WO2011092885A1 - Method for producing fuel cell separator, and fuel cell - Google Patents
Method for producing fuel cell separator, and fuel cell Download PDFInfo
- Publication number
- WO2011092885A1 WO2011092885A1 PCT/JP2010/065222 JP2010065222W WO2011092885A1 WO 2011092885 A1 WO2011092885 A1 WO 2011092885A1 JP 2010065222 W JP2010065222 W JP 2010065222W WO 2011092885 A1 WO2011092885 A1 WO 2011092885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- fuel cell
- molding composition
- molding
- metal component
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for manufacturing a fuel cell separator, and a fuel cell including the fuel cell separator manufactured by the manufacturing method.
- a fuel cell is composed of a cell stack composed of several tens to several hundreds of unit cells stacked in series, thereby obtaining a predetermined voltage.
- the most basic structure of the unit cell has a configuration of “separator / fuel electrode (anode) / electrolyte / oxidant electrode (cathode) / separator”.
- fuel is supplied to the fuel electrode of the pair of electrodes facing each other through the electrolyte, the oxidant is supplied to the oxidant electrode, and the fuel is oxidized by an electrochemical reaction, so that the chemical energy of the reaction is increased. Directly converted to electrochemical energy.
- Such fuel cells are classified into several types depending on the type of electrolyte. Recently, solid polymer fuel cells using a solid polymer electrolyte membrane as an electrolyte have attracted attention as fuel cells that can provide high output. Has been.
- FIG. 1A and 1B show an example of a polymer electrolyte fuel cell.
- an electrolyte 4 solid polymer electrolyte membrane
- a gas diffusion electrode fuel electrode 31 and oxidation
- a single battery (unit cell) is configured by interposing a membrane-electrode assembly (MEA) 5 composed of the agent electrode 32).
- MEA membrane-electrode assembly
- a battery body (cell stack) is formed by arranging several tens to several hundreds of unit cells.
- a gas supply / discharge groove 2 is formed which is a flow path for hydrogen gas as fuel and oxygen gas as oxidant.
- Such a cell stack is composed of, for example, 50 to 100 unit cells in the case of a stationary type for home use, 400 to 500 unit cells in the case of mounting on a car, and in the case of mounting on a laptop computer. It is composed of 10 to 20 unit cells.
- a methanol direct fuel cell which is a type of solid polymer fuel cell, supplies a methanol aqueous solution instead of hydrogen as a fuel.
- each electrode has the following formula: A reaction is occurring.
- An oxygen reduction reaction (the same reaction as when hydrogen is used as fuel) occurs at the air electrode.
- Fuel electrode reaction CH 3 OH + H 2 O ⁇ CO 2 + 6H + + 6e ⁇ (1 ′)
- Air electrode reaction 3/2 O 2 + 6H + + 6e ⁇ ⁇ 3H 2 O (2 ′)
- Overall reaction CH 3 OH + 3 / 2O 2 ⁇ CO 2 + 2H 2 O
- the fuel cell separator 40 has a unique gas supply / discharge groove 2 on one or both sides of a thin plate-like body as shown in FIGS. 1A and 1B.
- the fuel cell separator 40 is formed of a metal plate, a molding composition containing graphite particles and a resin component, or the like.
- the metal ions are desorbed from the fuel cell separator 40, the metal ions are diffused into the electrolyte 4 and further trapped at the ion exchange site of the electrolyte 4, and as a result, the electrolyte 4.
- the fuel cell separator 40 may be washed with water in the manufacturing process. In such a case, if the fuel cell separator 40 contains a metal component, a metal oxide (rust) is formed on the surface of the fuel cell separator 40. Will appear. Then, the deterioration of the electrolyte 4 becomes remarkable.
- Patent Document 1 in view of the above problems, after removing the metal from the graphite particles in advance, the graphite particles and the resin component are mixed to prepare a molding composition, and the fuel cell separator is prepared from the molding composition. Is disclosed.
- the present invention suppresses desorption of metal ions from a fuel cell separator, and a method of manufacturing a fuel cell separator capable of suppressing a decrease in proton conductivity of an electrolyte due to the desorption of metal ions and decomposition of the electrolyte.
- the purpose is to provide.
- Another object of the present invention is to provide a fuel cell including a fuel cell separator manufactured by the method for manufacturing a fuel cell separator.
- the method for producing a fuel cell separator according to the first invention includes a step of forming a molding composition by blending raw material components including graphite particles and a resin component, and then molding the molding composition, Before molding the molding composition, the metal component is removed from the molding composition.
- the method for removing the metal component from the molding composition is suction removal using a magnet.
- the metal component before preparing the molding composition, it is preferable to previously remove at least the metal component from the graphite particles among the raw material components.
- the metal component it is preferable to remove the metal component from all raw material components in advance before preparing the molding composition.
- the method of removing the metal component from the raw material component is suction removal using a magnet.
- the method for producing a fuel cell separator according to the second invention includes a step of forming a molding composition by blending raw material components including graphite particles and a resin component, and then molding the molding composition, Before preparing the molding composition, the metal component is previously removed from all raw material components.
- the molded body is subjected to wet blasting, and the metal component from the slurry containing abrasive grains used in the wet blasting process. It is preferable to apply while removing with a magnet.
- the amount of the metal component in the fuel cell separator is washed with hot water at 90 ° C. for 1 hour, and then at 90 ° C. for 1 hour. It is preferable that the metal oxide having a diameter larger than 100 ⁇ m does not exist on the surface of the fuel cell separator when the heat drying treatment is performed.
- a fuel cell according to a third invention is characterized by including a fuel cell separator manufactured according to the first and second inventions.
- the desorption of metal ions from the fuel cell separator is suppressed, and the decrease in proton conductivity of the electrolyte due to the desorption of metal ions and the decomposition of the electrolyte are suppressed.
- FIG. 1 is a schematic perspective view of a unit cell of a fuel cell, showing an example of an embodiment of the present invention.
- FIG. 1B is a schematic perspective view showing a fuel cell separator in the unit cell shown in FIG. 1A.
- FIG. 6 is an exploded perspective view illustrating another example of a unit cell of a fuel cell that is configured using a gasket according to another example of the embodiment of the present invention. It is a perspective view which shows the further another example of embodiment of this invention, and shows an example of a fuel cell.
- It is a schematic sectional drawing which shows the 1st example of the suction removal apparatus used in embodiment of this invention.
- It is a schematic sectional drawing which shows the 2nd example of the suction removal apparatus used in embodiment of this invention.
- It is a schematic sectional drawing which shows the 3rd example of the suction removal apparatus used in embodiment of this invention.
- schematic sectional drawing which shows the example of the wet blast processing apparatus provided with the suction removal apparatus used in embodiment of this invention.
- the molding composition for producing the fuel cell separator 40 (hereinafter referred to as the separator 40) contains a resin component and graphite particles.
- this molding composition does not contain a primary amine and a secondary amine. That is, it is preferable that this molding composition does not contain a compound having substituents —NH and —NH 2 . Furthermore, it is preferable that the molding composition does not contain a tertiary amine. Thus, when the molding composition does not contain an amine, the separator 40 formed from the molding composition does not poison the platinum catalyst in the fuel cell, and the electromotive force when the fuel cell is used for a long time. Is suppressed.
- the resin component contained in the molding composition may be either a thermoplastic resin or a thermosetting resin.
- thermoplastic resin examples include polyphenylene sulfide resin and polypropylene resin.
- thermosetting resin When using a thermosetting resin, it is preferable that this thermosetting resin contains at least one of an epoxy resin and a thermosetting phenol resin.
- Epoxy resins and thermosetting phenol resins are excellent in that they have a good melt viscosity and a small amount of impurities, in particular, a small amount of ionic impurities.
- the content of the epoxy resin and the thermosetting phenol resin with respect to the total amount of the thermosetting resin is preferably in the range of 50 to 100% by mass. It is particularly preferable if the thermosetting resin contains only an epoxy resin, only a thermosetting phenol resin, or only an epoxy resin and a thermosetting phenol resin.
- the epoxy resin is preferably in a solid form, and particularly preferably has a melting point in the range of 70 to 90 ° C. Thereby, the change of a material decreases and the handleability of the molding composition at the time of shaping
- an ortho cresol novolac type epoxy resin a bisphenol type epoxy resin, a biphenyl type epoxy resin, a phenol aralkyl type epoxy resin having a biphenylene skeleton, or the like is preferably used.
- This ortho-cresol novolac type epoxy resin, bisphenol type epoxy resin, and phenol aralkyl type epoxy resin having a biphenylene skeleton are excellent in that they have a good melt viscosity and a small amount of impurities, and in particular, a small amount of ionic impurities.
- the epoxy resin contains an epoxy resin component consisting only of an ortho cresol novolac type epoxy resin, or selected from an ortho cresol novolac type epoxy resin, a bisphenol type epoxy resin, a biphenyl type epoxy resin, and a phenol aralkyl type epoxy resin having a biphenylene skeleton. It is preferable that the epoxy resin component which consists of at least 1 type of is included.
- the ortho-cresol novolac type epoxy resin is an essential component, the molding composition has excellent moldability, and the separator 40 has excellent heat resistance. In addition, the manufacturing cost can be reduced.
- the proportion of the ortho-cresol novolac type epoxy resin in the epoxy resin component is preferably in the range of 50 to 100% by mass from the viewpoint of improving the moldability, improving the heat resistance of the separator 40, and reducing the manufacturing cost.
- a range of 50 to 70% by mass is particularly preferable.
- the viscosity of the molding composition is reduced, and a molding composition having particularly high moldability can be obtained.
- the content of the bisphenol F type epoxy resin in the epoxy resin component is preferably in the range of 30 to 50% by mass.
- the content of the biphenyl type epoxy resin in the epoxy resin component is preferably in the range of 30 to 50% by mass.
- the proportion of the phenol aralkyl type epoxy resin having a biphenylene skeleton in the epoxy resin component is preferably in the range of 30 to 50% by mass.
- the content of the epoxy resin component with respect to the total amount of the thermosetting resin in the molding composition is preferably in the range of 50 to 100% by mass.
- the epoxy resin component is contained in the molding composition as at least a part of the epoxy resin in the thermosetting resin. That is, as the thermosetting resin other than the epoxy resin component, for example, selected from epoxy resins other than the epoxy resin component, thermosetting phenol resin, vinyl ester resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin, etc. One or more kinds of resins may be used. However, it is desirable not to use a resin containing an ester bond because it may hydrolyze in an acid resistant environment.
- a polyimide resin is also suitable as the thermosetting resin in that it contributes to improving the heat resistance and acid resistance of the separator 40.
- bismaleimide resin is particularly preferable, and as this bismaleimide resin, for example, 4,4-diaminodiphenyl bismaleimide can be mentioned.
- the heat resistance of the separator 40 is further increased.
- thermosetting phenol resin When a thermosetting phenol resin is used, it is particularly preferable to use a phenol resin that undergoes a polymerization reaction by ring-opening polymerization.
- phenol resins include benzoxazine resins.
- gas due to dehydration is not generated in the molding process, voids are not generated in the molded product, and a decrease in gas permeability is suppressed.
- a resol type phenol resin for example, a resol type phenol having a structure of ortho-ortho 25-35%, ortho-para 60-70%, para-para 5-10% by 13C-NMR analysis.
- a resin is preferably used.
- the resol resin is usually liquid, but the softening point of the resol type phenol resin is easily adjusted, and a resol type phenol resin having a melting point of 70 to 90 ° C. can be easily obtained. Thereby, the change of a material decreases and the handleability of the molding composition at the time of shaping
- the melting point is less than 70 ° C., aggregation tends to occur in the molding composition, and the handling property of the molding composition may be deteriorated.
- resins other than the epoxy resin and the thermosetting phenol resin may be used in combination.
- resins selected from polyimide resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins and the like can be used.
- the molding composition contains a curing agent as an essential component, and this curing agent contains a phenolic compound as an essential component.
- the phenol compound include novolak type phenol resins, cresol novolac type phenol resins, polyfunctional phenol resins, aralkyl-modified phenol resins, and the like.
- the content of the phenolic compound relative to the total amount of the curing agent is determined depending on the amount of the epoxy resin used. Further, it is particularly preferable that the curing agent is only a phenol compound.
- the total content of the thermosetting resin and the curing agent in the solid content of the molding composition is preferably in the range of 14 to 24.1% by mass.
- thermosetting resin when used as the thermosetting resin, when the thermosetting resin and the curing agent are blended, the epoxy resin in the thermosetting resin and the phenolic compound in the curing agent are the above-mentioned for the phenolic compound. It is preferable that the equivalent ratio of the epoxy resin is in the range of 0.8 to 1.2.
- the graphite particles are used to reduce the electrical specific resistance of the molded separator 40 and improve the conductivity of the separator 40.
- the graphite particle content is preferably in the range of 75 to 90% by mass with respect to the total amount of the molding composition.
- the separator 40 is provided with sufficiently excellent conductivity.
- this ratio is 90% by mass or less, a sufficiently excellent moldability is imparted to the molding composition, and a sufficiently excellent gas permeability is imparted to the separator 40.
- Any graphite particles can be used as long as they exhibit high conductivity.
- graphite particles obtained by graphitizing carbonaceous materials such as mesocarbon microbeads, coal-based cokes, and petroleum-based cokes are graphitized.
- suitable graphite particles such as graphite electrode, special carbon material processed powder, natural graphite, quiche graphite, expanded graphite and the like are used. Only one kind of such graphite particles may be used, or a plurality of kinds may be used in combination.
- the graphite particles may be either artificial graphite powder or natural graphite powder.
- Natural graphite powder has the advantage of high conductivity, and artificial graphite powder has the advantage of low anisotropy, although the conductivity is somewhat inferior to that of natural graphite powder.
- the graphite particles are purified regardless of whether they are natural graphite powder or artificial graphite powder. In this case, since there are few ash and ionic impurities in the graphite particles, The elution of impurities from a certain separator 40 is suppressed.
- the ash content in the graphite particles is preferably 0.05% by mass or less, and if the ash content exceeds 0.05% by mass, the characteristics of the fuel cell manufactured using the separator 40 may be deteriorated.
- the average particle size of the graphite particles is preferably in the range of 15 to 100 ⁇ m.
- the average particle size is 10 ⁇ m or more, the moldability of the molding composition is excellent, and when it is 100 ⁇ m or less, the surface smoothness of the separator 40 is improved.
- the average particle size is preferably 30 ⁇ m or more.
- the surface smoothness of the separator 401 is particularly improved, and the arithmetic average height Ra (JIS) of the surface of the separator 40 is described later.
- the average particle size is preferably 70 ⁇ m or less.
- the graphite particles when obtaining a thin separator 40 in particular, preferably have a particle size that passes through a 100 mesh sieve (aperture 150 ⁇ m). If the graphite particles contain particles that do not pass through a 100-mesh sieve, graphite particles having a large particle size are mixed in the molding composition, and in particular, the molding composition is molded into a thin sheet. The formability at the time will fall.
- the aspect ratio of the graphite particles is preferably 10 or less. In this case, it is possible to prevent the separator 40 from being anisotropic and to prevent deformation such as warpage.
- the ratio of the contact resistance between the flow direction of the molding composition at the time of molding in the separator 40 and the direction orthogonal to the flow direction is 2 or less. It is preferable.
- graphite particles it is also preferable to use graphite particles having two or more kinds of particle size distributions, that is, graphite particles obtained by mixing two or more kinds of particles having different average particle diameters. In this case, it is particularly preferable to mix graphite particles having an average particle diameter of 1 to 50 ⁇ m and graphite particles having an average particle diameter of 30 to 100 ⁇ m. When graphite particles having such a particle size distribution are used, it is expected that particles having a large particle size have a small surface area, so that they can be kneaded even with a small amount of resin.
- the mixing ratio of the particles having an average particle diameter of 1 to 50 ⁇ m and the particles having an average particle diameter of 30 to 100 ⁇ m is appropriately adjusted.
- the mixing mass ratio of the former to the latter is 40:60 to 90:10, particularly 65:35. It is preferably ⁇ 85: 15.
- the average particle size of the graphite particles is a volume average particle size measured by a laser diffraction / scattering method with a laser diffraction / scattering particle size analyzer (such as Microtrack MT3000II series manufactured by Nikkiso Co., Ltd.).
- the molding composition may contain additives such as a curing catalyst, a wax (release agent), and a coupling agent as necessary.
- a curing catalyst (curing accelerator) an appropriate one can be contained, but a non-amine compound should be used so as not to contain a primary amine and a secondary amine in the composition. Is preferred. For example, amine-based diaminodiphenylmethane and the like are not preferable because the residue may poison the fuel cell catalyst. In addition, imidazoles are less preferred because they easily release chlorine ions after curing, and may cause impurity elution.
- the hydrocarbon in the second position has a weight loss of 5% or less when heated under the conditions of a measurement start temperature of 30 ° C., a heating rate of 10 ° C./min, a holding temperature of 120 ° C., and a holding temperature of 30 minutes.
- the use of a substituted imidazole having a group is preferable in that the storage stability of the molding composition is improved.
- the volatility when forming the sheet-like separator 40 from the molding composition prepared in a varnish shape, the smoothness of the separator 40, and the like are improved.
- a substituted imidazole having a hydrocarbon group having 6 to 17 carbon atoms in the 2-position is preferably used, and specific examples thereof include 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl Examples include imidazole and 1-benzyl-2-phenylimidazole. Of these, 2-undecylimidazole and 2-heptadecylimidazole are preferred. These compounds are used alone or in combination of two or more.
- the content of such a substituted imidazole is appropriately adjusted, whereby the molding and curing time can be adjusted.
- the content of the substituted imidazole is preferably in the range of 0.5 to 3% by mass with respect to the total amount of the thermosetting resin and the curing agent in the molding composition.
- a phosphorus compound is preferably used as the curing catalyst. Further, a phosphorus compound and the substituted imidazole may be used in combination. An example of a phosphorus compound is triphenylphosphine. When such a phosphorus compound is used, elution of chlorine ions from the separator 40 which is a molded product is suppressed.
- the content of such a curing catalyst is appropriately adjusted, but is preferably in the range of 0.5 to 3 parts by mass with respect to the epoxy resin.
- the coupling agent an appropriate one is used, but it is preferable that no aminosilane is used because the molding composition does not contain a primary amine and a secondary amine.
- the use of aminosilane is not preferred because it may poison the fuel cell catalyst.
- it is preferable that mercaptosilane is not used as the coupling agent. Similarly, when this mercaptosilane is used, the fuel cell catalyst may be poisoned.
- coupling agents used include silicon-based silane compounds, titanate-based, and aluminum-based coupling agents.
- epoxy silane is suitable as a silicon-based coupling agent.
- the amount used is preferably in the range where the content in the solid content of the molding composition is 0.5 to 1.5% by mass. In this range, the coupling agent is sufficiently suppressed from bleeding on the surface of the separator 40.
- the coupling agent may be previously adhered to the surface of the graphite particles by spraying or the like.
- the addition amount in that case is appropriately set, and it is necessary to consider the specific surface area of the graphite particles and the coating area per unit mass of the coupling agent, but preferably the coating area of the coupling agent
- the total amount of is in the range of 0.5 to 2 times the total amount of the surface area of the graphite particles. In this range, bleeding of the coupling agent to the surface of the separator 40 is sufficiently suppressed, and contamination of the mold surface is suppressed.
- the wax an appropriate one is used, but particularly at 120 to 190 ° C., internal release that undergoes phase separation without being compatible with the thermosetting resin and the curing agent in the molding composition.
- a mold is used.
- an internal mold release agent it is preferable to use at least one selected from polyethylene wax, carnauba wax, and long-chain fatty acid wax.
- Such an internal mold release agent exhibits a good release improving effect by phase separation from the thermosetting resin and the hardener in the molding process of the molding composition.
- the content of the internal mold release agent is appropriately set according to the complexity of the shape of the separator 40, the groove depth, the ease of releasability from the mold surface such as the draft angle, etc., but the molding composition
- the content is preferably in the range of 0.1 to 2.5% by mass with respect to the total amount, and when the content is 0.1% by mass or more, sufficient releasability is exhibited at the time of mold molding.
- the hydrophilicity of the separator 40 is sufficiently inhibited by the wax.
- the wax content is more preferably in the range of 0.1 to 1% by mass, and particularly preferably in the range of 0.1 to 0.5% by mass.
- the molding composition may be prepared in a liquid form (including varnish and slurry) by containing a solvent.
- a solvent for example, polar solvents such as methyl ethyl ketone, methoxypropanol, N, N-dimethylformamide, dimethyl sulfoxide are preferable. Further, only one type of solvent may be used, or two or more types may be used in combination.
- the amount of the solvent used is appropriately set in consideration of the moldability when the sheet-like separator 40 is produced from the molding composition, but preferably the viscosity of the molding composition is in the range of 1000 to 5000 cps. The usage amount is set.
- a solvent should just be used as needed, and a solvent does not need to be used if a molding composition is prepared in a liquid state by using liquid resin as a thermosetting resin.
- the content of ionic impurities in the separator 40 is preferably a sodium content of 5 ppm or less and a chlorine content of 5 ppm or less in terms of mass ratio with respect to the total amount of the molding composition. It is preferable that the content of the ionic impurities in the molding composition is adjusted so that the sodium content is 5 ppm or less and the chlorine content is 5 ppm or less by mass ratio with respect to the total amount of the molding composition. In this case, elution of ionic impurities from the separator 40 is suppressed, and deterioration of characteristics such as a decrease in starting voltage of the fuel cell due to the elution of impurities is suppressed.
- each component such as a thermosetting resin, a curing agent, graphite, and other additives constituting the molding composition.
- a component in which the content of ionic impurities is a sodium content of 5 ppm or less and a chlorine content of 5 ppm or less by mass ratio with respect to each component.
- the content of ionic impurities is derived based on the amount of ionic impurities in the extracted water of the object.
- the extracted water is obtained by charging the object in ion-exchanged water at a rate of 100 ml of ion-exchanged water with respect to 10 g of the object, and treating it at 90 ° C. for 50 hours.
- ionic impurities in the extracted water are evaluated by ion chromatography. Then, based on the derived ionic impurity amount in the extracted water, the amount of the ionic impurity in the object is derived in terms of a mass ratio with respect to the object.
- the molding composition is preferably prepared such that the TOC (total organic carbon) of the separator 40 formed from this composition is 100 ppm or less.
- the TOC is a numerical value measured using an aqueous solution after the separator 40 is charged into ion-exchanged water at a rate of 100 ml of ion-exchanged water with respect to 10 g of the mass of the separator 40 and treated at 90 ° C. for 50 hours. .
- This TOC is measured by, for example, a total organic carbon analyzer “TOC-50” manufactured by Shimadzu in accordance with JIS K0102.
- the CO2 concentration generated by burning the sample is measured by a non-dispersive infrared gas analysis method, and the carbon concentration in the sample is quantified.
- the concentration of the organic substance contained indirectly is measured.
- Inorganic carbon (IC) and total carbon (TC) in the sample are measured, and total organic carbon (TOC) is measured from the difference between the total carbon and inorganic carbon (TC-IC).
- the value of TOC is reduced by selecting a high-purity component as each component constituting the molding composition, adjusting the equivalent ratio of the resin, or performing a post-curing process during molding.
- a molding composition is prepared by blending the raw material components as described above, and the separator 40 is obtained by molding the molding composition.
- the metal component is removed from at least one of the raw material component, the molding composition, and the separator 40.
- at least the metal component is preferably removed from the molding composition. Thereby, the content of the metal component of the fuel cell separator is reduced.
- the metal component is removed in advance from components (hereinafter referred to as raw material components) blended in the molding composition. That is, it is preferable that the metal component is previously removed from at least one of the graphite particles, the resin component, and other raw material components. In particular, it is preferable that the metal component is previously removed from at least the graphite particles. In this case, the metal component is removed from the graphite particles in advance, so that the content of the metal component of the fuel cell separator is further reliably reduced.
- the resin component may also contain a metal component as an impurity during the production process. For this reason, it is preferable that the metal component is removed from the resin component in advance.
- the raw material components other than the graphite particles and the resin component may contain a metal component as an impurity in the production process or the like. For this reason, it is preferable that a metal component is previously removed from raw material components other than the graphite particles and the resin component.
- the metal component is removed in advance from all raw material components.
- the metal component is removed from all the raw material components in advance, so that the content of the metal component in the fuel cell separator is further reliably reduced.
- the raw material component is adjusted so that the total content of Fe, Co, and Ni in the raw material component is preferably 1 mass ppm or less, more preferably 0.5 mass ppm or less.
- the metal component is removed from Furthermore, from the raw material component to the metal component so that the total content of Cr, Mn, Fe, Co, Ni, Cu and Zn in the raw material component is preferably 1 ppm by mass or less, more preferably 0.5 ppm by mass or less. Is removed.
- the metal component having a diameter of 35 ⁇ m or more is removed from the raw material component, and further, the metal component having a diameter of less than 35 ⁇ m is also removed.
- An example of a method for removing the metal component from the raw material component is a method of removing the metal component in the raw material component by suction using a magnet.
- the metal component is sufficiently removed from the raw material component, and the content of the magnetic substance is particularly reduced.
- a permanent magnet, an electromagnet, or the like can be used as the magnet.
- the magnetic force (magnetic flux density) of the magnet is preferably 10,000 Gauss or more, more preferably 20000 Gauss or more, and from the viewpoint of operability, it is 30000 Gauss or less. It is preferable. However, since the magnetic force (magnetic flux density) of a normal neodymium-based rare earth magnet is up to 12000 gauss, or up to about 14000 gauss, the magnetic force (magnetic flux density) when a normal neodymium-based rare earth magnet is used is 12000 gauss. Or 14,000 gauss or less. In order to improve the removal efficiency of the metal component, it is preferable to use a magnet having a larger magnetic force in the above range.
- an object passes as shown in FIG. 4A.
- An apparatus in which magnets 29 are arranged on both sides of the passage 28 is provided.
- the magnet 29 may be a permanent magnet or an electromagnet.
- Each magnet 29 is provided such that different magnetic poles are arranged on the opposing surfaces.
- Each magnet 29 is preferably formed such that the opposed surfaces facing each other via the passage 28 are uneven, and the convex portions and the concave portions appearing on the respective opposed surfaces are formed symmetrically.
- the magnetic material examples include Fe, Co, and Ni, and also alloys having magnetism.
- stainless steel such as SUS430 having magnetism is also removed.
- SUS304 and SUS316 do not have magnetism in a normal state, but become magnetized when stress is applied.
- a part such as a SUS304 or SUS316 screw used in various devices during processing or screw tightening
- the SUS304 or SUS316 constituting the part has magnetism. It becomes like this.
- SUS304 and SUS316 having such magnetism are also removed from the object.
- a plurality of rod-shaped adsorbers made of a magnetic material such as iron, cobalt, or nickel are arranged at intervals in the passage 28 between the magnets 29. Also good.
- the adsorbents are provided in parallel so that the longitudinal direction thereof is orthogonal to the direction of passage of the object in the passage 28.
- a suction removal device 27 configured by arranging a plurality of rod-shaped magnets 29 at intervals in a passage 28 through which an object passes.
- the rod-shaped magnets 29 are provided so as to be arranged in a grid, for example. Further, two or more grids composed of a plurality of rod-shaped magnets 29 may be provided along the direction in which the object passes through the passage 28.
- a plurality of rod-shaped magnets 29 provided in the passage 28 can rotate around a common rotation axis along the longitudinal direction of the rod-shaped magnet 29 in the passage 28. Also good.
- suction / removal device 27 there is an apparatus that separates a metal component from the object by using the attractive force of the magnet while dropping the object on the peripheral surface of a cylindrical body 30 having a magnet. Can be mentioned.
- the cylindrical body 30 rotates around a horizontal rotation axis.
- the magnet in the cylindrical body 30 is provided at an appropriate position.
- a magnet that is long in the rotational axis direction of the cylindrical body 30 and rotates axially in the same direction as the cylindrical body 30 is near the upper portion of the cylindrical body 30 and one side portion of the cylindrical body 30. (When the cylindrical body 30 rotates to the right, it is provided to the right, and when it rotates to the left, it is provided to the left).
- a plurality of magnets may be provided inside the cylindrical body 30 so as to be arranged along the peripheral surface of the cylindrical body 30.
- a plurality of magnets first magnets
- first magnets having magnetic poles arranged in the radial direction of the cylindrical body 30 are arranged at intervals.
- the first magnets are arranged so that the directions of the magnetic poles are alternately reversed.
- a plurality of magnets having magnetic poles arranged in the circumferential direction of the cylindrical body 30 are arranged between the first magnets.
- This second magnet also has the magnetic poles arranged alternately in opposite directions.
- a plurality of second magnets may be arranged on the cylindrical peripheral surface in the same manner as described above.
- the suction removal device 27 of the third example when an object falls on the rotating cylindrical body 30 (see the arrow indicated by reference numeral 60 in the figure), the object is a rotational force of the cylindrical body 30. (See the arrow indicated by reference numeral 70 in the figure).
- a component including a metal component (especially a magnetic material) in the object is attracted to the magnet of the cylindrical body 30 and is attracted to the cylindrical body 30, or the dropping trajectory from the cylindrical body 30 by the attractive force from the magnet. Is changed (see the arrow indicated by reference numeral 80 in the figure). For this reason, the component containing a metal component is adsorbed by the cylindrical body 30 and removed.
- the object is sorted into a component containing a metal component and a component not containing a metal component.
- a plurality of types of suction / removal devices 27 may be combined, or the same type of suction / removal devices 27 may be provided in multiple stages.
- the suction removal device 27 is provided with a shield that shields a path leading to a portion where the magnetic field is weak.
- the shield include a member having a slit that leads only to a portion where the magnetic field is strong.
- the metal component is attracted and removed from the raw material component by the magnet, so that the metal component, particularly the magnetic material (Fe, Co, Ni, etc.) is removed from the raw material component, and Fe, Co, and Ni in the raw material component are removed.
- the content of is particularly reduced.
- a method for removing the metal component from the graphite particles there is a method of washing the graphite particles using a strongly acidic solution having a pH of 2 or less.
- a strongly acidic solution for example, aqua regia obtained by mixing concentrated nitric acid having a concentration of 69% by mass and concentrated hydrochloric acid having a concentration of 36% by mass in a ratio of 1: 3 by volume ratio, hydrochloric acid having a concentration of 15% by mass or more, At least one selected from sulfuric acid having a concentration of 15% by mass or more and nitric acid having a concentration of 15% by mass or more can be used. In this case, the metal component is easily removed from the graphite particles.
- the concentration of the hydrochloric acid water, the sulfuric acid water and the nitric acid water is preferably 30% by mass or less from the viewpoint of operability.
- the method for removing the metal component from the raw material component is not limited to the above method.
- a method other than the above for example, when a metal component is removed from graphite particles, the metal component is eluted and removed in the electrolyte solution by performing an electrolysis reaction in the electrolyte solution using the graphite particles as an electrode. The method of doing is mentioned. Other appropriate methods may be employed.
- the molding composition is prepared by mixing the above-described components by an appropriate method, and kneading and granulating as necessary.
- the metal component is preferably removed from the molding composition. In this case, even if a metal component is mixed when the molding composition is prepared, the metal component can be removed from the molding composition. In this case, the metal component is sufficiently removed from the molding composition, and the content of the magnetic substance is particularly reduced.
- the total content of Fe, Co, and Ni in the molding composition is preferably 1 ppm by mass or less, more preferably 0.5 ppm by mass or less.
- the metal component is removed from the molding composition.
- the molding composition is such that the total content of Cr, Mn, Fe, Co, Ni, Cu and Zn in the molding composition is preferably 1 ppm by mass or less, more preferably 0.5 ppm by mass or less. The metal component is removed from the object.
- a metal component having a diameter of 35 ⁇ m or more is removed from the molding composition, and further a metal component having a diameter of less than 35 ⁇ m is also removed.
- Examples of the method for removing the metal component from the molding composition include a method in which the metal component in the molding composition is removed by suction using a magnet, as in the method for removing the metal component from the raw material component.
- a method in which the metal component in the molding composition is removed by suction using a magnet as in the method for removing the metal component from the raw material component.
- the metal component In order for the metal component to be removed from the raw material component or the molding composition until the content falls below a predetermined value, the metal component is removed from the raw material component or the molding composition by the method exemplified above. After that, the content of the metal component of the raw material component or the molding composition is measured by inductively coupled plasma (ICP) analysis, and the raw material component or the molding component is measured until the measurement result becomes a predetermined value or less. It is preferred that the removal of the metal component from the composition is repeated.
- ICP inductively coupled plasma
- the molded body 1 (separator 40) is obtained by molding this molding composition.
- the molding method an appropriate method such as injection molding or compression molding is employed.
- the separator 40 is formed with a plurality of convex portions (ribs) 33 on both surfaces, so that hydrogen gas as a fuel is interposed between the adjacent convex portions 33, and A gas supply / discharge groove 2 which is a flow path of oxygen gas which is an oxidizing agent is formed.
- the separator 40 includes an anode separator having a gas supply / discharge groove 2 only on one side, and a cathode side separator having a gas supply / discharge groove 2 only on one side opposite to the anode side separator. Also good.
- a separator 40 having gas supply / discharge grooves 2 on both sides as shown in FIGS. 1A and 1B is formed.
- a channel through which cooling water flows may be formed between the anode side separator and the cathode side separator.
- a gasket is preferably interposed between the anode side separator and the cathode side separator.
- the molding composition is first molded into a sheet shape to obtain a fuel cell separator molding sheet (molding sheet). It is done.
- the molding composition is formed into a sheet by, for example, casting (progressive) molding.
- a plurality of types of film thickness adjusting means can be used.
- the casting method using such a plurality of types of film thickness adjusting means is realized by using, for example, a multi-coater that has already been put into practical use.
- the film thickness adjusting means for casting it is preferable to use at least one of a doctor knife and a wire bar, that is, one or both of them together with a slit die.
- the thickness of this molding sheet is preferably 0.05 mm or more, and more preferably 0.1 mm or more.
- the thickness is preferably 0.5 mm or less, and more preferably 0.3 mm or less.
- a reduction in thickness and weight of the separator 1 and a reduction in cost are achieved.
- a solvent is used. In this case, the remaining of the solvent inside the molding sheet is effectively suppressed.
- this thickness is less than 0.05 mm, the advantage in manufacturing the separator 40 is not sufficiently exhibited, and this thickness is preferably 0.1 mm or more in consideration of moldability.
- This molding sheet is made into a semi-cured (B stage) state by drying accompanying casting, and this is subjected to compression / thermosetting molding to form a plurality of convex portions (ribs) 33 on both sides and
- the separator 40 is obtained by forming the gas supply / discharge groove 2 between the convex portions (ribs) 33.
- the separator 40 is formed in a corrugated plate shape and the gas supply / discharge groove 2 on the other surface side is formed on the back side of the convex portion 33 on the one surface side, a plurality of convex portions are formed on both surfaces while being thin.
- the separator 40 having the (rib) 33 and the gas supply / discharge groove 2 between the convex portions (rib) 33 is obtained.
- the molding sheet is first cut (cut) or punched into a predetermined plane dimension as necessary, and is thermoset by a compression molding machine in the mold.
- the compression / thermosetting molding conditions depend on the composition of the molding composition, the type of conductive substrate, the molding thickness, etc., but the heating temperature is in the range of 120 to 190 ° C., and the compression pressure is in the range of 1 to 40 MPa. It is preferable that
- the separator 40 may be produced by molding a single molding sheet, or the separator 40 may be produced by molding a plurality of molding sheets. .
- a thin separator 40 particularly a separator 40 having a thickness in the range of 0.2 to 1.0 mm can be manufactured.
- the use of the molding sheet at the time of manufacturing the separator 40 makes it easy for the molding material to be thinly and uniformly arranged and molded even when the thin separator 40 is manufactured. Increases accuracy.
- a molding sheet and an appropriate conductive base material may be laminated and molded.
- the conductive substrate is used in this way, the mechanical strength of the separator 40 is improved.
- compression and thermosetting can be performed in a state in which molding sheets (including a laminate of a plurality of molding sheets) are laminated on both sides of the conductive substrate, Alternatively, compression / thermosetting can be performed in a state where conductive substrates are laminated on both sides of a molding sheet (including a laminate of a plurality of molding sheets).
- the conductive substrate examples include carbon paper, carbon prepreg, carbon felt, and the like.
- these electroconductive base materials may contain base material components, such as glass and resin, in the range which does not impair electroconductivity.
- the thickness of the conductive substrate is preferably in the range of 0.03 to 0.5 mm, and more preferably in the range of 0.05 to 0.2 mm.
- the skin layer of the surface layer of the molded body 1 is removed and the surface roughness of the separator 40 is adjusted by blasting the molded body 1 (separator 40).
- the arithmetic average height Ra (JIS B0601: 2001) of the surface of the separator 40 is preferably in the range of 0.4 to 1.6 ⁇ m. In this case, gas leakage at the joint between the separator 40 and the gasket 12 is suppressed. For this reason, it is not necessary to mask the part joined to the gasket 12 in the separator 40 during the wet blasting process, and the production efficiency of the separator 40 is improved. Note that it is difficult for the arithmetic average height Ra to be less than 0.4 ⁇ m, and if this value is greater than 1.6 ⁇ m, the gas leak may not be sufficiently suppressed.
- the arithmetic average height Ra of the surface of the separator 40 is particularly preferably 1.2 ⁇ m or less.
- the arithmetic average height Ra of the surface of the separator 40 is less than 1.0 ⁇ m, the gas leak is particularly suppressed, and even if the fastening force at the time of manufacturing the cell stack is reduced as the separator 40 is thinned, Gas leak is sufficiently suppressed. It is also preferable that the arithmetic average height Ra of the surface of the separator 40 is 0.6 ⁇ m or more.
- the contact resistance on the surface of the separator 40 is preferably 15 m ⁇ cm 2 or less. In this case, the function of the separator 40 for transmitting the electric energy generated by the fuel cell to the outside is maintained at a high level.
- the molded body 1 is subjected to a wet blasting process, and in this process, a metal component is removed with a magnet from a slurry containing abrasive grains such as alumina particles.
- Abrasive grains used for blasting may contain metal components as impurities, and metal components may be mixed in slurry containing abrasive grains during blasting. When a slurry containing such a metal component is used and blasting is performed, the metal component is driven from the abrasive grains onto the surface of the separator 40.
- the abrasive grains are used and wet blasting is performed while removing the metal components from the slurry with a magnet as described above, adhesion of the metal components to the separator 40 during blasting is suppressed. That is, while the removal of the skin layer and the adjustment of the surface roughness are performed by the wet blasting process, metal components such as metal foreign matters contained in the abrasive grains in the slurry may be driven into the separator 40 during the wet blasting process. It is suppressed.
- FIG. 5 shows a schematic configuration of an apparatus (wet blasting apparatus) used for the wet blasting process.
- This wet blasting apparatus includes a stage 20 on which a molded body 1 (separator 40) to be processed is conveyed.
- the stage 20 is provided with nozzles 21 for injecting the slurry 26 toward the processing target above and below the processing target.
- the slurry 26 is obtained by dispersing abrasive grains such as alumina particles in a dispersion medium such as water.
- the stage 20 is sequentially provided with a fountain nozzle for injecting water and a hot air nozzle for injecting hot air, following the nozzle 21.
- a storage container 23 for storing the slurry 26 is connected to the nozzle 21 via a pipe 24.
- the pipe 24 is provided with a pump 25 that pumps the slurry from the storage container 23 to the nozzle 21 through the pipe 24. If necessary, an air pump that supplies compressed air to the nozzle 21 is also provided.
- a pan 22 that receives the slurry 26 after being sprayed onto the object to be treated. Since the upper surface of the pan 22 is inclined downward toward the position above the storage container 23, the slurry 26 received by the pan 22 is returned to the storage container 23.
- the suction removal device 27 for removing the metal component by the magnet as described above is provided in the pipe 24 of the wet blast treatment device. That is, for example, when the suction removal device 27 as in the first, second, or third example as described above is provided in the middle of the pipe 24, the slurry 26 flows when the slurry 26 flows through the pipe 24. Then, the metal component is removed by the suction removing device 27.
- the slurry 26 is supplied from the storage container 23 to the nozzle 21 through the pipe 24, and the slurry 26 is supplied from the nozzle 21 to the nozzle 21. Be injected. Note that when compressed air is supplied to the nozzle 21 together with the slurry 26, the injection pressure of the slurry 26 from the nozzle 21 increases. The slurry 26 is sprayed from the nozzle 21 onto the molded body 1 (separator 40) conveyed by the stage 20, whereby the molded body 1 (separator 40) is subjected to wet blasting. The slurry 26 is returned to the storage container 23 through the pan 22 and reused.
- the molded body 1 (separator 40) after the wet blasting further moves in the stage 20, and is washed by spraying warm water such as ion-exchanged water from the fountain nozzle onto the molded body 1 (separator 40). Is removed and further heated and dried by spraying warm air.
- warm water such as ion-exchanged water from the fountain nozzle onto the molded body 1 (separator 40).
- the suction removal apparatus 27 may be provided at an appropriate position in the circulation path of the slurry 26 in addition to the pipe 24 as described above.
- the metal component may be sucked and removed from the molded body 1 (separator 40) with a magnet.
- the metal component is attracted and removed from the molded body 1 (separator 40) by, for example, arranging the molded body 1 (separator 40) between the pair of magnets.
- a metal component may be removed from the molded object 1 (separator 40) by appropriate methods other than the suction removal using a magnet.
- the method of cleaning using a strongly acidic solution is not preferable because the resin constituting the separator 40 may be dissolved, and the ultrasonic cleaning may cause the graphite particles to be detached from the separator 40.
- the degree of adhesion of the metal component was determined by washing the separator 40 with hot water at 90 ° C. for 1 hour and then subjecting the separator 40 to heat drying at 90 ° C. for 1 hour. This is confirmed by observing the surface of the separator 40.
- a metal component adheres to the separator 40 a metal oxide (rust) is generated on the surface of the separator 40 by the treatment. Even if the surface of the separator 40 after the treatment is visually observed, it is preferable that the presence of the metal oxide (rust) is not confirmed.
- no metal oxide larger than 100 ⁇ m in diameter is present on the surface of the separator 40 after the treatment, and it is more preferable if there is no metal oxide larger than 50 ⁇ m in diameter. Further, it is particularly preferable if there is no metal oxide having a diameter larger than 30 ⁇ m.
- the total amount of Fe, Co, and Ni exposed on the surface of the separator 40 is 0.010 ⁇ g / cm 2 or less. Furthermore, the total amount of Cr, Mn, Fe, Co, Ni, Cu and Zn exposed on the surface of the separator 40 is preferably 0.01 ⁇ g / cm 2 or less.
- FIG. 1A shows an example of a polymer electrolyte fuel cell.
- a membrane-electrode assembly (MEA) 5 comprising an electrolyte 4 such as a solid polymer electrolyte membrane and a gas diffusion electrode (fuel electrode 31 and oxidant electrode 32) is interposed between the two separators 40, 40.
- MEA membrane-electrode assembly
- a battery body (cell stack) is formed by arranging several tens to several hundreds of unit cells.
- FIG. 2 shows an example of the structure of a single cell of a solar cell configured by using the gasket 12.
- This single cell is configured by stacking separators 40 and 40, gaskets 12 and 12, and membrane-electrode assembly 5.
- the first fuel through holes 131 and 131 and the first oxidant through holes 132 and 132 are formed on the outer periphery surrounding the region where the convex portion 33 and the gas supply / discharge groove 2 are formed. Is formed.
- Two first fuel through holes 131 and 131 are formed, and the first fuel through holes 131 and 131 are respectively formed at both ends of the gas supply / discharge groove 2 on the surface overlapping the fuel electrode 31 of the separator 40. Communicate.
- first oxidant through holes 132, 132 are also formed, and each first oxidant through hole 132, 132 is formed in the gas supply / discharge groove 2 on the surface overlapping the oxidant electrode 32 of the separator 40. It communicates with both ends.
- a first cooling through-hole 133 is also formed in the outer peripheral portion.
- the separator 40 is formed with a straight type gas supply / discharge groove 2.
- the gas supply / discharge groove 2 in the separator 40 includes a serpentine type groove having a bend and a straight type groove having no bend.
- the serpentine type gas supply / discharge groove 2 may be formed in the separator 40.
- the gasket 12 for sealing is laminated on the outer peripheral portion of the separator 40.
- the gasket 12 has an opening 15 for accommodating the fuel electrode 31 and the oxidant electrode 32 in the membrane-electrode assembly 5 at substantially the center thereof, and the gas supply / discharge groove 2 of the separator 40 is exposed in the opening 15.
- a second fuel-use fuel is provided at a position matching the first fuel through-hole 131, the first oxidant through-hole 132, and the first cooling through-hole 133.
- a through hole 141, a second oxidant through hole 142, and a second cooling through hole 143 are formed.
- the outer peripheral portion of the electrolyte 4 in the membrane-electrode assembly 5 also matches the first fuel through hole 131, the first oxidant through hole 132, and the first cooling through hole 133 of the separator.
- a third fuel through-hole 161, a third oxidant through-hole 162, and a third cooling through-hole 163 are respectively formed at the positions.
- the separator 40, the gasket 12, and the first fuel through-hole 131, the second fuel through-hole 141, and the third fuel through-hole 161 of the electrolyte 4 communicate with each other.
- a fuel flow path for supplying and discharging fuel to and from the electrode is formed.
- the first oxidant through-hole 132, the second oxidant through-hole 142, and the third oxidant through-hole 162 communicate with each other to supply and discharge the oxidant to and from the oxidant electrode.
- An oxidant flow path is formed.
- the first cooling through-hole 133, the second cooling through-hole 143, and the third cooling through-hole 163 communicate with each other to form a cooling flow path through which cooling water or the like flows.
- the fuel electrode 31, the oxidant electrode 32, and the electrolyte 4 are formed of a known material corresponding to the type of the fuel cell.
- the fuel electrode 31 and the oxidant electrode 32 are configured by carrying a catalyst on a base material such as carbon cloth, carbon paper, carbon felt or the like.
- the catalyst in the fuel electrode 31 include a platinum catalyst, a platinum / ruthenium catalyst, and a cobalt catalyst.
- the catalyst in the oxidant electrode 32 include a platinum catalyst and a silver catalyst.
- the electrolyte 4 is formed of, for example, a proton conductive polymer membrane.
- the proton conductivity is high, and the electronic conductivity and methanol permeability are high. It is formed from a fluorine resin or the like that is hardly shown.
- the gasket 12 is, for example, natural rubber, silicone rubber, SIS copolymer, SBS copolymer, SEBS, ethylene-propylene rubber, ethylene-propylene-diene rubber (EPDM), acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber (HNBR). ), A rubber material selected from chloroprene rubber, acrylic rubber, fluorine rubber, and the like. This rubber material may contain a tackifier.
- the gasket 12 When the gasket 12 is laminated on the separator 40, for example, the gasket 12 previously formed in a sheet shape or a plate shape is bonded to the separator 40 by bonding or fusion.
- the gasket 12 may be laminated on the separator 40 by molding a material for forming the gasket 12 on the surface of the separator 40.
- an unvulcanized rubber material is applied to a predetermined position on the surface of the separator 40 by screen printing or the like, and a desired shape is formed on the predetermined position on the surface of the separator 40 by vulcanizing the coating film of the rubber material.
- the gasket 12 is formed. In the vulcanization, heating, irradiation with radiation such as an electron beam, or other appropriate vulcanization methods are employed.
- the gasket 12 can be easily laminated even on the thin separator 40.
- the separator 40 is set in a mold, an unvulcanized rubber material is injected into a predetermined position on the surface of the separator 40, and the rubber material is heated and vulcanized.
- the gasket 12 having a desired shape may be formed at a predetermined position on the surface of the separator 40. In this way, when the gasket 12 is formed by die molding, compression molding, injection molding, or the like can be employed in addition to transfer molding.
- FIG. 3 shows an example of a fuel cell 50 (cell stack) composed of a plurality of single cells.
- This fuel cell 50 communicates with a fuel supply port 171 and a discharge port 172 communicating with the fuel flow channel, an oxidant supply port 181 and a discharge port 182 communicating with the oxidant flow channel, and a cooling flow channel.
- the content of the metal component in the separator 40 is sufficiently and reliably reduced, and the appearance of metal oxide (rust) on the surface of the separator 40 is suppressed, so that the separator C in the fuel cell 50 can be obtained.
- the desorption of metal ions from is suppressed.
- the decrease in proton conductivity of the electrolyte due to the desorption of metal ions and the decomposition of the electrolyte are suppressed. For this reason, the favorable performance of the fuel cell 50 is maintained over a long period of time.
- Examples 1 to 15, Comparative Examples 1 and 2 For each of the examples and comparative examples, the raw material components shown in Table 1 were placed in a stirring mixer ("5XDMV-rr type” manufactured by Dalton) so as to have the composition shown in Table 1, and mixed by stirring. The resulting mixture was prepared. It grind
- the obtained pulverized product was compression molded under the conditions of a mold temperature of 185 ° C., a molding pressure of 35.3 MPa, and a molding time of 2 minutes. Next, the pressure was released while the mold was closed, and after holding for 30 seconds, the mold was opened and the separator 40 was taken out.
- the shape of the obtained separator 40 was 200 mm ⁇ 250 mm and the thickness was 1.5 mm.
- One surface of the molded body 1 has 57 gas supply / discharge grooves 2 having a length of 250 mm, a width of 1 mm, and a depth of 0.5 mm, and the other surface is a gas having a length of 250 mm, a width of 0.5 mm, and a depth of 0.5 mm. 58 supply / discharge grooves 2 were formed.
- the surface of the separator 40 is subjected to a blasting process using a slurry containing alumina particles as abrasive grains using a wet blasting apparatus (model PFE-300T / N) manufactured by Macau Corporation, and then washed with ion-exchanged water. Further, it was dried with warm air.
- Table 1 shows the results of measuring the arithmetic average height Ra (JIS B0601: 2001) of the surface of the separator 40 after the blast treatment.
- Table 1 shows the metal component removal methods and removal targets performed in the examples and comparative examples. The removal of metal components is not performed on objects for which no method is indicated.
- the other raw material components refer to all raw material components excluding graphite particles and resin components.
- Method 1 An electromagnet with a magnetic force of 20000 gauss arranged across the passage through which the object passes, using a strong magnetic field type magnetic metal foreign matter removing device (trade name Stomag) manufactured by GS Co., Ltd. The metal component was removed by suction from the material. The processing speed was 10 kg per hour.
- Method 2 A magnet-system / automatic cleaning made by Seiho Co., Ltd. Using a clean flow magnet (model SECC320001), a rod-shaped neodymium rare earth magnet with a magnetic force of 12,000 gauss arranged in two stages in a lattice shape, Alternatively, the metal component was removed by suction from the molding material. The processing speed was 10 kg per hour.
- Method 5 In the wet blasting process of the separator 40, a neodymium rare earth magnet having a magnetic force of 12,000 gauss was disposed across the slurry piping 24 in the wet blasting apparatus, and the metal component was attracted and removed from the abrasive grains.
- the separator 40 after this treatment was observed with a microscope. For each example and comparative example, both sides of 200 separators 40 were observed. Based on the result, the amount of metal components was evaluated by the total number of metal oxides (rust) having a diameter of more than 50 ⁇ m and not more than 100 ⁇ m and the total number of metal oxides (rust) having a diameter of more than 100 ⁇ m in 200 separators 40. .
- a catalyst powder (manufactured by Takanaka Tanaka, Pt / C standard product) carrying platinum particles having an average particle diameter of about 3 nm was prepared on acetylene black powder. In addition, content of the platinum particle in this catalyst powder was 25 mass%. This catalyst powder was dispersed in isopropanol, and then this dispersion solution and a dispersion solution in which perfluorocarbonsulfonic acid powder was dispersed in ethanol were mixed to prepare a catalyst paste.
- the above-described catalyst paste was applied by a screen printing method to form a catalyst layer, and a pair of electrodes in which the catalyst layer and the carbon paper were laminated were produced. A part of the catalyst layer was embedded in carbon paper. The amount of the platinum particles were exposed on the catalyst layer surface and perfluorocarbon sulfonic acid was respectively 0.6 mg / cm 2 and 1.2 mg / cm 2.
- a perfluorocarbon sulfonic acid membrane manufactured by Japan Coretex, outer dimensions 15 cm ⁇ 15 cm, thickness 30 ⁇ m
- the pair of electrodes was arranged such that carbon paper (diffusion layer) was arranged on the outer surface side. These were joined by hot pressing to obtain a membrane-electrode composite 5.
- the outer periphery on the separator 40 obtained in each of the examples and comparative examples (the separator 40 on which the metal oxide is adhered when there is a separator 40 on which the metal oxide is recognized in the metal component amount evaluation) After applying ethylene-propylene-diene rubber to the portion by screen printing, the gasket 12 was formed by heat vulcanization.
- the separator 40 was stacked on both sides of the membrane-electrode assembly 5 to produce a fuel cell 50 composed of a standard single cell (electrode area 25 cm 2 ) of the Japan Automobile Research Institute.
- the fuel cell 50 is supplied with air as a fuel gas at a flow rate of 2.0 NL / min and hydrogen as an oxidant gas at a flow rate of 0.5 NL / min with an external circuit connected to the fuel cell 50. 50 was operated continuously for 1000 hours. The state of variation with time of the electromotive voltage (V) during the operation of the fuel cell 50 was investigated. The result was expressed as a percentage of the electromotive voltage after fluctuation to the initial value ((E1 / E0) ⁇ 100 (%)). E1 is an electromotive voltage after fluctuation, and E0 is an initial electromotive voltage.
- Epoxy resin A Cresol novolak type epoxy resin (“EOCN-1020-75” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 199, melting point 75 ° C.)
- Epoxy resin B Bisphenol F type epoxy resin ("830CRP” manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 171, liquid at 25 ° C)
- Curing agent A Novolac type phenolic resin ("PSM6200” manufactured by Gunei Chemical Co., OH equivalent 105)
- Curing agent B polyfunctional phenol resin (Maywa Kasei Co., Ltd.
- Phenol resin A Resol type phenol resin (“Sample A” manufactured by Gunei Chemical Co., Ltd., melting point 75 ° C., ortho-ortho 25 to 35% by 13C-NMR analysis, ortho-para 60 to 70%, para-para 5 to 10%)
- Curing accelerator Triphenylphosphine (“TPP” manufactured by Hokuko Chemical Co., Ltd.)
- Artificial graphite (“SGP100” manufactured by ESC Corporation, average particle size 100 ⁇ m, ash content 0.05%, sodium ion 3 ppm, chloride ion 1 ppm)
- Coupling agent Epoxy silane (“A187” manufactured by Nihon Unicar) Wax A: natural car
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
Disclosed is a method for producing a fuel cell separator that is suppressed in release of metal ions therefrom, thereby being capable of suppressing decrease in the proton conductivity of the electrolyte and decomposition of the electrolyte due to the release of metal ions from the fuel cell separator.
Specifically disclosed is a method for producing a fuel cell separator, which comprises a step wherein a molding composition is prepared by blending staring material components containing graphite particles and a resin component, and then the molding composition is molded. Before molding the molding composition, the metal component is removed from the molding composition. By removing the metal component from the entirety of the molding composition, the amount of metal components contained in a fuel cell separator can be reduced.
Description
本発明は燃料電池セパレータの製造方法、並びにこの製造方法により製造された燃料電池セパレータを備える燃料電池に関する。
The present invention relates to a method for manufacturing a fuel cell separator, and a fuel cell including the fuel cell separator manufactured by the manufacturing method.
一般に燃料電池は複数の単位セルを数十~数百個直列に重ねて構成されるセルスタックから成り、これにより所定の電圧を得ている。
Generally, a fuel cell is composed of a cell stack composed of several tens to several hundreds of unit cells stacked in series, thereby obtaining a predetermined voltage.
単位セルの最も基本的な構造は、「セパレータ/燃料電極(アノード)/電解質/酸化剤電極(カソード)/セパレータ」という構成を有している。この単位セルにおいては、電解質を介して対向する一対の電極のうち燃料電極に燃料が、酸化剤電極に酸化剤が供給され、電気化学反応により燃料が酸化されることで、反応の化学エネルギーが直接電気化学エネルギーに変換される。
The most basic structure of the unit cell has a configuration of “separator / fuel electrode (anode) / electrolyte / oxidant electrode (cathode) / separator”. In this unit cell, fuel is supplied to the fuel electrode of the pair of electrodes facing each other through the electrolyte, the oxidant is supplied to the oxidant electrode, and the fuel is oxidized by an electrochemical reaction, so that the chemical energy of the reaction is increased. Directly converted to electrochemical energy.
このような燃料電池は、電解質の種類によりいくつかのタイプに分類されるが、近年、高出力が得られる燃料電池として、電解質に固体高分子電解質膜を用いた固体高分子型燃料電池が注目されている。
Such fuel cells are classified into several types depending on the type of electrolyte. Recently, solid polymer fuel cells using a solid polymer electrolyte membrane as an electrolyte have attracted attention as fuel cells that can provide high output. Has been.
図1A及び図1Bは固体高分子型燃料電池の一例を示す。左右両側面に複数個の凸部(リブ)33が形成されている2枚の燃料電池セパレータ40,40の間に、電解質4(固体高分子電解質膜)とガス拡散電極(燃料電極31と酸化剤電極32)とから構成される膜-電極複合体(MEA)5が介在することで、単電池(単位セル)が構成されている。この単位セルを数十個~数百個並設して電池本体(セルスタック)が形成されている。この燃料電池セパレータ40における隣り合う凸部33同士の間には、燃料である水素ガスと、酸化剤である酸素ガスの流路であるガス供給排出用溝2が形成される。
1A and 1B show an example of a polymer electrolyte fuel cell. Between the two fuel cell separators 40, 40 having a plurality of convex portions (ribs) 33 formed on the left and right side surfaces, an electrolyte 4 (solid polymer electrolyte membrane) and a gas diffusion electrode (fuel electrode 31 and oxidation) A single battery (unit cell) is configured by interposing a membrane-electrode assembly (MEA) 5 composed of the agent electrode 32). A battery body (cell stack) is formed by arranging several tens to several hundreds of unit cells. Between the adjacent convex portions 33 in the fuel cell separator 40, a gas supply / discharge groove 2 is formed which is a flow path for hydrogen gas as fuel and oxygen gas as oxidant.
このようなセルスタックは、例えば家庭用定置型の場合は50~100個の単位セルで構成され、自動車積載用の場合は400~500個の単位セルで構成され、ノートパソコン搭載用の場合は10~20個の単位セルで構成される。
Such a cell stack is composed of, for example, 50 to 100 unit cells in the case of a stationary type for home use, 400 to 500 unit cells in the case of mounting on a car, and in the case of mounting on a laptop computer. It is composed of 10 to 20 unit cells.
この固体高分子型燃料電池では、燃料電極に流体である水素ガスを、酸化剤電極に流体である酸素ガスを供給することにより、外部回路より電流を取り出すものであるが、この際、各電極においては下記式に示したような反応が生じている。
燃料電極反応 : H2→2H++2e-…(1)
酸化剤電極反応 : 2H++2e-+1/2O2→H2O…(2)
全体反応 : H2+1/2O2→H2O
即ち、燃料電極上で水素(H2)はプロトン(H+)となり、このプロトンが固体高分子電解質膜中を酸化剤電極上まで移動し、酸化剤電極上で酸素(O2)と反応して水(H2O)を生ずる。従って、固体高分子型燃料電池の運転には、反応ガスの供給と排出、水の排出、電流の取り出しが必要となる。 In this polymer electrolyte fuel cell, hydrogen gas, which is a fluid, is supplied to the fuel electrode, and oxygen gas, which is a fluid, is supplied to the oxidizer electrode, whereby current is taken out from the external circuit. In the reaction, the reaction shown in the following formula occurs.
Fuel electrode reaction: H 2 → 2H + + 2e − (1)
Oxidant electrode reaction: 2H + + 2e − + 1 / 2O 2 → H 2 O (2)
Overall reaction: H 2 + 1 / 2O 2 → H 2 O
That is, hydrogen (H 2 ) becomes proton (H + ) on the fuel electrode, and this proton moves through the solid polymer electrolyte membrane to the oxidant electrode and reacts with oxygen (O 2 ) on the oxidant electrode. To produce water (H 2 O). Accordingly, the operation of the polymer electrolyte fuel cell requires the supply and discharge of the reaction gas, the discharge of water, and the extraction of the current.
燃料電極反応 : H2→2H++2e-…(1)
酸化剤電極反応 : 2H++2e-+1/2O2→H2O…(2)
全体反応 : H2+1/2O2→H2O
即ち、燃料電極上で水素(H2)はプロトン(H+)となり、このプロトンが固体高分子電解質膜中を酸化剤電極上まで移動し、酸化剤電極上で酸素(O2)と反応して水(H2O)を生ずる。従って、固体高分子型燃料電池の運転には、反応ガスの供給と排出、水の排出、電流の取り出しが必要となる。 In this polymer electrolyte fuel cell, hydrogen gas, which is a fluid, is supplied to the fuel electrode, and oxygen gas, which is a fluid, is supplied to the oxidizer electrode, whereby current is taken out from the external circuit. In the reaction, the reaction shown in the following formula occurs.
Fuel electrode reaction: H 2 → 2H + + 2e − (1)
Oxidant electrode reaction: 2H + + 2e − + 1 / 2O 2 → H 2 O (2)
Overall reaction: H 2 + 1 / 2O 2 → H 2 O
That is, hydrogen (H 2 ) becomes proton (H + ) on the fuel electrode, and this proton moves through the solid polymer electrolyte membrane to the oxidant electrode and reacts with oxygen (O 2 ) on the oxidant electrode. To produce water (H 2 O). Accordingly, the operation of the polymer electrolyte fuel cell requires the supply and discharge of the reaction gas, the discharge of water, and the extraction of the current.
また、固体高分子型燃料電池の一種であるメタノール直接型燃料電池(DMFC)では、燃料として水素の代わりにメタノール水溶液を供給しており、この場合、各電極においては下記式に示したような反応が生じている。空気極では酸素還元反応(水素を燃料とする場合と同じ反応)が起こっている。
燃料極反応 : CH3OH+H2O→CO2+6H++6e-…(1’)
空気極反応 : 3/2O2+6H++6e-→3H2O…(2’)
全体反応 : CH3OH+3/2O2→CO2+2H2O
このような燃料電池を構成する部品のうち、燃料電池セパレータ40は、図1A及び図1Bに示すように、薄肉の板状体の片面又は両面に複数個のガス供給排出用溝2を有する特異な形状を有しており、燃料電池内を流れる燃料ガス、酸化剤ガス及び冷却水が混合しないように分離する働きを有すると共に、燃料電池で発電した電気エネルギーを外部へ伝達したり、燃料電池で生じた熱を外部へ放熱するという重要な役割を担っている。 In addition, a methanol direct fuel cell (DMFC), which is a type of solid polymer fuel cell, supplies a methanol aqueous solution instead of hydrogen as a fuel. In this case, each electrode has the following formula: A reaction is occurring. An oxygen reduction reaction (the same reaction as when hydrogen is used as fuel) occurs at the air electrode.
Fuel electrode reaction: CH 3 OH + H 2 O → CO 2 + 6H + + 6e − (1 ′)
Air electrode reaction: 3/2 O 2 + 6H + + 6e − → 3H 2 O (2 ′)
Overall reaction: CH 3 OH + 3 / 2O 2 → CO 2 + 2H 2 O
Among the components constituting such a fuel cell, thefuel cell separator 40 has a unique gas supply / discharge groove 2 on one or both sides of a thin plate-like body as shown in FIGS. 1A and 1B. And has a function of separating the fuel gas, oxidant gas and cooling water flowing in the fuel cell so that they do not mix, and transmits the electric energy generated by the fuel cell to the outside, or the fuel cell It plays an important role of dissipating the heat generated in the outside.
燃料極反応 : CH3OH+H2O→CO2+6H++6e-…(1’)
空気極反応 : 3/2O2+6H++6e-→3H2O…(2’)
全体反応 : CH3OH+3/2O2→CO2+2H2O
このような燃料電池を構成する部品のうち、燃料電池セパレータ40は、図1A及び図1Bに示すように、薄肉の板状体の片面又は両面に複数個のガス供給排出用溝2を有する特異な形状を有しており、燃料電池内を流れる燃料ガス、酸化剤ガス及び冷却水が混合しないように分離する働きを有すると共に、燃料電池で発電した電気エネルギーを外部へ伝達したり、燃料電池で生じた熱を外部へ放熱するという重要な役割を担っている。 In addition, a methanol direct fuel cell (DMFC), which is a type of solid polymer fuel cell, supplies a methanol aqueous solution instead of hydrogen as a fuel. In this case, each electrode has the following formula: A reaction is occurring. An oxygen reduction reaction (the same reaction as when hydrogen is used as fuel) occurs at the air electrode.
Fuel electrode reaction: CH 3 OH + H 2 O → CO 2 + 6H + + 6e − (1 ′)
Air electrode reaction: 3/2 O 2 + 6H + + 6e − → 3H 2 O (2 ′)
Overall reaction: CH 3 OH + 3 / 2O 2 → CO 2 + 2H 2 O
Among the components constituting such a fuel cell, the
燃料電池セパレータ40は、金属製のプレートや、黒鉛粒子と樹脂成分とを含有する成形用組成物などから形成される。
The fuel cell separator 40 is formed of a metal plate, a molding composition containing graphite particles and a resin component, or the like.
このような燃料電池においては、燃料電池セパレータ40から金属イオンが脱離すると、この金属イオンが電解質4へ拡散し、更にこの金属イオンが電解質4のイオン交換サイトにトラップされ、その結果、電解質4のプロトン伝導性が低下するおそれがある。また、燃料電池セパレータ40はその製造過程において水洗される場合があり、そのような場合に燃料電池セパレータ40に金属成分が含まれていると、燃料電池セパレータ40の表面に金属酸化物(錆)が現れてしまう。そうすると、電解質4の劣化が著しくなる。
In such a fuel cell, when the metal ions are desorbed from the fuel cell separator 40, the metal ions are diffused into the electrolyte 4 and further trapped at the ion exchange site of the electrolyte 4, and as a result, the electrolyte 4. There is a possibility that the proton conductivity of the lowers. Further, the fuel cell separator 40 may be washed with water in the manufacturing process. In such a case, if the fuel cell separator 40 contains a metal component, a metal oxide (rust) is formed on the surface of the fuel cell separator 40. Will appear. Then, the deterioration of the electrolyte 4 becomes remarkable.
また、一般に金属(M)がイオン化して金属イオン(M2+)が生成すると、この金属イオンが下記反応式に示すフェントン反応を引き起こして、ヒドロキシラジカルが生成し、このヒドロキシラジカルが電解質4を分解してしまうおそれもある。
In general, when metal (M) is ionized to form metal ion (M 2+ ), this metal ion causes a Fenton reaction shown in the following reaction formula to generate a hydroxy radical, and this hydroxy radical decomposes electrolyte 4. There is also a risk of it.
H2O2 + M2+ +H+ → M3+ + H2O + HO・
黒鉛粒子と樹脂成分とを含有する成形用組成物から燃料電池セパレータ40を形成する場合であっても、黒鉛粒子に金属が異物として混入し、この金属が前記問題を引き起こすことがある。黒鉛粒子として人造黒鉛が使用される場合はもちろんであるが、特に天然黒鉛が使用される場合には、この天然黒鉛中にCr、Mn、Fe、Co、Ni、Cu、Zn等の金属が異物として混入していることがある。 H 2 O 2 + M 2+ + H + → M 3+ + H 2 O + HO ·
Even when thefuel cell separator 40 is formed from a molding composition containing graphite particles and a resin component, a metal may be mixed into the graphite particles as a foreign substance, and this metal may cause the above problem. Of course, when artificial graphite is used as the graphite particles, especially when natural graphite is used, metals such as Cr, Mn, Fe, Co, Ni, Cu, and Zn are foreign matters in the natural graphite. May be mixed.
黒鉛粒子と樹脂成分とを含有する成形用組成物から燃料電池セパレータ40を形成する場合であっても、黒鉛粒子に金属が異物として混入し、この金属が前記問題を引き起こすことがある。黒鉛粒子として人造黒鉛が使用される場合はもちろんであるが、特に天然黒鉛が使用される場合には、この天然黒鉛中にCr、Mn、Fe、Co、Ni、Cu、Zn等の金属が異物として混入していることがある。 H 2 O 2 + M 2+ + H + → M 3+ + H 2 O + HO ·
Even when the
特許文献1には、上記問題点に鑑み、黒鉛粒子から予め金属を除去した後、この黒鉛粒子と樹脂成分とを混合して成形用組成物を調製し、この成形用組成物から燃料電池セパレータを形成することが開示されている。
In Patent Document 1, in view of the above problems, after removing the metal from the graphite particles in advance, the graphite particles and the resin component are mixed to prepare a molding composition, and the fuel cell separator is prepared from the molding composition. Is disclosed.
しかし、特許文献1に記載の方法であっても、燃料電池セパレータ40中の金属の含有量を充分に低減することは難しく、燃料電池セパレータからの金属イオンの脱離による電解質のプロトン伝導性の低下と、電解質の分解とを、充分に抑制することはできなかった。
However, even with the method described in Patent Document 1, it is difficult to sufficiently reduce the metal content in the fuel cell separator 40, and the proton conductivity of the electrolyte due to desorption of metal ions from the fuel cell separator is difficult. The decrease and the decomposition of the electrolyte could not be sufficiently suppressed.
本発明は、燃料電池セパレータからの金属イオンの脱離を抑制し、この金属イオンの脱離による電解質のプロトン伝導性の低下と、電解質の分解とを抑制することができる燃料電池セパレータの製造方法を提供することを目的とする。
The present invention suppresses desorption of metal ions from a fuel cell separator, and a method of manufacturing a fuel cell separator capable of suppressing a decrease in proton conductivity of an electrolyte due to the desorption of metal ions and decomposition of the electrolyte. The purpose is to provide.
また、本発明は、前記燃料電池セパレータの製造方法により製造された燃料電池セパレータを備える燃料電池を提供することを目的とする。
Another object of the present invention is to provide a fuel cell including a fuel cell separator manufactured by the method for manufacturing a fuel cell separator.
第一の発明に係る燃料電池セパレータの製造方法は、黒鉛粒子と樹脂成分とを含む原料成分を配合して成形用組成物を調製した後、この成形用組成物を成形する工程を含み、前記成形用組成物を成形する前に、この成形用組成物から金属成分を除去することを特徴とする。
The method for producing a fuel cell separator according to the first invention includes a step of forming a molding composition by blending raw material components including graphite particles and a resin component, and then molding the molding composition, Before molding the molding composition, the metal component is removed from the molding composition.
第一の発明においては、前記成形用組成物から金属成分を除去する方法が、磁石を用いた吸引除去であることが好ましい。
In the first invention, it is preferable that the method for removing the metal component from the molding composition is suction removal using a magnet.
第一の発明においては、前記成形用組成物を調製する前に、予め前記原料成分のうち少なくとも黒鉛粒子から金属成分を除去することが好ましい。
In the first invention, before preparing the molding composition, it is preferable to previously remove at least the metal component from the graphite particles among the raw material components.
第一の発明においては、前記成形用組成物を調製する前に、予め全ての原料成分から金属成分を除去することが好ましい。
In the first invention, it is preferable to remove the metal component from all raw material components in advance before preparing the molding composition.
第一の発明においては、前記原料成分から金属成分を除去する方法が、磁石を用いた吸引除去であることが好ましい。
In the first invention, it is preferable that the method of removing the metal component from the raw material component is suction removal using a magnet.
第二の発明に係る燃料電池セパレータの製造方法は、黒鉛粒子と樹脂成分とを含む原料成分を配合して成形用組成物を調製した後、この成形用組成物を成形する工程を含み、前記成形用組成物を調製する前に、予め全ての原料成分から金属成分を除去することを特徴とする。
The method for producing a fuel cell separator according to the second invention includes a step of forming a molding composition by blending raw material components including graphite particles and a resin component, and then molding the molding composition, Before preparing the molding composition, the metal component is previously removed from all raw material components.
第一及び第二の発明においては、前記成形用組成物を成形して成形体を得た後、この成形体にウエットブラスト処理を、このウエットブラスト処理に用いられる砥粒を含むスラリーから金属成分を磁石で除去しながら施すことが好ましい。
In the first and second inventions, after molding the molding composition to obtain a molded body, the molded body is subjected to wet blasting, and the metal component from the slurry containing abrasive grains used in the wet blasting process. It is preferable to apply while removing with a magnet.
第一及び第二の発明においては、前記金属成分の除去により、燃料電池セパレータにおける金属成分の量を、この燃料電池セパレータを90℃の温水で1時間洗浄した後、90℃の温度で1時間加熱乾燥する処理を施した場合に、この燃料電池セパレータの表面に直径100μmより大きい金属酸化物が存在しなくなる程度とすることが好ましい。
In the first and second inventions, by removing the metal component, the amount of the metal component in the fuel cell separator is washed with hot water at 90 ° C. for 1 hour, and then at 90 ° C. for 1 hour. It is preferable that the metal oxide having a diameter larger than 100 μm does not exist on the surface of the fuel cell separator when the heat drying treatment is performed.
第三の発明に係る燃料電池は、第一及び第二の発明により製造された燃料電池セパレータを備えることを特徴とする。
A fuel cell according to a third invention is characterized by including a fuel cell separator manufactured according to the first and second inventions.
本発明によれば、燃料電池セパレータからの金属イオンの脱離が抑制され、金属イオンの脱離による電解質のプロトン伝導性の低下と、電解質の分解とが抑制される。
According to the present invention, the desorption of metal ions from the fuel cell separator is suppressed, and the decrease in proton conductivity of the electrolyte due to the desorption of metal ions and the decomposition of the electrolyte are suppressed.
以下、発明の実施の形態を説明する。
Hereinafter, embodiments of the invention will be described.
燃料電池セパレータ40(以下、セパレータ40という)を製造するための成形用組成物は、樹脂成分及び黒鉛粒子を含有する。
The molding composition for producing the fuel cell separator 40 (hereinafter referred to as the separator 40) contains a resin component and graphite particles.
この成形用組成物は、第一アミン及び第二アミンを含有しないことが好ましい。すなわち、この成形用組成物が、置換基-NH及び-NH2を有する化合物を含有しないことが好ましい。更に成形用組成物は第三アミンを含有しないことが好ましい。このように成形用組成物がアミンを含有しないと、成形用組成物から形成されるセパレータ40が燃料電池中の白金触媒を被毒することがなく、燃料電池を長時間使用した場合の起電力の低下が抑制される。
It is preferable that this molding composition does not contain a primary amine and a secondary amine. That is, it is preferable that this molding composition does not contain a compound having substituents —NH and —NH 2 . Furthermore, it is preferable that the molding composition does not contain a tertiary amine. Thus, when the molding composition does not contain an amine, the separator 40 formed from the molding composition does not poison the platinum catalyst in the fuel cell, and the electromotive force when the fuel cell is used for a long time. Is suppressed.
成形用組成物に含有される樹脂成分は、熱可塑性樹脂と熱硬化性樹脂のいずれでもよい。
The resin component contained in the molding composition may be either a thermoplastic resin or a thermosetting resin.
熱可塑性樹脂としては、たとえばポリフェニレンサルファイド樹脂、ポリプロピレン樹脂等が挙げられる。
Examples of the thermoplastic resin include polyphenylene sulfide resin and polypropylene resin.
熱硬化性樹脂を使用する場合、この熱硬化性樹脂はエポキシ樹脂と熱硬化性フェノール樹脂のうち少なくとも一方を含有することが好ましい。エポキシ樹脂及び熱硬化性フェノール樹脂は良好な溶融粘度を有すると共に不純物が少なく、特にイオン性不純物が少ない点で優れている。
When using a thermosetting resin, it is preferable that this thermosetting resin contains at least one of an epoxy resin and a thermosetting phenol resin. Epoxy resins and thermosetting phenol resins are excellent in that they have a good melt viscosity and a small amount of impurities, in particular, a small amount of ionic impurities.
熱硬化性樹脂全量に対するエポキシ樹脂及び熱硬化性フェノール樹脂の含有量は50~100質量%の範囲にあることが好ましい。熱硬化性樹脂がエポキシ樹脂のみ、熱硬化性フェノール樹脂のみ、或いはエポキシ樹脂と熱硬化性フェノール樹脂のみを含むのであれば特に好ましい。
The content of the epoxy resin and the thermosetting phenol resin with respect to the total amount of the thermosetting resin is preferably in the range of 50 to 100% by mass. It is particularly preferable if the thermosetting resin contains only an epoxy resin, only a thermosetting phenol resin, or only an epoxy resin and a thermosetting phenol resin.
エポキシ樹脂は固形状であることが好ましく、特に融点が70~90℃の範囲であることが好ましい。これにより、材料の変化が少なくなり、成形時の成形用組成物の取り扱い性が向上する。この融点が70℃未満であると、成形用組成物中で凝集が生じやすくなって、取り扱い性が低下するおそれがある。また、エポキシ樹脂として溶融粘度が低粘度の樹脂を選択すれば、成形用組成物の良好な成形性を維持しつつ、成形用組成物及びセパレータ40中に黒鉛粒子を高充填することができる。尚、前記作用が発揮される範囲内でエポキシ樹脂の一部が液状であってもよい。
The epoxy resin is preferably in a solid form, and particularly preferably has a melting point in the range of 70 to 90 ° C. Thereby, the change of a material decreases and the handleability of the molding composition at the time of shaping | molding improves. When the melting point is less than 70 ° C., aggregation tends to occur in the molding composition, and the handleability may be lowered. If a resin having a low melt viscosity is selected as the epoxy resin, the molding composition and the separator 40 can be highly filled with graphite particles while maintaining good moldability of the molding composition. In addition, a part of epoxy resin may be liquid within the range where the said effect | action is exhibited.
エポキシ樹脂としては、オルトクレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等が用いられることが好ましい。このオルトクレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂は、良好な溶融粘度を有すると共に不純物が少なく、特にイオン性不純物が少ない点で優れている。
As the epoxy resin, an ortho cresol novolac type epoxy resin, a bisphenol type epoxy resin, a biphenyl type epoxy resin, a phenol aralkyl type epoxy resin having a biphenylene skeleton, or the like is preferably used. This ortho-cresol novolac type epoxy resin, bisphenol type epoxy resin, and phenol aralkyl type epoxy resin having a biphenylene skeleton are excellent in that they have a good melt viscosity and a small amount of impurities, and in particular, a small amount of ionic impurities.
また特にエポキシ樹脂がオルトクレゾールノボラック型エポキシ樹脂のみからなるエポキシ樹脂成分を含み、或いはオルトクレゾールノボラック型エポキシ樹脂と、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂から選択される少なくとも一種からなるエポキシ樹脂成分を含むことが好ましい。オルトクレゾールノボラック型エポキシ樹脂を必須の成分とすると、成形用組成物が成形性に優れたものになると共に、セパレータ40が耐熱性に優れたものとなる。また、製造コストの低減も可能になる。エポキシ樹脂成分中のオルトクレゾールノボラック型エポキシ樹脂の割合は、前記成形性の向上、セパレータ40の耐熱性の向上、製造コストの低減の観点から、50~100質量%の範囲であることが好ましく、特に50~70質量%の範囲であることが好ましい。
In particular, the epoxy resin contains an epoxy resin component consisting only of an ortho cresol novolac type epoxy resin, or selected from an ortho cresol novolac type epoxy resin, a bisphenol type epoxy resin, a biphenyl type epoxy resin, and a phenol aralkyl type epoxy resin having a biphenylene skeleton. It is preferable that the epoxy resin component which consists of at least 1 type of is included. When the ortho-cresol novolac type epoxy resin is an essential component, the molding composition has excellent moldability, and the separator 40 has excellent heat resistance. In addition, the manufacturing cost can be reduced. The proportion of the ortho-cresol novolac type epoxy resin in the epoxy resin component is preferably in the range of 50 to 100% by mass from the viewpoint of improving the moldability, improving the heat resistance of the separator 40, and reducing the manufacturing cost. A range of 50 to 70% by mass is particularly preferable.
オルトクレゾールノボラック型エポキシ樹脂と共に、ビスフェノール型エポキシ樹脂やビフェニル型エポキシ樹脂やビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂が併用されることも好ましい。この場合、成形用組成物の溶融粘度が更に低減し、更に薄型のセパレータ40を得る場合にはその靱性が向上する。
It is also preferable to use a bisphenol type epoxy resin, a biphenyl type epoxy resin, or a phenol aralkyl type epoxy resin having a biphenylene skeleton together with the orthocresol novolac type epoxy resin. In this case, the melt viscosity of the molding composition is further reduced, and the toughness is improved when the thinner separator 40 is obtained.
特にビスフェノールF型エポキシ樹脂が使用されると、成形用組成物の粘度が低減し、成形性の特に高い成形用組成物が得られる。この場合のエポキシ樹脂成分中におけるビスフェノールF型エポキシ樹脂の含有量は30~50質量%の範囲であることが好ましい。
Particularly when a bisphenol F type epoxy resin is used, the viscosity of the molding composition is reduced, and a molding composition having particularly high moldability can be obtained. In this case, the content of the bisphenol F type epoxy resin in the epoxy resin component is preferably in the range of 30 to 50% by mass.
また、ビフェニル型エポキシ樹脂が使用されると、このビフェニル型樹脂は溶融粘度が低いため、成形用組成物の流動性が著しく向上し、成形用組成物の薄型成形性が特に向上する。この場合のエポキシ樹脂成分中におけるビフェニル型エポキシ樹脂の含有量は30~50質量%の範囲であることが好ましい。
Further, when a biphenyl type epoxy resin is used, since the biphenyl type resin has a low melt viscosity, the fluidity of the molding composition is remarkably improved, and the thin moldability of the molding composition is particularly improved. In this case, the content of the biphenyl type epoxy resin in the epoxy resin component is preferably in the range of 30 to 50% by mass.
また、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂が使用されると、セパレータ40の強度及び靱性が向上し、更にセパレータ40の吸湿性が低減する。このため、セパレータ40の機械的特性、導電性、長期使用時の特性の安定性が優れたものとなる。この場合のエポキシ樹脂成分中におけるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂の割合は、30~50質量%の範囲であることが好ましい。
Moreover, when a phenol aralkyl type epoxy resin having a biphenylene skeleton is used, the strength and toughness of the separator 40 are improved, and the hygroscopicity of the separator 40 is further reduced. For this reason, the mechanical characteristics, conductivity, and stability of the characteristics during long-term use of the separator 40 are excellent. In this case, the proportion of the phenol aralkyl type epoxy resin having a biphenylene skeleton in the epoxy resin component is preferably in the range of 30 to 50% by mass.
成形用組成物中の熱硬化性樹脂全量に対するエポキシ樹脂成分の含有量は50~100質量%の範囲にあることが好ましい。
The content of the epoxy resin component with respect to the total amount of the thermosetting resin in the molding composition is preferably in the range of 50 to 100% by mass.
前記エポキシ樹脂成分は熱硬化性樹脂中のエポキシ樹脂の少なくとも一部として成形用組成物中に含有される。すなわち、このエポキシ樹脂成分以外の他の熱硬化性樹脂として、例えば前記エポキシ樹脂成分以外のエポキシ樹脂、熱硬化性フェノール樹脂、ビニルエステル樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等から選択される一種又は複数種の樹脂が用いられてもよい。但し、エステル結合を含む樹脂は耐酸性環境下で加水分解するおそれがあるため、使用されないことが望ましい。また、熱硬化性樹脂として、セパレータ40の耐熱性や耐酸性の向上に寄与する点で、ポリイミド樹脂も適している。このようなポリイミド樹脂としては、特にビスマレイミド樹脂が好ましく、このビスマレイミド樹脂としては例えば、4,4-ジアミノジフェニルビスマレイミドが挙げられる。ポリイミド樹脂が併用されることでセパレータ40の耐熱性が更に高まる。
The epoxy resin component is contained in the molding composition as at least a part of the epoxy resin in the thermosetting resin. That is, as the thermosetting resin other than the epoxy resin component, for example, selected from epoxy resins other than the epoxy resin component, thermosetting phenol resin, vinyl ester resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin, etc. One or more kinds of resins may be used. However, it is desirable not to use a resin containing an ester bond because it may hydrolyze in an acid resistant environment. A polyimide resin is also suitable as the thermosetting resin in that it contributes to improving the heat resistance and acid resistance of the separator 40. As such a polyimide resin, bismaleimide resin is particularly preferable, and as this bismaleimide resin, for example, 4,4-diaminodiphenyl bismaleimide can be mentioned. By using the polyimide resin in combination, the heat resistance of the separator 40 is further increased.
熱硬化性フェノール樹脂が用いられる場合には、特に開環重合により重合反応が進行するフェノール樹脂が用いられることが好ましい。このようなフェノール樹脂としては、例えばベンゾオキサジン樹脂等が挙げられる。この場合は、成形工程で脱水によるガスが発生しないので成形品中にボイドが発生せず、ガス透過性の低下が抑制される。また、レゾール型フェノール樹脂が用いられることも好ましく、例えば13C-NMR分析で、オルト-オルト25~35%、オルト-パラ60~70%、パラ-パラ5~10%の構造を有するレゾール型フェノール樹脂が用いられることが好ましい。レゾール樹脂は通常液状であるが、レゾール型フェノール樹脂の軟化点は容易に調整され、融点が70~90℃のレゾール型フェノール樹脂が容易に得られる。これにより、材料の変化が少なくなり、成形時の成形用組成物の取り扱い性が向上する。この融点が70℃未満であると、成形用組成物中で凝集が生じやすくなって、成形用組成物の取り扱い性が低下するおそれがある。
When a thermosetting phenol resin is used, it is particularly preferable to use a phenol resin that undergoes a polymerization reaction by ring-opening polymerization. Examples of such phenol resins include benzoxazine resins. In this case, since gas due to dehydration is not generated in the molding process, voids are not generated in the molded product, and a decrease in gas permeability is suppressed. It is also preferable to use a resol type phenol resin, for example, a resol type phenol having a structure of ortho-ortho 25-35%, ortho-para 60-70%, para-para 5-10% by 13C-NMR analysis. A resin is preferably used. The resol resin is usually liquid, but the softening point of the resol type phenol resin is easily adjusted, and a resol type phenol resin having a melting point of 70 to 90 ° C. can be easily obtained. Thereby, the change of a material decreases and the handleability of the molding composition at the time of shaping | molding improves. When the melting point is less than 70 ° C., aggregation tends to occur in the molding composition, and the handling property of the molding composition may be deteriorated.
またエポキシ樹脂及び熱硬化性フェノール樹脂以外の他の樹脂が併用されてもよい。例えばポリイミド樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等から選択される一種又は複数種の樹脂が用いられ得る。但し、エステル結合を含む樹脂は耐酸性環境下で加水分解する恐れがあるため、使用されないことが望ましい。
Further, other resins other than the epoxy resin and the thermosetting phenol resin may be used in combination. For example, one or more kinds of resins selected from polyimide resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins and the like can be used. However, it is desirable not to use a resin containing an ester bond because it may hydrolyze in an acid resistant environment.
エポキシ樹脂が使用される場合、成形用組成物は硬化剤を必須成分とし、この硬化剤はフェノール系化合物を必須成分とする。このフェノール系化合物としては、ノボラック型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、アラルキル変性フェノール樹脂等が挙げられる。
When an epoxy resin is used, the molding composition contains a curing agent as an essential component, and this curing agent contains a phenolic compound as an essential component. Examples of the phenol compound include novolak type phenol resins, cresol novolac type phenol resins, polyfunctional phenol resins, aralkyl-modified phenol resins, and the like.
硬化剤全量に対するフェノール系化合物の含有量は、エポキシ樹脂の使用量に依存して決定される。また、硬化剤がフェノール系化合物のみであれば特に好ましい。
The content of the phenolic compound relative to the total amount of the curing agent is determined depending on the amount of the epoxy resin used. Further, it is particularly preferable that the curing agent is only a phenol compound.
また、成形用組成物の固形分中の熱硬化性樹脂と硬化剤の含有量は、その合計量が14~24.1質量%の範囲であることが好ましい。
The total content of the thermosetting resin and the curing agent in the solid content of the molding composition is preferably in the range of 14 to 24.1% by mass.
また、フェノール系化合物以外の他の硬化剤が併用される場合、他の硬化剤は非アミン系の化合物であることが好ましく、この場合、セパレータ40の電気伝導度が高い状態に維持されると共に、燃料電池の触媒の被毒が抑制される。また硬化剤として酸無水物系の化合物が用いられないことも好ましい。酸無水物系の化合物が使用される場合は硫酸酸性環境下等の酸性環境下で加水分解して、セパレータ40の電気伝導度の低下が引き起こされたり、セパレータ40からの不純物の溶出が増大してしまうおそれがある。
Moreover, when other hardening | curing agents other than a phenol type compound are used together, it is preferable that another hardening | curing agent is a non-amine type compound, In this case, while the electrical conductivity of the separator 40 is maintained in the high state, The poisoning of the catalyst of the fuel cell is suppressed. It is also preferred that no acid anhydride compound is used as the curing agent. When an acid anhydride-based compound is used, it is hydrolyzed in an acidic environment such as a sulfuric acid acidic environment, causing a decrease in the electrical conductivity of the separator 40 or increasing the elution of impurities from the separator 40. There is a risk that.
熱硬化性樹脂としてエポキシ樹脂が用いられる場合は、熱硬化性樹脂と硬化剤とが配合されるにあたり、熱硬化性樹脂におけるエポキシ樹脂と硬化剤におけるフェノール系化合物とは、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8~1.2の範囲となるようにすることが好ましい。
When an epoxy resin is used as the thermosetting resin, when the thermosetting resin and the curing agent are blended, the epoxy resin in the thermosetting resin and the phenolic compound in the curing agent are the above-mentioned for the phenolic compound. It is preferable that the equivalent ratio of the epoxy resin is in the range of 0.8 to 1.2.
また、黒鉛粒子は、成形されるセパレータ40の電気比抵抗を低減して、セパレータ40の導電性を向上させるために使用される。黒鉛粒子の含有量は、成形用組成物全量に対して75~90質量%の範囲であることが好ましい。このように黒鉛粒子の割合が75質量%以上となるとセパレータ40に充分に優れた導電性が付与されるようになる。またこの割合が90質量%以下となることで成形用組成物に充分に優れた成形性が付与されると共にセパレータ40に充分に優れたガス透過性が付与されるようになる。
Further, the graphite particles are used to reduce the electrical specific resistance of the molded separator 40 and improve the conductivity of the separator 40. The graphite particle content is preferably in the range of 75 to 90% by mass with respect to the total amount of the molding composition. Thus, when the ratio of the graphite particles is 75% by mass or more, the separator 40 is provided with sufficiently excellent conductivity. Further, when this ratio is 90% by mass or less, a sufficiently excellent moldability is imparted to the molding composition, and a sufficiently excellent gas permeability is imparted to the separator 40.
黒鉛粒子としては、高い導電性を示すものであれば制限なく用いられ、例えば、メソカーボンマイクロビーズなどのように炭素質が黒鉛化された黒鉛粒子、石炭系コークスや石油系コークスが黒鉛化されて得られる黒鉛粒子の他、黒鉛電極や特殊炭素材料の加工粉、天然黒鉛、キッシュ黒鉛、膨張黒鉛等のような、適宜の黒鉛粒子が用いられる。このような黒鉛粒子は、一種のみが用いられるほか、複数種が併用されてもよい。
Any graphite particles can be used as long as they exhibit high conductivity. For example, graphite particles obtained by graphitizing carbonaceous materials such as mesocarbon microbeads, coal-based cokes, and petroleum-based cokes are graphitized. In addition to the graphite particles obtained in this manner, suitable graphite particles such as graphite electrode, special carbon material processed powder, natural graphite, quiche graphite, expanded graphite and the like are used. Only one kind of such graphite particles may be used, or a plurality of kinds may be used in combination.
黒鉛粒子は、人造黒鉛粉、天然黒鉛粉のいずれでもよい。天然黒鉛粉は導電性が高いという利点を有し、また人造黒鉛粉は天然黒鉛粉に比べて導電性は多少劣るものの、異方性が少ないという利点がある。
The graphite particles may be either artificial graphite powder or natural graphite powder. Natural graphite powder has the advantage of high conductivity, and artificial graphite powder has the advantage of low anisotropy, although the conductivity is somewhat inferior to that of natural graphite powder.
また、黒鉛粒子は、天然黒鉛粉、人造黒鉛粉のいずれの場合であっても、精製されていることが好ましく、この場合は、黒鉛粒子中の灰分やイオン性不純物が少ないため、成形品であるセパレータ40からの不純物の溶出が抑制される。
In addition, it is preferable that the graphite particles are purified regardless of whether they are natural graphite powder or artificial graphite powder. In this case, since there are few ash and ionic impurities in the graphite particles, The elution of impurities from a certain separator 40 is suppressed.
黒鉛粒子における灰分は0.05質量%以下であることが好ましく、灰分が0.05質量%を超えると、セパレータ40を用いて作製される燃料電池の特性低下が引き起こされるおそれがある。
The ash content in the graphite particles is preferably 0.05% by mass or less, and if the ash content exceeds 0.05% by mass, the characteristics of the fuel cell manufactured using the separator 40 may be deteriorated.
また、黒鉛粒子の平均粒径は15~100μmの範囲であることが好ましい。平均粒径が10μm以上であることで成形用組成物の成形性が優れたものとなり、またこれが100μm以下となることでセパレータ40の表面平滑性が向上する。成形性を特に向上するためには前記平均粒径が30μm以上であることが好ましく、またセパレータ401の表面平滑性を特に向上して後述するようにセパレータ40の表面の算術平均高さRa(JIS B0601:2001)が0.4~1.6μmの範囲、特に1.0μm未満となるようにするためには前記平均粒径が70μm以下であることが好ましい。
The average particle size of the graphite particles is preferably in the range of 15 to 100 μm. When the average particle size is 10 μm or more, the moldability of the molding composition is excellent, and when it is 100 μm or less, the surface smoothness of the separator 40 is improved. In order to particularly improve the moldability, the average particle size is preferably 30 μm or more. Further, the surface smoothness of the separator 401 is particularly improved, and the arithmetic average height Ra (JIS) of the surface of the separator 40 is described later. In order for B0601: 2001) to be in the range of 0.4 to 1.6 μm, particularly less than 1.0 μm, the average particle size is preferably 70 μm or less.
また、特に薄型のセパレータ40を得る場合には、黒鉛粒子は100メッシュ篩(目開き150μm)を通過する粒径を有することが好ましい。この黒鉛粒子中に100メッシュ篩を通過しない粒子が含まれていると、成形用組成物中に粒径の大きい黒鉛粒子が混入してしまい、特に成形用組成物を薄型のシート状に成形する際の成形性が低下してしまう。
Further, when obtaining a thin separator 40 in particular, the graphite particles preferably have a particle size that passes through a 100 mesh sieve (aperture 150 μm). If the graphite particles contain particles that do not pass through a 100-mesh sieve, graphite particles having a large particle size are mixed in the molding composition, and in particular, the molding composition is molded into a thin sheet. The formability at the time will fall.
また、黒鉛粒子のアスペクト比が10以下であることが好ましく、この場合、セパレータ40に異方性が生じることを防止すると共に反りなどの変形が生じることも防ぐことができる。
Further, the aspect ratio of the graphite particles is preferably 10 or less. In this case, it is possible to prevent the separator 40 from being anisotropic and to prevent deformation such as warpage.
尚、セパレータ40の異方性の低減に関しては、セパレータ40における成形時の成形用組成物の流動方向と、この流動方向と直交する方向との間での接触抵抗の比が、2以下となることが好ましい。
Regarding the reduction of the anisotropy of the separator 40, the ratio of the contact resistance between the flow direction of the molding composition at the time of molding in the separator 40 and the direction orthogonal to the flow direction is 2 or less. It is preferable.
また、この黒鉛粒子としては、特に2種以上の粒度分布を有する黒鉛粒子、すなわち平均粒径の異なる2種以上の粒子群を混合して得られる黒鉛粒子が用いるられることも好ましい。この場合、特に平均粒径1~50μmの範囲の黒鉛粒子と、平均粒径30~100μmの黒鉛粒子とを混合することが好ましい。このような粒度分布を有する黒鉛粒子が用いられると、粒径の大きい粒子は表面積が小さいため、少量の樹脂量でも混練を可能とすることが期待され、更に粒径の小さい粒子によって、黒鉛粒子同士の接触性を高める一方、成形品の強度を高めることが期待され、これにより、セパレータ40の密度の向上、導電性の向上、ガス不透過性の向上、強度の向上等といった、性能の向上を図ることができる。平均粒径1~50μmの粒子と平均粒径30~100μmとの粒子の混合比は、適宜調整されるが、特に前者対後者の混合質量比が40:60~90:10、特に65:35~85:15であることが好ましい。
Further, as the graphite particles, it is also preferable to use graphite particles having two or more kinds of particle size distributions, that is, graphite particles obtained by mixing two or more kinds of particles having different average particle diameters. In this case, it is particularly preferable to mix graphite particles having an average particle diameter of 1 to 50 μm and graphite particles having an average particle diameter of 30 to 100 μm. When graphite particles having such a particle size distribution are used, it is expected that particles having a large particle size have a small surface area, so that they can be kneaded even with a small amount of resin. While improving the contact between each other, it is expected to increase the strength of the molded product, thereby improving the performance such as the density of the separator 40, the conductivity, the gas impermeability, the strength, etc. Can be achieved. The mixing ratio of the particles having an average particle diameter of 1 to 50 μm and the particles having an average particle diameter of 30 to 100 μm is appropriately adjusted. In particular, the mixing mass ratio of the former to the latter is 40:60 to 90:10, particularly 65:35. It is preferably ~ 85: 15.
尚、黒鉛粒子の平均粒径は、レーザー回折・散乱式粒度分析計(日機装株式会社製のマイクロトラックMT3000IIシリーズなど)でレーザー回折散乱法により測定される体積平均粒径である。
The average particle size of the graphite particles is a volume average particle size measured by a laser diffraction / scattering method with a laser diffraction / scattering particle size analyzer (such as Microtrack MT3000II series manufactured by Nikkiso Co., Ltd.).
また、成形用組成物は、必要に応じて硬化触媒、ワックス(離型剤)、カップリング剤等の添加剤を含有してもよい。
In addition, the molding composition may contain additives such as a curing catalyst, a wax (release agent), and a coupling agent as necessary.
硬化触媒(硬化促進剤)としては、適宜のものを含有することができるが、組成物中に第一アミン及び第二アミンを含有させないようにするために、非アミン系の化合物が用いられることが好ましい。例えば、アミン系のジアミノジフェニルメタンなどは残存物が燃料電池の触媒を被毒する恐れがあり、好ましくない。また、イミダゾール類は硬化後、塩素イオンを放出しやすくなるので不純物溶出の恐れがあり、あまり好ましくない。
As a curing catalyst (curing accelerator), an appropriate one can be contained, but a non-amine compound should be used so as not to contain a primary amine and a secondary amine in the composition. Is preferred. For example, amine-based diaminodiphenylmethane and the like are not preferable because the residue may poison the fuel cell catalyst. In addition, imidazoles are less preferred because they easily release chlorine ions after curing, and may cause impurity elution.
但し、測定開始温度30℃、昇温速度10℃/分、保持温度120℃、保持温度での保持時間30分の条件で加熱した場合の重量減少が5%以下である、2位に炭化水素基を有する置換イミダゾールが用いられることは、成形用組成物の保存安定性が向上する点で好ましい。また、特に薄型のセパレータ40を得る場合には、ワニス状に調製された成形用組成物からシート状のセパレータ40を形成する際の揮発性、前記セパレータ40の平滑性などが良好となる。この置換イミダゾールとして、特に2位の炭化水素基の炭素数が6~17の置換イミダゾールを使用することが好ましく、その具体例としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。このうち、2-ウンデシルイミダゾール及び2-ヘプタデシルイミダゾールが好適である。これらの化合物は一種単独で用いられ、或いは二種以上が併用される。このような置換イミダゾールの含有量は適宜調整され、それにより成形硬化時間を調整することができる。この置換イミダゾールの含有量は好ましくは成形用組成物中の熱硬化性樹脂と硬化剤の合計量に対して、0.5~3質量%の範囲であることが好ましい。
However, the hydrocarbon in the second position has a weight loss of 5% or less when heated under the conditions of a measurement start temperature of 30 ° C., a heating rate of 10 ° C./min, a holding temperature of 120 ° C., and a holding temperature of 30 minutes. The use of a substituted imidazole having a group is preferable in that the storage stability of the molding composition is improved. In particular, when the thin separator 40 is obtained, the volatility when forming the sheet-like separator 40 from the molding composition prepared in a varnish shape, the smoothness of the separator 40, and the like are improved. As this substituted imidazole, a substituted imidazole having a hydrocarbon group having 6 to 17 carbon atoms in the 2-position is preferably used, and specific examples thereof include 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl Examples include imidazole and 1-benzyl-2-phenylimidazole. Of these, 2-undecylimidazole and 2-heptadecylimidazole are preferred. These compounds are used alone or in combination of two or more. The content of such a substituted imidazole is appropriately adjusted, whereby the molding and curing time can be adjusted. The content of the substituted imidazole is preferably in the range of 0.5 to 3% by mass with respect to the total amount of the thermosetting resin and the curing agent in the molding composition.
また、硬化触媒として、好ましくはリン系化合物が用いられる。また、リン系化合物と前記置換イミダゾールとが併用されてもよい。リン系化合物の一例としては、トリフェニルホスフィンが挙げられる。このようなリン系化合物が用いられると、成形品であるセパレータ40からの塩素イオンの溶出が抑制される。
Further, a phosphorus compound is preferably used as the curing catalyst. Further, a phosphorus compound and the substituted imidazole may be used in combination. An example of a phosphorus compound is triphenylphosphine. When such a phosphorus compound is used, elution of chlorine ions from the separator 40 which is a molded product is suppressed.
このような硬化触媒の含有量は適宜調整されるが、好ましくはエポキシ樹脂に対して0.5~3質量部の範囲である。
The content of such a curing catalyst is appropriately adjusted, but is preferably in the range of 0.5 to 3 parts by mass with respect to the epoxy resin.
カップリング剤としては、適宜のものが用いられるが、成形用組成物が第一アミン及び第二アミンを含有しないために、アミノシランが用いられないことが好ましい。アミノシランが用いられることは、燃料電池の触媒を被毒する恐れがあり好ましくない。また、カップリング剤としてはメルカプトシランも用いられないことが好ましい。このメルカプトシランが用いられる場合も、同様に燃料電池の触媒が被毒される恐れがある。
As the coupling agent, an appropriate one is used, but it is preferable that no aminosilane is used because the molding composition does not contain a primary amine and a secondary amine. The use of aminosilane is not preferred because it may poison the fuel cell catalyst. Further, it is preferable that mercaptosilane is not used as the coupling agent. Similarly, when this mercaptosilane is used, the fuel cell catalyst may be poisoned.
使用されるカップリング剤の例としては、シリコン系のシラン化合物、チタネート系、アルミニウム系のカップリング剤が挙げられる。例えばシリコン系のカップリング剤としては、エポキシシランが適している。
Examples of coupling agents used include silicon-based silane compounds, titanate-based, and aluminum-based coupling agents. For example, epoxy silane is suitable as a silicon-based coupling agent.
エポキシシランカップリング剤が使用される場合の使用量は、成形用組成物の固形分中の含有量が0.5~1.5質量%となる範囲であることが好ましい。この範囲において、カップリング剤がセパレータ40の表面にブリードすることを充分に抑制される。
When the epoxy silane coupling agent is used, the amount used is preferably in the range where the content in the solid content of the molding composition is 0.5 to 1.5% by mass. In this range, the coupling agent is sufficiently suppressed from bleeding on the surface of the separator 40.
カップリング剤は黒鉛粒子の表面に予め噴霧等により付着させておいてもよい。その場合の添加量は適宜設定されるものであり、黒鉛粒子の比表面積と、カップリング剤の単位質量当たりの被覆面積とが考慮される必要があるが、好ましくは、カップリング剤の被覆面積の総量が、黒鉛粒子の表面積の総量に対して、0.5~2倍の範囲となるようにする。この範囲において、カップリング剤がセパレータ40の表面にブリードすることが充分に抑制され、金型表面の汚染が抑制される。
The coupling agent may be previously adhered to the surface of the graphite particles by spraying or the like. The addition amount in that case is appropriately set, and it is necessary to consider the specific surface area of the graphite particles and the coating area per unit mass of the coupling agent, but preferably the coating area of the coupling agent The total amount of is in the range of 0.5 to 2 times the total amount of the surface area of the graphite particles. In this range, bleeding of the coupling agent to the surface of the separator 40 is sufficiently suppressed, and contamination of the mold surface is suppressed.
また、ワックス(内部離型剤)としては適宜のものが用いられるが、特に120~190℃において、成形用組成物中の熱硬化性樹脂及び硬化剤と相溶せずに相分離する内部離型剤が用いられることが好ましい。このような内部離型剤として、ポリエチレンワックス、カルナバワックス、および長鎖脂肪酸系のワックスから選ばれる少なくとも一種が用いられることが好ましい。このような内部離型剤は、成形用組成物の成形過程で熱硬化性樹脂及び硬化剤と相分離することで、離型性向上作用が良好に発揮される。
As the wax (internal mold release agent), an appropriate one is used, but particularly at 120 to 190 ° C., internal release that undergoes phase separation without being compatible with the thermosetting resin and the curing agent in the molding composition. Preferably, a mold is used. As such an internal mold release agent, it is preferable to use at least one selected from polyethylene wax, carnauba wax, and long-chain fatty acid wax. Such an internal mold release agent exhibits a good release improving effect by phase separation from the thermosetting resin and the hardener in the molding process of the molding composition.
また、内部離型剤の含有量はセパレータ40の形状の複雑さ、溝深さ、抜き勾配など金型面との離形性の容易さなどに応じて適宜設定されるが、成形用組成物全量に対して0.1~2.5質量%の範囲であることが好ましく、この含有量が0.1質量%以上であることで金型成形時に十分な離型性が発揮され、またこの含有量が2.5質量%以下であることでワックスによってセパレータ40の親水性が阻害されることが十分に抑制される。このワックスの含有量は0.1~1質量%の範囲であれば更に好ましく、0.1~0.5質量%の範囲であれば特に好ましい。
Further, the content of the internal mold release agent is appropriately set according to the complexity of the shape of the separator 40, the groove depth, the ease of releasability from the mold surface such as the draft angle, etc., but the molding composition The content is preferably in the range of 0.1 to 2.5% by mass with respect to the total amount, and when the content is 0.1% by mass or more, sufficient releasability is exhibited at the time of mold molding. When the content is 2.5% by mass or less, the hydrophilicity of the separator 40 is sufficiently inhibited by the wax. The wax content is more preferably in the range of 0.1 to 1% by mass, and particularly preferably in the range of 0.1 to 0.5% by mass.
また、特に薄型のセパレータ40を得る場合には、成形用組成物が溶媒を含有することで、この成形用組成物を液状(ワニス状及びスラリー状を含む)に調製されてもよい。溶媒としては、たとえばメチルエチルケトン、メトキシプロパノール、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒が好ましい。また溶媒は一種のみが用いられるほか、二種以上が併用されてもよい。溶媒の使用量は、成形用組成物からシート状のセパレータ40を作製する際の成形性を考慮して適宜設定されるが、好ましくは成形用組成物の粘度が1000~5000cpsの範囲となるように使用量が設定される。尚、溶媒は必要に応じて使用されればよく、熱硬化性樹脂として液状樹脂が使用されるなどによって成形用組成物が液状に調製されるならば、溶媒が使用されなくてもよい。
In particular, when the thin separator 40 is obtained, the molding composition may be prepared in a liquid form (including varnish and slurry) by containing a solvent. As the solvent, for example, polar solvents such as methyl ethyl ketone, methoxypropanol, N, N-dimethylformamide, dimethyl sulfoxide are preferable. Further, only one type of solvent may be used, or two or more types may be used in combination. The amount of the solvent used is appropriately set in consideration of the moldability when the sheet-like separator 40 is produced from the molding composition, but preferably the viscosity of the molding composition is in the range of 1000 to 5000 cps. The usage amount is set. In addition, a solvent should just be used as needed, and a solvent does not need to be used if a molding composition is prepared in a liquid state by using liquid resin as a thermosetting resin.
また、セパレータ40中のイオン性不純物の含有量が、成形用組成物全量に対して質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下となることが好ましく、そのためには、成形用組成物は、この成形用組成物中のイオン性不純物の含有量が、成形用組成物全量に対して質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下となるように調製されることが好ましい。この場合、セパレータ40からのイオン性不純物の溶出が抑制され、不純物の溶出による燃料電池の起動電圧低下等の特性低下が抑制される。
Further, the content of ionic impurities in the separator 40 is preferably a sodium content of 5 ppm or less and a chlorine content of 5 ppm or less in terms of mass ratio with respect to the total amount of the molding composition. It is preferable that the content of the ionic impurities in the molding composition is adjusted so that the sodium content is 5 ppm or less and the chlorine content is 5 ppm or less by mass ratio with respect to the total amount of the molding composition. In this case, elution of ionic impurities from the separator 40 is suppressed, and deterioration of characteristics such as a decrease in starting voltage of the fuel cell due to the elution of impurities is suppressed.
セパレータ40及び成形用組成物のイオン性不純物の含有量が上記のように低減するためには、成形用組成物を構成する熱硬化性樹脂、硬化剤、黒鉛、その他添加剤等の各成分として、それぞれイオン性不純物の含有量が、各成分に対して質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下である成分が用いられることが好ましい。
In order to reduce the content of ionic impurities in the separator 40 and the molding composition as described above, each component such as a thermosetting resin, a curing agent, graphite, and other additives constituting the molding composition. In addition, it is preferable to use a component in which the content of ionic impurities is a sodium content of 5 ppm or less and a chlorine content of 5 ppm or less by mass ratio with respect to each component.
イオン性不純物の含有量は、対象物の抽出水中のイオン性不純物の量に基づいて導出される。前記抽出水は、対象物10gに対してイオン交換水100mlの割合で、イオン交換水中に対象物が投入され、90℃で50時間処理されることで得られる。また抽出水中のイオン性不純物は、イオンクロマトグラフィにて評価される。そして、導出される抽出水中のイオン性不純物量に基づいて、対象物中のイオン性不純物の量が、対象物に対する質量比に換算して導出される。
The content of ionic impurities is derived based on the amount of ionic impurities in the extracted water of the object. The extracted water is obtained by charging the object in ion-exchanged water at a rate of 100 ml of ion-exchanged water with respect to 10 g of the object, and treating it at 90 ° C. for 50 hours. In addition, ionic impurities in the extracted water are evaluated by ion chromatography. Then, based on the derived ionic impurity amount in the extracted water, the amount of the ionic impurity in the object is derived in terms of a mass ratio with respect to the object.
また、成形用組成物は、この組成物で形成されるセパレータ40のTOC(total organic carbon)が100ppm以下となるように調製されることが好ましい。
Further, the molding composition is preferably prepared such that the TOC (total organic carbon) of the separator 40 formed from this composition is 100 ppm or less.
TOCは、セパレータ40の質量10gに対してイオン交換水100mlの割合で、イオン交換水中にセパレータ40が投入され、これが90℃で50時間処理された後の水溶液を用いて測定される数値である。このTOCは、例えばJIS K0102に準拠して島津製の全有機炭素分析装置「TOC-50」などで測定される。測定にあたっては、サンプルの燃焼により発生したCO2濃度が非分散型赤外線ガス分析法で測定され、サンプル中の炭素濃度が定量される。炭素濃度が測定されることによって、間接的に含有している有機物質濃度が測定される。サンプル中の無機炭素(IC)、全炭素(TC)が測定され、この全炭素と無機炭素の差(TC-IC)から全有機炭素(TOC)が計測される。
The TOC is a numerical value measured using an aqueous solution after the separator 40 is charged into ion-exchanged water at a rate of 100 ml of ion-exchanged water with respect to 10 g of the mass of the separator 40 and treated at 90 ° C. for 50 hours. . This TOC is measured by, for example, a total organic carbon analyzer “TOC-50” manufactured by Shimadzu in accordance with JIS K0102. In the measurement, the CO2 concentration generated by burning the sample is measured by a non-dispersive infrared gas analysis method, and the carbon concentration in the sample is quantified. By measuring the carbon concentration, the concentration of the organic substance contained indirectly is measured. Inorganic carbon (IC) and total carbon (TC) in the sample are measured, and total organic carbon (TOC) is measured from the difference between the total carbon and inorganic carbon (TC-IC).
上記のTOCが100ppm以下であると、燃料電池としての特性低下が更に抑制される。
When the above TOC is 100 ppm or less, characteristic deterioration as a fuel cell is further suppressed.
TOCの値は、成形用組成物を構成する各成分として高純度の成分が選択されたり、更に樹脂の当量比が調整されたり、成形時に後硬化処理がおこなわれたりすることで低減される。
The value of TOC is reduced by selecting a high-purity component as each component constituting the molding composition, adjusting the equivalent ratio of the resin, or performing a post-curing process during molding.
前記のような原料成分が配合されることで成形用組成物が調製され、この成形用組成物が成形されることでセパレータ40が得られる。このようにセパレータ40が製造されるにあたり、原料成分、成形用組成物、及びセパレータ40のうち少なくともいずれかから、金属成分が除去される。特に、少なくとも成形用組成物から金属成分が除去されることが好ましい。これにより、燃料電池セパレータの金属成分の含有量が低減する。
A molding composition is prepared by blending the raw material components as described above, and the separator 40 is obtained by molding the molding composition. Thus, when the separator 40 is manufactured, the metal component is removed from at least one of the raw material component, the molding composition, and the separator 40. In particular, at least the metal component is preferably removed from the molding composition. Thereby, the content of the metal component of the fuel cell separator is reduced.
成形用組成物の調製にあたっては、この成形用組成物に配合される成分(以下、原料成分という)から予め金属成分が除去されることが好ましい。すなわち、黒鉛粒子、樹脂成分、並びに他の原料成分のうち少なくとも一種から、予め金属成分が除去されることが好ましい。特に、少なくとも黒鉛粒子から、予め金属成分が除去されることが好ましい。この場合、黒鉛粒子から金属成分が予め除去されることで、燃料電池セパレータの金属成分の含有量が更に確実に低減する。また、樹脂成分にも、その製造過程などにおいて不純物として金属成分が含有されることがある。このため樹脂成分からも予め金属成分が除去されることが好ましい。また、黒鉛粒子及び樹脂成分以外の原料成分にも、その製造過程などにおいて不純物として金属成分が含有されることがある。このため黒鉛粒子及び樹脂成分以外の原料成分からも予め金属成分が除去されることが好ましい。
In preparing the molding composition, it is preferable that the metal component is removed in advance from components (hereinafter referred to as raw material components) blended in the molding composition. That is, it is preferable that the metal component is previously removed from at least one of the graphite particles, the resin component, and other raw material components. In particular, it is preferable that the metal component is previously removed from at least the graphite particles. In this case, the metal component is removed from the graphite particles in advance, so that the content of the metal component of the fuel cell separator is further reliably reduced. In addition, the resin component may also contain a metal component as an impurity during the production process. For this reason, it is preferable that the metal component is removed from the resin component in advance. In addition, the raw material components other than the graphite particles and the resin component may contain a metal component as an impurity in the production process or the like. For this reason, it is preferable that a metal component is previously removed from raw material components other than the graphite particles and the resin component.
特に全ての原料成分から予め金属成分が除去されることが好ましい。この場合、全ての原料成分から予め金属成分が除去されることで、燃料電池セパレータの金属成分の含有量が更に確実に低減する。
In particular, it is preferable that the metal component is removed in advance from all raw material components. In this case, the metal component is removed from all the raw material components in advance, so that the content of the metal component in the fuel cell separator is further reliably reduced.
原料成分から予め金属成分が除去される場合、原料成分中のFe、Co、及びNiの総含有量が好ましくは1質量ppm以下、更に好ましくは0.5質量ppm以下となるように、原料成分から金属成分が除去される。更に、原料成分中のCr、Mn、Fe、Co、Ni、Cu及びZnの総含有量が好ましくは1質量ppm以下、更に好ましくは0.5質量ppm以下となるように、原料成分から金属成分が除去される。
When the metal component is previously removed from the raw material component, the raw material component is adjusted so that the total content of Fe, Co, and Ni in the raw material component is preferably 1 mass ppm or less, more preferably 0.5 mass ppm or less. The metal component is removed from Furthermore, from the raw material component to the metal component so that the total content of Cr, Mn, Fe, Co, Ni, Cu and Zn in the raw material component is preferably 1 ppm by mass or less, more preferably 0.5 ppm by mass or less. Is removed.
また、原料成分からは、直径35μm以上の金属成分が除去され、更に直径35μm未満の金属成分までもが除去されることが好ましい。
Further, it is preferable that the metal component having a diameter of 35 μm or more is removed from the raw material component, and further, the metal component having a diameter of less than 35 μm is also removed.
原料成分からの金属成分の除去方法の一例として、原料成分中の前記金属成分を磁石を用いて吸引除去する方法が挙げられる。この場合、原料成分から金属成分が充分に除去され、特に磁性体の含有量が低減する。磁石としては、永久磁石や電磁石等が使用され得る。永久磁石の場合は、特に、ネオジウム系希土類磁石及びサマリウムコバルト系希土類磁石から選ばれる少なくとも一種が使用されることが好ましい。この場合、前記金属成分が容易に除去される。前記金属成分が確実に除去されるためには、磁石の磁力(磁束密度)が10000ガウス以上であることが好ましく、20000ガウス以上であれば更に好ましく、操作性の観点からは30000ガウス以下であることが好ましい。但し、通常のネオジウム系希土類磁石の磁力(磁束密度)は12000ガウスまで、或いは大きくても14000ガウス程度までであるので、通常のネオジウム系希土類磁石が用いられる場合の磁力(磁束密度)は12000ガウス以下、或いは14000ガウス以下となる。金属成分の除去効率の向上のためには前記範囲において、より大きい磁力を有する磁石が用いられることが好ましい。
An example of a method for removing the metal component from the raw material component is a method of removing the metal component in the raw material component by suction using a magnet. In this case, the metal component is sufficiently removed from the raw material component, and the content of the magnetic substance is particularly reduced. As the magnet, a permanent magnet, an electromagnet, or the like can be used. In the case of a permanent magnet, it is particularly preferable to use at least one selected from neodymium rare earth magnets and samarium cobalt rare earth magnets. In this case, the metal component is easily removed. In order to reliably remove the metal component, the magnetic force (magnetic flux density) of the magnet is preferably 10,000 Gauss or more, more preferably 20000 Gauss or more, and from the viewpoint of operability, it is 30000 Gauss or less. It is preferable. However, since the magnetic force (magnetic flux density) of a normal neodymium-based rare earth magnet is up to 12000 gauss, or up to about 14000 gauss, the magnetic force (magnetic flux density) when a normal neodymium-based rare earth magnet is used is 12000 gauss. Or 14,000 gauss or less. In order to improve the removal efficiency of the metal component, it is preferable to use a magnet having a larger magnetic force in the above range.
原料成分から磁石を用いて金属成分を吸引除去するための装置(以下、吸引除去装置27という)の第一の例としては、図4Aに示すような、対象物(ここでは原料成分)が通過する通路28の両側に磁石29が配置されて構成される装置が挙げられる。前記磁石29は、永久磁石であっても、電磁石であってもよい。各磁石29は、対向面にそれぞれ異なる磁極が配置されるように設けられる。各磁石29は、通路28を介して対向する対向面が凹凸に形成されると共に、各対向面に現れる凸部と凹とがそれぞれ対称的に形成されていることが好ましく、この場合、磁石間に発生する磁場勾配が大きくなる。このような吸引除去装置27における磁石29間の通路28に対象物、或いは対象物を分散させたスラリーが通過すると、この対象物中の金属成分のうち、特に磁性体は、磁石29に吸引されて除去される。この通路28を通過した後の対象物は、適宜の回収容器に回収される。
As a first example of a device for sucking and removing a metal component from a raw material component using a magnet (hereinafter referred to as a suction removing device 27), an object (here, the raw material component) passes as shown in FIG. 4A. An apparatus in which magnets 29 are arranged on both sides of the passage 28 is provided. The magnet 29 may be a permanent magnet or an electromagnet. Each magnet 29 is provided such that different magnetic poles are arranged on the opposing surfaces. Each magnet 29 is preferably formed such that the opposed surfaces facing each other via the passage 28 are uneven, and the convex portions and the concave portions appearing on the respective opposed surfaces are formed symmetrically. The magnetic field gradient generated in the When the object or the slurry in which the object is dispersed passes through the passage 28 between the magnets 29 in the suction removal device 27, particularly the magnetic material among the metal components in the object is attracted by the magnet 29. Removed. The object after passing through this passage 28 is collected in an appropriate collection container.
磁性体としては、Fe、Co、Niが挙げられ、また磁性を有する合金も挙げられる。例えば磁性を有するSUS430などのステンレスも除去される。また、SUS304やSUS316は常態では磁性を有さないが、応力がかけられると磁性を有するようになる。例えば、各種装置に使用されるSUS304製やSUS316製のネジなどの部品に、加工時やネジ締め時などに応力がかけられている場合には、その部品を構成するSUS304やSUS316が磁性を有するようになる。このような磁性を有するSUS304やSUS316も、対象物から除去される。
Examples of the magnetic material include Fe, Co, and Ni, and also alloys having magnetism. For example, stainless steel such as SUS430 having magnetism is also removed. Further, SUS304 and SUS316 do not have magnetism in a normal state, but become magnetized when stress is applied. For example, when stress is applied to a part such as a SUS304 or SUS316 screw used in various devices during processing or screw tightening, the SUS304 or SUS316 constituting the part has magnetism. It becomes like this. SUS304 and SUS316 having such magnetism are also removed from the object.
また、この第一の例の吸引除去装置27において、磁石29間の通路28に、鉄、コバルト、ニッケル等の磁性体で形成された複数の棒状の吸着体が間隔をあけて配置されていてもよい。吸着体は例えばその長手方向が通路28における対象物の通過方向と直交するように、並列に設けられる。このような吸引除去装置27における磁石29間の通路28に対象物、或いは対象物を分散させたスラリーが通過すると(図中の符号60で示される矢印参照)、この対象物中の金属成分のうち、特に磁性体が、吸着体に吸着して除去される。この通路28を通過した後の対象物が回収される。
In the suction removal device 27 of the first example, a plurality of rod-shaped adsorbers made of a magnetic material such as iron, cobalt, or nickel are arranged at intervals in the passage 28 between the magnets 29. Also good. For example, the adsorbents are provided in parallel so that the longitudinal direction thereof is orthogonal to the direction of passage of the object in the passage 28. When the object or slurry in which the object is dispersed passes through the passage 28 between the magnets 29 in the suction removal device 27 (see the arrow indicated by reference numeral 60 in the figure), the metal component in the object is removed. Of these, the magnetic substance is removed by adsorbing on the adsorbent. The object after passing through this passage 28 is collected.
吸引除去装置27の第二の例として、対象物が通過する通路28内に複数の棒状の磁石29が間隔をあけて配列して構成される吸引除去装置27が挙げられる。この棒状の磁石29は例えば格子状に配列するように設けられる。また複数の棒状の磁石29で構成される格子が、前記通路28における対象物の通過方向に沿って二つ又はそれ以上設けられていてもよい。また、前記通路28内に設けられた複数の棒状の磁石29が、前記通路28内で、この棒状の磁石29の長手方向に沿った、共通する一つの回転軸を中心に回転可能であってもよい。このような吸引除去装置27における通路28に対象物、或いは対象物を分散させたスラリーが通過すると(図中の符号60で示される矢印参照)、この対象物中の金属成分のうち、特に磁性体が、棒状の磁石29に吸着して除去される。この通路28を通過した後の対象物が回収される。
As a second example of the suction removal device 27, there is a suction removal device 27 configured by arranging a plurality of rod-shaped magnets 29 at intervals in a passage 28 through which an object passes. The rod-shaped magnets 29 are provided so as to be arranged in a grid, for example. Further, two or more grids composed of a plurality of rod-shaped magnets 29 may be provided along the direction in which the object passes through the passage 28. In addition, a plurality of rod-shaped magnets 29 provided in the passage 28 can rotate around a common rotation axis along the longitudinal direction of the rod-shaped magnet 29 in the passage 28. Also good. When the object or slurry in which the object is dispersed passes through the passage 28 in the suction removal device 27 (see the arrow indicated by reference numeral 60 in the figure), among the metal components in the object, particularly magnetic The body is attracted to the rod-shaped magnet 29 and removed. The object after passing through this passage 28 is collected.
吸引除去装置27の第三の例として、対象物を、磁石を備える円筒体30の周面上に落下させながら、前記磁石の吸引力を利用して前記対象物から金属成分を分別する装置が挙げられる。前記円筒体30は、水平方向の回転軸を中心に回転する。
As a third example of the suction / removal device 27, there is an apparatus that separates a metal component from the object by using the attractive force of the magnet while dropping the object on the peripheral surface of a cylindrical body 30 having a magnet. Can be mentioned. The cylindrical body 30 rotates around a horizontal rotation axis.
前記円筒体30における磁石は適宜の位置に設けられる。例えば円筒体30の内側に、この円筒体30の回転軸方向に長く、且つ円筒体30と同方向に軸回転する磁石が、円筒体30の上部寄り且つこの円筒体30の一方の側部寄り(円筒体30が右回転する場合は右寄り、左回転する場合は左寄り)の位置に設けられる。
The magnet in the cylindrical body 30 is provided at an appropriate position. For example, on the inner side of the cylindrical body 30, a magnet that is long in the rotational axis direction of the cylindrical body 30 and rotates axially in the same direction as the cylindrical body 30 is near the upper portion of the cylindrical body 30 and one side portion of the cylindrical body 30. (When the cylindrical body 30 rotates to the right, it is provided to the right, and when it rotates to the left, it is provided to the left).
また前記円筒体30の内側に複数の磁石が、この円筒体30の周面に沿って配列するように設けられてもよい。この場合、例えば磁極が円筒体30の径方向に並んだ複数の磁石(第一の磁石)が間隔をあけて配列する。この第一の磁石は磁極の方向が交互に逆方向になるように配列する。この第一の磁石の間に、磁極が円筒体30の周方向に並んだ複数の磁石(第二の磁石)が配列する。この第二の磁石も磁極の方向が交互に逆方向に配列する。或いは、円筒形の周面上に複数の第二の磁石が、前記と同様に配列してもよい。
Further, a plurality of magnets may be provided inside the cylindrical body 30 so as to be arranged along the peripheral surface of the cylindrical body 30. In this case, for example, a plurality of magnets (first magnets) having magnetic poles arranged in the radial direction of the cylindrical body 30 are arranged at intervals. The first magnets are arranged so that the directions of the magnetic poles are alternately reversed. A plurality of magnets (second magnets) having magnetic poles arranged in the circumferential direction of the cylindrical body 30 are arranged between the first magnets. This second magnet also has the magnetic poles arranged alternately in opposite directions. Alternatively, a plurality of second magnets may be arranged on the cylindrical peripheral surface in the same manner as described above.
この第三の例の吸引除去装置27においては、回転する前記円筒体30の上に対象物が落下すると(図中の符号60で示される矢印参照)、この対象物は円筒体30の回転力によって付勢されながら落下する(図中の符号70で示される矢印参照)。一方、この対象物のうち金属成分(特に磁性体)を含む成分は、円筒体30の磁石に吸引されて、円筒体30に吸着し、或いは磁石からの吸引力により円筒体30からの落下軌道が変更される(図中の符号80で示される矢印参照)。このため、金属成分を含む成分は円筒体30に吸着して除去される。金属成分を含む成分が円筒体30から落下するとしても、金属成分を含まない成分の落下位置とは異なる位置に落下する。これにより対象物が、金属成分を含む成分と、金属成分を含まない成分とに選別される。
In the suction removal device 27 of the third example, when an object falls on the rotating cylindrical body 30 (see the arrow indicated by reference numeral 60 in the figure), the object is a rotational force of the cylindrical body 30. (See the arrow indicated by reference numeral 70 in the figure). On the other hand, a component including a metal component (especially a magnetic material) in the object is attracted to the magnet of the cylindrical body 30 and is attracted to the cylindrical body 30, or the dropping trajectory from the cylindrical body 30 by the attractive force from the magnet. Is changed (see the arrow indicated by reference numeral 80 in the figure). For this reason, the component containing a metal component is adsorbed by the cylindrical body 30 and removed. Even if the component containing the metal component falls from the cylindrical body 30, it falls to a position different from the drop position of the component not containing the metal component. As a result, the object is sorted into a component containing a metal component and a component not containing a metal component.
また、複数の方式の吸引除去装置27が組み合わされたり、同一の方式の吸引除去装置27が多段階に設けられたりしてもよい。
Further, a plurality of types of suction / removal devices 27 may be combined, or the same type of suction / removal devices 27 may be provided in multiple stages.
上記のような吸引除去装置27においては、対象物が通過する経路に、磁石による磁界が強い部分と弱い部分とが生じることがあり、磁界が弱い部分を通過する対象物からは金属成分が除去されにくくなる場合がある。このような場合には、吸引除去装置27に、磁界が弱い部分に通じる経路を遮蔽する遮蔽物が設けられることが好ましい。前記遮蔽物としては、例えば磁界が強い部分のみに通じるスリットを備えた部材が挙げられる。
In the suction removal device 27 as described above, a strong magnetic field and a weak magnetic field may occur in the path through which the object passes, and metal components are removed from the object passing through the weak magnetic field. It may be difficult to be done. In such a case, it is preferable that the suction removal device 27 is provided with a shield that shields a path leading to a portion where the magnetic field is weak. Examples of the shield include a member having a slit that leads only to a portion where the magnetic field is strong.
このようにして原料成分から金属成分が磁石で吸引除去されることにより、原料成分から金属成分、特に磁性体(Fe、Co、Ni等)が除去され、原料成分中のFe、Co、及びNiの含有量が特に低減する。
In this way, the metal component is attracted and removed from the raw material component by the magnet, so that the metal component, particularly the magnetic material (Fe, Co, Ni, etc.) is removed from the raw material component, and Fe, Co, and Ni in the raw material component are removed. The content of is particularly reduced.
また、黒鉛粒子から金属成分を除去する方法としては、黒鉛粒子を、pH2以下の強酸性溶液を用いて洗浄する方法が挙げられる。強酸性溶液としては、例えば濃度69質量%の濃硝酸と濃度36質量%の濃塩酸とを体積比で1:3の割合で混合して得られる王水、濃度15質量%以上の塩酸水、濃度15質量%以上の硫酸水、及び濃度15質量%以上の硝酸水から選ばれる少なくとも一種が使用され得る。この場合、黒鉛粒子から前記金属成分が容易に除去される。前記塩酸水、硫酸水及び硝酸水の濃度は、操作性の観点から30質量%以下であることが好ましい。
Further, as a method for removing the metal component from the graphite particles, there is a method of washing the graphite particles using a strongly acidic solution having a pH of 2 or less. As the strongly acidic solution, for example, aqua regia obtained by mixing concentrated nitric acid having a concentration of 69% by mass and concentrated hydrochloric acid having a concentration of 36% by mass in a ratio of 1: 3 by volume ratio, hydrochloric acid having a concentration of 15% by mass or more, At least one selected from sulfuric acid having a concentration of 15% by mass or more and nitric acid having a concentration of 15% by mass or more can be used. In this case, the metal component is easily removed from the graphite particles. The concentration of the hydrochloric acid water, the sulfuric acid water and the nitric acid water is preferably 30% by mass or less from the viewpoint of operability.
原料成分からの金属成分の除去方法は前記の方法に限定されない。前記以外の方法としては、例えば黒鉛粒子から金属成分が除去される場合には、この黒鉛粒子を電極として、電解液中で電気分解反応を行うことにより金属成分を電解液中に溶出させて除去する方法が挙げられる。その他適宜の方法が採用されてもよい。
The method for removing the metal component from the raw material component is not limited to the above method. As a method other than the above, for example, when a metal component is removed from graphite particles, the metal component is eluted and removed in the electrolyte solution by performing an electrolysis reaction in the electrolyte solution using the graphite particles as an electrode. The method of doing is mentioned. Other appropriate methods may be employed.
成形用組成物は、上記のような各成分が適宜の手法で混合され、必要に応じて混練・造粒等されることで調製される。
The molding composition is prepared by mixing the above-described components by an appropriate method, and kneading and granulating as necessary.
成形用組成物が調製された後、この成形用組成物から金属成分が除去されることが好ましい。この場合、成形用組成物が調製される際に金属成分が混入したとしても、この金属成分が成形用組成物から除去され得る。この場合、成形用組成物から金属成分が充分に除去され、特に磁性体の含有量が低減する。
After the molding composition is prepared, the metal component is preferably removed from the molding composition. In this case, even if a metal component is mixed when the molding composition is prepared, the metal component can be removed from the molding composition. In this case, the metal component is sufficiently removed from the molding composition, and the content of the magnetic substance is particularly reduced.
成形用組成物から金属成分が除去される場合、成形用組成物中のFe、Co、及びNiの総含有量が好ましくは1質量ppm以下、更に好ましくは0.5質量ppm以下となるように、成形用組成物から金属成分が除去される。更に、成形用組成物中のCr、Mn、Fe、Co、Ni、Cu及びZnの総含有量が好ましくは1質量ppm以下、更に好ましくは0.5質量ppm以下となるように、成形用組成物から金属成分が除去される。
When the metal component is removed from the molding composition, the total content of Fe, Co, and Ni in the molding composition is preferably 1 ppm by mass or less, more preferably 0.5 ppm by mass or less. The metal component is removed from the molding composition. Further, the molding composition is such that the total content of Cr, Mn, Fe, Co, Ni, Cu and Zn in the molding composition is preferably 1 ppm by mass or less, more preferably 0.5 ppm by mass or less. The metal component is removed from the object.
また、成形用組成物からは、直径35μm以上の金属成分が除去され、更に直径35μm未満の金属成分までもが除去されることが好ましい。
Further, it is preferable that a metal component having a diameter of 35 μm or more is removed from the molding composition, and further a metal component having a diameter of less than 35 μm is also removed.
成形用組成物からの金属成分の除去方法としては、原料成分からの金属成分の除去方法と同様に、成形用組成物中の前記金属成分を磁石を用いて吸引除去する方法などが挙げられる。成形用組成物中の金属成分が磁石で吸引除去される場合には、原料成分の場合と同様の吸引除去装置27が用いられることが好ましい。
Examples of the method for removing the metal component from the molding composition include a method in which the metal component in the molding composition is removed by suction using a magnet, as in the method for removing the metal component from the raw material component. When the metal component in the molding composition is removed by suction with a magnet, it is preferable to use the same suction removal device 27 as that for the raw material component.
原料成分或いは成形用組成物から金属成分が、その含有量が所定の値以下となるまで除去されるためには、原料成分或いは成形用組成物から前記例示したような方法で金属成分が除去された後、誘導結合プラズマ(Inductively Coupled Plasma:ICP)分析によりこの原料成分或いは成形用組成物の金属成分の含有量が測定され、この測定結果が所定の値以下となるまで、原料成分或いは成形用組成物からの金属成分の除去が繰り返されることが好ましい。
In order for the metal component to be removed from the raw material component or the molding composition until the content falls below a predetermined value, the metal component is removed from the raw material component or the molding composition by the method exemplified above. After that, the content of the metal component of the raw material component or the molding composition is measured by inductively coupled plasma (ICP) analysis, and the raw material component or the molding component is measured until the measurement result becomes a predetermined value or less. It is preferred that the removal of the metal component from the composition is repeated.
この成形用組成物が成形されることで、成形体1(セパレータ40)が得られる。成形法としては、射出成形や圧縮成形など、適宜の手法が採用される。セパレータ40には例えば図1A及び図1Bに示すように、両面に複数個の凸部(リブ)33が形成されることで、隣り合う凸部33同士の間に、燃料である水素ガスと、酸化剤である酸素ガスの流路であるガス供給排出用溝2が形成される。
The molded body 1 (separator 40) is obtained by molding this molding composition. As the molding method, an appropriate method such as injection molding or compression molding is employed. For example, as shown in FIGS. 1A and 1B, the separator 40 is formed with a plurality of convex portions (ribs) 33 on both surfaces, so that hydrogen gas as a fuel is interposed between the adjacent convex portions 33, and A gas supply / discharge groove 2 which is a flow path of oxygen gas which is an oxidizing agent is formed.
尚、セパレータ40は、片面のみにガス供給排出用溝2を有するアノード側セパレータと、前記アノード側セパレータとは反対側の片面のみにガス供給排出用溝2を有するカソード側セパレータとで構成されてもよい。このアノード側セパレータとカソード側セパレータとが重ねられることで、図1A及び図1Bに示すような両面にガス供給排出用溝2を有するセパレータ40が構成される。アノード側セパレータとカソード側セパレータとの間には冷却水が流通する流路が形成されてもよい。この場合、アノード側セパレータとカソード側セパレータとの間にはガスケットが介在することが好ましい。
The separator 40 includes an anode separator having a gas supply / discharge groove 2 only on one side, and a cathode side separator having a gas supply / discharge groove 2 only on one side opposite to the anode side separator. Also good. By superposing the anode side separator and the cathode side separator, a separator 40 having gas supply / discharge grooves 2 on both sides as shown in FIGS. 1A and 1B is formed. A channel through which cooling water flows may be formed between the anode side separator and the cathode side separator. In this case, a gasket is preferably interposed between the anode side separator and the cathode side separator.
また、ワニス状に調製された成形用組成物から薄型のセパレータ40が得られる場合には、まず成形用組成物がシート状に成形されて、燃料電池セパレータ成形用シート(成形用シート)が得られる。成形用組成物は、例えばキャスティング(展進)成形によりシート状に成形される。この際には、複数種の膜厚調節手段が用いられ得る。このような複数種の膜厚調節手段を用いるキャスティング法は、例えばすでに実用化されているマルチコータが用いられることで実現される。キャスティングのための膜厚調節手段としては、スリットダイとともに、ドクターナイフおよびワイヤーバーの少なくともいずれか、すなわちいずれか一方もしくは両方が用いられることが好ましい。この成形用シートの厚みは、0.05mm以上であることが好ましく、0.1mm以上であれば更に好ましい。また、この厚みは0.5mm以下であることが好ましく、0.3mm以下であれば更に好ましい。このように成形用シートの厚みが0.5mm以下であることで、セパレータ1の薄型化や軽量化、並びにそれによる低コスト化が達成され、特に厚みが0.3mm以下であれば溶媒が使用される場合の成形用シート内部の溶媒の残存が効果的に抑制される。またこの厚みが0.05mm未満の場合にはセパレータ40の製造にあたっての有利さが充分に発揮されなくなり、特に成形性を考慮するとこの厚みは0.1mm以上であることが好ましい。
When the thin separator 40 is obtained from the molding composition prepared in a varnish shape, the molding composition is first molded into a sheet shape to obtain a fuel cell separator molding sheet (molding sheet). It is done. The molding composition is formed into a sheet by, for example, casting (progressive) molding. In this case, a plurality of types of film thickness adjusting means can be used. The casting method using such a plurality of types of film thickness adjusting means is realized by using, for example, a multi-coater that has already been put into practical use. As the film thickness adjusting means for casting, it is preferable to use at least one of a doctor knife and a wire bar, that is, one or both of them together with a slit die. The thickness of this molding sheet is preferably 0.05 mm or more, and more preferably 0.1 mm or more. The thickness is preferably 0.5 mm or less, and more preferably 0.3 mm or less. Thus, when the thickness of the molding sheet is 0.5 mm or less, a reduction in thickness and weight of the separator 1 and a reduction in cost are achieved. In particular, if the thickness is 0.3 mm or less, a solvent is used. In this case, the remaining of the solvent inside the molding sheet is effectively suppressed. Further, when this thickness is less than 0.05 mm, the advantage in manufacturing the separator 40 is not sufficiently exhibited, and this thickness is preferably 0.1 mm or more in consideration of moldability.
この成形用シートが、キャスティングにともなう乾燥によって半硬化(Bステージ)状態とされ、これが圧縮・熱硬化成形されるなどして、両面に複数個の凸部(リブ)33が形成されると共にこの凸部(リブ)33間にガス供給排出用溝2が形成されることで、セパレータ40が得られる。このとき、セパレータ40が波板状に形成され、その一面側の凸部33の裏側に他面側のガス供給排出用溝2が形成されると、薄型でありながら両面に複数個の凸部(リブ)33を有すると共にこの凸部(リブ)33間にガス供給排出用溝2を有するセパレータ40が得られる。
This molding sheet is made into a semi-cured (B stage) state by drying accompanying casting, and this is subjected to compression / thermosetting molding to form a plurality of convex portions (ribs) 33 on both sides and The separator 40 is obtained by forming the gas supply / discharge groove 2 between the convex portions (ribs) 33. At this time, when the separator 40 is formed in a corrugated plate shape and the gas supply / discharge groove 2 on the other surface side is formed on the back side of the convex portion 33 on the one surface side, a plurality of convex portions are formed on both surfaces while being thin. The separator 40 having the (rib) 33 and the gas supply / discharge groove 2 between the convex portions (rib) 33 is obtained.
この成形用シートの圧縮・熱硬化成形時には、まず成形用シートが必要に応じて所定の平面寸法にカット(切断)もしくは打ち抜かれ、これが金型内において圧縮成形機で熱硬化する。この圧縮・熱硬化成形の条件は、成形用組成物の組成、導電性基材の種類、成形厚みなどにもよるが、加熱温度を120~190℃の範囲、圧縮圧力を1~40MPaの範囲で設定されることが好ましい。
In the compression / thermosetting molding of the molding sheet, the molding sheet is first cut (cut) or punched into a predetermined plane dimension as necessary, and is thermoset by a compression molding machine in the mold. The compression / thermosetting molding conditions depend on the composition of the molding composition, the type of conductive substrate, the molding thickness, etc., but the heating temperature is in the range of 120 to 190 ° C., and the compression pressure is in the range of 1 to 40 MPa. It is preferable that
セパレータ40の作製にあたっては、一枚の成形用シートが成形されることでセパレータ40が作製されてもよく、成形用シートが複数枚重ねられて成形されることでセパレータ40が作製されてもよい。
In producing the separator 40, the separator 40 may be produced by molding a single molding sheet, or the separator 40 may be produced by molding a plurality of molding sheets. .
このようにして成形用シートが成形されることで、薄型のセパレータ40、特に厚み0.2~1.0mmの範囲のセパレータ40が製造され得る。このようにセパレータ40の製造時に成形用シートが使用されることで、薄型のセパレータ40が製造される場合でも成形材料が薄く且つ均一に配置されて成形されることが容易となり、成形性や厚み精度が高くなる。
By forming the molding sheet in this way, a thin separator 40, particularly a separator 40 having a thickness in the range of 0.2 to 1.0 mm can be manufactured. As described above, the use of the molding sheet at the time of manufacturing the separator 40 makes it easy for the molding material to be thinly and uniformly arranged and molded even when the thin separator 40 is manufactured. Increases accuracy.
尚、セパレータ40の作製時には、成形用シートと適宜の導電性基材とが積層して成形されてもよい。このように導電性基材が用いられると、セパレータ40の機械的強度が向上する。導電性基材が用いられる場合には、導電性基材の両側にそれぞれ成形用シート(複数枚の成形用シートの積層物を含む)を積層した状態で圧縮・熱硬化成形することができ、或いは成形用シート(複数枚の成形用シートの積層物を含む)の両側にそれぞれ導電性基材を積層した状態で圧縮・熱硬化成形することができる。
Note that when the separator 40 is manufactured, a molding sheet and an appropriate conductive base material may be laminated and molded. When the conductive substrate is used in this way, the mechanical strength of the separator 40 is improved. When a conductive substrate is used, compression and thermosetting can be performed in a state in which molding sheets (including a laminate of a plurality of molding sheets) are laminated on both sides of the conductive substrate, Alternatively, compression / thermosetting can be performed in a state where conductive substrates are laminated on both sides of a molding sheet (including a laminate of a plurality of molding sheets).
前記導電性基材としては、たとえば、カーボンペーパー、カーボンプリプレグ、カーボンフェルト等が例示される。また、これらの導電性基材は、導電性を損なわない範囲で、ガラス、樹脂等の基材成分を含有してもよい。導電性基材の厚みは、0.03~0.5mmの範囲が好ましく、0.05~0.2mmの範囲がより好ましい。
Examples of the conductive substrate include carbon paper, carbon prepreg, carbon felt, and the like. Moreover, these electroconductive base materials may contain base material components, such as glass and resin, in the range which does not impair electroconductivity. The thickness of the conductive substrate is preferably in the range of 0.03 to 0.5 mm, and more preferably in the range of 0.05 to 0.2 mm.
この成形体1(セパレータ40)にブラスト処理が施されるなどして、成形体1の表層のスキン層が除去されると共にこのセパレータ40の表面粗さが調整されることが好ましい。
It is preferable that the skin layer of the surface layer of the molded body 1 is removed and the surface roughness of the separator 40 is adjusted by blasting the molded body 1 (separator 40).
このセパレータ40の表面の算術平均高さRa(JIS B0601:2001)は、0.4~1.6μmの範囲であることが好ましい。この場合、セパレータ40とガスケット12との接合部でのガスリークが抑制される。このためウエットブラスト処理時にセパレータ40におけるガスケット12と接合する部位がマスクされる必要がなくなり、セパレータ40の生産効率が向上する。尚、前記算術平均高さRaが0.4μm未満とされることは困難であり、またこの値が1.6μmより大きいと前記ガスリークが充分に抑制されなくなるおそれがある。このセパレータ40の表面の算術平均高さRaは特に1.2μm以下であることが好ましい。更にこのセパレータ40の表面の算術平均高さRaが1.0μm未満であると、前記ガスリークが特に抑制され、セパレータ40の薄型化に伴ってセルスタック作製時の締結力が下がったとしても、前記ガスリークが充分に抑制されるようになる。またセパレータ40の表面の算術平均高さRaが0.6μm以上であることも好ましい。
The arithmetic average height Ra (JIS B0601: 2001) of the surface of the separator 40 is preferably in the range of 0.4 to 1.6 μm. In this case, gas leakage at the joint between the separator 40 and the gasket 12 is suppressed. For this reason, it is not necessary to mask the part joined to the gasket 12 in the separator 40 during the wet blasting process, and the production efficiency of the separator 40 is improved. Note that it is difficult for the arithmetic average height Ra to be less than 0.4 μm, and if this value is greater than 1.6 μm, the gas leak may not be sufficiently suppressed. The arithmetic average height Ra of the surface of the separator 40 is particularly preferably 1.2 μm or less. Further, when the arithmetic average height Ra of the surface of the separator 40 is less than 1.0 μm, the gas leak is particularly suppressed, and even if the fastening force at the time of manufacturing the cell stack is reduced as the separator 40 is thinned, Gas leak is sufficiently suppressed. It is also preferable that the arithmetic average height Ra of the surface of the separator 40 is 0.6 μm or more.
また、セパレータ40の表面の接触抵抗は15mΩcm2以下であることが好ましい。この場合、燃料電池で発電した電気エネルギーを外部へ伝達するというセパレータ40の機能が高いレベルで維持される。
Further, the contact resistance on the surface of the separator 40 is preferably 15 mΩcm 2 or less. In this case, the function of the separator 40 for transmitting the electric energy generated by the fuel cell to the outside is maintained at a high level.
前記ブラスト処理時には、成形体1(セパレータ40)にウエットブラスト処理が施されると共に、この処理においてアルミナ粒子等の砥粒を含むスラリーから磁石で金属成分が除去されることが好ましい。ブラスト処理に用いられる砥粒には不純物として金属成分が混入していることがあり、またブラスト処理時に砥粒を含むスラリーに金属成分が混入することがある。このような金属成分を含むスラリーが用いられてブラスト処理が施されると、セパレータ40の表面に砥粒から金属成分が打ち込まれてしまう。しかし、前記のようにスラリーから磁石で金属成分が除去されながら、この砥粒が用いられてウエットブラスト処理が施されると、ブラスト処理時にセパレータ40に金属成分が付着することが抑制される。すなわち、ウエットブラスト処理によってスキン層の除去や表面粗さの調整などがおこなわれつつ、このウエットブラスト処理時に、スラリー中の砥粒に含まれる金属異物などの金属成分がセパレータ40へ打ち込まれることが抑制される。
In the blasting process, it is preferable that the molded body 1 (separator 40) is subjected to a wet blasting process, and in this process, a metal component is removed with a magnet from a slurry containing abrasive grains such as alumina particles. Abrasive grains used for blasting may contain metal components as impurities, and metal components may be mixed in slurry containing abrasive grains during blasting. When a slurry containing such a metal component is used and blasting is performed, the metal component is driven from the abrasive grains onto the surface of the separator 40. However, if the abrasive grains are used and wet blasting is performed while removing the metal components from the slurry with a magnet as described above, adhesion of the metal components to the separator 40 during blasting is suppressed. That is, while the removal of the skin layer and the adjustment of the surface roughness are performed by the wet blasting process, metal components such as metal foreign matters contained in the abrasive grains in the slurry may be driven into the separator 40 during the wet blasting process. It is suppressed.
図5に、当該ウエットブラスト処理に用いられる装置(ウエットブラスト処理装置)の概略構成を示す。このウエットブラスト処理装置は、処理対象である成形体1(セパレータ40)が搬送されるステージ20を備える。このステージ20には、処理対象の上方及び下方に、処理対象に向けてスラリー26を噴射するノズル21が設けられている。このスラリー26は、アルミナ粒子等の砥粒が水等の分散媒に分散することで得られる。ステージ20には、図示はしていないが、前記ノズル21の後段に、水を噴射する噴水ノズルと、温風を噴射する温風ノズルとが順次設けられる。前記ノズル21には、スラリー26を貯留する貯留容器23が、配管24を介して接続されている。配管24には、この配管24を介してスラリーを貯留容器23からノズル21へ圧送するポンプ25が設けられている。必要に応じ、ノズル21へ圧縮空気を供給するエアポンプも設けられる。ステージ20の下方には、処理対象に噴射された後のスラリー26を受けるパン22が設けられている。このパン22の上面は前記貯留容器23よりも上方位置へ向けて下り傾斜しているため、このパン22で受けられたスラリー26は貯留容器23へ返送される。
FIG. 5 shows a schematic configuration of an apparatus (wet blasting apparatus) used for the wet blasting process. This wet blasting apparatus includes a stage 20 on which a molded body 1 (separator 40) to be processed is conveyed. The stage 20 is provided with nozzles 21 for injecting the slurry 26 toward the processing target above and below the processing target. The slurry 26 is obtained by dispersing abrasive grains such as alumina particles in a dispersion medium such as water. Although not shown, the stage 20 is sequentially provided with a fountain nozzle for injecting water and a hot air nozzle for injecting hot air, following the nozzle 21. A storage container 23 for storing the slurry 26 is connected to the nozzle 21 via a pipe 24. The pipe 24 is provided with a pump 25 that pumps the slurry from the storage container 23 to the nozzle 21 through the pipe 24. If necessary, an air pump that supplies compressed air to the nozzle 21 is also provided. Below the stage 20 is provided a pan 22 that receives the slurry 26 after being sprayed onto the object to be treated. Since the upper surface of the pan 22 is inclined downward toward the position above the storage container 23, the slurry 26 received by the pan 22 is returned to the storage container 23.
このウエットブラスト処理装置の配管24に、既述のような磁石により金属成分を除去する吸引除去装置27が設けられる。すなわち、例えば配管24の途中に既述のような第一、第二或いは第三の例のような吸引除去装置27が設けられることで、スラリー26が配管24を流通する際に、このスラリー26から吸引除去装置27によって金属成分が除去されるようにする。
The suction removal device 27 for removing the metal component by the magnet as described above is provided in the pipe 24 of the wet blast treatment device. That is, for example, when the suction removal device 27 as in the first, second, or third example as described above is provided in the middle of the pipe 24, the slurry 26 flows when the slurry 26 flows through the pipe 24. Then, the metal component is removed by the suction removing device 27.
このウエットブラスト処理装置が用いられることで成形体1(セパレータ40)にウエットブラスト処理が施される場合、スラリー26が貯留容器23から配管24を通じてノズル21へ供給され、このノズル21からスラリー26が噴射される。尚、ノズル21へスラリー26と共に圧縮空気が供給されると、ノズル21からのスラリー26の噴射圧力が高くなる。ステージ20で搬送される成形体1(セパレータ40)に、前記スラリー26がノズル21から噴射されることで、成形体1(セパレータ40)にウエットブラスト処理が施される。このスラリー26はパン22を通じて貯留容器23へ返送されて、再利用される。
When wet blasting is performed on the molded body 1 (separator 40) by using this wet blasting apparatus, the slurry 26 is supplied from the storage container 23 to the nozzle 21 through the pipe 24, and the slurry 26 is supplied from the nozzle 21 to the nozzle 21. Be injected. Note that when compressed air is supplied to the nozzle 21 together with the slurry 26, the injection pressure of the slurry 26 from the nozzle 21 increases. The slurry 26 is sprayed from the nozzle 21 onto the molded body 1 (separator 40) conveyed by the stage 20, whereby the molded body 1 (separator 40) is subjected to wet blasting. The slurry 26 is returned to the storage container 23 through the pan 22 and reused.
ウエットブラスト処理後の成形体1(セパレータ40)は更にステージ20内を移動し、この成形体1(セパレータ40)に噴水ノズルからイオン交換水等の温水が噴射されることで洗浄されて砥粒が除去され、更に温風が噴射されることで加熱乾燥される。
The molded body 1 (separator 40) after the wet blasting further moves in the stage 20, and is washed by spraying warm water such as ion-exchanged water from the fountain nozzle onto the molded body 1 (separator 40). Is removed and further heated and dried by spraying warm air.
このウエットブラスト処理において、スラリー26が配管24を通過する際に、砥粒に付着している金属成分が、吸引除去装置27によって取り除かれる。これにより、砥粒から磁石で金属成分が除去されながら、この砥粒が用いられてウエットブラスト処理が施される。
In this wet blasting process, when the slurry 26 passes through the pipe 24, the metal component adhering to the abrasive grains is removed by the suction removing device 27. Thereby, wet blasting is performed using the abrasive grains while removing metal components from the abrasive grains with a magnet.
尚、ウエットブラスト処理装置においては、吸引除去装置27は前記のように配管24に設けられる以外に、スラリー26の循環経路の適宜の位置に設けられてもよい。
In the wet blast treatment apparatus, the suction removal apparatus 27 may be provided at an appropriate position in the circulation path of the slurry 26 in addition to the pipe 24 as described above.
更に、黒鉛粒子からの金属成分の除去方法と同様に、成形体1(セパレータ40)から金属成分が磁石で吸引除去されてもよい。この場合、例えば成形体1(セパレータ40)が一対の磁石の間に配置されることで、成形体1(セパレータ40)から金属成分が吸引除去される。尚、磁石が用いられる吸引除去以外の適宜の方法で成形体1(セパレータ40)から金属成分が除去されてもよい。但し、強酸性溶液を用いて洗浄する方法ではセパレータ40を構成する樹脂が溶解してしまうおそれがあり、また超音波洗浄ではセパレータ40から黒鉛粒子が脱離してしまうおそれがあるため、好ましくない。
Furthermore, in the same manner as the method for removing the metal component from the graphite particles, the metal component may be sucked and removed from the molded body 1 (separator 40) with a magnet. In this case, the metal component is attracted and removed from the molded body 1 (separator 40) by, for example, arranging the molded body 1 (separator 40) between the pair of magnets. In addition, a metal component may be removed from the molded object 1 (separator 40) by appropriate methods other than the suction removal using a magnet. However, the method of cleaning using a strongly acidic solution is not preferable because the resin constituting the separator 40 may be dissolved, and the ultrasonic cleaning may cause the graphite particles to be detached from the separator 40.
以上のようにして得られるセパレータ40における、金属成分の付着の程度は、このセパレータ40を90℃の温水で1時間洗浄した後、90℃の温度で1時間加熱乾燥する処理を施した後に、このセパレータ40の表面を観察することで確認される。セパレータ40に金属成分が付着していると、前記処理によりセパレータ40の表面に金属酸化物(錆)が生成する。前記処理後のセパレータ40の表面を目視で観察しても、前記金属酸化物(錆)の存在が確認されないことが好ましい。特に、前記処理後のセパレータ40の表面に、直径100μmより大きい金属酸化物が存在しないことが好ましく、直径50μmより大きい金属酸化物が存在しなければ更に好ましい。また、直径30μmより大きい金属酸化物が存在しなければ特に好ましい。
In the separator 40 obtained as described above, the degree of adhesion of the metal component was determined by washing the separator 40 with hot water at 90 ° C. for 1 hour and then subjecting the separator 40 to heat drying at 90 ° C. for 1 hour. This is confirmed by observing the surface of the separator 40. When a metal component adheres to the separator 40, a metal oxide (rust) is generated on the surface of the separator 40 by the treatment. Even if the surface of the separator 40 after the treatment is visually observed, it is preferable that the presence of the metal oxide (rust) is not confirmed. In particular, it is preferable that no metal oxide larger than 100 μm in diameter is present on the surface of the separator 40 after the treatment, and it is more preferable if there is no metal oxide larger than 50 μm in diameter. Further, it is particularly preferable if there is no metal oxide having a diameter larger than 30 μm.
また、このセパレータ40の表面に表出しているFe、Co、及びNiの総量が0.010μg/cm2以下となっていることが好ましい。更に、このセパレータ40の表面に表出しているCr、Mn、Fe、Co、Ni、Cu及びZnの総量が0.01μg/cm2以下となっていることが好ましい。
Moreover, it is preferable that the total amount of Fe, Co, and Ni exposed on the surface of the separator 40 is 0.010 μg / cm 2 or less. Furthermore, the total amount of Cr, Mn, Fe, Co, Ni, Cu and Zn exposed on the surface of the separator 40 is preferably 0.01 μg / cm 2 or less.
以上のようにして製造されるセパレータ40を用い、燃料電池を製造することができる。図1Aは固体高分子型燃料電池の一例を示す。2枚のセパレータ40,40の間に、固体高分子電解質膜などの電解質4とガス拡散電極(燃料電極31と酸化剤電極32)などからなる膜-電極複合体(MEA)5が介在することで、単電池(単位セル)が構成されている。この単位セルが数十個~数百個並設されることで電池本体(セルスタック)が構成される。
A fuel cell can be manufactured using the separator 40 manufactured as described above. FIG. 1A shows an example of a polymer electrolyte fuel cell. A membrane-electrode assembly (MEA) 5 comprising an electrolyte 4 such as a solid polymer electrolyte membrane and a gas diffusion electrode (fuel electrode 31 and oxidant electrode 32) is interposed between the two separators 40, 40. Thus, a unit cell (unit cell) is configured. A battery body (cell stack) is formed by arranging several tens to several hundreds of unit cells.
図2は、ガスケット12が使用されることで構成される太陽電池の単セルの構造の一例を示す。この単セルは、セパレータ40,40、ガスケット12,12、膜-電極複合体5が重ねられることで構成されている。セパレータ40には、凸部33及びガス供給排出用溝2が形成されている領域を取り囲む外周部分に、第一の燃料用貫通孔131,131と第一の酸化剤用貫通孔132,132とが形成されている。第一の燃料用貫通孔131,131は二つ形成されており、各第一の燃料用貫通孔131,131はセパレータ40の燃料電極31と重なる面におけるガス供給排出用溝2の両端にそれぞれ連通する。第一の酸化剤用貫通孔132,132も二つ形成されており、各第一の酸化剤用貫通孔132,132はセパレータ40の酸化剤電極32と重なる面におけるガス供給排出用溝2の両端にそれぞれ連通する。また、この外周部分には、第一の冷却用貫通孔133も形成されている。
FIG. 2 shows an example of the structure of a single cell of a solar cell configured by using the gasket 12. This single cell is configured by stacking separators 40 and 40, gaskets 12 and 12, and membrane-electrode assembly 5. In the separator 40, the first fuel through holes 131 and 131 and the first oxidant through holes 132 and 132 are formed on the outer periphery surrounding the region where the convex portion 33 and the gas supply / discharge groove 2 are formed. Is formed. Two first fuel through holes 131 and 131 are formed, and the first fuel through holes 131 and 131 are respectively formed at both ends of the gas supply / discharge groove 2 on the surface overlapping the fuel electrode 31 of the separator 40. Communicate. Two first oxidant through holes 132, 132 are also formed, and each first oxidant through hole 132, 132 is formed in the gas supply / discharge groove 2 on the surface overlapping the oxidant electrode 32 of the separator 40. It communicates with both ends. A first cooling through-hole 133 is also formed in the outer peripheral portion.
尚、本実施形態では、図2に示されるように、セパレータ40にはストレートタイプのガス供給排出用溝2が形成されている。一般に、セパレータ40におけるガス供給排出用溝2としては、屈曲を有するサーペンタインタイプの溝と屈曲を有さないストレートタイプの溝とがある。勿論、図2に示されるセパレータ40において、このセパレータ40にサーペンタインタイプのガス供給排出用溝2が形成されてもよい。
In the present embodiment, as shown in FIG. 2, the separator 40 is formed with a straight type gas supply / discharge groove 2. In general, the gas supply / discharge groove 2 in the separator 40 includes a serpentine type groove having a bend and a straight type groove having no bend. Of course, in the separator 40 shown in FIG. 2, the serpentine type gas supply / discharge groove 2 may be formed in the separator 40.
セパレータ40の外周部分に、シーリングのためのガスケット12が積層される。このガスケット12はその略中央部に膜-電極複合体5における燃料電極31や酸化剤電極32を収容するための開口15を有し、この開口15においてセパレータ40のガス供給排出用溝2が露出する。この開口15の外周側には、前記セパレータの第一の燃料用貫通孔131、第一の酸化剤用貫通孔132及び第一の冷却用貫通孔133と合致する位置に、第二の燃料用貫通孔141、第二の酸化剤用貫通孔142及び第二の冷却用貫通孔143がそれぞれ形成されている。
The gasket 12 for sealing is laminated on the outer peripheral portion of the separator 40. The gasket 12 has an opening 15 for accommodating the fuel electrode 31 and the oxidant electrode 32 in the membrane-electrode assembly 5 at substantially the center thereof, and the gas supply / discharge groove 2 of the separator 40 is exposed in the opening 15. To do. On the outer peripheral side of the opening 15, a second fuel-use fuel is provided at a position matching the first fuel through-hole 131, the first oxidant through-hole 132, and the first cooling through-hole 133. A through hole 141, a second oxidant through hole 142, and a second cooling through hole 143 are formed.
また、膜-電極複合体5における電解質4の外周部分にも、前記セパレータの第一の燃料用貫通孔131、第一の酸化剤用貫通孔132及び第一の冷却用貫通孔133と合致する位置に、第三の燃料用貫通孔161、第三の酸化剤用貫通孔162及び第三の冷却用貫通孔163がそれぞれ形成されている。
Further, the outer peripheral portion of the electrolyte 4 in the membrane-electrode assembly 5 also matches the first fuel through hole 131, the first oxidant through hole 132, and the first cooling through hole 133 of the separator. A third fuel through-hole 161, a third oxidant through-hole 162, and a third cooling through-hole 163 are respectively formed at the positions.
この単セル構造では、セパレータ40、ガスケット12、及び電解質4の第一の燃料用貫通孔131、第二の燃料用貫通孔141、及び第三の燃料用貫通孔161が連通することで、燃料電極への燃料の供給及び排出のための燃料用流路が構成される。また、第一の酸化剤用貫通孔132,第二の酸化剤用貫通孔142,及び第三の酸化剤用貫通孔162が連通することで、酸化剤電極への酸化剤の供給及び排出のための酸化剤用流路が構成される。また、第一の冷却用貫通孔133,第二の冷却用貫通孔143,及び第三の冷却用貫通孔163が連通することで、冷却水等が流通する冷却用流路が構成される。
In this single cell structure, the separator 40, the gasket 12, and the first fuel through-hole 131, the second fuel through-hole 141, and the third fuel through-hole 161 of the electrolyte 4 communicate with each other. A fuel flow path for supplying and discharging fuel to and from the electrode is formed. In addition, the first oxidant through-hole 132, the second oxidant through-hole 142, and the third oxidant through-hole 162 communicate with each other to supply and discharge the oxidant to and from the oxidant electrode. An oxidant flow path is formed. The first cooling through-hole 133, the second cooling through-hole 143, and the third cooling through-hole 163 communicate with each other to form a cooling flow path through which cooling water or the like flows.
このような燃料電池の単セル構造において、燃料電極31と酸化剤電極32、並びに電解質4は、燃料電池のタイプに応じた公知の材料で形成される。固体高分子型燃料電池の場合、燃料電極31及び酸化剤電極32は例えばカーボンクロス、カーボンペーパー、カーボンフェルト等の基材に、触媒を担持させて構成される。燃料電極31における触媒としては例えば白金触媒、白金・ルテニウム触媒、コバルト触媒等が挙げられ、酸化剤電極32における触媒としては白金触媒、銀触媒等が挙げられる。また、固体高分子型燃料電池の場合、電解質4は例えばプロトン伝導性の高分子膜から形成され、特にメタノール直接型燃料電池の場合は例えばプロトン伝導性が高く、電子導電性やメタノール透過性を殆ど示さないフッ素系樹脂等から形成される。
In such a single cell structure of the fuel cell, the fuel electrode 31, the oxidant electrode 32, and the electrolyte 4 are formed of a known material corresponding to the type of the fuel cell. In the case of a polymer electrolyte fuel cell, the fuel electrode 31 and the oxidant electrode 32 are configured by carrying a catalyst on a base material such as carbon cloth, carbon paper, carbon felt or the like. Examples of the catalyst in the fuel electrode 31 include a platinum catalyst, a platinum / ruthenium catalyst, and a cobalt catalyst. Examples of the catalyst in the oxidant electrode 32 include a platinum catalyst and a silver catalyst. In the case of a solid polymer fuel cell, the electrolyte 4 is formed of, for example, a proton conductive polymer membrane. In particular, in the case of a methanol direct fuel cell, for example, the proton conductivity is high, and the electronic conductivity and methanol permeability are high. It is formed from a fluorine resin or the like that is hardly shown.
ガスケット12は、例えば天然ゴム、シリコーンゴム、SIS共重合体、SBS共重合体、SEBS、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム(EPDM)、アクリロニトリル-ブタジエンゴム、水素化アクリロニトリル-ブタジエンゴム(HNBR)、クロロプレンゴム、アクリルゴム、フッ素系ゴム等などから選択されるゴム材料から形成される。このゴム材料には粘着付与剤が配合されてもよい。
The gasket 12 is, for example, natural rubber, silicone rubber, SIS copolymer, SBS copolymer, SEBS, ethylene-propylene rubber, ethylene-propylene-diene rubber (EPDM), acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber (HNBR). ), A rubber material selected from chloroprene rubber, acrylic rubber, fluorine rubber, and the like. This rubber material may contain a tackifier.
セパレータ40にガスケット12が積層されるにあたっては、例えば予めシート状又は板状に形成されたガスケット12がセパレータ40に接着や融着するなどして接合される。セパレータ40の表面上でガスケット12を形成するための材料が成形されることによって、セパレータ40にガスケット12が積層されてもよい。例えば未加硫のゴム材料がスクリーン印刷等によりセパレータ40の表面上の所定位置に塗布され、このゴム材料の塗膜が加硫されることで、セパレータ40の表面上の所定位置に所望の形状のガスケット12が形成される。前記加硫にあたっては、加熱、電子線などの放射線の照射、或いはその他適宜の加硫方法が採用される。この場合、薄型のセパレータ40に対してもガスケット12が容易に積層され得る。また、セパレータ40が金型内にセットされ、このセパレータ40の表面上の所定位置に未加硫のゴム材料が射出されると共にこのゴム材料が加熱されるなどして加硫されることで、セパレータ40の表面上の所定位置に所望の形状のガスケット12が形成されてもよい。このように金型成形によりガスケット12が形成されるにあたっては、トランスファー成形のほか、コンプレッション成形、インジェクション成形等が採用され得る。
When the gasket 12 is laminated on the separator 40, for example, the gasket 12 previously formed in a sheet shape or a plate shape is bonded to the separator 40 by bonding or fusion. The gasket 12 may be laminated on the separator 40 by molding a material for forming the gasket 12 on the surface of the separator 40. For example, an unvulcanized rubber material is applied to a predetermined position on the surface of the separator 40 by screen printing or the like, and a desired shape is formed on the predetermined position on the surface of the separator 40 by vulcanizing the coating film of the rubber material. The gasket 12 is formed. In the vulcanization, heating, irradiation with radiation such as an electron beam, or other appropriate vulcanization methods are employed. In this case, the gasket 12 can be easily laminated even on the thin separator 40. In addition, the separator 40 is set in a mold, an unvulcanized rubber material is injected into a predetermined position on the surface of the separator 40, and the rubber material is heated and vulcanized. The gasket 12 having a desired shape may be formed at a predetermined position on the surface of the separator 40. In this way, when the gasket 12 is formed by die molding, compression molding, injection molding, or the like can be employed in addition to transfer molding.
図3は複数の単セルからなる燃料電池50(セルスタック)の一例を示す。この燃料電池50は、燃料用流路に連通する燃料の供給口171及び排出口172と、酸化剤用流路に連通する酸化剤の供給口181及び排出口182と、冷却用流路に連通する冷却水の供給口191及び排出口192とを有する。
FIG. 3 shows an example of a fuel cell 50 (cell stack) composed of a plurality of single cells. This fuel cell 50 communicates with a fuel supply port 171 and a discharge port 172 communicating with the fuel flow channel, an oxidant supply port 181 and a discharge port 182 communicating with the oxidant flow channel, and a cooling flow channel. A cooling water supply port 191 and a discharge port 192.
このような燃料電池50では、セパレータ40の製造時に原料成分、成形用組成物、或いはセパレータ40から金属成分が除去されているため、セパレータ40における金属成分の含有量が少ない。また、そのため、セパレータ40が水洗されるなどしてから燃料電池50に組み込まれても、セパレータ40の表面に金属酸化物(錆)が現れにくい。このため、燃料電池50内でのセパレータ40からの金属イオンの脱離が抑制され、このような金属イオンの脱離による電解質4のプロトン伝導性の低下や電解質4の分解が抑制され、燃料電池50の性能が長期に亘って維持される。
In such a fuel cell 50, since the metal component is removed from the raw material component, the molding composition, or the separator 40 when the separator 40 is manufactured, the content of the metal component in the separator 40 is small. For this reason, even if the separator 40 is washed and then incorporated into the fuel cell 50, metal oxide (rust) hardly appears on the surface of the separator 40. For this reason, the desorption of metal ions from the separator 40 in the fuel cell 50 is suppressed, and the decrease in proton conductivity of the electrolyte 4 and the decomposition of the electrolyte 4 due to the desorption of such metal ions are suppressed. 50 performance is maintained over a long period of time.
以上のとおり、セパレータ40における金属成分の含有量が充分に且つ確実に低減すると共にセパレータ40の表面に金属酸化物(錆)が現れることが抑制されることで、燃料電池50内でのセパレータCからの金属イオンの脱離が抑制される。これにより、金属イオンの脱離による電解質のプロトン伝導性の低下と電解質の分解とが抑制される。このため燃料電池50の良好な性能が長期に亘って維持される。
As described above, the content of the metal component in the separator 40 is sufficiently and reliably reduced, and the appearance of metal oxide (rust) on the surface of the separator 40 is suppressed, so that the separator C in the fuel cell 50 can be obtained. The desorption of metal ions from is suppressed. As a result, the decrease in proton conductivity of the electrolyte due to the desorption of metal ions and the decomposition of the electrolyte are suppressed. For this reason, the favorable performance of the fuel cell 50 is maintained over a long period of time.
以下、本発明の実施例について説明する。なお、本発明はこの実施例に限定されるものではない。
Hereinafter, examples of the present invention will be described. In addition, this invention is not limited to this Example.
[実施例1~15、比較例1~2]
各実施例及び比較例につき、表1に示す原料成分を攪拌混合機(ダルトン製「5XDMV-rr型」)に表1に示す組成となるように入れて攪拌混合し、得られた混合物を整粒機で粒径500μm以下に粉砕した。 [Examples 1 to 15, Comparative Examples 1 and 2]
For each of the examples and comparative examples, the raw material components shown in Table 1 were placed in a stirring mixer ("5XDMV-rr type" manufactured by Dalton) so as to have the composition shown in Table 1, and mixed by stirring. The resulting mixture was prepared. It grind | pulverized to the particle size of 500 micrometers or less with the granulator.
各実施例及び比較例につき、表1に示す原料成分を攪拌混合機(ダルトン製「5XDMV-rr型」)に表1に示す組成となるように入れて攪拌混合し、得られた混合物を整粒機で粒径500μm以下に粉砕した。 [Examples 1 to 15, Comparative Examples 1 and 2]
For each of the examples and comparative examples, the raw material components shown in Table 1 were placed in a stirring mixer ("5XDMV-rr type" manufactured by Dalton) so as to have the composition shown in Table 1, and mixed by stirring. The resulting mixture was prepared. It grind | pulverized to the particle size of 500 micrometers or less with the granulator.
得られた粉砕物を、金型温度185℃、成形圧力35.3MPa、成形時間2分の条件で圧縮成形した。次に金型を閉じたまま除圧し、30秒間保持した後に金型を開き、セパレータ40を取り出した。
The obtained pulverized product was compression molded under the conditions of a mold temperature of 185 ° C., a molding pressure of 35.3 MPa, and a molding time of 2 minutes. Next, the pressure was released while the mold was closed, and after holding for 30 seconds, the mold was opened and the separator 40 was taken out.
得られたセパレータ40の形状は、200mm×250mm、厚み1.5mmであった。成形体1の一面には長さ250mm、幅1mm、深さ0.5mmのガス供給排出用溝2を57本、他面には長さ250mm、幅0.5mm、深さ0.5mmのガス供給排出用溝2を58本形成した。
The shape of the obtained separator 40 was 200 mm × 250 mm and the thickness was 1.5 mm. One surface of the molded body 1 has 57 gas supply / discharge grooves 2 having a length of 250 mm, a width of 1 mm, and a depth of 0.5 mm, and the other surface is a gas having a length of 250 mm, a width of 0.5 mm, and a depth of 0.5 mm. 58 supply / discharge grooves 2 were formed.
このセパレータ40の表面に、マコー株式会社製のウエットブラスト処理装置(形式PFE-300T/N)を用い、砥粒としてアルミナ粒子を含むスラリー用いてブラスト処理を施した後、イオン交換水で洗浄し、更に温風乾燥した。ブラスト処理後、セパレータ40の表面の算術平均高さRa(JIS B0601:2001)を測定した結果を表1に示す。
The surface of the separator 40 is subjected to a blasting process using a slurry containing alumina particles as abrasive grains using a wet blasting apparatus (model PFE-300T / N) manufactured by Macau Corporation, and then washed with ion-exchanged water. Further, it was dried with warm air. Table 1 shows the results of measuring the arithmetic average height Ra (JIS B0601: 2001) of the surface of the separator 40 after the blast treatment.
各実施例及び比較例においておこなった金属成分の除去方法及び除去の対象を、表1に示す。方法が示されていない対象には金属成分の除去をおこなっていない。尚、表1に示す原料成分のうち、他の原料成分とは、黒鉛粒子及び樹脂成分を除いた全ての原料成分のことをいう。
Table 1 shows the metal component removal methods and removal targets performed in the examples and comparative examples. The removal of metal components is not performed on objects for which no method is indicated. In addition, among the raw material components shown in Table 1, the other raw material components refer to all raw material components excluding graphite particles and resin components.
また、表1に示す金属成分の除去方法は下記のとおりである。
Moreover, the removal method of the metal component shown in Table 1 is as follows.
(方法1)
ジーエヌエス有限会社製の強磁場式磁性金属異物除去装置(商品名ストマグ)を用い、対象物が通過する通路を挟んで配された20000ガウスの磁力を持つ電磁石で、対象物(原料成分又は成形用材料)から金属成分を吸引して除去した。処理速度は1時間あたり10kgとした。 (Method 1)
An electromagnet with a magnetic force of 20000 gauss arranged across the passage through which the object passes, using a strong magnetic field type magnetic metal foreign matter removing device (trade name Stomag) manufactured by GS Co., Ltd. The metal component was removed by suction from the material. The processing speed was 10 kg per hour.
ジーエヌエス有限会社製の強磁場式磁性金属異物除去装置(商品名ストマグ)を用い、対象物が通過する通路を挟んで配された20000ガウスの磁力を持つ電磁石で、対象物(原料成分又は成形用材料)から金属成分を吸引して除去した。処理速度は1時間あたり10kgとした。 (Method 1)
An electromagnet with a magnetic force of 20000 gauss arranged across the passage through which the object passes, using a strong magnetic field type magnetic metal foreign matter removing device (trade name Stomag) manufactured by GS Co., Ltd. The metal component was removed by suction from the material. The processing speed was 10 kg per hour.
(方法2)
株式会社セイホー製のマグネット・システム/自動クリーニング クリーンフロー マグネット(型式SECC320001)を用い、格子状に二段に配列された12000ガウスの磁力を持つ棒状のネオジウム系希土類磁石をで、対象物(原料成分又は成形用材料)から金属成分を吸引して除去した。処理速度は1時間あたり10kgとした。 (Method 2)
A magnet-system / automatic cleaning made by Seiho Co., Ltd. Using a clean flow magnet (model SECC320001), a rod-shaped neodymium rare earth magnet with a magnetic force of 12,000 gauss arranged in two stages in a lattice shape, Alternatively, the metal component was removed by suction from the molding material. The processing speed was 10 kg per hour.
株式会社セイホー製のマグネット・システム/自動クリーニング クリーンフロー マグネット(型式SECC320001)を用い、格子状に二段に配列された12000ガウスの磁力を持つ棒状のネオジウム系希土類磁石をで、対象物(原料成分又は成形用材料)から金属成分を吸引して除去した。処理速度は1時間あたり10kgとした。 (Method 2)
A magnet-system / automatic cleaning made by Seiho Co., Ltd. Using a clean flow magnet (model SECC320001), a rod-shaped neodymium rare earth magnet with a magnetic force of 12,000 gauss arranged in two stages in a lattice shape, Alternatively, the metal component was removed by suction from the molding material. The processing speed was 10 kg per hour.
(方法3)
対象物(黒鉛粒子)を69質量%の濃硝酸と36質量%の濃塩酸とを体積比で1:3に混合した王水で洗浄した。 (Method 3)
The object (graphite particles) was washed with aqua regia in which 69% by mass of concentrated nitric acid and 36% by mass of concentrated hydrochloric acid were mixed at a volume ratio of 1: 3.
対象物(黒鉛粒子)を69質量%の濃硝酸と36質量%の濃塩酸とを体積比で1:3に混合した王水で洗浄した。 (Method 3)
The object (graphite particles) was washed with aqua regia in which 69% by mass of concentrated nitric acid and 36% by mass of concentrated hydrochloric acid were mixed at a volume ratio of 1: 3.
(方法4)
対象物(黒鉛粒子)を15質量%の硝酸水で洗浄して金属成分を除去した。 (Method 4)
The object (graphite particles) was washed with 15% by mass of nitric acid to remove the metal component.
対象物(黒鉛粒子)を15質量%の硝酸水で洗浄して金属成分を除去した。 (Method 4)
The object (graphite particles) was washed with 15% by mass of nitric acid to remove the metal component.
(方法5)
セパレータ40のウエットブラスト処理において、ウエットブラスト処理装置におけるスラリーの配管24を挟んで、12000ガウスの磁力を持つネオジウム系希土類磁石を配置し、砥粒から金属成分を吸引して除去した。 (Method 5)
In the wet blasting process of theseparator 40, a neodymium rare earth magnet having a magnetic force of 12,000 gauss was disposed across the slurry piping 24 in the wet blasting apparatus, and the metal component was attracted and removed from the abrasive grains.
セパレータ40のウエットブラスト処理において、ウエットブラスト処理装置におけるスラリーの配管24を挟んで、12000ガウスの磁力を持つネオジウム系希土類磁石を配置し、砥粒から金属成分を吸引して除去した。 (Method 5)
In the wet blasting process of the
(方法6)
セパレータ40のウエットブラスト処理において、ウエットブラスト処理装置におけるスラリーの配管24を挟んで、20000ガウスの磁力を持つ電磁石を配置し、スラリーから金属成分を吸引して除去した。 (Method 6)
In the wet blast treatment of theseparator 40, an electromagnet having a magnetic force of 20000 gauss was disposed across the slurry piping 24 in the wet blast treatment apparatus, and metal components were attracted and removed from the slurry.
セパレータ40のウエットブラスト処理において、ウエットブラスト処理装置におけるスラリーの配管24を挟んで、20000ガウスの磁力を持つ電磁石を配置し、スラリーから金属成分を吸引して除去した。 (Method 6)
In the wet blast treatment of the
[金属成分量評価]
最終的に得られたセパレータ40を90℃の温水で1時間洗浄した後、90℃の温度で1時間加熱乾燥する処理を施した後に、このセパレータ40の表面を目視で観察した。その結果、セパレータ40の表面に金属酸化物(錆)が認められない場合を「良」、認められる場合を「不良」と評価した。 [Metal component amount evaluation]
The finally obtainedseparator 40 was washed with warm water at 90 ° C. for 1 hour and then subjected to a heat drying treatment at 90 ° C. for 1 hour, and then the surface of the separator 40 was visually observed. As a result, the case where metal oxide (rust) was not recognized on the surface of the separator 40 was evaluated as “good”, and the case where it was recognized as “bad”.
最終的に得られたセパレータ40を90℃の温水で1時間洗浄した後、90℃の温度で1時間加熱乾燥する処理を施した後に、このセパレータ40の表面を目視で観察した。その結果、セパレータ40の表面に金属酸化物(錆)が認められない場合を「良」、認められる場合を「不良」と評価した。 [Metal component amount evaluation]
The finally obtained
また、この処理後のセパレータ40を顕微鏡で観察した。各実施例及び比較例につき、それぞれ200枚のセパレータ40の両面を観察した。その結果に基づき、200枚のセパレータ40における、直径が50μmより大きく100μm以下の金属酸化物(錆)の総数、及び直径100μmより大きい金属酸化物(錆)の総数で、金属成分量を評価した。
Further, the separator 40 after this treatment was observed with a microscope. For each example and comparative example, both sides of 200 separators 40 were observed. Based on the result, the amount of metal components was evaluated by the total number of metal oxides (rust) having a diameter of more than 50 μm and not more than 100 μm and the total number of metal oxides (rust) having a diameter of more than 100 μm in 200 separators 40. .
この結果を表1に示す。
The results are shown in Table 1.
[燃料電池の起電圧変動評価]
アセチレンブラック粉末に、平均粒径が約3nmの白金粒子を担持した触媒粉末(田中貴金属製、Pt/C標準品)を用意した。なお、この触媒粉末中の白金粒子の含有量は25質量%であった。この触媒粉末をイソプロパノ-ルに分散させた後、この分散溶液と、パーフルオロカーボンスルホン酸の粉末をエタノールに分散させた分散溶液とを混合し、触媒ペーストを調製した。 [Evaluation of fuel cell electromotive voltage fluctuation]
A catalyst powder (manufactured by Takanaka Tanaka, Pt / C standard product) carrying platinum particles having an average particle diameter of about 3 nm was prepared on acetylene black powder. In addition, content of the platinum particle in this catalyst powder was 25 mass%. This catalyst powder was dispersed in isopropanol, and then this dispersion solution and a dispersion solution in which perfluorocarbonsulfonic acid powder was dispersed in ethanol were mixed to prepare a catalyst paste.
アセチレンブラック粉末に、平均粒径が約3nmの白金粒子を担持した触媒粉末(田中貴金属製、Pt/C標準品)を用意した。なお、この触媒粉末中の白金粒子の含有量は25質量%であった。この触媒粉末をイソプロパノ-ルに分散させた後、この分散溶液と、パーフルオロカーボンスルホン酸の粉末をエタノールに分散させた分散溶液とを混合し、触媒ペーストを調製した。 [Evaluation of fuel cell electromotive voltage fluctuation]
A catalyst powder (manufactured by Takanaka Tanaka, Pt / C standard product) carrying platinum particles having an average particle diameter of about 3 nm was prepared on acetylene black powder. In addition, content of the platinum particle in this catalyst powder was 25 mass%. This catalyst powder was dispersed in isopropanol, and then this dispersion solution and a dispersion solution in which perfluorocarbonsulfonic acid powder was dispersed in ethanol were mixed to prepare a catalyst paste.
別に、平面視寸法143m×143m、厚み360μmのカ-ボン不織布(東レ製、TGP-H-120)を、フッ素樹脂を含む水性ディスパージョン(ダイキン工業製、ネオフロンND1)に含浸した後、これを乾燥し、400℃で30分間加熱して、拡散層となる撥水性のカーボンペーパーを作製した。
Separately, after impregnating a carbon nonwoven fabric (manufactured by Toray, TGP-H-120) having a size of 143 m × 143 m in plan view and a thickness of 360 μm into an aqueous dispersion containing fluororesin (manufactured by Daikin Industries, NEOFLON ND1), It dried and heated at 400 degreeC for 30 minute (s), and produced the water-repellent carbon paper used as a diffused layer.
続いて、このカーボンペーパーの片面上に、上述した触媒ペーストをスクリ-ン印刷法により塗布して触媒層を形成し、触媒層とカーボンペーパーとが積層された電極を一対作製した。触媒層の一部は、カーボンペーパーの中に埋まり込んでいた。なお、触媒層表面に表出した白金粒子及びパーフルオロカーボンスルホン酸の量は、それぞれ0.6mg/cm2及び1.2mg/cm2であった。
Subsequently, on one side of the carbon paper, the above-described catalyst paste was applied by a screen printing method to form a catalyst layer, and a pair of electrodes in which the catalyst layer and the carbon paper were laminated were produced. A part of the catalyst layer was embedded in carbon paper. The amount of the platinum particles were exposed on the catalyst layer surface and perfluorocarbon sulfonic acid was respectively 0.6 mg / cm 2 and 1.2 mg / cm 2.
高分子電解質膜としてパーフルオロカーボンスルホン酸膜(ジャパンコアテックス製、外寸15cm×15cm、厚み30μm)を別途用意し、この高分子電解質膜の両面上に上述した一対の電極を重ねた。一対の電極はカーボンペーパー(拡散層)が外面側に配置されるようにした。これらをホットプレスで接合し、膜-電極複合体5を得た。
As the polymer electrolyte membrane, a perfluorocarbon sulfonic acid membrane (manufactured by Japan Coretex, outer dimensions 15 cm × 15 cm, thickness 30 μm) was separately prepared, and the above-described pair of electrodes were stacked on both sides of the polymer electrolyte membrane. The pair of electrodes was arranged such that carbon paper (diffusion layer) was arranged on the outer surface side. These were joined by hot pressing to obtain a membrane-electrode composite 5.
各実施例及び比較例で得られたセパレータ40(前記金属成分量評価において金属酸化物の付着が認められたセパレータ40がある場合にはこの金属酸化物が付着しているセパレータ40)上の外周部分にエチレン-プロピレン-ジエンゴムをスクリーン印刷により塗布した後、加熱加硫することでガスケット12を形成した。上記膜-電極複合体5の両側に前記セパレータ40を重ね、財団法人日本自動車研究所標準単セル(電極面積25cm2)からなる燃料電池50を作製した。
The outer periphery on the separator 40 obtained in each of the examples and comparative examples (the separator 40 on which the metal oxide is adhered when there is a separator 40 on which the metal oxide is recognized in the metal component amount evaluation) After applying ethylene-propylene-diene rubber to the portion by screen printing, the gasket 12 was formed by heat vulcanization. The separator 40 was stacked on both sides of the membrane-electrode assembly 5 to produce a fuel cell 50 composed of a standard single cell (electrode area 25 cm 2 ) of the Japan Automobile Research Institute.
この燃料電池50に、外部回路を接続した状態で、燃料ガスとして空気を2.0NL/minの流量で、酸化剤ガスとして水素を0.5NL/minの流量でそれぞれ供給することで、燃料電池50を1000時間連続的に動作させた。この燃料電池50の作動時の起電圧(V)の経時的な変動の様子を調査した。その結果を、変動後の起電圧の、初期値に対する百分率((E1/E0)×100(%))の値で表示した。前記E1は変動後の起電圧、E0は初期の起電圧である。
The fuel cell 50 is supplied with air as a fuel gas at a flow rate of 2.0 NL / min and hydrogen as an oxidant gas at a flow rate of 0.5 NL / min with an external circuit connected to the fuel cell 50. 50 was operated continuously for 1000 hours. The state of variation with time of the electromotive voltage (V) during the operation of the fuel cell 50 was investigated. The result was expressed as a percentage of the electromotive voltage after fluctuation to the initial value ((E1 / E0) × 100 (%)). E1 is an electromotive voltage after fluctuation, and E0 is an initial electromotive voltage.
表中の各成分の詳細は次の通りである
・エポキシ樹脂A:クレゾールノボラック型エポキシ樹脂(日本化薬社製「EOCN-1020-75」、エポキシ当量199、融点75℃)
・エポキシ樹脂B:ビスフェノールF型エポキシ樹脂(大日本インキ化学工業社製「830CRP」、エポキシ当量171、25℃で液状)
・硬化剤A:ノボラック型フェノール樹脂(群栄化学社製「PSM6200」、OH当量105)
・硬化剤B:多官能フェノール樹脂(明和化成株式会社製「MEH-7500」、OH当量100)
・フェノール樹脂A:レゾール型フェノール樹脂(群栄化学社製「サンプルA」、融点75℃、13C-NMR分析によるオルト-オルト25~35%、オルト-パラ60~70%、パラ-パラ5~10%)
・硬化促進剤:トリフェニルホスフィン(北興化学社製「TPP」)
・天然黒鉛(中越黒鉛工業所社製「WR50A」、平均粒径50μm、灰分0.05%、ナトリウムイオン4ppm、塩化物イオン2ppm)
・人造黒鉛(エスイーシー社製「SGP100」、平均粒径100μm、灰分0.05%、ナトリウムイオン3ppm、塩化物イオン1ppm)
・カップリング剤:エポキシシラン(日本ユニカー社製「A187」)
・ワックスA:天然カルナバワックス(大日化学社製「H1-100」、融点83℃)
・ワックスB:モンタン酸ビスアマイド(大日化学社製「J-900」、融点123℃) Details of each component in the table are as follows: Epoxy resin A: Cresol novolak type epoxy resin (“EOCN-1020-75” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 199, melting point 75 ° C.)
-Epoxy resin B: Bisphenol F type epoxy resin ("830CRP" manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 171, liquid at 25 ° C)
Curing agent A: Novolac type phenolic resin ("PSM6200" manufactured by Gunei Chemical Co., OH equivalent 105)
Curing agent B: polyfunctional phenol resin (Maywa Kasei Co., Ltd. “MEH-7500”, OH equivalent 100)
・ Phenol resin A: Resol type phenol resin (“Sample A” manufactured by Gunei Chemical Co., Ltd., melting point 75 ° C., ortho-ortho 25 to 35% by 13C-NMR analysis, ortho-para 60 to 70%, para-para 5 to 10%)
・ Curing accelerator: Triphenylphosphine (“TPP” manufactured by Hokuko Chemical Co., Ltd.)
・ Natural graphite (“WR50A” manufactured by Chuetsu Graphite Industries Co., Ltd.,average particle size 50 μm, ash content 0.05%, sodium ion 4 ppm, chloride ion 2 ppm)
・ Artificial graphite (“SGP100” manufactured by ESC Corporation, average particle size 100 μm, ash content 0.05%, sodium ion 3 ppm,chloride ion 1 ppm)
Coupling agent: Epoxy silane (“A187” manufactured by Nihon Unicar)
Wax A: natural carnauba wax (“H1-100” manufactured by Dainichi Chemical Co., Ltd., melting point: 83 ° C.)
Wax B: Montanic acid bisamide (“J-900” manufactured by Dainichi Chemical Co., Ltd., melting point: 123 ° C.)
・エポキシ樹脂A:クレゾールノボラック型エポキシ樹脂(日本化薬社製「EOCN-1020-75」、エポキシ当量199、融点75℃)
・エポキシ樹脂B:ビスフェノールF型エポキシ樹脂(大日本インキ化学工業社製「830CRP」、エポキシ当量171、25℃で液状)
・硬化剤A:ノボラック型フェノール樹脂(群栄化学社製「PSM6200」、OH当量105)
・硬化剤B:多官能フェノール樹脂(明和化成株式会社製「MEH-7500」、OH当量100)
・フェノール樹脂A:レゾール型フェノール樹脂(群栄化学社製「サンプルA」、融点75℃、13C-NMR分析によるオルト-オルト25~35%、オルト-パラ60~70%、パラ-パラ5~10%)
・硬化促進剤:トリフェニルホスフィン(北興化学社製「TPP」)
・天然黒鉛(中越黒鉛工業所社製「WR50A」、平均粒径50μm、灰分0.05%、ナトリウムイオン4ppm、塩化物イオン2ppm)
・人造黒鉛(エスイーシー社製「SGP100」、平均粒径100μm、灰分0.05%、ナトリウムイオン3ppm、塩化物イオン1ppm)
・カップリング剤:エポキシシラン(日本ユニカー社製「A187」)
・ワックスA:天然カルナバワックス(大日化学社製「H1-100」、融点83℃)
・ワックスB:モンタン酸ビスアマイド(大日化学社製「J-900」、融点123℃) Details of each component in the table are as follows: Epoxy resin A: Cresol novolak type epoxy resin (“EOCN-1020-75” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 199, melting point 75 ° C.)
-Epoxy resin B: Bisphenol F type epoxy resin ("830CRP" manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 171, liquid at 25 ° C)
Curing agent A: Novolac type phenolic resin ("PSM6200" manufactured by Gunei Chemical Co., OH equivalent 105)
Curing agent B: polyfunctional phenol resin (Maywa Kasei Co., Ltd. “MEH-7500”, OH equivalent 100)
・ Phenol resin A: Resol type phenol resin (“Sample A” manufactured by Gunei Chemical Co., Ltd., melting point 75 ° C., ortho-
・ Curing accelerator: Triphenylphosphine (“TPP” manufactured by Hokuko Chemical Co., Ltd.)
・ Natural graphite (“WR50A” manufactured by Chuetsu Graphite Industries Co., Ltd.,
・ Artificial graphite (“SGP100” manufactured by ESC Corporation, average particle size 100 μm, ash content 0.05%, sodium ion 3 ppm,
Coupling agent: Epoxy silane (“A187” manufactured by Nihon Unicar)
Wax A: natural carnauba wax (“H1-100” manufactured by Dainichi Chemical Co., Ltd., melting point: 83 ° C.)
Wax B: Montanic acid bisamide (“J-900” manufactured by Dainichi Chemical Co., Ltd., melting point: 123 ° C.)
Claims (9)
- 黒鉛粒子と樹脂成分とを含む原料成分を配合して成形用組成物を調製した後、この成形用組成物を成形する工程を含み、
前記成形用組成物を成形する前に、この成形用組成物から金属成分を除去する燃料電池セパレータの製造方法。 After preparing a molding composition by blending raw material components including graphite particles and a resin component, including a step of molding this molding composition,
A method for producing a fuel cell separator, wherein a metal component is removed from the molding composition before molding the molding composition. - 前記成形用組成物から金属成分を除去する方法が、磁石を用いた吸引除去である請求項1に記載の燃料電池セパレータの製造方法。 The method for producing a fuel cell separator according to claim 1, wherein the method of removing the metal component from the molding composition is suction removal using a magnet.
- 前記成形用組成物を調製する前に、予め前記原料成分のうち少なくとも黒鉛粒子から金属成分を除去する請求項1又は2に記載の燃料電池セパレータの製造方法。 The method for producing a fuel cell separator according to claim 1 or 2, wherein, before preparing the molding composition, at least a metal component is removed from graphite particles among the raw material components.
- 前記成形用組成物を調製する前に、予め全ての原料成分から金属成分を除去する請求項3に記載の燃料電池セパレータの製造方法。 4. The method for producing a fuel cell separator according to claim 3, wherein metal components are removed from all raw material components in advance before preparing the molding composition.
- 前記原料成分から金属成分を除去する方法が、磁石を用いた吸引除去である請求項3又は4に記載の燃料電池セパレータの製造方法。 The method for producing a fuel cell separator according to claim 3 or 4, wherein the method of removing the metal component from the raw material component is suction removal using a magnet.
- 黒鉛粒子と樹脂成分とを含む原料成分を配合して成形用組成物を調製した後、この成形用組成物を成形する工程を含み、
前記成形用組成物を調製する前に、予め全ての原料成分から金属成分を除去する燃料電池セパレータの製造方法。 After preparing a molding composition by blending raw material components including graphite particles and a resin component, including a step of molding this molding composition,
A method for producing a fuel cell separator, wherein metal components are previously removed from all raw material components before preparing the molding composition. - 前記成形用組成物を成形して成形体を得た後、この成形体にウエットブラスト処理を、このウエットブラスト処理に用いられる砥粒を含むスラリーから金属成分を磁石で除去しながら施す請求項1乃至6のいずれか一項に記載の燃料電池セパレータの製造方法。 2. A molded body obtained by molding the molding composition, and then subjected to a wet blasting treatment while removing metal components from a slurry containing abrasive grains used in the wet blasting treatment with a magnet. The manufacturing method of the fuel cell separator as described in any one of thru | or 6.
- 前記金属成分の除去により、燃料電池セパレータにおける金属成分の量を、この燃料電池セパレータを90℃の温水で1時間洗浄した後、90℃の温度で1時間加熱乾燥する処理を施した場合に、この燃料電池セパレータの表面に直径100μmより大きい金属酸化物が存在しなくなる程度とする請求項1乃至7のいずれか一項に記載の燃料電池セパレータの製造方法。 By removing the metal component, the amount of the metal component in the fuel cell separator is washed with hot water at 90 ° C. for 1 hour, and then heated and dried at 90 ° C. for 1 hour. The method for producing a fuel cell separator according to any one of claims 1 to 7, wherein a metal oxide having a diameter larger than 100 µm does not exist on the surface of the fuel cell separator.
- 請求項1乃至8のいずれか一項に記載の方法で製造された燃料電池セパレータを備える燃料電池。 A fuel cell comprising a fuel cell separator manufactured by the method according to any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010017197A JP5662687B2 (en) | 2010-01-28 | 2010-01-28 | Manufacturing method of fuel cell separator and fuel cell including fuel cell separator manufactured by this method |
JP2010-017197 | 2010-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011092885A1 true WO2011092885A1 (en) | 2011-08-04 |
Family
ID=44318887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065222 WO2011092885A1 (en) | 2010-01-28 | 2010-09-06 | Method for producing fuel cell separator, and fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5662687B2 (en) |
WO (1) | WO2011092885A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4043397A4 (en) * | 2020-01-10 | 2023-01-25 | LG Energy Solution, Ltd. | Artificial graphite, method for preparing artificial graphite, anode comprising same, and lithium secondary battery |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5849229B2 (en) * | 2011-12-13 | 2016-01-27 | パナソニックIpマネジメント株式会社 | Fuel cell separator and fuel cell |
JP7325330B2 (en) | 2017-10-30 | 2023-08-14 | 住友化学株式会社 | Separator film conveying device for non-aqueous electrolyte secondary battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000348740A (en) * | 1999-06-08 | 2000-12-15 | Ibiden Co Ltd | Separator of solid high polymer type fuel cell and its manufacture |
JP2003282084A (en) * | 2002-03-20 | 2003-10-03 | Honda Motor Co Ltd | Separator for fuel cell and production process thereof |
JP2005071887A (en) * | 2003-08-26 | 2005-03-17 | Matsushita Electric Works Ltd | Separator-molding resin composition for fuel cell and separator for fuel cell |
JP2005302524A (en) * | 2004-04-12 | 2005-10-27 | Shin Etsu Polymer Co Ltd | Method of manufacturing separator for fuel cell |
JP2006066138A (en) * | 2004-08-25 | 2006-03-09 | Matsushita Electric Ind Co Ltd | Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell using it |
JP2006155936A (en) * | 2004-11-25 | 2006-06-15 | Matsushita Electric Ind Co Ltd | Separator for fuel cell, its manufacturing method, and polyelectrolyte fuel cell using it |
JP2008078023A (en) * | 2006-09-22 | 2008-04-03 | Shin Etsu Polymer Co Ltd | Manufacturing method of separator for fuel cell, and separator for the fuel cell |
JP2009297618A (en) * | 2008-06-11 | 2009-12-24 | Ihi Corp | Method and apparatus for collecting particulate chip |
-
2010
- 2010-01-28 JP JP2010017197A patent/JP5662687B2/en active Active
- 2010-09-06 WO PCT/JP2010/065222 patent/WO2011092885A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000348740A (en) * | 1999-06-08 | 2000-12-15 | Ibiden Co Ltd | Separator of solid high polymer type fuel cell and its manufacture |
JP2003282084A (en) * | 2002-03-20 | 2003-10-03 | Honda Motor Co Ltd | Separator for fuel cell and production process thereof |
JP2005071887A (en) * | 2003-08-26 | 2005-03-17 | Matsushita Electric Works Ltd | Separator-molding resin composition for fuel cell and separator for fuel cell |
JP2005302524A (en) * | 2004-04-12 | 2005-10-27 | Shin Etsu Polymer Co Ltd | Method of manufacturing separator for fuel cell |
JP2006066138A (en) * | 2004-08-25 | 2006-03-09 | Matsushita Electric Ind Co Ltd | Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell using it |
JP2006155936A (en) * | 2004-11-25 | 2006-06-15 | Matsushita Electric Ind Co Ltd | Separator for fuel cell, its manufacturing method, and polyelectrolyte fuel cell using it |
JP2008078023A (en) * | 2006-09-22 | 2008-04-03 | Shin Etsu Polymer Co Ltd | Manufacturing method of separator for fuel cell, and separator for the fuel cell |
JP2009297618A (en) * | 2008-06-11 | 2009-12-24 | Ihi Corp | Method and apparatus for collecting particulate chip |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4043397A4 (en) * | 2020-01-10 | 2023-01-25 | LG Energy Solution, Ltd. | Artificial graphite, method for preparing artificial graphite, anode comprising same, and lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP5662687B2 (en) | 2015-02-04 |
JP2011154972A (en) | 2011-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008027925A (en) | Fuel cell separator | |
JP5662687B2 (en) | Manufacturing method of fuel cell separator and fuel cell including fuel cell separator manufactured by this method | |
JP5249609B2 (en) | Fuel cell separator and manufacturing method thereof | |
JP5249610B2 (en) | Manufacturing method of fuel cell separator | |
JP5033269B2 (en) | Composition for molding fuel cell separator, fuel cell separator, method for producing fuel cell separator, and fuel cell | |
JP5391005B2 (en) | Manufacturing method of fuel cell separator and fuel cell separator | |
JP5879553B2 (en) | Method for manufacturing fuel cell separator, method for manufacturing fuel cell separator with gasket, and method for manufacturing fuel cell | |
JP5502552B2 (en) | Composition for fuel cell separator, fuel cell separator, and method for producing fuel cell | |
JP5771780B2 (en) | Adhesive composition for fuel cell separator, fuel cell separator, and fuel cell | |
JP5979529B2 (en) | Manufacturing method of fuel cell separator | |
JP5681565B2 (en) | Molding material for fuel cell separator, method for producing fuel cell separator, and fuel cell separator | |
JP5838341B2 (en) | MANUFACTURING METHOD FOR FUEL CELL SEPARATOR, FUEL CELL SEPARATOR PRODUCED BY THE METHOD, AND COMPRESSION MOLD FOR FUEL CELL SEPARATOR MANUFACTURING USED BY THE METHOD | |
JP6760418B2 (en) | Fuel cell separator | |
JP6132247B2 (en) | Manufacturing method of fuel cell separator with gasket | |
JP6145781B2 (en) | Fuel cell separator | |
JP5845458B2 (en) | Manufacturing method of fuel cell separator | |
JP2012155942A (en) | Fuel cell separator, method for producing fuel cell separator, and fuel cell | |
JP5849229B2 (en) | Fuel cell separator and fuel cell | |
JP5520104B2 (en) | Manufacturing method of fuel cell separator | |
JP2011249085A (en) | Method of manufacturing fuel cell separator, fuel cell separator, and method of manufacturing fuel cell | |
JP6202420B2 (en) | Manufacturing method of fuel cell separator | |
JP2005339954A (en) | Prepreg for fuel cell, separator for fuel cell consisting of this prepreg, and manufacturing method for it | |
WO2011089758A1 (en) | Production method for fuel cell separator, fuel cell separator, production method for fuel cell separator having gasket, and production method for fuel cell. | |
JP5991470B2 (en) | Fuel cell separator | |
JP2017143078A (en) | Method for manufacturing fuel cell separator and fuel cell separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10844642 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10844642 Country of ref document: EP Kind code of ref document: A1 |