはデータPDUが生成され、RLC
PDU生成部23に出力される。
 図16の再送バッファ26に蓄積された情報Pi2、Pi3、Pi4は、図15で「NACK」が返されたRLC
PDU(RP2、RP3、RP4)が有した情報であり、移動局に再送信される情報である。
 また、図17には、図16と対応する情報Pi2、Pi3・・・が記載されている。データ長A2の情報Pi2は、初回送信時にはリアセンブリバッファ281にそのまま読み込まれ(コピーされ)、管理情報が付加され、図15に示すRLC
PDU(RP2)として移動局に送信される。データ長A3の情報Pi3も同様にRLC PDU(RP3)として送信される。
 しかし、再送信の場合は、上述したように送信エラーを回避するため、リアセンブリバッファ281に読み込まれた情報Pi2は、データ長Pi2-1、Pi2-2、Pi2-3に分割される。さらに情報Pi3も同様に分割される。そして、図17のように初回送信情報A2、A3よりも短いデータ長a、b、c・・・の情報T1、T2、T3・・・が生成される。これらのデータ長a、b、c・・・は、無線伝搬路の状態に合わせて設定される。
 このように分割された情報T1、T2、T3・・・は一元に管理される必要があり、図16に示すように、リアセンブリバッファ281においてそれぞれに対して管理情報Hmが付加される。そして、初回送信情報よりも短いデータ長のRLC
PDUが移動局に送信される。
 また、基地局から分割されて送信された情報は、移動局のリオーダリングバッファ161に一時保存され、適宜リアセンブリバッファ162に読み込まれて再結合される。
 このように、ARQによる再送信制御が行われる場合、基地局は初回送信情報に対して分割処理を行い、移動局はそれらの結合処理を行うため、両局の処理負荷や処理時間が増大する。さらに、分割された情報それぞれに対して管理情報Hmが付加されるため、情報の転送負荷や、情報の管理のための処理負荷および処理時間増大する。
 以上のように、サービス情報等の送受信では、無線伝搬路が劣化した場合、再送信による処理負荷や遅延等の問題が生じる。そこで、本実施の形態では、これらを解消するために、無線伝搬路に応じて動的にレイヤ2のパラメータ値を変更する。
 以下に、送受信動作におけるレイヤ2の各パラメータの設定例とその設定による効果を図10に示したベストエフォート通信(BE)の具体例を参照して機能部ごとに説明する。
 [送受信動作におけるレイヤ2のパラメータの変更の効果]
 上述したように、図10の欄2に示されるID番号は、図4、図5に示した各機能部にかかるパラメータP2、P4~P16の符号と対応している。
 パラメータP1、P2、P14は、ハンドオーバ時のフォワーディング処理に関係するパラメータであり、無線伝搬路の変化に応じて変更されないため、後述するハンドオーバ時のレイヤ2の設定変更動作で説明する。
 パラメータP3(RLC mode)は、通信サービスに基づくデータ転送方式を示すパラメータである。「AM」は「確認型データ転送」、「UM」は「非確認型データ転送」、「TM」は「透過型データ転送」を表す。図10に示す本実施の形態では、ベストエフォート通信(BE)の設定は「AM」であり、SIRの変化に関わらず一定である。
 バッファ監視部25は、かかるパラメータP5(Tx Windowサイズ)に設定された値に基づいて再送バッファ26の情報蓄積容量の上限(バッファサイズ)を規定する。無線伝搬路が劣化すると、上述したARQによる再送信が行われるが、再送信される情報は、移動局に正しく送信されるまで再送バッファ26に滞留する。そのため、無線伝搬路が劣化した場合、再送バッファ26は、滞留情報で満たされる可能性がある。
 そして、再送バッファ26に滞留した全ての情報に対して、図16に示すように、リアセンブリバッファ281での分割処理が行われる。つまり、再送バッファ26が滞留情報で満たされたならば、そのバッファサイズが大きければ分割処理にかかる処理負荷や処理時間が増加する。さらに、分割された情報それぞれに対して管理情報Hmが付加されるため、そのバッファサイズが大きければ両局間での情報の転送量が増加する。
 このような処理負荷等の増加に対処するため、無線伝搬路が劣化した場合、パラメータP5(Tx Windowサイズ)を小さく設定することにより、再送バッファ26のバッファサイズを小さくすることが好ましい。
 本実施の形態では、図10に示すように、パラメータP5は、SIR値が15dB以下になった場合、「128」から「64」に変更される。これにより、再送バッファ26のバッファサイズは半分になる。そして、例えば再送バッファ26が滞留情報で満たされた場合、分割処理に伴う処理負荷や処理時間は半分になる。
 また、再送バッファ26が滞留情報で満たされた場合、PDCP送信処理部27から再送バッファ26に入力される新規の送信情報の入力は、フロー制御により抑制される。また、無線伝搬路の状態が復帰し、逆にパラメータP5が、「64」から「128」に変更された場合は、バッファサイズが2倍になることによりバッファの空き領域が確保され、早期に新規の送信情報が再送バッファ26に入力され、それらに対する送信処理が行われる。つまり、この変更により、無線伝搬路の状態に対する追従性が高まる。
 ポーリング管理部24は、かかるパラメータP6(Widow based
polling)、パラメータP7(Poll Window)、パラメータP8(Poll Timer)、パラメータP9(Poll_prohibit Timer)、パラメータP10(poll
prohibit)に基づいてポーリングを送信する。
 移動局は、基地局からのポーリングに応答してACK/NACKリストを有するステータスPDUを基地局に返す。そして、基地局は、ACK/NACKリストに基づいて「NACK」に対応する情報を再送信する。上述したように、ARQによる再送信制御は、処理負荷等の増加につながるため、無線伝搬路が劣化した場合、ポーリングの頻度を低減することが好ましい。
 一方で、再送バッファ26に滞留した情報が早期に消去されるためには、ポーリングが送信される必要があり、ポーリングに対する応答として得られるACK/NACKリストから「ACK」が検出される必要がある。よって、無線伝搬路が劣化した時に、過度にポーリングの頻度が低減されると再送バッファ26に滞留した情報が消去されず、逆に処理負荷等が増大する場合がある。
 ポーリング管理部24には、バッファ監視部25から再送バッファ26に蓄積された情報の蓄積率が入力される。また、パラメータP7には、その蓄積率の上限が設定される。ポーリング管理部24は、再送バッファ26の情報の蓄積率がパラメータP7の示す蓄積率の上限に達した時にポーリングを送信する。また、パラメータP6には、上述の蓄積率に基づくポーリングの送信を有効にするか否かの「ON」または「OFF」値が設定される。
 本実施の形態では、SIR値が15dB以下になった場合、パラメータP6は、「OFF」から「ON」に、パラメータP7は、「50」に変更される。つまり、無線通信環境が良好の場合、再送バッファ26における情報の滞留量は少ないため、蓄積率に基づくポーリングは送信されない。そして、無線通信環境が劣化した場合、再送バッファ26に滞留した情報が早期に消去されるように、再送バッファ26の蓄積率が50%に達した時点でポーリングが送信される。
 パラメータP8には、ポーリングが送信される時間間隔が設定される。本実施の形態では、パラメータP8の値は、SIR値が劣化するほど大きく設定される。つまり、無線伝搬路が劣化した場合、ポーリングの頻度が低減される。
 以上のように、ポーリングは、再送バッファ26の情報の蓄積率または一定の時間間隔の経過に基づいて送信される。パラメータP9には、これらいずれかの要因でポーリングが送信された場合、次のポーリングが送信されるまでの時間間隔が設定される。
 つまり、ポーリングが送信された後、パラメータP9で設定された時間が経過するまでは、いずれかのポーリング送信の条件が発生してもポーリングは送信されない。また、パラメータP10には、パラメータP9の設定を有効にするか否かの「ON」または「OFF」値が設定される。
 本実施の形態では、SIR値が15dB以下になった場合、パラメータP10は、「OFF」から「ON」に、さらにパラメータP9は、無線伝搬路が劣化するほど大きい値に設定される。SIR値が15dBより大きい場合、パラメータ6は、「OFF」に設定されているため、再送バッファ26の情報の蓄積率に基づくポーリングの送信は行われない。
 つまり、一定の時間間隔でのポーリングのみが行われるため、パラメータP10もそれに合わせて「OFF」に設定されている。SIR値が15dB以下の場合のみ、パラメータ6は、「ON」に設定されているため、再送バッファ26の情報の蓄積率または一定の時間間隔のいずれかの条件の発生によりポーリングが送信される。
 そして、SIR値が15dB以下の場合には、それぞれの条件の発生によるポーリングの送信が短い周期で発生することによる処理負荷の増加を回避するために、パラメータP9の値が、無線伝搬路に合わせて「80ms」および「100ms」に設定されている。
 再送要求制御部7は、かかるパラメータP12(Status
prohibit Timer)、パラメータP13(STATUS prohibit)に基づいてポーリングに応答してACK/NACKリストを有するステータスPDUを返す。
 パラメータP12には、ステータスPDUが送信される時間間隔が設定される。つまり、ポーリングに応答してステータスPDUが送信された後、パラメータP12で設定された時間が経過するまでは、ポーリングを受信してもステータスPDUは送信されない。
 この設定により、例えば基地局が、誤って短い周期でポーリングを送信した場合でも、移動局は、ポーリングに応答してステータスPDUを基地局側に送信する時間間隔を調整できる。
 また、パラメータP13には、上述のパラメータP12の設定を有効にするか否かの「ON」または「OFF」値が設定される。
 本実施の形態では、SIR値が15dB以下になった場合、パラメータP13は、「OFF」から「ON」に変更される。そして、パラメータP12の値は、SIR値が劣化するほど大きく設定される。つまり、無線通信環境が良好の場合、移動局は、常に基地局からのポーリングに応答して、基地局にステータスPDUを送信する。そして、無線伝搬路が劣化した場合、ステータスPDUの送信頻度が低減される。すなわち、ARQによる再送信制御が低減される。
 バッファ監視部17は、かかるパラメータP4(Rx Windowサイズ)に設定された値により、リオーダリングバッファ161の情報蓄積容量の上限(バッファサイズ)を規定する。オーバーフローを回避するためにパラメータP4の値はパラメータP5の値以上に設定される。本実施の形態では、パラメータP4の値は、パラメータP5の値と同一の値に設定され、再送バッファ26とリオーダリングバッファ161のバッファサイズは常に一致している。
 リオーダリングバッファ161では、蓄積情報の順序の入れ替えが行われる。基地局から送信される情報は、送信エラーなどにより常に順序通りに移動局のリオーダリングバッファ161に蓄積されるとは限らないためである。
 そして、RLC PDU受信制御部15にかかるパラメータP11(Reordering
timer)には、リオーダリングバッファ161で蓄積情報の順序の入れ替えを行うために、未受信の情報が蓄積されるまでの待ち時間が設定される。つまり、RLC
PDU受信制御部15は、パラメータP11に設定された待ち時間経過後、未受信の情報を待たずに、蓄積された既存の情報のみで順序の入れ替えを行う。
 本実施の形態では、パラメータP11は、無線伝搬路が劣化するほど大きい値に設定される。無線伝搬路が良好である場合、情報は順序通りに移動局のリオーダリングバッファ161に蓄積される確率が高いため、待ち時間は短くてもよい。逆に、無線伝搬路が劣化した場合、その確率は低い。そこで、情報の品質低下を回避するために、無線伝搬路が劣化した場合、未受信の情報の待ち時間は長く設定される。
 MAC PDU再送制御部21にかかるパラメータP15(L1-HARQ最大再送回数)には、レイヤ1におけるHARQによる再送信制御の再送信回数の上限が設定される。
 HARQ(ハイブリッド自動再送要求:Hybrid Automatic
Repeat Request)とは、受信側で既に受信済みのデータを有効利用し、受信側が正しく受信できなかったデータのみを送信側が再送信することによりレイヤ2におけるARQによる再送信の頻度を抑える方式である。
 本実施の形態では、図2、図3のレイヤ1の機能部420(520)が、図示しないHARQ再送制御部を有し、HARQによる再送信がパラメータP15に設定された回数に達した後に、ARQによる再送信制御が行われる。
 MAC PDU再送制御部21は、レイヤ1の機能部420(520)内のHARQ再送制御部の再送信回数をカウントし、その再送信回数がパラメータP15に設定された値に達した場合、HARQ再送制御部のHARQによる再送信制御を中止する。なお、HARQ再送制御部が送信する再送信情報は、再送バッファ211に一時保存された情報から生成されてもよい。
 本実施の形態では、パラメータP15は、無線伝搬路が劣化するほど大きい値に設定される。無線伝搬路が劣化した場合、上述したようにARQによる再送信回数を低減し、さらにHARQによる再送信回数を低減することにより両局の処理負荷がより低減される。
 また、MAC PDU再送制御部21にかかるパラメータP16(バッファ滞留量補正係数)には、SDUバッファ271、再送バッファ26、211等の各バッファにおける情報の滞留量に乗算する比率が設定される。なお、パラメータ16は、移動局のみに設定されるパラメータである。
 移動局のMAC PDU再送制御部21は、各バッファにおける情報の滞留量を実測し、バッファステータスとして基地局に逐次送信する。そして、基地局は受信したバッファステータスと無線伝搬路の状態に基づき、移動局に対して上りの無線帯域を割り当てる。そして、情報が特に滞留している移動局に対してより広い帯域が割り当てられる。
 本実施の形態では、SIR値が15dB以下になった場合、パラメータP16は、「1」から「1/4」に変更される。つまり、無線通信環境が良好の場合、移動局での情報の滞留量は少ないため、実測された滞留量がバッファステータスとして基地局に送信される。
 一方で無線通信環境が劣化した場合、移動局での情報の滞留量は多く、実測した滞留量がそのままバッファステータスとして基地局に送信された場合、広い帯域が割り当てられ、他の移動局との通信が圧迫される。そこで、これを回避するためにパラメータP16の値が「1/4」に設定され、実際の滞留量よりも小さな値がバッファステータスとして基地局に送信される。
 次に、本実施の形態における無線通信装置のハンドオーバ時の動作について説明する。また、合わせてフォワーディング処理に関係するレイヤ2のパラメータP1、P2、P14について説明する。
 [ハンドオーバ時のレイヤ2の設定変更動作]
 図18は、ハンドオーバ時の基地局間フォワーディング処理を示す図である。基地局720、730は、コアネットワークCNWを介して接続され、1つの無線通信システムを構成している。
 基地局720のセル721内で通信中であった移動局710が基地局730のセル731内にハンドオーバした場合に、基地局720、730間でのフォワーディング処理が行われる。各局710、720、730で送受信される情報RP1、RP2、・・・及びACK/NACKリストLsは、図15に示される情報と一部対応している。
 セル721端で基地局720と通信中の移動局710は、基地局720から情報TDを逐次受信している。移動局710が、送信エラーにより情報RP2、RP3、RP4を正確に受信できなかった場合、ARQによる再送信制御に基づき、ACK/NACKリストLsが、移動局710から基地局720に送信される。
 その後、基地局720は、図16に示す再送バッファ26に滞留した情報Pi2、Pi3、Pi4と受信したACK/NACKリストLsから「NACK」に対応する再送情報RP2、RP3、RP4を移動局710に送信する。しかし、移動局710がハンドオーバした場合、基地局720は、これらの再送情報RP2、RP3、RP4をフォワーディングデータFDとしてハンドオーバ先の基地局730に送信する。
 また、このフォワーディングデータFDには、基地局720のSDUバッファ271に蓄積されたIP情報も含まれる。ハンドオーバ先の基地局730は、これらの送信されたフォワーディングデータFDを各バッファに保存し、ハンドオーバ元の基地局720が移動局710に対して行っていた送信処理を引き継ぐ。
 このように、ハンドオーバによりハンドオーバ元の基地局720からハンドオーバ先の基地局730にフォワーディングデータFDが送信されるが、送受信されるこれらフォワーディングデータ量の増加は、両局での処理負荷や処理時間や転送負荷等の増加に繋がる。そのため、これらフォワーディングデータ量は、可能な限り少ないことが好ましい。
 さらに、フォワーディング処理中の各局710、720、730間でのARQまたはHARQによる再送信制御も、処理負荷等の増加に繋がるため、各局710、720、730間での情報の再送信の頻度も低減させることが好ましい。
 これらは、例えばハンドオーバ時に各局710、720、730のレイヤ2のパラメータ値が、図10に示されるパラメータセット5の値に設定されることにより実現される。
 パラメータセット5は、パラメータP2(受信WINDOWサイズ)の値が「512」である点でパラメータセット4と相違する。
 図19は、ハンドオーバにおけるレイヤ2のパラメータ設定変更例を示すシーケンスフローである。図19の移動局710、基地局720、730、コアネットワークCNWは、図18の各要素と対応している。また、図の破線矢印は接続先を表す。
 図19は、本実施の形態において、移動局710と基地局720を介するコアネットワークCNWとの接続が、ハンドオーバを契機に移動局710と基地局730を介するコアネットワークCNWとの接続に切り替わるまでの流れを示している。また、図19において、各局710、720、730が図10に示す欄4の「従来BE」の示すレイヤ2のパラメータ値で動作中に、ハンドオーバが起こる。そして、各局710、720、730のレイヤ2のパラメータ値が、パラメータセット5の示す値に変更される。
 なお、本実施の形態では、各局710、720、730には、同一のレイヤ2パラメータ値(パラメータセット5)が設定される。しかし、ハンドオーバ時のフォワーディング処理における各局710、720、730の役割とレイヤ2のパラメータに従う各機能に基づいて、各局710、720、730に異なるパラメータ値が設定されてもよい。
 また、ハンドオーバによるフォワーディング処理において、レイヤ2のパラメータ値が変更される場合、図4に示すSIR検出部3に代わり、ハンドオーバ制御部4が、無線伝搬路の変化として移動局がハンドオーバする状態を検出する。
 さらに、各局のハンドオーバ制御部4は、互いに、ハンドオーバに関する信号を送受信する。また、本実施の形態の無線通信装置は、図2または図3に示すレイヤ1の機能部420(520)に図示しないハンドオーバ信号送受信部を有する。ハンドオーバ信号送受信部は、ハンドオーバ制御部4が送受信する信号の外部インターフェースであり、各局のハンドオーバ制御部4は、互いのハンドオーバ信号送受信部を介してハンドオーバに関する信号を送受信する。
 以下に、図19に示すシーケンスフローに従い、ハンドオーバにおけるレイヤ2のパラメータの設定変更について説明する。
 セル端の移動局710は、ハンドオーバ元の基地局720のメジャメント制御により、随時、基地局720の下り受信感度(SIR値)を測定し、その結果をハンドオーバ元の基地局720に報告する(ステップS101、S102)。
 ハンドオーバ元の基地局720は、その報告を受け、その報告が示す下り受信感度(SIR値)の測定結果に基づきフォワーディング処理を実行するか否かを決定する(ステップS103)。
 基地局720は、フォワーディング処理を実行する場合、ハンドオーバ先の基地局730にフォワーディング処理を実行する旨を示すフォワーディング要求を送信する(ステップS104)。
 ハンドオーバ先の基地局730は、ハンドオーバ元の基地局720からのフォワーディング要求を受信し、それに応答して、ハンドオーバ先の基地局730は、フォワーディング処理のための自局の初期設定等を行う(ステップS105)。そして、ハンドオーバ先の基地局730は、ハンドオーバ元の基地局720に初期設定等が完了したことを示すフォワーディング確認を返す(ステップS106)。
 本実施の形態において、ハンドオーバ元の基地局720内の図4に示すハンドオーバ制御部4は、ハンドオーバ先の基地局730からのフォワーディング確認を受信することで、移動局がハンドオーバする状態を検出する。
 そして、ハンドオーバ制御部4は、その検出に応答してフォワーディング処理の実行を示すハンドオーバコマンドHOcomを移動局710に送信する(ステップS107)。ここで、例えばハンドオーバコマンドHOcomは、ハンドオーバ先の基地局730の情報を有する。
 さらに、基地局720内のハンドオーバ制御部4は、フォワーディング確認に応答して、パラメータ設定変更部5にハンドオーバ決定信号HOを出力する。
 パラメータ設定変更部5内のパラメータ変更要生成部52は、ハンドオーバ決定信号HOの入力をトリガとして、記憶部9のパラメータテーブルを参照し自局のレイヤ2のパラメータ値をパラメータセット5の示す値に変更する(ステップS108)。
 これによりパラメータP2(受信WINDOWサイズ)の値は、「1024」から「512」の半分に設定される。PDCP送信処理部27は、かかるパラメータP2に設定された値に基づいてSDUバッファ271の情報蓄積容量の上限(バッファサイズ)を規定する。このパラメータP2の値が半分に設定されることにより、SDUバッファ271のバッファサイズは半分になり、フロー制御によりSDUバッファ271に入力および蓄積されるIP情報は低減される。
 また、パラメータP5の値が「128」から「64」の半分に設定され、再送バッファ26のバッファサイズは半分になり、再送バッファ26に滞留する再送情報は低減される。これらの情報は、上述したようにハンドオーバ時にフォワーディングデータとしてハンドオーバ先の基地局730に送信される情報である。つまり、パラメータP2とパラメータP5の値が小さく設定されることによりフォワーディングデータ量が低減される。
 さらに、他のレイヤ2のパラメータ値がパラメータセット5の示す値に変更されることにより、基地局720から移動局710へのポーリングの頻度が低減され、フォワーディング処理中のARQによる再送信の頻度が低減される。
 また、PDCP送信処理部27にかかるパラメータP14には、SDUバッファ271に蓄積されたIP情報をフォワーディングデータとして送信するか否かの「ON」または「OFF」値が設定される。一般的にはパラメータP3(RLC
mode)が「AM」の場合に、それらの蓄積されたIP情報はフォワーディングデータとして送信されるため、本実施の形態では、パラメータP14は変更されない。なお、フォワーディング処理においてパラメータP14は、ハンドオーバ元の基地局720にのみ設定されればよい。
 他に、フォワーディング処理にかかるパラメータとして図示しないパラメータP1(Reordering)がある。フォワーディング処理において、送信されるフォワーディングデータには、前述したように滞留した再送信情報と新規のIP情報が含まれる。さらに、ハンドオーバ先の基地局730にコアネットワークCNWから新たにIP情報が入力される場合もある。
 これらの情報は、ハンドオーバ先の基地局730の受信処理の過程において、図3に示すそのPDCP機能部533が有する図示しないバッファに、一時保存される。しかし、これらの情報は常に順序どおりには到達するとは限らないため、その順序の入れ替え(リオーダリング)が行われる。
 パラメータP1には、この順序の入れ替えを有効にするか否かの「ON」または「OFF」値が設定される。本実施の形態では、パラメータP1は常に「ON」であり、変更はされない。
 図19および図4に戻り、パラメータ設定変更部5内のパラメータ変更要求生成部52は、ハンドオーバ決定信号HOに応答して、図8に示したステップ2の処理と同様に、レイヤ2パラメータ値をパラメータセット5に示す値に変更する旨を示すパラメータ変更要求を生成する。そして、図8に示したステップS1~S7までの処理が行われ、パラメータ変更要求を含む送信データが移動局710に送信される(ステップS109)。
 移動局710のハンドオーバ制御部4は、ハンドオーバコマンドHOcomを受信し、自局のパラメータ設定変更部5にハンドオーバ決定信号HOを出力する。
 パラメータ設定変更部5内のパラメータ変更要求解析部53は、ハンドオーバ決定信号HOに応答して、基地局720から送信されるレイヤ2パラメータ値をパラメータセット5に示す値に変更する旨を示すパラメータ変更要求が入力されるのを待つ。
 そして、移動局710は、パラメータ変更要求を含む送信データを受信し、移動局710では、図8に示したステップS8~S16までの処理が行われ、パラメータ変更要求解析部53にパラメータ変更要求が入力される。
 パラメータ変更要求解析部53は、ステップS17と同様に、自局のレイヤ2のパラメータLP2を入力されたパラメータ変更要求が示すパラメータセット5の値に変更する(ステップS110)。
 この設定により、少なくとも移動局710から基地局720、730へのACK/NACKリストを含むステータスPDUの送信頻度が低減され、フォワーディング処理中のARQによる再送信の頻度が低減される。
 移動局710のハンドオーバ制御部4は、基地局720から入力されたハンドオーバコマンドHOcomが有するハンドオーバ先の情報からハンドオーバ先の基地局730を特定する。そして、移動局710は、ハンドオーバ先の基地局730と同期を取る。さらに、ハンドオーバ制御部4は、ハンドオーバ先の基地局730に、ハンドオーバに基づく移動局730におけるレイヤ2のパラメータの設定が完了したことを示す移動局ハンドオーバ設定確認HOconfを送信する。
 そして、移動局710のパラメータ変更確認生成部54は、図9のステップS18と同様に、自局のレイヤ2パラメータ値をパラメータセット5の値に変更した旨を示すパラメータ変更確認を生成する。そして、図8に示すステップS19~S23までの処理が行われ、パラメータ変更確認を含む送信データがハンドオーバ先の基地局730に送信される(ステップS111)。
 基地局730のハンドオーバ制御部4は、移動局ハンドオーバ設定確認HOconfの受信に応じて、自局のパラメータ設定変更部5にハンドオーバ決定信号HOを出力する。
 パラメータ設定変更部5内のパラメータ変更確認チェック部51は、ハンドオーバ決定信号HOに応答して、移動局710から送信されるパラメータ変更確認が入力されるのを待つ。
 そして、基地局730は、パラメータ変更確認を含む送信データを受信し、基地局730では、図9に示したステップS24~S32までの処理が行われ、パラメータ変更確認チェック部51にパラメータ変更確認が入力される。
 パラメータ変更確認チェック部51は、ステップS33、S34と同様に、自局のレイヤ2のパラメータLP2を入力されたパラメータ変更確認が示すパラメータセット5の値に変更する(ステップS112)。
 この設定により、少なくとも基地局730から基地局720、移動局710へのACK/NACKリストを含むステータスPDUの送信頻度が低減され、フォワーディング処理中のARQによる再送信の頻度が低減される。
 ステップS108に戻り、ハンドオーバ元の基地局720は、移動局710にパラメータ変更要求を送信(ステップS109)後、フォワーディング処理を開始し、ハンドオーバ先の基地局730にフォワーディングデータの送信を開始する(ステップS113)。上述したように、基地局720ではレイヤ2のパラメータP2とパラメータP5の値が小さく設定されたため、送信されるフォワーディングデータ量は低減されている。
 ハンドオーバ先の基地局730は、自局のバッファに受信したフォワーディングデータの蓄積を開始する(ステップS114)。
 図19に示すシーケンスフローでは、ハンドオーバ先の基地局730は、フォワーディングデータの蓄積開始後にレイヤ2のパラメータを設定変更するが、この設定は、バックグランドで並列処理される。なお、ハンドオーバ先の基地局730のレイヤ2のパラメータ値が設定変更された後に、ハンドオーバ先の基地局730がハンドオーバ元の基地局720にその旨を伝え、その後、ハンドオーバ元の基地局720からのフォワーディングデータの送信が開始されてもよい。
 次に、ハンドオーバ先の基地局730は、ドライバを介してコアネットワークCNW内の通信サーバに対して経路の切り替え要求を出力する(ステップS115)。
 通信サーバは、ハンドオーバ元の基地局720に経路の切り替え処理を行う旨を報告し、経路の切り替え処理を行う(ステップS116)。そして、通信サーバは、ハンドオーバ先の基地局730に経路の切り替え要求に対する応答として経路切り替え確認を出力する(ステップS117)。
 ハンドオーバ先の基地局730は、経路切り替え確認に応答してハンドオーバ元の基地局720にバッファやリソースの解放要求を出力する(ステップS118)。
 ハンドオーバ元の基地局720は、その解放要求に応答し、フォワーディングデータを送信しながら、並行してバッファの解放を始める。そして、ハンドオーバ元の基地局720は、全てのフォワーディングデータ送信後に、ハンドオーバ先の基地局730にフォワーディング処理の終了を報告し(ステップS120)、フォワーディング処理に関係する全リソースを解放する(ステップS120)。
 以上のように、ハンドオーバによるフォワーディング処理が行われる場合に、各局のレイヤ2のパラメータ値が適切な値に設定変更されることにより、フォワーディングデータ量やARQまたはHARQによる再送信の頻度が低減され、各局での処理負荷や処理時間や転送負荷等が低減される。
 また、以上のハンドオーバによるフォワーディング処理では、フォワーディング処理の実行を示すハンドオーバ特有の信号として、移動局710にはハンドオーバコマンドHOcomが、ハンドオーバ先基地局730には、移動局ハンドオーバ設定確認HOconfが送信される。しかし、各局のレイヤ2のパラメータの変更を伴う場合は、パラメータ変更要求とパラメータ変更確認の送受信がハンドオーバコマンドHOcomと移動局ハンドオーバ設定確認HOconfの送受信に相当する。このため、必ずしもこれらのハンドオーバ特有の信号が送受信される必要はない。
 次に、本実施の形態における上記と異なる態様でのレイヤ2のパラメータ値の設定方法について説明する。
 [非明示的なレイヤ2のパラメータ値の設定方法]
 上述したレイヤ2のパラメータ値の設定方法では、レイヤ2の設定変更を決定した送信側が、受信側に対して、パラメータ変更要求として設定変更するレイヤ2のパラメータ値を図11、図12に示すコントロールPDUまたはMACコントロールブロックにより明示的に送信する。そして、受信側から送信側に対して同様にパラメータ変更確認が返される。
 そのため、これらの生成や解析のための処理負荷や遅延が生じる。さらに、無線伝搬路が劣化している場合、これらを含む送信データも送信エラーとなる可能性があり、再送信による処理負荷等が増加する。また、例えば、図8、図9のシーケンスフローで示したレイヤ2の設定変更では、パラメータ変更確認が送信エラーとなった場合、再送信によりパラメータ変更確認が正しく送信されるまで、基地局と移動局のレイヤ2のパラメータ値は同一に設定されない。
 一方で、各局はそれぞれ、図4に示す自局の記憶部9に、図10に示すパラメータテーブルを記憶している。
 そこで、本設定方法では、各局それぞれが、SIR値を測定し、SIR値がある規定のレベルを示した場合、自局の記憶部9に記憶されたパラメータテーブルを参照し、自局のレイヤ2のパラメータ値を非明示的に変更する。
 この非明示的なレイヤ2のパラメータ値の設定方法では、図4のSIR検出部3は、図示しないSIR測定部から入力されるSIR値がある規定のレベルを示した場合、パラメータ設定変更部5にSIR値のレベルの変化を示すレイヤ2設定変更信号Qを出力する。そして、パラメータ設定変更部5内のパラメータ変更要求生成部52は、レイヤ2設定変更信号Qの入力をトリガとして、記憶部9のパラメータテーブルを参照し、レイヤ2設定変更信号Qに対応するレイヤ2のパラメータ値(パラメータセット)を決定する。そして、パラメータ変更要求生成部52は、自局のレイヤ2のパラメータLP2をその決定した値に変更する。
 ここで、各局のレイヤ2のパラメータ値は、それぞれほぼ同時に、さらに同一に設定変更される必要があるが、そのためには、各局が有する図示しないSIR測定部が、同時に同じSIR値を各々のSIR検出部3に出力する必要がある。
 しかし、機器の製造誤差や設定誤差または上下信号の干渉状態の差異等により、この実現は難しい。そのため、例えばSIR値が、図10に示すレイヤ2のパラメータ値の変更が行われる境界である20dB付近を示す場合に、非明示的な設定方法では、一方のレイヤ2のパラメータのみが設定変更される場合がある。
 そこで、非明示的なレイヤ2のパラメータ値の設定が行われる場合、基地局は、上述したメジャメント制御により移動局で測定される下りのSIR値を常に参照する。これにより、基地局は、移動局のSIR値の変動を把握でき、その傾向から非明示的に移動局のレイヤ2のパラメータ値が変更されたことを推定できる。そして、基地局は、移動局のレイヤ2のパラメータ値が変更されたと推定した場合、自局のレイヤ2のパラメータ値を非明示的に変更する。
 また、図19に示す移動局のハンドオーバによるフォワーディング処理において、レイヤ2のパラメータ値の非明示的な設定が行われる場合、各局が、パラメータ変更要求およびパラメータ変更確認を送信する必要はない。そして、移動局710とハンドオーバ先の基地局730は、ハンドオーバコマンドHOcomと移動局ハンドオーバ設定確認HOconfにそれぞれ応答して非明示的にレイヤ2のパラメータ値を図10のパラメータセット5が示す値に変更する。
 以上のように、非明示的にレイヤ2のパラメータ値の設定が可能であり、この場合、パラメータ変更要求やパラメータ変更確認の生成による処理負荷や遅延が解消される。さらに、無線伝搬路の劣化による再送処理の増加や基地局と移動局に設定されるレイヤ2のパラメータ値の不一致の問題が解消される。
 [第2の実施の形態]
 図20は、第2の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における受信処理を行う機能部の構成例を表すブロック図である。
 図21は、第2の実施の形態における無線通信装置の図2、図3に示したレイヤ2の機能部430(530)における送信処理を行う機能部の構成例を表すブロック図である。図20、図21に示す各機能部は、一体として端子A~Hにおいてそれぞれ接続されている。
 図4、図5に示す第1の実施の形態における無線通信装置との違いは、図20、図21に示す無線通信装置がSIR検出部3の代わりに再送率測定部8を有することであり、同一又は対応する構成要素には同一符号を付している。
 本第2の実施の形態について、既述した説明を除き、第1の実施の形態と同様に、基地局を送信側、移動局を受信側として以下に説明する。
 再送率制御部8は、無線伝搬路の状態変化を検出する機能部であり、基地局において、RLC
PDU再送制御部28のARQによる再送信回数を監視して、ARQの再送率を測定し、MAC PDU再送制御部211のHARQによる再送信回数を監視し、HARQの再送率を計算する。また、再送率制御部8は、移動局において、再送要求制御部7のARQによる再送信要求(ACK/NACK)を監視し、ARQの再送率を計算する。さらに、再送率制御部8は、移動局において、図2のレイヤ1の機能部420内の図示しないHARQの受信処理部のHARQによる再送信要求を監視し、HARQの再送率を計算する。
 本第2の実施の形態では、この再送率の変化が、無線伝搬路の変化に対応し、レイヤ2のパラメータ値が、再送率の変化に基づいて動的に変更される。
 以下に、明示的なレイヤ2のパラメータ値の設定変更について説明する。
 基地局の再送率測定部8は、上述したように、RLC PDU再送制御部28またはMAC
PDU再送制御部211を監視し、ARQまたはHARQの再送率を計算し、再送率がある規定のレベルを示した場合、パラメータ設定変更部5に、再送率の変化を示すレイヤ2設定変更信号Qを出力する。この再送率の変化を示すレイヤ2設定変更信号Qと第1の実施の形態で示したSIR検出部3が出力するSIR値のレベルの変化を示すレイヤ2設定変更信号Qとは、互いに無線環境の変化に応じて出力され、レイヤ2のパラメータ値の変更動作において実質的に同一である。つまり、このレイヤ2設定変更信号Qを出力する処理は図8に示すステップ1に対応する。
 そして、基地局のパラメータ設定変更部5内のパラメータ変更要求生成部52は、レイヤ2設定変更信号Qの入力をトリガとして、記憶部9に定義されたパラメータテーブルを参照し、レイヤ2設定変更信号Qに対応するレイヤ2のパラメータ値を決定する。
 図10は、そのパラメータテーブルの一例であり、欄5には、SIR値と併記されて再送率Xが4段階に規定され、それぞれに対応するレイヤ2のパラメータ値が、パラメータセット1~4として定義されている。
 パラメータ変更要求生成部52は、移動局側のレイヤ2パラメータ値を上記手順で決定したパラメータ値(パラメータセット)に変更する旨を表すパラメータ変更要求を生成する。この処理は図8に示すステップ2に対応する。
 以下、図8、図9に示すシーケンスフローに従い、基地局と移動局のレイヤ2のパラメータ値が設定変更される。
 移動局がパラメータ変更要求の送信側となる場合、再送率制御部8は、再送要求制御部7および図示しないHARQの受信処理部を監視し、同様に再送率がある規定のレベルを示した場合、自局のパラメータ設定変更部5に、再送率の変化を示すレイヤ2設定変更信号Qを出力する。そして、同様に移動局から基地局にパラメータ変更要求が送信される。
 次に、非明示的なレイヤ2のパラメータ値の設定変更について説明する。
 各局それぞれが、再送率を測定し、再送率がある規定のレベルを示した場合、自局の記憶部9に記憶されたパラメータテーブルを参照し、自局のレイヤ2のパラメータ値を非明示的に変更する。
 第2の実施の形態における非明示的なレイヤ2のパラメータ値の設定方法では、図20の再送率測定部8は、ARQまたはHARQの再送率を測定し、再送率がある規定のレベルを示した場合、パラメータ設定変更部5に再送率の変化を示すレイヤ2設定変更信号Qを出力する。そして、パラメータ設定変更部5内のパラメータ変更要求生成部52は、記憶部9を参照してレイヤ2設定変更信号Qに対応するレイヤ2のパラメータ値(パラメータセット)を決定し、レイヤ2のパラメータ値LP2をその決定した値に変更する。
 ここで、各局のレイヤ2のパラメータ値は、それぞれほぼ同時に設定変更される必要があるが、そのためには、各局の再送率測定部8が、同時に同じ再送率を測定する必要がある。
 そこで、HARQの再送率において、基地局の再送率測定部8は、MAC
PDU再送制御部211のHARQによる再送信回数を監視し、移動局の再送率測定部8は、図示しないHARQの受信処理部のHARQによる再送信回数に対応する再送信要求を監視し、それぞれHARQの再送率を計算する。
 また、ARQの再送率において、基地局の再送率測定部8は、RLC PDU再送制御部28のARQによる再送信回数を監視し、移動局の再送率測定部8は、再送要求制御部7のARQによる再送信回数に対応する再送信要求(ACK/NACK)を監視し、それぞれARQの再送率を計算する。
 このように、基地局と移動局が対応する「再送信回数」と「再送信要求」をそれぞれ監視することにより、基地局と移動局は同じ再送率を計算できる。よって、図10のパラメータテーブルの再送率Xに従ってレイヤ2のパラメータ値が変更される場合、基地局と移動局は同時に設定変更を行う。
 以上のように、無線伝搬路の変化に対応する再送率の変化に基づいてレイヤ2のパラメータ値を動的に設定変更することが可能である。また、第2の実施の形態が、第1の実施の形態のSIR値の変化に基づくレイヤ2のパラメータ値の設定変更と併用されてもよい。これにより、レイヤ2のパラメータ値は無線伝搬路の変化に対応するSIR値の変化と再送率の変化の両要因に基づいて適宜変更されるため、レイヤ2のパラメータ値は、無線伝搬路の状態変化に対してより適切な値に設定される。さらに、SIR値と再送率によるクロスチェックも可能である。例えば、SIR値が大きく再送率も大きい場合は、本無線通信装置は、無線伝搬路は良好であり、送受信回路の誤動作により再送率が大きくなったと判断し、レイヤ2のパラメータの設定変更は行われない。
1 レイヤ2受信部
2 レイヤ2送信部
3 SIR検出部
4 ハンドオーバ制御部
5 パラメータ設定変更部
7 再送要求制御部
8 再送率制御部
9 記憶部

Claims (15)

  1.  無線伝搬路を通して送信側無線通信装置と受信側無線通信装置が接続される移動無線システムにおける通信制御方法であって、
     前記送信側無線通信装置と受信側無線通信装置に、データリンク制御のためのパラメータを設定し、
     前記設定されたパラメータを前記無線伝搬路の状態変化をトリガとして変更する、
     ことを特徴とする通信制御方法。
  2.  請求項1において、
     前記データリンク制御のためのパラメータは、レイヤ2プロトコルのパラメータであることを特徴とする通信制御方法。
  3.  請求項1において、
     前記送信側無線通信装置は、前記無線伝播路の複数の状態のそれぞれに対応してパラメータ値が定義されたパラメータテーブルを有し、
     前記送信側無線通信装置は、検出される無線伝播路の状態に対応するパラメータ値を前記パラメータテーブルから決定し、
     前記決定したパラメータ値を含むパラメータ変更要求を前記受信側無線通信装置に送信し、
     前記受信側無線通信装置は、前記パラメータ変更要求に基づき、自装置側のパラメータを前記パラメータ変更要求に含まれるパラメータ値に変更し、更にパラメータを変更した旨を示すパラメータ変更確認を前記送信側無線通信装置に送信し、
     前記送信側無線通信装置は、前記受信側無線通信装置からの前記パラメータ変更確認を受信し、前記パラメータ変更確認に基づき自装置側のパラメータを前記決定したパラメータ値に変更する、
     ことを特徴とする通信制御方法。
  4.  請求項1において、
     前記送信側無線通信装置は、前記無線伝播路の複数の状態のそれぞれに対応してパラメータ値が定義されたパラメータテーブルを有し、
     前記送信側無線通信装置は、検出される無線伝播状態に対応するパラメータ値を前記パラメータテーブルから決定し、
     前記送信側無線通信装置は、自装置側のパラメータを前記決定したパラメータ値に変更し、前記変更したパラメータ値を含むパラメータ変更要求を前記受信側無線通信装置に送信し、
     前記受信側無線通信装置は、前記パラメータ変更要求に基づき、自装置側のパラメータを前記パラメータ変更要求に含まれるパラメータ値に変更し、更にパラメータを変更した旨を示すパラメータ変更確認を前記送信側無線通信装置に送信する、
     ことを特徴とする通信制御方法。
  5.  請求項4または5のいずれかにおいて、
     前記パラメータは、再送信の頻度を決定する値であって、
     前記送信側無線通信装置は、送信エラーを起こした送信情報の前記再送信を行い、
     前記無線伝搬路の状態変化が、無線伝搬路の状態が劣化する変化である場合、前記無線伝播状態に対応するパラメータは前記再送信の頻度が低くなる値である
     ことを特徴とする通信制御方法。
  6.  請求項4または5のいずれかにおいて、
     前記パラメータは、再送信の送信情報が蓄積されるバッファサイズの上限を決定する値であって、
     前記送信側無線通信装置は、送信エラーを起こした送信情報の前記再送信を行い、
     前記無線伝搬路の状態変化が、無線伝搬路の状態が劣化する変化である場合、前記無線伝播状態に対応するパラメータは前記バッファサイズが小さくなる値である、
     ことを特徴とする通信制御方法。
  7.  請求項1において、
     前記送信側無線通信装置および受信側無線通信装置は、前記無線伝播路の複数の状態のそれぞれに対応してパラメータ値が定義されたパラメータテーブルを有し、
     前記受信側無線通信装置は、自装置側で検出される無線伝播路の状態に対応するパラメータ値を自装置が有する前記パラメータテーブルから決定し、自装置側のパラメータを前記決定したパラメータ値に変更し、
     前記送信側無線通信装置は、前記受信側無線通信装置から送信される前記受信側無線通信装置で検出される無線伝搬路の状態を受信し、その傾向から前記受信側無線通信装置のパラメータが変更されたことを推定し、
     前記送信側無線通信装置は、自装置側で検出される無線伝播路の状態に対応するパラメータ値を自装置が有する前記パラメータテーブルから決定し、自装置側のパラメータを前記決定したパラメータ値に変更する、
     ことを特徴とする通信制御方法。
  8.  請求項1において、
     前記送信側無線通信装置は、送信エラーを起こした送信情報の再送信を行い、
     前記無線伝搬路の状態が前記再送信の再送率で示され、
     前記送信側無線通信装置および受信側無線通信装置は、前記無線伝播路の複数の状態のそれぞれに対応してパラメータ値が定義されたパラメータテーブルを有し、
     前記送信側無線通信装置は、前記再送信において前記送信側無線通信装置で管理される前記再送信の再送信回数を監視し、前記再送信回数に基づいて再送率を計算し、前記受信側無線通信装置は、前記再送信において前記受信側無線通信装置で管理される前記再送信の再送信回数に対応する再送信要求を監視し、前記再送信要求に基づいて再送率を計算し、
     前記受信側無線通信装置は、自装置側で検出される無線伝播路の状態に対応するパラメータ値を自装置が有する前記パラメータテーブルから決定し、自装置側のパラメータを前記決定したパラメータ値に変更し、
     前記送信側無線通信装置は、自装置側で検出される無線伝播路の状態に対応するパラメータ値を自装置が有する前記パラメータテーブルから決定し、自装置側のパラメータを前記決定したパラメータ値に変更する、
     ことを特徴とする通信制御方法。
  9.  請求項1において、
     前記送信側無線通信装置は、ハンドオーバ元の基地局に設置され、前記受信側無線通信装置である第1の受信側無線通信装置は移動局に、第2の受信側無線通信装置はハンドオーバ先の基地局にそれぞれ配置され、さらに、
     前記無線伝搬路の状態変化は、前記移動局が前記ハンドオーバ元の基地局と前記ハンドオーバ先の基地局間をハンドオーバする状態である、
     ことを特徴とする通信制御方法。
  10.  請求項9において、
     前記送信側無線通信装置は、前記ハンドオーバに対応するパラメータ値が定義されたパラメータテーブルを有し、
     前記送信側無線通信装置は、自装置側で検出される無線伝播路の状態に対応する前記ハンドオーバに対応するパラメータ値を前記パラメータテーブルから決定し、
     前記送信側無線通信装置は、自装置側のパラメータを前記ハンドオーバに対応するパラメータ値に変更し、前記ハンドオーバに対応するパラメータ値を含むパラメータ変更要求を前記第1の受信側無線通信装置に送信し、
     前記送信側無線通信装置は、前記第2の受信側無線通信装置へのフォワーディングデータの送信を開始し、
     前記第1の受信側無線通信装置は、前記パラメータ変更要求に基づき、自装置側のパラメータを前記パラメータ変更要求に含まれる前記ハンドオーバに対応するパラメータ値に変更し、前記ハンドオーバに対応するパラメータ値を含むパラメータ変更確認を前記第2の受信側無線通信装置に送信し、
     前記第2の受信側無線通信装置は、前記パラメータ変更確認に基づき、自装置側のパラメータを前記パラメータ変更確認に含まれる前記ハンドオーバに対応するパラメータ値に変更する、
     ことを特徴とする通信制御方法。
  11.  請求項9において、
     前記送信側無線通信装置、前記第1の受信側無線通信装置、前記第2の受信側無線通信装置は、それぞれ前記ハンドオーバに対応するパラメータ値が定義されたパラメータテーブルを有し、
     前記送信側無線通信装置は、自装置側で検出される無線伝播路の状態に対応する前記ハンドオーバに対応するパラメータ値を自装置が有する前記パラメータテーブルから決定し、
     前記送信側無線通信装置は、自装置側のパラメータを前記ハンドオーバに対応するパラメータ値に変更し、前記フォワーディング処理の実行を示すハンドオーバコマンドを前記第1の受信側無線通信装置に送信し、
     前記送信側無線通信装置は、前記第2の受信側無線通信装置へのフォワーディングデータの送信を開始し、
     前記第1の受信側無線通信装置は、前記ハンドオーバコマンドに応じて、前記ハンドオーバに対応するパラメータ値を自装置が有する前記パラメータテーブルから決定し、
     前記第1の受信側無線通信装置は、自装置側のパラメータを前記ハンドオーバに対応するパラメータ値に変更し、自装置側のパラメータの変更が完了したことを示す移動局ハンドオーバ設定確認を前記第2の受信側無線通信装置に送信し、
     前記第2の受信側無線通信装置は、前記移動局ハンドオーバ設定確認に応じて、前記ハンドオーバに対応するパラメータ値を自装置が有する前記パラメータテーブルから決定し、
     前記第2の受信側無線通信装置は、自装置側のパラメータを前記ハンドオーバに対応するパラメータ値に変更する、
     ことを特徴とする通信制御方法。
  12.  請求項4、5または10のいずれかにおいて、
     前記パラメータ変更要求およびパラメータ変更確認は、コントロールPDUもしくはMAC
    コントロールブロックとして送信される、
     ことを特徴とする通信制御方法。
  13.  移動無線システムにおいて無線伝搬路を通して接続される送信側と受信側に位置する無線通信装置であって、
     データリンク制御のためのパラメータを設定するパラメータ設定変更部と、
     前記無線伝搬路の状態変化を検出する状態変化検出部とを有し、
     前記パラメータ設定変更部は、前記無線伝搬路の状態変化の検出をトリガとして、前記パラメータの設定を変更する
     ことを特徴とする無線通信装置。
  14.  無線伝搬路を通して接続される送信側無線通信装置と受信側無線通信装置を有する移動無線システムであって、
     前記送信側無線通信装置および受信側無線通信装置は、
     データリンク制御のためのパラメータを設定するパラメータ設定変更部と、
     前記無線伝搬路の状態変化を検出する状態変化検出部とを有し、
     前記パラメータ設定変更部は、前記無線伝搬路の状態変化の検出をトリガとして、前記パラメータの設定を変更する
     ことを特徴とする移動無線システム。
  15.  請求項14において、
     前記データリンク制御のためのパラメータは、レイヤ2プロトコルのパラメータであることを特徴とする移動無線システム。
PCT/JP2009/003056 2009-07-01 2009-07-01 無線通信制御方法および無線通信装置 WO2011001469A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011520669A JP5423794B2 (ja) 2009-07-01 2009-07-01 無線通信制御方法および無線通信装置
PCT/JP2009/003056 WO2011001469A1 (ja) 2009-07-01 2009-07-01 無線通信制御方法および無線通信装置
EP09846764.0A EP2451215A4 (en) 2009-07-01 2009-07-01 Radio communication control and radio communication device
US13/334,915 US9025565B2 (en) 2009-07-01 2011-12-22 Wireless communication control method and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003056 WO2011001469A1 (ja) 2009-07-01 2009-07-01 無線通信制御方法および無線通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/334,915 Continuation US9025565B2 (en) 2009-07-01 2011-12-22 Wireless communication control method and wireless communication device

Publications (1)

Publication Number Publication Date
WO2011001469A1 true WO2011001469A1 (ja) 2011-01-06

Family

ID=43410571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003056 WO2011001469A1 (ja) 2009-07-01 2009-07-01 無線通信制御方法および無線通信装置

Country Status (4)

Country Link
US (1) US9025565B2 (ja)
EP (1) EP2451215A4 (ja)
JP (1) JP5423794B2 (ja)
WO (1) WO2011001469A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636250A (zh) * 2011-07-01 2014-03-12 高通股份有限公司 用于针对 mrab 呼叫的增强的ul rlc 流控制的方法和装置
CN109076396A (zh) * 2016-05-20 2018-12-21 华为技术有限公司 分组域语音业务调度的方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184880B2 (en) * 2013-08-01 2015-11-10 Sierra Wireless, Inc. Method and device enabling a dynamic bundle size HARQ mechanism
US8879613B1 (en) * 2013-08-06 2014-11-04 Cisco Technology, Inc. Dynamic frame selection when requesting tone map parameters in mesh networks
US10212728B2 (en) 2014-03-02 2019-02-19 Lg Electronics Inc. Method for reordering a packet data convergence protocol packet data unit at a user equipment in a dual connectivity system and device therefor
CN110168984A (zh) * 2016-11-18 2019-08-23 瑞典爱立信有限公司 用于在无线电通信中传递数据的技术
US11395112B2 (en) * 2018-06-14 2022-07-19 Sumitomo Electric Industries, Ltd. Wireless sensor system, wireless terminal device, communication control method and communication control program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006157133A (ja) 2004-11-25 2006-06-15 Fujitsu Ltd 無線通信装置、移動局
JP2006246089A (ja) 2005-03-04 2006-09-14 Fujitsu Ltd 無線基地局、移動局
JP2007228488A (ja) * 2006-02-27 2007-09-06 Kyocera Corp データ再送制御方法、システム及びデータ再送制御装置
JP2007300509A (ja) 2006-05-01 2007-11-15 Ntt Docomo Inc 無線通信方法および無線通信装置
JP2008118640A (ja) 2006-10-31 2008-05-22 Research In Motion Ltd Harq送信失敗時に再送信するためにパケットデータを再断片化する方法および装置
JP2008527794A (ja) * 2004-12-30 2008-07-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信方法とシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7711363B2 (en) * 2002-01-08 2010-05-04 Qualcomm Incorporated Method and apparatus for controlling communications of data from multiple base stations to a mobile station in a communication system
JP4417733B2 (ja) * 2004-01-15 2010-02-17 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 伝送方法及び装置
WO2007007383A1 (ja) * 2005-07-08 2007-01-18 Fujitsu Limited 送信装置、受信装置、情報通信方法
JP2008131601A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Ind Co Ltd 通信端末装置、通信システム、通信方法及びプログラム
US8503454B2 (en) * 2007-05-04 2013-08-06 Samsung Electronics Co., Ltd. Apparatus and method for setting up quality of service in a wireless communication system
KR20090015253A (ko) * 2007-08-08 2009-02-12 삼성전자주식회사 통신 시스템에서 데이터 재전송 방법 및 시스템
JP5291711B2 (ja) * 2007-09-10 2013-09-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 広帯域cdmaシステムにおける電力考慮型リンク適応制御
CA2710158C (en) * 2007-12-21 2016-11-22 Telefonaktiebolaget L M Ericsson (Publ) A method apparatus and network node for applying conditional cqi reporting
US9203562B2 (en) * 2008-03-07 2015-12-01 Mediatek Inc. Cooperating timer and retransmission counter for buffer management in a HARQ wireless network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006157133A (ja) 2004-11-25 2006-06-15 Fujitsu Ltd 無線通信装置、移動局
JP2008527794A (ja) * 2004-12-30 2008-07-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信方法とシステム
JP2006246089A (ja) 2005-03-04 2006-09-14 Fujitsu Ltd 無線基地局、移動局
JP2007228488A (ja) * 2006-02-27 2007-09-06 Kyocera Corp データ再送制御方法、システム及びデータ再送制御装置
JP2007300509A (ja) 2006-05-01 2007-11-15 Ntt Docomo Inc 無線通信方法および無線通信装置
JP2008118640A (ja) 2006-10-31 2008-05-22 Research In Motion Ltd Harq送信失敗時に再送信するためにパケットデータを再断片化する方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2451215A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636250A (zh) * 2011-07-01 2014-03-12 高通股份有限公司 用于针对 mrab 呼叫的增强的ul rlc 流控制的方法和装置
CN109076396A (zh) * 2016-05-20 2018-12-21 华为技术有限公司 分组域语音业务调度的方法和装置
US11039341B2 (en) 2016-05-20 2021-06-15 Huawei Technologies Co., Ltd. Method and apparatus for scheduling voice service in packet domain

Also Published As

Publication number Publication date
US9025565B2 (en) 2015-05-05
JP5423794B2 (ja) 2014-02-19
US20120093127A1 (en) 2012-04-19
EP2451215A4 (en) 2015-02-25
EP2451215A1 (en) 2012-05-09
JPWO2011001469A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
US8413002B2 (en) Method of performing ARQ procedure for transmitting high rate data
JP5587406B2 (ja) 無線リンク制御層確認型モードにおける高速再送の方法及び装置
JP4016032B2 (ja) 無線移動通信システムにおける受信ウインドウ移動方法
US8050248B2 (en) Retransmission in wireless communication systems
EP1550235B1 (en) Method for monitoring transmission sequence numbers assigned to protocol data units to detect and correct transmission errors
US7746786B2 (en) Retransmission control method and device
KR101199044B1 (ko) 고속 업링크 패킷 접속 방식의 개선
EP1976176B1 (en) A method and apparatus for data retransmission
US8565756B2 (en) Control of measurement messaging in a mobile device
US8898534B2 (en) Data transfer method
US20080043619A1 (en) Method and apparatus for controlling arq and harq transmissions and retransmissions in a wireless communication system
JP5423794B2 (ja) 無線通信制御方法および無線通信装置
US20080081651A1 (en) Communication Control Method, Radio Communication System, Base Station, and Mobile Station
US20020080719A1 (en) Scheduling transmission of data over a transmission channel based on signal quality of a receive channel
US20080022180A1 (en) Method and apparatus for handling transmission errors in a wireless communications system
US8279873B2 (en) Out of sequence delivery of status reports on a separate channel
WO2007007383A1 (ja) 送信装置、受信装置、情報通信方法
JP2005510950A (ja) 再送方法および再送システム
KR20070108801A (ko) 고속 데이터 처리를 위한 효율적인 재전송 장치 및 방법
US8934935B2 (en) Processing of uplink data in a communications system
CN108566264B (zh) 触发无线链路控制层确认模式状态报告的方法及通信系统
EP2073425B1 (en) Apparatus and method for optimizing status report time in mobile communication system
KR101708786B1 (ko) 무선링크제어계층에서의 데이터 전송 장치 및 방법
KR20100060853A (ko) 무선 링크 제어 프로토콜에서의 상태 보고 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520669

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009846764

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE