WO2011096419A1 - Bio-acoustic sensor and diagnostic system using the bio-acoustic sensor - Google Patents
Bio-acoustic sensor and diagnostic system using the bio-acoustic sensor Download PDFInfo
- Publication number
- WO2011096419A1 WO2011096419A1 PCT/JP2011/052110 JP2011052110W WO2011096419A1 WO 2011096419 A1 WO2011096419 A1 WO 2011096419A1 JP 2011052110 W JP2011052110 W JP 2011052110W WO 2011096419 A1 WO2011096419 A1 WO 2011096419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acoustic sensor
- information
- diagnosis
- biological
- diagnostic system
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4528—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/006—Detecting skeletal, cartilage or muscle noise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4538—Evaluating a particular part of the muscoloskeletal system or a particular medical condition
- A61B5/4585—Evaluating the knee
Definitions
- the present invention relates to a living body acoustic sensor and a diagnostic system using the same, and more particularly to a living body acoustic sensor that acquires joint sounds of a living body and a diagnostic system using the same.
- Patent Document 1 describes that by providing a protrusion on the diaphragm, auscultation can be performed without pressing the entire diaphragm against the skin.
- Patent Document 2 discloses a body sound detection device for detecting heart sounds and lung sounds in which a capacitor microphone using a change in capacitance is housed in a housing, in order to suppress the influence of contact sounds with body hair on the skin.
- seat which has the same degree of hardness to a contact surface is described. Further, it is stated that there is a weight for securing the pressing pressure, a housing is provided on the outside thereof, and noise from outside the living body is suppressed by a gap between the weight and the housing.
- JP 2007-61284 A Japanese Patent Laid-Open No. 2000-60844
- the stethoscope of Patent Literature 1 or the biological sound detection device of Patent Literature 2 it is possible to detect in-vivo sounds such as heart sounds and lung sounds of a living body such as a stationary human body.
- the body sound detection for the diagnosis of osteoarthritis can detect the sound in the living body in the operating state. For example, it is desirable to detect an abnormal sound at the knee joint by actually moving the knee joint and detecting the joint sound at that time.
- the sound generated by the living body's operation may also be detected by the biological sound detection sensor. If the biological sound is a micro sound, the detection is inaccurate. Will occur. As sounds generated by the movement of the living body, sounds due to movement between the skin and the sensor, sounds due to movement of signal lines, wind sounds generated by movement of the living body, and the like can be considered.
- An object of the present invention is to provide a living body acoustic sensor that can detect a sound in a living body in an operating state by suppressing noise sound generated by the living body's operation. Another object is to provide a diagnostic system using this biological acoustic sensor.
- a diagnostic system includes a biological acoustic sensor attached on the skin near the joint of the examinee, an angle sensor attached on the skin near the joint of the examinee, and detecting a bending and stretching angle near the joint.
- the biological acoustic sensor includes a sensor device that detects vibration, a contact probe that is connected to a detection unit of the sensor device, extends in an elongated shape like an antenna, and has a biological contact part at the tip, and a sensor device inside.
- a cup-shaped inner case body having an opening for holding the contact probe on one side to the outside and a cup-shaped outer periphery of the inner case body so as to cover the entire cup-shaped outer periphery, a gap is formed through the inner case body and the cushioning material.
- a cup-shaped outer case body that is arranged.
- the cup-shaped outer case body is composed of a plurality of cup-shaped bodies that are arranged with a gap between each other via a cushioning material.
- the biological acoustic sensor according to the present invention preferably includes a transmission unit that converts a detection signal of the sensor device into a wireless signal and transmits the signal to the outside.
- the contact probe has a living body contact portion having an inclined shape with a predetermined inclination angle with respect to a direction perpendicular to the opening of the inner case body.
- the diagnostic device uses a plurality of predetermined signal processing information to be useful for diagnosis with respect to the detection signal of the biological acoustic sensor in a predetermined signal detection period.
- the degree of progression of arthropathy is defined as a symptom grade
- typical diagnostic information corresponding to the symptom grade is stored in association with each of a plurality of symptom grades based on typical judgment criteria predetermined for the diagnostic information.
- a storage unit an acquisition unit that acquires a real detection signal of a biological acoustic sensor for a diagnosis subject for a predetermined signal detection period, and an actual diagnosis that generates actual diagnosis information that is diagnostic information about the acquired actual detection signal
- the information generation unit and the storage unit are searched using the actual diagnosis information as a search key, and the most correlated to the actual diagnosis information based on a predetermined correlation condition
- a specifying unit which engages to identify the strong typical diagnostic information, and an output unit for outputting a symptom grade corresponding to typical diagnostic information specified, preferably contains.
- the diagnostic information is information of frequency spectrum characteristics that are intensity distributions for each frequency component of the detection signal of the biological acoustic sensor, and the typical diagnostic information is The spectral characteristic pattern information obtained by patterning the characteristics of the frequency spectral characteristic of the detection signal is preferable.
- the diagnostic information is information of frequency spectrum characteristics that are intensity distributions for each frequency component of the detection signal of the biological acoustic sensor, and the typical diagnostic information is
- the peak information is a combination of a spectrum peak value characterizing the frequency spectrum characteristic of the detection signal and its frequency.
- the storage unit stores the arthropathy diagnosis video corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit stores the symptom. It is preferable to output an arthropathy diagnosis image corresponding to the symptom grade together with a number indicating the grade.
- the storage unit stores a typical diagnosis explanation corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit stores the symptom grade. It is preferable to output a typical diagnosis explanation corresponding to the symptom grade together with a number indicating.
- the diagnostic system includes a biological acoustic sensor attached on the skin near the joint of the examinee, an angle sensor that is similarly attached near the joint of the examinee and detects a bending / extension angle of the portion, A weight meter that detects motion acceleration associated with bending and stretching of the joint of the examinee. For example, let the examinee bend and stretch the knee joint, detect abnormal sounds generated at that time with the biological acoustic sensor, and refer to the detection results of the angle sensor and weight meter to distinguish it from other noises It becomes possible to do. This makes it possible to appropriately diagnose knee osteoarthritis.
- the subject of diagnosis may be a joint other than the knee joint.
- the biological acoustic sensor includes a contact probe that is connected to the detection unit of the sensor device that detects vibration, extends in an elongated shape like an antenna, and has a biological contact unit at the tip.
- the sensor device is held inside a cup-shaped inner case body having an opening for guiding the contact probe to the outside on one side, and the inner case body and the buffer so as to cover the entire cup-shaped outer periphery of the inner case body.
- a cup-shaped outer case body is disposed with a gap therebetween. That is, since the sensor device is arranged inside the double-structure case body, it is possible to suppress the sensor device from picking up noise from the outside.
- the cup-shaped outer case body is composed of a plurality of cup-shaped bodies that are arranged with a gap between each other via a cushioning material. That is, the outer case body itself has a double structure or a multiple structure such as a triple structure, and the sensor device is disposed inside the inner case body. This can further suppress the sensor device from picking up external noise.
- the acoustic sensor for living body since the acoustic sensor for living body includes a transmission unit that converts the detection signal of the sensor device into a wireless signal and transmits the signal to the outside, it is not necessary to draw out the signal line to the outside. Thereby, noise due to movement of the signal line can be eliminated.
- the contact probe has a living body contact portion having an inclined shape with a predetermined inclination angle with respect to a direction perpendicular to the opening of the inner case body.
- the biological contact part which is the front-end
- a bone part where knee joint sounds are easily detected may be inclined with respect to the skin surface. Even in such a case, the tip of the contact probe can be brought into contact with the inclined surface and the knee joint sound can be accurately detected.
- the diagnostic device uses the information of the frequency spectrum characteristics of the detection signal of the biological acoustic sensor as diagnostic information, and associates the symptom with each of a plurality of symptom grades based on a typical determination criterion determined in advance for arthropathy.
- actual diagnosis information that is frequency spectrum characteristic information of the acquired actual detection signal is generated, and the typical diagnosis having the strongest correlation with the actual diagnosis information
- the information is specified, and the symptom grade corresponding to the typical diagnosis information is output. Therefore, the diagnosis of arthropathy can be effectively performed using the biological acoustic sensor.
- the typical diagnostic information is spectral characteristic pattern information obtained by patterning the characteristics of the frequency spectral characteristic of the detection signal. Therefore, the stored spectral characteristic pattern for each symptom grade is compared with the spectral characteristic pattern in the actual diagnosis. Thus, it is possible to effectively diagnose arthropathy.
- the typical diagnosis information is the peak information that is a combination of the spectrum peak value that characterizes the frequency spectrum characteristics of the detection signal and its frequency, so the stored peak information for each symptom grade is compared with the peak information in the actual diagnosis.
- the diagnosis of arthropathy can be performed effectively.
- the storage unit stores an arthropathy diagnosis video corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit includes an arthropathy corresponding to the symptom grade together with a number indicating the symptom grade. Output diagnostic video. Thereby, the diagnosis of arthropathy can be effectively performed visually.
- the storage unit stores a typical diagnosis description corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit includes a typical diagnosis description corresponding to the symptom grade together with a number indicating the symptom grade. Can be effectively diagnosed.
- FIG. 1 it is a figure which shows the structure of the diagnostic system of the knee osteoarthritis which diagnoses based on the detection of the knee joint sound of the biometric acoustic sensor. It is a perspective view showing composition of a living body acoustic sensor of an embodiment concerning the present invention. It is sectional drawing which shows the structure of the acoustic sensor for biological bodies of embodiment which concerns on this invention. It is a figure which shows the other structural example of the acoustic sensor for biological bodies of embodiment which concerns on this invention. It is a figure which shows another structural example of the acoustic sensor for biological bodies of embodiment which concerns on this invention.
- FIG. 1 It is a figure which shows the structure of the knee osteoarthritis diagnostic system using the acoustic sensor for biological bodies of FIG. It is a figure which shows the further another structural example of the acoustic sensor for biological bodies of embodiment which concerns on this invention.
- it is a figure explaining the detection data of the knee joint sound by the biomedical sensor in association with a symptom grade.
- it is a figure explaining the frequency spectrum characteristic of the detection data of the knee joint sound by a biological acoustic sensor in association with a symptom grade.
- it is a figure explaining the relationship between the pattern of a frequency spectrum characteristic, and a symptom grade.
- it is a figure explaining the characteristic matter of a frequency spectrum characteristic.
- it is a flowchart which shows the procedure which performs a diagnosis based on the detection of the knee joint sound of the acoustic sensor for biological bodies.
- the knee osteoarthritis diagnosis system will be described as a diagnosis system.
- the living body sound other than the knee joint sound is used. May be detected.
- it can be used for detection of joint sounds other than knee joints, heart sounds, lung sounds, blood vessel pulse sounds, tendon sounds, and the like.
- the biological sound to be detected is assumed to be knee joint sound, and the part on the living body to which the biological acoustic sensor is attached is described as the side surface of the knee, but may be a part other than the side surface of the knee.
- cup-shaped case body is described as a double structure, but a multiple structure having a triple structure or more may of course be used.
- shape, dimension, material, etc. which are demonstrated below are examples for description, and can be suitably changed according to the situation where the biological acoustic sensor is applied.
- FIG. 1 shows a configuration of a knee osteoarthritis diagnosis system 10 using the biological acoustic sensor 12 as a state in which the biological acoustic sensor 12 is used for detection of knee joint sounds.
- an inspected person 8 is shown in FIG. 1 .
- the knee is bent and extended by performing exercise between the state where the examinee 8 is sitting on the chair and the state where he is standing up from the chair, and abnormal sound is detected at the knee joint at that time. This is a system for determining whether or not.
- FIG. 1 shows an explanatory diagram of a state in which the inspected person 8 stands up for convenience of explanation.
- the biological acoustic sensor 12 is attached to the side of the knee of the subject 8, that is, on the skin near the knee joint, for early detection of knee osteoarthritis.
- FIG. 1 shows an explanatory diagram of a state in which the inspected person 8 stands up for convenience of explanation.
- the biological acoustic sensor 12 is attached to the side of the knee of the subject 8, that is, on the skin near the knee joint, for early detection of knee osteoarthritis.
- a total of four biological acoustic sensors are attached on the skin on both sides of each of the left and right knees of the subject 8, which is a case of diagnosing the state of the left and right knee joints.
- the number of biological acoustic sensors 12 attached can be increased or decreased according to the purpose of diagnosis.
- the knee osteoarthritis diagnosis system 10 is mounted on the skin in the vicinity of the joint of the examinee 8 together with the biological acoustic sensor 12, and the angle sensor 60 for detecting the bending / extension angle in the vicinity of the joint and the joint of the examinee 8.
- a meter amplifier 68, a diagnostic device 18 for diagnosing arthropathy based on the detection results of the living body acoustic sensor 12, the angle sensor 60, and the weight meter 62 are provided.
- the angle sensor 60 and the weight meter 62 can accurately detect the timing of movement between the state where the examinee 8 is sitting on the chair and the state where he is standing up from the chair. For the detection data of the acoustic sensor 12 for use, it is possible to distinguish the noise accompanying the movement.
- FIG. 2 shows a perspective view of the biological acoustic sensor 12 as viewed from the side of the knee to which it is attached.
- FIG. 3 is a cross-sectional view of the biological acoustic sensor 12.
- the biological acoustic sensor 12 is a sensor that is firmly attached to the knee of the subject 8 and has a function of detecting a joint sound when the subject 8 flexes and stretches the knee.
- an appropriate band tool, an appropriate adhesive tape, or the like can be used as a method for firmly attaching the biological acoustic sensor 12 to the knee of the subject 8.
- the biological acoustic sensor 12 is a kind of microphone that detects sound, but has a structure that suppresses the entry of noise other than that, particularly noise generated by movement of the living body, when detecting joint sounds. Yes.
- the biological acoustic sensor 12 includes a sensor device 20 that detects vibration, a contact probe 30 that is connected to a detection unit of the sensor device 20, a cup-shaped inner case body 36 that holds the sensor device 20 therein, and an inner case.
- a cup-shaped outer case body 38 covering the entire cup-shaped outer periphery of the body 36 is provided.
- Sensor device 20 is a sensor having a function of detecting vibration. Since the sensor device 20 is a kind of microphone, a voice coil microphone, a condenser microphone using a change in capacitance, or the like can be used. However, as a sensor capable of detecting minute sounds, a piezoelectric element is used here. Used. Specifically, electrodes are provided on both sides of the disk of the disk-shaped piezo element, and an electric signal generated by expansion and contraction of the piezo element is detected by a voltage between both electrodes.
- the diaphragm 22 is a metal disk on which the disk-shaped sensor device 20 is attached.
- the metal material for example, stainless steel, brass or the like can be used.
- the outer peripheral portion of the diaphragm 22 is supported by a buffer material 34 and attached to an inner case body 36 described later. Therefore, the diaphragm 22 functions as a diaphragm that vibrates with the outer peripheral portion serving as a fixed end when an external force is applied to the center position thereof.
- the piezo element which is the sensor device 20 attached thereon, is bent and expanded and contracted in the axial direction, and a voltage difference as a piezoelectric signal appears along the axial direction. become.
- the diaphragm 22 is electrically connected to an electrode on the side in contact with the diaphragm 22 among the two electrodes provided on both sides of the disk of the sensor device 20.
- the signal line 26 connected to the diaphragm 22 is a signal line on one side of the two signal lines of the sensor device 20. Specifically, it becomes a ground signal line.
- the signal line 24 drawn from the electrode on the opposite side to the side in contact with the diaphragm 22 is the other side of the two signal lines of the sensor device 20. Signal line.
- the contact probe cradle 28 is a member attached to the other side of the disk of the sensor device 20, that is, the surface opposite to the side connected to the diaphragm 22, and the minute vibration corresponding to the body sound picked up by the contact probe 30. Is transmitted to the diaphragm 22. Specifically, the contact probe cradle 28 is disposed firmly fixed at the center position of the disk-shaped sensor device 20.
- the center position of the disk-shaped sensor device 20 is the center position of the disk-shaped diaphragm 22, and the outer peripheral portion of the diaphragm 22 is fixed via the buffer material 34 as described above.
- a disk with a fixed outer periphery vibrates with the largest amplitude at the center position when an external force is applied to the center position. Therefore, the contact probe base 28 is disposed at a position where it is most efficient for vibrating the diaphragm 22.
- the sensor device 20 is disposed at a position where the diaphragm 22 has the maximum amplitude.
- the contact probe cradle 28 is arranged at the most efficient detection unit for detecting the vibration of the contact probe 30 in the sensor device 20.
- a plastic disk can be used for the contact probe base 28 in order to achieve electrical insulation between the sensor device 20 and the contact probe 30.
- the contact probe 30 is connected to a contact probe cradle 28 arranged at the detection unit of the sensor device 20 with a base portion fixed and connected to the contact probe 30.
- the contact probe 30 extends in an antenna shape and has a needle-like contact portion at the tip 32. It is a member.
- the tip portion 32 is a portion that is pressed against and contacts the skin of the knee portion of the subject 8 described in FIG. 2, and when the subject 8 bends and stretches the knee, generates a frictional sound or a contact sound at the knee joint. In addition, it has a function of acquiring the sound as minute vibrations of the skin, the underlying muscle, or the underlying bone.
- the minute vibration acquired at the tip 32 propagates along the elongated contact probe 30 and is transmitted to the contact probe cradle 28 at the root.
- the contact probe 30 can be made of a metal material such as a piano wire or a brass wire that efficiently propagates vibrations, or a thin wire of a hard plastic material.
- the diameter of the contact probe 30 and the shape of the tip 32 are appropriately small.
- the diameter of the contact probe 30 is small, the pressure applied to the skin of the person to be inspected 8 increases, so that the person to be inspected 8 is somewhat burdened.
- the tip 32 of the contact probe 30 can be accurately arranged at a site where it is easy to capture joint sounds.
- the part where the joint sound can be easily captured is the part of the knee joint where the femur and tibia face each other in the knee, where the epidermis is thin and is close to the femur and tibia. Since these portions are in a narrow range, it is preferable to accurately position the distal end portion 32 of the contact probe 30. Therefore, as described above, by appropriately reducing the diameter of the contact probe 30 and the size of the shape of the distal end portion 32, the positioning can be easily performed fairly accurately without using a special positioning device. Become.
- the diaphragm 22, the sensor device 20, the contact probe base 28, and the contact probe 30 are sequentially stacked in this order, or connected and fixed to be integrated. If this part is called a sensor part in a broad sense, the sensor part is housed in a double-structured case body of an inner case body 36 and an outer case body 38.
- the inner case body 36 is a cup-shaped member having an opening on one side.
- the broad sensor portion is disposed inside the inner case body 36.
- the tip 32 of the contact probe 30 protrudes from the opening of the inner case body 36, but the other diaphragm 22, sensor device 20, and contact probe cradle 28 are the inner case body 36. It is accommodated so that it may be arrange
- the inner case body 36 may be formed by molding a light metal such as aluminum into a cup shape.
- the cushioning material 34 slightly described in relation to the diaphragm 22 is an annular member disposed at the bottom of the cup-shaped inner surface of the inner case body 36.
- the outer diameter of the ring is set to be the same as or slightly smaller than the diameter of the diaphragm 22.
- one side surface is fixed to the bottom of the inner surface of the inner case body 36 with an appropriate adhesive, and the outer peripheral portion of the diaphragm 22 is fixed to the other side surface with an appropriate adhesive. The Thereby, mechanical vibrations can be insulated from each other between the diaphragm 22 and the inner case body 36.
- the buffer material 34 is a member having a function of effectively suppressing vibration transmission between the diaphragm 22 and the inner case body 36.
- a soft plastic such as silicon resin or a suitable gel material can be used.
- the outer case body 38 is a cup-shaped member having an outer shape that is slightly larger than the inner case body 36. That is, the outer periphery of the inner case body 36 is a cup-shaped member arranged with a gap so as to cover the entire cup-shaped outer periphery of the inner case body 36.
- the gap may be about 0.5 mm to 1 mm. Of course, the gap may be wider or narrower than this, but it is necessary that the inner case body 36 and the outer case body 38 are not in direct contact with each other.
- the material of the outer case body 38 can be the same as that of the inner case body 36.
- the side surface of the inner case body 36 and the side surface of the outer case body 38 are provided with openings for signal lines in alignment.
- This opening connects each of the signal line 24 from the sensor device 20 and the signal line 26 from the diaphragm 22 to the internal signal line constituting the cable line 16 and pulls it out of the biological acoustic sensor 12. belongs to.
- the bush 44 is provided to eliminate a gap between the opening and the cable wire 16. Thereby, the cable wire 16 can be prevented from moving unnecessarily, and external vibrations and sounds can be prevented from entering the inner case body 36.
- the contact board 40 is a disk-shaped member disposed so as to close the cup-shaped opening of the inner case body 36 and the cup-shaped opening of the outer case body 38.
- the outer diameter of the contact panel 40 is set to be the same as the outer diameter at the cup-shaped opening of the outer case body 38.
- the annular end portion in the cup-shaped opening of the outer case body 38 and the annular end portion in the cup-shaped opening of the inner case body 36 are located at the outer case body 38 so as not to contact each other. It arrange
- a central opening hole 42 is provided at the center of the contact panel 40 so that the tip 32 of the contact probe 30 can protrude. This is because the name of the contact board 40 comes into contact with the skin of the knee portion of the subject 8 in this portion. As this contact board 40, the disk comprised with the material similar to the buffer material 34 can be used.
- the contact board 40 is made of the same material as the cushioning material 34, the inner case body 36 and the outer case body 38 are arranged with a gap therebetween via the cushioning material. As a result, mechanical vibration can be insulated between the inner case body 36 and the outer case body 38.
- the outer case body 38 has a cup-shaped outer diameter of 27 mm, an inner diameter of 25 mm, a height of 11.5 mm, and a thickness of 1 mm.
- the inner case body 36 has a cup-shaped outer diameter of 24 mm, an inner diameter of 22 mm, a height of 9.5 mm, and a thickness of 1 mm.
- the gap between the inner diameter of the outer case body 38 and the outer diameter of the inner case body 36 is 0.5 mm.
- the outer diameter of the contact panel 40 is 27 mm, the thickness is 2 mm, and the inner diameter of the central opening hole 42 is 5 mm.
- the depth at which the cup-shaped annular end portion of the outer case body 38 and the cup-shaped annular end portion of the inner case body 36 are embedded in the contact panel 40 is 1 mm.
- the outer diameter of the diaphragm 22 is 20 mm, the thickness is 0.2 mm, the outer diameter of the sensor device 20 is 14 mm, the thickness is 0.23 mm, the outer diameter of the contact probe support 28 is 6 mm, and the height is 3 mm.
- the diameter of the contact probe 30 is 1.5 mm, the length of the root portion embedded in the contact probe support 28 is 1 mm, the height from the contact probe support 28 to the tip 32 is 5.57 mm, and the height protruding from the contact board 40 The thickness is 1.5 mm.
- the buffer material 34 has an outer diameter of 20 mm, an inner diameter of 16 mm, and a height of 2 mm.
- the above dimension values are merely examples.
- the size can be about 60% of the above size.
- the overall outer diameter of the biological acoustic sensor 12 can be 15 mm and the height can be 10 mm.
- the biological acoustic sensor 12 has a configuration in which the contact plate 40 is disposed in the cup-shaped opening, and the tip end portion 32 of the contact probe 30 protrudes from the center of the contact plate 40. Yes.
- the front surface 32 of the contact probe 30 is in contact with a predetermined part of the knee joint by fixing the surface of the contact board 40 to the skin of the knee part of the person 8 to be inspected, and the joint sound at that part. Can be picked up and transmitted to the sensor device 20.
- the sensor device 20 is housed and disposed inside a cup-shaped body having a double structure of the outer case body 38 and the inner case body 36 which are arranged with a gap therebetween through a cushioning material. It is possible to sufficiently suppress the device 20 from picking up noise such as vibration and sound from the outside. Further, the contact probe 30 disposed in the detection unit of the sensor device 20 extends in an elongated shape like an antenna, and the tip 32 protrudes from the contact board 40, so that the detection area of the body sound can be narrowed down, and extra noise is generated. Picking up can be suppressed.
- FIGS. 4 to 7 are diagrams showing some modified examples of the configuration of FIGS.
- FIG. 4 is a view showing an example of the biological acoustic sensor 13 configured to draw the cable wire 16 from the cup-shaped top portions of the inner case body 36 and the outer case body 38.
- the cable wire 16 is drawn out from the respective side surfaces of the inner case body 36 and the outer case body 38.
- the cable line 16 is drawn along the cup-shaped center line of the inner case body 36 and the outer case body 38, so even if an external force is applied to the cable line 16, The influence is symmetric with respect to the center line of the biological acoustic sensor 13, and the influence of eccentric vibration and noise can be reduced.
- FIG. 5 is a diagram illustrating an example of the biological acoustic sensor 14 having a configuration including an electronic component including a transmission unit that converts a detection signal of the sensor device 20 into a wireless signal and transmits the signal to the outside.
- a sensor IC 50 including a signal processing circuit, a transmission circuit, and an antenna can be used as the electronic component including the transmission unit.
- the sensor IC 50 is attached to a suitable substrate 52 provided in the inner case body 36 and is connected to the sensor device 20 via the signal lines 24 and 26. And it has a function which processes a signal acquired from the sensor device 20 so as to be suitable for wireless communication via a signal processing circuit, and outputs it to an antenna via a transmission circuit.
- the power source may be configured to include a small battery.
- the sensor IC 50 includes a wireless power receiving circuit, receives a high-frequency power signal supplied from the outside, and is necessary based on this. It is good also as what covers a certain electric power.
- the portion of the inner case body 36 on which the substrate 52 is provided and the portion of the outer case body 38 corresponding to the portion are respectively provided with appropriate resin windows 54, so that a radio signal transmitted from the antenna can reach the outside. 56.
- the frequency of each radio signal may be different so that the radio signals from each do not cross.
- FIG. 6 is a diagram showing a configuration of the knee osteoarthritis diagnosis system 10 using the biological acoustic sensor 14 of FIG.
- a communication control unit 63 is provided between the biological acoustic sensor 14 and the biological acoustic sensor amplifier 64.
- the communication control unit 63 includes an antenna, a reception circuit, and a signal processing circuit.
- the communication control unit 63 receives a radio signal transmitted from the biological acoustic sensor 14 with the antenna, and receives the received signal via the signal processing circuit. It has a function of outputting to the acoustic sensor amplifier 64.
- the biological acoustic sensor 14 does not have a power supply, it may have a function of performing wireless power transmission.
- the communication control unit 63 may be provided with a transmission circuit, and the living body acoustic sensor 14 may be provided with a receiving circuit corresponding thereto, so that the living body acoustic sensor 14 and the diagnostic device 18 can communicate with each other.
- the angle sensor 60 and the weight meter 62 may be provided with appropriate sensor ICs so that wireless communication with the communication control unit 63 is possible.
- FIG. 7 is a diagram illustrating an example of the biological acoustic sensor 15 having a configuration in which the distal end portion 33 of the contact probe 30 has an inclined shape with a predetermined inclination angle with respect to a direction perpendicular to the plane of the contact board 40. .
- the biological contact part which is the front-end
- a bone part where knee joint sounds are easily detected may be inclined with respect to the skin surface. Even in such a case, the tip of the contact probe can be brought into contact with the inclined surface and the knee joint sound can be accurately detected.
- FIG. 8 is a diagram for explaining the detailed configuration of the diagnostic apparatus 18.
- the diagnostic device 18 is a device that diagnoses arthropathy based on the detection results of the biological acoustic sensor 14, the angle sensor 60, and the weight meter 62.
- the biological acoustic sensor 14 capable of wireless communication is illustrated, but a biological acoustic sensor of a type that is connected to the diagnostic device 18 by wire can be used as a matter of course.
- the angle sensor 60 and the weight meter 62 are used to accurately detect the timing of movement when the examinee bends and stretches the knee for a diagnostic examination and to distinguish noise associated with the movement.
- the diagnosis of knee joint disease based on the detection data of the biological acoustic sensor 14 will be described on the assumption that noise associated with exercise has been appropriately removed.
- the diagnostic device 18 includes a communication control unit 63 for performing wireless communication with the biological acoustic sensor 14, a control unit 80 for performing data processing for diagnosis, a storage unit 90 connected to the control unit 80, and a control.
- the display unit 70 is connected to the unit 80 and displays a diagnosis result.
- the display unit 70 can be a display, a printer, or the like.
- An appropriate computer can be used as the diagnostic device 18.
- the diagnostic device 18 has the living body acoustic sensor 14 attached to the knee portion of the person 8 to be inspected, and the state between the state where the person 8 is sitting on the chair and the state where he stands up from the chair. This is a device for exercising, detecting a biological sound from the knee joint accompanying the flexion and extension of the knee at that time by the biological acoustic sensor 14, and making a diagnosis based on the detection result.
- the control unit 80 of the diagnostic device 18 includes an actual diagnosis information generation unit 82 that generates actual diagnosis information that is information of frequency spectrum characteristics of the actual detection signal of the biological acoustic sensor, and a storage unit that uses the actual diagnosis information as a search key. Based on a predetermined correlation condition, the typical diagnosis information specifying unit 84 for specifying the typical diagnosis information having the strongest correlation with the actual diagnosis information and the symptom grade corresponding to the specified typical diagnosis information are output. A symptom grade output unit 86 is included. Such a function can be realized by executing software, and specifically, can be realized by executing an arthropathy diagnosis program. Some of these functions may be realized by hardware.
- the storage unit 90 is a storage device having a function of storing an arthropathy diagnosis program or the like, and particularly has a function of storing a typical diagnosis information file 92 used for diagnosis.
- the typical diagnosis information file 92 is a data file in which typical diagnosis information 100 for each symptom grade is summarized for a plurality of symptom grades, with the degree of progression of arthropathy as a symptom grade.
- the typical diagnosis information 100 is a plurality of signal processing information predetermined to be useful for diagnosis with respect to the detection signal of the biological acoustic sensor 14 as diagnosis information, and collects diagnosis information about each symptom grade in advance, Diagnostic information that can be analyzed and, as a result, considered typical for each symptom grade.
- the diagnostic information is information on a plurality of signal processes that are useful for diagnosis with respect to the detection signal of the bioacoustic sensor 14, and includes signals in frequency analysis, statistical analysis, fluctuation sound analysis, and the like.
- Frequency analysis includes power spectrum, Fourier spectrum, phase spectrum, autocorrelation function, cross spectrum, cross-correlation function, frequency response function, impulse response, coherence, and the like.
- Statistical analysis includes histogram, sample autocorrelation, normal probability plot, scatter diagram / regression analysis, stereogram, interval statistics, sample cross correlation, 3D scatter diagram, 3D interval statistics, and the like.
- the fluctuation sound analysis includes loudness, sharpness, roughness, fluctuation intensity, AI, tonality, time fluctuation, fluctuation sound Core, fluctuation sound Mask, loudness fluctuation Core, loudness fluctuation Mask, and the like.
- diagnosis information is continued as information on frequency spectrum characteristics that are intensity distributions for each frequency component of the detection signal of the bioacoustic sensor.
- FIG. 9 is a diagram illustrating an example of the typical diagnosis information 100 stored in the storage unit 90.
- the typical diagnosis information 100 includes a symptom grade column 102 indicating a symptom grade by a number indicating the degree of progression of arthropathy, spectral characteristic pattern information 104 obtained by patterning characteristics of a frequency spectral characteristic corresponding to the symptom grade, and spectral characteristic pattern information.
- 104 including a detailed frequency spectrum characteristic 106 corresponding to 104, an arthropathy diagnosis image 108 corresponding to the symptom grade, a schematic diagram 110 of the arthropathy diagnosis image, and a typical diagnosis explanation column 112 corresponding to the symptom grade Is done.
- FIG. 9 shows typical diagnostic information 100 for grade 2 as an example.
- the arthropathy diagnosis video 108 is a video image obtained by imaging the knee joint portion with an X-ray imaging device. Instead of or in addition to the video image captured by the X-ray imaging apparatus, a video image captured by the MRI imaging apparatus may be used.
- chart data of spectrum characteristic pattern information is given as a search key
- the chart data of each spectrum characteristic pattern information 104 is read for each typical diagnosis information 100 stored in the storage unit 90 using a pattern recognition technique.
- the result is compared with chart data given as a search key.
- the comparison is performed by evaluating the degree of correlation between the chart data of the search key and the chart data stored in the storage unit 90 based on a predetermined correlation condition.
- chart data having the strongest correlation is specified, the spectrum characteristic pattern information 104 is read as typical diagnostic information.
- the spectral characteristic pattern information can be searched by comparing the charts using the pattern recognition technique as described above.
- the characteristic item characterizing the frequency spectral characteristic pattern information is used as a search key.
- You can also As a characteristic item characterizing the pattern information of the frequency spectrum characteristic for example, peak information that is a combination of a spectrum peak value and a frequency when the maximum spectrum value is shown in the frequency spectrum characteristic can be used.
- the search time can be remarkably shortened by using the digitized characteristic items as the search key.
- FIG. 10 is a diagram for explaining the mounting position of the biological acoustic sensor 14 suitable for diagnosing knee arthropathy.
- FIG. 10 shows elements of the peripheral portion of the knee joint related to knee arthropathy.
- a femur 120, a patella 122, a rib 124, a tibia 126, and an articular cartilage 128 are shown.
- the biological acoustic sensor 14 is preferably attached to the skin surface at a site where the epidermis is thin and close to bone.
- a to F are shown as preferable mounting positions.
- A is a position corresponding to a portion called the medial condyle of the femur 120.
- B is a position corresponding to a portion called the lateral condyle of the femur 120.
- C is a position corresponding to a portion called the medial condyle of the tibia 126.
- D is a position corresponding to a portion called the lateral condyle of the tibia 126.
- E is a position corresponding to a portion called a rough surface of the tibia 126.
- F is a position corresponding to a portion called the outer upper edge of the patella 122.
- FIG. 11 is a diagram showing the progress of knee arthropathy using the diagram of the knee joint part described in FIG. The degree of progression of knee arthropathy is indicated by a number called a grade.
- FIG. 11 shows the progression of knee arthropathy in six states. The state shown as (0) in FIG. 11 is a normal state. In a normal state, the gap between the femur 120 and the tibia 126 is normal, and wear on the load surface where the femur 120 and the tibia 126 face each other is not observed.
- the state shown as (1) and the state shown as (2) in FIG. 11 are called grade 1 and grade 2, respectively, in the initial stage of knee osteoarthritis.
- grade 1 state a state 130 where osteophytes are formed at the medial end between the femur 120 and the tibia 126 is shown.
- grade 2 state a state 132 in which the joint row space 132 which is a gap between joints is becoming narrower is shown.
- the state where the joint space is 3 mm or less is defined as grade 2.
- FIG. 9 shows typical diagnostic information in grade 2.
- the state shown as (3) in FIG. 11 is called the grade 3 in the middle stage of knee arthropathy.
- the joint row space is further narrowed and the joint row space is closed, or a state 134 resulting in subluxation.
- grade 4 and grade 5 are called the grade 4 and grade 5, respectively, at the final stage of knee arthropathy.
- grade 4 there is shown a state 136 in which the joint row gap is lost and a part of the load surface is lost due to wear.
- Grade 5 shows a state 138 in which wear or loss of the load surface has further progressed and the femur 120 and tibia 126 are displaced. Specifically, it can be distinguished from grade 4 when the wear or loss of the articular cartilage 128 on the load surface is less than 5 mm, and grade 5 when the wear or loss is 5 mm or more.
- the living body acoustic sensor 14 is attached and the knee is bent and extended, and the signal of the living body acoustic sensor 14 detected at that time and the knee arthropathy are detected.
- the result of associating with the symptom grade indicating the degree of progression will be described.
- the association was performed by imaging the knee joint portion with the X-ray imaging device for the same subject and determining the symptom grade for the video image using the symptom grade classification criteria described in FIG.
- the results of classifying a large number of test results, extracting typical examples for each symptom grade, and arranging them are shown in FIGS.
- FIG. 12 shows waveforms obtained by appropriately amplifying the detection signals of the biological acoustic sensor 14 arranged according to symptom grades.
- the horizontal axis is time, and the range shown in FIG. 12 is a diagnosis period from when the examinee sits on a chair and rests and the knee is bent, and stands up to extend the knee for 5 seconds. It is.
- This diagnosis period is set in advance as a guideline for the speed of flexion and extension, as a period when the knee has been extended from the flexion and stationary state of the knee. Even if it is other than 5 seconds, it may be a predetermined time. For example, this may be 3 seconds.
- the vertical axis represents the voltage of the detection signal.
- FIG. 12 from the upper side toward the lower side, (0), (1), (2), (3), (4), (5) are shown in FIG. A state, a grade 2 state, a grade 3 state, a grade 4 state, and a grade 5 state are shown. As shown in FIG. 12, as the symptom grade progresses, the voltage of the detection signal increases. In particular, grades 4 and 5 are clearly distinguished from other symptom grades.
- FIG. 13 is a diagram showing a result of performing a Fourier analysis on the detected waveform in FIG. 12 and comparing the power spectrum for each frequency.
- the waveform obtained by performing the Fourier analysis is a waveform of FIG. 12, that is, a signal for a diagnosis period of 5 seconds as one waveform.
- FIG. 13 is a diagram showing the voltage level as frequency on the horizontal axis and the power spectrum for each frequency on the vertical axis. This is called frequency spectrum characteristics.
- (S), (0), (1), (2), (3), (4), (5) are arranged from the upper side to the lower side.
- (0) to (5) respectively correspond to (0) to (5) in FIG. 11, and
- (S) is a frequency spectrum characteristic in a state where the subject is sitting on a chair and is stationary and the knee is bent. It is.
- the detection signal from the biological acoustic sensor 14 is acquired at the same time as the diagnosis time from (0) to (5) while sitting on a chair and stationary, and this is subjected to Fourier analysis. It is.
- the voltage level rises as the symptom grade progresses, and in particular, the voltage level on the high frequency side rises.
- the voltage level rises over a wide range of frequency bands.
- FIG. 14 is a diagram comparing the characteristic lines of the respective symptom grades as characteristic lines obtained by smoothing and patterning the frequency spectrum characteristics of FIG.
- the horizontal axis is the frequency
- the vertical axis is the voltage level indicating the magnitude of the power spectrum.
- (0) to (5) are the same as (0) to (5) in FIG. 13 and indicate symptom grades. From the result of FIG. 14, it can be seen that each symptom grade indicating the degree of progression of knee arthropathy can be distinguished by a characteristic line obtained by patterning frequency spectrum characteristics.
- FIG. 15 is a diagram for explaining characteristic items of a characteristic line obtained by patterning frequency spectrum characteristics.
- the voltage level may rise as the symptom grade progresses as an item that characterizes each of the patterned characteristic lines.
- This characteristic item can be indicated by the maximum value V P of the voltage level, which is a power spectrum, and the frequency f P at the maximum value V P. Since this maximum value V P is a spectrum peak value that characterizes the frequency spectrum characteristics, and f P is the frequency at that time, this combination can be used as peak information, and the peak information can be used as a feature item.
- the voltage level may rise over a wide frequency band as the symptom grade progresses. This feature can be shown, for example, at a frequency f 0.1 of a voltage level V 0.1 that is 20 dB smaller than the maximum voltage level value V P.
- a combination of a voltage level obtained based on a predetermined reference and a frequency at the voltage level can be used.
- FIG. 16 is a flowchart showing a procedure for diagnosing knee arthropathy using the above-described results and using the biological acoustic sensor 14.
- the person to be inspected is placed on a chair to be in a stationary state, and this is set to an initial state (S10).
- the diagnosis device 18 is initialized.
- the subject is raised from the chair, the knee is extended, and this is regarded as a load extension, and a signal from the biological acoustic sensor 14 is acquired (S12).
- This signal is an actual detection signal when a diagnosis is actually performed.
- the storage unit 90 is searched using the spectrum characteristic pattern information of the actual diagnosis as a search key, and the spectrum characteristic pattern most closely related to the spectrum characteristic pattern of the actual diagnosis is specified using a pattern recognition technique or the like.
- the identified spectral characteristic pattern is typical diagnostic information (S16). This processing procedure is executed by the function of the typical diagnosis information specifying unit 84 of the control unit 80.
- the storage unit 90 may be searched using the characteristic items regarding the spectrum characteristic pattern of the actual diagnosis, and the spectrum characteristic pattern most closely related to the spectrum characteristic pattern of the actual diagnosis may be specified. Good.
- the typical diagnostic information stored in the storage unit 90 is associated in advance with a spectrum peak value that characterizes the frequency spectrum characteristics and peak information that is a combination of the frequencies.
- the symptom grade corresponding to the specified spectral characteristic pattern is output (S18).
- spectral characteristic pattern information corresponding to the symptom grade in addition to the symptom grade, detailed frequency spectrum characteristics corresponding thereto, arthropathy diagnosis video corresponding to the symptom grade, schematic diagram of the arthropathy diagnosis video, It is preferable to output a typical diagnosis explanation corresponding to the symptom grade.
- a data sheet such as the typical diagnostic information 100 shown in FIG. 9 as diagnostic data.
- the diagnostic data is output to the display unit 70.
- FIGS. 17 to 21 show typical diagnostic information 140, 142, 144 for normal state, grade 1, grade 3, grade 4, and grade 5. 146,148. Each content is the same as that described with reference to FIGS.
- the biological acoustic sensor according to the present invention can be used for detecting biological sounds such as knee joint sounds, sounds of joints other than the knee joint, heart sounds when the living body operates, lung sounds, blood vessel pulse sounds, and tendon sounds. .
- the diagnostic system using the biological acoustic sensor according to the present invention can be used for the diagnosis of knee arthropathy.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Rheumatology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Geometry (AREA)
- Physiology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
A knee osteoarthritis diagnostic system is configured by including a bio-acoustic sensor (14) and a diagnostic device (18). The diagnostic device (18) is configured by including a storage unit (90) in which typical diagnostic information (100) for each symptomatic grade is stored, a control unit (80) for performing data processing or the like for diagnosis, and a display unit (70) for displaying the result of the diagnosis. The control unit (80) is configured by including an actual diagnostic information generating unit (82) for generating actual diagnostic information which is the information associated with the frequency spectrum characteristics of the actual detection signal of the bio-acoustic sensor (14), a typical diagnostic information identifying unit (84) for searching the storage unit (18) using the actual diagnostic information as a search key to identify typical diagnostic information having the strongest correlation with the actual diagnostic information, and a symptomatic grade output unit (86) for outputting a symptomatic grade corresponding to the identified typical diagnostic information.
Description
本発明は、生体用音響センサ及びこれを用いた診断システムに係り、特に、生体の関節音を取得する生体用音響センサ及びこれを用いた診断システムに関する。
The present invention relates to a living body acoustic sensor and a diagnostic system using the same, and more particularly to a living body acoustic sensor that acquires joint sounds of a living body and a diagnostic system using the same.
高齢化社会が進展すると共に、関節の痛みを訴える患者が増加しつつある。例えば、2008年第52回日本リウマチ学会における報告では、広範囲な疫学調査によると、X線上の変形所見からの変形性膝関節症の有病率が男性で44.6%、女性で66.0%と高い有病率である。変形性膝関節症はその回復が非常に困難であることから、その早期発見が望まれる。可能性のある早期発見法として、膝関節における異常音の検出が検討されている。
As the aging society progresses, the number of patients complaining of joint pain is increasing. For example, according to a report at the 52nd Annual Meeting of the Japanese Association of Rheumatology in 2008, according to an extensive epidemiological survey, the prevalence of knee osteoarthritis from deformity findings on X-rays was 44.6% for men and 66.0 for women. The prevalence is as high as%. Since it is very difficult to recover from knee osteoarthritis, early detection is desired. As a possible early detection method, detection of abnormal sounds in the knee joint has been studied.
生体音を検出するものとしては、ダイヤフラムを生体に押し当て、その振動音を導管でイヤーチップに導き医者がそれを聴診する聴診器が古くから用いられている。例えば、特許文献1には、ダイヤフラムに突起を設けることで、ダイヤフラムの全体を肌に押し当てることなく聴診ができることが述べられている。
For detecting body sounds, stethoscopes have been used for a long time to press a diaphragm against a living body and guide the vibration sound to an ear tip through a conduit and a doctor auscultates it. For example, Patent Document 1 describes that by providing a protrusion on the diaphragm, auscultation can be performed without pressing the entire diaphragm against the skin.
ダイヤフラムの振動以外にも、電子式マイクロフォンを用いて生体音を検出することができる。例えば、特許文献2には、静電容量変化を用いるコンデンサマイクをハウジングに収納した心音・肺音検出用の生体音検出装置として、皮膚上の体毛との接触音の影響を抑制するため、皮膚と同程度の硬さを有する軟質シートを接触面に貼付する構成が述べられている。また、押付圧を確保するための錘があり、その外側にハウジングが設けられ、錘とハウジングとの間の隙間によって、生体外からの雑音が抑制されると述べられている。
In addition to diaphragm vibration, biological sounds can be detected using an electronic microphone. For example, Patent Document 2 discloses a body sound detection device for detecting heart sounds and lung sounds in which a capacitor microphone using a change in capacitance is housed in a housing, in order to suppress the influence of contact sounds with body hair on the skin. The structure which sticks the soft sheet | seat which has the same degree of hardness to a contact surface is described. Further, it is stated that there is a weight for securing the pressing pressure, a housing is provided on the outside thereof, and noise from outside the living body is suppressed by a gap between the weight and the housing.
特許文献1の聴診器、あるいは特許文献2の生体音検出装置によれば、静止状態である人体等の生体の心音、肺音等の生体内の音を検出することができる。これに対し、変形性関節症の診断のための生体音検出は、動作状態における生体内の音を検出できることが望ましい。例えば、膝関節における異常音の検出は、実際に膝関節を動かしてみて、その際の関節音を検出することが望ましい。
According to the stethoscope of Patent Literature 1 or the biological sound detection device of Patent Literature 2, it is possible to detect in-vivo sounds such as heart sounds and lung sounds of a living body such as a stationary human body. On the other hand, it is desirable that the body sound detection for the diagnosis of osteoarthritis can detect the sound in the living body in the operating state. For example, it is desirable to detect an abnormal sound at the knee joint by actually moving the knee joint and detecting the joint sound at that time.
このように、動作状態における生体内の音を検出しようとすると、生体が動作することで生じる音も生体音検出センサが検出することが生じ、生体音が微小音の場合、その検出が不正確になることが生じる。生体が動作することで生じる音としては、皮膚とセンサとの間の移動による音、信号線の移動による音、生体が移動することで生じる風の音等が考えられる。
Thus, when attempting to detect the sound in the living body in the operating state, the sound generated by the living body's operation may also be detected by the biological sound detection sensor. If the biological sound is a micro sound, the detection is inaccurate. Will occur. As sounds generated by the movement of the living body, sounds due to movement between the skin and the sensor, sounds due to movement of signal lines, wind sounds generated by movement of the living body, and the like can be considered.
本発明の目的は、生体の動作により生じるノイズ音が入り込むことを抑制して、動作状態における生体内の音を検出できる生体用音響センサを提供することである。他の目的は、この生体用音響センサを用いた診断システムを提供することである。
An object of the present invention is to provide a living body acoustic sensor that can detect a sound in a living body in an operating state by suppressing noise sound generated by the living body's operation. Another object is to provide a diagnostic system using this biological acoustic sensor.
本発明に係る診断システムは、被検査者の関節近傍の皮膚上に取り付けられる生体用音響センサと、被検査者の関節近傍の皮膚上に取り付けられ、関節近傍の屈伸角度を検出する角度センサと、被検査者の関節の屈伸に伴う運動加速度を検出する加重計と、生体用音響センサと、角度センサと、加重計の検出結果に基づいて関節症の診断を行う診断装置と、を備えることを特徴とする。
A diagnostic system according to the present invention includes a biological acoustic sensor attached on the skin near the joint of the examinee, an angle sensor attached on the skin near the joint of the examinee, and detecting a bending and stretching angle near the joint. A weight meter for detecting motion acceleration associated with bending and stretching of the examinee's joint, a biological acoustic sensor, an angle sensor, and a diagnosis device for diagnosing arthropathy based on the detection result of the weight meter It is characterized by.
本発明に係る生体用音響センサは、振動を検出するセンサデバイスと、センサデバイスの検出部に接続され、アンテナ状に細長く延びて先端部に生体接触部を有する接触プローブと、内部にセンサデバイスを保持し、一方側に接触プローブを外側に導く開口部を有するカップ状の内側ケース体と、内側ケース体のカップ状外周の全体を覆うように、内側ケース体と緩衝材を介して隙間を開けて配置されるカップ状の外側ケース体と、を備えることを特徴とする。
The biological acoustic sensor according to the present invention includes a sensor device that detects vibration, a contact probe that is connected to a detection unit of the sensor device, extends in an elongated shape like an antenna, and has a biological contact part at the tip, and a sensor device inside. A cup-shaped inner case body having an opening for holding the contact probe on one side to the outside and a cup-shaped outer periphery of the inner case body so as to cover the entire cup-shaped outer periphery, a gap is formed through the inner case body and the cushioning material. And a cup-shaped outer case body that is arranged.
また、本発明に係る生体用音響センサにおいて、カップ状の外側ケース体は、互いに緩衝材を介して隙間を開けて配置される複数のカップ状体から構成されることが好ましい。
Also, in the biological acoustic sensor according to the present invention, it is preferable that the cup-shaped outer case body is composed of a plurality of cup-shaped bodies that are arranged with a gap between each other via a cushioning material.
また、本発明に係る生体用音響センサにおいて、センサデバイスの検出信号を無線信号に変換して外部の送信する送信部を含むことが好ましい。
In addition, the biological acoustic sensor according to the present invention preferably includes a transmission unit that converts a detection signal of the sensor device into a wireless signal and transmits the signal to the outside.
また、本発明に係る生体用音響センサにおいて、接触プローブは、内側ケース体の開口部に垂直な方向に対し、予め定められた傾斜角度の傾斜形状の生体接触部を有することが好ましい。
In the biological acoustic sensor according to the present invention, it is preferable that the contact probe has a living body contact portion having an inclined shape with a predetermined inclination angle with respect to a direction perpendicular to the opening of the inner case body.
また、本発明に係る生体用音響センサを用いる診断システムにおいて、 診断装置は、予め定めた信号検出期間の生体用音響センサの検出信号について、診断に役立つように予め定めた複数の信号処理の情報を診断情報とし、関節症の進行度を症状グレードとし、診断情報について予め定めた典型判断基準に基づいて、複数の症状グレードのそれぞれに関連付けて、当該症状グレードに対応する典型診断情報を記憶する記憶部と、診断対象者についての生体用音響センサの実検出信号を予め定めた信号検出期間について取得する取得部と、取得した実検出信号についての診断情報である実診断情報を生成する実診断情報生成部と、実診断情報を検索キーとして、記憶部を検索し、予め定めた相関関係条件に基づいて、実診断情報に最も相関関係が強い典型診断情報を特定する特定部と、特定された典型診断情報に対応する症状グレードを出力する出力部と、を含むことが好ましい。
Moreover, in the diagnostic system using the biological acoustic sensor according to the present invention, the diagnostic device uses a plurality of predetermined signal processing information to be useful for diagnosis with respect to the detection signal of the biological acoustic sensor in a predetermined signal detection period. Is used as diagnostic information, the degree of progression of arthropathy is defined as a symptom grade, and typical diagnostic information corresponding to the symptom grade is stored in association with each of a plurality of symptom grades based on typical judgment criteria predetermined for the diagnostic information. A storage unit, an acquisition unit that acquires a real detection signal of a biological acoustic sensor for a diagnosis subject for a predetermined signal detection period, and an actual diagnosis that generates actual diagnosis information that is diagnostic information about the acquired actual detection signal The information generation unit and the storage unit are searched using the actual diagnosis information as a search key, and the most correlated to the actual diagnosis information based on a predetermined correlation condition A specifying unit which engages to identify the strong typical diagnostic information, and an output unit for outputting a symptom grade corresponding to typical diagnostic information specified, preferably contains.
また、本発明に係る生体用音響センサを用いる診断システムにおいて、診断情報は、生体用音響センサの検出信号についての周波数成分ごとの強さ分布である周波数スペクトル特性の情報であり、典型診断情報は、検出信号の周波数スペクトル特性の特徴をパターン化したスペクトル特性パターン情報であることが好ましい。
Further, in the diagnostic system using the biological acoustic sensor according to the present invention, the diagnostic information is information of frequency spectrum characteristics that are intensity distributions for each frequency component of the detection signal of the biological acoustic sensor, and the typical diagnostic information is The spectral characteristic pattern information obtained by patterning the characteristics of the frequency spectral characteristic of the detection signal is preferable.
また、本発明に係る生体用音響センサを用いる診断システムにおいて、診断情報は、生体用音響センサの検出信号についての周波数成分ごとの強さ分布である周波数スペクトル特性の情報であり、典型診断情報は、検出信号の周波数スペクトル特性を特徴付けるスペクトルピーク値とその周波数の組合せであるピーク情報であることが好ましい。
Further, in the diagnostic system using the biological acoustic sensor according to the present invention, the diagnostic information is information of frequency spectrum characteristics that are intensity distributions for each frequency component of the detection signal of the biological acoustic sensor, and the typical diagnostic information is Preferably, the peak information is a combination of a spectrum peak value characterizing the frequency spectrum characteristic of the detection signal and its frequency.
また、本発明に係る生体用音響センサを用いる診断システムにおいて、記憶部は、複数の症状グレードのそれぞれに対応付けて、当該症状グレードに対応する関節症診断映像を記憶し、出力部は、症状グレードを示す番号とともに、当該症状グレードに対応する関節症診断映像を出力することが好ましい。
Further, in the diagnostic system using the biological acoustic sensor according to the present invention, the storage unit stores the arthropathy diagnosis video corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit stores the symptom. It is preferable to output an arthropathy diagnosis image corresponding to the symptom grade together with a number indicating the grade.
また、本発明に係る生体用音響センサを用いる診断システムにおいて、記憶部は、複数の症状グレードのそれぞれに対応付けて、当該症状グレードに対応する典型診断説明を記憶し、出力部は、症状グレードを示す番号とともに、当該症状グレードに対応する典型診断説明を出力することが好ましい。
In the diagnostic system using the biological acoustic sensor according to the present invention, the storage unit stores a typical diagnosis explanation corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit stores the symptom grade. It is preferable to output a typical diagnosis explanation corresponding to the symptom grade together with a number indicating.
上記構成により、診断システムは、被検査者の関節近傍の皮膚上に取り付けられる生体用音響センサと、同様に被検査者の関節近傍に取り付けられてその部分の屈伸角度を検出する角度センサと、被検査者の関節の屈伸に伴う運動加速度を検出する加重計とを含む。例えば、被検査者に膝関節の屈伸を行わせて、その際に生じる異常音を生体用音響センサで検出し、角度センサ、加重計の検出結果を参照して、他のノイズとの区別をすることが可能となる。これにより、変形性膝関節症の診断を適切に行うことが可能になる。診断の対象は、膝関節以外の関節であってもよい。
With the above configuration, the diagnostic system includes a biological acoustic sensor attached on the skin near the joint of the examinee, an angle sensor that is similarly attached near the joint of the examinee and detects a bending / extension angle of the portion, A weight meter that detects motion acceleration associated with bending and stretching of the joint of the examinee. For example, let the examinee bend and stretch the knee joint, detect abnormal sounds generated at that time with the biological acoustic sensor, and refer to the detection results of the angle sensor and weight meter to distinguish it from other noises It becomes possible to do. This makes it possible to appropriately diagnose knee osteoarthritis. The subject of diagnosis may be a joint other than the knee joint.
上記構成により、生体用音響センサは、振動を検出するセンサデバイスの検出部に接続され、アンテナ状に細長く延びて先端部に生体接触部を有する接触プローブを備える。これによって、生体音の検出領域を絞ることができ、余計なノイズを拾うことが抑制できる。
With the above-described configuration, the biological acoustic sensor includes a contact probe that is connected to the detection unit of the sensor device that detects vibration, extends in an elongated shape like an antenna, and has a biological contact unit at the tip. As a result, the detection area of the body sound can be narrowed down, and it is possible to suppress picking up extra noise.
また、一方側に接触プローブを外側に導く開口部を有するカップ状の内側ケース体の内部にセンサデバイスが保持され、その内側ケース体のカップ状外周の全体を覆うように、内側ケース体と緩衝材を介して隙間を開けて、カップ状の外側ケース体が配置される。つまり、二重構造のケース体の内部にセンサデバイスが配置されるので、センサデバイスが外部からのノイズを拾うことを抑制できる。
In addition, the sensor device is held inside a cup-shaped inner case body having an opening for guiding the contact probe to the outside on one side, and the inner case body and the buffer so as to cover the entire cup-shaped outer periphery of the inner case body. A cup-shaped outer case body is disposed with a gap therebetween. That is, since the sensor device is arranged inside the double-structure case body, it is possible to suppress the sensor device from picking up noise from the outside.
また、生体用音響センサにおいて、カップ状の外側ケース体は、互いに緩衝材を介して隙間を開けて配置される複数のカップ状体から構成される。つまり、外側ケース体そのものが、二重構造、あるいは三重構造等の多重構造で構成され、その内側の内側ケース体の内部にセンサデバイスが配置される。これによって、さらに一層、センサデバイスが外部からのノイズを拾うことを抑制できる。
In the biological acoustic sensor, the cup-shaped outer case body is composed of a plurality of cup-shaped bodies that are arranged with a gap between each other via a cushioning material. That is, the outer case body itself has a double structure or a multiple structure such as a triple structure, and the sensor device is disposed inside the inner case body. This can further suppress the sensor device from picking up external noise.
また、生体用音響センサにおいて、センサデバイスの検出信号を無線信号に変換して外部の送信する送信部を含むので、信号線を外部に引き出すことが不要となる。これにより、信号線の移動によるノイズを無くすことができる。
In addition, since the acoustic sensor for living body includes a transmission unit that converts the detection signal of the sensor device into a wireless signal and transmits the signal to the outside, it is not necessary to draw out the signal line to the outside. Thereby, noise due to movement of the signal line can be eliminated.
また、生体用音響センサにおいて、接触プローブは、内側ケース体の開口部に垂直な方向に対し、予め定められた傾斜角度の傾斜形状の生体接触部を有する。これにより、生体の皮膚表面に対し、傾斜した方向に接触プローブの先端部である生体接触部を押し当てることが容易になる。例えば、膝関節音を検出しやすい骨の部位が皮膚の表面に対し傾斜していることがある。このような場合でも、接触プローブの先端部をその傾斜面に適合して接触させることができ、膝関節音を正確に検出できる。
In the biological acoustic sensor, the contact probe has a living body contact portion having an inclined shape with a predetermined inclination angle with respect to a direction perpendicular to the opening of the inner case body. Thereby, it becomes easy to press the biological contact part which is the front-end | tip part of a contact probe with respect to the skin surface of a biological body in the inclined direction. For example, a bone part where knee joint sounds are easily detected may be inclined with respect to the skin surface. Even in such a case, the tip of the contact probe can be brought into contact with the inclined surface and the knee joint sound can be accurately detected.
また、診断装置は、生体用音響センサの検出信号についての周波数スペクトル特性の情報を診断情報とし、関節症について予め定めた典型判断基準に基づいて、複数の症状グレードのそれぞれに関連付けて、当該症状グレードに対応する典型診断情報を記憶する。そして、診断対象者についての生体用音響センサの実検出信号を取得すると、取得した実検出信号の周波数スペクトル特性の情報である実診断情報を生成し、実診断情報に最も相関関係が強い典型診断情報を特定して、その典型診断情報に対応する症状グレードを出力する。したがって、生体用音響センサを用いて、関節症の診断を効果的に行うことができる。
Further, the diagnostic device uses the information of the frequency spectrum characteristics of the detection signal of the biological acoustic sensor as diagnostic information, and associates the symptom with each of a plurality of symptom grades based on a typical determination criterion determined in advance for arthropathy. Store typical diagnostic information corresponding to grade. When the actual detection signal of the biological acoustic sensor for the diagnosis target person is acquired, actual diagnosis information that is frequency spectrum characteristic information of the acquired actual detection signal is generated, and the typical diagnosis having the strongest correlation with the actual diagnosis information The information is specified, and the symptom grade corresponding to the typical diagnosis information is output. Therefore, the diagnosis of arthropathy can be effectively performed using the biological acoustic sensor.
また、典型診断情報は、検出信号の周波数スペクトル特性の特徴をパターン化したスペクトル特性パターン情報であるので、記憶されている症状グレード別のスペクトル特性パターンと実診断におけるスペクトル特性のパターンとを比較すれば、関節症の診断を効果的に行うことができる。
The typical diagnostic information is spectral characteristic pattern information obtained by patterning the characteristics of the frequency spectral characteristic of the detection signal. Therefore, the stored spectral characteristic pattern for each symptom grade is compared with the spectral characteristic pattern in the actual diagnosis. Thus, it is possible to effectively diagnose arthropathy.
また、典型診断情報は、検出信号の周波数スペクトル特性を特徴付けるスペクトルピーク値とその周波数の組合せであるピーク情報であるので、記憶されている症状グレード別のピーク情報と実診断におけるピーク情報とを比較すれば、関節症の診断を効果的に行うことができる。
The typical diagnosis information is the peak information that is a combination of the spectrum peak value that characterizes the frequency spectrum characteristics of the detection signal and its frequency, so the stored peak information for each symptom grade is compared with the peak information in the actual diagnosis. Thus, the diagnosis of arthropathy can be performed effectively.
また、記憶部は、複数の症状グレードのそれぞれに対応付けて、当該症状グレードに対応する関節症診断映像を記憶し、出力部は、症状グレードを示す番号とともに、当該症状グレードに対応する関節症診断映像を出力する。これによって、関節症の診断を視覚的にも効果的に行うことができる。
Further, the storage unit stores an arthropathy diagnosis video corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit includes an arthropathy corresponding to the symptom grade together with a number indicating the symptom grade. Output diagnostic video. Thereby, the diagnosis of arthropathy can be effectively performed visually.
また、記憶部は、複数の症状グレードのそれぞれに対応付けて、当該症状グレードに対応する典型診断説明を記憶し、出力部は、症状グレードを示す番号とともに、当該症状グレードに対応する典型診断説明を出力するので、関節症の診断を効果的に行うことができる。
The storage unit stores a typical diagnosis description corresponding to the symptom grade in association with each of the plurality of symptom grades, and the output unit includes a typical diagnosis description corresponding to the symptom grade together with a number indicating the symptom grade. Can be effectively diagnosed.
以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、診断システムとして、変形性膝関節症診断システムを説明するが、生体用音響センサは、生体の動作により生じるノイズ音を抑制する必要があるものであれば、膝関節音以外の生体音を検出するものであってもよい。例えば、膝関節以外の関節の音、心音、肺音、血管の脈音、腱の音等の検出に用いることができる。なお、以下では、検出する生体音を膝関節音とし、生体用音響センサが取り付けられる生体上の部位を膝の側面として説明するが、膝の側面以外の他の部位であってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the knee osteoarthritis diagnosis system will be described as a diagnosis system. However, if the acoustic sensor for a living body needs to suppress noise generated by the operation of the living body, the living body sound other than the knee joint sound is used. May be detected. For example, it can be used for detection of joint sounds other than knee joints, heart sounds, lung sounds, blood vessel pulse sounds, tendon sounds, and the like. In the following description, the biological sound to be detected is assumed to be knee joint sound, and the part on the living body to which the biological acoustic sensor is attached is described as the side surface of the knee, but may be a part other than the side surface of the knee.
また、以下では、カップ状のケース体を2重構造として説明するが、3重構造以上の多重構造であっても、勿論構わない。また、以下で説明する形状、寸法、材質等は、説明のための一例であって、生体用音響センサが適用される状況に応じ、適宜変更することができる。
In the following description, the cup-shaped case body is described as a double structure, but a multiple structure having a triple structure or more may of course be used. Moreover, the shape, dimension, material, etc. which are demonstrated below are examples for description, and can be suitably changed according to the situation where the biological acoustic sensor is applied.
以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
In the following, similar elements are denoted by the same reference symbols in all drawings, and redundant description is omitted. In the description in the text, the symbols described before are used as necessary.
図1は、生体用音響センサ12が膝関節音の検出に用いられる様子として、生体用音響センサ12を用いる変形性膝関節症診断システム10の構成が示されている。図1では、変形性膝関節症診断システム10の構成要素ではないが、被検査者8が示されている。図1の例では、被検査者8が椅子に座っている状態と椅子から立上る状態との間の運動を行うことで、膝を屈伸させ、その際の膝関節において異常音が検出されるか否かを判断するシステムである。膝の屈伸はこの他に、椅子に座っている状態において被検査者8が自力で足を屈伸させ、または、椅子に座っている状態において被検査者8の足を医者等の第三者の力で足を屈伸させた動きであってもよい。図1は説明の便宜上、被検査者8が立上る状態の説明図を示している。変形性膝関節症診断システム10は、変形性膝関節症の早期発見のために、被検査者8の膝の側面、すなわち、膝関節の近傍の皮膚上に生体用音響センサ12が取り付けられる。図1の例では、生体用音響センサは、被検査者8の左右の膝のそれぞれの両側側面の皮膚上に合計4つ取付けられているが、これは左右の膝関節の様子を診断する場合を例として示したもので、診断目的に応じ、生体用音響センサ12の取付数を増減することができる。
FIG. 1 shows a configuration of a knee osteoarthritis diagnosis system 10 using the biological acoustic sensor 12 as a state in which the biological acoustic sensor 12 is used for detection of knee joint sounds. In FIG. 1, although not a component of the knee osteoarthritis diagnosis system 10, an inspected person 8 is shown. In the example of FIG. 1, the knee is bent and extended by performing exercise between the state where the examinee 8 is sitting on the chair and the state where he is standing up from the chair, and abnormal sound is detected at the knee joint at that time. This is a system for determining whether or not. In addition to knee flexion, the examinee 8 flexes and stretches his / her legs by himself / herself while sitting on a chair, or the examinee's 8 legs are placed by a third party such as a doctor while sitting on a chair. It may be a movement with your legs bent and stretched with force. FIG. 1 shows an explanatory diagram of a state in which the inspected person 8 stands up for convenience of explanation. In the knee osteoarthritis diagnosis system 10, the biological acoustic sensor 12 is attached to the side of the knee of the subject 8, that is, on the skin near the knee joint, for early detection of knee osteoarthritis. In the example of FIG. 1, a total of four biological acoustic sensors are attached on the skin on both sides of each of the left and right knees of the subject 8, which is a case of diagnosing the state of the left and right knee joints. As an example, the number of biological acoustic sensors 12 attached can be increased or decreased according to the purpose of diagnosis.
変形性膝関節症診断システム10は、生体用音響センサ12とともに、被検査者8の関節近傍の皮膚上に取り付けられ、関節近傍の屈伸角度を検出する角度センサ60と、被検査者8の関節の屈伸に伴う運動加速度を検出する加重計62と、これらから引き出されるケーブル線16と、これらの検出信号について適当なフィルタ処理を行いながら増幅する生体用音響センサアンプ64と角度センサアンプ66と加重計アンプ68と、生体用音響センサ12と角度センサ60と加重計62の検出結果に基づいて関節症の診断を行う診断装置18とを備える。角度センサ60、加重計62は、被検査者8が椅子に座っている状態と椅子から立上る状態との間の運動のタイミングを正確に検出できるので、これらの検出結果を参照して、生体用音響センサ12の検出データについて、運動に伴うノイズを区別することが可能となる。
The knee osteoarthritis diagnosis system 10 is mounted on the skin in the vicinity of the joint of the examinee 8 together with the biological acoustic sensor 12, and the angle sensor 60 for detecting the bending / extension angle in the vicinity of the joint and the joint of the examinee 8. A weighting meter 62 for detecting motion acceleration accompanying bending and stretching, a cable line 16 drawn from these, a biological acoustic sensor amplifier 64 and an angle sensor amplifier 66 for amplifying these detection signals while performing appropriate filter processing, and weighting A meter amplifier 68, a diagnostic device 18 for diagnosing arthropathy based on the detection results of the living body acoustic sensor 12, the angle sensor 60, and the weight meter 62 are provided. The angle sensor 60 and the weight meter 62 can accurately detect the timing of movement between the state where the examinee 8 is sitting on the chair and the state where he is standing up from the chair. For the detection data of the acoustic sensor 12 for use, it is possible to distinguish the noise accompanying the movement.
図2には、生体用音響センサ12を、これが取り付けられる膝の側から見た様子が斜視図で示されている。また、図3は、生体用音響センサ12の断面図である。生体用音響センサ12は、ここでは、被検査者8の膝にしっかりと取り付けられて、被検査者8が膝の屈伸を行う際の関節音を検出する機能を有するセンサである。生体用音響センサ12を被検査者8の膝にしっかりと取り付ける方法としては、適当なバンド具、適当な接着テープ等を用いることができる。
FIG. 2 shows a perspective view of the biological acoustic sensor 12 as viewed from the side of the knee to which it is attached. FIG. 3 is a cross-sectional view of the biological acoustic sensor 12. Here, the biological acoustic sensor 12 is a sensor that is firmly attached to the knee of the subject 8 and has a function of detecting a joint sound when the subject 8 flexes and stretches the knee. As a method for firmly attaching the biological acoustic sensor 12 to the knee of the subject 8, an appropriate band tool, an appropriate adhesive tape, or the like can be used.
生体用音響センサ12は、音を検出する一種のマイクロフォンであるが、関節音を検出する際に、それ以外のノイズ、特に生体の動作により生じるノイズ音が入り込むことを抑制する構造を有している。
The biological acoustic sensor 12 is a kind of microphone that detects sound, but has a structure that suppresses the entry of noise other than that, particularly noise generated by movement of the living body, when detecting joint sounds. Yes.
生体用音響センサ12は、振動を検出するセンサデバイス20と、センサデバイス20の検出部に接続される接触プローブ30と、内部にセンサデバイス20を保持するカップ状の内側ケース体36と、内側ケース体36のカップ状外周の全体を覆うカップ状の外側ケース体38を備えて構成される。
The biological acoustic sensor 12 includes a sensor device 20 that detects vibration, a contact probe 30 that is connected to a detection unit of the sensor device 20, a cup-shaped inner case body 36 that holds the sensor device 20 therein, and an inner case. A cup-shaped outer case body 38 covering the entire cup-shaped outer periphery of the body 36 is provided.
センサデバイス20は、振動を検出する機能を有するセンサである。センサデバイス20としては、一種のマイクロフォンであるので、ボイスコイル型のマイクロフォン、静電容量の変化を用いるコンデンサマイクロフォン等も用いることができるが、微小音を検出できるものとして、ここでは、圧電素子が用いられる。具体的には、円板状のピエゾ素子の円板両面にそれぞれ電極を設け、ピエゾ素子の伸縮により生じる電気信号をこの両電極の間の電圧によって検出する。
Sensor device 20 is a sensor having a function of detecting vibration. Since the sensor device 20 is a kind of microphone, a voice coil microphone, a condenser microphone using a change in capacitance, or the like can be used. However, as a sensor capable of detecting minute sounds, a piezoelectric element is used here. Used. Specifically, electrodes are provided on both sides of the disk of the disk-shaped piezo element, and an electric signal generated by expansion and contraction of the piezo element is detected by a voltage between both electrodes.
振動板22は、円板状のセンサデバイス20が貼り付けられて配置される金属円板である。金属材料としては、例えば、ステンレス鋼、黄銅等を用いることができる。振動板22は、その外周部が緩衝材34によって支持されて、後述する内側ケース体36に取り付けられる。したがって、振動板22は、その中心位置に外力が加えられたときに、外周部が固定端として振動する振動円板として機能する。
The diaphragm 22 is a metal disk on which the disk-shaped sensor device 20 is attached. As the metal material, for example, stainless steel, brass or the like can be used. The outer peripheral portion of the diaphragm 22 is supported by a buffer material 34 and attached to an inner case body 36 described later. Therefore, the diaphragm 22 functions as a diaphragm that vibrates with the outer peripheral portion serving as a fixed end when an external force is applied to the center position thereof.
この振動板22が振動することで、その上に貼り付けられるセンサデバイス20であるピエゾ素子が湾曲し、これによって生じる軸方向に伸縮し、軸方向に沿って圧電信号としての電圧差が現れることになる。振動板22は、センサデバイス20の円板両面のそれぞれに設けられる2つの電極のうちで、振動板22に接触する側の電極と電気的に接続される。
When the diaphragm 22 vibrates, the piezo element, which is the sensor device 20 attached thereon, is bent and expanded and contracted in the axial direction, and a voltage difference as a piezoelectric signal appears along the axial direction. become. The diaphragm 22 is electrically connected to an electrode on the side in contact with the diaphragm 22 among the two electrodes provided on both sides of the disk of the sensor device 20.
したがって、振動板22に接続される信号線26は、センサデバイス20の2つの信号線の一方側の信号線となる。具体的には接地信号線となる。センサデバイス20の円板両面のそれぞれに設けられる2つの電極のうちで、振動板22に接触する側と反対側の電極から引き出される信号線24は、センサデバイス20の2つの信号線の他方側の信号線となる。これら2つの信号線24,26は、ケーブル線16を構成する内部信号線にしっかりと接続される。
Therefore, the signal line 26 connected to the diaphragm 22 is a signal line on one side of the two signal lines of the sensor device 20. Specifically, it becomes a ground signal line. Of the two electrodes provided on both sides of the disk of the sensor device 20, the signal line 24 drawn from the electrode on the opposite side to the side in contact with the diaphragm 22 is the other side of the two signal lines of the sensor device 20. Signal line. These two signal lines 24 and 26 are firmly connected to internal signal lines constituting the cable line 16.
接触プローブ受台28は、センサデバイス20の円板の他方側、すなわち、振動板22に接続される側の反対側の表面に取り付けられる部材で、接触プローブ30が拾う生体音に対応する微小振動を振動板22に伝える機能を有する。具体的には、接触プローブ受台28は、円板状のセンサデバイス20の中心位置にしっかりと固定されて配置される。
The contact probe cradle 28 is a member attached to the other side of the disk of the sensor device 20, that is, the surface opposite to the side connected to the diaphragm 22, and the minute vibration corresponding to the body sound picked up by the contact probe 30. Is transmitted to the diaphragm 22. Specifically, the contact probe cradle 28 is disposed firmly fixed at the center position of the disk-shaped sensor device 20.
円板状のセンサデバイス20の中心位置は、円板状の振動板22の中心位置であり、上記のように振動板22の外周部は緩衝材34を介して固定される。外周部が固定された円板は、その中心位置に外力が加えられたときに、その中心位置が最も大きな振幅として振動する。したがって、接触プローブ受台28は、振動板22を振動させるのにもっとも効率のよい位置に配置されている。また、同時に、センサデバイス20は、振動板22が最大振幅となる位置に配置されていることになる。換言すれば、接触プローブ受台28は、センサデバイス20において、接触プローブ30の振動を検出するのに最も効率のよい検出部のところに配置されていることになる。
The center position of the disk-shaped sensor device 20 is the center position of the disk-shaped diaphragm 22, and the outer peripheral portion of the diaphragm 22 is fixed via the buffer material 34 as described above. A disk with a fixed outer periphery vibrates with the largest amplitude at the center position when an external force is applied to the center position. Therefore, the contact probe base 28 is disposed at a position where it is most efficient for vibrating the diaphragm 22. At the same time, the sensor device 20 is disposed at a position where the diaphragm 22 has the maximum amplitude. In other words, the contact probe cradle 28 is arranged at the most efficient detection unit for detecting the vibration of the contact probe 30 in the sensor device 20.
かかる接触プローブ受台28は、センサデバイス20と接触プローブ30との間の電気的絶縁を図るために、例えば、プラスチック製の円板を用いることができる。
For example, a plastic disk can be used for the contact probe base 28 in order to achieve electrical insulation between the sensor device 20 and the contact probe 30.
接触プローブ30は、センサデバイス20の検出部に配置される接触プローブ受台28に根元部が固定されて接続され、そこからアンテナ状に細長く延びて先端部32に生体接触部を有する針状の部材である。先端部32は、図2で説明した被検査者8の膝部の皮膚に押し付けられて接触する部分で、被検査者8が膝を屈伸するときに膝関節のところで摩擦音あるいは接触音を発するときに、その音を、皮膚、あるいはその下の筋肉、あるいはその下の骨の微小な振動として取得する機能を有する。
The contact probe 30 is connected to a contact probe cradle 28 arranged at the detection unit of the sensor device 20 with a base portion fixed and connected to the contact probe 30. The contact probe 30 extends in an antenna shape and has a needle-like contact portion at the tip 32. It is a member. The tip portion 32 is a portion that is pressed against and contacts the skin of the knee portion of the subject 8 described in FIG. 2, and when the subject 8 bends and stretches the knee, generates a frictional sound or a contact sound at the knee joint. In addition, it has a function of acquiring the sound as minute vibrations of the skin, the underlying muscle, or the underlying bone.
先端部32で取得された微小な振動は、細長い接触プローブ30に沿って伝播し、根元部において、接触プローブ受台28に伝達されることになる。かかる接触プローブ30としては、振動を効率的に伝播させるピアノ線、黄銅線等の金属材料、あるいは硬質なプラスチック材料の細線等で構成することができる。
The minute vibration acquired at the tip 32 propagates along the elongated contact probe 30 and is transmitted to the contact probe cradle 28 at the root. The contact probe 30 can be made of a metal material such as a piano wire or a brass wire that efficiently propagates vibrations, or a thin wire of a hard plastic material.
接触プローブ30の直径及び先端部32の形状は適当に小さい寸法であることが好ましい。接触プローブ30の直径が小さい寸法のときは、被検査者8の皮膚に対する押し付け圧力が大きくなるので、被検査者8にはやや負担がかかる。一方で、皮膚の上に接触プローブ30が押し付けられた圧痕が残るので、これを利用して、関節音を捉えやすい部位に接触プローブ30の先端部32を正確に配置することができる。
It is preferable that the diameter of the contact probe 30 and the shape of the tip 32 are appropriately small. When the diameter of the contact probe 30 is small, the pressure applied to the skin of the person to be inspected 8 increases, so that the person to be inspected 8 is somewhat burdened. On the other hand, since the indentation by which the contact probe 30 was pressed on the skin remains, the tip 32 of the contact probe 30 can be accurately arranged at a site where it is easy to capture joint sounds.
関節音を捉えやすい部位としては、膝において大腿骨と脛骨が向かい合う膝関節の部分のうち、表皮が薄く、大腿骨、脛骨に近い部位である。これらの部位は、狭い範囲であるので、接触プローブ30の先端部32を正確に位置決めすることが好ましい。そこで、上記のように、接触プローブ30の直径及び先端部32の形状の寸法を適当に小さくすることで、特別な位置決め装置を用いることなく、容易にその位置決めをかなり正確に行うことが可能となる。
The part where the joint sound can be easily captured is the part of the knee joint where the femur and tibia face each other in the knee, where the epidermis is thin and is close to the femur and tibia. Since these portions are in a narrow range, it is preferable to accurately position the distal end portion 32 of the contact probe 30. Therefore, as described above, by appropriately reducing the diameter of the contact probe 30 and the size of the shape of the distal end portion 32, the positioning can be easily performed fairly accurately without using a special positioning device. Become.
上記のように、振動板22、センサデバイス20、接触プローブ受台28、接触プローブ30は、この順序に、順次積み重ねられ、あるいは接続固定されて一体化される。この分を広義のセンサ部と呼ぶことにすると、このセンサ部は、内側ケース体36と、外側ケース体38の二重構造のケース体の内部に収納される。
As described above, the diaphragm 22, the sensor device 20, the contact probe base 28, and the contact probe 30 are sequentially stacked in this order, or connected and fixed to be integrated. If this part is called a sensor part in a broad sense, the sensor part is housed in a double-structured case body of an inner case body 36 and an outer case body 38.
内側ケース体36は、一方側に開口部を有するカップ状の部材である。上記の広義のセンサ部は、この内側ケース体36の内部に配置される。広義のセンサ部のうち、接触プローブ30の先端部32は、この内側ケース体36の開口部から突き出るが、それ以外の振動板22、センサデバイス20、接触プローブ受台28は、内側ケース体36のカップ状の内部に配置されるように収容される。かかる内側ケース体36は、アルミニウム等の軽金属をカップ状に成形したものを用いることができる。
The inner case body 36 is a cup-shaped member having an opening on one side. The broad sensor portion is disposed inside the inner case body 36. Of the sensor unit in a broad sense, the tip 32 of the contact probe 30 protrudes from the opening of the inner case body 36, but the other diaphragm 22, sensor device 20, and contact probe cradle 28 are the inner case body 36. It is accommodated so that it may be arrange | positioned inside a cup shape. The inner case body 36 may be formed by molding a light metal such as aluminum into a cup shape.
振動板22に関連して若干説明した緩衝材34は、この内側ケース体36のカップ状の内面の底部に配置される円環状の部材である。円環の外径は、振動板22の直径と同じかやや小さめに設定される。緩衝材34の円環状の上下側面のうち、一方側面は内側ケース体36の内面の底部に適当な接着材によって固定され、他方側面には振動板22の外周部が適当な接着材で固定される。これによって、振動板22と内側ケース体36との間で機械的な振動を相互に絶縁できる。
The cushioning material 34 slightly described in relation to the diaphragm 22 is an annular member disposed at the bottom of the cup-shaped inner surface of the inner case body 36. The outer diameter of the ring is set to be the same as or slightly smaller than the diameter of the diaphragm 22. Of the annular upper and lower side surfaces of the buffer material 34, one side surface is fixed to the bottom of the inner surface of the inner case body 36 with an appropriate adhesive, and the outer peripheral portion of the diaphragm 22 is fixed to the other side surface with an appropriate adhesive. The Thereby, mechanical vibrations can be insulated from each other between the diaphragm 22 and the inner case body 36.
すなわち、緩衝材34は、振動板22と内側ケース体36との間の振動伝達を効果的に抑制する機能を有する部材である。かかる緩衝材34としては、シリコン樹脂等の軟質プラスチックあるいは適当なゲル材等を用いることができる。
That is, the buffer material 34 is a member having a function of effectively suppressing vibration transmission between the diaphragm 22 and the inner case body 36. As the buffer material 34, a soft plastic such as silicon resin or a suitable gel material can be used.
外側ケース体38は、内側ケース体36よりも一回り大きな外形を有するカップ状部材である。すなわち、内側ケース体36のカップ状外周の全体を覆うように、内側ケース体36の外周とは隙間を開けて配置されるカップ状部材である。隙間としては、例えば、0.5mmから1mm程度とすることができる。もっとも、これよりも広い隙間、狭い隙間であっても構わないが、内側ケース体36と外側ケース体38とは直接には接触しないようにすることが必要である。なお、外側ケース体38の材質等は、内側ケース体36と同様のものとすることができる。
The outer case body 38 is a cup-shaped member having an outer shape that is slightly larger than the inner case body 36. That is, the outer periphery of the inner case body 36 is a cup-shaped member arranged with a gap so as to cover the entire cup-shaped outer periphery of the inner case body 36. For example, the gap may be about 0.5 mm to 1 mm. Of course, the gap may be wider or narrower than this, but it is necessary that the inner case body 36 and the outer case body 38 are not in direct contact with each other. The material of the outer case body 38 can be the same as that of the inner case body 36.
内側ケース体36の側面と外側ケース体38の側面には、位置を合わせて信号線用の開口部が設けられる。この開口部は、センサデバイス20からの信号線24、振動板22からの信号線26のそれぞれを、ケーブル線16を構成する内部信号線に接続して、生体用音響センサ12の外部に引き出すためのものである。ブッシュ44は、この開口部とケーブル線16との隙間をなくすために設けられる。これによって、ケーブル線16が不必要に動くことを抑制し、外部の振動や音が内側ケース体36の内側に入り込むことを抑制することができる。
The side surface of the inner case body 36 and the side surface of the outer case body 38 are provided with openings for signal lines in alignment. This opening connects each of the signal line 24 from the sensor device 20 and the signal line 26 from the diaphragm 22 to the internal signal line constituting the cable line 16 and pulls it out of the biological acoustic sensor 12. belongs to. The bush 44 is provided to eliminate a gap between the opening and the cable wire 16. Thereby, the cable wire 16 can be prevented from moving unnecessarily, and external vibrations and sounds can be prevented from entering the inner case body 36.
接触盤40は、内側ケース体36のカップ状の開口部と、外側ケース体38のカップ状の開口部とを塞ぐように配置される円板状の部材である。接触盤40の外径は、外側ケース体38のカップ状の開口部における外径と同じに設定される。そして、外側ケース体38のカップ状の開口部における円環状端部と、内側ケース体36のカップ状の開口部における円環状端部とは、相互に接触しないように、外側ケース体38のところで説明した隙間を開けるようにして、埋め込まれるように、接触盤40に配置され固定される。
The contact board 40 is a disk-shaped member disposed so as to close the cup-shaped opening of the inner case body 36 and the cup-shaped opening of the outer case body 38. The outer diameter of the contact panel 40 is set to be the same as the outer diameter at the cup-shaped opening of the outer case body 38. The annular end portion in the cup-shaped opening of the outer case body 38 and the annular end portion in the cup-shaped opening of the inner case body 36 are located at the outer case body 38 so as not to contact each other. It arrange | positions and is fixed to the contact panel 40 so that it may be embedded so that the clearance gap demonstrated may be opened.
接触盤40の中央部には、接触プローブ30の先端部32が突き出ることができるように、中央開口穴42が設けられる。接触盤40という名称は、この部分で、被検査者8の膝部の皮膚に接触するからである。かかる接触盤40としては、緩衝材34と同様の材質で構成される円板を用いることができる。
A central opening hole 42 is provided at the center of the contact panel 40 so that the tip 32 of the contact probe 30 can protrude. This is because the name of the contact board 40 comes into contact with the skin of the knee portion of the subject 8 in this portion. As this contact board 40, the disk comprised with the material similar to the buffer material 34 can be used.
このように、接触盤40は、緩衝材34と同様の材質であるので、内側ケース体36と外側ケース体38とは、緩衝材を介して隙間を開けて配置されることになる。これによって、内側ケース体36と外側ケース体38との間で、機械的振動を絶縁できる。
Thus, since the contact board 40 is made of the same material as the cushioning material 34, the inner case body 36 and the outer case body 38 are arranged with a gap therebetween via the cushioning material. As a result, mechanical vibration can be insulated between the inner case body 36 and the outer case body 38.
上記構成の寸法の一例を以下に示す。すなわち、外側ケース体38のカップ状の外径は27mm、内径は25mm、高さは11.5mm、厚さは1mmである。内側ケース体36のカップ状外径は24mm、内径は22mm、高さは9.5mm、厚さは1mmである。外側ケース体38の内径と内側ケース体36の外径との間の隙間は0.5mmである。接触盤40の外径は27mm、厚さは2mm、中央開口穴42の内径は5mmである。外側ケース体38のカップ状の円環状端部と内側ケース体36のカップ状の円環状端部とが接触盤40に埋め込まれる深さは1mmである。
An example of the dimensions of the above configuration is shown below. That is, the outer case body 38 has a cup-shaped outer diameter of 27 mm, an inner diameter of 25 mm, a height of 11.5 mm, and a thickness of 1 mm. The inner case body 36 has a cup-shaped outer diameter of 24 mm, an inner diameter of 22 mm, a height of 9.5 mm, and a thickness of 1 mm. The gap between the inner diameter of the outer case body 38 and the outer diameter of the inner case body 36 is 0.5 mm. The outer diameter of the contact panel 40 is 27 mm, the thickness is 2 mm, and the inner diameter of the central opening hole 42 is 5 mm. The depth at which the cup-shaped annular end portion of the outer case body 38 and the cup-shaped annular end portion of the inner case body 36 are embedded in the contact panel 40 is 1 mm.
振動板22の外径は20mm、厚さは0.2mm、センサデバイス20の外径は14mm、厚さは0.23mm、接触プローブ受台28の外径は6mm、高さは3mmである。接触プローブ30の直径は1.5mm、接触プローブ受台28に埋め込まれる根元部の長さは1mm、接触プローブ受台28から先端部32までの高さは5.57mm、接触盤40から突き出る高さは1.5mmである。緩衝材34の外径は20mm、内径は16mm、高さは2mmである。
The outer diameter of the diaphragm 22 is 20 mm, the thickness is 0.2 mm, the outer diameter of the sensor device 20 is 14 mm, the thickness is 0.23 mm, the outer diameter of the contact probe support 28 is 6 mm, and the height is 3 mm. The diameter of the contact probe 30 is 1.5 mm, the length of the root portion embedded in the contact probe support 28 is 1 mm, the height from the contact probe support 28 to the tip 32 is 5.57 mm, and the height protruding from the contact board 40 The thickness is 1.5 mm. The buffer material 34 has an outer diameter of 20 mm, an inner diameter of 16 mm, and a height of 2 mm.
なお、上記の寸法の値はあくまで例示である。さらに小型の構成例としては、上記寸法の約60%の寸法とすることができる。この場合には、生体用音響センサ12の全体としての外径を15mm、高さを10mmとすることができる。
Note that the above dimension values are merely examples. Furthermore, as an example of a small configuration, the size can be about 60% of the above size. In this case, the overall outer diameter of the biological acoustic sensor 12 can be 15 mm and the height can be 10 mm.
上記構成によれば、生体用音響センサ12は、カップ状の開口部に接触盤40が配置され、その接触盤40の中央部に接触プローブ30の先端部32が突き出している形態を有している。そして、その接触盤40の表面を被検査者8の膝部の皮膚に接触させて固定することで、接触プローブ30の先端部32が膝関節の所定の部位に接触し、その部位における関節音を拾って、センサデバイス20に伝達することができる。
According to the above configuration, the biological acoustic sensor 12 has a configuration in which the contact plate 40 is disposed in the cup-shaped opening, and the tip end portion 32 of the contact probe 30 protrudes from the center of the contact plate 40. Yes. The front surface 32 of the contact probe 30 is in contact with a predetermined part of the knee joint by fixing the surface of the contact board 40 to the skin of the knee part of the person 8 to be inspected, and the joint sound at that part. Can be picked up and transmitted to the sensor device 20.
その際に、センサデバイス20は、緩衝材を介して隙間を開けて相互に配置される外側ケース体38と内側ケース体36の二重構造のカップ状体の内部に収納配置されるので、センサデバイス20が外部からの振動、音等のノイズを拾うことを十分に抑制できる。また、センサデバイス20の検出部に配置される接触プローブ30は、アンテナ状に細長く延びて、その先端部32が接触盤40から突き出るので、生体音の検出領域を絞ることができ、余計なノイズを拾うことが抑制できる。
At that time, the sensor device 20 is housed and disposed inside a cup-shaped body having a double structure of the outer case body 38 and the inner case body 36 which are arranged with a gap therebetween through a cushioning material. It is possible to sufficiently suppress the device 20 from picking up noise such as vibration and sound from the outside. Further, the contact probe 30 disposed in the detection unit of the sensor device 20 extends in an elongated shape like an antenna, and the tip 32 protrudes from the contact board 40, so that the detection area of the body sound can be narrowed down, and extra noise is generated. Picking up can be suppressed.
図4から図7は、図2,3の構成の変形例のいくつかを示す図である。図4は、ケーブル線16を内側ケース体36、外側ケース体38のそれぞれのカップ状の頂部から引き出す構成の生体用音響センサ13の例を示す図である。図2、図3では、ケーブル線16が、内側ケース体36、外側ケース体38のそれぞれの側面から引き出されていた。図4の構成によれば、ケーブル線16は、内側ケース体36、外側ケース体38のカップ状の中心線上に沿って引き出されるので、仮にケーブル線16に外力がかかったとしても、その外力の影響は、生体用音響センサ13の中心線に対称となり、偏心的な振動やノイズの影響を少なくすることができる。
4 to 7 are diagrams showing some modified examples of the configuration of FIGS. FIG. 4 is a view showing an example of the biological acoustic sensor 13 configured to draw the cable wire 16 from the cup-shaped top portions of the inner case body 36 and the outer case body 38. In FIGS. 2 and 3, the cable wire 16 is drawn out from the respective side surfaces of the inner case body 36 and the outer case body 38. According to the configuration of FIG. 4, the cable line 16 is drawn along the cup-shaped center line of the inner case body 36 and the outer case body 38, so even if an external force is applied to the cable line 16, The influence is symmetric with respect to the center line of the biological acoustic sensor 13, and the influence of eccentric vibration and noise can be reduced.
図5は、センサデバイス20の検出信号を無線信号に変換して外部に送信する送信部を含む電子部品を備える構成の生体用音響センサ14の例を示す図である。送信部を含む電子部品としては、信号処理回路と送信回路とアンテナとを含むセンサ用IC50を用いることができる。センサ用IC50は、内側ケース体36に設けられる適当な基板52に取付けられ、信号線24,26を介してセンサデバイス20と接続される。そして、センサデバイス20から取得する信号について信号処理回路を介して無線通信に適するように信号処理し、送信回路を経てアンテナに出力する機能を有する。
FIG. 5 is a diagram illustrating an example of the biological acoustic sensor 14 having a configuration including an electronic component including a transmission unit that converts a detection signal of the sensor device 20 into a wireless signal and transmits the signal to the outside. As the electronic component including the transmission unit, a sensor IC 50 including a signal processing circuit, a transmission circuit, and an antenna can be used. The sensor IC 50 is attached to a suitable substrate 52 provided in the inner case body 36 and is connected to the sensor device 20 via the signal lines 24 and 26. And it has a function which processes a signal acquired from the sensor device 20 so as to be suitable for wireless communication via a signal processing circuit, and outputs it to an antenna via a transmission circuit.
電源としては、図示されていないが、小型の電池を備える構成としてもよく、センサ用IC50に無線電力受信回路を含む構成として、外部から供給される高周波電力信号を受信し、これに基づいて必要な電力をまかなうものとしてもよい。なお、基板52が設けられる内側ケース体36の部分と、その箇所に対応する外側ケース体38の部分は、アンテナから送信される無線信号が外部に到達できるように、それぞれ適当な樹脂窓54,56で構成される。また、図6に示されるように、4つの生体用音響センサ14を用いる場合には、それぞれからの無線信号が混線しないように、それぞれの無線信号の周波数を異なるもの等としてもよい。このような構成によって、図2から図4で説明したような生体用音響センサ12からのケーブル線16を省略することができる。ケーブル線16を省略することで、ケーブル線16に起因する振動やノイズをなくすことができる。
Although not shown in the figure, the power source may be configured to include a small battery. The sensor IC 50 includes a wireless power receiving circuit, receives a high-frequency power signal supplied from the outside, and is necessary based on this. It is good also as what covers a certain electric power. The portion of the inner case body 36 on which the substrate 52 is provided and the portion of the outer case body 38 corresponding to the portion are respectively provided with appropriate resin windows 54, so that a radio signal transmitted from the antenna can reach the outside. 56. In addition, as shown in FIG. 6, when four biological acoustic sensors 14 are used, the frequency of each radio signal may be different so that the radio signals from each do not cross. With such a configuration, the cable wire 16 from the biological acoustic sensor 12 as described with reference to FIGS. 2 to 4 can be omitted. By omitting the cable line 16, vibration and noise caused by the cable line 16 can be eliminated.
図6は、図5の生体用音響センサ14を用いる変形性膝関節症診断システム10の構成を示す図である。ここでは、生体用音響センサ14と生体用音響センサアンプ64の間に通信制御部63が設けられる。通信制御部63は、アンテナと受信回路と信号処理回路とを含んで構成され、生体用音響センサ14から送信される無線信号をアンテナで受信し、受信した信号について信号処理回路を介して生体用音響センサアンプ64に出力する機能を有する。なお、生体用音響センサ14が電源を有しない場合は、無線電力送信を行う機能を有するものとしてもよい。
FIG. 6 is a diagram showing a configuration of the knee osteoarthritis diagnosis system 10 using the biological acoustic sensor 14 of FIG. Here, a communication control unit 63 is provided between the biological acoustic sensor 14 and the biological acoustic sensor amplifier 64. The communication control unit 63 includes an antenna, a reception circuit, and a signal processing circuit. The communication control unit 63 receives a radio signal transmitted from the biological acoustic sensor 14 with the antenna, and receives the received signal via the signal processing circuit. It has a function of outputting to the acoustic sensor amplifier 64. In addition, when the biological acoustic sensor 14 does not have a power supply, it may have a function of performing wireless power transmission.
また、通信制御部63に送信回路を設け、これに対応して生体用音響センサ14に受信回路を設けることで、生体用音響センサ14と診断装置18との間で相互交信するものとしてもよい。また、場合によっては、角度センサ60、加重計62にも適当なセンサ用ICを設けて、通信制御部63と無線交信できるものとしてもよい。
Further, the communication control unit 63 may be provided with a transmission circuit, and the living body acoustic sensor 14 may be provided with a receiving circuit corresponding thereto, so that the living body acoustic sensor 14 and the diagnostic device 18 can communicate with each other. . In some cases, the angle sensor 60 and the weight meter 62 may be provided with appropriate sensor ICs so that wireless communication with the communication control unit 63 is possible.
図7は、接触プローブ30の先端部33が、接触盤40の平面に垂直な方向に対し、予め定められた傾斜角度の傾斜形状を有する構成の生体用音響センサ15の例を示す図である。これにより、生体の皮膚表面に対し、傾斜した方向に接触プローブの先端部である生体接触部を押し当てることが容易になる。例えば、膝関節音を検出しやすい骨の部位が皮膚の表面に対し傾斜していることがある。このような場合でも、接触プローブの先端部をその傾斜面に適合して接触させることができ、膝関節音を正確に検出できる。
FIG. 7 is a diagram illustrating an example of the biological acoustic sensor 15 having a configuration in which the distal end portion 33 of the contact probe 30 has an inclined shape with a predetermined inclination angle with respect to a direction perpendicular to the plane of the contact board 40. . Thereby, it becomes easy to press the biological contact part which is the front-end | tip part of a contact probe with respect to the skin surface of a biological body in the inclined direction. For example, a bone part where knee joint sounds are easily detected may be inclined with respect to the skin surface. Even in such a case, the tip of the contact probe can be brought into contact with the inclined surface and the knee joint sound can be accurately detected.
図8は、診断装置18の詳細な構成を説明する図である。上記のように、診断装置18は、生体用音響センサ14と角度センサ60と加重計62の検出結果に基づいて関節症の診断を行う装置である。なお、図8では、無線交信が可能な生体用音響センサ14が図示されているが、勿論、有線で診断装置18に接続される形式の生体用音響センサを用いることもできる。なお、角度センサ60、加重計62は、診断検査のために被検査者が膝を屈伸するときの運動のタイミングを正確に検出し、運動に伴うノイズを区別するために用いられるものである。以下ではこれらによって、運動に伴うノイズが適切に除去されたものとして、生体用音響センサ14の検出データに基づく膝関節症の診断について説明する。
FIG. 8 is a diagram for explaining the detailed configuration of the diagnostic apparatus 18. As described above, the diagnostic device 18 is a device that diagnoses arthropathy based on the detection results of the biological acoustic sensor 14, the angle sensor 60, and the weight meter 62. In FIG. 8, the biological acoustic sensor 14 capable of wireless communication is illustrated, but a biological acoustic sensor of a type that is connected to the diagnostic device 18 by wire can be used as a matter of course. Note that the angle sensor 60 and the weight meter 62 are used to accurately detect the timing of movement when the examinee bends and stretches the knee for a diagnostic examination and to distinguish noise associated with the movement. Hereinafter, the diagnosis of knee joint disease based on the detection data of the biological acoustic sensor 14 will be described on the assumption that noise associated with exercise has been appropriately removed.
診断装置18は、生体用音響センサ14と無線交信を行うための通信制御部63と、診断のためのデータ処理等を行う制御部80と、制御部80に接続される記憶部90と、制御部80に接続され診断結果を表示する表示部70を含んで構成される。表示部70は、ディスプレイやプリンタ等を用いることができる。かかる診断装置18としては、適当なコンピュータを用いることができる。診断装置18は、図1で説明したように、被検査者8の膝部分に生体用音響センサ14を取り付け、被検査者8に椅子に座っている状態と椅子から立上る状態との間の運動を行ってもらい、そのときの膝の屈伸に伴う膝関節からの生体音を生体用音響センサ14で検出し、その検出結果に基づいて診断を行なう装置である。
The diagnostic device 18 includes a communication control unit 63 for performing wireless communication with the biological acoustic sensor 14, a control unit 80 for performing data processing for diagnosis, a storage unit 90 connected to the control unit 80, and a control. The display unit 70 is connected to the unit 80 and displays a diagnosis result. The display unit 70 can be a display, a printer, or the like. An appropriate computer can be used as the diagnostic device 18. As described with reference to FIG. 1, the diagnostic device 18 has the living body acoustic sensor 14 attached to the knee portion of the person 8 to be inspected, and the state between the state where the person 8 is sitting on the chair and the state where he stands up from the chair. This is a device for exercising, detecting a biological sound from the knee joint accompanying the flexion and extension of the knee at that time by the biological acoustic sensor 14, and making a diagnosis based on the detection result.
診断装置18の制御部80は、生体用音響センサの実検出信号の周波数スペクトル特性の情報である実診断情報を生成する実診断情報生成部82と、実診断情報を検索キーとして、記憶部を検索し、予め定めた相関関係条件に基づいて、実診断情報に最も相関関係が強い典型診断情報を特定する典型診断情報特定部84と、特定された典型診断情報に対応する症状グレードを出力する症状グレード出力部86を含んで構成される。かかる機能は、ソフトウェアを実行することで実現でき、具体的には、関節症診断プログラムを実行することで実現できる。かかる機能の一部をハードウェアで実現するものとしてもよい。
The control unit 80 of the diagnostic device 18 includes an actual diagnosis information generation unit 82 that generates actual diagnosis information that is information of frequency spectrum characteristics of the actual detection signal of the biological acoustic sensor, and a storage unit that uses the actual diagnosis information as a search key. Based on a predetermined correlation condition, the typical diagnosis information specifying unit 84 for specifying the typical diagnosis information having the strongest correlation with the actual diagnosis information and the symptom grade corresponding to the specified typical diagnosis information are output. A symptom grade output unit 86 is included. Such a function can be realized by executing software, and specifically, can be realized by executing an arthropathy diagnosis program. Some of these functions may be realized by hardware.
記憶部90は、関節症診断プログラム等を格納する機能を有する記憶装置であるが、ここでは特に、診断に用いられる典型診断情報ファイル92を記憶する機能を有する。典型診断情報ファイル92は、関節症の進行度を症状グレードとして、症状グレードごとの典型診断情報100を複数の症状グレードについてまとめたデータファイルである。ここで、典型診断情報100とは、生体用音響センサ14の検出信号について、診断に役立つように予め定めた複数の信号処理の情報を診断情報とし、予め各症状グレードについての診断情報を集め、分析し、その結果、各症状グレードについてそれぞれ典型的と考えることができる診断情報のことである。
The storage unit 90 is a storage device having a function of storing an arthropathy diagnosis program or the like, and particularly has a function of storing a typical diagnosis information file 92 used for diagnosis. The typical diagnosis information file 92 is a data file in which typical diagnosis information 100 for each symptom grade is summarized for a plurality of symptom grades, with the degree of progression of arthropathy as a symptom grade. Here, the typical diagnosis information 100 is a plurality of signal processing information predetermined to be useful for diagnosis with respect to the detection signal of the biological acoustic sensor 14 as diagnosis information, and collects diagnosis information about each symptom grade in advance, Diagnostic information that can be analyzed and, as a result, considered typical for each symptom grade.
診断情報は、上記のように、生体音響センサ14の検出信号について、診断に役立つような複数の信号処理の情報であるが、これには、周波数解析、統計的解析、変動音解析等における信号処理の情報が含まれる。周波数解析には、パワースペクトル、フーリエスペクトル、位相スペクトル、自己相関関数、クロススペクトル、相互相関関数、周波数応答関数、インパルスレスポンス、コヒーレンス等が含まれる。統計的解析には、ヒストグラム、標本自己相関、正規確率プロット、散布図・回帰分析、ステレオグラム、区間統計、標本相互相関、3次元散布図、3次元区間統計等が含まれる。変動音解析には、ラウドネス、シャープネス、ラフネス、変動強度、AI、トーナリティ、時間変動、変動音Core、変動音Mask,ラウドネ変動Core、ラウドネス変動Mask等が含まれる。以下では、診断情報は、生体音響センサの検出信号についての周波数成分ごとの強さ分布である周波数スペクトル特性の情報として、説明を続ける。
As described above, the diagnostic information is information on a plurality of signal processes that are useful for diagnosis with respect to the detection signal of the bioacoustic sensor 14, and includes signals in frequency analysis, statistical analysis, fluctuation sound analysis, and the like. Contains processing information. Frequency analysis includes power spectrum, Fourier spectrum, phase spectrum, autocorrelation function, cross spectrum, cross-correlation function, frequency response function, impulse response, coherence, and the like. Statistical analysis includes histogram, sample autocorrelation, normal probability plot, scatter diagram / regression analysis, stereogram, interval statistics, sample cross correlation, 3D scatter diagram, 3D interval statistics, and the like. The fluctuation sound analysis includes loudness, sharpness, roughness, fluctuation intensity, AI, tonality, time fluctuation, fluctuation sound Core, fluctuation sound Mask, loudness fluctuation Core, loudness fluctuation Mask, and the like. In the following description, the diagnosis information is continued as information on frequency spectrum characteristics that are intensity distributions for each frequency component of the detection signal of the bioacoustic sensor.
図9は、記憶部90に記憶される典型診断情報100の例を示す図である。典型診断情報100は、症状グレードを関節症の進行度を示す数字で示す症状グレード欄102、その症状グレードに対応する周波数スペクトル特性の特徴をパターン化したスペクトル特性パターン情報104と、スペクトル特性パターン情報104に対応する詳細な周波数スペクトル特性106と、その症状グレードに対応する関節症診断映像108と、関節症診断映像の模式図110と、その症状グレードに対応する典型診断説明欄112を含んで構成される。この図9は、例として、グレード2についての典型診断情報100が示されている。なお、関節症診断映像108は、膝関節の部分をX線撮像装置で撮像した映像画像である。X線撮像装置で撮像した映像画像に代えて、あるいはそれに加えて、MRI撮像装置で撮像した映像画像を用いるものとしてもよい。
FIG. 9 is a diagram illustrating an example of the typical diagnosis information 100 stored in the storage unit 90. The typical diagnosis information 100 includes a symptom grade column 102 indicating a symptom grade by a number indicating the degree of progression of arthropathy, spectral characteristic pattern information 104 obtained by patterning characteristics of a frequency spectral characteristic corresponding to the symptom grade, and spectral characteristic pattern information. 104 including a detailed frequency spectrum characteristic 106 corresponding to 104, an arthropathy diagnosis image 108 corresponding to the symptom grade, a schematic diagram 110 of the arthropathy diagnosis image, and a typical diagnosis explanation column 112 corresponding to the symptom grade Is done. FIG. 9 shows typical diagnostic information 100 for grade 2 as an example. The arthropathy diagnosis video 108 is a video image obtained by imaging the knee joint portion with an X-ray imaging device. Instead of or in addition to the video image captured by the X-ray imaging apparatus, a video image captured by the MRI imaging apparatus may be used.
典型診断情報100は、これらの各データをそれぞれ検索キーとして、他のデータを読み出すことができる。例えば、図9の例で、症状グレード=2を検索キーとすれば、その症状グレードに対応するスペクトル特性パターン情報104、周波数スペクトル特性106、関節症診断映像108、関節症診断映像の模式図110、典型診断説明欄112をそれぞれ読み出すことができる。また、スペクトル特性パターン情報として、図9に示すスペクトル特性パターン情報104の図表データが検索キーとして与えられると、その図表データに対応する症状グレード欄102が読み出され、その症状グレード=2に対応する他のデータが読み出される。
The typical diagnosis information 100 can read out other data using these data as search keys. For example, in the example of FIG. 9, if symptom grade = 2 is used as a search key, spectral characteristic pattern information 104, frequency spectral characteristic 106, arthropathy diagnosis video 108, and arthropathy diagnosis video schematic diagram 110 corresponding to the symptom grade are shown. Each of the typical diagnosis explanation columns 112 can be read out. Further, when the chart data of the spectrum characteristic pattern information 104 shown in FIG. 9 is given as a search key as the spectrum characteristic pattern information, the symptom grade column 102 corresponding to the chart data is read, and the symptom grade = 2 is supported. Other data to be read is read out.
スペクトル特性パターン情報の図表データが検索キーとして与えられる場合は、パターン認識技術を用いて、記憶部90に格納されている各典型診断情報100について、それぞれのスペクトル特性パターン情報104の図表データが読み出されて、検索キーとして与えられる図表データとの比較が行われる。比較は、予め定めた相関関係条件に基づいて、検索キーの図表データと、記憶部90に格納されている図表データとの相関関係の程度を評価することで行われる。そして、もっとも相関関係が強い図表データが特定されると、そのスペクトル特性パターン情報104が典型診断情報として読み出される。
When chart data of spectrum characteristic pattern information is given as a search key, the chart data of each spectrum characteristic pattern information 104 is read for each typical diagnosis information 100 stored in the storage unit 90 using a pattern recognition technique. The result is compared with chart data given as a search key. The comparison is performed by evaluating the degree of correlation between the chart data of the search key and the chart data stored in the storage unit 90 based on a predetermined correlation condition. When chart data having the strongest correlation is specified, the spectrum characteristic pattern information 104 is read as typical diagnostic information.
スペクトル特性パターン情報について、図表同士の比較によって検索を行うのは、上記のようにパターン認識技術を用いて行うことができるが、その他に、周波数スペクトル特性パターン情報を特徴付ける特徴事項を検索キーとすることもできる。周波数スペクトル特性のパターン情報を特徴付ける特徴事項としては、例えば、その周波数スペクトル特性において、最大のスペクトル値を示すときのスペクトルピーク値とその周波数の組合せであるピーク情報を用いることができる。このように、数値化した特徴事項を検索キーとすることで、検索時間が格段に短縮できる。
The spectral characteristic pattern information can be searched by comparing the charts using the pattern recognition technique as described above. In addition, the characteristic item characterizing the frequency spectral characteristic pattern information is used as a search key. You can also As a characteristic item characterizing the pattern information of the frequency spectrum characteristic, for example, peak information that is a combination of a spectrum peak value and a frequency when the maximum spectrum value is shown in the frequency spectrum characteristic can be used. Thus, the search time can be remarkably shortened by using the digitized characteristic items as the search key.
図10は、膝関節症の診断を行うのに適した生体用音響センサ14の取付位置を説明する図である。図10には、膝関節症に関連する膝関節の周辺部分の各要素が示されている。ここでは、大腿骨120、膝蓋骨122、腓骨124、脛骨126、関節軟骨128が示されている。生体用音響センサ14は、表皮が薄く骨に近い部位の皮膚表面に取り付けることがよい。図10では好ましい取付位置として、AからFが示されている。
FIG. 10 is a diagram for explaining the mounting position of the biological acoustic sensor 14 suitable for diagnosing knee arthropathy. FIG. 10 shows elements of the peripheral portion of the knee joint related to knee arthropathy. Here, a femur 120, a patella 122, a rib 124, a tibia 126, and an articular cartilage 128 are shown. The biological acoustic sensor 14 is preferably attached to the skin surface at a site where the epidermis is thin and close to bone. In FIG. 10, A to F are shown as preferable mounting positions.
Aは、大腿骨120の内側顆と呼ばれる部分に対応する位置である。Bは、大腿骨120の外側顆と呼ばれる部分に対応する位置である。Cは、脛骨126の内側顆と呼ばれる部分に対応する位置である。Dは、脛骨126の外側顆と呼ばれる部分に対応する位置である。Eは、脛骨126の粗面と呼ばれる部分に対応する位置である。Fは、膝蓋骨122の上縁外側と呼ばれる部分に対応する位置である。
A is a position corresponding to a portion called the medial condyle of the femur 120. B is a position corresponding to a portion called the lateral condyle of the femur 120. C is a position corresponding to a portion called the medial condyle of the tibia 126. D is a position corresponding to a portion called the lateral condyle of the tibia 126. E is a position corresponding to a portion called a rough surface of the tibia 126. F is a position corresponding to a portion called the outer upper edge of the patella 122.
図11は、膝関節症の進行の様子を、図10で説明した膝関節部分の図を用いて示す図である。膝関節症の進行度は、グレードと呼ばれる数字で示される。図11では、膝関節症の進行を6つの状態で示している。図11で(0)として示されている状態は、正常状態である。正常状態においては、大腿骨120と脛骨126との間の隙間が正常で、大腿骨120と脛骨126が向かい合う荷重面の摩耗が見られない。
FIG. 11 is a diagram showing the progress of knee arthropathy using the diagram of the knee joint part described in FIG. The degree of progression of knee arthropathy is indicated by a number called a grade. FIG. 11 shows the progression of knee arthropathy in six states. The state shown as (0) in FIG. 11 is a normal state. In a normal state, the gap between the femur 120 and the tibia 126 is normal, and wear on the load surface where the femur 120 and the tibia 126 face each other is not observed.
図11で(1)として示される状態と(2)として示される状態は、膝関節症の初期段階で、それぞれグレード1、グレード2と呼ばれる。グレード1の状態においては、大腿骨120と脛骨126との間の内側端部に、骨棘ができている状態130が示されている。グレード2の状態においては、関節の間の隙間である関節列隙132が狭くなってきている状態132が示されている。具体的には、関節列隙が3mm以下となった状態をグレード2としている。上記のように、図9は、このグレード2における典型診断情報である。
The state shown as (1) and the state shown as (2) in FIG. 11 are called grade 1 and grade 2, respectively, in the initial stage of knee osteoarthritis. In the grade 1 state, a state 130 where osteophytes are formed at the medial end between the femur 120 and the tibia 126 is shown. In the grade 2 state, a state 132 in which the joint row space 132 which is a gap between joints is becoming narrower is shown. Specifically, the state where the joint space is 3 mm or less is defined as grade 2. As described above, FIG. 9 shows typical diagnostic information in grade 2.
図11で(3)として示される状態は、膝関節症の中期段階で、グレード3と呼ばれる。グレード3の状態においては、関節列隙がさらに狭くなって、関節列隙が閉鎖している状態、またはそれによって亜脱臼となっている状態134が示されている。
The state shown as (3) in FIG. 11 is called the grade 3 in the middle stage of knee arthropathy. In the grade 3 state, the joint row space is further narrowed and the joint row space is closed, or a state 134 resulting in subluxation.
図11で(4)として示される状態と(5)として示される状態は、膝関節症の終期段階で、それぞれグレード4、グレード5と呼ばれる。グレード4では、関節列隙がなくなって、荷重面の一部が摩耗によって欠損している状態136が示されている。グレード5では、荷重面の摩耗または欠損がさらに進み、大腿骨120と脛骨126のずれが生じている状態138が示されている。具体的には、荷重面における関節軟骨128の摩耗または欠損が5mm未満のときをグレード4、摩耗または欠損が5mm以上のときをグレード5と区別することができる。
The state shown as (4) and the state shown as (5) in FIG. 11 are called the grade 4 and grade 5, respectively, at the final stage of knee arthropathy. In grade 4, there is shown a state 136 in which the joint row gap is lost and a part of the load surface is lost due to wear. Grade 5 shows a state 138 in which wear or loss of the load surface has further progressed and the femur 120 and tibia 126 are displaced. Specifically, it can be distinguished from grade 4 when the wear or loss of the articular cartilage 128 on the load surface is less than 5 mm, and grade 5 when the wear or loss is 5 mm or more.
次に、膝関節症の疑いのある被検査者について、生体用音響センサ14を取り付け、膝の屈伸運動を行ってもらい、そのときに検出された生体用音響センサ14の信号と、膝関節症の進行度を示す症状グレードとを関連付けた結果を説明する。関連付けは、同じ被検査者について、膝関節の部分をX線撮像装置で撮像し、その映像画像について、図11で説明した症状グレード分類基準を用いて症状グレードを決定することで行った。数多くの検査結果を分類し、各症状グレードについて典型的な例を抜き出して整理した結果を図12と図13に示す。
Next, for the subject who is suspected of having knee arthropathy, the living body acoustic sensor 14 is attached and the knee is bent and extended, and the signal of the living body acoustic sensor 14 detected at that time and the knee arthropathy are detected. The result of associating with the symptom grade indicating the degree of progression will be described. The association was performed by imaging the knee joint portion with the X-ray imaging device for the same subject and determining the symptom grade for the video image using the symptom grade classification criteria described in FIG. The results of classifying a large number of test results, extracting typical examples for each symptom grade, and arranging them are shown in FIGS.
図12は、生体用音響センサ14の検出信号を適当に増幅した波形を症状グレード別に並べたものである。横軸は時間で、図12で示されている範囲は、被検査者が椅子に座って静止し膝が屈曲している状態から立上って膝を伸展するまでの診断期間で、5秒間である。この診断期間は、膝の屈曲静止状態から、膝の伸展し終わった期間として、屈伸運動の速度の目安として予め固定して設定される。もっとも5秒間以外であっても、予め定めた時間であればよく、例えば、これを3秒間としてもよい。縦軸は、検出信号の電圧である。
FIG. 12 shows waveforms obtained by appropriately amplifying the detection signals of the biological acoustic sensor 14 arranged according to symptom grades. The horizontal axis is time, and the range shown in FIG. 12 is a diagnosis period from when the examinee sits on a chair and rests and the knee is bent, and stands up to extend the knee for 5 seconds. It is. This diagnosis period is set in advance as a guideline for the speed of flexion and extension, as a period when the knee has been extended from the flexion and stationary state of the knee. Even if it is other than 5 seconds, it may be a predetermined time. For example, this may be 3 seconds. The vertical axis represents the voltage of the detection signal.
図12では、上段側から下段側に向かって、(0),(1),(2),(3),(4),(5)として、それぞれ図11で説明した正常状態、グレード1の状態、グレード2の状態、グレード3の状態、グレード4の状態、グレード5の状態が示されている。図12に示されるように、症状グレードが進むにつれて、検出信号の電圧が大きくなり、特に、グレード4,5では明らかに他の症状グレードと区別されることが分かる。
In FIG. 12, from the upper side toward the lower side, (0), (1), (2), (3), (4), (5) are shown in FIG. A state, a grade 2 state, a grade 3 state, a grade 4 state, and a grade 5 state are shown. As shown in FIG. 12, as the symptom grade progresses, the voltage of the detection signal increases. In particular, grades 4 and 5 are clearly distinguished from other symptom grades.
図13は、図12の検出波形について、フーリエ解析を行い、周波数ごとのパワースペクトラムをとって比較した結果を示す図である。フーリエ解析を行った波形は、図12の波形、すなわち、診断期間の5秒の間の信号を1つの波形としたものである。図13は、横軸に周波数、縦軸に周波数ごとのパワースペクトルの大きさとして電圧レベルをとって示す図である。これを周波数スペクトル特性と呼ぶことにする。
FIG. 13 is a diagram showing a result of performing a Fourier analysis on the detected waveform in FIG. 12 and comparing the power spectrum for each frequency. The waveform obtained by performing the Fourier analysis is a waveform of FIG. 12, that is, a signal for a diagnosis period of 5 seconds as one waveform. FIG. 13 is a diagram showing the voltage level as frequency on the horizontal axis and the power spectrum for each frequency on the vertical axis. This is called frequency spectrum characteristics.
図13では、上段側から下段側に向かって(S),(0),(1),(2),(3),(4),(5)と並べてある。(0)から(5)は、それぞれ図11の(0)から(5)に対応し、(S)は、被検査者が椅子に座って静止し膝が屈曲している状態の周波数スペクトル特性である。具体的には、椅子に座って静止している状態において生体用音響センサ14からの検出信号を(0)から(5)のときの診断時間と同じ時間で取得し、これをフーリエ解析したものである。
In FIG. 13, (S), (0), (1), (2), (3), (4), (5) are arranged from the upper side to the lower side. (0) to (5) respectively correspond to (0) to (5) in FIG. 11, and (S) is a frequency spectrum characteristic in a state where the subject is sitting on a chair and is stationary and the knee is bent. It is. Specifically, the detection signal from the biological acoustic sensor 14 is acquired at the same time as the diagnosis time from (0) to (5) while sitting on a chair and stationary, and this is subjected to Fourier analysis. It is.
図13に示されるように、周波数スペクトル特性を比較すると、症状グレードが進むにつれて、電圧レベルが上昇し、特に、高周波側の電圧レベルが上昇することが分かる。概括的には、症状グレードが進むにつれて、周波数帯の広い範囲で電圧レベルが上昇する。
As shown in FIG. 13, comparing the frequency spectrum characteristics, it can be seen that the voltage level rises as the symptom grade progresses, and in particular, the voltage level on the high frequency side rises. In general, as the symptom grade progresses, the voltage level rises over a wide range of frequency bands.
図14は、図13の周波数スペクトル特性を平滑化してパターン化した特性線として、各症状グレードの特性線を重ね合わせて比較した図である。横軸は周波数、縦軸はパワースペクトルの大きさを示す電圧レベルである。(0)から(5)は、図13の(0)から(5)と同じで、症状グレードを示している。図14の結果から、膝関節症の進行度を示す各症状グレードは、周波数スペクトル特性をパターン化した特性線によって、区別をすることができることが分かる。
FIG. 14 is a diagram comparing the characteristic lines of the respective symptom grades as characteristic lines obtained by smoothing and patterning the frequency spectrum characteristics of FIG. The horizontal axis is the frequency, and the vertical axis is the voltage level indicating the magnitude of the power spectrum. (0) to (5) are the same as (0) to (5) in FIG. 13 and indicate symptom grades. From the result of FIG. 14, it can be seen that each symptom grade indicating the degree of progression of knee arthropathy can be distinguished by a characteristic line obtained by patterning frequency spectrum characteristics.
図15は、周波数スペクトル特性をパターン化した特性線の特徴事項について説明する図である。図14を参照しながら、パターン化した特性線のそれぞれを特徴付ける事項をとして、症状グレードが進むにつれて電圧レベルが上昇することがある。この特徴事項は、パワースペクトルである電圧レベルの最大値VPと、最大値VPのときの周波数fPで示すことができる。この最大値VPは、周波数スペクトル特性を特徴付けるスペクトルピーク値であり、fPはそのときの周波数であるので、この組合せをピーク情報として、ピーク情報を特徴事項とすることができる。
FIG. 15 is a diagram for explaining characteristic items of a characteristic line obtained by patterning frequency spectrum characteristics. Referring to FIG. 14, the voltage level may rise as the symptom grade progresses as an item that characterizes each of the patterned characteristic lines. This characteristic item can be indicated by the maximum value V P of the voltage level, which is a power spectrum, and the frequency f P at the maximum value V P. Since this maximum value V P is a spectrum peak value that characterizes the frequency spectrum characteristics, and f P is the frequency at that time, this combination can be used as peak information, and the peak information can be used as a feature item.
また、もう1つの特徴事項として、症状グレードが進むにつれて周波数帯の広い範囲で電圧レベルが上昇することがある。この特徴事項は、例えば、電圧レベルの最大値VPから20dB小さい電圧レベルV0.1の周波数f0.1で示すことができる。このように、周波数スペクトル特性を特徴付ける事項として、予め定めた基準で求める電圧レベルとその電圧レベルにおける周波数の組合せを用いることができる。
Another feature is that the voltage level may rise over a wide frequency band as the symptom grade progresses. This feature can be shown, for example, at a frequency f 0.1 of a voltage level V 0.1 that is 20 dB smaller than the maximum voltage level value V P. As described above, as a feature characterizing the frequency spectrum characteristic, a combination of a voltage level obtained based on a predetermined reference and a frequency at the voltage level can be used.
図16は、上記の結果を用いて、生体用音響センサ14を用いて膝関節症の診断を行う手順を示すフローチャートである。最初に、被検査者を椅子に座らせて静止状態として、これを初期状態に設定する(S10)。具体的には、診断装置18の初期設定を行う。次に、被検査者を椅子から立上らせ、膝を伸展させて、これを荷重伸展時として、生体用音響センサ14からの信号を取得する(S12)。この信号は、実際に診断を行っているときの実検出信号である。
FIG. 16 is a flowchart showing a procedure for diagnosing knee arthropathy using the above-described results and using the biological acoustic sensor 14. First, the person to be inspected is placed on a chair to be in a stationary state, and this is set to an initial state (S10). Specifically, the diagnosis device 18 is initialized. Next, the subject is raised from the chair, the knee is extended, and this is regarded as a load extension, and a signal from the biological acoustic sensor 14 is acquired (S12). This signal is an actual detection signal when a diagnosis is actually performed.
実検出信号から周波数スペクトル特性データを生成し、その周波数スペクトル特性データをパターン化してスペクトル特性パターン情報を生成する。これを実診断情報とする(S14)。この処理手順は、制御部80の実診断情報生成部82の機能によって実行される。
周波 数 Generate frequency spectrum characteristic data from the actual detection signal, pattern the frequency spectrum characteristic data, and generate spectrum characteristic pattern information. This is used as actual diagnosis information (S14). This processing procedure is executed by the function of the actual diagnosis information generation unit 82 of the control unit 80.
そして、実診断のスペクトル特性パターン情報を検索キーとして、記憶部90を検索し、パターン認識技術等を用いて、実診断のスペクトル特性パターンに最も相間関係があるスペクトル特性パターンを特定する。特定されたスペクトル特性パターンが典型診断情報である(S16)。この処理手順は、制御部80の典型診断情報特定部84の機能によって実行される。
Then, the storage unit 90 is searched using the spectrum characteristic pattern information of the actual diagnosis as a search key, and the spectrum characteristic pattern most closely related to the spectrum characteristic pattern of the actual diagnosis is specified using a pattern recognition technique or the like. The identified spectral characteristic pattern is typical diagnostic information (S16). This processing procedure is executed by the function of the typical diagnosis information specifying unit 84 of the control unit 80.
図15で説明したように、実診断のスペクトル特性パターンについての特徴事項を用いて記憶部90を検索して、実診断のスペクトル特性パターンに最も相間関係があるスペクトル特性パターンを特定するものとしてもよい。この場合には、記憶部90に記憶される典型診断情報について、周波数スペクトル特性を特徴付けるスペクトルピーク値とその周波数の組合せであるピーク情報と関連付けを予めつけておく。特徴事項を検索キーとすることで、数値検索を行うことができ、パターン認識技術を用いる検索に比べ、大幅に検索処理が容易になる。
As described with reference to FIG. 15, the storage unit 90 may be searched using the characteristic items regarding the spectrum characteristic pattern of the actual diagnosis, and the spectrum characteristic pattern most closely related to the spectrum characteristic pattern of the actual diagnosis may be specified. Good. In this case, the typical diagnostic information stored in the storage unit 90 is associated in advance with a spectrum peak value that characterizes the frequency spectrum characteristics and peak information that is a combination of the frequencies. By using the feature item as a search key, a numerical search can be performed, and the search process is greatly facilitated as compared to a search using a pattern recognition technique.
そして、特定されたスペクトル特性パターンに対応する症状グレードを出力する(S18)。この出力時に、症状グレードの他に、その症状グレードに対応するスペクトル特性パターン情報、それに対応する詳細な周波数スペクトル特性、その症状グレードに対応する関節症診断映像、関節症診断映像の模式図、その症状グレードに対応する典型診断説明も合わせて出力することが好ましい。具体的には、上記の図9で示した典型診断情報100のようなデータシートを診断データとして出力することが好ましい。診断データは、表示部70に出力される。このようにすることで、被検査者は、一目で現在の膝関節症の状況を理解し、対応を考えることができる。
Then, the symptom grade corresponding to the specified spectral characteristic pattern is output (S18). At the time of this output, in addition to the symptom grade, spectral characteristic pattern information corresponding to the symptom grade, detailed frequency spectrum characteristics corresponding thereto, arthropathy diagnosis video corresponding to the symptom grade, schematic diagram of the arthropathy diagnosis video, It is preferable to output a typical diagnosis explanation corresponding to the symptom grade. Specifically, it is preferable to output a data sheet such as the typical diagnostic information 100 shown in FIG. 9 as diagnostic data. The diagnostic data is output to the display unit 70. By doing in this way, the examinee can understand the current state of knee arthropathy at a glance and can consider the response.
図9ではグレード2についての典型診断情報100が示されているが、図17から図21に、正常状態、グレード1、グレード3、グレード4、グレード5についての典型診断情報140,142,144,146,148を示す。それぞれの内容は、図11から図14で説明したものと同様である。
9 shows typical diagnostic information 100 for grade 2, but FIGS. 17 to 21 show typical diagnostic information 140, 142, 144 for normal state, grade 1, grade 3, grade 4, and grade 5. 146,148. Each content is the same as that described with reference to FIGS.
本発明に係る生体用音響センサは、膝関節音、膝関節以外の関節の音、生体が動作するときの心音、肺音、血管の脈音、腱の音等の生体音の検出に利用できる。本発明に係る生体用音響センサを用いる診断システムは、膝関節症の診断に利用することができる。
The biological acoustic sensor according to the present invention can be used for detecting biological sounds such as knee joint sounds, sounds of joints other than the knee joint, heart sounds when the living body operates, lung sounds, blood vessel pulse sounds, and tendon sounds. . The diagnostic system using the biological acoustic sensor according to the present invention can be used for the diagnosis of knee arthropathy.
8 被検査者、10 変形性膝関節症診断システム、12,13,14,15 生体用音響センサ、16 ケーブル線、18 診断装置、20 センサデバイス、22 振動板、24,26 信号線、28 接触プローブ受台、30 接触プローブ、32,33 先端部、34 緩衝材、36 内側ケース体、38 外側ケース体、40 接触盤、42 中央開口穴、44 ブッシュ、52 基板、54,56 樹脂窓、60 角度センサ、62 加重計、63 通信制御部、64 生体用音響センサアンプ、66 角度センサアンプ、68 加重計アンプ、70 表示部、80 制御部、82 実診断情報生成部、84 典型診断情報特定部、86 症状グレード出力部、90 記憶部、92 典型診断情報ファイル、100,140,142,144,146,148 典型診断情報、102 症状グレード欄、104 スペクトル特性パターン情報、106 周波数スペクトル特性、108 関節症診断映像、110 模式図、112 典型診断説明欄、120 大腿骨、122 膝蓋骨、124 腓骨、126 脛骨、128 関節軟骨。
8 examinee, 10 knee osteoarthritis diagnosis system, 12, 13, 14, 15 biological acoustic sensor, 16 cable lines, 18 diagnostic devices, 20 sensor devices, 22 diaphragm, 24, 26 signal lines, 28 contacts Probe holder, 30 contact probe, 32, 33 tip, 34 cushioning material, 36 inner case body, 38 outer case body, 40 contact panel, 42 central opening hole, 44 bush, 52 substrate, 54, 56 resin window, 60 Angle sensor, 62 weight meter, 63 communication control unit, 64 biological sensor amplifier, 66 angle sensor amplifier, 68 weight meter amplifier, 70 display unit, 80 control unit, 82 actual diagnosis information generation unit, 84 typical diagnosis information identification unit 86 Symptom grade output section, 90 storage section, 92 typical diagnosis information file, 100, 140, 42, 144, 146, 148, typical diagnosis information, 102 symptom grade column, 104 spectrum characteristic pattern information, 106 frequency spectrum characteristic, 108 arthropathy diagnosis video, 110 schematic diagram, 112 typical diagnosis explanation column, 120 femur, 122 patella, 124 ribs, 126 tibias, 128 articular cartilage.
Claims (10)
- 被検査者の関節近傍の皮膚上に取り付けられる生体用音響センサと、
被検査者の関節近傍の皮膚上に取り付けられ、関節近傍の屈伸角度を検出する角度センサと、
被検査者の関節の屈伸に伴う運動加速度を検出する加重計と、
生体用音響センサと、角度センサと、加重計の検出結果に基づいて関節症の診断を行う診断装置と、
を備えることを特徴とする生体用音響センサを用いる診断システム。 A biological acoustic sensor attached on the skin near the joint of the examinee;
An angle sensor that is mounted on the skin near the joint of the subject and detects the bending and stretching angle near the joint;
A weight meter for detecting motion acceleration associated with bending and stretching of the examinee's joint;
A diagnostic apparatus for diagnosing arthropathy based on a detection result of a weight sensor, an acoustic sensor for a living body, an angle sensor,
A diagnostic system using a biometric acoustic sensor. - 請求項1に記載の生体用音響センサを用いる診断システムにおいて、
生体用音響センサは、
振動を検出するセンサデバイスと、
センサデバイスの検出部に接続され、アンテナ状に細長く延びて先端部に生体接触部を有する接触プローブと、
内部にセンサデバイスを保持し、一方側に接触プローブを外側に導く開口部を有するカップ状の内側ケース体と、
内側ケース体のカップ状外周の全体を覆うように、内側ケース体と緩衝材を介して隙間を開けて配置されるカップ状の外側ケース体と、
を備えることを特徴とする生体用音響センサを用いる診断システム。 The diagnostic system using the biological acoustic sensor according to claim 1,
The acoustic sensor for living body
A sensor device for detecting vibration;
A contact probe connected to the detection part of the sensor device, extending in an antenna shape and having a living body contact part at the tip part;
A cup-shaped inner case body having an opening for holding the sensor device inside and guiding the contact probe to the outside on one side;
A cup-shaped outer case body that is arranged with a gap between the inner case body and the cushioning material so as to cover the entire cup-shaped outer periphery of the inner case body;
A diagnostic system using a biometric acoustic sensor. - 請求項2に記載の生体用音響センサを用いる診断システムにおいて、
カップ状の外側ケース体は、互いに緩衝材を介して隙間を開けて配置される複数のカップ状体から構成されることを特徴とする生体用音響センサを用いる診断システム。 In the diagnostic system using the biological acoustic sensor according to claim 2,
A diagnostic system using an acoustic sensor for a living body, wherein the cup-shaped outer case body is composed of a plurality of cup-shaped bodies that are arranged with a gap between each other via a cushioning material. - 請求項2に記載の生体用音響センサを用いる診断システムにおいて、
センサデバイスの検出信号を無線信号に変換して外部に送信する送信部を含むことを特徴とする生体用音響センサを用いる診断システム。 In the diagnostic system using the biological acoustic sensor according to claim 2,
A diagnostic system using a biological acoustic sensor, comprising: a transmission unit that converts a detection signal of a sensor device into a wireless signal and transmits the signal to the outside. - 請求項2に記載の生体用音響センサを用いる診断システムにおいて、
接触プローブは、内側ケース体の開口部に垂直な方向に対し、予め定められた傾斜角度の傾斜形状の生体接触部を有することを特徴とする生体用音響センサを用いる診断システム。 In the diagnostic system using the biological acoustic sensor according to claim 2,
A diagnostic system using a biological acoustic sensor, wherein the contact probe has a living body contact portion having an inclined shape with a predetermined inclination angle with respect to a direction perpendicular to the opening of the inner case body. - 請求項1に記載の生体用音響センサを用いる診断システムにおいて、
診断装置は、
予め定めた信号検出期間の生体用音響センサの検出信号について、診断に役立つように予め定めた複数の信号処理の情報を診断情報とし、関節症の進行度を症状グレードとし、診断情報について予め定めた典型判断基準に基づいて、複数の症状グレードのそれぞれに関連付けて、当該症状グレードに対応する典型診断情報を記憶する記憶部と、
診断対象者についての生体用音響センサの実検出信号を予め定めた信号検出期間について取得する取得部と、
取得した実検出信号についての診断情報である実診断情報を生成する実診断情報生成部と、
実診断情報を検索キーとして、記憶部を検索し、予め定めた相関関係条件に基づいて、実診断情報に最も相関関係が強い典型診断情報を特定する特定部と、
特定された典型診断情報に対応する症状グレードを出力する出力部と、
を含むことを特徴とする生体用音響センサを用いる診断システム。 The diagnostic system using the biological acoustic sensor according to claim 1,
The diagnostic device
For detection signals of the biological acoustic sensor in a predetermined signal detection period, information of a plurality of predetermined signal processings is used as diagnostic information so as to be useful for diagnosis, the degree of progression of arthropathy is defined as a symptom grade, and diagnosis information is determined in advance. A storage unit that stores typical diagnosis information corresponding to the symptom grade in association with each of the plurality of symptom grades based on the typical determination criteria;
An acquisition unit for acquiring an actual detection signal of a biological acoustic sensor for a diagnosis target person for a predetermined signal detection period;
An actual diagnosis information generation unit that generates actual diagnosis information that is diagnosis information about the acquired actual detection signal;
Using the actual diagnosis information as a search key, the storage unit is searched, based on a predetermined correlation condition, a specifying unit that identifies typical diagnosis information having the strongest correlation with the actual diagnosis information,
An output unit that outputs a symptom grade corresponding to the identified typical diagnosis information;
A diagnostic system using a biological acoustic sensor characterized by comprising: - 請求項6に記載の生体用音響センサを用いる診断システムにおいて、
診断情報は、生体用音響センサの検出信号についての周波数成分ごとの強さ分布である周波数スペクトル特性の情報であり、
典型診断情報は、検出信号の周波数スペクトル特性の特徴をパターン化したスペクトル特性パターン情報であることを特徴とする生体用音響センサを用いる診断システム。 In the diagnostic system using the biological acoustic sensor according to claim 6,
The diagnostic information is information on frequency spectrum characteristics, which is a strength distribution for each frequency component of the detection signal of the biological acoustic sensor,
A diagnostic system using a biological acoustic sensor, wherein the typical diagnostic information is spectral characteristic pattern information obtained by patterning characteristics of frequency spectral characteristics of a detection signal. - 請求項6に記載の生体用音響センサを用いる診断システムにおいて、
診断情報は、生体用音響センサの検出信号についての周波数成分ごとの強さ分布である周波数スペクトル特性の情報であり、
典型診断情報は、検出信号の周波数スペクトル特性を特徴付けるスペクトルピーク値とその周波数の組合せであるピーク情報であることを特徴とする生体用音響センサを用いる診断システム。 In the diagnostic system using the biological acoustic sensor according to claim 6,
The diagnostic information is information on frequency spectrum characteristics, which is a strength distribution for each frequency component of the detection signal of the biological acoustic sensor,
A diagnostic system using a biometric acoustic sensor, wherein the typical diagnostic information is a spectral peak value that characterizes a frequency spectrum characteristic of a detection signal and peak information that is a combination of the frequency. - 請求項6に記載の生体用音響センサを用いる診断システムにおいて、
記憶部は、複数の症状グレードのそれぞれに対応付けて、当該症状グレードに対応する関節症診断映像を記憶し、
出力部は、
症状グレードを示す番号とともに、当該症状グレードに対応する関節症診断映像を出力することを特徴とする生体用音響センサを用いる診断システム。 In the diagnostic system using the biological acoustic sensor according to claim 6,
The storage unit is associated with each of the plurality of symptom grades, stores an arthropathy diagnosis video corresponding to the symptom grade,
The output section
A diagnostic system using an acoustic sensor for a living body that outputs an arthritis diagnosis video corresponding to the symptom grade together with a number indicating the symptom grade. - 請求項6に記載の生体用音響センサを用いる診断システムにおいて、
記憶部は、複数の症状グレードのそれぞれに対応付けて、当該症状グレードに対応する典型診断説明を記憶し、
出力部は、
症状グレードを示す番号とともに、当該症状グレードに対応する典型診断説明を出力することを特徴とする生体用音響センサを用いる診断システム。 In the diagnostic system using the biological acoustic sensor according to claim 6,
The storage unit is associated with each of the plurality of symptom grades, stores a typical diagnosis explanation corresponding to the symptom grade,
The output section
A diagnostic system using an acoustic sensor for a living body that outputs a typical diagnosis explanation corresponding to the symptom grade together with a number indicating the symptom grade.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011552792A JP5754689B2 (en) | 2010-02-05 | 2011-02-02 | Diagnostic system using biological acoustic sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010024362 | 2010-02-05 | ||
JP2010-024362 | 2010-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096419A1 true WO2011096419A1 (en) | 2011-08-11 |
Family
ID=44355415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052110 WO2011096419A1 (en) | 2010-02-05 | 2011-02-02 | Bio-acoustic sensor and diagnostic system using the bio-acoustic sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5754689B2 (en) |
WO (1) | WO2011096419A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013528419A (en) * | 2010-05-03 | 2013-07-11 | エモヴィ インコーポレーテッド | Methods and systems for knee joint pathology assessment and diagnostic assistance |
JP2016168219A (en) * | 2015-03-13 | 2016-09-23 | 富士フイルム株式会社 | Joint sound measuring system |
JP2017023187A (en) * | 2015-07-16 | 2017-02-02 | 公立大学法人首都大学東京 | Knee Arthrosis Diagnosis System |
JP2017086255A (en) * | 2015-11-05 | 2017-05-25 | 国立大学法人佐賀大学 | Arthritis detection device |
WO2019197704A1 (en) * | 2018-04-10 | 2019-10-17 | Oulun Yliopisto | Joint analysis probe |
JP2020058538A (en) * | 2018-10-10 | 2020-04-16 | 大和ハウス工業株式会社 | Joint state determination system |
CN111374672A (en) * | 2018-12-29 | 2020-07-07 | 西安思博探声生物科技有限公司 | Intelligent knee pad and knee joint injury early warning method |
JP6842228B1 (en) * | 2020-10-30 | 2021-03-17 | 学校法人日本大学 | Methods and systems that use acoustic information obtained from joints as an index of joint status |
US11039782B2 (en) | 2015-05-27 | 2021-06-22 | Georgia Tech Research Corporation | Wearable technologies for joint health assessment |
CN117159017A (en) * | 2023-01-10 | 2023-12-05 | 北京大学口腔医学院 | Osteoarthritis monitoring system based on joint sound |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61501822A (en) * | 1984-04-09 | 1986-08-28 | ゲイ,ト−マス | Method for acoustic detection and analysis of joint abnormalities |
WO2007126115A1 (en) * | 2006-05-02 | 2007-11-08 | Kagoshima University | Prevention apparatus and prevention system of osteoporotic change |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4411384B2 (en) * | 2004-04-15 | 2010-02-10 | 独立行政法人放射線医学総合研究所 | Diagnostic system |
-
2011
- 2011-02-02 JP JP2011552792A patent/JP5754689B2/en active Active
- 2011-02-02 WO PCT/JP2011/052110 patent/WO2011096419A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61501822A (en) * | 1984-04-09 | 1986-08-28 | ゲイ,ト−マス | Method for acoustic detection and analysis of joint abnormalities |
WO2007126115A1 (en) * | 2006-05-02 | 2007-11-08 | Kagoshima University | Prevention apparatus and prevention system of osteoporotic change |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013528419A (en) * | 2010-05-03 | 2013-07-11 | エモヴィ インコーポレーテッド | Methods and systems for knee joint pathology assessment and diagnostic assistance |
JP2016168219A (en) * | 2015-03-13 | 2016-09-23 | 富士フイルム株式会社 | Joint sound measuring system |
US11039782B2 (en) | 2015-05-27 | 2021-06-22 | Georgia Tech Research Corporation | Wearable technologies for joint health assessment |
JP2017023187A (en) * | 2015-07-16 | 2017-02-02 | 公立大学法人首都大学東京 | Knee Arthrosis Diagnosis System |
JP2017086255A (en) * | 2015-11-05 | 2017-05-25 | 国立大学法人佐賀大学 | Arthritis detection device |
WO2019197704A1 (en) * | 2018-04-10 | 2019-10-17 | Oulun Yliopisto | Joint analysis probe |
JP2020058538A (en) * | 2018-10-10 | 2020-04-16 | 大和ハウス工業株式会社 | Joint state determination system |
JP7132816B2 (en) | 2018-10-10 | 2022-09-07 | 大和ハウス工業株式会社 | Joint condition determination system |
CN111374672A (en) * | 2018-12-29 | 2020-07-07 | 西安思博探声生物科技有限公司 | Intelligent knee pad and knee joint injury early warning method |
CN111374672B (en) * | 2018-12-29 | 2024-01-19 | 西安思博探声生物科技有限公司 | Intelligent knee pad and knee joint injury early warning method |
WO2022091356A1 (en) * | 2020-10-30 | 2022-05-05 | 学校法人日本大学 | Method and system for using acoustic information obtained from joint as indicator of joint status |
JP6842228B1 (en) * | 2020-10-30 | 2021-03-17 | 学校法人日本大学 | Methods and systems that use acoustic information obtained from joints as an index of joint status |
CN117159017A (en) * | 2023-01-10 | 2023-12-05 | 北京大学口腔医学院 | Osteoarthritis monitoring system based on joint sound |
Also Published As
Publication number | Publication date |
---|---|
JP5754689B2 (en) | 2015-07-29 |
JPWO2011096419A1 (en) | 2013-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754689B2 (en) | Diagnostic system using biological acoustic sensor | |
JP5093537B2 (en) | Sound information determination support method, sound information determination method, sound information determination support device, sound information determination device, sound information determination support system, and program | |
CN103313662B (en) | System, the stethoscope of the risk of instruction coronary artery disease | |
US20220378299A1 (en) | Noninvasive method for measuring sound frequencies created by vortices in a carotid artery, visualization of stenosis, and ablation means | |
WO2008036911A2 (en) | System and method for acoustic detection of coronary artery disease | |
JP5090465B2 (en) | Atherosclerosis diagnostic device | |
Xu et al. | Fetal movement detection by wearable accelerometer duo based on machine learning | |
JP5038620B2 (en) | Motor function testing device | |
WO2019048961A1 (en) | Diagnosis of pathologies using infrasonic signatures | |
Yu et al. | Automatic detection of atrial fibrillation from ballistocardiogram (BCG) using wavelet features and machine learning | |
JP3832792B2 (en) | Biological rhythm inspection device and biological rhythm inspection method | |
Shokouhmand et al. | Diagnosis of peripheral artery disease using backflow abnormalities in proximal recordings of accelerometer contact microphone (ACM) | |
US10682091B2 (en) | System and methods for dynamic bone structure interaction | |
Yiallourides et al. | Time-frequency analysis and parameterisation of knee sounds for non-invasive detection of osteoarthritis | |
WO2008074151A1 (en) | System and method of assessing the condition of a joint | |
US10271737B2 (en) | Noninvasive arterial condition detecting method, system, and non-transitory computer readable storage medium | |
JP2019010436A (en) | Biological sensor and signal acquisition method of biological sensor | |
Grundlehner et al. | Methods to characterize sensors for capturing body sounds | |
JP7320867B2 (en) | Medical devices and programs | |
Naufal et al. | Advancement on automatic blood pressure measurement using auscultatory method: A literature review | |
WO2022091356A1 (en) | Method and system for using acoustic information obtained from joint as indicator of joint status | |
Monika et al. | Embedded Stethoscope for Real Time Diagnosis of Cardiovascular Diseases | |
RU2826017C1 (en) | Method for determining acting loads on joints of lower extremity | |
Sayed et al. | Phonoarthrography for Early Detection of Osteoarthritis using Machine Learning | |
Rahman et al. | Heart Rate Measurement on Smartphone using Cardiography: A Scoping Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739767 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011552792 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11739767 Country of ref document: EP Kind code of ref document: A1 |