[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011097829A1 - 无线中继网络中处理上、下行harq进程的方法和装置 - Google Patents

无线中继网络中处理上、下行harq进程的方法和装置 Download PDF

Info

Publication number
WO2011097829A1
WO2011097829A1 PCT/CN2010/070687 CN2010070687W WO2011097829A1 WO 2011097829 A1 WO2011097829 A1 WO 2011097829A1 CN 2010070687 W CN2010070687 W CN 2010070687W WO 2011097829 A1 WO2011097829 A1 WO 2011097829A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
base station
station
relay station
mobile terminal
Prior art date
Application number
PCT/CN2010/070687
Other languages
English (en)
French (fr)
Inventor
冷晓冰
王栋耀
刘继民
郑武
沈钢
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to PCT/CN2010/070687 priority Critical patent/WO2011097829A1/zh
Priority to CN2010800551095A priority patent/CN102652443A/zh
Publication of WO2011097829A1 publication Critical patent/WO2011097829A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to hybrid automatic repeat request (HARQ) techniques, and more particularly to scheduling of hybrid automatic repeat request procedures in a wireless relay system.
  • HARQ hybrid automatic repeat request
  • LTE-A 3GPP LTE-Advanced standard
  • RN relay station
  • the link 14 of the base station 11 e.g., the evolved Node B or eNodeB
  • MS mobile terminal 13
  • the link that is, the backhaul link 15 between the base station and the relay station and the access link between the relay station and the mobile terminal 16.
  • the signal quality between the base station and the mobile terminal is good enough, the mobile terminal is often directly served by the base station without requiring the relay station to perform data forwarding, which will not be involved in this document.
  • the transmission in the relay network may be centrally scheduled by the base station, or may be separately scheduled by each relay station, and the latter is also generally referred to as distributed scheduling, wherein each relay station schedules and controls itself and subordinates.
  • the relay link between each mobile middle end, and the backhaul link between the relay station and the base station is controlled by the base station.
  • the base station is responsible for scheduling and control, whether it is a relay link or a backhaul link, and the base station can flexibly allocate radio resources (such as time, frequency, etc.) between itself and the relay device. And avoid interference.
  • centralized scheduling will be mainly discussed, and the base station operating in the centralized scheduling mode will be referred to as a centralized scheduling base station, and will not be confusingly referred to as a base station.
  • the HARQ process on the access link and the backhaul link are independent of each other.
  • the following HARQ process is taken as an example, only after the downlink HARQ process between the base station and the relay station is successfully completed.
  • the base station will start to schedule the downlink HARQ process between the relay station and the mobile terminal, so that even if the relay station is correct Receiving the downlink data from the base station, the base station still needs to wait for the relay receiving indication information, such as ACK, sent by the relay station to decode and identify the hop, and then perform the downlink communication between the relay station and the mobile terminal. Scheduling, the scheduling is for example
  • the relay scheduling information is transmitted on the PDCCH to indicate which time-frequency resource block the relay station forwards, what modulation mode is used for modulation, what is the transmission power, and so on.
  • a HARQ process results in a delay of at least 8 milliseconds, that is, a length of 8 subframes, including 4 subframes for data processing and transmission of ACK information, and another 4 subframes for scheduling.
  • each frame includes 10 subframes as an example, so FIG. 2 shows that 2 frames have a total of 20 subframes.
  • the base station transmits downlink data belonging to the mobile terminal to the relay station, and the scheduling information associated with the downlink data is also sent to the relay station in the same subframe, and the scheduling information indicates the Which (time-frequency) resource block is occupied by the downlink data, what modulation coding method is used, and so on.
  • the relay station first buffers the downlink data.
  • the relay station After the decoding information in the PDCCH is decoded, if the relay station detects the downlink data sent to the PDCCH, the relay station can process the downlink data received according to the scheduling information, for example, Demodulation, decoding, etc., and detecting whether it has correctly received the downlink data. Then, because the downlink data is correctly received, the relay station returns a relay receiving indication information such as ACK to the base station in the subframe No. 4, indicating that the partial data has been correctly received, and then four subframes, in the subframe No.
  • the scheduling information for example, Demodulation, decoding, etc.
  • the base station will send relay scheduling information to the relay station, for example, through the R-PDCCH, which indicates which resource block the relay station should use, how to modulate the coding mode, and how much power to forward the downlink data to the mobile terminal.
  • the relay station forwards the partial downlink data to the mobile terminal, and in the same subframe, the base station sends scheduling information corresponding to the forwarded data to the mobile terminal, thereby causing the mobile terminal.
  • the downlink data can be obtained in a similar manner to the relay station described above.
  • an ACK message is sent to the relay station in the 16th subframe, which is a terminal receiving indication message, indicating that the mobile terminal correctly receives the received data, and the relay station After In the subframe No. 20, it is forwarded to the base station, thereby completing the complete transmission process of the downlink data of the part. It can be clearly seen from Fig. 2 that even if everything goes well, the downlink data is initially sent from the base station, and the downlink HARQ process on the relay link ends. It takes 20 seconds, and the delay is very obvious.
  • the current LTE-A standard is labeled with a 4 millisecond interval as shown. Of course, this interval may be reduced as future software/hardware technologies continue to evolve.
  • the uplink HARQ process in the wireless relay network also has a relatively serious delay.
  • the base station passes the PDCCH.
  • a scheduling information and then, in subframe 4 after 4 subframes, the mobile terminal transmits uplink data to the relay station according to the scheduling information, and assumes that the relay station correctly receives. Therefore, in the subframe No.
  • the relay station reports to the base station that the uplink data from the mobile terminal is correctly received, and in order to be compatible with the existing LTE-A Release 8, the base station is not yet
  • the relay receiving indication information sent by the relay station is processed, and the base station still sends a base station receiving indication information indicating that the base station correctly receives the uplink data to the mobile terminal, thereby implementing transparency to the mobile terminal.
  • the base station starts scheduling the second hop, that is, the uplink HARQ process on the backhaul link.
  • the R-PDCCH is used as the relay station.
  • the relay station forwards the uplink data to the base station in the subframe 16 according to the scheduling information, and finally, if the base station correctly receives the forwarded uplink data, returns an ACK message to the relay station in the subframe 20
  • the uplink HARQ process on the backhaul link is now over.
  • the entire process in Figure 3 also took 20 milliseconds.
  • the introduction of the relay station on the one hand improves the link quality.
  • the error rate or the block error rate of the relay link or the backhaul link are relatively low. For example, less than 10%.
  • a network device such as a base station or relay station or mobile The terminal is a high probability event for data to be correctly received, and a small probability event due to interference, noise, deep fading, etc., which is not correctly received.
  • the base station schedules uplink or downlink data at the relay station in advance, so that after the relay station correctly receives data from a data source such as a base station, it can be immediately or after a short one. Forward at the appropriate time to reduce latency. If the relay station fails to receive the data correctly, the resources allocated in the pre-scheduling by the base station are generally not released, but the situation of not receiving correctly is rare, and the resulting resource idleness is very limited.
  • a method for controlling a downlink HARQ process on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network including The following steps: a. transmitting downlink data belonging to one mobile terminal to the relay station on a back link between the base station and a relay station; b. processing the relay receiving indication information sent by the relay station And generating, to the relay station, relay scheduling information for the relay station to forward the downlink data to the mobile terminal, where the relay receiving indication information indicates whether the downlink station correctly receives the downlink data;
  • the method includes: i. generating and transmitting, to the mobile terminal, a terminal scheduling for the mobile terminal to receive the downlink data forwarded by the relay station Information, where the terminal scheduling information matches the relay scheduling information.
  • step b further includes: generating the relay scheduling information and transmitting the relay scheduling information to the relay station in a subframe in which the base station sends the downlink data to the relay station.
  • the downlink data includes downlink data transmitted for the first time or downlink data that is retransmitted.
  • a method for processing a downlink HARQ process on a relay link and a backhaul link under control of a centralized scheduling base station in a relay station of a wireless relay network includes the following steps: A. receiving, on a backhaul link between the relay station and the base station, downlink data that belongs to a mobile terminal sent by the base station; B. determining whether the downlink data is correctly received, Obtaining a judgment result, and generating relay reception indication information indicating the judgment result; C. transmitting the relay reception indication information to the base station on the backhaul link; further comprising: I.
  • a method for controlling an uplink HARQ process on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network including the following steps : o. generating and transmitting to the mobile terminal terminal scheduling information for the mobile terminal to send uplink data to a relay station; p. generating and reporting the relay receiving indication information sent by the relay station The relay station transmits relay scheduling information for the relay station to forward the uplink data to the base station; wherein the relay receiving indication information indicates whether the relay station correctly receives the uplink data.
  • a method in a relay station of a wireless relay network, for centrally scheduling a control of a base station, for processing an uplink HARQ process on an access link and a backhaul link, including The following steps: - monitoring terminal transmissions sent by the base station to a mobile terminal for the mobile terminal to send uplink data to the relay station And receiving, according to the terminal scheduling information, the uplink data sent by the mobile terminal; determining whether the uplink data is correctly received, to generate relay receiving indication information indicating the determination result; The relay receiving indication information is sent to the base station; further comprising: - receiving, by the base station, a relay scheduling sent by the relay station to forward the uplink data to the base station before processing the relay receiving indication information Information; - if the relay station correctly receives the uplink data, forwarding the uplink data to the base station based on the relay scheduling information.
  • a first apparatus for controlling a downlink HARQ process on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network including a first unit, configured to send downlink data belonging to one mobile terminal to the relay station on a backhaul link between the base station and a relay station; a second unit, configured to send in the relay station And transmitting, to the relay station, relay scheduling information for the relay station to forward the downlink data to the mobile terminal, where the relay receiving indication information indicates that the relay station is to the downlink Whether the data is correctly received or not; further comprising: a third unit, using terminal scheduling information of the downlink data, where the terminal scheduling information matches the relay scheduling information.
  • the second unit is further configured to: generate the relay scheduling information, and send the relay scheduling information to the relay station in a subframe in which the base station sends the downlink data to the relay station.
  • a second method for processing a downlink HARQ process on an access link and a backhaul link under control of a centralized scheduling base station in a relay station of a wireless relay network comprising: a fourth unit, configured to receive, on a backhaul link between the relay station and the base station, downlink data that belongs to a mobile terminal sent by the base station; and a fifth unit, configured to determine whether it is correct Receiving the downlink data to obtain a determination result, and generating relay reception indication information indicating the determination result; and a sixth unit, configured to send the relay reception indication information to the backhaul link
  • the base station further includes: a seventh unit, configured to receive, by the base station, the And relaying, by the relay station, the relay receiving instruction information sent by the relay station to forward the downlink scheduling information to the mobile terminal, and the eighth unit, configured to: if the relay station correctly receives the downlink The data is forwarded to the mobile terminal based on the relay scheduling information.
  • a third apparatus for controlling an uplink HARQ process on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network including a ninth unit, configured to generate and transmit, to a mobile terminal, terminal scheduling information for the mobile terminal to send uplink data to a relay station; and a tenth unit, configured to perform, by using the relay receiving indication information sent by the relay station Before processing, generating, and transmitting, to the relay station, relay scheduling information for the relay station to forward the uplink data to the base station; wherein, the relay receiving indication information indicates whether the relay station correctly receives the uplink data.
  • the uplink data includes uplink data transmitted for the first time or uplink data of the retransmission.
  • a fourth apparatus for controlling an uplink HARQ process on an access link and a backhaul link in a relay station of a wireless relay network for centrally scheduling a base station The method includes: an eleventh unit, configured to monitor terminal scheduling information of the base data, and a twelfth unit, configured to receive the uplink data sent by the mobile terminal according to the terminal scheduling information; a unit, configured to determine whether the uplink data is correctly received, to generate relay receiving indication information indicating the result of the determining, and a fourth unit, configured to send the relay receiving indication information to the base station, and further include: a fifteenth unit, configured to receive relay scheduling information sent by the base station before the processing of the relay receiving indication information for the relay station to forward the uplink data to the base station; If the relay station correctly receives the uplink data, forwarding the uplink data to the base station based on the relay scheduling information.
  • the present invention provides a solution for a new multi-hop HARQ transmission process in the LTE-A standard, which enables fast relay forwarding, reduced transmission delay and improved quality of service (QoS). Moreover, the present invention is also compatible with existing technologies as much as possible. Technology, equipment, and both for time division duplex systems and frequency division duplex systems. Compared to the prior art, the solution in the present invention can reduce the delay by at least 8 milliseconds, that is, the time required for HARQ transmission is only (or even insufficient) 60% of the prior art.
  • Figure 1 is a schematic diagram of a typical wireless relay network
  • FIG. 2 is a schematic diagram of a downlink HARQ process in the prior art
  • FIG. 3 is a schematic diagram of an uplink HARQ process in the prior art
  • FIG. 4 is a flowchart of a method for controlling a downlink HARQ process on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for processing a downlink HARQ process on an access link and a backhaul link under control of a centralized scheduling base station in a relay station of a wireless relay network, in accordance with an embodiment of the present invention
  • 6a-6d are downlink multi-hop HARQ transmission procedures performed in a wireless relay network in accordance with an embodiment of the present invention
  • FIG. 7 is a flow chart of a method for controlling an uplink HARQ process on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network, in accordance with an embodiment of the present invention
  • FIG. 8 is a flow chart of a method for processing an uplink HARQ process on an access link and a backhaul link under the control of a centralized scheduling base station in a relay station of a wireless relay network according to an embodiment of the present disclosure.
  • 9a-9d are uplink multi-hop HARQ transmission processes performed in a wireless relay network in accordance with an embodiment of the present invention.
  • Figure 10 is a centralized diagram of a wireless relay network in accordance with an embodiment of the present invention. Scheduling a first device block diagram in the base station;
  • Figure 11 is a block diagram of a second apparatus in a relay station of a wireless relay network in accordance with an embodiment of the present invention.
  • FIG. 12 is a block diagram of a third device in a centralized scheduling base station of a wireless relay network in accordance with an embodiment of the present invention.
  • Figure 13 is a block diagram of a fourth apparatus in a relay station of a wireless relay network in accordance with an embodiment of the present invention. detailed description
  • FIG. 4 a flow of a method for controlling a downlink HARQ process on a backhaul link and an access link in a base station is generally described.
  • step S41 the base station 1 transmits the downlink data that needs to be transmitted to the mobile terminal 13 to the relay station 12.
  • the object of the term "send” is generally expressed as "data”, and those skilled in the art understand that the "send data” in this document should be understood because operations such as frequency conversion may be required on the air interface of the wireless device.
  • the data carried by the appropriate carrier is transmitted in various possible ways.
  • the relay station 12 feeds back to the base station 11 its reception of the downlink data.
  • the ACK message indicates that the reception is successful, and the NACK message indicates the reception failure.
  • the so-called reception success means that the correct original data can be restored by processing such as demodulation and decoding, otherwise the reception fails.
  • the relay station 12 determines whether the downlink data is correctly received, and generates corresponding relay reception indication information, such as ACK, based on the determination result. Or NACK, indicating the reception of the incoming downlink data by the relay station 12.
  • the generated relay reception indication information will be sent in step S54.
  • FIG. 5 illustrates whether the downlink data is correctly received, and generates corresponding relay reception indication information, such as ACK, based on the determination result.
  • NACK indicating the reception of the incoming downlink data by the relay station 12.
  • the generated relay reception indication information will be sent in step S54.
  • the base station 11 always generates and transmits to the relay station 12 for the relay station 12 to forward the downlink data to the mobile terminal 13 before processing the relay reception indication information such as ACK sent from the relay station 12.
  • Relay scheduling information For example, the base station 11 transmits the relay scheduling information to the relay station 12 in the subframe used for transmitting the downlink data in step S41. Since the downlink data is not even sent yet, the base station 11 naturally does not know whether the relay station 12 can be correctly configured.
  • the downlink data is received, but in the assumption that the reception is successful, such pre-scheduling is made, so that a limited resource reservation is exchanged for a very significant delay improvement. Specific examples will also be described in detail below in conjunction with a frame diagram.
  • step S54 Based on the relay scheduling information received in step S54, if the relay station 12 correctly receives the above-described downlink data, it immediately starts to prepare to forward the downlink data, and forwards it in step S55. If the relay station 12 fails to correctly receive the downlink data, the retransmission process is triggered, which will be discussed below.
  • the information sent by the base station 11 includes: downlink data belonging to the mobile terminal 13 to the relay station 112, which is typically transmitted through the PDSCH, and corresponding to the downlink data.
  • Scheduling information In the LTE system, in general, the minimum unit of scheduling is 1 subframe, that is, 1 millisecond, and in the case of a normal subframe, 14 OFDM symbols.
  • the PDCCH occupies the first 1-3 OFDM symbols in one subframe, and it is a fixed QPSK modulation, using convolutional coding, according to 2/3, 1/3, 1/6, The 1/12 code rate is transmitted, that is, corresponding to 1, 2, 4, and 8 control channel elements (CCEs).
  • CCEs control channel elements
  • the data portion is generally transmitted in the PDSCH and encoded using the Turbo code.
  • the relay station in other examples, such as a mobile terminal
  • specific scheduling information such as spatial domain, time domain, and frequency.
  • Information such as domain, MCS, etc., to process the transmitted data.
  • the base station 11 further transmits, by the R-PDCCH, the relay scheduling information for the relay station 12 to forward the downlink data to the mobile terminal 13, which is the "in the relay station"
  • the relay scheduling information used for forwarding the downlink data may be sent to the relay station 12 in the subframe 1 or to the relay station in the subframe 2. 12, even in the subframe No.
  • the present embodiment reduces the delay in the downlink HARQ process, and the scheme of transmitting the relay scheduling information in the subframe No. 0 shown in Fig. 6a can minimize the delay.
  • the purpose of the relay scheduling information is also indicated by a dotted line with an arrow.
  • the relay station 12 After receiving the downlink data and processing it, the relay station 12 judges that the part of the data has been correctly received, and then transmits an RN ACK message to the base station 11 in the fourth subframe. At the same time, since the scheduling information required for forwarding has been obtained in the subframe No. 0, the downlink data is also forwarded out in the subframe No. 4. In order to enable the mobile terminal 13 to perform processing such as demodulation and decoding on the forwarded downlink data, the base station 11 transmits the scheduling information corresponding to the forwarded downlink data to the mobile terminal 13 through the PDCCH in the fourth subframe.
  • the mobile terminal 13 correctly receives the forwarded downlink data, and then generates and sends an ACK message for confirmation.
  • a UE ACK message is sent to the relay station 12, which is a terminal receiving an indication message indicating that it is correct.
  • the forwarded downlink data is received.
  • the relay station 12 can determine the correct reception of the mobile terminal 13, and then finally forward the UE ACK to the base station 11.
  • the base station 11 transmits three pieces of information in the subframe No. 0, but the downlink data is not correctly received by the relay station 12, for example, an error is found during decoding.
  • the entire process of receiving downlink data, demodulating, decoding, finding errors, and generating a NACK message by the relay station 12 can be completed within 4 milliseconds, and thus, in the subframe 4, the relay station 12 returns an RN NACK message to the base station 11.
  • the base station 11 since the base station 11 does not know whether the relay station 12 is correctly received, it still provides the mobile terminal 13 with the terminal matching the relay scheduling information provided in the R-PDCCH in the fourth subframe as in FIG. 6a. Scheduling information.
  • the meaning of the matched relay scheduling information and the terminal scheduling information is that the relay station transmits data to the mobile terminal based on the relay scheduling information, and the mobile terminal performs corresponding reception on the same part of data based on the terminal scheduling information.
  • the relay station 12 does not forward the downlink data it receives to the mobile terminal 13 in view of failure to receive it correctly.
  • the base station 11 schedules retransmission on the backhaul link with respect to the downlink data sent in the subframe 0. Specifically, similar to subframe 0, the base station 11 sends downlink data, which is actually retransmitted downlink data, with identification information indicating that it belongs to retransmission. In addition, the base station 11 also provides corresponding information to the relay station 12 through the PDCCH. The scheduling information is used, and the relay scheduling information required for the relay station 12 to forward is pre-allocated by the R-PDCCH.
  • the relay station 12 gives up due to the reception error on the backhaul link. Forwarding, the mobile terminal 13 of course obtains the result of the reception error on the access link, and thus transmits a UE NACK indicating the reception error to the relay station 12 in the 12th subframe. Relay station 12 will preferably ignore the UE NACK message without forwarding it up again.
  • the relay station 12 If the downlink data retransmitted in the subframe No. 8 is received correctly, the relay station 12 returns an RN ACK message to the base station 11 in the subframe 12, and performs forwarding in the same subframe, which is based on the number 8 sub-frame. Relay scheduling information obtained by the R-PDCCH in the frame. In order to assist the mobile terminal 13 in receiving, the base station 11 is similarly shifted in the subframe No. 4 The mobile terminal 13 provides terminal scheduling information that matches the relay scheduling information in the R-PDCCH in the subframe No. 8.
  • the mobile terminal 13 If the forwarding data in the 12th subframe is successfully received, the mobile terminal 13 returns a UE ACK message to the relay station 12 in the 16th subframe, which is forwarded by the relay station 12 to the base station 11 in the 20th subframe.
  • the downlink HARQ process on the two hops can be completed in 20 milliseconds even in the case of a retransmission caused by an error in data transmission.
  • retransmissions may also occur on the access link, as shown in Figure 6c.
  • the mobile terminal 13 fails to correctly decode the downlink data, and thus, a NACK message is transmitted to the relay station 12 in the subframe No. 8.
  • the NACK message is forwarded to the base station 11 in subframe 12. Since the base station 11 has received the ACK message from the relay station 12 in the subframe No. 4, after receiving the NACK message, the base station 11 knows that a transmission error has occurred in the second hop, and then the base station 11 starts the scheduling.
  • the data on the second hop is retransmitted, and the relay scheduling information required for retransmission is notified to the relay station 12 in the 16th subframe.
  • the base station 11 transmits the terminal scheduling information required for the retransmission, and the relay station 12 forwards the previously buffered downlink data again. If the mobile terminal 13 correctly receives the downlink data that is forwarded again, it will be in the subframe 24. The ACK message is returned, and the relay station forwards to the base station 11 in the subframe 28, thereby ending the transmission process of the downlink data sent in the subframe No. 0.
  • subframes 0, 3, 4, 5, 8, and 9 are downlink subframes
  • subframes 1 and 6 are special subframes (S subframes)
  • uplink subframes are only 2 subframes.
  • the base station 11 transmits the downlink data and the corresponding scheduling information to the relay station 12 through the PDCCH, and similarly, similar to the FDD example in the above, is also transmitted through the R-PDCCH in the subframe No. 0 for forwarding.
  • Relay scheduling information for downlink data which will be used for forwarding operations in subframe 4. If the relay station 12 correctly receives the downlink data, it forwards it to the mobile terminal 13 in subframe number 4.
  • the mobile terminal 13 also obtains scheduling information corresponding to the forwarded downlink data from the base station 11 in the subframe No. 4.
  • the relay station 12 completes decoding of the downlink data earlier, it can perform data forwarding in the subframe 3 which is also the downlink subframe, or if the relay station 12 completes the downlink data later. Decoding, it can be forwarded in subframe 5, but if it is not forwarded in subframe 5, it will wait until subframe 8. Due to the characteristics of the TDD system, the relay station 12 cannot transmit an ACK message indicating correct reception to the base station 11 in the subframe 4, but waits for the next uplink subframe, as shown in the subframe 7 as shown. Correspondingly, the mobile terminal 13 waits for an ACK message in the uplink subframe of subframe 2 (also referred to as subframe 12) in the second frame, and the message is received in subframe 7 of the second frame. Forwarded to the base station 11.
  • a method for controlling an uplink HARQ process on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network according to a specific embodiment of the present invention, and A method for processing an uplink HARQ process on an access link and a backhaul link under control of a centralized scheduling base station in the relay station is introduced.
  • step S71 the base station 11 generates and transmits to the mobile terminal 13 terminal scheduling information for the mobile terminal 13 to transmit uplink data to the relay station 12.
  • step S72 before processing the relay reception instruction information sent from the relay station 12, the base station 11 generates and transmits to the relay station 12 relay scheduling information for the relay station 12 to forward the uplink data to the base station 11.
  • the relay receiving indication information indicates whether the relay station correctly receives the uplink data.
  • the relay receiving indication letter sent to the relay station Before processing it should be understood to include the following cases: The relay has received the indication information but has not been processed yet; and the relay reception indication information has not been received.
  • step S81 the relay station 12 monitors the terminal scheduling information transmitted by the base station 11 to the mobile terminal 13 for the mobile terminal 13 to transmit the uplink data to the relay station 12.
  • step S82 the relay station 12 receives the uplink data sent from the mobile terminal 13 based on the terminal scheduling information. Then, the relay station 12 judges whether or not the uplink data is correctly received to generate relay reception indication information indicating the judgment result, such as ACK or NACK, and the generated relay reception instruction information is transmitted from the relay station 12 to the base station 11 in step S84. Further, in step S85, the relay station 12 further receives relay scheduling information for the relay station 12 to forward the uplink data to the base station 11 before the base station 1 1 processes the relay reception indication information. If the relay station 12 correctly receives the uplink data, it is forwarded to the base station 11 based on the relay scheduling information obtained in step S85.
  • the uplink HARQ process processing and control process in various embodiments of the present invention will be described below in conjunction with the drawings showing the frame structure.
  • the base station 1 1 schedules data transmission on the uplink access link in the subframe 0, that is, generates and transmits to the mobile terminal 13 terminal scheduling information for the mobile terminal 13 to transmit uplink data to the relay station 12.
  • the relay station 12 monitors this process to obtain information such as the transmission mode of the uplink data to be transmitted by the mobile terminal 13.
  • the mobile terminal 13 transmits an uplink signal to the relay station 12.
  • the base station 11 allocates relay scheduling information required for the relay station 12 to forward the uplink signal to the base station 12, and the like.
  • the relay reception indication message sent by the relay station 12 is to be sent in the subframe No. 8, and the base station needs to perform additional time according to the information to perform the scheduling of the forwarding data. Therefore, the advance of the uplink forwarding scheduling can greatly reduce the delay. . If the relay station 12 receives the uplink data correctly, it will send an ACK message indicating that the reception is correct to the base station 11 in the subframe No. 8, and in the same subframe, the forwarding of the uplink data is completed.
  • the base station 11 sends an ACK message to the mobile terminal 13 indicating that the base station 11 correctly receives the uplink data. If the base station 11 correctly receives the uplink data forwarded by the relay station 12 in the subframe No. 8, it will be on the 12th. An ACK message is returned to the relay station 12 in the subframe. Therefore, in the case where both links are correctly received, the uplink HARQ process requires only 12 milliseconds to complete the entire transmission process as the downlink HARQ process.
  • FIG. 9b a depiction of a transmission error on the access link during uplink transmission is depicted.
  • the operation of the subframe 0-4 is the same as that of FIG. 9a, and details are not described herein.
  • the relay station 12 since the uplink data is not correctly received, the relay station 12 does not forward to the base station 11, but only reports one NACK message. Also in order to be compatible with existing standards, the base station 11 transmits an ACK message to the mobile terminal 13. However, although receiving such an ACK message, the mobile terminal 13 does not automatically discard the previously sent data, but continues to buffer it, waiting for further indication from the base station 11.
  • base station 11 has decoded the NACK message sent by relay station 12, knowing that an error has occurred on the access link, and then, through PDCCH, base station 11 issues a retransmission indication to mobile terminal 13 to trigger retransmission.
  • the process, the subsequent operation is the same as Figure 9a.
  • an error occurs on the second hop, that is, the backhaul link between the base station 11 and the relay station 12.
  • the subframes 0-8 are the same as those in FIG. 9a.
  • the base station 11 sends a heavy weight to the relay station 12 through the R-PDCCH.
  • the command is transmitted, and thus, in the subframe No. 16, the relay station 12 performs the corresponding retransmission. If the retransmission reception is successful, the base station 11 will return an ACK message to the relay station 12 in the subframe No. 20.
  • Figure 9d shows an uplink HARQ transmission procedure in a TDD system in which both hops are correctly received.
  • Those skilled in the art can obtain the retransmission of one or two hops in the TDD system through the above-mentioned contents in this paper without any creative labor. Based on the above detailed description of each method, the respective devices having the corresponding features will be briefly described in the manner of combining the method parts.
  • a first apparatus 10 for controlling downlink HARQ processes on an access link and a backhaul link in a centralized scheduling base station of a wireless relay network typically located
  • the base station 11 shown in FIG. 1 includes:
  • the first unit 101 is configured to send, to the relay station, downlink data belonging to the mobile terminal 13 shown in FIG. 1 to the relay station on the backhaul link between the base station 11 and the relay station 12 shown in FIG.
  • the second unit 102 is configured to generate, after the relay receiving indication information sent by the relay station 12, the relay scheduling information for the relay station 12 to forward the downlink data to the mobile terminal 13; wherein, the relay The reception indication information indicates whether the relay station 12 correctly receives the downlink data, and corresponds to step S42 shown in FIG.
  • the third unit 103 is configured to generate and send, to the mobile terminal, terminal scheduling information, where the mobile terminal receives the downlink data forwarded by the relay station, where the terminal scheduling information matches the relay scheduling information Corresponding to step S43 shown in FIG.
  • the second unit 102 is further configured to: generate relay scheduling information and send the relay scheduling information to the relay station 12 in a subframe in which the base station 11 transmits downlink data to the relay station 12, as shown in FIGS. 6a-6d.
  • the downlink data includes downlink data transmitted for the first time or downlink data of the retransmission.
  • a second apparatus 1 for processing a downlink HARQ process on an access link and a backhaul link under the control of a centralized scheduling base station in a relay station of a wireless relay network. 1 which is typically arranged at the relay station 12 shown in FIG. 1, comprising:
  • the fourth unit 1 1 1 is configured to receive, on the backhaul link between the relay station 12 and the base station as shown in FIG. 1 on the backhaul link, the downlink of the mobile terminal 13 belonging to the mobile terminal 13 sent by the base station 1
  • the data corresponds to step 51 shown in FIG.
  • the fifth unit 112 is configured to determine whether the downlink data is correctly received, to obtain a determination result, and generate relay reception indication information indicating the determination result, which corresponds to step S52 in FIG. 5.
  • the sixth unit 1 13 is configured to send the relay receiving indication information to the base station on the backhaul link, corresponding to step S54 in FIG.
  • the seventh unit 1 14 is configured to receive a relay connection sent by the base station to the relay station.
  • the relay scheduling information sent by the relay station to forward the downlink data to the mobile terminal before the processing of the indication information corresponds to step S53 shown in FIG.
  • the eighth unit 1 is configured to: if the relay station correctly receives the downlink data, forward the downlink data to the mobile terminal based on the relay scheduling information, corresponding to step S55 shown in FIG. 5.
  • the ninth unit 121 is configured to generate and transmit to the mobile terminal terminal scheduling information for the mobile terminal to send uplink data to a relay station, corresponding to step S71 shown in FIG.
  • the tenth unit 122 is configured to generate, before the processing, the relay receiving indication information sent by the relay station, and send, to the relay station, relay scheduling information, where the relay station forwards the uplink data to the base station, where And the relay receiving indication information indicates whether the relay station correctly receives the uplink data, and corresponds to step S72 shown in FIG. 7.
  • the uplink data includes uplink data transmitted for the first time or uplink data of the retransmission.
  • a fourth apparatus 13 for controlling an uplink HARQ process on an access link and a backhaul link in a relay station of a wireless relay network for centrally scheduling a base station which Typically located at the relay station 12 shown in FIG. 1, the method includes: an eleventh unit ⁇ 3 1 for monitoring terminal scheduling information sent by the base station to a mobile terminal for the mobile terminal to send uplink data to the relay station Corresponding to step S81 shown in FIG.
  • the twelfth unit 132 is configured to receive the uplink data sent by the mobile terminal based on the terminal scheduling information, and corresponds to step S82 shown in FIG. 8.
  • the thirteenth unit 133 is configured to determine whether the uplink data is correctly received, to generate relay receiving indication information indicating the determination result, and corresponds to step S83 shown in FIG. 8.
  • a fourteenth unit 134 configured to send the relay receiving indication information to the base
  • the station corresponds to step S84 shown in FIG.
  • the fifteenth unit 135 is configured to receive, by the base station, relay scheduling information sent by the base station to forward the uplink data to the base station before processing the relay receiving indication information, corresponding to FIG. 8 Step S85 is shown.
  • the sixteenth unit 136 is configured to: if the relay station correctly receives the uplink data, forward the uplink data to the base station based on the relay scheduling information, corresponding to step S86 shown in FIG. 8. It is apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, and the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Therefore, the present embodiments are to be considered as illustrative and not restrictive, and the scope of the invention is defined by the appended claims All changes in the meaning and scope of equivalent elements are included in the present invention. Any reference signs in the claims should not be construed as limiting the claim. In addition, it is obvious that the word "comprising" does not exclude other elements, and the singular does not exclude the plural. The first, second, etc. terms are used to denote names and do not denote any particular order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

无线中继网络中处理上、 下行 HARO进程的方法和装置
技术领域
本发明涉及混合自动重传请求(HARQ )技术, 尤其涉及对无线 中继系统中的混合自动重传请求过程的调度。 背景技术
在 3GPP LTE-Advanced标准(下称 LTE-A ) 中, 中继站( RN )新 近被引入来提高系统整体性能, 例如, 提高吞吐量、 扩大网络覆盖范围 等。 如图 1所示, 由于中继站 12的引入, 基站 11 (例如, 演进的节点 B即 eNodeB )与移动终端 13 ( MS )之间质量一般或较差的链路 14被 分为两个质量更好的链路, 也即基站与中继站之间的回传链路 15以及 中继站与移动终端 16之间的接入链路。 当然, 居现有技术, 如果基 站与移动终端之间的信号质量足够好,那么这个移动终端往往会由基站 来直接服务, 而不需要中继站进行数据转发, 此种情况在本文中将不涉 及。
根据系统的不同配置, 中继网络中的传输可以由基站来进行集中 调度,也可以由各个中继站分别进行调度,后者一般也称为分布式调度, 其中,每个中继站调度和控制自己与下属的各个移动中端之间的中继链 路, 而中继站与基站之间的回传链路则由基站控制。在集中式调度模式 下, 无论是中继链路还是回传链路, 都由基站负责调度和控制, 基站可 以在自己和中继设备之间灵活地分配无线资源 (例如时间、 频率等), 并避免干扰。
本文中, 将主要讨论集中式调度的情况, 并将工作在集中式调 度模式下的基站称为集中式调度基站, 并不致混淆地简称为基站。
在 LTE-A 的基本 HARQ 机制下, 接入链路与回传链路上的 HARQ进程是相互独立的, 以下行 HARQ进程为例, 只有在基站与 中继站之间的下行 HARQ进程成功地结束之后, 基站才会开始调度 中继站与移动终端之间的下行 HARQ进程, 于是, 即使中继站正确 地接收了来自基站的下行数据, 基站仍需等待中继站发来的中继接 收指示信息例如 ACK并对其进行解码和识别之后 , 再对第二跳也即 中继站与移动终端之间的下行通信进行调度, 所述调度例如在
PDCCH上发送中继调度信息, 以指示中继站在哪个时频资源块上进 行转发, 以何种调制方式进行调制, 发射功率是多少, 等等。 根据 LTE的标准, 这样的 HARQ进程会导致至少 8毫秒的延时, 也即 8 个子帧的长度, 其中包括 4个子帧用于数据处理并发送 ACK信息, 和另外 4个子帧用于实现调度。
如图 2所示, 其中示出了在现有的 LTE-A标准下的基站子系统 中的下行 HARQ进程示意图。 其中, 以每个帧包含 10个子帧为例, 因此图 2示出了 2个帧共 20个子帧。 在第 0号子帧中, 基站向中继 站发送属于移动终端的下行数据, 并将与该下行数据相关联的调度 信息也在同一子帧中发送给中继站, 该调度信息 ( assignment information )指示了该下行数据占用哪个(时频)资源块, 使用何种 调制编码方式,等等。中继站对该下行数据先进行緩存,待对 PDCCH 中的调度信息解码完成之后, 如果中继站检测到有发送给其的下行 数据, 就可以根据该调度信息来对其所接收的下行数据进行处理, 例如解调和解码等, 并检测其是否正确接收了该下行数据。 接着, 由于正确接收了该下行数据, 中继站在第 4 号子帧中向基站返回一 个中继接收指示信息如 ACK, 表示已经正确接收了该部分数据, 再 过 4个子帧, 在 8号子帧中, 基站将向中继站发出中继调度信息, 例如通过 R-PDCCH, 其中指示了中继站应该用哪个资源块、 以怎样 调制编码方式以及多大的功率来向移动终端转发该下行数据。再过 4 个子帧, 在 12号子帧中, 中继站向移动终端转发该部分下行数据, 在同一子帧中, 基站向移动终端发送与所述转发的数据相对应的调 度信息, 从而使得移动终端可以以与上述的中继站类似的方式得到 该下行数据。 如果移动终端对该转发的下行数据正确接收, 则会在 16号子帧中向中继站发出一个 ACK消息,这是一个终端接收指示消 息, 表示移动终端对所接收到的数据是正确接收, 中继站在之后的 20 号子帧中将其转发给基站, 从而完成了对该部分下行数据的完整 的传输过程。 由图 2 可以很清楚地看出, 即使一切顺利, 从基站最 初发出下行数据, 到中继链路上的下行 HARQ进程结束, 也需要 20 亳秒的时间, 延时十分明显。
由于受到处理时延和时间调整 (time alignment)等诸多条件的限 制, 在以当前 LTE-A标准为例的标注中, 有了如图所示的 4毫秒的 间隔。 当然, 随着今后软 /硬件技术的不断发展, 这个间隔可能会被 缩小。
在现有的 LTE-A标准中, 无线中继网络中的上行 HARQ进程同 样存在着较为严重的时延, 参看图 3并结合图 2解释如下: 首先, 在 0号子帧中, 基站通过 PDCCH向移动终端提供调度信息, 以告知 移动终端用哪个时频资源块、 何种调制编码方式、 多大的发射功率 来向中继站发送上行数据, 为了能够对此后的上行数据正确接收, 中继站此时监听这一调度信息, 于是, 4个子帧之后的 4号子帧中, 移动终端根据该调度信息来向中继站发送上行数据, 并假设中继站 正确接收。 于是, 在 8 号子帧中, 基于集中式调度的原则, 中继站 向基站报告正确接收了来自移动终端的上行数据, 而为了兼容现有 的 LTE-A Release8中的规定, 虽然基站还未及对中继站发来的中继 接收指示信息进行处理, 基站仍向移动终端发送一个表示基站正确 接收了该上行数据的基站接收指示信息, 于是实现了对移动终端的 透明。 再之后的 12号子帧中, 由于接入链路上的上行 HARQ进程已 经成功结束, 基站开始调度第二跳也即回传链路上的上行 HARQ进 程, 首先, 通过 R-PDCCH来为中继站提供一个调度信息, 中继站根 据该调度信息来在 16号子帧中向基站转发该上行数据, 最后, 如果 基站正确接收了该转发的上行数据, 则在 20号子帧中向中继站返回 一个 ACK消息, 回传链路上的上行 HARQ进程至此也结束了。 图 3 中的整个过程同样耗费了 20毫秒。
本领域技术人员理解, 如果图 2或图 3 中在第一跳或第二跳上 发生了接收错误而触发了数据重传, 则每次重传则会在图示的基础 上进一步加大时延。 并且, 如果因网络部署的需要而设置了多级中 继站, 则由于跳数的增多, 产生的时延将会愈加可观和不容忽视, 从而造成系统整体的吞吐量急剧下降。 发明内容
本申请之申请人有先见性地认识到了以下未被充分利用的技术 信息:
对于无线中继网络而言, 中继站的引入一方面使得链路质量得 到了改善, 另一方面, 无论是中继链路还是回传链路, 其误码率或 误块率都是相当低的, 例如, 低于 10%, 另外, 即使出错的概率升 高,也可以通过即时改变调制、编码方案来进行纠正,例如,以 QPSK 调制代替 16QAM调制, 因此, 一个网络设备如基站或中继站或移动 终端对于数据能够正确接收是大概率事件, 而由于干扰、 噪声、 深 衰落等所导致的未能正确接收则是小概率事件。
鉴于此, 根据本发明的一个具体实施例, 基站预先对中继站处 的上行或下行数据进行调度, 从而在中继站正确接收了来自数据源 如基站的数据之后, 能够立刻或在之后的一个较短的适当时刻进行 转发, 从而降低时延。 如果中继站未能正确接收数据, 则基站所作 的预先调度中所分配的资源一般不会被释放, 但由于未正确接收的 情况并不多见, 由此导致的资源闲置十分有限。
具体地,根据本发明的一个具体实施例,提供了一种在无线中继 网络的集中式调度基站中用于对接入链路和回传链路上的下行 HARQ进程进行控制的方法, 包括以下步骤: a. 在所述基站与一个 中继站之间的回传链路上向所述中继站发送属于一个移动终端的下 行数据; b. 在对所述中继站发来的中继接收指示信息进行处理之前, 生成并向所述中继站发送供所述中继站向所述移动终端转发该下行 数据的中继调度信息; 其中, 所述中继接收指示信息表示该中继站 对所述下行数据是否正确接收; 还包括: i. 生成并向所述移动终端 发送供所述移动终端接收所述中继站转发的该下行数据的终端调度 信息, 其中, 所述终端调度信息与所述中继调度信息相匹配。
进一步地, 步骤 b还包括: 生成所述中继调度信息并在所述基站 向所述中继站发送所述下行数据的子帧内向所述中继站发送该中继 调度信息。
进一步地,上述下行数据包括首次传输的下行数据或重传的下行 数据。
根据本发明的另一具体实施例,提供了一种在无线中继网络的中 继站中用于在集中式调度基站的控制下处理中继链路和回传链路上 的下行 HARQ进程的方法, 包括以下步骤: A. 在所述中继站与所述 基站之间的回传链路上接收所述基站发来的属于一个移动终端的下 行数据; B. 判断是否正确接收了所述下行数据, 以得到一个判断结 果, 并生成表示该判断结果的中继接收指示信息; C. 将所述中继接 收指示信息在所述回传链路上发送给所述基站; 还包括: I. 接收所 述基站在对所述中继站发来的中继接收指示信息进行处理之前发来 的供所述中继站向所述移动终端转发该下行数据的中继调度信息; II. 如果所述中继站正确接收了所述下行数据, 则基于所述中继调度信 息, 将该下行数据转发给所述移动终端。
根据本发明的另一具体实施例,提供了一种在无线中继网络的集 中式调度基站中用于对接入链路和回传链路上的上行 HARQ进程进 行控制的方法, 包括以下步骤: o. 生成并向一个移动终端发送供所 述移动终端向一个中继站发送上行数据的终端调度信息; p. 在对所 述中继站发来的中继接收指示信息进行处理之前, 生成并向所述中 继站发送供所述中继站向所述基站转发该上行数据的中继调度信 息; 其中, 所述中继接收指示信息表示该中继站对所述上行数据是 否正确接收。
根据本发明的又一具体实施例,提供了一种在无线中继网络的中 继站中用于在集中式调度基站的控制处理接入链路和回传链路上的 上行 HARQ进程的方法, 包括以下步骤: - 监听所述基站向一个移 动终端发送的供所述移动终端向所述中继站发送上行数据的终端调 度信息; - 基于所述终端调度信息,接收所述移动终端发来的所述上 行数据; - 判断是否正确接收该上行数据, 以生成表示该判断结果的 中继接收指示信息; - 将所述中继接收指示信息发送给所述基站; 还 包括: - 接收所述基站在对所述中继接收指示信息进行处理之前发来 的供所述中继站向所述基站转发该上行数据的中继调度信息; - 如果 所述中继站正确接收了该上行数据, 则基于该中继调度信息来向该 基站转发所述上行数据。
根据本发明的又一具体实施例,提供了一种在无线中继网络的集 中式调度基站中用于对接入链路和回传链路上的下行 HARQ进程进 行控制的第一装置, 包括: 第一单元, 用于在所述基站与一个中继 站之间的回传链路上向所述中继站发送属于一个移动终端的下行数 据; 第二单元, 用于在对所述中继站发来的中继接收指示信息进行 处理之前, 生成并向所述中继站发送供所述中继站向所述移动终端 转发该下行数据的中继调度信息; 其中, 所述中继接收指示信息表 示该中继站对所述下行数据是否正确接收; 还包括: 第三单元, 用 的该下行数据的终端调度信息, 其中, 所述终端调度信息与所述中 继调度信息相匹配。
进一步地, 第二单元还用于: 生成所述中继调度信息并在所述基 站向所述中继站发送所述下行数据的子帧内向所述中继站发送该中 继调度信息。
根据本发明的又一具体实施例,提供了一种在无线中继网络的中 继站中用于在集中式调度基站的控制下处理接入链路和回传链路上 的下行 HARQ进程的第二装置, 包括: 第四单元, 用于在所述中继 站与所述基站之间的回传链路上接收所述基站发来的属于一个移动 终端的下行数据; 第五单元, 用于判断是否正确接收了所述下行数 据, 以得到一个判断结果, 并生成表示该判断结果的中继接收指示 信息; 第六单元, 用于将所述中继接收指示信息在所述回传链路上 发送给所述基站; 还包括: 第七单元, 用于接收所述基站在对所述 中继站发来的中继接收指示信息进行处理之前发来的供所述中继站 向所述移动终端转发该下行数据的中继调度信息; 第八单元, 用于 如果所述中继站正确接收了所述下行数据, 则基于所述中继调度信 息, 将该下行数据转发给所述移动终端。
根据本发明的又一具体实施例,提供了一种在无线中继网络的集 中式调度基站中用于对接入链路和回传链路上的上行 HARQ进程进 行控制的第三装置, 包括: 第九单元, 用于生成并向一个移动终端 发送供所述移动终端向一个中继站发送上行数据的终端调度信息; 第十单元, 用于在对所述中继站发来的中继接收指示信息进行处理 之前, 生成并向所述中继站发送供所述中继站向所述基站转发该上 行数据的中继调度信息; 其中, 所述中继接收指示信息表示该中继 站对所述上行数据是否正确接收。
进一步地,该上行数据包括首次传输的上行数据或重传的上行数 据。
根据本发明的又一具体实施例,提供了一种在无线中继网络的中 继站中用于在集中式调度基站的控制处理接入链路和回传链路上的 上行 HARQ进程的第四装置, 包括: 第十一单元, 用于监听所述基 据的终端调度信息; 第十二单元, 用于基于所述终端调度信息, 接 收所述移动终端发来的所述上行数据; 第十三单元, 用于判断是否 正确接收该上行数据, 以生成表示该判断结果的中继接收指示信息; 第十四单元, 用于将所述中继接收指示信息发送给所述基站; 还包 括: 第十五单元, 用于接收所述基站在对所述中继接收指示信息进 行处理之前发来的供所述中继站向所述基站转发该上行数据的中继 调度信息; 第十六单元, 用于如果所述中继站正确接收了该上行数 据, 则基于该中继调度信息来向该基站转发所述上行数据。
本发明给出了以 LTE-A为例的标准中的一种新的多跳 HARQ传 输过程的解决方案, 它能够实现快速的中继转发, 减少传输时延并 提高服务质量 (QoS)。 并且, 本发明还能够尽可能地兼容已有的技 术、 设备, 并同时适用于时分双工系统和频分双工系统。 与现有技 术相比, 本发明中的解决方案能够将时延缩短至少 8 毫秒, 也即 HARQ传输所需时间仅为 (甚至不足)现有技术的 60%。
附图说明
通过阅读以下结合附图对非限定性实施例所做的详细描述, 本 发明的其它特征、 优势将变得更为清楚。 其中, 相同或相似的附图 标记表示相同或相似的步骤特征或装置 (模块) 特征。
图 1为一个典型的无线中继网络示意图;
图 2为现有技术中的下行 HARQ进程示意图;
图 3为现有技术中的上行 HARQ进程示意图;
图 4 为根据本发明的一个具体实施例的在无线中继网络的集中 式调度基站中用于对接入链路和回传链路上的下行 HARQ进程进行 控制的方法流程图;
图 5 为根据本发明的一个具体实施例的在无线中继网络的中继 站中用于在集中式调度基站的控制下处理接入链路和回传链路上的 下行 HARQ进程的方法流程图;
图 6a-6d 为根据本发明的一个具体实施例的在无线中继网络中 进行的下行多跳 HARQ传输过程;
图 7 为根据本发明的一个具体实施例的在无线中继网络的集中 式调度基站中用于对接入链路和回传链路上的上行 HARQ进程进行 控制的方法流程图;
图 8 为根据本发.明的一个具体实施例的在无线中继网络的中继 站中用于在集中式调度基站的控制下处理接入链路和回传链路上的 上行 HARQ进程的方法流程图;
图 9a-9d 为根据本发明的一个具体实施例的在无线中继网络中 进行的上行多跳 HARQ传输过程;
图 10为根据本发明的一个具体实施例在无线中继网络的集中式 调度基站中的第一装置框图;
图 11为根据本发明的一个具体实施例在无线中继网络的中继站 中的第二装置框图;
图 12为根据本发明的一个具体实施例在无线中继网络的集中式 调度基站中的第三装置框图;
图 13为根据本发明的一个具体实施例在无线中继网络的中继站 中的第四装置框图。 具体实施方式
以下将结合附图对本发明的各个非限定性实施例进行详述。 其 中, 主要以频分双工 (FDD )模式下的例子进行介绍, 但是, 本领 域技术人员理解, 正如下文中也将会提及的, 本发明同样适用于时 分双工 (TDD )模式的情况。 不失一般性地, 以图 1 中所示的各个 网络设备作为例子。
先参看图 4, 其中较为概括地描绘了在基站中用于对回传链路、 接入链路上的下行 HARQ进程进行控制的方法流程。
首先, 在步骤 S41中, 基站 1将需要发送给移动终端 13的下行 数据发送给中继站 12。 本文中, 术语 "发送" 的客体一般表述为 "数 据" , 本领域技术人员理解, 由于在无线设备的空中接口上可能会 需要进行变频等操作, 因此, 本文中的 "发送数据" 应当被理解为 以各种可能的方式发送被适当载体所承载的数据。
基于 HARQ技术的要求, 中继站 12会向基站 11反馈其对上述 下行数据的接收情况, 典型地, 以 ACK消息来表示接收成功, 并以 NACK 消息来表示接收失败。 所谓的接收成功指通过处理如解调、 解码能够还原出正确的原始数据, 否则为接收失败。 具体地, 如图 5 所示, 步骤 S51 中接收到该下行数据之后, 在步骤 S52中, 中继站 12判断是否正确接收了该下行数据, 并基于判断结果生成相应的中 继接收指示信息, 例如 ACK或 NACK, 表示中继站 12对到来的下 行数据的接收情况。 生成的中继接收指示信息将在步骤 S54 中发送 重要地, 如图 4所示, 基站 11总是在在对中继站 12发来的中 继接收指示信息例如 ACK进行处理之前, 生成并向中继站 12发送 供中继站 12向移动终端 13转发该下行数据的中继调度信息。 例如, 基站 11 在步骤 S41 中发送下行数据时所用的子帧中来向中继站 12 发送该中继调度信息, 由于此时下行数据刚刚甚至还未发出, 因此 基站 11 自然不知道中继站 12是否能够正确接收该下行数据, 但本 着对接收成功的假设, 做出这样的预先调度, 从而用有限的资源预 留来换取十分明显的时延改善。 具体的例子还将在下文中结合帧示 意图来详加说明。
基于在步骤 S54中接收到的中继调度信息, 如果中继站 12正确 地接收了上述的下行数据, 则它立刻开始准备转发该下行数据, 并 在步骤 S55中进行转发。而如果中继站 12未能正确接收该下行数据, 则会触发重传过程, 下文中还会对此专门进行讨论。
为了更形象地说明本发明, 下面结合表示了帧结构的示意图来 详述本发明的各个具体实施例, 其中, 图 6a-6d为根据本发明的一个 具体实施例的在无线中继网络中进行的下行多跳 HARQ传输过程。
首先参看图 6a,其中,在 0号子帧中,基站 11所发的信息包括: 发给中继站 112 的属于移动终端 13 的下行数据, 其典型地通过 PDSCH发送, 以及, 与该下行数据相对应的调度信息。其中,在 LTE 系统中, 一般情况下, 调度的最小单位是 1 个子帧, 即 1 毫秒, 在 正常(normal )子帧的情况下对应 14个 OFDM符号。 对于下行链路 而言, PDCCH在一个子帧中占最前面的 1-3个 OFDM符号, 且它是 固定的 QPSK调制,采用卷积编码,根据 2/3,1/3,1/6,1/12码率来传输, 即对应 1,2,4,8个控制信道单元 (CCE)。 数据部分一般在 PDSCH中 传输, 并使用 Turbo码进行编码, 只有在对前述的 PDCCH的正确解 码之后, 中继站 (在其它例子中如移动终端) 才能获得具体的调度 信息如空间域、 时域、 频域、 MCS等信息, 来处理所发送的数据。 现有技术中有足够详尽的对于在同一子帧中发送相对应的调度信息 和数据的方案的介绍, 本文中不赘。
特别地, 在 0号子帧中, 基站 11还通过 R-PDCCH来向中继站 12发送供中继站 12来向移动终端 13转发该下行数据的中继调度信 息, 这是本文中的 "在对中继站的中继接收指示消息进行处理前" 的一个特例, 在基站 11发送该中继调度信息时, 中继站 12可能还 没有接收到相应的下行数据。 但是, 图 6a所示不具有限定性, 作为 一种替代方式, 转发该下行数据所用的中继调度信息可以在 1 号子 帧中发送给中继站 12, 也可以在 2号子帧中发送给中继站 12, 甚至 可以在 6号子帧中发出, 因为参看图 2可知, 在现有技术中, 直至 7 号子帧,才开始为 0号子帧中发出的下行数据的转发开始生成将在 8 号子帧中发出的中继调度信息。 于是, 本实施例降低了下行 HARQ 进程中的时延, 且以图 6a所示的在 0号子帧中发送中继调度信息的 方案能够最大程度地降低时延。 在图中, 还以带箭头的虛线表示了 中继调度信息的用途。
中继站 12在接收到下行数据并经处理后, 判断出该部分数据已 被正确接收, 于是, 在第 4号子帧中向基站 11发送 RN ACK消息。 同时, 由于已在 0号子帧中得到了转发所需的调度信息, 因此也在 4 号子帧中将下行数据转发出去。 为了让移动终端 13能够对转发的下 行数据进行解调和解码等处理, 基站 11在第 4号子帧中向移动终端 13通过 PDCCH发送与转发的下行数据相对应的调度信息。
移动终端 13 正确地接收了转发的下行数据, 于是生成和发送 ACK消息进行确认, 在此后的第 8号子帧中, 向中继站 12发出 UE ACK消息, 这是一个终端接收指示消息, 表示其正确地接收了转发 的下行数据。
而后,通过对 UE ACK的处理, 中继站 12可以确定移动终端 13 的正确接收, 随后将 UE ACK最终转发给基站 11。
至此, 在两个链路上的数据接收都正确的情况下, 仅用 12个毫 秒就完成了整个传输过程, 与图 2相比, 节约了 8毫秒的时间。
接下来再来介绍出现重传的下行 HARQ传输过程, 其一如图 6b 所示, 其中, 在回传链路出现了接收错误。 具体地:
与图 6a相同地, 基站 11在 0号子帧中发出三部分信息, 但是, 下行数据未能被中继站 12正确接收,例如,解码过程中发现错误等。 中继站 12接收下行数据、 解调、 解码、 发现错误、 生成 NACK消息 的整个过程可在 4毫秒内完成, 于是, 在 4号子帧中, 中继站 12向 基站 11返回一个 RN NACK消息。此时, 由于基站 11不知道中继站 12是否正确接收, 因此, 它仍像图 6a那样地在第 4号子帧中为移动 终端 13提供与 R-PDCCH中提供的中继调度信息相匹配的终端调度 信息。 本文中, 匹配的中继调度信息和终端调度信息的含义是, 中 继站基于该中继调度信息来向移动终端发送数据, 而移动终端则基 于该终端调度信息来对同一部分数据进行相应的接收。
在 4号子帧中, 鉴于未能正确接收, 因此中继站 12不会向移动 终端 13转发它所接收到的下行数据。
而后的 8号子帧中, 基于对 RN NACK的识别, 基站 11调度关 于子帧 0 中发出的下行数据的在回传链路上的重传。 具体地, 类似 于子帧 0, 基站 11发出下行数据, 其实际为重传的下行数据, 并带 有表示其属于重传的标识信息, 另外, 基站 11 同样通过 PDCCH来 为中继站 12提供相应的调度信息, 并通过 R-PDCCH来预分配中继 站 12 转发所需的中继调度信息。
同样在 8号子帧中,由于 4号子帧中 PDCCH中指示了移动终端 13将在同一子帧中接收到转发的下行数据, 但是, 中继站 12因回传 链路上的接收错误而放弃了转发, 移动终端 13当然地得到了接入链 路上接收错误的结果, 于是, 在 12号子帧中向中继站 12发送表示 接收错误的 UE NACK:。 中继站 12优选地将会忽略该 UE NACK消 息, 而不会将其再向上转发。
如果对 8号子帧中重传的下行数据接收正确,则中继站 12在 12 号子帧中向基站 11返回 RN ACK消息, 并在同一子帧中执行转发, 其根据的正是在 8号子帧中通过 R-PDCCH获得的中继调度信息。为 了帮助移动终端 13进行接收, 基站 11与在 4号子帧中类似地为移 动终端 13提供终端调度信息, 其与 8号子帧中的 R-PDCCH中的中 继调度信息相匹配。
如果对 12号子帧中的转发数据接收成功, 移动终端 13会在 16 号子帧中向中继站 12返回一个 UE ACK消息, 该消息会在 20号子 帧中由中继站 12转发给基站 11。
可见, 根据本发明的一个具体实施例, 即使在数据传输发生错 误而导致重传的情况下, 仍能以 20 毫秒的时间完成两跳上的下行 HARQ进程。
前已述及, 重传还可能发生在接入链路上, 如图 6c所示。 在 4 号子帧中, 移动终端 13未能正确解码下行数据, 于是, 在 8号子帧 中向中继站 12发送一个 NACK消息。 该 NACK消息在 12号子帧中 被转发给基站 11。 由于基站 11曾在 4号子帧中接收到了来自中继站 12的 ACK消息, 因此, 在接收到该 NACK消息后, 基站 11会知道 是在第二跳出现了传输错误, 于是, 基站 11开始调度第二跳上的数 据重传,并在 16号子帧中将重传所需的中继调度信息告知中继站 12。
20号子帧中, 基站 11发送重传所需的终端调度信息, 中继站 12则 将此前緩存的下行数据再次转发, 如果移动终端 13正确接收了再次 转发的下行数据, 它会在 24号子帧中返回 ACK消息, 中继站则在 28号子帧中转发给基站 11, 从而结束对 0号子帧中发出的下行数据 的传输过程。
通过阅读结合图 6b-6c所做的介绍,本领域技术人员可以不经创 造性劳动地得出两跳分别出现重传的情况, 本文中不再赘述。
本领域技术人员理解,本发明并不限于图 6a-6c所示的频分双工 ( FDD ) 的应用场景, 其同样适用于图 6d所示的时分双工 (TDD ) 的情形。 LTE中共有 7种类型的 TDD配置, 其间的区别主要在于特 殊(Special, 简写为 S )子帧的位置, 或者是上行子帧与下行子帧的 数量之比。 下面, 不失一般性地以图 6d所示的第 2种 TDD配置为 例进行说明。 在第二种配置的 TDD 系统中, 0,3,4,5,8,9号子帧为下 行子帧, 子帧 1,6为特别子帧 (S子帧), 上行子帧仅为 2号和 7号 子帧。 在 0号子帧中, 基站 11通过 PDCCH将下行数据和相应的调 度信息发送给中继站 12, 另外, 与上文中的 FDD例子类似的, 还在 0号子帧中通过 R-PDCCH发送用于转发下行数据的中继调度信息, 其将用于 4号子帧中的转发操作。 如果中继站 12正确地接收了该下 行数据, 它会在 4号子帧中将其转发给移动终端 13。 移动终端 13在 4号子帧中还从基站 11处获得与转发的下行数据相对应的调度信息。 本领域技术人员理解, 如果中继站 12更早地完成了对下行数据的解 码, 它可以在同为下行子帧的 3 号子帧中就进行数据转发, 或者, 如果中继站 12更晚地完成下行数据的解码, 它可以在 5号子帧中再 做转发, 但是, 如杲未及在 5号子帧中转发, 那就要等到第 8号子 帧。 由于 TDD系统的特点, 中继站 12不能在 4号子帧中就向基站 11发送表示正确接收的 ACK消息, 而要等待下一个上行子帧, 如图 所示的 7号子帧。 相应地, 移动终端 13则要等到第二帧中的 2号子 帧 (也可称 12号子帧) 这一上行子帧中发出 ACK消息, 该消息在 第二帧的 7号子帧中被转发给基站 11。
通过阅读结合图 6d对 TDD系统中的两跳传输均正确的实施例 的介绍, 本领域技术人员可以不经创造性劳动地将本发明用于某一 跳重传或者两跳重传的情形, 本文不赘。
以下参照图 7-8 对根据本发明的具体实施例的在无线中继网络 的集中式调度基站中用于对接入链路和回传链路上的上行 HARQ进 程进行控制的方法, 以及在中继站中用于在集中式调度基站的控制 下处理接入链路和回传链路上的上行 HARQ进程的方法进行介绍。
参看图 7, 其中, 在步骤 S71中, 基站 11生成并向移动终端 13 发送供移动终端 13向中继站 12发送上行数据的终端调度信息。
在步骤 S72中, 在对中继站 12发来的中继接收指示信息进行处 理之前, 基站 11生成并向中继站 12发送供中继站 12向基站 11转 发该上行数据的中继调度信息。 其中, 所述中继接收指示信息表示 该中继站对所述上行数据是否正确接收。
在本发明的各个实施例中, "在对中继站发来的中继接收指示信 息进行处理之前,, 应被理解为包括以下情况: 已经接收到该中继接 收指示信息但尚未处理; 以及, 尚未接收到该中继接收指示信息。
参看图 8, 其中, 在步骤 S81 中, 中继站 12监听基站 11向移 动终端 13发送的供移动终端 13向中继站 12发送上行数据的终端调 度信息。 在步骤 S82中, 中继站 12基于该终端调度信息, 接收移动 终端 13发来的上行数据。 而后, 中继站 12判断是否正确接收了该 上行数据, 以生成表示该判断结果的中继接收指示信息, 例如 ACK 或 NACK, 生成的中继接收指示信息在步骤 S84中由中继站 12发送 给基站 11。 另外, 在步骤 S85中, 中继站 12还接收基站 1 1在对中 继接收指示信息进行处理之前发来的供中继站 12向基站 11转发该 上行数据的中继调度信息。 如果中继站 12正确接收了所述的上行数 据, 则基于步骤 S85中获得的中继调度信息来向基站 11转发。
以下结合示出了帧结构的附图来对本发明各实施例中的上行 HARQ进程处理和控制过程进行说明, 首先参看图 9a。 其中, 基站 1 1在 0号子帧中调度上行的接入链路上的数据传输, 也即, 生成并 向移动终端 13发送供移动终端 13向中继站 12发送上行数据的终端 调度信息。 与此同时, 中继站 12对这一过程进行监听, 从而获知移 动终端 13即将发送的上行数据的发送方式等信息。
接着, 在 4号子帧中, 移动终端 13向中继站 12发出上行信号, 同样在 4号子帧中, 基站 11为中继站 12分配向基站 12转发该上行 信号所需的中继调度信息, 与此相比, 中继站 12发出的中继接收指 示消息要在 8 号子帧才发出, 且基站据此信息执行转发数据的调度 还需额外的时间, 因此, 对上行转发调度的提前可大大降低时延。 如果中继站 12对该上行数据的接收正确, 它将在 8号子帧中向基站 11发送表示该次接收正确的 ACK消息, 并且, 在同一子帧中, 完成 对该上行数据的转发。 仍在 8 号子帧中, 为了兼容现有标准, 由于 移动终端 13曾在 4号子帧中发出上行数据, 基站 11向移动终端 13 发出表示基站 11正确接收该上行数据的 ACK消息。 如果基站 11正 确地接收了中继站 12在 8号子帧中转发的上行数据, 其将在 12号 子帧中向中继站 12返回一个 ACK消息。 于是, 在两条链路上均接 收正确的情况下,上行 HARQ进程与下行 HARQ进程一样只需要 12 毫秒即可完成整个传输过程。
参看图 9b, 其中描绘了在上行传输过程中, 接入链路上发生传 输错误的情况。 具体地, 0-4号子帧的操作与图 9a相同, 不赘述。 而在 8号子帧中, 由于未能正确接收上行数据, 因此中继站 12不向 基站 11进行转发, 而是只报告一个 NACK消息。 同样为了兼容现有 标准, 基站 11向移动终端 13发送一个 ACK消息。 但是, 虽然接收 到这样的 ACK消息, 移动终端 13不会自动地将之前发出的数据丟 弃, 而是将其继续緩存, 等待基站 11 的进一步指示。 在 12号子帧 中, 基站 11 已经解码了中继站 12发来的 NACK消息, 知道在接入 链路出现了错误, 于是, 通过 PDCCH, 基站 11向移动终端 13发出 重传指示, 以触发重传过程, 后续的操作同图 9a。
参看图 9c, 其中, 错误出现在第二跳也即基站 11 与中继站 12 之间的回传链路上。 具体地, 0-8号子帧同图 9a, 在 12号子帧中, 在知晓了中继站 12已正确接收原始的上行数据, 但是转发过程出错 之后, 基站 11通过 R-PDCCH向中继站 12发出重传指令, 于是, 在 16号子帧中, 中继站 12执行相应的重传, 如果重传接收成功, 基站 11将在 20号子帧中返回一个 ACK消息给中继站 12。
图 9d示出了在 TDD系统中的一个上行 HARQ传输过程,其中, 两跳均正确接收。 本领域技术人员通过阅读本文中上述内容, 可以 通过图 9d得到 TDD 系统中一跳或两跳出现重传的情形, 而不经任 何创造性劳动。 基于上文中对各个方法的详细介绍,下文中将以结合方法部分的 方式简述具有与之相对应特征的各个装置。
参看图 10, 其中示出了一种在无线中继网络的集中式调度基站 中用于对接入链路和回传链路上的下行 HARQ进程进行控制的第一 装置 10, 其典型地位于图 1所示的基站 11中包括: 第一单元 101 , 用于在基站 1 1与一个中继站如图 1所示的中继 站 12之间的回传链路上向中继站发送属于一个移动终端如图 1所示 的移动终端 13的下行数据, 对应于图 4所示的步骤 S41。
第二单元 102, 用于在对中继站 12发来的中继接收指示信息进 行处理之前, 生成并向中继站 12发送供中继站 12向移动终端 13转 发该下行数据的中继调度信息; 其中, 中继接收指示信息表示该中 继站 12对所述下行数据是否正确接收,对应于图 4所示的步骤 S42。
第三单元 103, 用于生成并向所述移动终端发送供所述移动终端 接收所述中继站转发的该下行数据的终端调度信息, 其中, 所述终 端调度信息与所述中继调度信息相匹配,对应于图 4所示的步骤 S43。
进一步地, 第二单元 102 还用于: 生成中继调度信息并在基站 11向中继站 12发送下行数据的子帧内向中继站 12发送该中继调度 信息, 如图 6a-6d所示。
进一步地, 下行数据包括首次传输的下行数据或重传的下行数 据。 参看图 1 1, 其中, 示出了一种在无线中继网络的中继站中用于 在集中式调度基站的控制下处理接入链路和回传链路上的下行 HARQ进程的第二装置 1 1 ,其典型地布置于图 1所示的中继站 12处, 包括:
第四单元 1 1 1, 用于在中继站 12与基站如图 1所示基站 11之间 的回传链路上接收基站 1 1发来的属于一个移动终端如图 1所示移动 终端 13的下行数据, 对应于图 5所示步骤 51。
第五单元 112, 用于判断是否正确接收了所述下行数据, 以得到 一个判断结果, 并生成表示该判断结果的中继接收指示信息, 对应 于图 5中的步骤 S52。
第六单元 1 13 , 用于将所述中继接收指示信息在所述回传链路上 发送给所述基站, 对应于图 5中的步骤 S54。
第七单元 1 14,用于接收所述基站在对所述中继站发来的中继接 收指示信息进行处理之前发来的供所述中继站向所述移动终端转发 该下行数据的中继调度信息, 对应于图 5所示的步骤 S53。
第八单元 1 15, 用于如果所述中继站正确接收了所述下行数据, 则基于所述中继调度信息, 将该下行数据转发给所述移动终端, 对 应于图 5所示步骤 S55。 参看图 12, 其中, 示出了一种在无线中继网络的集中式调度基 站中用于对接入链路和回传链路上的上行 HARQ进程进行控制的第 三装置 12, 其典型地位于图 1所示的基站 1 1处, 包括:
第九单元 121,用于生成并向一个移动终端发送供所述移动终端 向一个中继站发送上行数据的终端调度信息, 对应于图 7 所示步骤 S71。
第十单元 122, 用于在对所述中继站发来的中继接收指示信息进 行处理之前, 生成并向所述中继站发送供所述中继站向所述基站转 发该上行数据的中继调度信息, 其中, 所述中继接收指示信息表示 该中继站对所述上行数据是否正确接收, 对应于图 7所示步骤 S72。
进一步地,该上行数据包括首次传输的上行数据或重传的上行数 据。
参看图 13, 其中, 示出了一种在无线中继网絡的中继站中用于 在集中式调度基站的控制处理接入链路和回传链路上的上行 HARQ 进程的第四装置 13, 其典型地位于图 1所示的中继站 12处, 包括: 第十一单元 ι3 1 ,用于监听所述基站向一个移动终端发送的供所 述移动终端向所述中继站发送上行数据的终端调度信息,对应于图 8 所示步骤 S81。
第十二单元 132, 用于基于所述终端调度信息, 接收所述移动终 端发来的所述上行数据, 对应于图 8所示的步骤 S82。
第十三单元 133, 用于判断是否正确接收该上行数据, 以生成表 示该判断结果的中继接收指示信息, 对应于图 8所示的步骤 S83。
第十四单元 134, 用于将所述中继接收指示信息发送给所述基 站, 对应于图 8所示的步骤 S84。
第十五单元 135,用于接收所述基站在对所述中继接收指示信息 进行处理之前发来的供所述中继站向所述基站转发该上行数据的中 继调度信息, 对应于图 8所示的步骤 S85。
第十六单元 136, 用于如果所述中继站正确接收了该上行数据, 则基于该中继调度信息来向该基站转发所述上行数据, 对应于图 8 所示的步骤 S86。 对于本领域技术人员而言, 显然本发明不限于上述示范性实施 例的细节, 而且在不背离本发明的精神或基本特征的情况下, 能够 以其他的具体形式实现本发明。 因此, 无论从哪一点来看, 均应将 实施例看作是示范性的, 而且是非限制性的, 本发明的范围由所附 权利要求而不是上述说明限定, 因此旨在将落在权利要求的等同要 件的含义和范围内的所有变化嚢括在本发明内。 不应将权利要求中 的任何附图标记视为限制所涉及的权利要求。 此外, 显然 "包括" 一词不排除其他单元, 单数不排除复数。 第一, 第二等词语用来表 示名称, 而并不表示任何特定的顺序。

Claims

权 利 要 求 书
1. 一种在无线中继网络的集中式调度基站中用于对中继链路和 回传链路上的下行 HARQ进程进行控制的方法, 包括以下步骤: a. 在所述基站与一个中继站之间的回传链路上向所述中继站发 送属于一个移动终端的下行数据;
b. 在对所述中继站发来的中继接收指示信息进行处理之前, 生 成并向所述中继站发送供所述中继站向所述移动终端转发该下行数 据的中继调度信息;
其中,所述中继接收指示信息表示该中继站对所述下行数据是否 正确接收;
还包括: 转发的该下行数据的终端调度信息, 其中, 所述终端调度信息与所 述中继调度信息相匹配。
2. 根据权利要求 1所述的方法, 其中, 所述步骤 b还包括:
- 生成所述中继调度信息并在所述基站向所述中继站发送所述 下行数据的子帧内向所述中继站发送该中继调度信息。
3. 根据权利要求 1或 2所述的方法, 其中, 所述下行数据包括 首次传输的下行数据或重传的下行数据。
4. 一种在无线中继网络的中继站中用于在集中式调度基站的控 制下处理中继链路和回传链路上的下行 HARQ进程的方法, 包括以 下步骤:
A. 在所述中继站与所述基站之间的回传链路上接收所述基站发 来的属于一个移动终端的下行数据;
B. 判断是否正确接收了所述下行数据, 以得到一个判断结果, 并生成表示该判断结果的中继接收指示信息;
C. 将所述中继接收指示信息在所述回传链路上发送给所述基 站; 还包括:
I. 接收所述基站在处理所述中继站发来的中继接收指示信息之 前所发送的供所述中继站向所述移动终端转发该下行数据的中继调 度信息;
II. 如果所述中继站正确接收了所述下行数据, 则基于所述中继 调度信息, 将该下行数据转发给所述移动终端。
5. 一种在无线中继网络的集中式调度基站中用于对中继链路和 回传链路上的上行 HARQ进程进行控制的方法, 包括以下步骤:
0. 生成并向一个移动终端发送供所述移动终端向一个中继站发 送上行数据的终端调度信息;
p. 在对所述中继站发来的中继接收指示信息进行处理之前, 生 成并向所述中继站发送供所述中继站向所述基站转发该上行数据的 中继调度信息;
其中,所述中继接收指示信息表示该中继站对所述上行数据是否 正确接收。
6. 一种在无线中继网络的中继站中用于在集中式调度基站的控 制处理中继链路和回传链路上的上行 HARQ进程的方法, 包括以下 步骤:
- 监听所述基站向一个移动终端发送的供所述移动终端向所述 中继站发送上行数据的终端调度信息;
- 基于所述终端调度信息,接收所述移动终端发来的所述上行数 据;
- 判断是否正确接收该上行数据,以生成表示该判断结果的中继 接收指示信息;
- 将所述中继接收指示信息发送给所述基站;
还包括:
- 接收所述基站在对所述中继接收指示信息进行处理之前发来 的供所述中继站向所述基站转发该上行数据的中继调度信息;
- 如果所述中继站正确接收了该上行数据,则基于该中继调度信 息来向该基站转发所述上行数据。
7. 一种在无线中继网络的集中式调度基站中用于对中继链路和 回传链路上的下行 HARQ进程进行控制的第一装置, 包括:
第一单元,用于在所述基站与一个中继站之间的回传链路上向所 述中继站发送属于一个移动终端的下行数据;
第二单元,用于在对所述中继站发来的中继接收指示信息进行处 理之前, 生成并向所述中继站发送供所述中继站向所述移动终端转 发该下行数据的中继调度信息;
其中,所述中继接收指示信息表示该中继站对所述下行数据是否 正确接收;
还包括:
第三单元,用于生成并向所述移动终端发送供所述移动终端接收 所述中继站转发的该下行数据的终端调度信息, 其中, 所述终端调 度信息与所述中继调度信息相匹配。
8. 根据权利要求 7所述的第一装置, 其中, 所述第二单元还用 于: 生成所述中继调度信息并在所述基站向所述中继站发送所述下 行数据的子帧内向所述中继站发送该中继调度信息。
9. 根据权利要求 7或 8所述的第一装置, 其中, 所述下行数据 包括首次传输的下行数据或重传的下行数据。
10. 一种在无线中继网络的中继站中用于在集中式调度基站的 控制下处理中继链路和回传链路上的下行 HARQ进程的第二装置, 包括:
第四单元,用于在所述中继站与所述基站之间的回传链路上接收 所述基站发来的属于一个移动终端的下行数据;
第五单元, 用于判断是否正确接收了所述下行数据, 以得到一个 判断结果, 并生成表示该判断结果的中继接收指示信息;
第六单元,用于将所述中继接收指示信息在所述回传链路上发送 给所述基站;
还包括: 第七单元,用于接收所述基站在对所述中继站发来的中继接收指 示信息进行处理之前发来的供所述中继站向所述移动终端转发该下 行数据的中继调度信息;
第八单元,用于如果所述中继站正确接收了所述下行数据,则基 于所述中继调度信息, 将该下行数据转发给所述移动终端。
11. 一种在无线中继网络的集中式调度基站中用于对中继链路 和回传链路上的上行 HARQ进程进行控制的第三装置, 包括:
第九单元,用于生成并向一个移动终端发送供所述移动终端向一 个中继站发送上行数据的终端调度信息;
第十单元,用于在对所述中继站发来的中继接收指示信息进行处 理之前, 生成并向所述中继站发送供所述中继站向所述基站转发该 上行数据的中继调度信息;
其中,所述中继接收指示信息表示该中继站对所述上行数据是否 正确接收。
12. 根据权利要求 11 所述的第三装置, 其中, 所述上行数据包 括首次传输的上行数据或重传的上行数据。
13. 一种在无线中继网络的中继站中用于在集中式调度基站的 控制处理中继链路和回传链路上的上行 HARQ进程的第四装置, 包 括:
第十一单元,用于监听所述基站向一个移动终端发送的供所述移 动终端向所述中继站发送上行数据的终端调度信息;
第十二单元,用于基于所述终端调度信息,接收所述移动终端发 来的所述上行数据;
第十三单元, 用于判断是否正确接收该上行数据, 以生成表示该 判断结果的中继接收指示信息;
第十四单元, 用于将所述中继接收指示信息发送给所述基站; 还包括:
第十五单元,用于接收所述基站在对所述中继接收指示信息进行 处理之前发来的供所述中继站向所述基站转发该上行数据的中继调 度信息;
第十六单元, 用于如果所述中继站正确接收了该上行数据, 则 基于该中继调度信息来向该基站转发所述上行数据。
PCT/CN2010/070687 2010-02-12 2010-02-12 无线中继网络中处理上、下行harq进程的方法和装置 WO2011097829A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/070687 WO2011097829A1 (zh) 2010-02-12 2010-02-12 无线中继网络中处理上、下行harq进程的方法和装置
CN2010800551095A CN102652443A (zh) 2010-02-12 2010-02-12 无线中继网络中处理上、下行harq进程的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070687 WO2011097829A1 (zh) 2010-02-12 2010-02-12 无线中继网络中处理上、下行harq进程的方法和装置

Publications (1)

Publication Number Publication Date
WO2011097829A1 true WO2011097829A1 (zh) 2011-08-18

Family

ID=44367179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070687 WO2011097829A1 (zh) 2010-02-12 2010-02-12 无线中继网络中处理上、下行harq进程的方法和装置

Country Status (2)

Country Link
CN (1) CN102652443A (zh)
WO (1) WO2011097829A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023006030A1 (zh) * 2021-07-30 2023-02-02 维沃移动通信有限公司 信号传输方法、放大器及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388742A (zh) * 2007-09-14 2009-03-18 华为技术有限公司 一种中继系统中数据传输的方法、系统及装置
CN101489253A (zh) * 2007-11-08 2009-07-22 三星电子株式会社 无线中继通信系统中用于确认信道传输的装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064547B (zh) * 2006-04-27 2010-11-03 上海贝尔阿尔卡特股份有限公司 无线接入系统的中继方法及其基站、中继设备和中继系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388742A (zh) * 2007-09-14 2009-03-18 华为技术有限公司 一种中继系统中数据传输的方法、系统及装置
CN101489253A (zh) * 2007-11-08 2009-07-22 三星电子株式会社 无线中继通信系统中用于确认信道传输的装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023006030A1 (zh) * 2021-07-30 2023-02-02 维沃移动通信有限公司 信号传输方法、放大器及网络侧设备
CN115694586A (zh) * 2021-07-30 2023-02-03 维沃移动通信有限公司 信号传输方法、放大器及网络侧设备

Also Published As

Publication number Publication date
CN102652443A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5345159B2 (ja) 中継チャンネルにおける通信を改善するための方法及び装備
CN103503501B (zh) 无线网络中的通信方法、中继节点和接入节点
EP1965534B1 (en) Apparatus and method for transmitting a control message in a wireless communication system using relaying
JP7339943B2 (ja) 非地上通信システム
US9215658B2 (en) Method and device for adjusting sleep mode of mobile station
CN112889234B (zh) 用于urllc服务的低时延harq协议
US10129812B2 (en) Uplink transmissions for type 2 relay
US10616381B2 (en) Method and apparatus for performing hybrid automatic repeat request in wireless communication system
EP3603256B1 (en) Network node and method in a wireless communications network
JP2011101358A (ja) 無線通信システムで使用される方法、無線通信システム、ユーザ装置、アンカーネットワーク局、補助ネットワーク局
JP5319838B2 (ja) 無線リレーの方法およびデバイス
WO2011137741A1 (zh) 一种数据传输的方法及系统
WO2013044880A1 (zh) 一种数据传输方法和装置
WO2014076552A2 (en) Method of transmitting signaling of device-to-device communication in cellular network
JP5061128B2 (ja) 基地局装置、移動局、無線通信システム及び通信制御方法
WO2010020078A1 (zh) 利用单播链路来实现harq重传的方法和系统
KR101220553B1 (ko) 전력 제어 기술
JP5018447B2 (ja) 通信方法、無線通信装置
CN102124684A (zh) 用于多通道harq接收反馈的方法、装置和设备
WO2011020234A1 (zh) 在无线中继网络中用于控制数据重传的方法及装置
CN101790193A (zh) 混合自动重传请求的控制方法、系统、发送及接收端设备
WO2011097829A1 (zh) 无线中继网络中处理上、下行harq进程的方法和装置
CN112822715A (zh) 信息传输的方法及设备
KR100979511B1 (ko) Mimo와 harq를 이용한 데이터 패킷 전송방법 및 그방법을 지원하는 시스템
WO2011038614A1 (zh) 下行数据发送方法及系统和中继节点

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055109.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845503

Country of ref document: EP

Kind code of ref document: A1