WO2011099129A1 - Composite multilayer film - Google Patents
Composite multilayer film Download PDFInfo
- Publication number
- WO2011099129A1 WO2011099129A1 PCT/JP2010/051980 JP2010051980W WO2011099129A1 WO 2011099129 A1 WO2011099129 A1 WO 2011099129A1 JP 2010051980 W JP2010051980 W JP 2010051980W WO 2011099129 A1 WO2011099129 A1 WO 2011099129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- resin
- multilayer film
- composite multilayer
- temperature
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 46
- 229920013716 polyethylene resin Polymers 0.000 claims abstract description 54
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 44
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000000126 substance Substances 0.000 claims abstract description 39
- 238000001179 sorption measurement Methods 0.000 claims abstract description 34
- 239000011342 resin composition Substances 0.000 claims abstract description 23
- 229920005672 polyolefin resin Polymers 0.000 claims abstract description 18
- 239000004952 Polyamide Substances 0.000 claims abstract description 17
- 229920002647 polyamide Polymers 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 43
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 28
- 229920000573 polyethylene Polymers 0.000 claims description 27
- 238000011282 treatment Methods 0.000 claims description 27
- 238000002844 melting Methods 0.000 claims description 25
- 230000008018 melting Effects 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 20
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 17
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 17
- 239000012767 functional filler Substances 0.000 claims description 16
- 239000003990 capacitor Substances 0.000 claims description 15
- 239000001569 carbon dioxide Substances 0.000 claims description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 14
- 238000010030 laminating Methods 0.000 claims description 14
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 11
- 239000003463 adsorbent Substances 0.000 claims description 10
- 239000003054 catalyst Substances 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 7
- 229910021536 Zeolite Inorganic materials 0.000 claims description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000002808 molecular sieve Substances 0.000 claims description 6
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 6
- 238000009823 thermal lamination Methods 0.000 claims description 6
- 239000010457 zeolite Substances 0.000 claims description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims description 5
- 229920001225 polyester resin Polymers 0.000 claims description 5
- 239000004645 polyester resin Substances 0.000 claims description 5
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000292 calcium oxide Substances 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- 229920005678 polyethylene based resin Polymers 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 2
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 2
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 2
- 229960001545 hydrotalcite Drugs 0.000 claims description 2
- 239000004571 lime Substances 0.000 claims description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 2
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 2
- 229910000510 noble metal Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 239000000741 silica gel Substances 0.000 claims description 2
- 229910002027 silica gel Inorganic materials 0.000 claims description 2
- 239000000945 filler Substances 0.000 abstract description 13
- 238000007739 conversion coating Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 125
- -1 polypropylene Polymers 0.000 description 34
- 229920000098 polyolefin Polymers 0.000 description 30
- 238000012360 testing method Methods 0.000 description 30
- 239000011888 foil Substances 0.000 description 28
- 239000000853 adhesive Substances 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 21
- 238000000034 method Methods 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 13
- 229910001416 lithium ion Inorganic materials 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000003475 lamination Methods 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000004898 kneading Methods 0.000 description 8
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 6
- 229920002292 Nylon 6 Polymers 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000001530 fumaric acid Substances 0.000 description 6
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 239000011976 maleic acid Substances 0.000 description 6
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 239000005022 packaging material Substances 0.000 description 6
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229920002302 Nylon 6,6 Polymers 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 5
- 230000000274 adsorptive effect Effects 0.000 description 5
- 229910001593 boehmite Inorganic materials 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229920001903 high density polyethylene Polymers 0.000 description 5
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 229920001707 polybutylene terephthalate Polymers 0.000 description 5
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229920000092 linear low density polyethylene Polymers 0.000 description 4
- 239000004707 linear low-density polyethylene Substances 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012968 metallocene catalyst Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000012748 slip agent Substances 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 3
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000009820 dry lamination Methods 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 229920004889 linear high-density polyethylene Polymers 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 101000596741 Homo sapiens Testis-specific protein TEX28 Proteins 0.000 description 1
- 229920006065 Leona® Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 229920003355 Novatec® Polymers 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 102100035104 Testis-specific protein TEX28 Human genes 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229920003734 UBESTA® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 150000003325 scandium Chemical class 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 150000003681 vanadium Chemical class 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/088—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/122—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/129—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/704—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2553/00—Packaging equipment or accessories not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a multilayer film useful for housing foods and daily necessities, housing a power generation / storage element of a secondary battery or an electric double layer capacitor, and the like.
- a polyolefin film layer on one side of the aluminum foil layer and the other A composite multilayer film having a polyamide layer on the side is widely used (for example, Patent Document 1). Since polyolefin has thermal adhesiveness, it is possible to seal the packaging material by heat sealing by setting the polyolefin film to the inside of the packaging material. Moreover, polyamide is excellent in mechanical strength and can improve the durability of the packaging material.
- the polyolefin film and the aluminum foil are bonded via an anchor coat agent or an adhesive. For this reason, it has not been possible to use a liquid having a strong permeability or a strong dissolving power that attacks the anchor coating agent or the adhesive.
- the packaging material having an aluminum foil could not be used as a content for a liquid that corrodes aluminum even if the liquid does not affect the adhesive layer.
- lithium ion secondary batteries and electric double layer capacitors have been actively studied as batteries for hybrid vehicles and electric vehicles.
- lithium ion secondary batteries and electric double layer capacitors have been made into products by enclosing their power generation / storage elements in metal cans.
- strict fuel efficiency standards are imposed on automobiles, and weight reduction is being promoted for each part. Therefore, using the composite multilayer film as an exterior material such as a secondary battery is a very promising method in terms of reducing the weight of an automobile.
- Patent Document 2 a method of treating the surface of an aluminum foil with a chromic acid chemical (chromate treatment) is widely known (for example, Patent Document 2).
- chromate treatment a method of treating the surface of an aluminum foil with a chromic acid chemical
- Patent Document 2 a method of treating the surface of an aluminum foil with a chromic acid chemical
- the corrosion resistance of the aluminum foil is remarkably improved, and the film can be bonded to the polyolefin film by heat lamination without using any anchor coat agent or adhesive.
- this technique involves a serious problem of using chromium, which is an environmentally hazardous substance.
- Non-chromium chemical conversion treatments such as boehmite treatment (hydrothermal treatment) and phosphate treatment are known as aluminum surface treatments that do not use chromium, and these surface treatments can provide the same corrosion resistance as chromate treatment.
- boehmite treatment hydroothermal treatment
- phosphate treatment phosphate treatment
- aluminum surface treatments that do not use chromium
- these surface treatments can provide the same corrosion resistance as chromate treatment.
- the polyolefin film is not fused to the processing machine. In the temperature range where lamination can be performed, sufficient adhesive strength cannot be obtained.
- the composite multilayer film when the composite multilayer film is applied to a lithium ion secondary battery or an electric double layer capacitor for a hybrid vehicle or an electric vehicle, a high level of low temperature resistance is required.
- crystalline polypropylene is used as the polyolefin film with an emphasis on heat resistance, and the low temperature resistance is insufficient. Therefore, in order to improve the low temperature resistance, it is widely used to use a block copolymer as a crystalline polypropylene or to blend rubber or the like.
- the “islands” of rubber as a low temperature resistance modifier have a morphology dispersed in the “sea” of crystalline polypropylene, the penetration of liquid from the “islands” becomes a problem. Since organic solvents used in lithium ion secondary batteries and electric double layer capacitors have strong permeability and dissolving power, there is a high risk of leakage in the long term.
- lithium ion secondary batteries and electric double layer capacitors for hybrid vehicles and electric vehicles are required to have a long life of 10 years or more. When such a long life is reached, moisture penetration from the outside through the heat seal end face of the polyolefin film becomes a problem.
- lithium ion secondary batteries and electric double layer capacitors use a carbonate-based organic solvent as an electrolyte or use carbon as an electrode, carbon monoxide is contained in a container in which a storage element is enclosed. Another major problem is that it has the property of easily generating gas, and as a result, the life of the container is shortened due to deformation and rupture of the container. If the battery exterior is a metal can type, it is possible to provide a gas release valve, but it is practically difficult to provide a gas release valve in the composite multilayer film type.
- An object of this invention is to provide the composite multilayer film suitable as an exterior material for enclosing the electrical storage element of the lithium ion secondary battery and electric double layer capacitor for hybrid vehicles and electric vehicles.
- a composite multilayer film having a polyolefin film layer on one side of a surface-treated aluminum foil layer and a polyamide layer on the other side the aluminum foil and the polyolefin film are directly bonded, that is, anchor coating agent or adhesive. Bonded with sufficient adhesive strength without applying any agent, etc., excellent in low temperature resistance, and moisture that enters from the outside through the heat seal end face of the polyolefin film and generated inside the battery
- An object is to provide a composite multilayer film having a function of adsorbing and removing carbon monoxide gas and the like.
- the inventor of the present invention has a heat laminate layer in which a polyolefin film is made of an acid-modified polyethylene resin ( ⁇ ) and a specific polyethylene resin ( ⁇ ) having a crystal melting temperature higher than that of the resin ( ⁇ ).
- the multilayer film in which the aluminum foil is surface-treated and the aluminum foil is laminated on the thermal laminate layer is so high that the thermal laminate layer thermally laminates the polyolefin film and the aluminum foil with the aluminum foil. Even if laminated at a temperature, the polyolefin film can be bonded without causing a trouble that the polyolefin film is fused to the processing machine, and the adhesive strength between the aluminum foil and the polyolefin film layer and the low temperature resistance are excellent. I found.
- a layer (A-3) of the adsorption functional resin composition ( ⁇ ) containing an adsorption functional filler having a fine particle diameter between the heat laminate layer and the heat seal layer It has been found that a function of adsorbing and removing moisture entering from the outside through the end face of the heat seal or carbon monoxide gas generated inside the battery can be provided.
- the present invention has a polyolefin-based resin film (A) on one surface of the aluminum layer (B) subjected to chemical conversion treatment on at least one surface and a polyamide treatment on the other surface.
- the film (A) comprises an acid-modified polyethylene resin ( ⁇ ) layer (A-1), a crystalline polyethylene resin ( ⁇ ) layer (A-2), And the temperature at which the acid-modified polyethylene resin ( ⁇ ) has a crystallinity of 60% is defined as Tm ⁇ 60, and the crystalline polyethylene resin has one or more layers (A-3) positioned between them.
- the layer (B) is laminated directly on the layer (a-1), a layer ( A-3) It consists of an adsorption functional resin composition ( ⁇ ) containing (a) 100 parts by mass of a polyethylene-based resin and (b) 1 to 300 parts by mass of an adsorption functional filler. Particle diameter (D99) and particle diameter (D50) of 20 ⁇ m or less, wherein D99 and D50 are respectively the particle diameters at the points where 99% by mass and 50% by mass are accumulated from the smaller particle diameter in the particle size distribution. This is a composite multilayer film.
- the present invention also provides a method for producing the composite multilayer film.
- the polyolefin resin layer and the surface-treated aluminum layer are directly bonded with sufficient adhesive strength without applying an anchor coating agent or adhesive, and low temperature resistance
- it has a function of adsorbing moisture, carbon monoxide, etc., so it is useful as a packaging material for encapsulating lithium ion secondary batteries and electric double layer capacitor storage elements for hybrid and electric vehicles. It is.
- FIG. 1 is an example of the composite multilayer film of the present invention.
- the composite multilayer film of the present invention has a polyolefin resin film (A) on one side of the aluminum layer (B) subjected to chemical conversion treatment at least on one side and on the surface subjected to chemical conversion treatment. And a polyamide layer (C) on the other surface. You may further have a layer (D) of a polyester-type resin on a layer (C).
- the film (A) has at least three layers, ie, an acid-modified polyethylene resin ( ⁇ ) layer (A-1), a crystalline polyethylene resin ( ⁇ ) layer (A-2), and a position between them.
- the layer (A-3) of the adsorption functional resin composition ( ⁇ ) to be in contact with the layer (B).
- the layer (A-2) is located at the innermost surface when the composite multilayer film is formed into a bag shape so that the film (A) is on the inner side.
- (A) Polyolefin resin film The acid-modified polyethylene resin ( ⁇ ) constituting the layer (A-1) and the crystalline polyethylene resin ( ⁇ ) constituting the layer (A-2) When the temperatures at which the degree of crystallinity (Xc) is 60% are Tm ⁇ 60 and Tm ⁇ 60 , respectively, Tm ⁇ 60 ⁇ Tm ⁇ 60 is selected.
- Tm ⁇ 60 ⁇ chosen when the temperature at which crystallinity of the resin (beta) is 70% and Tm ⁇ 70, Tm ⁇ 60 ⁇ chosen to be Tm Beta70, more preferably, crystallinity of the resin (beta) when is the temperature at which 80% was Tm ⁇ 80, it is selected to be the Tm ⁇ 60 ⁇ Tm ⁇ 80.
- Tm ⁇ 60 ⁇ Tm ⁇ 60 troubles such as the film (A) fusing to the processing machine occur when the layer (A-1) side of the film (A) is thermally laminated with the layer (B).
- the temperatures such as Tm ⁇ 60 and Tm ⁇ 60 are values determined from the DSC melting curve of the corresponding resin.
- the temperature Tm ⁇ 60 at which the crystallinity of the resin ( ⁇ ) becomes 60% is such that the ratio of the melting enthalpy at the temperature Tm ⁇ 60 or higher to the total melting enthalpy in the DSC melting curve of the resin ( ⁇ ) is 60%.
- DSC melting curves are obtained by using DSC Q1000 model of TA Instruments (TA Instruments Japan Co., Ltd.) and holding the sample at 230 ° C. for 5 minutes.
- the acid-modified polyethylene resin ( ⁇ ) is selected so as to satisfy Tm ⁇ 60 ⁇ Tm ⁇ 60 .
- the layer (A-1) is a layer that is directly bonded to the chemical-treated surface of the layer (B) in the thermal lamination of the film (A) and the layer (B), the resin ( ⁇ ) is Tm
- the lower ⁇ 60 can lower the temperature in the heat laminating process.
- electrolytes of lithium ion secondary batteries and electric double layer capacitors have strong penetrability and dissolving power, and are required to have heat resistance and moisture permeability from the viewpoint of battery performance
- Tm ⁇ 60 is preferably used. It is selected from those of 80 ° C. or higher.
- Tm ⁇ 60 is 90 ° C. or higher, more preferably 100 ° C. or higher.
- the upper limit of Tm ⁇ 60 is preferably 130 ° C., more preferably 125 ° C. in consideration of the upper limit of heat resistance of the crystalline polyethylene resin ( ⁇ ) constituting the layer (A-2).
- Examples of the acid-modified polyethylene resin ( ⁇ ) include a polyethylene resin modified with an unsaturated carboxylic acid or a derivative thereof. Resin ((alpha)) can raise the adhesive strength with the aluminum foil of a layer (B), when the polyethylene-type resin is acid-modified.
- unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid, and examples of derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, Examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like.
- polyethylene resin examples include linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, ethylene-methacrylate copolymer. Examples include coalescence.
- the acid-modified polyethylene resin ( ⁇ ) can be used alone or in combination of two or more.
- a polyethylene-based resin that is not acid-modified may be blended within a range not departing from the object of the present invention.
- Tm (alpha) 60 in case resin ((alpha)) is a mixture which consists of a combination of 2 or more resin is a value determined from the DSC melting curve of the said mixture.
- acid-modified polyethylene resin ( ⁇ ) examples include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., and Polybond (trade name) manufactured by Crompton. And Bond First (trade name) manufactured by Sumitomo Chemical Co., Ltd.
- the crystalline polyethylene resin ( ⁇ ) constituting the layer (A-2) satisfies Tm ⁇ 60 ⁇ Tm ⁇ 60 , preferably Tm ⁇ 60 ⁇ Tm ⁇ 70 , more preferably Tm ⁇ 60 ⁇ Tm ⁇ 80.
- Tm ⁇ 60 is 115 ° C. or higher from the viewpoint of heat resistance of the resulting multilayer film. More preferably, Tm ⁇ 60 is 120 ° C or higher, and further preferably 125 ° C or higher.
- the upper limit of Tm ⁇ 60 is not particularly limited, but is actually about 135 ° C. because it is a polyethylene resin.
- the crystalline polyethylene resin ( ⁇ ) examples include, for example, an ethylene homopolymer and a random copolymer of ethylene and a small amount of a comonomer (eg, 1-butene, 1-hexene, 1-octene, etc.). . Specifically, high-density polyethylene, high-pressure low-density polyethylene, ultra-low-density to high-density linear polyethylene using a metallocene catalyst, ultra-low-density to high-density long-chain branched polyethylene using a Brookhart catalyst, linear And ultra-low density to high density polyethylene.
- the crystalline polyethylene resin ( ⁇ ) can be used singly or in combination of two or more.
- resin ((beta)) is a mixture which consists of 2 or more types of combinations
- temperature such as Tm (beta) 60
- Tm (beta) 60 is a value determined from the DSC melting curve of the said mixture.
- Examples of commercially available crystalline polyethylene resins ( ⁇ ) include Evolue SP4530 and Hi-Zex 3300F manufactured by Prime Polymer Co., Ltd., Novatec HD HY560 manufactured by Nippon Polyethylene Co., Ltd., and UBE Super Polyethylene Umerit manufactured by Ube Industries, Ltd. 4040F etc. are mentioned.
- the crystalline polyethylene resin ( ⁇ ) has thermal adhesiveness, when the resulting multilayer film is processed into a bag shape with the layer (A-2) inside, and the opening of the bag is heat sealed. When sealed, it can be processed well.
- the polyolefin-based resin film (A) has one or more layers (A-3) made of the adsorption functional resin composition ( ⁇ ) between the layers (A-1) and (A-2).
- the adsorptive functional resin composition ( ⁇ ) includes (a) 100 parts by mass of a polyethylene resin, and (b) 5 to 300 parts by mass of the adsorbent functional filler, and the adsorbent functional filler (b) has a particle size of 30 ⁇ m or less. (D99) and a particle size (D50) of 20 ⁇ m or less.
- D99 and D50 refer to the particle diameters at points where 99% by mass and 50% by mass are accumulated from the smaller particle diameter in the particle size distribution, respectively.
- the adsorption functional filler (b) is 1 to 300 parts by mass, preferably 5 to 250 parts by mass, with respect to 100 parts by mass of the polyethylene resin (a). Preferably, it is contained in an amount of 10 to 200 parts by mass.
- the blending amount of the adsorption functional filler (b) is less than the above lower limit, a sufficient adsorption function cannot be obtained, and when it exceeds the above upper limit, film forming property and drawing workability may be deteriorated.
- the polyethylene resin (a) is not particularly limited, and examples thereof include ethylene polymers such as ultra-low density polyethylene, linear low density polyethylene, low density polyethylene, and high density polyethylene, Examples thereof include ethylene-vinyl acetate copolymers, ethylene copolymers such as ethylene-ethyl acrylate, and ethylene- ⁇ -olefin copolymer rubber. Examples of the ⁇ olefin include propylene, 1-butene, 1-hexene, 1-octene and 1-decane.
- the polyethylene resin (a) is preferably a polyethylene resin composition containing (a-1) an ethylene polymer and (a-2) an acid-modified resin. It is a thing.
- (A-1) Ethylene-based polymer The ethylene-based polymer has sufficient heat resistance and sufficient filler receptivity to improve the appearance and film thickness stability of the film (A). Thus, it is preferable to satisfy the following (i) to (iv).
- the peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
- the heat of fusion ( ⁇ H) in the DSC melting curve is 90 to 180 J / g.
- the crystallinity at 110 ° C. (Xc (110)) is 10 to 60%, and
- MFR 190 ° C., 21.18N is 0.1 g / 10 min or more and less than 10 g / 10 min.
- DSC measurement was performed using a DSC Q1000 model of TA Instruments (TA Instruments Japan Co., Ltd.), and the sample was held at 190 ° C. for 5 minutes.
- the DSC melting curve was obtained by performing a temperature program in which the temperature was cooled to ⁇ 10 ° C. at a rate of temperature decrease of 10 ° C./min, held at ⁇ 10 ° C. for 5 minutes, and then heated to 190 ° C. at a temperature increase rate of 10 ° C./min. .
- the peak top melting point (Tm) is preferably 120 ° C. or higher, more preferably 125 ° C. or higher.
- the upper limit of the peak top melting point (Tm) is not particularly limited, but is actually about 135 ° C. because it is an ethylene polymer.
- the heat of fusion ( ⁇ H) is less than 90 J / g, the heat resistance may be insufficient, and if it exceeds 180 J / g, the filler acceptability may be insufficient and the film forming property may be inferior.
- the heat of fusion ( ⁇ H) is preferably 100 to 170 J / g.
- the crystallinity (Xc (110)) is less than 10%, the heat resistance may be insufficient, and if it exceeds 60%, the filler acceptability may be insufficient and the film forming property may be inferior.
- the crystallinity (Xc (110)) is preferably 15 to 45%.
- the crystallinity at temperature T (Xc (T)) means the ratio of maintaining a crystalline state without melting at temperature T.
- the crystallinity at 110 ° C. (Xc (110)) is , Calculated as the ratio of the melting enthalpy at 110 ° C. or higher to the total melting enthalpy in the DSC melting curve.
- the melt-kneading property (filler dispersibility) between the polyethylene resin composition (a) and the water-absorbing filler (b) becomes insufficient, and the film (A) is formed.
- the pullability at the time may be reduced, and if it is less than 0.1 g / 10 minutes, it may be difficult to adjust the thickness of the film (A).
- the MFR is preferably 0.2 to 7 g / 10 min, most preferably 0.5 to 5 g / 10 min.
- the ethylene polymer (a-1) is not particularly limited as long as it satisfies the requirements (i) to (iv).
- low density polyethylene linear low density polyethylene, ultra low density polyethylene, high density polyethylene, and a copolymer of ethylene and ⁇ -olefin (for example, 1-butene, 1-hexene, 1-octene, etc.) can be mentioned.
- An ethylene copolymer using vinyl acetate, methyl acrylate, ethyl acrylate, or the like as a comonomer has a large decrease in crystallinity due to the comonomer, and thus it is difficult to satisfy the requirements (i) to (iv).
- An ethylene-type polymer can be used individually by 1 type or as a mixture which mix
- A-2 Acid-modified resin
- the acid-modified resin has improved miscibility between the hydrophobic ethylene-based polymer (a-1) and the hydrophilic adsorption functional filler (b). It is a component for accelerating the dispersion of the adsorption functional filler so that the film does not have defects such as blisters when it is formed.
- the acid-modified resin used in the present invention may be anything as long as it is a resin modified with an unsaturated carboxylic acid or a derivative thereof.
- unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid
- derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester
- examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like.
- the resin examples include ethylene such as linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, and ethylene-methacrylate copolymer.
- ethylene such as linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, and ethylene-methacrylate copolymer.
- VA ethylene-vinyl acetate
- EA ethylene-ethyl acrylate copolymer
- ethylene-methacrylate copolymer examples include a polymer, a propylene polymer, and a styrene elastomer. From the viewpoint of miscibility with the ethylene polymer (a-1), the resin is most preferably an ethylene polymer.
- the acid-modified resin preferably has an MFR (190 ° C., 21.18 N) of 0.1 to 10 g / 10 min. More preferably, it is 0.2 to 7 g / 10 minutes, and most preferably 0.5 to 5 g / 10 minutes. If the MFR is higher than the above upper limit, the pullability during film formation of the film (A) may be lowered. If the MFR is lower than the lower limit, it may be difficult to adjust the thickness of the film (A).
- MFR 190 ° C., 21.18 N
- acid-modified resins include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., Polybond (trade name) manufactured by Crompton, and Sumitomo Chemical Co., Ltd. ) Manufactured Bond First (trade name).
- the acid-modified resins can be used alone or in combination of two or more.
- the polyethylene resin composition preferably contains 99 to 60% by mass and 1 to 40% by mass of the ethylene polymer (a-1) and the acid-modified resin (a-2), respectively. More preferably, they are 97 to 70% by mass of the ethylene polymer (a-1) and 3 to 30% by mass of the acid-modified resin (a-2), and more preferably 95 to 95% of the ethylene polymer (a-1). 80% by mass and 5 to 20% by mass of the acid-modified resin (a-2). If the acid-modified resin (a-2) is small (that is, the ethylene polymer (a-1) is large), the adsorptive functional filler (b) is not sufficiently dispersed, and the grease is not formed during film formation.
- the film (A) tends to generate defects such as bumps.
- the amount of the acid-modified resin (a-2) is large (that is, the amount of the ethylene polymer (a-1) is small)
- the interaction between the acid-modified resin and the adsorption functional filler becomes very strong, and the adsorption functionality
- the kneading load during production of the resin composition ( ⁇ ) and the extrusion load during film production of the film (A) may increase.
- the tensile elongation of the film (A) may decrease.
- the adsorption functional filler is a substance having a function of adsorbing and removing substances that inhibit or reduce the performance of lithium ion secondary batteries and electric double layer capacitors.
- the water-absorbing filler used in the present invention has a particle size (D99) of 30 ⁇ m or less and a particle size (D50) of 20 ⁇ m or less.
- D99 is preferably more than 0.01 ⁇ m and not more than 20 ⁇ m, more preferably more than 0.1 ⁇ m and not more than 15 ⁇ m.
- D50 is preferably 0.01 to 15 ⁇ m, more preferably 0.1 to 10 ⁇ m.
- a coarse filler having a particle size exceeding the upper limit may become a film defect or foreign matter when it is formed.
- fillers with too fine particles aggregate to form defects or foreign matter of the film, or if they do not aggregate, a large amount of air is embraced, resulting in poor melt-kneading workability in the production of the water absorbent resin composition.
- In order to control the particle size distribution there are a method of generating large particles and pulverizing and classifying them, and a method of generating fine particles from the beginning and classifying them. Either method may be used as long as the particle size distribution can be controlled within the above range, and is not particularly limited. However, from the viewpoint of extrusion load and film forming property, a method of generating fine particles from the beginning is more preferable.
- moisture adsorbent examples include zeolite (for example, molecular sieve 3A, molecular sieve 4A), magnesium sulfate, calcium oxide, strontium oxide, aluminum oxide, silica gel, lime and calcined hydrotalcite.
- Examples of the carbon monoxide oxidation catalyst include hopcalite and supported noble metal catalyst soot.
- Examples of the carbon dioxide adsorbent include strontium oxide, calcium oxide, zeolite having a pore diameter of 0.4 nm or more (for example, molecular sieve 4A, molecular sieve 5A), and magnesium oxide having a BET specific surface area of 50 m 2 / g or more. Can be mentioned.
- the adsorptive functional resin composition ( ⁇ ) includes a slip agent, phosphorus-based, phenol-based, sulfur-based antioxidant, anti-aging agent, light stabilizer, ultraviolet absorber, as necessary.
- Weathering agent such as copper damage prevention agent, nucleating agent such as aromatic phosphate metal salt and gelol, antistatic agent such as glycerin fatty acid monoester, coloring agent, fragrance, antibacterial agent, zinc oxide, calcium carbonate
- Additives such as plasticizers such as fillers such as talc and metal hydrate, glycerin fatty acid ester-based, paraffin oil, phthalic acid-based, ester-based and the like may be included.
- the slip agent can improve the melt-kneading workability during the production of the adsorptive functional resin composition ( ⁇ ), and can avoid the occurrence of dies and greases during film formation.
- the slip agent include metal soaps such as calcium stearate, fatty acid amides such as oleic acid amide and erucic acid amide, polyethylene wax, silicone gum, and silicone oil.
- the addition amount of the slip agent is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polyethylene resin (a).
- the adsorption functional resin composition ( ⁇ ) can be obtained by melting and kneading necessary components.
- the melt-kneading can be performed using a conventional apparatus such as a twin screw extruder or a Banbury mixer.
- the kneading temperature is preferably higher than the molding temperature in order to avoid moisture absorption foaming troubles during molding.
- the polyolefin resin film (A) is obtained by co-extrusion of an acid-modified polyolefin resin ( ⁇ ), a crystalline polyethylene polymer ( ⁇ ), and an adsorption functional resin composition ( ⁇ ) by a T-die method or an inflation method. It can be obtained by forming a film with a desired thickness.
- a range suitable for the exterior of a lithium ion secondary battery or an electric double layer capacitor is selected. Therefore, although it is not limited to the following range, it is usually 30 to 150 ⁇ m, particularly 40 to 100 ⁇ m.
- each layer of the polyolefin-based resin film (A) and the thickness ratio of (A-1) / (A-3) / (A-2) depend on the manufacturability of the film (A), desired heat laminating properties, heat sealing Selected in consideration of properties and adsorption functionality. Accordingly, although not limited to the following range, in general, the thickness of the layer (A-1) is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more in order to obtain a stable thermal laminate strength. Further, the thickness of the layer (A-2) is preferably 3 ⁇ m or more in order to obtain a stable heat seal strength, more preferably 5 ⁇ m or more, but it is thin from the viewpoint of the adsorption function of the layer (A-3).
- the thickness ratio of (A-1) / (A-3) / (A-2) is 10/60/10, 10/65/5. And 20/50/10.
- the film (A) thus obtained can then be used to obtain the composite multilayer film of the present invention by laminating the layer (B) on the layer (A-1) and further laminating the layer (C). Since the film (A) has the layer (A-1) on one side of the adsorption functional layer (A-3) and the layer (A-2) on the other side, the layer (B) And the problem that the adsorption function of the composite multilayer film is lowered due to unnecessary adsorption of the layer (A-3) during the lamination of (C) is small.
- Non-chromium chemical conversion treatment is a chemical conversion treatment that does not use chromium, and includes hydrothermal treatment (boehmite treatment) and chemicals that do not contain chromium, such as phosphates such as zinc phosphate and manganese phosphate, and organic substances.
- the layer (B) in the present invention can be obtained by subjecting an untreated aluminum foil to the above treatment.
- an acid metal salt such as iron salt, zinc salt, manganese salt, copper salt, nickel salt, cobalt salt, vanadium salt, scandium salt of carboxylic acid such as oxalic acid or acetic acid
- (C) Polyamide layer Polyamide is excellent in mechanical strength, and by having this layer, durability of the resulting multilayer film can be enhanced.
- the polyamide used is not particularly limited. For example, nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 6T, nylon 6I, nylon 9T, nylon M5T, nylon nylon 612, Kevlar (trademark of Kevlar, DuPont) ), Nomex (trademark of DuPont).
- Examples of commercially available polyamides include UBE nylon (nylon 6), UBE nylon 66 (nylon 66), UBESTA (nylon 12) manufactured by Ube Industries, Ltd., and alamin (nylon 6, 66, 610, etc.) manufactured by Toray Industries, Inc. ), Toyobo nylon manufactured by Toyobo Co., Ltd. (nylon 6, 66, 6T, etc.), Novamid manufactured by Mitsubishi Engineering Plastics Co., Ltd. (nylon 6, 66, 12), Unitika nylon 6, manufactured by Unitika Ltd., Unitika nylon 66 and Leona (nylon 66) manufactured by Asahi Kasei Chemicals Corporation are listed.
- a biaxially stretched polyamide film can be particularly preferably used as the layer (C).
- Commercially available examples include Unitika Corporation's emblem (trade name) and Toray Industries, Inc. Mikutron (trade name).
- (D) Polyester resin layer This layer is a protective layer optionally laminated on the layer (C).
- the layer (C) has good mechanical strength, but is very brittle with respect to a liquid having high permeability and solubility such as an electrolyte used in a lithium ion secondary battery or an electric double layer capacitor.
- the multilayer film comprising the above (A) to (C) is made into a packaging bag so that the layer (C) is the outermost layer, and the contents such as the electricity storage element and the electrolyte solution are put therein, and the bag mouth is heat sealed. In addition, the contents may spill. Therefore, it is advantageous to have a further layer (D) on top of the layer (C).
- the polyester resin constituting the layer (D) is not particularly limited, and examples thereof include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), and polybutylene naphthalate. Includes phthalate (PBN).
- polyester resins examples include Viropet (PET and PBT) manufactured by Toyobo Co., Ltd., Toraycon (PBT) manufactured by Toray Industries, Inc., Novaduran (PBT) manufactured by Mitsubishi Engineering Plastics Co., Ltd., and Unitika Co., Ltd. ), And Teijin Chemicals' PET resin, Teonex (PEN) and PBN resin.
- a biaxially stretched polyester film can be particularly suitably used as the layer (D).
- Commercial examples include Lumirror (trade name) from Toray Industries, Inc., Toyobo Ester Film (trade name) from Toyobo Co., Ltd., and Emblet (trade name) from Unitika Corporation.
- the composite multilayer film of the present invention includes: 1) a step of laminating an aluminum layer (B) having a chemical conversion treatment on at least one side thereof on one side of the polyolefin resin film (A); and 2) a polyamide on the layer (B). It can manufacture by the method including the process of laminating
- the film (A) comprises an acid-modified polyethylene resin ( ⁇ ) layer (A-1), a crystalline polyethylene resin ( ⁇ ) layer (A-2), and one or more layers positioned therebetween.
- the temperature at which the acid-modified polyethylene resin ( ⁇ ) has a crystallinity of 60% is Tm ⁇ 60 , and the crystallinity of the crystalline polyethylene resin ( ⁇ ) is 60%.
- the step 1) is by heat lamination at a temperature (T R) satisfying the following (1), a layer on the layer (a-1)
- T R a temperature satisfying the following (1)
- a layer on the layer (a-1) The surface subjected to the chemical conversion treatment of (B) is performed so as to be laminated.
- Xc (T R ) ⁇ 60% of ⁇ and Xc (T R ) ⁇ 60% of ⁇ (1)
- Xc (T R) is crystallinity at a temperature T R.
- the heat lamination the above range of temperatures to satisfy (1) (heat roll temperature T R), can be carried out by conventional methods. Preferably, it is carried out at a temperature such that Xc (T R ) of ⁇ ⁇ 50%, more preferably ⁇ 40%, and Xc (T R ) of ⁇ ⁇ 70%, more preferably ⁇ 80%.
- the polyolefin film (A) may be fused to the hot roll and cannot be laminated, and a temperature lower than the above range (of ⁇ In the temperature range where Xc (T R ) ⁇ 60%), the adhesive strength between the film (A) and the layer (B) may be insufficient.
- Step 2) can be performed by adhering the layer (B) side of the film obtained in step 1) and the polyamide layer (C) by a dry laminating method.
- an ordinary two-pack type of a polyol main agent and an isocyanate curing agent can be used.
- Takelac (polyol-based main agent) / Takenate (isocyanate-based curing agent) two-component type manufactured by Mitsui Chemicals Polyurethane Co., Ltd. can be mentioned.
- the layer (D) is dried on the layer (C) of the film obtained in the above step 2) in the same manner as in the above step 2). It can be obtained by bonding by a laminating method.
- the same adhesive can be used as in step 2) above.
- the polyolefin resin film layer and the surface-treated aluminum layer are directly bonded with sufficient adhesive strength without applying an anchor coating agent or an adhesive,
- it has excellent low-temperature resistance and also has an adsorption function for moisture, carbon monoxide, carbon dioxide, etc., so that it can encapsulate lithium ion secondary batteries and electric double layer capacitor storage elements for hybrid and electric vehicles. It can be particularly suitably applied as an exterior material.
- Examples 1 to 9 and Comparative Examples 1 to 5 (1) Production of adsorptive functional resin composition ( ⁇ ) The components (parts by mass) shown in Table 1 were dry blended, and this was mixed with a twin-screw extruder TEX28 of Nippon Steel Co., Ltd. By melt-kneading, pellets of the resin composition ( ⁇ ) for the layer (A-3) were obtained. The resin temperature at the exit of the twin screw extruder was 240 ° C. (using a vacuum vent).
- Electrolytic solution resistance-1 A composite multilayer film having a size of 20 mm ⁇ 100 mm is mixed with ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1, and lithium hexafluorophosphate is dissolved in this mixture so as to be 1 mol / L.
- the film was immersed in the electrolyte solution (manufactured by Kishida Chemical Co., Ltd.) and subjected to an accelerated deterioration test at 80 ° C. ⁇ 168 hours to examine whether or not the laminate was peeled off.
- a sample that did not peel off and that could not be peeled off using tweezers was marked with ⁇ , and the others were marked with ⁇ .
- Electrolytic solution resistance-2 36 ml of an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) in which ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 and lithium hexafluorophosphate was dissolved to 1 mol / L.
- the test piece (4) was poured from the opening of the bag, and the opening was heat-sealed under conditions of 170 ° C., 1 MPa, 2 seconds with a width of 5 mm to obtain a test piece.
- This test piece was subjected to an accelerated deterioration test for 100 days using an environmental testing machine set at a temperature of 30 ° C. and a humidity of 95%.
- the DSC measurement was held at 190 ° C. for 5 minutes, then cooled to ⁇ 10 ° C. at a rate of temperature decrease of 10 ° C./minute, held at ⁇ 10 ° C. for 5 minutes, and then 10 ° C./minute. This was performed using a temperature program of heating to 190 ° C. at a rate of temperature increase.
- the composite multilayer films of the present invention of Examples 1 to 9 are excellent in heat laminating property, heat seal strength, electrolytic solution resistance, drawing workability, low temperature resistance and heat resistance, and moisture. And has the function of adsorbing carbon monoxide.
- the composite multilayer film of Comparative Example 1 in which the content of the filler (b) in the resin composition ( ⁇ ) is less than the lower limit of the present invention did not exhibit an adsorption function.
- the composite multilayer film of Comparative Example 2 in which the content of the filler (b) exceeded the upper limit of the present invention was inferior in drawability, and the tests (5) to (10) could not be performed.
- Comparative Example 3 in which a filler (b) having a coarse particle size was used the adhesive strength between the film (A) and the aluminum foil (B) was not sufficient, and the heat seal strength and the drawability were not sufficient. Therefore, tests (5) to (10) could not be performed.
- Comparative Example 4 is an example in which NE065 is used instead of NE827 as the resin ( ⁇ ) in Example 8, and the resin ( ⁇ ) and the resin ( ⁇ ) do not satisfy the relationship of Tm ⁇ 60 ⁇ Tm ⁇ 60 .
- NE065 is used instead of NE827 as the resin ( ⁇ ) in Example 8
- the resin ( ⁇ ) and the resin ( ⁇ ) do not satisfy the relationship of Tm ⁇ 60 ⁇ Tm ⁇ 60 .
- the polyolefin film (A) does not peel off due to adhesion to the hot roll, and cannot be laminated on the aluminum foil (B). .
- Comparative Example 5 is an example in which the heat laminating temperature is changed in Example 7, and is a comparative example related to the manufacturing method.
- heat lamination was performed at a lower temperature (105 ° C.) where the crystallinity of the resin ( ⁇ ) was 60% or more, lamination was possible, but the adhesive strength was not sufficient. Further, since the heat seal strength and drawability were not sufficient, the above tests (5) to (10) could not be performed. Further, at a higher temperature (130 ° C.) where the crystallinity of the resin ( ⁇ ) is less than 60%, the polyolefin film (A) does not adhere to the hot roll and does not peel off, and is laminated on the aluminum foil (B). I could't.
- a Polyolefin resin film B Chemical conversion treated aluminum layer C Polyamide layer D Polyester resin layer A-1 Acid-modified polyethylene resin ( ⁇ ) layer A-3 Adsorption functional resin composition ( ⁇ ) layer A-2 Crystalline polyethylene resin ( ⁇ ) layer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
A composite multilayer film comprising an aluminum layer (B) of which at least one surface has been subjected to chemical conversion coating, a polyolefin resin film (A) arranged on one surface of the aluminum layer (B) which has been subjected to the conversion coating, and a polyamide layer (C) arranged on the other surface of the aluminum layer (B), wherein the film (A) comprises a layer (A-1) comprising an acid-modified polyethylene resin (α), a layer (A-2) comprising a crystalline polyethylene resin (β) and at least one layer (A-3) which is arranged between the layers (A-1) and (A-2), Tmα60 is smaller than Tmβ60 (wherein Tmα60 represents a temperature at which the crystallinity degree of the acid-modified polyethylene resin (α) becomes 60%; and Tmβ60 represents a temperature at which the crystallinity degree of the crystalline polyethylene resin (β) becomes 60%), the layer (B) is laminated on the layer (A-1) directly, and the layer (A-3) comprises a resin composition (γ) having an adsorption function and comprising (a) 100 parts by mass of a polyethylene resin and (b) 1 to 300 parts by mass of a filler having an adsorption function.
Description
本発明は、食品や日用品の収容、二次電池や電気二重層キャパシタの発電/蓄電要素の収容等に有用な多層フィルムに関する。
The present invention relates to a multilayer film useful for housing foods and daily necessities, housing a power generation / storage element of a secondary battery or an electric double layer capacitor, and the like.
カレー等のレトルト食品、シャンプーや液体洗剤等の詰換用品、二次電池の発電要素などの内容物を収容するための包装材として、アルミニウム箔層の一方の側にポリオレフィンフィルムの層、他方の側にポリアミド層を有する複合多層フィルムが広く使用されている(例えば、特許文献1)。ポリオレフィンは熱接着性を有するので、ポリオレフィンフィルムが包装材の内側になるようにすることで、ヒートシールによる包装材の密封が可能である。また、ポリアミドは機械的強度に優れ、包装材の耐久性を高めることができる。
As a packaging material for storing retort foods such as curry, refill items such as shampoos and liquid detergents, and power generation elements for secondary batteries, a polyolefin film layer on one side of the aluminum foil layer and the other A composite multilayer film having a polyamide layer on the side is widely used (for example, Patent Document 1). Since polyolefin has thermal adhesiveness, it is possible to seal the packaging material by heat sealing by setting the polyolefin film to the inside of the packaging material. Moreover, polyamide is excellent in mechanical strength and can improve the durability of the packaging material.
ポリオレフィンフィルムとアルミニウム箔とは、従来、アンカーコート剤や接着剤を介して接着されている。そのため、上記アンカーコート剤や接着剤を侵すような、浸透性や溶解力の強い液体等を内容物とすることは出来なかった。
Conventionally, the polyolefin film and the aluminum foil are bonded via an anchor coat agent or an adhesive. For this reason, it has not been possible to use a liquid having a strong permeability or a strong dissolving power that attacks the anchor coating agent or the adhesive.
また、従来の技術では、表面処理をしていないアルミニウム箔が使用されている。したがって、アルミニウム箔を有する包装材は、アルミニウムを侵すような液体を、その液体が接着剤層には影響のないものであっても、内容物とすることは出来なかった。
Moreover, in the prior art, the aluminum foil which is not surface-treated is used. Therefore, the packaging material having an aluminum foil could not be used as a content for a liquid that corrodes aluminum even if the liquid does not affect the adhesive layer.
さらに、近年、ハイブリッド自動車や電気自動車のバッテリーとしてリチウムイオン二次電池、電気二重層キャパシタが盛んに検討されている。従来、リチウムイオン二次電池や電気二重層キャパシタは、その発電/蓄電要素を金属缶に封入して製品とされてきた。しかし、自動車には厳しい燃費基準が課せられており、各部品は軽量化が進められている。そこで、上記複合多層フィルムを二次電池等の外装材とすることは、自動車の軽量化の点で非常に有望な手法である。
Further, in recent years, lithium ion secondary batteries and electric double layer capacitors have been actively studied as batteries for hybrid vehicles and electric vehicles. Conventionally, lithium ion secondary batteries and electric double layer capacitors have been made into products by enclosing their power generation / storage elements in metal cans. However, strict fuel efficiency standards are imposed on automobiles, and weight reduction is being promoted for each part. Therefore, using the composite multilayer film as an exterior material such as a secondary battery is a very promising method in terms of reducing the weight of an automobile.
これらの問題を解決する手法として、アルミニウム箔の表面をクロム酸系薬剤により処理する方法(クロメート処理)が広く知られている(例えば、特許文献2)。この処理によって形成される皮膜により、アルミニウム箔の耐食性が格段に向上するとともに、アンカーコート剤や接着剤等を全く使用せずにポリオレフィンフィルムと熱ラミネートにより貼合することが出来るようになる。しかし、この技術は、環境負荷物質であるクロムを使用するという重大な問題を伴う。
As a technique for solving these problems, a method of treating the surface of an aluminum foil with a chromic acid chemical (chromate treatment) is widely known (for example, Patent Document 2). By the film formed by this treatment, the corrosion resistance of the aluminum foil is remarkably improved, and the film can be bonded to the polyolefin film by heat lamination without using any anchor coat agent or adhesive. However, this technique involves a serious problem of using chromium, which is an environmentally hazardous substance.
クロムを使用しないアルミニウム表面処理として、ベーマイト処理(熱水処理)やリン酸塩処理などの非クロム系化成処理が知られており、これらの表面処理もクロメート処理と同様の耐食性が得られる。しかし、ポリオレフィンフィルムと非クロム系化成処理されたアルミニウム箔とをアンカーコート剤や接着剤等を使用しないで熱ラミネートにより貼合しようとすると、ポリオレフィンフィルムが加工機に融着することなくアルミニウム箔にラミネートされ得る温度範囲では、充分な接着強度が得られない。
Non-chromium chemical conversion treatments such as boehmite treatment (hydrothermal treatment) and phosphate treatment are known as aluminum surface treatments that do not use chromium, and these surface treatments can provide the same corrosion resistance as chromate treatment. However, if an attempt is made to bond a polyolefin film and a non-chromium chemical conversion aluminum foil by thermal lamination without using an anchor coating agent or an adhesive, the polyolefin film is not fused to the processing machine. In the temperature range where lamination can be performed, sufficient adhesive strength cannot be obtained.
さらに、上記複合多層フィルムをハイブリッド自動車や電気自動車用のリチウムイオン二次電池や電気二重層キャパシタに適用しようとすると、高レベルの耐低温性が要求される。従来の技術では、耐熱性を重視して、ポリオレフィンフィルムとして結晶性ポリプロピレンが使用されており、耐低温性が不十分である。そこで、耐低温性を改良すべく、結晶性ポリプロピレンとしてブッロク共重合体を使用したり、ゴム等を配合したりすることが広く行われている。しかしこのような技術では、耐低温性改質材としてのゴムの「島」が結晶性ポリプロピレンの「海」に散在するモルフォロジーになるため、「島」からの液体の浸透が問題となる。リチウムイオン二次電池や電気二重層キャパシタに使用される有機溶剤には強い浸透性や溶解力があるため、長期的に漏れてくる危険が高い。
Furthermore, when the composite multilayer film is applied to a lithium ion secondary battery or an electric double layer capacitor for a hybrid vehicle or an electric vehicle, a high level of low temperature resistance is required. In the prior art, crystalline polypropylene is used as the polyolefin film with an emphasis on heat resistance, and the low temperature resistance is insufficient. Therefore, in order to improve the low temperature resistance, it is widely used to use a block copolymer as a crystalline polypropylene or to blend rubber or the like. However, in such a technique, since the “islands” of rubber as a low temperature resistance modifier have a morphology dispersed in the “sea” of crystalline polypropylene, the penetration of liquid from the “islands” becomes a problem. Since organic solvents used in lithium ion secondary batteries and electric double layer capacitors have strong permeability and dissolving power, there is a high risk of leakage in the long term.
また、ハイブリッド自動車や電気自動車用のリチウムイオン二次電池や電気二重層キャパシタには10年あるいはそれ以上の長期寿命が要求される。このくらいの長期寿命になると、ポリオレフィンフィルムのヒートシール端面を通じての外部からの水分浸入が問題になる。
In addition, lithium ion secondary batteries and electric double layer capacitors for hybrid vehicles and electric vehicles are required to have a long life of 10 years or more. When such a long life is reached, moisture penetration from the outside through the heat seal end face of the polyolefin film becomes a problem.
更に、リチウムイオン二次電池や電気二重層キャパシタは、電解液としてカーボネート系の有機溶剤が使用される故に、あるいは電極としてカーボンが使用される故に、蓄電要素が封入された容器内で一酸化炭素ガスが発生しやすいという性質を有し、その結果、容器の変形・破裂による寿命の低下を招くという別の大きな問題が存在している。電池外装が金属缶タイプであれば、ガス放出弁を設けることも可能であるが、複合多層フィルムのタイプでガス放出弁を設けることは実際的には困難である。
Further, since lithium ion secondary batteries and electric double layer capacitors use a carbonate-based organic solvent as an electrolyte or use carbon as an electrode, carbon monoxide is contained in a container in which a storage element is enclosed. Another major problem is that it has the property of easily generating gas, and as a result, the life of the container is shortened due to deformation and rupture of the container. If the battery exterior is a metal can type, it is possible to provide a gas release valve, but it is practically difficult to provide a gas release valve in the composite multilayer film type.
本発明は、ハイブリッド自動車や電気自動車用のリチウムイオン二次電池や電気二重層キャパシタの蓄電要素を封入するための外装材として好適な複合多層フィルムを提供することを目的とする。
An object of this invention is to provide the composite multilayer film suitable as an exterior material for enclosing the electrical storage element of the lithium ion secondary battery and electric double layer capacitor for hybrid vehicles and electric vehicles.
更に詳細には、表面処理されたアルミニウム箔層の一方の側にポリオレフィンフィルムの層、他方の側にポリアミド層を有する複合多層フィルムにおいて、アルミニウム箔とポリオレフィンフィルムとが直接、すなわちアンカーコート剤や接着剤等を全く塗布することなく、かつ十分な接着強度で貼り合わされており、耐低温性に優れており、さらに、ポリオレフィンフィルムのヒートシール端面を通じて外部から浸入してくる水分や電池内部で発生する一酸化炭素ガスなどを吸着除去する機能を有する複合多層フィルムを提供することを目的とする。
More specifically, in a composite multilayer film having a polyolefin film layer on one side of a surface-treated aluminum foil layer and a polyamide layer on the other side, the aluminum foil and the polyolefin film are directly bonded, that is, anchor coating agent or adhesive. Bonded with sufficient adhesive strength without applying any agent, etc., excellent in low temperature resistance, and moisture that enters from the outside through the heat seal end face of the polyolefin film and generated inside the battery An object is to provide a composite multilayer film having a function of adsorbing and removing carbon monoxide gas and the like.
本発明者は、ポリオレフィンフィルムが、酸変性ポリエチレン系樹脂(α)からなる熱ラミネート層と、上記樹脂(α)よりも結晶融解温度の高い特定のポリエチレン系樹脂(β)からなるヒートシール層とを含み、アルミニウム箔が表面処理されており、上記熱ラミネート層の上にアルミニウム箔が積層された多層フィルムは、ポリオレフィンフィルムとアルミニウム箔とを上記熱ラミネート層がアルミニウム箔と熱ラミネートするような高い温度で積層してもポリオレフィンフィルムが加工機に融着するようなトラブルを生じることなく貼り合わせることができ、かつアルミニウム箔とポリオレフィンフィルム層との間の接着強度および耐低温性に優れていることを見出した。更に、粒子径の細かい吸着機能性フィラーを含有する吸着機能性樹脂組成物(γ)の層(A-3)を上記熱ラミネート層と上記ヒートシール層との間に設けることにより、ポリオレフィンフィルムのヒートシール端面を通じて外部から浸入してくる水分や電池内部で発生する一酸化炭素ガスなどを吸着除去する機能を付与することが出来ることを見出した。
The inventor of the present invention has a heat laminate layer in which a polyolefin film is made of an acid-modified polyethylene resin (α) and a specific polyethylene resin (β) having a crystal melting temperature higher than that of the resin (α). The multilayer film in which the aluminum foil is surface-treated and the aluminum foil is laminated on the thermal laminate layer is so high that the thermal laminate layer thermally laminates the polyolefin film and the aluminum foil with the aluminum foil. Even if laminated at a temperature, the polyolefin film can be bonded without causing a trouble that the polyolefin film is fused to the processing machine, and the adhesive strength between the aluminum foil and the polyolefin film layer and the low temperature resistance are excellent. I found. Further, by providing a layer (A-3) of the adsorption functional resin composition (γ) containing an adsorption functional filler having a fine particle diameter between the heat laminate layer and the heat seal layer, It has been found that a function of adsorbing and removing moisture entering from the outside through the end face of the heat seal or carbon monoxide gas generated inside the battery can be provided.
すなわち、本発明は、少なくとも片面が化成処理されたアルミニウムの層(B)の一方の面であってかつ化成処理されている面にポリオレフィン系樹脂フィルム(A)を有し、他方の面にポリアミドの層(C)を有する複合多層フィルムにおいて、フィルム(A)が、酸変性ポリエチレン系樹脂(α)の層(A-1)、結晶性ポリエチレン系樹脂(β)の層(A-2)、ならびにそれらの間に位置する1以上の層(A-3)を有し、上記酸変性ポリエチレン系樹脂(α)の結晶化度が60%となる温度をTmα60とし、上記結晶性ポリエチレン系樹脂(β)の結晶化度が60%となる温度をTmβ60としたとき、Tmα60<Tmβ60であり、層(B)が層(A-1)の上に直接積層されており、層(A-3)が、
(a)ポリエチレン系樹脂100質量部、および
(b)吸着機能性フィラー1~300質量部
を含む吸着機能性樹脂組成物(γ)からなり、吸着機能性フィラー(b)は、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する、ここでD99およびD50はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う、ところの複合多層フィルムである。 That is, the present invention has a polyolefin-based resin film (A) on one surface of the aluminum layer (B) subjected to chemical conversion treatment on at least one surface and a polyamide treatment on the other surface. In the composite multilayer film having the layer (C), the film (A) comprises an acid-modified polyethylene resin (α) layer (A-1), a crystalline polyethylene resin (β) layer (A-2), And the temperature at which the acid-modified polyethylene resin (α) has a crystallinity of 60% is defined as Tm α60, and the crystalline polyethylene resin has one or more layers (A-3) positioned between them. when the temperature at which crystallinity is 60% (beta) was Tm β60, a Tm α60 <Tm β60, the layer (B) is laminated directly on the layer (a-1), a layer ( A-3)
It consists of an adsorption functional resin composition (γ) containing (a) 100 parts by mass of a polyethylene-based resin and (b) 1 to 300 parts by mass of an adsorption functional filler. Particle diameter (D99) and particle diameter (D50) of 20 μm or less, wherein D99 and D50 are respectively the particle diameters at the points where 99% by mass and 50% by mass are accumulated from the smaller particle diameter in the particle size distribution. This is a composite multilayer film.
(a)ポリエチレン系樹脂100質量部、および
(b)吸着機能性フィラー1~300質量部
を含む吸着機能性樹脂組成物(γ)からなり、吸着機能性フィラー(b)は、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する、ここでD99およびD50はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う、ところの複合多層フィルムである。 That is, the present invention has a polyolefin-based resin film (A) on one surface of the aluminum layer (B) subjected to chemical conversion treatment on at least one surface and a polyamide treatment on the other surface. In the composite multilayer film having the layer (C), the film (A) comprises an acid-modified polyethylene resin (α) layer (A-1), a crystalline polyethylene resin (β) layer (A-2), And the temperature at which the acid-modified polyethylene resin (α) has a crystallinity of 60% is defined as Tm α60, and the crystalline polyethylene resin has one or more layers (A-3) positioned between them. when the temperature at which crystallinity is 60% (beta) was Tm β60, a Tm α60 <Tm β60, the layer (B) is laminated directly on the layer (a-1), a layer ( A-3)
It consists of an adsorption functional resin composition (γ) containing (a) 100 parts by mass of a polyethylene-based resin and (b) 1 to 300 parts by mass of an adsorption functional filler. Particle diameter (D99) and particle diameter (D50) of 20 μm or less, wherein D99 and D50 are respectively the particle diameters at the points where 99% by mass and 50% by mass are accumulated from the smaller particle diameter in the particle size distribution. This is a composite multilayer film.
また、本発明は、上記複合多層フィルムの製造法も提供する。
The present invention also provides a method for producing the composite multilayer film.
本発明の複合多層フィルムは、ポリオレフィン系樹脂の層と表面処理されたアルミニウムの層とがアンカーコート剤や接着剤等を塗布することなく充分な接着強度で直接貼り合わされており、かつ耐低温性に優れており、更に、水分や一酸化炭素などを吸着する機能を有するので、ハイブリッド自動車や電気自動車用のリチウムイオン二次電池や電気二重層キャパシタの蓄電要素を封入するための外装材として有用である。
In the composite multilayer film of the present invention, the polyolefin resin layer and the surface-treated aluminum layer are directly bonded with sufficient adhesive strength without applying an anchor coating agent or adhesive, and low temperature resistance In addition, it has a function of adsorbing moisture, carbon monoxide, etc., so it is useful as a packaging material for encapsulating lithium ion secondary batteries and electric double layer capacitor storage elements for hybrid and electric vehicles. It is.
本発明の複合多層フィルムの一例を図1に示す。図1に示されるように、本発明の複合多層フィルムは、少なくとも片面が化成処理されたアルミニウムの層(B)の一方の面であってかつ化成処理されている面にポリオレフィン系樹脂フィルム(A)を有し、他方の面にポリアミドの層(C)を有する。層(C)の上にポリエステル系樹脂の層(D)をさらに有してもよい。フィルム(A)は、少なくとも3つの層、すなわち酸変性ポリエチレン系樹脂(α)の層(A-1)、結晶性ポリエチレン系樹脂(β)の層(A-2)、ならびにそれらの間に位置する吸着機能性樹脂組成物(γ)の層(A-3)を有し、層(A-1)は層(B)と接する位置にある。層(A-2)は、複合多層フィルムをフィルム(A)が内側になるように袋状にしたときに最内面になる位置にある。
An example of the composite multilayer film of the present invention is shown in FIG. As shown in FIG. 1, the composite multilayer film of the present invention has a polyolefin resin film (A) on one side of the aluminum layer (B) subjected to chemical conversion treatment at least on one side and on the surface subjected to chemical conversion treatment. And a polyamide layer (C) on the other surface. You may further have a layer (D) of a polyester-type resin on a layer (C). The film (A) has at least three layers, ie, an acid-modified polyethylene resin (α) layer (A-1), a crystalline polyethylene resin (β) layer (A-2), and a position between them. And the layer (A-3) of the adsorption functional resin composition (γ) to be in contact with the layer (B). The layer (A-2) is located at the innermost surface when the composite multilayer film is formed into a bag shape so that the film (A) is on the inner side.
(A)ポリオレフィン系樹脂フィルム
層(A-1)を構成する酸変性ポリエチレン系樹脂(α)および層(A-2)を構成する結晶性ポリエチレン系樹脂(β)は、それらの結晶化度(Xc)が60%となる温度をそれぞれTmα60およびTmβ60としたとき、Tmα60 <Tmβ60 であるように選択される。好ましくは、上記樹脂(β)の結晶化度が70%となる温度をTmβ70 としたとき、Tmα60 <Tmβ70であるように選択され、より好ましくは、上記樹脂(β)の結晶化度が80%となる温度をTmβ80 としたとき、Tmα60 <Tmβ80 であるように選択される。Tmα60 ≧Tmβ60 であると、フィルム(A)の層(A-1)側を層(B)と熱ラミネートするときに、フィルム(A)が加工機に融着するなどのトラブルが生じる。 (A) Polyolefin resin film The acid-modified polyethylene resin (α) constituting the layer (A-1) and the crystalline polyethylene resin (β) constituting the layer (A-2) When the temperatures at which the degree of crystallinity (Xc) is 60% are Tm α60 and Tm β60 , respectively, Tm α60 <Tm β60 is selected. Preferably, when the temperature at which crystallinity of the resin (beta) is 70% and Tm β70, Tm α60 <chosen to be Tm Beta70, more preferably, crystallinity of the resin (beta) when is the temperature at which 80% was Tm β80, it is selected to be the Tm α60 <Tm β80. When Tm α60 ≧ Tm β60 , troubles such as the film (A) fusing to the processing machine occur when the layer (A-1) side of the film (A) is thermally laminated with the layer (B).
層(A-1)を構成する酸変性ポリエチレン系樹脂(α)および層(A-2)を構成する結晶性ポリエチレン系樹脂(β)は、それらの結晶化度(Xc)が60%となる温度をそれぞれTmα60およびTmβ60としたとき、Tmα60 <Tmβ60 であるように選択される。好ましくは、上記樹脂(β)の結晶化度が70%となる温度をTmβ70 としたとき、Tmα60 <Tmβ70であるように選択され、より好ましくは、上記樹脂(β)の結晶化度が80%となる温度をTmβ80 としたとき、Tmα60 <Tmβ80 であるように選択される。Tmα60 ≧Tmβ60 であると、フィルム(A)の層(A-1)側を層(B)と熱ラミネートするときに、フィルム(A)が加工機に融着するなどのトラブルが生じる。 (A) Polyolefin resin film The acid-modified polyethylene resin (α) constituting the layer (A-1) and the crystalline polyethylene resin (β) constituting the layer (A-2) When the temperatures at which the degree of crystallinity (Xc) is 60% are Tm α60 and Tm β60 , respectively, Tm α60 <Tm β60 is selected. Preferably, when the temperature at which crystallinity of the resin (beta) is 70% and Tm β70, Tm α60 <chosen to be Tm Beta70, more preferably, crystallinity of the resin (beta) when is the temperature at which 80% was Tm β80, it is selected to be the Tm α60 <Tm β80. When Tm α60 ≧ Tm β60 , troubles such as the film (A) fusing to the processing machine occur when the layer (A-1) side of the film (A) is thermally laminated with the layer (B).
上記Tmα60、Tmβ60等の温度は、対応する樹脂のDSC融解曲線から決定される値である。例えば、上記樹脂(β)の結晶化度が60%となる温度Tmβ60は、樹脂(β)のDSC融解曲線における全融解エンタルピーに対する温度Tmβ60以上での融解エンタルピーの割合が60%であることを意味する。なお、本明細書において、DSC融解曲線は、特に断らない限り、TA Instruments(ティー・エイ・インスツルメント・ジャパン株式会社)のDSC Q1000型を使用し、試料を230℃で5分間保持した後、10℃/分の降温速度で-10℃まで冷却し、-10℃で5分間保持した後、10℃/分の昇温速度で230℃まで加熱するという温度プログラムでDSC測定を行って得られる曲線である。
The temperatures such as Tm α60 and Tm β60 are values determined from the DSC melting curve of the corresponding resin. For example, the temperature Tm β60 at which the crystallinity of the resin (β) becomes 60% is such that the ratio of the melting enthalpy at the temperature Tm β60 or higher to the total melting enthalpy in the DSC melting curve of the resin (β) is 60%. Means. In this specification, unless otherwise specified, DSC melting curves are obtained by using DSC Q1000 model of TA Instruments (TA Instruments Japan Co., Ltd.) and holding the sample at 230 ° C. for 5 minutes. Obtained by performing DSC measurement with a temperature program that cools to -10 ° C at a temperature drop rate of 10 ° C / minute, holds at -10 ° C for 5 minutes, and then heats to 230 ° C at a temperature rise rate of 10 ° C / minute. It is a curved line.
酸変性ポリエチレン系樹脂(α)は、上記したように、Tmα60 <Tmβ60 を満たすように選択される。層(A-1)は、フィルム(A)と層(B)との熱ラミネートにおいて、層(B)の化成処理された面と直接貼り合わされる層であるので、樹脂(α)は、Tmα60が低い方が熱ラミネート加工における温度を低くすることができる。しかし、リチウムイオン二次電池や電気二重層キャパシタの電解液は強い浸透性や溶解力を持っており、また電池性能の観点から耐熱性および耐透湿性を要求されるため、好ましくはTmα60が80℃以上のものから選択される。より好ましくはTmα60が90℃以上、さらに好ましくは100℃以上である。また、Tmα60の上限は、層(A-2)を構成する結晶性ポリエチレン系樹脂(β)の耐熱性の上限を考慮すると、好ましくは130℃であり、さらに好ましくは125℃である。
As described above, the acid-modified polyethylene resin (α) is selected so as to satisfy Tm α60 <Tm β60 . Since the layer (A-1) is a layer that is directly bonded to the chemical-treated surface of the layer (B) in the thermal lamination of the film (A) and the layer (B), the resin (α) is Tm The lower α60 can lower the temperature in the heat laminating process. However, since electrolytes of lithium ion secondary batteries and electric double layer capacitors have strong penetrability and dissolving power, and are required to have heat resistance and moisture permeability from the viewpoint of battery performance, Tm α60 is preferably used. It is selected from those of 80 ° C. or higher. More preferably, Tm α60 is 90 ° C. or higher, more preferably 100 ° C. or higher. Further, the upper limit of Tm α60 is preferably 130 ° C., more preferably 125 ° C. in consideration of the upper limit of heat resistance of the crystalline polyethylene resin (β) constituting the layer (A-2).
酸変性ポリエチレン系樹脂(α)の例としては、例えば、不飽和カルボン酸またはその誘導体で変性されたポリエチレン系樹脂が挙げられる。樹脂(α)は、ポリエチレン系樹脂が酸変性されていることにより、層(B)のアルミニウム箔との接着強度を高めることができる。不飽和カルボン酸の例としては、例えば、マレイン酸、イタコン酸、フマル酸が挙げられ、その誘導体の例としては、例えば、マレイン酸モノエステル、マレイン酸ジエステル、無水マレイン酸、イタコン酸モノエステル、イタコン酸ジエステル、無水イタコン酸、フマル酸モノエステル、フマル酸ジエステル、無水フマル酸等のエステルおよび無水物が挙げられる。上記ポリエチレン系樹脂としては、例えば、直鎖状ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル(VA)共重合体、エチレン-エチルアクリレート(EA)共重合体、エチレン-メタクリレート共重合体などが挙げられる。酸変性ポリエチレン系樹脂(α)は、1種類を単独で、または2種類以上を組み合わせて使用することができる。また、本発明の目的に反しない範囲において、酸変性されていないポリエチレン系樹脂を配合しても良い。なお、樹脂(α)が2以上の樹脂の組み合わせからなる混合物である場合のTmα60は、上記混合物のDSC融解曲線から決定される値である。
Examples of the acid-modified polyethylene resin (α) include a polyethylene resin modified with an unsaturated carboxylic acid or a derivative thereof. Resin ((alpha)) can raise the adhesive strength with the aluminum foil of a layer (B), when the polyethylene-type resin is acid-modified. Examples of unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid, and examples of derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, Examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like. Examples of the polyethylene resin include linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, ethylene-methacrylate copolymer. Examples include coalescence. The acid-modified polyethylene resin (α) can be used alone or in combination of two or more. In addition, a polyethylene-based resin that is not acid-modified may be blended within a range not departing from the object of the present invention. In addition, Tm (alpha) 60 in case resin ((alpha)) is a mixture which consists of a combination of 2 or more resin is a value determined from the DSC melting curve of the said mixture.
酸変性ポリエチレン系樹脂(α)の具体例としては、三井化学(株)製のアドマー(商品名)、日本ポリオレフィン(株)製のアドテックス(商品名)、クロンプトン社製のポリボンド(商品名)および住友化学(株)製のボンドファースト(商品名)が挙げられる。
Specific examples of the acid-modified polyethylene resin (α) include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., and Polybond (trade name) manufactured by Crompton. And Bond First (trade name) manufactured by Sumitomo Chemical Co., Ltd.
層(A-2)を構成する結晶性ポリエチレン系樹脂(β)は、上記したように、Tmα60 <Tmβ60、好ましくはTmα60 <Tmβ70、より好ましくはTmα60 <Tmβ80 を満たすように選択されるが、得られる多層フィルムの耐熱性の点から、Tmβ60が115℃以上であるのが好ましい。より好ましくはTmβ60が120℃以上であり、さらに好ましくは125℃以上である。Tmβ60の上限は特に制限されないが、ポリエチレン系樹脂であることから、実際的には135℃程度である。
As described above, the crystalline polyethylene resin (β) constituting the layer (A-2) satisfies Tm α60 <Tm β60 , preferably Tm α60 <Tm β70 , more preferably Tm α60 <Tm β80. Although selected, it is preferable that Tmβ60 is 115 ° C. or higher from the viewpoint of heat resistance of the resulting multilayer film. More preferably, Tmβ60 is 120 ° C or higher, and further preferably 125 ° C or higher. The upper limit of Tm β60 is not particularly limited, but is actually about 135 ° C. because it is a polyethylene resin.
結晶性ポリエチレン系樹脂(β)の例としては、例えば、エチレン単独重合体およびエチレンと少量のコモノマー(例えば、1-ブテン、1-ヘキセン、1-オクテン等)とのランダム共重合体が挙げられる。具体的には、高密度ポリエチレン、高圧法低密度ポリエチレン、メタロセン系触媒による超低密度~高密度の直鎖状ポリエチレン、ブルックハルト触媒による超低密度~高密度の長鎖分岐型ポリエチレン、直鎖状の超低密度~高密度ポリエチレンなどが挙げられる。結晶性ポリエチレン系樹脂(β)は、1種類を単独で、または2種類以上を組み合わせて使用することができる。なお、樹脂(β)が2種類以上の組み合わせからなる混合物である場合のTmβ60等の温度は、上記混合物のDSC融解曲線から決定される値である。
Examples of the crystalline polyethylene resin (β) include, for example, an ethylene homopolymer and a random copolymer of ethylene and a small amount of a comonomer (eg, 1-butene, 1-hexene, 1-octene, etc.). . Specifically, high-density polyethylene, high-pressure low-density polyethylene, ultra-low-density to high-density linear polyethylene using a metallocene catalyst, ultra-low-density to high-density long-chain branched polyethylene using a Brookhart catalyst, linear And ultra-low density to high density polyethylene. The crystalline polyethylene resin (β) can be used singly or in combination of two or more. In addition, when resin ((beta)) is a mixture which consists of 2 or more types of combinations, temperature, such as Tm (beta) 60 , is a value determined from the DSC melting curve of the said mixture.
結晶性ポリエチレン系樹脂(β)の市販例としては、(株)プライムポリマー製のエボリューSP4530およびハイゼックス3300F、日本ポリエチレン(株)製のノバテックHD HY560、宇部興産(株)製のUBEスーパーポリエチレンユメリット4040F等が挙げられる。
Examples of commercially available crystalline polyethylene resins (β) include Evolue SP4530 and Hi-Zex 3300F manufactured by Prime Polymer Co., Ltd., Novatec HD HY560 manufactured by Nippon Polyethylene Co., Ltd., and UBE Super Polyethylene Umerit manufactured by Ube Industries, Ltd. 4040F etc. are mentioned.
上記結晶性ポリエチレン系樹脂(β)は熱接着性を有するので、得られる多層フィルムを層(A-2)が内側になるように袋状に加工する時、及び袋の開口部をヒートシールにより密封する時、良好に加工することができる。
Since the crystalline polyethylene resin (β) has thermal adhesiveness, when the resulting multilayer film is processed into a bag shape with the layer (A-2) inside, and the opening of the bag is heat sealed. When sealed, it can be processed well.
ポリオレフィン系樹脂フィルム(A)は、上記層(A-1)と層(A-2)の間に、吸着機能性樹脂組成物(γ)からなる1以上の層(A-3)を有する。
The polyolefin-based resin film (A) has one or more layers (A-3) made of the adsorption functional resin composition (γ) between the layers (A-1) and (A-2).
吸着機能性樹脂組成物(γ)は
(a)ポリエチレン系樹脂100質量部、および
(b)吸着機能性フィラー5~300質量部
を含み、吸着機能性フィラー(b)は、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する。ここで、D99およびD50はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う。 The adsorptive functional resin composition (γ) includes (a) 100 parts by mass of a polyethylene resin, and (b) 5 to 300 parts by mass of the adsorbent functional filler, and the adsorbent functional filler (b) has a particle size of 30 μm or less. (D99) and a particle size (D50) of 20 μm or less. Here, D99 and D50 refer to the particle diameters at points where 99% by mass and 50% by mass are accumulated from the smaller particle diameter in the particle size distribution, respectively.
(a)ポリエチレン系樹脂100質量部、および
(b)吸着機能性フィラー5~300質量部
を含み、吸着機能性フィラー(b)は、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する。ここで、D99およびD50はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う。 The adsorptive functional resin composition (γ) includes (a) 100 parts by mass of a polyethylene resin, and (b) 5 to 300 parts by mass of the adsorbent functional filler, and the adsorbent functional filler (b) has a particle size of 30 μm or less. (D99) and a particle size (D50) of 20 μm or less. Here, D99 and D50 refer to the particle diameters at points where 99% by mass and 50% by mass are accumulated from the smaller particle diameter in the particle size distribution, respectively.
本発明にかかる吸着機能性樹脂組成物(γ)は、ポリエチレン系樹脂(a)100質量部に対して吸着機能性フィラー(b)を1~300質量部、好ましくは5~250質量部、より好ましくは10~200質量部の量で含む。吸着機能性フィラー(b)の配合量が上記下限未満の場合には、充分な吸着機能が得られず、上記上限を超えると、製膜性や絞り加工性が低下する場合がある。
In the adsorption functional resin composition (γ) according to the present invention, the adsorption functional filler (b) is 1 to 300 parts by mass, preferably 5 to 250 parts by mass, with respect to 100 parts by mass of the polyethylene resin (a). Preferably, it is contained in an amount of 10 to 200 parts by mass. When the blending amount of the adsorption functional filler (b) is less than the above lower limit, a sufficient adsorption function cannot be obtained, and when it exceeds the above upper limit, film forming property and drawing workability may be deteriorated.
(a)ポリエチレン系樹脂
ポリエチレン系樹脂(a)は特に制限されず、たとえば、超低密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレンなどのエチレン系重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチルなどのエチレン系共重合体、およびエチレン-αオレフィン共重合体ゴムなどが挙げられる。上記αオレフィンは、例えばプロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デカンを包含する。吸着機能性フィラー(b)との混和性の点から、ポリエチレン系樹脂(a)は、好ましくは、(a-1)エチレン系重合体および(a-2)酸変性樹脂を含むポリエチレン系樹脂組成物である。 (A) Polyethylene resin The polyethylene resin (a) is not particularly limited, and examples thereof include ethylene polymers such as ultra-low density polyethylene, linear low density polyethylene, low density polyethylene, and high density polyethylene, Examples thereof include ethylene-vinyl acetate copolymers, ethylene copolymers such as ethylene-ethyl acrylate, and ethylene-α-olefin copolymer rubber. Examples of the α olefin include propylene, 1-butene, 1-hexene, 1-octene and 1-decane. From the viewpoint of miscibility with the adsorption functional filler (b), the polyethylene resin (a) is preferably a polyethylene resin composition containing (a-1) an ethylene polymer and (a-2) an acid-modified resin. It is a thing.
ポリエチレン系樹脂(a)は特に制限されず、たとえば、超低密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレンなどのエチレン系重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチルなどのエチレン系共重合体、およびエチレン-αオレフィン共重合体ゴムなどが挙げられる。上記αオレフィンは、例えばプロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デカンを包含する。吸着機能性フィラー(b)との混和性の点から、ポリエチレン系樹脂(a)は、好ましくは、(a-1)エチレン系重合体および(a-2)酸変性樹脂を含むポリエチレン系樹脂組成物である。 (A) Polyethylene resin The polyethylene resin (a) is not particularly limited, and examples thereof include ethylene polymers such as ultra-low density polyethylene, linear low density polyethylene, low density polyethylene, and high density polyethylene, Examples thereof include ethylene-vinyl acetate copolymers, ethylene copolymers such as ethylene-ethyl acrylate, and ethylene-α-olefin copolymer rubber. Examples of the α olefin include propylene, 1-butene, 1-hexene, 1-octene and 1-decane. From the viewpoint of miscibility with the adsorption functional filler (b), the polyethylene resin (a) is preferably a polyethylene resin composition containing (a-1) an ethylene polymer and (a-2) an acid-modified resin. It is a thing.
(a-1)エチレン系重合体
エチレン系重合体は、十分な耐熱性を有すると共に十分なフィラー受容性を有してフィルム(A)の外観および膜厚安定性が良好になるように、下記(i)~(iv)を満たすことが好ましい。
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化度(Xc(110))が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1g/10分以上10g/10分未満である。
なお、成分(a-1)に関しては、DSC測定を、TA Instruments(ティー・エイ・インスツルメント・ジャパン株式会社)のDSC Q1000型を使用し、試料を190℃で5分間保持した後、10℃/分の降温速度で-10℃まで冷却し、-10℃で5分間保持した後、10℃/分の昇温速度で190℃まで加熱するという温度プログラムで行ってDSC融解曲線を得た。 (A-1) Ethylene-based polymer The ethylene-based polymer has sufficient heat resistance and sufficient filler receptivity to improve the appearance and film thickness stability of the film (A). Thus, it is preferable to satisfy the following (i) to (iv).
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) The crystallinity at 110 ° C. (Xc (110)) is 10 to 60%, and (iv) MFR (190 ° C., 21.18N) is 0.1 g / 10 min or more and less than 10 g / 10 min. is there.
Regarding the component (a-1), DSC measurement was performed using a DSC Q1000 model of TA Instruments (TA Instruments Japan Co., Ltd.), and the sample was held at 190 ° C. for 5 minutes. The DSC melting curve was obtained by performing a temperature program in which the temperature was cooled to −10 ° C. at a rate of temperature decrease of 10 ° C./min, held at −10 ° C. for 5 minutes, and then heated to 190 ° C. at a temperature increase rate of 10 ° C./min. .
エチレン系重合体は、十分な耐熱性を有すると共に十分なフィラー受容性を有してフィルム(A)の外観および膜厚安定性が良好になるように、下記(i)~(iv)を満たすことが好ましい。
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化度(Xc(110))が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1g/10分以上10g/10分未満である。
なお、成分(a-1)に関しては、DSC測定を、TA Instruments(ティー・エイ・インスツルメント・ジャパン株式会社)のDSC Q1000型を使用し、試料を190℃で5分間保持した後、10℃/分の降温速度で-10℃まで冷却し、-10℃で5分間保持した後、10℃/分の昇温速度で190℃まで加熱するという温度プログラムで行ってDSC融解曲線を得た。 (A-1) Ethylene-based polymer The ethylene-based polymer has sufficient heat resistance and sufficient filler receptivity to improve the appearance and film thickness stability of the film (A). Thus, it is preferable to satisfy the following (i) to (iv).
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) The crystallinity at 110 ° C. (Xc (110)) is 10 to 60%, and (iv) MFR (190 ° C., 21.18N) is 0.1 g / 10 min or more and less than 10 g / 10 min. is there.
Regarding the component (a-1), DSC measurement was performed using a DSC Q1000 model of TA Instruments (TA Instruments Japan Co., Ltd.), and the sample was held at 190 ° C. for 5 minutes. The DSC melting curve was obtained by performing a temperature program in which the temperature was cooled to −10 ° C. at a rate of temperature decrease of 10 ° C./min, held at −10 ° C. for 5 minutes, and then heated to 190 ° C. at a temperature increase rate of 10 ° C./min. .
上記ピークトップ融点(Tm)が110℃より低いと、耐熱性が不充分になる場合がある。上記ピークトップ融点(Tm)は、好ましくは120℃以上、より好ましくは125℃以上である。なお、上記ピークトップ融点(Tm)の上限は特に制限されないが、エチレン系重合体であることから、実際的には約135℃である。
When the peak top melting point (Tm) is lower than 110 ° C., the heat resistance may be insufficient. The peak top melting point (Tm) is preferably 120 ° C. or higher, more preferably 125 ° C. or higher. The upper limit of the peak top melting point (Tm) is not particularly limited, but is actually about 135 ° C. because it is an ethylene polymer.
また、上記融解熱量(ΔH)が90J/g未満であると、耐熱性が不充分になる場合があり、180J/gを超えるとフィラー受容性が不足し、製膜性に劣る場合がある。上記融解熱量(ΔH)は、好ましくは100~170J/gである。
Further, if the heat of fusion (ΔH) is less than 90 J / g, the heat resistance may be insufficient, and if it exceeds 180 J / g, the filler acceptability may be insufficient and the film forming property may be inferior. The heat of fusion (ΔH) is preferably 100 to 170 J / g.
また、上記結晶化度(Xc(110))が10%未満では耐熱性が不充分になる場合があり、60%を超えるとフィラー受容性が不足し、製膜性に劣る場合がある。上記結晶化度(Xc(110))は、好ましくは15~45%である。なお、温度Tにおける結晶化度(Xc(T))は、温度Tにおいて融解せずに結晶状態を保持している割合を意味し、例えば110℃での結晶化度(Xc(110))は、DSC融解曲線における全融解エンタルピーに対する110℃以上での融解エンタルピーの割合として算出される。
Further, if the crystallinity (Xc (110)) is less than 10%, the heat resistance may be insufficient, and if it exceeds 60%, the filler acceptability may be insufficient and the film forming property may be inferior. The crystallinity (Xc (110)) is preferably 15 to 45%. The crystallinity at temperature T (Xc (T)) means the ratio of maintaining a crystalline state without melting at temperature T. For example, the crystallinity at 110 ° C. (Xc (110)) is , Calculated as the ratio of the melting enthalpy at 110 ° C. or higher to the total melting enthalpy in the DSC melting curve.
さらに、上記MFRが10g/10分以上では、ポリエチレン系樹脂組成物(a)と吸水性フィラー(b)との溶融混練性(フィラー分散性)が不充分になり、フィルム(A)の製膜時の引落性が低下する場合があり、0.1g/10分未満では、フィルム(A)の肉厚調整が困難になる場合がある。上記MFRは、好ましくは0.2~7g/10分、最も好ましくは0.5~5g/10分である。
Furthermore, when the MFR is 10 g / 10 min or more, the melt-kneading property (filler dispersibility) between the polyethylene resin composition (a) and the water-absorbing filler (b) becomes insufficient, and the film (A) is formed. The pullability at the time may be reduced, and if it is less than 0.1 g / 10 minutes, it may be difficult to adjust the thickness of the film (A). The MFR is preferably 0.2 to 7 g / 10 min, most preferably 0.5 to 5 g / 10 min.
エチレン系重合体(a-1)は、上記(i)~(iv)の要件を満たすものであれば特に制限されない。例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレンとα-オレフィン(例えば、1-ブテン、1-ヘキセン、1-オクテン等)とのコポリマーが挙げられる。酢酸ビニル、メチルアクリレート、エチルアクリレートなどをコモノマーとするエチレンコポリマーは、コモノマーによる結晶性低下が大きいため、上記(i)~(iv)の要件を満たすことが難しい。
The ethylene polymer (a-1) is not particularly limited as long as it satisfies the requirements (i) to (iv). For example, low density polyethylene, linear low density polyethylene, ultra low density polyethylene, high density polyethylene, and a copolymer of ethylene and α-olefin (for example, 1-butene, 1-hexene, 1-octene, etc.) can be mentioned. An ethylene copolymer using vinyl acetate, methyl acrylate, ethyl acrylate, or the like as a comonomer has a large decrease in crystallinity due to the comonomer, and thus it is difficult to satisfy the requirements (i) to (iv).
エチレン系重合体は、1種を単独で、または2種以上を任意に配合した混合物として使用することが出来る。混合物として使用する場合には、混合物全体が上記要件(i)~(iv)を満たすようにすればよい。
An ethylene-type polymer can be used individually by 1 type or as a mixture which mix | blended 2 or more types arbitrarily. When used as a mixture, the entire mixture may satisfy the above requirements (i) to (iv).
(a-2)酸変性樹脂
酸変性樹脂は、疎水性であるエチレン系重合体(a-1)と親水性である吸着機能性フィラー(b)との混和性を改良して吸着機能性フィラーの分散を促進し、製膜したときにフィルムにブツなどの欠点が発生しないようにするための成分である。 (A-2) Acid-modified resin The acid-modified resin has improved miscibility between the hydrophobic ethylene-based polymer (a-1) and the hydrophilic adsorption functional filler (b). It is a component for accelerating the dispersion of the adsorption functional filler so that the film does not have defects such as blisters when it is formed.
酸変性樹脂は、疎水性であるエチレン系重合体(a-1)と親水性である吸着機能性フィラー(b)との混和性を改良して吸着機能性フィラーの分散を促進し、製膜したときにフィルムにブツなどの欠点が発生しないようにするための成分である。 (A-2) Acid-modified resin The acid-modified resin has improved miscibility between the hydrophobic ethylene-based polymer (a-1) and the hydrophilic adsorption functional filler (b). It is a component for accelerating the dispersion of the adsorption functional filler so that the film does not have defects such as blisters when it is formed.
本発明に使用する酸変性樹脂は、不飽和カルボン酸またはその誘導体で変性された樹脂であれば何でも良い。不飽和カルボン酸の例としては、例えば、マレイン酸、イタコン酸、フマル酸が挙げられ、その誘導体の例としては、例えば、マレイン酸モノエステル、マレイン酸ジエステル、無水マレイン酸、イタコン酸モノエステル、イタコン酸ジエステル、無水イタコン酸、フマル酸モノエステル、フマル酸ジエステル、無水フマル酸等のエステルおよび無水物が挙げられる。上記樹脂としては、直鎖状ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル(VA)共重合体、エチレン-エチルアクリレート(EA)共重合体、エチレン-メタクリレート共重合体などのエチレン系重合体、プロピレン系重合体、スチレン系エラストマーが挙げられる。エチレン系重合体(a-1)との混和性の点から、上記樹脂がエチレン系重合体であるものが最も好ましい。
The acid-modified resin used in the present invention may be anything as long as it is a resin modified with an unsaturated carboxylic acid or a derivative thereof. Examples of unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid, and examples of derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, Examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like. Examples of the resin include ethylene such as linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, and ethylene-methacrylate copolymer. Examples thereof include a polymer, a propylene polymer, and a styrene elastomer. From the viewpoint of miscibility with the ethylene polymer (a-1), the resin is most preferably an ethylene polymer.
酸変性樹脂は、好ましくは0.1~10g/10分のMFR(190℃、21.18N)を有する。さらに好ましくは、0.2~7g/10分、最も好ましくは0.5~5g/10分である。MFRが上記上限より高いと、フィルム(A)の製膜時の引落性が低下する場合がある。MFRが上記下限より低いと、フィルム(A)の肉厚調整が困難になる場合がある。
The acid-modified resin preferably has an MFR (190 ° C., 21.18 N) of 0.1 to 10 g / 10 min. More preferably, it is 0.2 to 7 g / 10 minutes, and most preferably 0.5 to 5 g / 10 minutes. If the MFR is higher than the above upper limit, the pullability during film formation of the film (A) may be lowered. If the MFR is lower than the lower limit, it may be difficult to adjust the thickness of the film (A).
酸変性樹脂の具体例としては、三井化学(株)製のアドマー(商品名)、日本ポリオレフィン(株)製のアドテックス(商品名)、クロンプトン社製のポリボンド(商品名)および住友化学(株)製のボンドファースト(商品名)が挙げられる。
Specific examples of acid-modified resins include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., Polybond (trade name) manufactured by Crompton, and Sumitomo Chemical Co., Ltd. ) Manufactured Bond First (trade name).
酸変性樹脂は、単独でまたは二種以上を組み合わせて使用することができる。
The acid-modified resins can be used alone or in combination of two or more.
ポリエチレン系樹脂組成物は、エチレン系重合体(a-1)および酸変性樹脂(a-2)をそれぞれ99~60質量%および1~40質量%の割合で含むことが好ましい。より好ましくは、エチレン系重合体(a-1)97~70質量%および酸変性樹脂(a-2)3~30質量%であり、更に好ましくは、エチレン系重合体(a-1)95~80質量%および酸変性樹脂(a-2)5~20質量%である。酸変性樹脂(a-2)が少ない(すなわち、エチレン系重合体(a-1)が多い)と、吸着機能性フィラー(b)の分散が不充分になり、製膜の際に目脂が多く発生したり、フィルム(A)にブツなどの欠点が発生し易くなったりすることが多い。一方、酸変性樹脂(a-2)が多い(すなわち、エチレン系重合体(a-1)が少ない)と、酸変性樹脂と吸着機能性フィラーとの相互作用が非常に強くなり、吸着機能性樹脂組成物(γ)の製造時の混練負荷やフィルム(A)の製膜時の押出負荷が高くなる場合がある。また、フィルム(A)の引張伸びが低下する場合がある。
(b)吸着機能性フィラー
吸着機能性フィラーは、リチウムイオン二次電池や電気二重層キャパシタの性能を阻害・低下させる物質を吸着除去する機能を有する物質であり、具体的には、(イ)水分吸着剤、(ロ)一酸化炭素酸化触媒、および(ハ)二酸化炭素吸着剤などを包含する。これらを、単独で、または2種以上の組み合わせで使用することができる。 The polyethylene resin composition preferably contains 99 to 60% by mass and 1 to 40% by mass of the ethylene polymer (a-1) and the acid-modified resin (a-2), respectively. More preferably, they are 97 to 70% by mass of the ethylene polymer (a-1) and 3 to 30% by mass of the acid-modified resin (a-2), and more preferably 95 to 95% of the ethylene polymer (a-1). 80% by mass and 5 to 20% by mass of the acid-modified resin (a-2). If the acid-modified resin (a-2) is small (that is, the ethylene polymer (a-1) is large), the adsorptive functional filler (b) is not sufficiently dispersed, and the grease is not formed during film formation. In many cases, the film (A) tends to generate defects such as bumps. On the other hand, when the amount of the acid-modified resin (a-2) is large (that is, the amount of the ethylene polymer (a-1) is small), the interaction between the acid-modified resin and the adsorption functional filler becomes very strong, and the adsorption functionality The kneading load during production of the resin composition (γ) and the extrusion load during film production of the film (A) may increase. Moreover, the tensile elongation of the film (A) may decrease.
(B) Adsorption functional filler The adsorption functional filler is a substance having a function of adsorbing and removing substances that inhibit or reduce the performance of lithium ion secondary batteries and electric double layer capacitors. (B) a water adsorbent, (b) a carbon monoxide oxidation catalyst, and (c) a carbon dioxide adsorbent. These can be used alone or in combination of two or more.
(b)吸着機能性フィラー
吸着機能性フィラーは、リチウムイオン二次電池や電気二重層キャパシタの性能を阻害・低下させる物質を吸着除去する機能を有する物質であり、具体的には、(イ)水分吸着剤、(ロ)一酸化炭素酸化触媒、および(ハ)二酸化炭素吸着剤などを包含する。これらを、単独で、または2種以上の組み合わせで使用することができる。 The polyethylene resin composition preferably contains 99 to 60% by mass and 1 to 40% by mass of the ethylene polymer (a-1) and the acid-modified resin (a-2), respectively. More preferably, they are 97 to 70% by mass of the ethylene polymer (a-1) and 3 to 30% by mass of the acid-modified resin (a-2), and more preferably 95 to 95% of the ethylene polymer (a-1). 80% by mass and 5 to 20% by mass of the acid-modified resin (a-2). If the acid-modified resin (a-2) is small (that is, the ethylene polymer (a-1) is large), the adsorptive functional filler (b) is not sufficiently dispersed, and the grease is not formed during film formation. In many cases, the film (A) tends to generate defects such as bumps. On the other hand, when the amount of the acid-modified resin (a-2) is large (that is, the amount of the ethylene polymer (a-1) is small), the interaction between the acid-modified resin and the adsorption functional filler becomes very strong, and the adsorption functionality The kneading load during production of the resin composition (γ) and the extrusion load during film production of the film (A) may increase. Moreover, the tensile elongation of the film (A) may decrease.
(B) Adsorption functional filler The adsorption functional filler is a substance having a function of adsorbing and removing substances that inhibit or reduce the performance of lithium ion secondary batteries and electric double layer capacitors. (B) a water adsorbent, (b) a carbon monoxide oxidation catalyst, and (c) a carbon dioxide adsorbent. These can be used alone or in combination of two or more.
吸着機能性フィラーは、ポリエチレン系樹脂に良好に分散されてブツなどの欠点のない均一なフィルムが得られるように、制御された粒子径分布を有するものを使用する必要がある。すなわち、本発明で使用される吸水性フィラーは、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する。D99は、好ましくは0.01μmを超えて20μm以下、より好ましくは0.1μmを超えて15μm以下である。また、D50は、好ましくは0.01~15μm、より好ましくは0.1~10μmである。上記上限を超えるような粒子の粗いフィラーは、製膜したときに、フィルムの欠点や異物となる場合がある。また、粒子の細か過ぎるフィラーは、凝集してフィルムの欠点や異物になったり、凝集しなかった場合には多量の空気を抱き込んで吸水性樹脂組成物製造の際の溶融混練作業性を悪くしたりする場合がある。粒子径分布を制御するには、大きな粒子を生成してそれを粉砕、分級する方法、及び最初から細かい粒子を生成して分球する方法がある。粒子径分布を上記範囲内に制御出来るならどちらの方法でも良く、特に限定はされないが、押出負荷および製膜性の観点から、細かい粒子を最初から生成する方法がより好ましい。
It is necessary to use an adsorbing functional filler having a controlled particle size distribution so that a uniform film can be obtained which is well dispersed in a polyethylene resin and has no defects such as bumps. That is, the water-absorbing filler used in the present invention has a particle size (D99) of 30 μm or less and a particle size (D50) of 20 μm or less. D99 is preferably more than 0.01 μm and not more than 20 μm, more preferably more than 0.1 μm and not more than 15 μm. D50 is preferably 0.01 to 15 μm, more preferably 0.1 to 10 μm. A coarse filler having a particle size exceeding the upper limit may become a film defect or foreign matter when it is formed. In addition, fillers with too fine particles aggregate to form defects or foreign matter of the film, or if they do not aggregate, a large amount of air is embraced, resulting in poor melt-kneading workability in the production of the water absorbent resin composition. There is a case to do. In order to control the particle size distribution, there are a method of generating large particles and pulverizing and classifying them, and a method of generating fine particles from the beginning and classifying them. Either method may be used as long as the particle size distribution can be controlled within the above range, and is not particularly limited. However, from the viewpoint of extrusion load and film forming property, a method of generating fine particles from the beginning is more preferable.
(イ)水分吸着剤としては、ゼオライト(例えば、モレキュラーシーブ3A、モレキュラーシーブ4A)、硫酸マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化アルミニウム、シリカゲル、石灰および焼成ハイドロタルサイトを挙げることが出来る。
(Ii) Examples of the moisture adsorbent include zeolite (for example, molecular sieve 3A, molecular sieve 4A), magnesium sulfate, calcium oxide, strontium oxide, aluminum oxide, silica gel, lime and calcined hydrotalcite.
(ロ)一酸化炭素酸化触媒としては、ホプカライトおよび担持貴金属触媒 を挙げることが出来る。
(B) Examples of the carbon monoxide oxidation catalyst include hopcalite and supported noble metal catalyst soot.
(ハ)二酸化炭素吸着剤としては、酸化ストロンチウム、酸化カルシウム、細孔径0.4nm以上のゼオライト(例えば、モレキュラーシーブ4A、モレキュラーシーブ5A)、およびBET比表面積が50m2/g以上である酸化マグネシウムを挙げることが出来る。
(C) Examples of the carbon dioxide adsorbent include strontium oxide, calcium oxide, zeolite having a pore diameter of 0.4 nm or more (for example, molecular sieve 4A, molecular sieve 5A), and magnesium oxide having a BET specific surface area of 50 m 2 / g or more. Can be mentioned.
吸着機能性樹脂組成物(γ)は、上記成分の他に、必要に応じて、スリップ剤、リン系、フェノール系、硫黄系などの酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤などの耐候剤、銅害防止剤、芳香族リン酸金属塩系、ゲルオール系などの造核剤、グリセリン脂肪酸モノエステルなどの帯電防止剤、着色剤、芳香剤、抗菌剤、酸化亜鉛、炭酸カルシウム、タルク、金属水和物などのフィラー、グリセリン脂肪酸エステル系、パラフィンオイル、フタル酸系、エステル系などの可塑剤等の添加剤を含んでいてもよい。
In addition to the above components, the adsorptive functional resin composition (γ) includes a slip agent, phosphorus-based, phenol-based, sulfur-based antioxidant, anti-aging agent, light stabilizer, ultraviolet absorber, as necessary. Weathering agent such as copper damage prevention agent, nucleating agent such as aromatic phosphate metal salt and gelol, antistatic agent such as glycerin fatty acid monoester, coloring agent, fragrance, antibacterial agent, zinc oxide, calcium carbonate Additives such as plasticizers such as fillers such as talc and metal hydrate, glycerin fatty acid ester-based, paraffin oil, phthalic acid-based, ester-based and the like may be included.
上記スリップ剤は、吸着機能性樹脂組成物(γ)の製造時の溶融混練作業性を向上させ、また製膜時のダイカスや目脂などの発生を回避することが出来る。スリップ剤としては、ステアリン酸カルシウムなどの金属石鹸、オレイン酸アミド、エルカ酸アミドなどの脂肪酸アミド、ポリエチレンワックス、シリコンガム、シリコンオイルなどが挙げられる。スリップ剤の添加量は、ポリエチレン系樹脂(a)100質量部に対して0.1~20質量部が好ましく、より好ましくは1~10質量部である。
The slip agent can improve the melt-kneading workability during the production of the adsorptive functional resin composition (γ), and can avoid the occurrence of dies and greases during film formation. Examples of the slip agent include metal soaps such as calcium stearate, fatty acid amides such as oleic acid amide and erucic acid amide, polyethylene wax, silicone gum, and silicone oil. The addition amount of the slip agent is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polyethylene resin (a).
吸着機能性樹脂組成物(γ)は、必要成分を溶融混練することにより得ることができる。溶融混練は、二軸押出機、バンバリーミキサーなどの慣用の装置を使用して行うことができる。混練温度は、成形時の吸湿発泡トラブルを回避するため、成形温度よりも高くすることが好ましい。
The adsorption functional resin composition (γ) can be obtained by melting and kneading necessary components. The melt-kneading can be performed using a conventional apparatus such as a twin screw extruder or a Banbury mixer. The kneading temperature is preferably higher than the molding temperature in order to avoid moisture absorption foaming troubles during molding.
ポリオレフィン系樹脂フィルム(A)は、酸変性ポリオレフィン樹脂(α)、結晶性ポリエチレン系重合体(β)、および吸着機能性樹脂組成物(γ)を、Tダイ法やインフレーション法による共押出などにより所望の厚さのフィルムに製膜することにより得ることができる。
The polyolefin resin film (A) is obtained by co-extrusion of an acid-modified polyolefin resin (α), a crystalline polyethylene polymer (β), and an adsorption functional resin composition (γ) by a T-die method or an inflation method. It can be obtained by forming a film with a desired thickness.
ポリオレフィン系樹脂フィルム(A)の厚みは、リチウムイオン二次電池や電気二重層キャパシタの外装用として好適な範囲が選択される。従って、以下の範囲に限定するものではないが、通常は30~150μm、特に40~100μmである。
For the thickness of the polyolefin-based resin film (A), a range suitable for the exterior of a lithium ion secondary battery or an electric double layer capacitor is selected. Therefore, although it is not limited to the following range, it is usually 30 to 150 μm, particularly 40 to 100 μm.
ポリオレフィン系樹脂フィルム(A)の各層の厚みおよび(A-1)/(A-3)/(A-2)の厚み比は、フィルム(A)の製造性や所望の熱ラミネート性、ヒートシール性および吸着機能性等を勘案して選択される。従って、以下の範囲に限定するものではないが、一般的には、層(A-1)の厚みは、安定した熱ラミネート強度を得るために3μm以上が好ましく、より好ましくは5μm以上である。また、層(A-2)の厚みは、安定したヒートシール強度を得るために3μm以上が好ましく、より好ましくは5μm以上であるが、層(A-3)の吸着機能の点からは、薄い方が好ましい。さらに、ポリオレフィン系樹脂フィルム(A)の製造性の観点からは、これらの層が互いに極端な厚み差を有しない方が良い。したがって、例えばフィルム(A)の全厚みが80μmの場合には、(A-1)/(A-3)/(A-2)の厚み比として、10/60/10、10/65/5および20/50/10が例示される。
The thickness of each layer of the polyolefin-based resin film (A) and the thickness ratio of (A-1) / (A-3) / (A-2) depend on the manufacturability of the film (A), desired heat laminating properties, heat sealing Selected in consideration of properties and adsorption functionality. Accordingly, although not limited to the following range, in general, the thickness of the layer (A-1) is preferably 3 μm or more, more preferably 5 μm or more in order to obtain a stable thermal laminate strength. Further, the thickness of the layer (A-2) is preferably 3 μm or more in order to obtain a stable heat seal strength, more preferably 5 μm or more, but it is thin from the viewpoint of the adsorption function of the layer (A-3). Is preferred. Furthermore, from the viewpoint of manufacturability of the polyolefin resin film (A), it is better that these layers do not have an extreme thickness difference. Therefore, for example, when the total thickness of the film (A) is 80 μm, the thickness ratio of (A-1) / (A-3) / (A-2) is 10/60/10, 10/65/5. And 20/50/10.
こうして得られたフィルム(A)は、次いで、その層(A-1)の上に層(B)を、さらに層(C)を積層することにより本発明の複合多層フィルムを得ることができる。フィルム(A)は、吸着機能性の層(A-3)の一方の面に層(A-1)を有しかつ他方の面に層(A-2)を有するので、上記層(B)および(C)を積層する間に層(A-3)が不必要な吸着を生じて複合多層フィルムの吸着機能が低下するという問題が小さい。
The film (A) thus obtained can then be used to obtain the composite multilayer film of the present invention by laminating the layer (B) on the layer (A-1) and further laminating the layer (C). Since the film (A) has the layer (A-1) on one side of the adsorption functional layer (A-3) and the layer (A-2) on the other side, the layer (B) And the problem that the adsorption function of the composite multilayer film is lowered due to unnecessary adsorption of the layer (A-3) during the lamination of (C) is small.
(B)少なくとも片面が化成処理されたアルミニウムの層
アルミニウムの化成処理方法は種々知られており、ポリオレフィン系樹脂フィルム(A)とアルミニウム層(B)との接着強度や耐電解液性が充分である限り、どのような方法を用いても良い。環境負荷を考慮すれば、非六価クロム系の化成処理が好ましく、非クロム系の化成処理がより好ましい。非クロム系化成処理は、クロムを使用しないで行われる化成処理であり、熱水処理(ベーマイト処理)および、クロムを含まない化学薬品、例えばリン酸亜鉛やリン酸マンガン等のリン酸塩および有機酸の金属塩(シュウ酸、酢酸などのカルボン酸の鉄塩、亜鉛塩、マンガン塩、銅塩、ニッケル塩、コバルト塩、バナジウム塩、スカンジウム塩など)、を用いる化成処理を包含する。本発明における層(B)は、無処理のアルミニウム箔を上記処理に付すことにより得ることができる。 (B) Aluminum layer at least one surface of which is subjected to chemical conversion treatment Various methods of chemical conversion treatment of aluminum are known, such as adhesion strength between the polyolefin resin film (A) and the aluminum layer (B), and an anti-electrolytic solution. Any method may be used as long as the property is sufficient. In view of environmental load, non-hexavalent chromium conversion treatment is preferable, and non-chromium conversion treatment is more preferable. Non-chromium chemical conversion treatment is a chemical conversion treatment that does not use chromium, and includes hydrothermal treatment (boehmite treatment) and chemicals that do not contain chromium, such as phosphates such as zinc phosphate and manganese phosphate, and organic substances. Chemical conversion treatment using an acid metal salt (such as iron salt, zinc salt, manganese salt, copper salt, nickel salt, cobalt salt, vanadium salt, scandium salt of carboxylic acid such as oxalic acid or acetic acid) is included. The layer (B) in the present invention can be obtained by subjecting an untreated aluminum foil to the above treatment.
アルミニウムの化成処理方法は種々知られており、ポリオレフィン系樹脂フィルム(A)とアルミニウム層(B)との接着強度や耐電解液性が充分である限り、どのような方法を用いても良い。環境負荷を考慮すれば、非六価クロム系の化成処理が好ましく、非クロム系の化成処理がより好ましい。非クロム系化成処理は、クロムを使用しないで行われる化成処理であり、熱水処理(ベーマイト処理)および、クロムを含まない化学薬品、例えばリン酸亜鉛やリン酸マンガン等のリン酸塩および有機酸の金属塩(シュウ酸、酢酸などのカルボン酸の鉄塩、亜鉛塩、マンガン塩、銅塩、ニッケル塩、コバルト塩、バナジウム塩、スカンジウム塩など)、を用いる化成処理を包含する。本発明における層(B)は、無処理のアルミニウム箔を上記処理に付すことにより得ることができる。 (B) Aluminum layer at least one surface of which is subjected to chemical conversion treatment Various methods of chemical conversion treatment of aluminum are known, such as adhesion strength between the polyolefin resin film (A) and the aluminum layer (B), and an anti-electrolytic solution. Any method may be used as long as the property is sufficient. In view of environmental load, non-hexavalent chromium conversion treatment is preferable, and non-chromium conversion treatment is more preferable. Non-chromium chemical conversion treatment is a chemical conversion treatment that does not use chromium, and includes hydrothermal treatment (boehmite treatment) and chemicals that do not contain chromium, such as phosphates such as zinc phosphate and manganese phosphate, and organic substances. Chemical conversion treatment using an acid metal salt (such as iron salt, zinc salt, manganese salt, copper salt, nickel salt, cobalt salt, vanadium salt, scandium salt of carboxylic acid such as oxalic acid or acetic acid) is included. The layer (B) in the present invention can be obtained by subjecting an untreated aluminum foil to the above treatment.
(C)ポリアミドの層
ポリアミドは機械的強度に優れ、この層を有することにより、得られる多層フィルムの耐久性を高めることができる。使用されるポリアミドは特に制限されず、例えばナイロン6 、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロンナイロン612、ケブラー(Kevlar、デュポン社の商標)、ノーメックス(Nomex、デュポン社の商標)を包含する。 (C) Polyamide layer Polyamide is excellent in mechanical strength, and by having this layer, durability of the resulting multilayer film can be enhanced. The polyamide used is not particularly limited. For example, nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 6T, nylon 6I, nylon 9T, nylon M5T, nylon nylon 612, Kevlar (trademark of Kevlar, DuPont) ), Nomex (trademark of DuPont).
ポリアミドは機械的強度に優れ、この層を有することにより、得られる多層フィルムの耐久性を高めることができる。使用されるポリアミドは特に制限されず、例えばナイロン6 、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロンナイロン612、ケブラー(Kevlar、デュポン社の商標)、ノーメックス(Nomex、デュポン社の商標)を包含する。 (C) Polyamide layer Polyamide is excellent in mechanical strength, and by having this layer, durability of the resulting multilayer film can be enhanced. The polyamide used is not particularly limited. For example, nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 6T, nylon 6I, nylon 9T, nylon M5T, nylon nylon 612, Kevlar (trademark of Kevlar, DuPont) ), Nomex (trademark of DuPont).
ポリアミドの市販例としては、宇部興産(株)製のUBEナイロン(ナイロン6)、UBEナイロン66(ナイロン66)、UBESTA(ナイロン12)、東レ(株)製のアラミン(ナイロン6、66、610など)、東洋紡績(株)製の東洋紡ナイロン(ナイロン6、66、6Tなど)、三菱エンジニアリングプラスチックス(株)製のノバミッド(ナイロン6、66、12)、ユニチカ(株)製のユニチカナイロン6、ユニチカナイロン66、旭化成ケミカルズ(株)製のレオナ(ナイロン66)が挙げられる。
Examples of commercially available polyamides include UBE nylon (nylon 6), UBE nylon 66 (nylon 66), UBESTA (nylon 12) manufactured by Ube Industries, Ltd., and alamin (nylon 6, 66, 610, etc.) manufactured by Toray Industries, Inc. ), Toyobo nylon manufactured by Toyobo Co., Ltd. (nylon 6, 66, 6T, etc.), Novamid manufactured by Mitsubishi Engineering Plastics Co., Ltd. (nylon 6, 66, 12), Unitika nylon 6, manufactured by Unitika Ltd., Unitika nylon 66 and Leona (nylon 66) manufactured by Asahi Kasei Chemicals Corporation are listed.
機械的強度の観点から、層(C)としては二軸延伸されたポリアミドフィルムが特に好適に使用出来る。市販例としてはユニチカ株式会社のエンブレム(商品名)、および東レ株式会社のミクトロン(商品名)が挙げられる。
From the viewpoint of mechanical strength, a biaxially stretched polyamide film can be particularly preferably used as the layer (C). Commercially available examples include Unitika Corporation's emblem (trade name) and Toray Industries, Inc. Mikutron (trade name).
(D)ポリエステル系樹脂の層
この層は、層(C)上に任意的に積層される保護層である。層(C)は良好な機械的強度を有するが、リチウムイオン二次電池や電気二重層キャパシタに使用される電解液のように浸透性や溶解性の高い液体に対しては非常に脆い。上記(A)~(C)からなる多層フィルムを層(C)が最外層となるように包装袋にし、その中に蓄電要素と電解液等の内容物を入れ、袋口をヒートシールする際に、内容物がこぼれる可能性がある。したがって、層(C)の上にさらに層(D)を有すると有利である。 (D) Polyester resin layer This layer is a protective layer optionally laminated on the layer (C). The layer (C) has good mechanical strength, but is very brittle with respect to a liquid having high permeability and solubility such as an electrolyte used in a lithium ion secondary battery or an electric double layer capacitor. When the multilayer film comprising the above (A) to (C) is made into a packaging bag so that the layer (C) is the outermost layer, and the contents such as the electricity storage element and the electrolyte solution are put therein, and the bag mouth is heat sealed. In addition, the contents may spill. Therefore, it is advantageous to have a further layer (D) on top of the layer (C).
この層は、層(C)上に任意的に積層される保護層である。層(C)は良好な機械的強度を有するが、リチウムイオン二次電池や電気二重層キャパシタに使用される電解液のように浸透性や溶解性の高い液体に対しては非常に脆い。上記(A)~(C)からなる多層フィルムを層(C)が最外層となるように包装袋にし、その中に蓄電要素と電解液等の内容物を入れ、袋口をヒートシールする際に、内容物がこぼれる可能性がある。したがって、層(C)の上にさらに層(D)を有すると有利である。 (D) Polyester resin layer This layer is a protective layer optionally laminated on the layer (C). The layer (C) has good mechanical strength, but is very brittle with respect to a liquid having high permeability and solubility such as an electrolyte used in a lithium ion secondary battery or an electric double layer capacitor. When the multilayer film comprising the above (A) to (C) is made into a packaging bag so that the layer (C) is the outermost layer, and the contents such as the electricity storage element and the electrolyte solution are put therein, and the bag mouth is heat sealed. In addition, the contents may spill. Therefore, it is advantageous to have a further layer (D) on top of the layer (C).
層(D)を構成するポリエステル系樹脂は、特に制限されず、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンナフタレート(PBN)を包含する。
The polyester resin constituting the layer (D) is not particularly limited, and examples thereof include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), and polybutylene naphthalate. Includes phthalate (PBN).
ポリエステル系樹脂の市販例としては、東洋紡績(株)製のバイロペット(PETおよびPBT)、東レ株式会社製のトレコン(PBT)、三菱エンジニアリングプラスチックス(株)製のノバデュラン(PBT)、ユニチカ(株)のPET樹脂、および帝人化成(株)のPET樹脂、テオネックス(PEN)およびPBN樹脂が挙げられる。
Examples of commercially available polyester resins include Viropet (PET and PBT) manufactured by Toyobo Co., Ltd., Toraycon (PBT) manufactured by Toray Industries, Inc., Novaduran (PBT) manufactured by Mitsubishi Engineering Plastics Co., Ltd., and Unitika Co., Ltd. ), And Teijin Chemicals' PET resin, Teonex (PEN) and PBN resin.
また、機械的強度および耐溶剤性の点から、二軸延伸されたポリエステルフィルムが層(D)として特に好適に使用出来る。市販例としては、東レ株式会社のルミラー(商品名)、東洋紡績株式会社の東洋紡エステルフィルム(商品名)およびユニチカ株式会社のエンブレット(商品名)が挙げられる。
Further, from the viewpoint of mechanical strength and solvent resistance, a biaxially stretched polyester film can be particularly suitably used as the layer (D). Commercial examples include Lumirror (trade name) from Toray Industries, Inc., Toyobo Ester Film (trade name) from Toyobo Co., Ltd., and Emblet (trade name) from Unitika Corporation.
本発明の複合多層フィルムは
1)ポリオレフィン系樹脂フィルム(A)の片面に、少なくとも片面が化成処理されたアルミニウムの層(B)を積層する工程、および
2)上記層(B)の上にポリアミドの層(C)を積層する工程
を含む方法で製造することができる。ここで、フィルム(A)は酸変性ポリエチレン系樹脂(α)の層(A-1)、結晶性ポリエチレン系樹脂(β)の層(A-2)およびそれらの間に位置する1以上の層(A-3)を有し、上記酸変性ポリエチレン系樹脂(α)の結晶化度が60%となる温度をTmα60とし、上記結晶性ポリエチレン系樹脂(β)の結晶化度が60%となる温度をTmβ60としたとき、Tmα60 <Tmβ60 であり、上記工程1)は、下記(1)を満たす温度(TR)での熱ラミネートにより、層(A-1)の上に層(B)の化成処理された面が積層されるように行なわれる。
αのXc(TR)<60% かつ βのXc(TR)≧60% (1)
ここで、Xc(TR)は温度TRでの結晶化度である。 The composite multilayer film of the present invention includes: 1) a step of laminating an aluminum layer (B) having a chemical conversion treatment on at least one side thereof on one side of the polyolefin resin film (A); and 2) a polyamide on the layer (B). It can manufacture by the method including the process of laminating | stacking the layer (C). Here, the film (A) comprises an acid-modified polyethylene resin (α) layer (A-1), a crystalline polyethylene resin (β) layer (A-2), and one or more layers positioned therebetween. The temperature at which the acid-modified polyethylene resin (α) has a crystallinity of 60% is Tm α60 , and the crystallinity of the crystalline polyethylene resin (β) is 60%. when the composed temperature was Tm Beta60, a Tm α60 <Tm β60, the step 1) is by heat lamination at a temperature (T R) satisfying the following (1), a layer on the layer (a-1) The surface subjected to the chemical conversion treatment of (B) is performed so as to be laminated.
Xc (T R ) <60% of α and Xc (T R ) ≧ 60% of β (1)
Here, Xc (T R) is crystallinity at a temperature T R.
1)ポリオレフィン系樹脂フィルム(A)の片面に、少なくとも片面が化成処理されたアルミニウムの層(B)を積層する工程、および
2)上記層(B)の上にポリアミドの層(C)を積層する工程
を含む方法で製造することができる。ここで、フィルム(A)は酸変性ポリエチレン系樹脂(α)の層(A-1)、結晶性ポリエチレン系樹脂(β)の層(A-2)およびそれらの間に位置する1以上の層(A-3)を有し、上記酸変性ポリエチレン系樹脂(α)の結晶化度が60%となる温度をTmα60とし、上記結晶性ポリエチレン系樹脂(β)の結晶化度が60%となる温度をTmβ60としたとき、Tmα60 <Tmβ60 であり、上記工程1)は、下記(1)を満たす温度(TR)での熱ラミネートにより、層(A-1)の上に層(B)の化成処理された面が積層されるように行なわれる。
αのXc(TR)<60% かつ βのXc(TR)≧60% (1)
ここで、Xc(TR)は温度TRでの結晶化度である。 The composite multilayer film of the present invention includes: 1) a step of laminating an aluminum layer (B) having a chemical conversion treatment on at least one side thereof on one side of the polyolefin resin film (A); and 2) a polyamide on the layer (B). It can manufacture by the method including the process of laminating | stacking the layer (C). Here, the film (A) comprises an acid-modified polyethylene resin (α) layer (A-1), a crystalline polyethylene resin (β) layer (A-2), and one or more layers positioned therebetween. The temperature at which the acid-modified polyethylene resin (α) has a crystallinity of 60% is Tm α60 , and the crystallinity of the crystalline polyethylene resin (β) is 60%. when the composed temperature was Tm Beta60, a Tm α60 <Tm β60, the step 1) is by heat lamination at a temperature (T R) satisfying the following (1), a layer on the layer (a-1) The surface subjected to the chemical conversion treatment of (B) is performed so as to be laminated.
Xc (T R ) <60% of α and Xc (T R ) ≧ 60% of β (1)
Here, Xc (T R) is crystallinity at a temperature T R.
上記熱ラミネートは、上記(1)を満たす範囲の温度(熱ロール温度TR)で、通常の方法により行なうことができる。好ましくは、αのXc(TR)<50%、より好ましくは<40%であり、かつβのXc(TR)≧70%、より好ましくは≧80%であるような温度で行われる。上記範囲より高い温度(βのXc(TR)<60%となる温度範囲)では、ポリオレフィンフィルム(A)が熱ロールに融着してラミネートできない場合があり、上記範囲より低い温度(αのXc(TR)≧60%となる温度範囲)では、フィルム(A)と層(B)との接着強度が不十分になる場合がある。
The heat lamination, the above range of temperatures to satisfy (1) (heat roll temperature T R), can be carried out by conventional methods. Preferably, it is carried out at a temperature such that Xc (T R ) of α <50%, more preferably <40%, and Xc (T R ) of β ≧ 70%, more preferably ≧ 80%. At a temperature higher than the above range (temperature range where Xc (T R ) of β <60%), the polyolefin film (A) may be fused to the hot roll and cannot be laminated, and a temperature lower than the above range (of α In the temperature range where Xc (T R ) ≧ 60%), the adhesive strength between the film (A) and the layer (B) may be insufficient.
工程2)は、上記工程1)で得られたフィルムの層(B)側とポリアミド層(C)とを、ドライラミネート法によって接着することにより行うことができる。接着剤としては、ポリオール系主剤とイソシアネート系硬化剤との通常の二液タイプのものを使用することができる。具体的には、三井化学ポリウレタン(株)製のタケラック(ポリオール系主剤)/タケネート(イソシアネート系硬化剤)二液タイプを挙げることが出来る。
Step 2) can be performed by adhering the layer (B) side of the film obtained in step 1) and the polyamide layer (C) by a dry laminating method. As the adhesive, an ordinary two-pack type of a polyol main agent and an isocyanate curing agent can be used. Specifically, Takelac (polyol-based main agent) / Takenate (isocyanate-based curing agent) two-component type manufactured by Mitsui Chemicals Polyurethane Co., Ltd. can be mentioned.
層(C)の上に層(D)をさらに有する複合多層フィルムは、上記工程2)で得られたフィルムの層(C)の上に層(D)を、上記工程2)と同様にドライラミネート法によって接着することにより得ることができる。接着剤は、上記工程2)の場合と同じものを使用することができる。
In the composite multilayer film further having the layer (D) on the layer (C), the layer (D) is dried on the layer (C) of the film obtained in the above step 2) in the same manner as in the above step 2). It can be obtained by bonding by a laminating method. The same adhesive can be used as in step 2) above.
こうして得られる本発明の複合多層フィルムは、ポリオレフィン系樹脂フィルムの層と表面処理されたアルミニウムの層とがアンカーコート剤や接着剤等を塗布することなく充分な接着強度で直接貼り合わされており、かつ耐低温性に優れており、更に水分や一酸化炭素、二酸化炭素などの吸着機能を有するため、ハイブリッド自動車や電気自動車用のリチウムイオン二次電池や電気二重層キャパシタの蓄電要素を封入するための外装材として特に好適に適用できる。
In the composite multilayer film of the present invention thus obtained, the polyolefin resin film layer and the surface-treated aluminum layer are directly bonded with sufficient adhesive strength without applying an anchor coating agent or an adhesive, In addition, it has excellent low-temperature resistance and also has an adsorption function for moisture, carbon monoxide, carbon dioxide, etc., so that it can encapsulate lithium ion secondary batteries and electric double layer capacitor storage elements for hybrid and electric vehicles. It can be particularly suitably applied as an exterior material.
以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.
実施例1~9および比較例1~5
(1)吸着機能性樹脂組成物(γ)の製造
表1に示す配合量(質量部)の成分をドライブレンドし、これを(株)日本製鋼所の二軸押出機TEX28により溶融混練し、層(A-3)のための樹脂組成物(γ)のペレットを得た。二軸押出機出口樹脂温度は240℃であった(真空ベント使用)。 Examples 1 to 9 and Comparative Examples 1 to 5
(1) Production of adsorptive functional resin composition (γ ) The components (parts by mass) shown in Table 1 were dry blended, and this was mixed with a twin-screw extruder TEX28 of Nippon Steel Co., Ltd. By melt-kneading, pellets of the resin composition (γ) for the layer (A-3) were obtained. The resin temperature at the exit of the twin screw extruder was 240 ° C. (using a vacuum vent).
(1)吸着機能性樹脂組成物(γ)の製造
表1に示す配合量(質量部)の成分をドライブレンドし、これを(株)日本製鋼所の二軸押出機TEX28により溶融混練し、層(A-3)のための樹脂組成物(γ)のペレットを得た。二軸押出機出口樹脂温度は240℃であった(真空ベント使用)。 Examples 1 to 9 and Comparative Examples 1 to 5
(1) Production of adsorptive functional resin composition (γ ) The components (parts by mass) shown in Table 1 were dry blended, and this was mixed with a twin-screw extruder TEX28 of Nippon Steel Co., Ltd. By melt-kneading, pellets of the resin composition (γ) for the layer (A-3) were obtained. The resin temperature at the exit of the twin screw extruder was 240 ° C. (using a vacuum vent).
(2)ポリオレフィンフィルム(A)の製造
表1に示す層(A-1)のための酸変性ポリエチレン系ポリオレフィン樹脂(α)、層(A-2)のための結晶性ポリエチレンプロピレン系樹脂重合体(β)および上記(1)で得られた吸着機能性樹脂組成物(γ)を使用し、マルチマニホールド型多層共押出Tダイを用いて、層(A-1)/層(A-3)/層(A-2)厚み比10/65/5、全厚み80μmのフィルム(A)を製造した。なお、Tダイ出口樹脂温度250℃、引取速度20m/分とした。また層(A-1)に、濡れ指数が45mN/m以上になるようにコロナ処理を付した。 (2) Production of polyolefin film (A) Acid-modified polyethylene-based polyolefin resin (α) for layer (A-1) shown in Table 1 and crystalline polyethylene propylene for layer (A-2) Layer (A-1) / layer (by using a multi-manifold type multi-layer coextrusion T-die using the resin-based resin polymer (β) and the adsorption functional resin composition (γ) obtained in (1) above. A-3) / Layer (A-2) A film (A) having a thickness ratio of 10/65/5 and a total thickness of 80 μm was produced. The T-die outlet resin temperature was 250 ° C. and the take-up speed was 20 m / min. The layer (A-1) was subjected to corona treatment so that the wetting index was 45 mN / m or more.
表1に示す層(A-1)のための酸変性ポリエチレン系ポリオレフィン樹脂(α)、層(A-2)のための結晶性ポリエチレンプロピレン系樹脂重合体(β)および上記(1)で得られた吸着機能性樹脂組成物(γ)を使用し、マルチマニホールド型多層共押出Tダイを用いて、層(A-1)/層(A-3)/層(A-2)厚み比10/65/5、全厚み80μmのフィルム(A)を製造した。なお、Tダイ出口樹脂温度250℃、引取速度20m/分とした。また層(A-1)に、濡れ指数が45mN/m以上になるようにコロナ処理を付した。 (2) Production of polyolefin film (A) Acid-modified polyethylene-based polyolefin resin (α) for layer (A-1) shown in Table 1 and crystalline polyethylene propylene for layer (A-2) Layer (A-1) / layer (by using a multi-manifold type multi-layer coextrusion T-die using the resin-based resin polymer (β) and the adsorption functional resin composition (γ) obtained in (1) above. A-3) / Layer (A-2) A film (A) having a thickness ratio of 10/65/5 and a total thickness of 80 μm was produced. The T-die outlet resin temperature was 250 ° C. and the take-up speed was 20 m / min. The layer (A-1) was subjected to corona treatment so that the wetting index was 45 mN / m or more.
(3)アルミニウム箔のベーマイト処理
東洋アルミニウム株式会社製の無処理アルミニウム箔(スーパーホイル、JIS番号A-8079、厚さ40μm)を水槽に繰出して沸騰水に5分浸漬した後、浸漬部分を巻取る作業をアルミニウム箔の全長にわたって行って、両面がベーマイト処理されたアルミニウム箔(B)を得た。 (3) Boehmite treatment of aluminum foil Untreated aluminum foil (super foil, JIS number A-8079, thickness 40 μm) manufactured by Toyo Aluminum Co., Ltd. was fed into a water bath and immersed in boiling water for 5 minutes. The operation of winding the dipped portion was performed over the entire length of the aluminum foil to obtain an aluminum foil (B) having both surfaces treated with boehmite.
東洋アルミニウム株式会社製の無処理アルミニウム箔(スーパーホイル、JIS番号A-8079、厚さ40μm)を水槽に繰出して沸騰水に5分浸漬した後、浸漬部分を巻取る作業をアルミニウム箔の全長にわたって行って、両面がベーマイト処理されたアルミニウム箔(B)を得た。 (3) Boehmite treatment of aluminum foil Untreated aluminum foil (super foil, JIS number A-8079, thickness 40 μm) manufactured by Toyo Aluminum Co., Ltd. was fed into a water bath and immersed in boiling water for 5 minutes. The operation of winding the dipped portion was performed over the entire length of the aluminum foil to obtain an aluminum foil (B) having both surfaces treated with boehmite.
(4)ポリオレフィンフィルム(A)とアルミニウム箔(B)との熱ラミネート
上記で得られたポリオレフィンフィルム(A)とベーマイト処理されたアルミニウム箔(B)を、トクデン株式会社の誘電発熱式ラミネーターJD-DWを用いて、ポリオレフィンフィルムの層(A-1)がアルミニウム箔と接するように熱ラミネートを行なった。熱ロールの温度は、表1に示す熱ラミネート作業温度に設定し、圧力は0.3MPa、引取速度は2m/分であった。 (4) Thermal lamination of polyolefin film (A) and aluminum foil (B) The polyolefin film (A) obtained above and the aluminum foil (B) treated with boehmite are mixed with dielectric heat generated by Tokuden Corporation. Using a laminator JD-DW, thermal lamination was performed so that the polyolefin film layer (A-1) was in contact with the aluminum foil. The temperature of the hot roll was set to the heat laminating operation temperature shown in Table 1, the pressure was 0.3 MPa, and the take-up speed was 2 m / min.
上記で得られたポリオレフィンフィルム(A)とベーマイト処理されたアルミニウム箔(B)を、トクデン株式会社の誘電発熱式ラミネーターJD-DWを用いて、ポリオレフィンフィルムの層(A-1)がアルミニウム箔と接するように熱ラミネートを行なった。熱ロールの温度は、表1に示す熱ラミネート作業温度に設定し、圧力は0.3MPa、引取速度は2m/分であった。 (4) Thermal lamination of polyolefin film (A) and aluminum foil (B) The polyolefin film (A) obtained above and the aluminum foil (B) treated with boehmite are mixed with dielectric heat generated by Tokuden Corporation. Using a laminator JD-DW, thermal lamination was performed so that the polyolefin film layer (A-1) was in contact with the aluminum foil. The temperature of the hot roll was set to the heat laminating operation temperature shown in Table 1, the pressure was 0.3 MPa, and the take-up speed was 2 m / min.
(5)ポリアミドフィルム(C)のドライラミネート
上記熱ラミネートによって得られたフィルムのアルミニウム箔の上に、ユニチカ株式会社のナイロンフィルム(エンブレムONUM、厚さ15μm)を平野金属のテストラミネーターMODEL200によりドライラミネートした。接着剤として三井化学ポリウレタン株式会社のタケラックA-1143/タケネートA-3(9/1質量比)の二液タイプを使用し、これを、固形分40質量%となるように酢酸エチルで希釈したものを、塗工量4.5g/m2となるように塗布した。ラミネート後、70℃×48時間の養生を行った。 (5) Dry lamination of polyamide film (C) On the aluminum foil of the film obtained by the above thermal lamination, a nylon film (emblem ONUM, thickness 15 μm) of Unitika Co., Ltd. is used as a plain metal test laminator. Dry lamination was performed using MODEL200. A two-pack type of Takelac A-1143 / Takenate A-3 (9/1 mass ratio) manufactured by Mitsui Chemicals Polyurethane Co., Ltd. was used as an adhesive, and this was diluted with ethyl acetate so as to have a solid content of 40 mass%. The thing was apply | coated so that it might become a coating amount of 4.5 g / m < 2 >. After lamination, curing was performed at 70 ° C. for 48 hours.
上記熱ラミネートによって得られたフィルムのアルミニウム箔の上に、ユニチカ株式会社のナイロンフィルム(エンブレムONUM、厚さ15μm)を平野金属のテストラミネーターMODEL200によりドライラミネートした。接着剤として三井化学ポリウレタン株式会社のタケラックA-1143/タケネートA-3(9/1質量比)の二液タイプを使用し、これを、固形分40質量%となるように酢酸エチルで希釈したものを、塗工量4.5g/m2となるように塗布した。ラミネート後、70℃×48時間の養生を行った。 (5) Dry lamination of polyamide film (C) On the aluminum foil of the film obtained by the above thermal lamination, a nylon film (emblem ONUM, thickness 15 μm) of Unitika Co., Ltd. is used as a plain metal test laminator. Dry lamination was performed using MODEL200. A two-pack type of Takelac A-1143 / Takenate A-3 (9/1 mass ratio) manufactured by Mitsui Chemicals Polyurethane Co., Ltd. was used as an adhesive, and this was diluted with ethyl acetate so as to have a solid content of 40 mass%. The thing was apply | coated so that it might become a coating amount of 4.5 g / m < 2 >. After lamination, curing was performed at 70 ° C. for 48 hours.
上記で得られた複合多層フィルムについて、下記の試験を行った。結果を表2に示す。
The composite multilayer film obtained above was subjected to the following test. The results are shown in Table 2.
(1)熱ラミネート性
複合多層フィルムのポリオレフィンフィルム(A)上に縦横共に1mm間隔で碁盤目状に10列×10行の切目を入れ、その上から粘着テープを貼り、直ちに粘着テープを剥した。粘着テープにフィルムが何ら付着することなく剥がれた場合を○、それ以外を×とした。 (1) Thermal laminating properties Cut 10 rows x 10 rows in a grid pattern at intervals of 1 mm both vertically and horizontally on a polyolefin film (A) of a composite multi-layer film, and then adhesive tape is applied from above and adhesive is immediately applied. The tape was peeled off. A case where the film was peeled off without adhering to the adhesive tape was marked with ◯, and the other case was marked with x.
複合多層フィルムのポリオレフィンフィルム(A)上に縦横共に1mm間隔で碁盤目状に10列×10行の切目を入れ、その上から粘着テープを貼り、直ちに粘着テープを剥した。粘着テープにフィルムが何ら付着することなく剥がれた場合を○、それ以外を×とした。 (1) Thermal laminating properties Cut 10 rows x 10 rows in a grid pattern at intervals of 1 mm both vertically and horizontally on a polyolefin film (A) of a composite multi-layer film, and then adhesive tape is applied from above and adhesive is immediately applied. The tape was peeled off. A case where the film was peeled off without adhering to the adhesive tape was marked with ◯, and the other case was marked with x.
(2)耐電解液性-1
20mm×100mmの大きさの複合多層フィルムを、エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを1:1:1の体積比で混合し、これに六フッ化リン酸リチウムを1mol/Lとなるように溶解した電解液(キシダ化学株式会社製)に浸漬して80℃×168hrの促進劣化試験を行い、ラミネート剥れの有無を調べた。剥れがなく、ピンセットを用いて剥そうとしても剥がれないものを○、それ以外を×とした。 (2) Electrolytic solution resistance-1
A composite multilayer film having a size of 20 mm × 100 mm is mixed with ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1, and lithium hexafluorophosphate is dissolved in this mixture so as to be 1 mol / L. The film was immersed in the electrolyte solution (manufactured by Kishida Chemical Co., Ltd.) and subjected to an accelerated deterioration test at 80 ° C. × 168 hours to examine whether or not the laminate was peeled off. A sample that did not peel off and that could not be peeled off using tweezers was marked with ◯, and the others were marked with ×.
20mm×100mmの大きさの複合多層フィルムを、エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを1:1:1の体積比で混合し、これに六フッ化リン酸リチウムを1mol/Lとなるように溶解した電解液(キシダ化学株式会社製)に浸漬して80℃×168hrの促進劣化試験を行い、ラミネート剥れの有無を調べた。剥れがなく、ピンセットを用いて剥そうとしても剥がれないものを○、それ以外を×とした。 (2) Electrolytic solution resistance-1
A composite multilayer film having a size of 20 mm × 100 mm is mixed with ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1, and lithium hexafluorophosphate is dissolved in this mixture so as to be 1 mol / L. The film was immersed in the electrolyte solution (manufactured by Kishida Chemical Co., Ltd.) and subjected to an accelerated deterioration test at 80 ° C. × 168 hours to examine whether or not the laminate was peeled off. A sample that did not peel off and that could not be peeled off using tweezers was marked with ◯, and the others were marked with ×.
(3)ヒートシール強度
複合多層フィルムのポリオレフィンフィルム(A)の層(A-2)同士を、フィルムのマシン方向がT字剥離試験の引張方向になるようにして、株式会社東洋精機製作所のHG-100型ヒートシール試験機を用いて、温度170℃、時間2秒、圧力0.3Paの条件で融着した。次いで、株式会社東洋精機製作所製のAE-CT型引張試験機を使用してT字剥離試験を行い(引剥幅25mm、引剥速度100mm/分、引剥角度180°)、層(A-2)同士のヒートシール強度を測定した。 (3) Heat seal strength Toyo Co., Ltd. with the polyolefin film (A) layer (A-2) of the composite multilayer film so that the machine direction of the film is the tensile direction of the T-peel test Using an HG-100 heat seal tester manufactured by Seiki Seisakusho, fusion was performed under conditions of a temperature of 170 ° C., a time of 2 seconds, and a pressure of 0.3 Pa. Next, a T-shaped peel test was performed using an AE-CT type tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd. (peel width 25 mm, peel rate 100 mm / min, peel angle 180 °), and layer (A- 2) The heat seal strength between each other was measured.
複合多層フィルムのポリオレフィンフィルム(A)の層(A-2)同士を、フィルムのマシン方向がT字剥離試験の引張方向になるようにして、株式会社東洋精機製作所のHG-100型ヒートシール試験機を用いて、温度170℃、時間2秒、圧力0.3Paの条件で融着した。次いで、株式会社東洋精機製作所製のAE-CT型引張試験機を使用してT字剥離試験を行い(引剥幅25mm、引剥速度100mm/分、引剥角度180°)、層(A-2)同士のヒートシール強度を測定した。 (3) Heat seal strength Toyo Co., Ltd. with the polyolefin film (A) layer (A-2) of the composite multilayer film so that the machine direction of the film is the tensile direction of the T-peel test Using an HG-100 heat seal tester manufactured by Seiki Seisakusho, fusion was performed under conditions of a temperature of 170 ° C., a time of 2 seconds, and a pressure of 0.3 Pa. Next, a T-shaped peel test was performed using an AE-CT type tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd. (peel width 25 mm, peel rate 100 mm / min, peel angle 180 °), and layer (A- 2) The heat seal strength between each other was measured.
(4)絞り加工性
複合多層フィルムを、凹部の寸法が縦70mm×横70mm×深さ4mmとなる型とプレス機(ラミネートフイルム成形試験機、宝泉株式会社製)を使用して、ポリオレフィンフイルム(A)の側が凹になるように、加圧力5MPs、加圧速度1s/100mmの条件で絞り加工した。絞り加工した複合多層フィルム2個を、それぞれのポリオレフィンフイルム(A)の層が対向するように重ね合わせ、任意の3辺を5mm幅で、170℃、1MPa、2秒の条件でヒートシールして袋状に加工した。絞り加工部およびヒートシール加工部を目視および実体顕微鏡により観察して、ラミネート剥れの有無を調べた。剥れがないものを○、それ以外を×とした。 (4) Drawing workability Using a composite multilayer film, a mold having a recess size of 70 mm long x 70 mm wide x 4 mm deep and a press machine (laminate film forming tester, manufactured by Hosen Co., Ltd.) Then, drawing was performed under the conditions of a pressing force of 5 MPs and a pressing speed of 1 s / 100 mm so that the polyolefin film (A) side was concave. Two composite multilayer films that have been drawn are overlapped so that the respective polyolefin film (A) layers face each other, and any three sides are 5 mm wide and heat sealed under conditions of 170 ° C., 1 MPa, and 2 seconds. Processed into a bag. The drawn and heat-sealed parts were observed visually and with a stereomicroscope to check for laminate peeling. The case where there was no peeling was marked with ◯, and the others were marked with ×.
複合多層フィルムを、凹部の寸法が縦70mm×横70mm×深さ4mmとなる型とプレス機(ラミネートフイルム成形試験機、宝泉株式会社製)を使用して、ポリオレフィンフイルム(A)の側が凹になるように、加圧力5MPs、加圧速度1s/100mmの条件で絞り加工した。絞り加工した複合多層フィルム2個を、それぞれのポリオレフィンフイルム(A)の層が対向するように重ね合わせ、任意の3辺を5mm幅で、170℃、1MPa、2秒の条件でヒートシールして袋状に加工した。絞り加工部およびヒートシール加工部を目視および実体顕微鏡により観察して、ラミネート剥れの有無を調べた。剥れがないものを○、それ以外を×とした。 (4) Drawing workability Using a composite multilayer film, a mold having a recess size of 70 mm long x 70 mm wide x 4 mm deep and a press machine (laminate film forming tester, manufactured by Hosen Co., Ltd.) Then, drawing was performed under the conditions of a pressing force of 5 MPs and a pressing speed of 1 s / 100 mm so that the polyolefin film (A) side was concave. Two composite multilayer films that have been drawn are overlapped so that the respective polyolefin film (A) layers face each other, and any three sides are 5 mm wide and heat sealed under conditions of 170 ° C., 1 MPa, and 2 seconds. Processed into a bag. The drawn and heat-sealed parts were observed visually and with a stereomicroscope to check for laminate peeling. The case where there was no peeling was marked with ◯, and the others were marked with ×.
(5)耐電解液性-2
エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを1:1:1の体積比で混合し、これに六フッ化リン酸リチウムを1mol/Lとなるように溶解した電解液(キシダ化学株式会社製)36mlを、上記試験(4)で得られた袋の開口部から注入し、開口部を5mm幅で、170℃、1MPa、2秒の条件でヒートシールして試験片を得た。この試験片を、温度30℃および湿度95%に設定した環境試験機を用いて、100日間の促進劣化試験に付した。同様に温度80℃および湿度95%に設定した環境試験機を用いて、100日間の促進劣化試験に付した。両方の試験において液漏れ等の異常の有無を調べ、以下の基準で評価した。
○:どちらの試験でも異常が無かった。
△:30℃での試験では異常が無いが、80℃での試験では異常が認められた。
×:どちらの試験でも異常が認められた。 (5) Electrolytic solution resistance-2
36 ml of an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) in which ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 and lithium hexafluorophosphate was dissolved to 1 mol / L. The test piece (4) was poured from the opening of the bag, and the opening was heat-sealed under conditions of 170 ° C., 1 MPa, 2 seconds with a width of 5 mm to obtain a test piece. This test piece was subjected to an accelerated deterioration test for 100 days using an environmental testing machine set at a temperature of 30 ° C. and a humidity of 95%. Similarly, using an environmental tester set at a temperature of 80 ° C. and a humidity of 95%, it was subjected to an accelerated deterioration test for 100 days. In both tests, the presence or absence of abnormalities such as liquid leakage was examined and evaluated according to the following criteria.
○: There was no abnormality in either test.
(Triangle | delta): Although there was no abnormality in the test at 30 degreeC, abnormality was recognized in the test at 80 degreeC.
X: Abnormality was observed in both tests.
エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを1:1:1の体積比で混合し、これに六フッ化リン酸リチウムを1mol/Lとなるように溶解した電解液(キシダ化学株式会社製)36mlを、上記試験(4)で得られた袋の開口部から注入し、開口部を5mm幅で、170℃、1MPa、2秒の条件でヒートシールして試験片を得た。この試験片を、温度30℃および湿度95%に設定した環境試験機を用いて、100日間の促進劣化試験に付した。同様に温度80℃および湿度95%に設定した環境試験機を用いて、100日間の促進劣化試験に付した。両方の試験において液漏れ等の異常の有無を調べ、以下の基準で評価した。
○:どちらの試験でも異常が無かった。
△:30℃での試験では異常が無いが、80℃での試験では異常が認められた。
×:どちらの試験でも異常が認められた。 (5) Electrolytic solution resistance-2
36 ml of an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) in which ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 and lithium hexafluorophosphate was dissolved to 1 mol / L. The test piece (4) was poured from the opening of the bag, and the opening was heat-sealed under conditions of 170 ° C., 1 MPa, 2 seconds with a width of 5 mm to obtain a test piece. This test piece was subjected to an accelerated deterioration test for 100 days using an environmental testing machine set at a temperature of 30 ° C. and a humidity of 95%. Similarly, using an environmental tester set at a temperature of 80 ° C. and a humidity of 95%, it was subjected to an accelerated deterioration test for 100 days. In both tests, the presence or absence of abnormalities such as liquid leakage was examined and evaluated according to the following criteria.
○: There was no abnormality in either test.
(Triangle | delta): Although there was no abnormality in the test at 30 degreeC, abnormality was recognized in the test at 80 degreeC.
X: Abnormality was observed in both tests.
(6)耐低温性
上記試験(5)で作成した試験片を-40℃の環境において24時間状態調節した後、同環境において、1mの高さからステンレスのバットに、袋を立たせる方向で100回落下させる落下試験を行った。このとき、袋の落下方向を一定にすると共に、ステンレスパットに着地する箇所が毎回同じになるようにした。落下試験後、試験片を常温に戻し、破袋および液漏れの有無を確認した。破袋および液漏れがなかった場合を○、破袋または液漏れが認められた場合を×とした。 (6) Low temperature resistance After the test piece prepared in the above test (5) was conditioned for 24 hours in an environment of -40 ° C, a bag was placed from a height of 1 m onto a stainless steel bat. A drop test was conducted to drop 100 times in the standing direction. At this time, the falling direction of the bag was made constant, and the location where it landed on the stainless steel pad was made the same every time. After the drop test, the test piece was returned to room temperature and checked for bag breakage and liquid leakage. The case where there was no bag breakage and liquid leakage was marked with ◯, and the case where bag breakage or liquid leakage was observed was marked with ×.
上記試験(5)で作成した試験片を-40℃の環境において24時間状態調節した後、同環境において、1mの高さからステンレスのバットに、袋を立たせる方向で100回落下させる落下試験を行った。このとき、袋の落下方向を一定にすると共に、ステンレスパットに着地する箇所が毎回同じになるようにした。落下試験後、試験片を常温に戻し、破袋および液漏れの有無を確認した。破袋および液漏れがなかった場合を○、破袋または液漏れが認められた場合を×とした。 (6) Low temperature resistance After the test piece prepared in the above test (5) was conditioned for 24 hours in an environment of -40 ° C, a bag was placed from a height of 1 m onto a stainless steel bat. A drop test was conducted to drop 100 times in the standing direction. At this time, the falling direction of the bag was made constant, and the location where it landed on the stainless steel pad was made the same every time. After the drop test, the test piece was returned to room temperature and checked for bag breakage and liquid leakage. The case where there was no bag breakage and liquid leakage was marked with ◯, and the case where bag breakage or liquid leakage was observed was marked with ×.
(7)耐熱性
上記試験(5)で作成した試験片を沸騰水中で5分間煮沸した。破袋および液漏れがなかった場合を○、破袋または液漏れが認められた場合を×とした。 (7) Heat resistance The test piece prepared in the above test (5) was boiled in boiling water for 5 minutes. The case where there was no bag breakage and liquid leakage was marked with ◯, and the case where bag breakage or liquid leakage was observed was marked with ×.
上記試験(5)で作成した試験片を沸騰水中で5分間煮沸した。破袋および液漏れがなかった場合を○、破袋または液漏れが認められた場合を×とした。 (7) Heat resistance The test piece prepared in the above test (5) was boiled in boiling water for 5 minutes. The case where there was no bag breakage and liquid leakage was marked with ◯, and the case where bag breakage or liquid leakage was observed was marked with ×.
(8)水分吸収能
エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを1:1:1の体積比で混合し、これに水を極少量混合し、試験液とした。この試験液中の水分量をカールフィッシャー容量滴定装置(平沼産業株式会社のAQ-300)により測定した(初期水分量)。この試験液20gを上記試験(4)で得られた袋の開口部から注入し、開口部を5mm幅で、170℃、1MPa、2秒の条件でヒートシールした。25℃×48時間保管後、この袋を開封し、試験液中の水分量を同様に測定した(残存水分量)。 (8) Water absorption capacity Ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1: 1, and a very small amount of water was mixed therewith to obtain a test solution. The amount of water in this test solution was measured with a Karl Fischer volumetric titrator (AQ-300 from Hiranuma Sangyo Co., Ltd.) (initial water content). 20 g of this test solution was injected from the opening of the bag obtained in the above test (4), and the opening was heat-sealed under conditions of 170 mm, 1 MPa, and 2 seconds with a width of 5 mm. After storing at 25 ° C. for 48 hours, the bag was opened and the water content in the test solution was measured in the same manner (residual water content).
エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを1:1:1の体積比で混合し、これに水を極少量混合し、試験液とした。この試験液中の水分量をカールフィッシャー容量滴定装置(平沼産業株式会社のAQ-300)により測定した(初期水分量)。この試験液20gを上記試験(4)で得られた袋の開口部から注入し、開口部を5mm幅で、170℃、1MPa、2秒の条件でヒートシールした。25℃×48時間保管後、この袋を開封し、試験液中の水分量を同様に測定した(残存水分量)。 (8) Water absorption capacity Ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1: 1, and a very small amount of water was mixed therewith to obtain a test solution. The amount of water in this test solution was measured with a Karl Fischer volumetric titrator (AQ-300 from Hiranuma Sangyo Co., Ltd.) (initial water content). 20 g of this test solution was injected from the opening of the bag obtained in the above test (4), and the opening was heat-sealed under conditions of 170 mm, 1 MPa, and 2 seconds with a width of 5 mm. After storing at 25 ° C. for 48 hours, the bag was opened and the water content in the test solution was measured in the same manner (residual water content).
(9)窒素/一酸化炭素混合気体中での一酸化炭素および二酸化炭素の濃度変化
テトラバックに10cm×10cmの複合多層フィルム10枚を入れ、255mLの窒素を充填した。ここに45mLの一酸化炭素を注入した(一酸化炭素の計算濃度:15vol%)。これを24時間、常温、常圧で放置した後、一酸化炭素濃度および二酸化炭素濃度をガスクロマトグラフにより測定した。なお、テトラバックからはガスが少しずつ透過して抜けるため、同時にブランク(上記フィルムを使用しない場合)の測定も行ったところ、24時間後の一酸化炭素濃度は14.1vol%であり、二酸化炭素は検出されなかった。 (9) Concentration change of carbon monoxide and carbon dioxide in a nitrogen / carbon monoxide mixed gas Ten composite multilayer films of 10 cm x 10 cm were placed in a tetra bag and filled with 255 mL of nitrogen. 45 mL of carbon monoxide was injected here (calculated concentration of carbon monoxide: 15 vol%). This was left for 24 hours at room temperature and normal pressure, and then the carbon monoxide concentration and the carbon dioxide concentration were measured by a gas chromatograph. In addition, since gas permeate | transmits and escapes little by little from a tetra bag, when the measurement of a blank (when the said film is not used) was also performed simultaneously, the carbon monoxide density | concentration after 24 hours is 14.1 vol%, Carbon was not detected.
テトラバックに10cm×10cmの複合多層フィルム10枚を入れ、255mLの窒素を充填した。ここに45mLの一酸化炭素を注入した(一酸化炭素の計算濃度:15vol%)。これを24時間、常温、常圧で放置した後、一酸化炭素濃度および二酸化炭素濃度をガスクロマトグラフにより測定した。なお、テトラバックからはガスが少しずつ透過して抜けるため、同時にブランク(上記フィルムを使用しない場合)の測定も行ったところ、24時間後の一酸化炭素濃度は14.1vol%であり、二酸化炭素は検出されなかった。 (9) Concentration change of carbon monoxide and carbon dioxide in a nitrogen / carbon monoxide mixed gas Ten composite multilayer films of 10 cm x 10 cm were placed in a tetra bag and filled with 255 mL of nitrogen. 45 mL of carbon monoxide was injected here (calculated concentration of carbon monoxide: 15 vol%). This was left for 24 hours at room temperature and normal pressure, and then the carbon monoxide concentration and the carbon dioxide concentration were measured by a gas chromatograph. In addition, since gas permeate | transmits and escapes little by little from a tetra bag, when the measurement of a blank (when the said film is not used) was also performed simultaneously, the carbon monoxide density | concentration after 24 hours is 14.1 vol%, Carbon was not detected.
(10)窒素/二酸化炭素混合気体中での二酸化炭素の濃度変化
二酸化炭素は透過性が高いため、フィルムによる二酸化炭素の吸着能の測定を行った。上記試験(9)において、45mLの一酸化炭素を注入する代わりに、45mLの二酸化炭素を注入した以外は上記試験(9)と同様にして、二酸化炭素濃度の測定を行った。ブランクでの二酸化炭素濃度は12.3vol%であった。 (10) Concentration change of carbon dioxide in nitrogen / carbon dioxide mixed gas Since carbon dioxide has high permeability, the carbon dioxide adsorption ability by the film was measured. In the test (9), the carbon dioxide concentration was measured in the same manner as in the test (9) except that 45 mL of carbon dioxide was injected instead of injecting 45 mL of carbon monoxide. The carbon dioxide concentration in the blank was 12.3 vol%.
二酸化炭素は透過性が高いため、フィルムによる二酸化炭素の吸着能の測定を行った。上記試験(9)において、45mLの一酸化炭素を注入する代わりに、45mLの二酸化炭素を注入した以外は上記試験(9)と同様にして、二酸化炭素濃度の測定を行った。ブランクでの二酸化炭素濃度は12.3vol%であった。 (10) Concentration change of carbon dioxide in nitrogen / carbon dioxide mixed gas Since carbon dioxide has high permeability, the carbon dioxide adsorption ability by the film was measured. In the test (9), the carbon dioxide concentration was measured in the same manner as in the test (9) except that 45 mL of carbon dioxide was injected instead of injecting 45 mL of carbon monoxide. The carbon dioxide concentration in the blank was 12.3 vol%.
使用した材料は以下の通りである。
NF539:三井化学(株)製のアドマーNF539(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:93℃、DSC融解曲線における最も高い温度側のピークトップ融点(Tm)=121℃
NE827:三井化学(株)製のアドマーNE827(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:89℃、Tm=124℃
XE070:三井化学(株)製のアドマーXE070(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:54℃、Tm=84℃
NE065:三井化学(株)製のアドマーNE065(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:111℃、Tm=123℃
SP4530:プライムポリマー(株)製のエボリューSP4530(商品名)、メタロセン系触媒による直鎖状高密度ポリエチレン、Xc=60%となる温度:126℃、Xc=70%となる温度:121℃、Xc=80%となる温度:110℃、Tm=132℃、密度:942Kg/m3
SP2520:プライムポリマー(株)製のエボリューSP2520(商品名)、メタロセン系触媒による直鎖状低密度ポリエチレン、Xc=60%となる温度:98℃、Xc=70%となる温度:91℃、Xc=80%となる温度:98℃、Tm=121℃、密度:928Kg/m3
KF271:日本ポリエチレン(株)製のカーネルKF271(商品名)、メタロセン系触媒による直鎖状低密度ポリエチレン、MFR(190℃、21.18N)=2.4g/10分、密度913kg/m3、Tm=127℃、ΔH=127J/g、Xc110=26%
モレキュラーシーブ4A LPH:東ソー(株)製の細孔径0.4nmの合成ゼオライト、D99=20μm、D50=12μm
銅ゼオライト:東ソー(株)製、D99=20μm、D50=12μm
ホプカライト:ジーエルサイエンス(株)製の複合金属酸化物触媒(CuMn2O4)を乳鉢で粉砕・分級したもの、D99=12μm、D50=3μm
5%Pd-MgO-01:エヌ・イー・ケムキャット(株)製の酸化マグネシウム担持パラジウム触媒、担持量5質量%、D99=6μm、D50=2μm
STO:堺化学工業(株)製の酸化ストロンチウムを分級したもの、D99=18μm、D50=5μm
スターマグPSF-150F:神島化学工業(株)製の高BET酸化マグネシウム、BET比表面積=150m2/g 、D99=3μm、D50=1μm
無水硫酸マグネシウム:馬居化学工業(株)製、D99=118μm、D50=24μm
LBT-77:堺化学工業(株)製、ポリエチレンワックス
ステアリン酸カルシウム The materials used are as follows.
NF539: Admer NF539 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 93 ° C., peak top melting point (Tm) on the highest temperature side in the DSC melting curve = 121 ℃
NE827: Admer NE827 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 89 ° C., Tm = 124 ° C.
XE070: Admer XE070 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 54 ° C., Tm = 84 ° C.
NE065: Admer NE065 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 111 ° C., Tm = 123 ° C.
SP4530: Evolue SP4530 (trade name) manufactured by Prime Polymer Co., Ltd., linear high-density polyethylene by metallocene catalyst, temperature at which Xc = 60%: 126 ° C., temperature at which Xc = 70%: 121 ° C., Xc = 80% Temperature: 110 ° C., Tm = 132 ° C., Density: 942 Kg / m 3
SP2520: Evolue SP2520 (trade name) manufactured by Prime Polymer Co., Ltd., linear low density polyethylene by metallocene catalyst, temperature at which Xc = 60%: 98 ° C., temperature at which Xc = 70%: 91 ° C., Xc = 80% Temperature: 98 ° C., Tm = 121 ° C., Density: 928 Kg / m 3
KF271: Kernel KF271 (trade name) manufactured by Nippon Polyethylene Co., Ltd., linear low density polyethylene with metallocene catalyst, MFR (190 ° C., 21.18 N) = 2.4 g / 10 min, density 913 kg / m 3 , Tm = 127 ° C., ΔH = 127 J / g, Xc110 = 26%
Molecular sieve 4A LPH: Synthetic zeolite with a pore diameter of 0.4 nm manufactured by Tosoh Corporation, D99 = 20 μm, D50 = 12 μm
Copper zeolite: manufactured by Tosoh Corporation, D99 = 20 μm, D50 = 12 μm
Hopcalite: A pulverized and classified composite metal oxide catalyst (CuMn 2 O 4 ) manufactured by GL Sciences, D99 = 12 μm, D50 = 3 μm
5% Pd—MgO-01: Magnesium oxide-supported palladium catalyst manufactured by N.E. Chemcat Co., Ltd., 5 mass%, D99 = 6 μm, D50 = 2 μm
STO: Strontium oxide classified by Sakai Chemical Industry Co., Ltd., D99 = 18 μm, D50 = 5 μm
Starmag PSF-150F: High BET magnesium oxide manufactured by Kamishima Chemical Industry Co., Ltd., BET specific surface area = 150 m 2 / g, D99 = 3 μm, D50 = 1 μm
Anhydrous magnesium sulfate: manufactured by Maui Chemical Industry Co., Ltd., D99 = 118 μm, D50 = 24 μm
LBT-77: Sakai Chemical Industry Co., Ltd., polyethylene wax calcium stearate
NF539:三井化学(株)製のアドマーNF539(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:93℃、DSC融解曲線における最も高い温度側のピークトップ融点(Tm)=121℃
NE827:三井化学(株)製のアドマーNE827(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:89℃、Tm=124℃
XE070:三井化学(株)製のアドマーXE070(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:54℃、Tm=84℃
NE065:三井化学(株)製のアドマーNE065(商品名)、無水マレイン酸変性ポリエチレン、Xc=60%となる温度:111℃、Tm=123℃
SP4530:プライムポリマー(株)製のエボリューSP4530(商品名)、メタロセン系触媒による直鎖状高密度ポリエチレン、Xc=60%となる温度:126℃、Xc=70%となる温度:121℃、Xc=80%となる温度:110℃、Tm=132℃、密度:942Kg/m3
SP2520:プライムポリマー(株)製のエボリューSP2520(商品名)、メタロセン系触媒による直鎖状低密度ポリエチレン、Xc=60%となる温度:98℃、Xc=70%となる温度:91℃、Xc=80%となる温度:98℃、Tm=121℃、密度:928Kg/m3
KF271:日本ポリエチレン(株)製のカーネルKF271(商品名)、メタロセン系触媒による直鎖状低密度ポリエチレン、MFR(190℃、21.18N)=2.4g/10分、密度913kg/m3、Tm=127℃、ΔH=127J/g、Xc110=26%
モレキュラーシーブ4A LPH:東ソー(株)製の細孔径0.4nmの合成ゼオライト、D99=20μm、D50=12μm
銅ゼオライト:東ソー(株)製、D99=20μm、D50=12μm
ホプカライト:ジーエルサイエンス(株)製の複合金属酸化物触媒(CuMn2O4)を乳鉢で粉砕・分級したもの、D99=12μm、D50=3μm
5%Pd-MgO-01:エヌ・イー・ケムキャット(株)製の酸化マグネシウム担持パラジウム触媒、担持量5質量%、D99=6μm、D50=2μm
STO:堺化学工業(株)製の酸化ストロンチウムを分級したもの、D99=18μm、D50=5μm
スターマグPSF-150F:神島化学工業(株)製の高BET酸化マグネシウム、BET比表面積=150m2/g 、D99=3μm、D50=1μm
無水硫酸マグネシウム:馬居化学工業(株)製、D99=118μm、D50=24μm
LBT-77:堺化学工業(株)製、ポリエチレンワックス
ステアリン酸カルシウム The materials used are as follows.
NF539: Admer NF539 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 93 ° C., peak top melting point (Tm) on the highest temperature side in the DSC melting curve = 121 ℃
NE827: Admer NE827 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 89 ° C., Tm = 124 ° C.
XE070: Admer XE070 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 54 ° C., Tm = 84 ° C.
NE065: Admer NE065 (trade name) manufactured by Mitsui Chemicals, maleic anhydride-modified polyethylene, temperature at which Xc = 60%: 111 ° C., Tm = 123 ° C.
SP4530: Evolue SP4530 (trade name) manufactured by Prime Polymer Co., Ltd., linear high-density polyethylene by metallocene catalyst, temperature at which Xc = 60%: 126 ° C., temperature at which Xc = 70%: 121 ° C., Xc = 80% Temperature: 110 ° C., Tm = 132 ° C., Density: 942 Kg / m 3
SP2520: Evolue SP2520 (trade name) manufactured by Prime Polymer Co., Ltd., linear low density polyethylene by metallocene catalyst, temperature at which Xc = 60%: 98 ° C., temperature at which Xc = 70%: 91 ° C., Xc = 80% Temperature: 98 ° C., Tm = 121 ° C., Density: 928 Kg / m 3
KF271: Kernel KF271 (trade name) manufactured by Nippon Polyethylene Co., Ltd., linear low density polyethylene with metallocene catalyst, MFR (190 ° C., 21.18 N) = 2.4 g / 10 min, density 913 kg / m 3 , Tm = 127 ° C., ΔH = 127 J / g, Xc110 = 26%
Molecular sieve 4A LPH: Synthetic zeolite with a pore diameter of 0.4 nm manufactured by Tosoh Corporation, D99 = 20 μm, D50 = 12 μm
Copper zeolite: manufactured by Tosoh Corporation, D99 = 20 μm, D50 = 12 μm
Hopcalite: A pulverized and classified composite metal oxide catalyst (CuMn 2 O 4 ) manufactured by GL Sciences, D99 = 12 μm, D50 = 3 μm
5% Pd—MgO-01: Magnesium oxide-supported palladium catalyst manufactured by N.E. Chemcat Co., Ltd., 5 mass%, D99 = 6 μm, D50 = 2 μm
STO: Strontium oxide classified by Sakai Chemical Industry Co., Ltd., D99 = 18 μm, D50 = 5 μm
Starmag PSF-150F: High BET magnesium oxide manufactured by Kamishima Chemical Industry Co., Ltd., BET specific surface area = 150 m 2 / g, D99 = 3 μm, D50 = 1 μm
Anhydrous magnesium sulfate: manufactured by Maui Chemical Industry Co., Ltd., D99 = 118 μm, D50 = 24 μm
LBT-77: Sakai Chemical Industry Co., Ltd., polyethylene wax calcium stearate
なお、上記KF271については、DSC測定を、190℃で5分間保持した後、10℃/分の降温速度で-10℃まで冷却し、-10℃で5分間保持した後、10℃/分の昇温速度で190℃まで加熱するという温度プログラムを使用して行った。
For KF271, the DSC measurement was held at 190 ° C. for 5 minutes, then cooled to −10 ° C. at a rate of temperature decrease of 10 ° C./minute, held at −10 ° C. for 5 minutes, and then 10 ° C./minute. This was performed using a temperature program of heating to 190 ° C. at a rate of temperature increase.
表2から明らかなように、実施例1~9の本発明の複合多層フィルムは、熱ラミネート性、ヒートシール強度、耐電解液性、絞り加工性、耐低温性および耐熱性に優れるとともに、水分や一酸化炭素を吸着する機能を有する。
As is apparent from Table 2, the composite multilayer films of the present invention of Examples 1 to 9 are excellent in heat laminating property, heat seal strength, electrolytic solution resistance, drawing workability, low temperature resistance and heat resistance, and moisture. And has the function of adsorbing carbon monoxide.
一方、樹脂組成物(γ)中のフィラー(b)の含有量が本発明の下限未満である比較例1の複合多層フィルムは、吸着機能を発現しなかった。フィラー(b)の含有量が本発明の上限を超える比較例2の複合多層フィルムは、絞り加工性に劣り、試験(5)~(10)を行うことができなかった。フィラー(b)として粒径が粗いものを使用した比較例3では、フィルム(A)とアルミニウム箔(B)との接着強度が十分でなく、ヒートシール強度および絞り加工性も十分でなかった。したがって、試験(5)~(10)を行うことができなかった。
On the other hand, the composite multilayer film of Comparative Example 1 in which the content of the filler (b) in the resin composition (γ) is less than the lower limit of the present invention did not exhibit an adsorption function. The composite multilayer film of Comparative Example 2 in which the content of the filler (b) exceeded the upper limit of the present invention was inferior in drawability, and the tests (5) to (10) could not be performed. In Comparative Example 3 in which a filler (b) having a coarse particle size was used, the adhesive strength between the film (A) and the aluminum foil (B) was not sufficient, and the heat seal strength and the drawability were not sufficient. Therefore, tests (5) to (10) could not be performed.
比較例4は、実施例8において樹脂(α)としてNE827に代えてNE065を使用した例であり、樹脂(α)と樹脂(β)とがTmα60 <Tmβ60 の関係を満たさない。樹脂(β)の結晶化度が60%以上であるところの温度(98℃)で熱ラミネートを行ったところ、ラミネートすることはできたが、接着強度は充分でなかった。また、ヒートシール強度および絞り加工性も十分でなかったので、上記試験(5)~(10)を行うことができなかった。樹脂(α)の結晶化度が60%であるところの温度(111℃)では、ポリオレフィンフィルム(A)が熱ロールに付着して剥がれなくなり、アルミニウム箔(B)にラミネートすることができなかった。
Comparative Example 4 is an example in which NE065 is used instead of NE827 as the resin (α) in Example 8, and the resin (α) and the resin (β) do not satisfy the relationship of Tm α60 <Tm β60 . When heat lamination was performed at a temperature (98 ° C.) at which the degree of crystallinity of the resin (β) was 60% or more, lamination was possible, but the adhesive strength was not sufficient. Further, since the heat seal strength and drawability were not sufficient, the above tests (5) to (10) could not be performed. At the temperature (111 ° C.) at which the degree of crystallinity of the resin (α) is 60%, the polyolefin film (A) does not peel off due to adhesion to the hot roll, and cannot be laminated on the aluminum foil (B). .
比較例5は、実施例7において熱ラミネート温度を変えた例であり、製造法に関する比較例である。樹脂(α)の結晶化度が60%以上であるところのより低い温度(105℃)で熱ラミネートを行ったところ、ラミネートすることはできたが、接着強度は充分でなかった。また、ヒートシール強度および絞り加工性も十分でなかったので、上記試験(5)~(10)を行うことができなかった。また、樹脂(β)の結晶化度が60%未満であるところのより高い温度(130℃)では、ポリオレフィンフィルム(A)が熱ロールに付着して剥がれなくなり、アルミニウム箔(B)にラミネートすることができなかった。
Comparative Example 5 is an example in which the heat laminating temperature is changed in Example 7, and is a comparative example related to the manufacturing method. When heat lamination was performed at a lower temperature (105 ° C.) where the crystallinity of the resin (α) was 60% or more, lamination was possible, but the adhesive strength was not sufficient. Further, since the heat seal strength and drawability were not sufficient, the above tests (5) to (10) could not be performed. Further, at a higher temperature (130 ° C.) where the crystallinity of the resin (β) is less than 60%, the polyolefin film (A) does not adhere to the hot roll and does not peel off, and is laminated on the aluminum foil (B). I couldn't.
A ポリオレフィン系樹脂フィルム
B 化成処理されたアルミニウムの層
C ポリアミドの層
D ポリエステル系樹脂の層
A-1 酸変性ポリエチレン系樹脂(α)の層
A-3 吸着機能性樹脂組成物(γ)の層
A-2 結晶性ポリエチレン系樹脂(β)の層
A Polyolefin resin film B Chemical conversion treated aluminum layer C Polyamide layer D Polyester resin layer A-1 Acid-modified polyethylene resin (α) layer A-3 Adsorption functional resin composition (γ) layer A-2 Crystalline polyethylene resin (β) layer
B 化成処理されたアルミニウムの層
C ポリアミドの層
D ポリエステル系樹脂の層
A-1 酸変性ポリエチレン系樹脂(α)の層
A-3 吸着機能性樹脂組成物(γ)の層
A-2 結晶性ポリエチレン系樹脂(β)の層
A Polyolefin resin film B Chemical conversion treated aluminum layer C Polyamide layer D Polyester resin layer A-1 Acid-modified polyethylene resin (α) layer A-3 Adsorption functional resin composition (γ) layer A-2 Crystalline polyethylene resin (β) layer
Claims (14)
- 少なくとも片面が化成処理されたアルミニウムの層(B)の一方の面であってかつ化成処理されている面にポリオレフィン系樹脂フィルム(A)を有し、他方の面にポリアミドの層(C)を有する複合多層フィルムにおいて、フィルム(A)が、酸変性ポリエチレン系樹脂(α)の層(A-1)、結晶性ポリエチレン系樹脂(β)の層(A-2)、ならびにそれらの間に位置する1以上の層(A-3)を有し、上記酸変性ポリエチレン系樹脂(α)の結晶化度が60%となる温度をTmα60とし、上記結晶性ポリエチレン系樹脂(β)の結晶化度が60%となる温度をTmβ60としたとき、Tmα60<Tmβ60であり、層(B)が層(A-1)の上に直接積層されており、層(A-3)が、
(a)ポリエチレン系樹脂100質量部、および
(b)吸着機能性フィラー1~300質量部
を含む吸着機能性樹脂組成物(γ)からなり、吸着機能性フィラー(b)は、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する、ここでD99およびD50はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う、ところの複合多層フィルム。 At least one surface of the aluminum layer (B) subjected to chemical conversion treatment has a polyolefin resin film (A) on one surface and the chemical conversion treatment surface, and a polyamide layer (C) on the other surface. In the composite multilayer film having the film (A), the layer (A-1) of the acid-modified polyethylene resin (α), the layer (A-2) of the crystalline polyethylene resin (β), and a position therebetween The temperature at which the acid-modified polyethylene resin (α) has a crystallinity of 60% is defined as Tm α60 , and the crystalline polyethylene resin (β) is crystallized. when degree is the temperature at which 60% was Tm β60, a Tm α60 <Tm β60, the layer (B) is laminated directly on the layer (a-1), a layer (a-3),
It consists of an adsorption functional resin composition (γ) containing (a) 100 parts by mass of a polyethylene-based resin and (b) 1 to 300 parts by mass of an adsorption functional filler. Particle diameter (D99) and particle diameter (D50) of 20 μm or less, wherein D99 and D50 are respectively the particle diameters at the points where 99% by mass and 50% by mass are accumulated from the smaller particle diameter in the particle size distribution. Say, where composite multilayer film. - 化成処理が非クロム系化成処理である、請求項1に記載の複合多層フィルム。 The composite multilayer film according to claim 1, wherein the chemical conversion treatment is a non-chromium chemical conversion treatment.
- (b)吸着機能性フィラーが、(イ)水分吸着剤、(ロ)一酸化炭素酸化触媒、および(ハ)二酸化炭素吸着剤より成る群から選択される1以上である、請求項1または2に記載の複合多層フィルム。 The adsorption functional filler (b) is one or more selected from the group consisting of (a) a moisture adsorbent, (b) a carbon monoxide oxidation catalyst, and (c) a carbon dioxide adsorbent. A composite multilayer film as described in 1.
- (イ)水分吸着剤が、
ゼオライト、モレキュラーシーブ、硫酸マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化アルミニウム、シリカゲル、石灰および焼成ハイドロタルサイトから成る群から選択される1以上である、請求項3に記載の複合多層フィルム。 (I) The moisture adsorbent is
The composite multilayer film according to claim 3, which is at least one selected from the group consisting of zeolite, molecular sieve, magnesium sulfate, calcium oxide, strontium oxide, aluminum oxide, silica gel, lime and calcined hydrotalcite. - (ロ)一酸化炭素酸化触媒が、ホプカライトおよび担持貴金属触媒から成る群から選択される1以上である、請求項3または4に記載の複合多層フィルム。 (B) The composite multilayer film according to claim 3 or 4, wherein the carbon monoxide oxidation catalyst is one or more selected from the group consisting of hopcalite and a supported noble metal catalyst.
- (ハ)二酸化炭素吸着剤が、酸化ストロンチウム、酸化カルシウム、細孔径0.4nm以上のゼオライト、およびBET比表面積が50m2/g以上である酸化マグネシウムから成る群から選択される1以上である、請求項3~5の何れか1項に記載の複合多層フィルム。 (C) The carbon dioxide adsorbent is one or more selected from the group consisting of strontium oxide, calcium oxide, zeolite having a pore diameter of 0.4 nm or more, and magnesium oxide having a BET specific surface area of 50 m 2 / g or more. The composite multilayer film according to any one of claims 3 to 5.
- (a)ポリエチレン系樹脂が、
(a-1)下記(i)~(iv)の特性を有するエチレン系重合体99~60質量%
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化度(Xc(110))が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1g/10分以上10g/10分未満である、
および
(a-2)酸変性樹脂1~40質量%
を含むポリエチレン系樹脂組成物である、ここで成分(a-1)と成分(a-2)の量の合計が100質量%である、ところの請求項1~6の何れか1項に記載の複合多層フィルム。 (A) Polyethylene resin
(A-1) 99 to 60% by mass of an ethylene polymer having the following characteristics (i) to (iv)
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) The crystallinity at 110 ° C. (Xc (110)) is 10 to 60%, and (iv) MFR (190 ° C., 21.18N) is 0.1 g / 10 min or more and less than 10 g / 10 min. is there,
And (a-2) acid-modified resin 1 to 40% by mass
7. The polyethylene resin composition comprising: wherein the total amount of component (a-1) and component (a-2) is 100% by mass. Composite multilayer film. - Tmβ60が115℃以上である、請求項1~7の何れか1項に記載の複合多層フィルム。 The composite multilayer film according to any one of claims 1 to 7, wherein Tm β60 is 115 ° C or higher.
- Tmα60が80℃以上である、請求項1~8の何れか1項に記載の複合多層フィルム。 The composite multilayer film according to any one of claims 1 to 8, wherein Tm α60 is 80 ° C or higher.
- 層(C)の上にポリエステル系樹脂の層(D)を更に有する、請求項1~9 の何れか1項に記載の複合多層フィルム。 The composite multilayer film according to any one of claims 1 to 9, further comprising a polyester resin layer (D) on the layer (C).
- 請求項1~10 の何れか1項に記載の複合多層フィルムからなる成形体。 A molded article comprising the composite multilayer film according to any one of claims 1 to 10.
- 二次電池の外装材である、請求項11記載の成形体。 The molded body according to claim 11, which is an exterior material for a secondary battery.
- 電気二重層キャパシタの外装材である、請求項11記載の成形体。 The molded body according to claim 11, which is an exterior material of an electric double layer capacitor.
- 1)ポリオレフィン系樹脂フィルム(A)の片面に、化成処理されたアルミニウムの層(B)を積層する工程、および
2)上記層(B)の上にポリアミドの層(C)を積層する工程
を含み、ここで、フィルム(A)は酸変性ポリエチレン系樹脂(α)の層(A-1)、結晶性ポリエチレン系樹脂(β)の層(A-2)、およびそれらの間に位置する1以上の層(A-3)を有し、上記酸変性ポリエチレン系樹脂(α)の結晶化度が60%となる温度をTmα60とし、上記結晶性ポリエチレン系樹脂(β)の結晶化度が60%となる温度をTmβ60としたとき、Tmα60 <Tmβ60 であり、上記工程1)は、下記(1)を満たす温度(TR)での熱ラミネートにより、層(A-1)の上に層(B)の化成処理された面が積層されるように行なわれる、請求項1記載の複合多層フィルムの製造法、
αのXc(TR)<60%かつβのXc(TR)≧60% (1)
ここで、Xc(TR)は温度TRでの結晶化度である。
1) a step of laminating a chemically treated aluminum layer (B) on one side of the polyolefin resin film (A), and 2) a step of laminating a polyamide layer (C) on the layer (B). Wherein the film (A) is a layer (A-1) of the acid-modified polyethylene resin (α), a layer (A-2) of the crystalline polyethylene resin (β), and 1 positioned therebetween. The temperature at which the crystallinity of the acid-modified polyethylene resin (α) is 60% is Tm α60 , and the crystallinity of the crystalline polyethylene resin (β) is Tm α60 <Tm β60 , where Tm β60 is the temperature at which 60% is reached , and the above step 1) is performed by thermal lamination at a temperature (T R ) that satisfies the following (1). It is performed so that the surface subjected to the chemical conversion treatment of the layer (B) is laminated thereon Preparation of composite multilayer film of claim 1, wherein,
Xc (T R ) of α <60% and Xc (T R ) of β ≧ 60% (1)
Here, Xc (T R) is crystallinity at a temperature T R.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/051980 WO2011099129A1 (en) | 2010-02-10 | 2010-02-10 | Composite multilayer film |
JP2011553681A JP5628215B2 (en) | 2010-02-10 | 2010-02-10 | Composite multilayer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/051980 WO2011099129A1 (en) | 2010-02-10 | 2010-02-10 | Composite multilayer film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011099129A1 true WO2011099129A1 (en) | 2011-08-18 |
Family
ID=44367436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051980 WO2011099129A1 (en) | 2010-02-10 | 2010-02-10 | Composite multilayer film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5628215B2 (en) |
WO (1) | WO2011099129A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013128608A1 (en) * | 2012-03-01 | 2015-07-30 | 共同印刷株式会社 | Pharmaceutical package |
CN107425147A (en) * | 2016-07-28 | 2017-12-01 | 南亚塑胶工业股份有限公司 | Packaging material for aluminum plastic film of lithium battery |
KR20180017014A (en) * | 2015-06-10 | 2018-02-20 | 도판 인사츠 가부시키가이샤 | Exterior material for power storage device |
EP3419075A4 (en) * | 2016-02-18 | 2019-03-20 | Toppan Printing Co., Ltd. | Exterior material for power storage devices, and method for producing exterior material for power storage devices |
JP2020027797A (en) * | 2018-08-14 | 2020-02-20 | ニューワン グローバル カンパニー,リミテッド | Pouch type secondary battery case with enhanced safety |
JP2020187855A (en) * | 2019-05-10 | 2020-11-19 | 共同印刷株式会社 | Laminate sheet for sulfide-based all-solid-state battery and laminate pack using the same |
JP2021057231A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Packaging material and packaging body for all-solid lithium ion battery |
JP2021057229A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Outgas absorption packaging material for liquid electrolyte type lithium-ion battery |
JP2021057232A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Packaging material and packaging body for all-solid lithium ion battery |
JP2021057230A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Packaging material and packaging body for all-solid lithium ion battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115475602B (en) * | 2022-08-29 | 2023-07-25 | 浙江金海高科股份有限公司 | Activated carbon-based adsorption material for carbon cloth and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999040634A1 (en) * | 1998-02-05 | 1999-08-12 | Dai Nippon Printing Co., Ltd. | Sheet for cell case and cell device |
JP2006040595A (en) * | 2004-07-23 | 2006-02-09 | Showa Denko Packaging Co Ltd | Packaging material for electronic component case, case for electronic component, and electronic component |
JP2008251396A (en) * | 2007-03-30 | 2008-10-16 | Casio Comput Co Ltd | Power generation system, and electronic device |
JP2009073014A (en) * | 2007-09-20 | 2009-04-09 | Riken Technos Corp | Composite multilayer film |
-
2010
- 2010-02-10 JP JP2011553681A patent/JP5628215B2/en active Active
- 2010-02-10 WO PCT/JP2010/051980 patent/WO2011099129A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999040634A1 (en) * | 1998-02-05 | 1999-08-12 | Dai Nippon Printing Co., Ltd. | Sheet for cell case and cell device |
JP2006040595A (en) * | 2004-07-23 | 2006-02-09 | Showa Denko Packaging Co Ltd | Packaging material for electronic component case, case for electronic component, and electronic component |
JP2008251396A (en) * | 2007-03-30 | 2008-10-16 | Casio Comput Co Ltd | Power generation system, and electronic device |
JP2009073014A (en) * | 2007-09-20 | 2009-04-09 | Riken Technos Corp | Composite multilayer film |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013128608A1 (en) * | 2012-03-01 | 2015-07-30 | 共同印刷株式会社 | Pharmaceutical package |
KR20180017014A (en) * | 2015-06-10 | 2018-02-20 | 도판 인사츠 가부시키가이샤 | Exterior material for power storage device |
KR102701922B1 (en) * | 2015-06-10 | 2024-09-02 | 도판 홀딩스 가부시키가이샤 | Exterior material for power storage device |
EP3419075A4 (en) * | 2016-02-18 | 2019-03-20 | Toppan Printing Co., Ltd. | Exterior material for power storage devices, and method for producing exterior material for power storage devices |
US11121425B2 (en) | 2016-02-18 | 2021-09-14 | Toppan Priming Co., Ltd. | Packaging material for power storage devices, and method of producing packaging material for power storage devices |
CN107425147B (en) * | 2016-07-28 | 2021-07-16 | 南亚塑胶工业股份有限公司 | Packaging material for aluminum plastic film of lithium battery |
CN107425147A (en) * | 2016-07-28 | 2017-12-01 | 南亚塑胶工业股份有限公司 | Packaging material for aluminum plastic film of lithium battery |
JP2020027797A (en) * | 2018-08-14 | 2020-02-20 | ニューワン グローバル カンパニー,リミテッド | Pouch type secondary battery case with enhanced safety |
JP7356257B2 (en) | 2019-05-10 | 2023-10-04 | 共同印刷株式会社 | Laminate sheet for sulfide-based all-solid-state batteries and laminate pack using the same |
JP2020187855A (en) * | 2019-05-10 | 2020-11-19 | 共同印刷株式会社 | Laminate sheet for sulfide-based all-solid-state battery and laminate pack using the same |
JP2021057230A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Packaging material and packaging body for all-solid lithium ion battery |
JP2021057232A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Packaging material and packaging body for all-solid lithium ion battery |
JP2021057229A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Outgas absorption packaging material for liquid electrolyte type lithium-ion battery |
JP2021057231A (en) * | 2019-09-30 | 2021-04-08 | 大日本印刷株式会社 | Packaging material and packaging body for all-solid lithium ion battery |
JP7423964B2 (en) | 2019-09-30 | 2024-01-30 | 大日本印刷株式会社 | Packaging materials and packaging bodies for all-solid-state lithium-ion batteries |
JP7484119B2 (en) | 2019-09-30 | 2024-05-16 | 大日本印刷株式会社 | Packaging material and packaging body for all-solid-state lithium-ion batteries |
JP7532759B2 (en) | 2019-09-30 | 2024-08-14 | 大日本印刷株式会社 | Outgassing absorbing packaging material for liquid electrolyte type lithium ion batteries |
Also Published As
Publication number | Publication date |
---|---|
JP5628215B2 (en) | 2014-11-19 |
JPWO2011099129A1 (en) | 2013-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5628215B2 (en) | Composite multilayer film | |
JP5275722B2 (en) | Multilayer film | |
JP4849684B2 (en) | Composite multilayer film | |
WO2021131865A1 (en) | Outer package material for electricity storage devices, electricity storage device using same, method for producing outer package material for electricity storage devices, and method for selecting sealant film that is used as sealant layer in outer package material for electricity storage devices | |
JP4849685B2 (en) | Composite multilayer film | |
EP3633755A1 (en) | Exterior material for electricity storage device | |
US20220399570A1 (en) | Packaging material for solid-state batteries and solid-state battery including the packaging material | |
JP2018156849A (en) | Sealant film for exterior material of power storage device, exterior material for power storage device, and method for manufacturing the same | |
JP5616909B2 (en) | Composite multilayer film | |
JPWO2010090192A1 (en) | Method for treating carbon monoxide | |
JP6892025B1 (en) | Adhesive film for metal terminals, method for manufacturing adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, power storage device using the adhesive film for metal terminals, and method for manufacturing power storage device | |
WO2021090950A1 (en) | Adhesive film for metal terminal, method for producing adhesive film for metal terminal, metal terminal with adhesive film for metal terminal attached thereto, power storage device using said adhesive film for metal terminal, and method for producing power storage device | |
WO2021090951A1 (en) | Adhesive film for metal terminal, method for manufacturing adhesive film for metal terminal, metal terminal with adhesive film for metal terminal, power storage device using adhesive film for metal terminal, and method for manufacturing power storage device | |
JP6503826B2 (en) | Winding body of packaging material for battery | |
JP6863541B1 (en) | Adhesive film for metal terminals, method for manufacturing adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, power storage device using the adhesive film for metal terminals, and method for manufacturing power storage device | |
JP2021054951A (en) | Transparent water-absorbing sealant film | |
JP7182587B2 (en) | Exterior material for power storage device, exterior case for power storage device, and power storage device | |
WO2023210828A1 (en) | Adhesive film for metal terminals and method for producing same, metal terminal provided with adhesive film for metal terminals, outer package material for power storage devices, kit comprising outer package material for power storage devices and adhesive film for metal terminals, and power storage device and method for producing same | |
WO2023149486A1 (en) | All-solid-state battery outer packaging material, and all-solid-state battery using same | |
WO2023210827A1 (en) | Adhesive film for metal terminals and method for producing same, metal terminal provided with adhesive film for metal terminals, outer package material for power storage devices, kit comprising outer package material for power storage devices and adhesive film for metal terminals, and power storage device and method for producing same | |
JP7425970B2 (en) | Terminal film for power storage devices and power storage devices | |
JP6042595B2 (en) | Film capable of oxidizing carbon monoxide and use thereof | |
WO2011096048A1 (en) | Porous film capable of attaining oxidation treatment of carbon monoxide, and use thereof | |
EP4084030A1 (en) | Resin film for terminal and selection method therefor, electricity storage device, and terminal film for electricity storage device | |
KR20220137906A (en) | Exterior material for power storage device and power storage device using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10845729 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011553681 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10845729 Country of ref document: EP Kind code of ref document: A1 |