[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011091693A1 - 光信号管理用光器件模块式封装v型槽主体及其光器件模块 - Google Patents

光信号管理用光器件模块式封装v型槽主体及其光器件模块 Download PDF

Info

Publication number
WO2011091693A1
WO2011091693A1 PCT/CN2010/080116 CN2010080116W WO2011091693A1 WO 2011091693 A1 WO2011091693 A1 WO 2011091693A1 CN 2010080116 W CN2010080116 W CN 2010080116W WO 2011091693 A1 WO2011091693 A1 WO 2011091693A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped groove
optical signal
main body
transmission hole
shaped
Prior art date
Application number
PCT/CN2010/080116
Other languages
English (en)
French (fr)
Inventor
苗祺壮
Original Assignee
武汉优信光通信设备有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉优信光通信设备有限责任公司 filed Critical 武汉优信光通信设备有限责任公司
Priority to JP2012550303A priority Critical patent/JP2013518304A/ja
Publication of WO2011091693A1 publication Critical patent/WO2011091693A1/zh
Priority to US13/559,689 priority patent/US9086550B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the invention relates to a module for packaging optical components for optical signal management, a V-groove main body and an optical device module thereof, and is particularly suitable for designing and producing a fiber-to-the-home single-fiber bidirectional, single-fiber three-directional optical device module, and is also suitable for other needs.
  • the package structure design of the optical device that manages the wavelength or transmission direction of the optical signal. Background technique
  • the traditional design of single-fiber bidirectional, single-fiber three-directional optical devices is to separately design the package body and the filter carrier, and first glue the filter to the filter.
  • the filter carrier and the package body are integrated by centering, positioning, and laser welding, thereby completing management of input, output, and transmission of optical signals such as lasers, detectors, and external optical fibers.
  • the discrete design method is mainly used to separate the main body from the filter or the lens holder, and then merge them together.
  • this design facilitates the processing of the parts, it will Connecting the filter carrier or lens holder to the body and ensuring the optical path alignment between the laser, detector, and external fiber connected to the body is a very time consuming task and results in a loss of yield.
  • the object of the present invention is to design a V-slot main body of a module for optical signal management optical module and an optical device module thereof, and provide a main structure in which a package main body is integrated with a filter or a lens holder, thereby greatly improving coupling of the optical device.
  • Efficiency and productivity especially suitable for the design of single-fiber bidirectional, single-fiber three-directional optical device modules for fiber-to-the-home optical modules.
  • the V-shaped groove body is used for the package structure of the BOSA fiber device, and the structure can adopt a single V type Slot or continuous V-groove for the management of optical signal transmission direction.
  • the structure is suitable for multi-wavelength and multi-path optical signal management in optical fiber communication, fiber laser and other optoelectronic device packages, and is used for fiber-to-the-home optical modules, such as the structure of optical device BOSA of single-fiber bidirectional, single-fiber three-directional optical module. design.
  • the optical signal management optical device module package V-shaped groove main body comprises a main body, wherein the main body has one or more V-shaped grooves, and the main body has two side walls of the V-shaped groove and the outside
  • the connected optical signal transmission hole system includes an optical signal transmission hole perpendicular to and/or parallel to the center line of the V-shaped groove, and the V-shaped groove has an angle ⁇ 1 of 90 ° ⁇ 10 °.
  • the angle ⁇ 1 of the V-groove is preferably 90 °.
  • the horizontal transmission hole in the main body perpendicular to the center line of the V-shaped groove includes a first horizontal transmission hole and/or a second horizontal transmission hole communicating with the two side walls of the V-shaped groove, the first horizontal transmission hole and the second The horizontal transfer holes are coaxial.
  • the body includes a plurality of V-shaped grooves in parallel in parallel, that is, adjacent horizontal transmission holes of adjacent V-shaped grooves are shared.
  • the main body includes a plurality of V-shaped grooves, and one or more pairs of V-shaped grooves are reversely connected, that is, a pair of oppositely connected V-shaped grooves are separated from the center of the V-shaped groove.
  • the parallel optical signal vertical transmission holes are communicated in the main body; the reversely connected V-shaped grooves and other V-shaped grooves are communicated by the optical signal transmission holes in the main body as needed.
  • An optical device module packaged by the V-shaped groove main body comprising the V-shaped groove main body, a V-shaped notch of a V-shaped groove in the main body, an external horizontal transmission hole, and a vertical transmission hole respectively connecting the optical device and the external
  • the optical signal interface, the two side walls of the V-shaped groove are placed on the light management lens.
  • the V-shaped slot of the V-shaped slot in the main body is connected to the detector, and the first horizontal transmission hole and the second horizontal transmission hole communicating with the two side walls of the V-shaped groove are respectively connected to the laser and the external optical signal.
  • the first filter and the second filter are respectively disposed on the two side walls of the V-shaped slot to form a single-fiber bidirectional optical device module.
  • the V-shaped notch of the V-shaped groove in the main body is connected to the laser, and the first horizontal transmission hole communicating with the sidewall of the V-shaped groove is connected to the detector, and the V-shaped groove corresponds to the first horizontal transmission hole.
  • the side wall is attached with a filter, and the optical signal transmission hole parallel to the center line of the V-shaped slot is connected with the external optical signal to form a single-fiber bidirectional optical device module.
  • the V-shaped notch of the V-shaped groove in the main body is connected to the first detector, and the optical signal transmission hole parallel to the center line of the V-shaped groove is connected with the second detector, and the V-shaped groove
  • the first horizontal transmission hole connected to the two side walls is connected to the laser
  • the second horizontal transmission hole communicating with the two side walls of the V-shaped groove is connected to the external optical signal interface, and the two side walls of the V-shaped groove are respectively placed with the first filter and the second filter.
  • the film constitutes a single-fiber three-directional optical device module.
  • the V-shaped notch shared by the first V-shaped groove and the second V-shaped groove in the main body is connected to the first detector, and the optical signal transmission hole parallel to the center line of the V-shaped groove a second detector connection, a first horizontal transmission hole connected to a sidewall of the first V-shaped groove is connected to the laser, and a third horizontal transmission hole communicating with a sidewall of the second V-shaped groove is connected to the external optical signal interface, the first V-type
  • the two outer sidewalls of the slot and the second V-shaped slot respectively respectively affix the first filter and the second filter to form a single-fiber three-directional optical device module.
  • the first V-shaped slot of the first V-shaped slot in the main body is connected to the laser, and the optical signal transmission hole parallel to the center line of the V-shaped slot angles the first V-shaped slot and the second V-shaped slot
  • the slot is connected, the first horizontal transmission hole of the first V-shaped slot is connected to the first detector, the second horizontal transmission hole of the second V-shaped slot is connected to the second detector, and the second V-shaped slot is connected to the second V-shaped slot.
  • the slot is connected to the external optical signal interface, and the two sides of the first V-shaped slot and the second V-shaped slot are respectively placed on the first filter and the second filter to form a single-fiber three-directional optical device module.
  • V-groove structure to design an optical device package structure can effectively manage the optical signal transmission direction, is suitable for large-scale, is composed of single components, and reduces production cost and use cost.
  • the V-groove structure simplifies the package structure of the BOSA, that is, the package body is integrated with the filter carrier, and the V-shaped groove has an angle ⁇ 1 of 90 °, thereby ensuring optical alignment of the laser, the detector, and the external fiber. relationship.
  • the packaging order of the traditionally designed optical device is: 1. Bonding the filter to the filter carrier, 2. Aligning, soldering or bonding the filter carrier to the package body, 3. Aligning, soldering or bonding the laser, detector, external fiber to the package body.
  • the packaging sequence of the optical device designed by the present invention is as follows: 1. Bonding the filter to the V-groove wall of the package body, 2. Aligning, soldering or bonding the laser, the detector, and the external fiber to the package body;
  • the traditionally designed filter position is obtained by adjusting the filter carrier and the main body.
  • the filter of the present invention is attached to the main body and becomes a part of the main body, which greatly improves the positional accuracy of the filter, and the positional consistency is very good, so that The alignment of the laser, the detector, and the external fiber is easy, and the alignment speed is fast, thereby improving the coupling efficiency, that is, improving the packaging production efficiency of the BOSA optical device;
  • Fig. 1 is a cross-sectional view showing the basic structure of a V-shaped groove main body of a module package for optical signal management according to the present invention.
  • Fig. 2 is a cross-sectional view showing the optical path structure of a V-shaped groove body in which a plurality of V-shaped grooves are juxtaposed in the same manner.
  • Fig. 3 is a schematic view showing the principle of the optical path of the main body structure of the V-shaped groove in which the plurality of V-shaped grooves are juxtaposed in the same manner.
  • Fig. 4 is a cross-sectional view showing the structure of a V-shaped groove main body in which a plurality of V-shaped grooves are reversely staggered according to the present invention.
  • Fig. 5 is a schematic view showing the optical path of a V-shaped groove main body structure in which a plurality of V-shaped grooves are reversely staggered and horizontally arranged in the present invention.
  • FIG. 6 is a schematic diagram showing the basic structure of an embodiment of a single-fiber bidirectional optical device module according to the present invention.
  • FIG. 7 is a schematic diagram showing the basic structure of an embodiment of a second single-fiber bidirectional optical device module according to the present invention.
  • FIG. 8 is a schematic diagram showing the basic structure of an embodiment of a single-fiber three-directional optical device module according to the present invention.
  • FIG. 9 is a schematic diagram showing the basic structure of an embodiment of a second single-fiber three-directional optical device module according to the present invention.
  • FIG. 10 is a schematic diagram showing the basic structure of an embodiment of a third single-fiber three-directional optical device module according to the present invention. detailed description
  • FIG. 1 is a schematic view showing the basic structure of a V-slot main body of a modular package for optical signal management of the present invention.
  • the optical signal management optical device module package V-shaped groove main body of the present invention comprises a main body B, the main body B has one or more V-shaped grooves B1, and the main body B has two side walls of the V-shaped groove B1 and the outside
  • the connected optical signal transmission hole system includes an optical signal transmission hole perpendicular to and/or parallel to the center line of the V-shaped groove, and the V-shaped groove B1 has an angle ⁇ 1 of 90 ° ⁇ 10 °.
  • the angle ⁇ 1 of the V-groove B1 is preferably 90 °.
  • the horizontal transmission hole in the main body B perpendicular to the center line of the V-shaped groove B1 includes a first horizontal transmission hole B3a and a second horizontal transmission hole B3b communicating with the two side walls of the V-shaped groove B1, and the first horizontal transmission hole B3a is coaxial with the second horizontal transfer hole B3b.
  • the optical signal vertical transmission hole B4 parallel to the center line of the V-shaped groove B1 communicates with a side wall of the V-shaped groove B1.
  • B2 is a V-notch outside the V-groove B1.
  • FIG. 2 is a schematic view showing the structure of a V-shaped groove main body in which a plurality of V-shaped grooves are juxtaposed in the same direction: a plurality of V-shaped grooves are arranged in parallel in the main body B in parallel, and only two are shown in the figure, and the first V-shaped groove Bla and The second V-shaped groove Bib is connected in series, that is, the first V-shaped groove Bla and the second V-shaped groove Bib are communicated by the second horizontal transfer hole B3b.
  • the first horizontal transfer hole B3a and the third horizontal transfer hole B3c are external, B2a is a V-shaped notch of the first V-shaped groove Bla, and B2b is a V-shaped notch of the second V-shaped groove Bib.
  • B4a is an optical signal vertical transmission hole of the first V-shaped groove Bla parallel to the center line of the V-shaped groove
  • B4b is an optical signal vertical transmission hole of the second V-shaped groove Bib parallel to the center line of the V-shaped groove.
  • ⁇ dU ⁇ ⁇ 2 , ⁇ ⁇ 3 , # d4 hole diameter, for optical signal transmission, # d3, ⁇ ⁇ 4 may be optional according to actual needs, continuous multi-V groove structure can be juxtaposed or along the # dl axis # dl Radial mirroring infinite number of Fl, F2, F3, F4V slots: V-grooves Fl, F2, F3, F4 are used to place the filter C for optical signal wavelength selection or transmission direction change, and rely on V-shaped groove wall fixing According to the actual needs, you can choose to use Fl, F2, F3, F4.
  • FIG. 3 is a schematic diagram of the optical path of the main body structure of the V-shaped groove in the same direction of the plurality of V-shaped grooves of FIG. 2:
  • C2 Similarly, C2 has a 90-degree refraction and a straight-through coating for a specific wavelength of optical signal, so that the optical signal of one wavelength reaches Q2, the optical signal of other wavelengths reaches C3, and so on.
  • Q5 is also a light source, it can reach Q4 through the 90 degree reflection layer of C4, and reach Q3 through the 90 degree reflection layer of C3. It can also reach Q2 and Ql.
  • FIG. 4 is a schematic view showing the structure of a V-shaped groove main body in which a plurality of V-shaped grooves are reversely staggered according to the present invention: a plurality of V-shaped grooves are reversely connected in the main body B, that is, an angle between the adjacent V-shaped grooves and the V-shaped groove.
  • the line-parallel optical signal transmission holes B4 are communicated in the main body B.
  • a plurality of V-shaped grooves are reversely staggered, and only two are shown in the figure.
  • the first V-shaped groove Bla and the second V-shaped groove Bib are arranged in an inverted staggered manner, which is parallel to the center line of the V-shaped groove.
  • the optical signal vertical transmission hole B4 connects the two V-shaped grooves, B2a is a V-shaped notch of the first V-shaped groove Bla, and B2b is a V-shaped notch of the second V-shaped groove Bib.
  • B3a is a first horizontal transmission hole of the first V-shaped groove Bla perpendicular to the center line of the V-shaped groove
  • B3b is a second horizontal transmission hole of the second V-shaped groove Bib perpendicular to the center line of the V-shaped groove.
  • Fig. 5 is a schematic view showing the structure of a V-shaped groove main body in which a plurality of V-shaped grooves are reversely staggered and horizontally arranged in the present invention.
  • the main body B includes a plurality of V-shaped grooves, and one or more pairs of V-shaped grooves are reversely connected in the plurality of V-shaped grooves Connected, that is, a pair of reverse-connected V-shaped grooves are connected by the optical signal vertical transmission hole B4 parallel to the center line of the V-shaped groove in the main body B; the V-shaped groove connected in the reverse direction and the other V-shaped grooves
  • the optical signal transmission holes in the main body B are connected as needed.
  • the first V-shaped groove Bla and the second V-shaped groove Bib are alternately staggered, and the two V-shaped grooves are communicated by the optical signal vertical transmission hole B4a parallel to the center line of the V-shaped groove angle; the third V-shaped groove Blc and The fourth V-shaped groove Bid is reversely staggered, and the two V-shaped grooves are connected by the optical signal vertical transmission hole B4b parallel to the center line of the V-shaped groove angle; the two groups are juxtaposed.
  • the fifth V-shaped groove Ble direction is different from the first four V-shaped grooves; the first horizontal transmission hole B3a is in communication with the outside, and the two oppositely-interleaved V-shaped grooves are connected by the second horizontal transmission hole B3b, and the third horizontal transmission The hole B3c communicates the second set of reversely staggered V-shaped grooves Bid with the fifth V-shaped grooves Ble.
  • the V-groove body of the present invention encloses the outer interface portions constituting the optical device module in accordance with the shape of the connected components, and B connects all the components constituting the optical device module.
  • the V-shaped groove main body can encapsulate various optical device modules, including the V-shaped groove main body B, and the V-shaped notch of the V-shaped groove B1 in the main body B, the external horizontal transmission hole, and the vertical transmission hole respectively connect the respective lights.
  • the device and the external optical signal interface, the two side walls of the V-shaped groove B1 are placed with light management lenses.
  • the light management lens includes a filter, a lens, a refractor, a mirror, and the like.
  • FIG. 6 is a schematic diagram showing the basic structure of an embodiment of a single-fiber bidirectional optical device module according to the present invention:
  • This embodiment adopts a special example of the V-shaped groove main body structure shown in FIG. 1, that is, it does not need to be parallel to the center line of the V-shaped groove.
  • the optical signal vertical transmission hole, the V-shaped notch B2 of the V-shaped groove B1 in the main body B is connected to the detector D, and the first horizontal transmission hole B3a and the second horizontal transmission hole B3b communicating with the two side walls of the V-shaped groove are respectively connected to the laser A and the external optical signal interface E, the two side walls of the V-shaped groove B1 are respectively placed with the first filter C1 and the second filter C2.
  • the core optical device of the single-fiber bidirectional optical module is used to effectively manage the input/output optical signals through the V-shaped slot structure.
  • A is a light source laser
  • B is the V-shaped groove body of the present invention, which constitutes a single fiber double All components of the optical device module are connected by B
  • C 01 is a filter
  • D is a detector
  • E is an external optical signal interface adapter connected to an external optical fiber.
  • A emits an optical signal, and passes through the pass filter layer of Cl and C2 to couple the optical signal into the optical fiber connected to E and transfer to the external optical fiber.
  • the external optical signal is transmitted and converted into an electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E, and is transmitted to the D through the 90 degree reflection layer of C2. D receives the optical signal and then converts it into an electrical signal.
  • FIG. 7 is a schematic diagram showing the basic structure of an embodiment of a second single-fiber bidirectional optical device module according to the present invention:
  • This embodiment adopts another special case of the V-shaped groove main body structure shown in FIG. 1, that is, the center line of the V-shaped groove is not required.
  • Parallel optical signal vertical transmission hole, V-shaped notch B2 of V-shaped groove B1 in main body B is connected to laser A, and first horizontal transmission hole B3 communicating with one side wall of V-shaped groove is connected to detector D, V-shaped groove B1
  • the filter C is attached to the side wall of the first horizontal transfer hole B3, and the optical signal vertical transfer hole B4 parallel to the center line of the V-shaped groove B1 is connected to the external optical signal interface E.
  • A is a light source laser
  • B is the V-shaped groove body of the present invention
  • all components constituting the single-fiber bidirectional optical device module are connected by B
  • C is a filter
  • D is a detector
  • E is connected to an external optical fiber.
  • External optical signal interface adapter External optical signal interface adapter.
  • A emits an optical signal, which passes through the through-filter layer of C, couples the optical signal into the optical fiber of E, and transfers to the external optical fiber.
  • the external optical signal is transmitted and converted into an electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E and passes through C. It is transmitted to C through the 90-degree reflection layer of C. D receives the optical signal and converts it into electricity. signal.
  • FIG. 8 is a schematic diagram showing the basic structure of an embodiment of a single-fiber three-directional optical device module according to the present invention:
  • This embodiment adopts a V-shaped groove main body structure shown in FIG. 1, and a V-shaped notch B2 of a V-shaped groove B1 in the main body B is connected.
  • the first detector D1, the optical signal vertical transmission hole B4 parallel to the center line of the V-shaped groove B1 is connected to the second detector D2, and the first horizontal transmission communicating with the two side walls of the V-shaped groove
  • the hole B3a is connected to the laser A
  • the second horizontal transmission hole B3b communicating with the two side walls of the V-shaped groove is connected to the external optical signal interface E.
  • the two side walls of the V-shaped groove B1 are respectively placed on the first filter C1 and the second filter C2.
  • A is a light source laser
  • B is the V-shaped groove body of the present invention
  • all components constituting the single-fiber three-way optical device module are connected by B
  • C1, C2 are filters
  • D1 is a data signal detector
  • D2 It is an analog signal detector
  • E is an external optical signal interface adapter that connects to an external fiber.
  • the external data optical signal is transmitted and converted into a data electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E and passes through C1. It is transmitted to D1 through the 90 degree refractive layer of C1. After D1 receives the data optical signal, Convert to data electrical signal.
  • the external analog optical signal is transmitted and converted into an analog electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E and transmitted to the D2 through the reflective layer of C2.
  • the D2 receives the analog optical signal and converts it into an analog electrical signal. .
  • FIG. 9 is a schematic diagram showing the basic structure of an embodiment of a second single-fiber three-directional optical device module according to the present invention.
  • the V-shaped groove main body structure shown in FIG. 2 is adopted, and the V-shaped notch B2 shared by the first V-shaped groove B la and the second V-shaped groove Bib in the main body B is connected to the first detector D1, and the V-shaped The optical signal vertical transmission hole B4 parallel to the center line of the groove B1 is connected to the second detector D2, and the first horizontal transmission hole B3a communicating with the sidewall of the first V-shaped groove Bla- is connected to the laser A, and the second V-shaped groove
  • the third horizontal transmission hole B3c which is connected to the side wall of the Bib, is connected to the external optical signal interface E.
  • the inner side walls of the first V-shaped groove Bla and the second V-shaped groove Bib are communicated by the second horizontal transmission hole B3b.
  • the first V-shaped groove Bla And the second outer wall of the second V-shaped groove Bib respectively respectively affix the first filter C1 and the second filter C2 o
  • A is a light source laser
  • B is the V-shaped groove body of the present invention
  • all components constituting the single-fiber three-way optical device module are connected by B
  • C1, C2 are filters
  • D1 is a data signal detector
  • D2 It is an analog signal detector
  • E is an external optical signal interface adapter that connects to an external fiber.
  • the external data optical signal is transmitted and converted into a data electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E and passes through the C1 through-pass filter layer, and is transmitted to D1 through the 90-degree reflection layer of C1.
  • D1 accepts The data optical signal is then converted into a data electrical signal.
  • the external analog optical signal is transmitted and converted into an analog electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E and transmitted to D2 through the 90 degree reflection layer of C2.
  • D2 receives the analog optical signal and converts it into analog. electric signal.
  • FIG. 10 is a schematic diagram showing the basic structure of an embodiment of a third single-fiber three-directional optical device module according to the present invention: This embodiment adopts a V-shaped groove main body structure shown in FIG. 3, and a first V of a first V-shaped groove Bla in the main body B.
  • the notch B2a is connected to the laser A, and the optical signal vertical transmission hole B4 parallel to the center line of the V-shaped groove connects the first V-shaped groove Bla and the second V-shaped groove Bib, and the first level of the first V-shaped groove Bla
  • the transmission hole B3a is connected to the first detector D1
  • the second horizontal transmission hole B3b of the second V-shaped groove Bib is connected to the second detector D2
  • the second V-shaped notch B2b of the second V-shaped groove Bib is connected to the external optical signal.
  • the two sides of the interface E, the first V-shaped groove Bla and the second V-shaped groove Bib are respectively placed on the first filter C1 and the second filter C2.
  • A is a light source laser
  • B is the V-shaped groove body of the present invention
  • all components constituting the single-fiber three-way optical device module are connected by B
  • Cl are filters
  • D1 is a data signal detector
  • D2 It is an analog signal detector
  • E is a fiber optic connector that connects to an external fiber.
  • the working principle of converting a local signal into an optical signal and transmitting it out A emits an optical signal, passes through Cl, The pass-through filter layer of C2 couples the optical signal into the E-fiber and is switched to the external fiber.
  • the external data optical signal is transmitted and converted into a data electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E and passes through the C1 through-pass filter layer, and is transmitted to D1 through the 90-degree reflection layer of C1.
  • D1 accepts The data optical signal is then converted into a data electrical signal.
  • the external analog optical signal is transmitted and converted into an analog electrical signal.
  • the external optical signal is transmitted through the external optical fiber through the optical fiber in E and transmitted to D2 through the 90° reflection layer of C2.
  • D2 receives the analog optical signal and converts it into analog. electric signal.
  • the V-shaped groove body of the present invention is an optical signal management package structure, which is composed of one or more V-shaped grooves, and the arrangement and connection thereof can be flexibly changed according to requirements, and the optical signal transmission hole system is added or The trade-offs can be flexibly changed as needed, and are not limited by the above embodiments.
  • This structure is particularly suitable for designing a BOSA structure for a fiber-to-the-home optical module.
  • the centerline of the V-groove is perpendicular to the direction of the optical signal;
  • C can be a filter, a lens, a refractor, a mirror, and the C is fixed to the V-groove wall. .
  • the optical device module packaged by the V-groove body of the present invention is more flexible as needed, and is not limited by the above embodiments.
  • the core of the invention is the design of the 90° V-shaped groove in the V-shaped groove body, which simplifies the packaging structure of the BOSA, not only integrates the package body with the filter carrier, but also ensures the laser, the detector and the external structure. The accuracy of the optical path alignment of the fiber. Therefore, any V-shaped slot in the optical device package body that manages the optical signal transmission direction is within the protection scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

光信号管理用光器件模块式封装 V型槽主体及其光器件模块 技术领域
本发明涉及一种光信号管理用光器件模块式封装 V型槽主体及其光器 件模块, 特别适合光纤到户单纤双向、 单纤三向光器件模块的设计、 生产, 也适合于其它需要进行光信号波长或传输方向进行管理的光器件的封装结 构设计。 背景技术
常规的设计一般需要多个零件组装达到光信号管理的目标,特别是单纤 双向、 单纤三向光器件的传统设计是将封装主体、 滤波片载体分开设计, 先 将滤波片粘接到滤波片载体上,再将滤波片载体与封装主体通过对中、定位、 激光焊接成一体, 从而完成对激光器、 探测器、 外部光纤等光信号输入、 输 出、 传输的管理。
同样,基于滤波片或透镜进行光路管理的结构设计中,主要采用分立设 计的方法, 将主体与滤波片或透镜支架分开设计, 再合并到一起, 这种设计 虽然方便了零件的加工,但将滤波片载体或透镜支架与主体连接到一体并保 证与主体连接的激光器、探测器、外部光纤之间的光路对准关系是一件非常 费时的事情, 而且带来成品率的损失。 发明内容
本发明的目的是设计一种光信号管理用光器件模块式封装 V型槽主体 及其光器件模块, 提供一种封装主体与滤波片或透镜支架一体化的主体结 构,大大提高光器件的耦合效率和生产效率,特别适合用于光纤到户光模块 的单纤双向、 单纤三向光器件模块的设计。
V型槽主体用于 BOSA光纤器件的封装结构, 该结构可以采取单 V型 槽或连续 V型槽, 用于光信号传输方向的管理。 该结构适合于光纤通信、 光纤激光器等光电器件封装中的多波长、多路光信号的管理,用于光纤到户 光模块, 例如单纤双向、 单纤三向光模块的光器件 BOSA的结构设计。
本发明的技术方案: 本发明的光信号管理用光器件模块式封装 V型槽 主体包括主体, 其主体内有 1个或多个 V型槽, 主体内有 V型槽的两侧壁 与外界连通的光信号传输孔系, 光信号传输孔系包括与 V型槽夹角中心线 垂直和 /或平行的光信号传输孔, V型槽的夹角 Θ1为 90 °±10 °。
所述的 V型槽的夹角 Θ1最佳为 90 °。
所述的主体内与 V型槽夹角中心线垂直的水平传输孔包括与 V型槽两 侧壁连通的第一水平传输孔和 /或第二水平传输孔, 第一水平传输孔与第二 水平传输孔共轴线。
所述的主体内包括多个 V型槽同向并列串联, 即相邻的 V型槽的相邻 的水平传输孔共用。
所述的主体内包括多个 V型槽,多个 V型槽中有一对或多对 V型槽反 向连接, 即一对反向连接的 V型槽之间由与 V型槽夹角中心线平行的光信 号垂直传输孔在主体内连通; 反向连接的 V型槽与其他 V型槽之间根据需 要由主体内的光信号传输孔连通。
一种由上述 V型槽主体封装的光器件模块, 包括所述的 V型槽主体, 主体内的 V型槽的 V型槽口、 对外水平传输孔、 垂直传输孔分别连接各光 器件和外部光信号接口, V型槽两侧壁贴放光管理镜片。
所述的光器件模块, 其主体内的 V型槽的 V型槽口连接探测器, 与 V 型槽两侧壁连通的第一水平传输孔和第二水平传输孔分别连接激光器和外 部光信号接口, V型槽两侧壁分别贴放第一滤波片和第二滤波片, 构成一种 单纤双向光器件模块,
所述的光器件模块, 其主体内的 V型槽的 V型槽口连接激光器, 与 V 型槽一侧壁连通的第一水平传输孔连接探测器, V型槽对应第一水平传输孔 的侧壁贴放滤波片, 与 V型槽夹角中心线平行的光信号传输孔与外部光信 号接口连接, 构成一种单纤双向光器件模块。
所述的光器件模块, 其主体内的 V型槽的 V型槽口连接第一探测器, 与 V型槽夹角中心线平行的光信号传输孔与第二探测器连接, 与 V型槽两 侧壁连通的第一水平传输孔连接激光器, 与 V型槽两侧壁连通的第二水平 传输孔连接外部光信号接口, V型槽两侧壁分别贴放第一滤波片和第二滤波 片, 构成一种单纤三向光器件模块。
所述的光器件模块, 其主体内的第一 V型槽和第二 V型槽共用的 V型 槽口连接第一探测器, 与 V型槽夹角中心线平行的光信号传输孔与第二探 测器连接, 与第一 V型槽一侧壁连通的第一水平传输孔连接激光器, 与第 二 V型槽一侧壁连通的第三水平传输孔连接外部光信号接口, 第一 V型槽 和第二 V型槽两外侧壁分别贴放第一滤波片和第二滤波片, 构成一种单纤 三向光器件模块。
所述的光器件模块, 其主体内的第一 V型槽的第一 V型槽口连接激光 器, 与 V型槽夹角中心线平行的光信号传输孔将第一 V型槽与第二 V型槽 连通, 第一 V型槽的第一水平传输孔与第一探测器连接, 第二 V型槽的第 二水平传输孔与第二探测器连接, 第二 V型槽的第二 V型槽口连接外部光 信号接口, 第一 V型槽和第二 V型槽相通的两侧壁分别贴放第一滤波片和 第二滤波片, 构成一种单纤三向光器件模块。
本发明的优点: 使用 V型槽结构设计光器件封装结构可以有效管理光 信号传输方向, 适合于大规模, 由单体零件组成, 降低了生产成本及使用成 本。
V型槽结构使 BOSA的封装结构简单化, 即将封装主体与滤波片载体 一体化, V型槽的夹角 Θ1为 90 °, 从而从结构上保证了激光器、 探测器、 外部光纤的光路对准关系。
传统设计的光器件的封装顺序是: 1、将滤波片粘接到滤波片载体上, 2、 将滤波片载体与封装主体对准、 焊接或粘接到一起, 3、 将激光器、 探测器、 外部光纤对准、 焊接或粘接到封装主体上。
采取本发明设计的光器件的封装顺序是: 1、 将滤波片粘接到封装主体 的 V槽壁, 2、 将激光器、 探测器、 外部光纤对准、 焊接或粘接到封装主体 上;
其优点是:
1、 取消了传统封装顺序中的第 2项, 从而大大提高了生产效率、 降低了生产成本;
2、 传统设计的滤波片位置是靠滤波片载体与主体的调整得到 的, 本发明滤波片贴在主体上, 成为主体的一部分, 大大提高滤波片的 位置精度, 并且位置一致性非常好, 使激光器、 探测器、 外部光纤的对准容 易、 对准速度快, 从而提高耦合效率, 即提高 BOSA光器件的封装生产效 率;
3、 由于第 2点的原因, 激光器、 探测器、 外部光纤各端口的耦 合光功率一致性得到保证, 从而有效保证产品的合格率水平。 附图说明
图 1是本发明一种光信号管理用光器件模块式封装 V型槽主体基本结 构剖视图。
图 2是本发明多个 V型槽同向并列的 V型槽主体光路结构剖视示意图。 图 3是本发明多个 V型槽同向并列的 V型槽主体结构光路原理示意图。 图 4是本发明多个 V型槽反向交错排列的 V型槽主体结构剖视示意图。 图 5是本发明多个 V型槽反向交错排列与水平排列相结合的 V型槽主 体结构光路示意图。
图 6是本发明一种单纤双向光器件模块实施例基本结构示意图。
图 7是本发明第二种单纤双向光器件模块实施例基本结构示意图。 图 8是本发明一种单纤三向光器件模块实施例基本结构示意图。
图 9是本发明第二种单纤三向光器件模块实施例基本结构示意图。
图 10是本发明第三种单纤三向光器件模块实施例基本结构示意图。 具体实施方式
下面结合附图详细说明本发明的实施例。
图 1是本发明一种光信号管理用光器件模块式封装 V型槽主体基本结 构示意图。
本发明的一种光信号管理用光器件模块式封装 V型槽主体包括主体 B, 主体 B内有 1个或多个 V型槽 B1 ,主体 B内有 V型槽 B1的两侧壁与外界 连通的光信号传输孔系, 光信号传输孔系包括与 V型槽夹角中心线垂直和 / 或平行的光信号传输孔, V型槽 B1的夹角 Θ1为 90 °±10 °。 V型槽 B1的夹 角 Θ1为 90 °最佳。
所述的主体 B内与 V型槽 B1夹角中心线垂直的水平传输孔包括与 V 型槽 B1两侧壁连通的第一水平传输孔 B3a和第二水平传输孔 B3b, 第一水 平传输孔 B3a与第二水平传输孔 B3b共轴线。 与 V型槽 B1夹角中心线平 行的光信号垂直传输孔 B4与 V型槽 B1的一侧壁相通。 B2是 V型槽 B1对 外的 V型槽口。
图 2是本发明多个 V型槽同向并列的 V型槽主体结构示意图: 主体 B内有多个 V型槽同向并列串联, 图中只示意出两个, 第一 V型 槽 Bla与第二 V型槽 Bib串联, 即第一 V型槽 Bla与第二 V型槽 Bib由 第二水平传输孔 B3b连通。 第一水平传输孔 B3a和第三水平传输孔 B3c对 外, B2a是第一 V型槽 Bla 的 V型槽口, B2b是第二 V型槽 Bib 的 V型 槽口。 B4a是第一 V型槽 Bla 的与 V型槽夹角中心线平行的光信号垂直传 输孔, B4b是第二 V型槽 Bib 的与 V型槽夹角中心线平行的光信号垂直传 输孔。 V型槽多个时, 以此类推。 § dU § ά2 , § ά3 , # d4:孔系直径, 用于光信号的传输, # d3、 § ά4 根据实际需要可有可无, 连续多 V型槽结构可以沿 # dl轴向并列或沿 # dl 径向镜像无限多个 Fl、 F2、 F3、 F4V型槽: V型槽 Fl、 F2、 F3、 F4用于放 置光信号波长选择或传输方向改变的滤波片 C, 依靠 V型槽壁固定, 根据 实际需要任意选择使用 Fl、 F2、 F3、 F4。
图 3是图 2多个 V型槽同向并列的 V型槽主体结构光路原理示意图: 工作原理: 第一 V型槽 Bla和第二 V型槽 Bib分别放置滤波片 Cl、 C2、 C3、 C4, A是光源, 其发出光信号首先经过滤波片 CI, C1对特定波 长的光信号具有 90度折射、 直通两种镀膜层, 这样一种波长的光信号可以 到达 Q1 , 其它波长的光信号到达 C2, 同样 C2对特定波长的光信号具有 90 度折射、 直通两种镀膜层, 使一种波长的光信号到达 Q2, 其它波长的光信 号到达 C3 , 以此类推。
同样, 如果同时 Q5也是发光源, 可以经过 C4的 90度反射层达到 Q4, 经过 C3的 90度反射层到达 Q3 , 同样也可以到达 Q2、 Ql。
图 4是本发明多个 V型槽反向交错排列的 V型槽主体结构示意图: 主 体 B内有多个 V型槽反向连接, 即相邻的 V型槽的与 V型槽夹角中心线平 行的光信号传输孔 B4在主体 B内连通。
本实施例多个 V型槽反向交错连接, 图中只示意出两个, 第一 V型槽 Bla与第二 V型槽 Bib反向交错排列, 由与 V型槽夹角中心线平行的光信 号垂直传输孔 B4将两个 V型槽连通, B2a是第一 V型槽 Bla 的 V型槽口, B2b是第二 V型槽 Bib 的 V型槽口。 B3a是第一 V型槽 Bla的与 V型槽 夹角中心线垂直的第一水平传输孔, B3b是第二 V型槽 Bib的与 V型槽夹 角中心线垂直的第二水平传输孔。
图 5是本发明多个 V型槽反向交错排列与水平排列相结合的 V型槽主 体结构示意图。
主体 B内包括多个 V型槽,多个 V型槽中有一对或多对 V型槽反向连 接, 即一对反向连接的 V型槽之间由与 V型槽夹角中心线平行的光信号垂 直传输孔 B4在主体 B内连通; 反向连接的 V型槽与其他 V型槽之间根据 需要由主体 B内的光信号传输孔连通。
第一 V型槽 Bla与第二 V型槽 Bib反向交错排列,由与 V型槽夹角中 心线平行的光信号垂直传输孔 B4a将两个 V型槽连通; 第三 V型槽 Blc与 第四 V型槽 Bid反向交错排列, 由与 V型槽夹角中心线平行的光信号垂直 传输孔 B4b将两个 V型槽连通; 两组并列。 第五 V型槽 Ble方向不同于前 四个 V型槽; 第一水平传输孔 B3a与外部连通, 两组反向交错的 V型槽之 间由第二水平传输孔 B3b连通, 第三水平传输孔 B3c将第二组反向交错排 列的 V型槽 Bid与第五 V型槽 Ble连通。
总之, V型槽的多少、 排列形式和连接否是根据需要灵活变化的。 本发明的 V型槽主体封装构成光器件模块的各外接口部分与所连接的 部件形状大小匹配, 由 B将构成光器件模块的所有部件连接在一起。
由上述 V型槽主体可以封装各种光器件模块, 包括所述的 V型槽主体 B, 主体 B内的 V型槽 B1的 V型槽口、 对外水平传输孔、 垂直传输孔分别 连接各光器件和外部光信号接口, V型槽 B1两侧壁贴放光管理镜片。
光管理镜片包括滤波片、 透镜、 折射镜、 反射镜等。
图 6是本发明一种单纤双向光器件模块实施例基本结构示意图: 本实施例采用图 1所示的 V型槽主体结构的一个特例, 即不需要与 V 型槽夹角中心线平行的光信号垂直传输孔, 主体 B内的 V型槽 B1的 V型 槽口 B2连接探测器 D,与 V型槽两侧壁连通的第一水平传输孔 B3a和第二 水平传输孔 B3b分别连接激光器 A和外部光信号接口 E, V型槽 B1两侧壁 分别贴放第一滤波片 C1和第二滤波片 C2。
本实施例为单纤双向光模块核心光器件, 通过 V型槽结构将输入 /输出 光信号进行有效管理。
工作原理: A是光源激光器, B是本发明的 V型槽主体, 构成单纤双 向光器件模块的所有部件由 B连接在一起, C 01是滤波片, D是探测器, E是连接外部光纤的外部光信号接口适配器。
本地信号转换为光信号并传出的工作原理: A发出光信号, 经过 Cl、 C2的直通滤波层,将光信号耦合进入 E所连接的光纤, 并转接至外部光纤。
外部光信号传入并转换为电信号的工作原理:外部光信号通过外部光纤 经过 E内的光纤传入, 通过 C2的 90度反射层传入 D, D接受光信号后转 换为电信号。
图 7是本发明第二种单纤双向光器件模块实施例基本结构示意图: 本实施例采用图 1所示的 V型槽主体结构的另一个特例,即不需要与 V 型槽夹角中心线平行的光信号垂直传输孔, 主体 B内的 V型槽 B1的 V型 槽口 B2连接激光器 A, 与 V型槽一侧壁连通的第一水平传输孔 B3连接探 测器 D, V型槽 B1对应第一水平传输孔 B3的侧壁贴放滤波片 C, 与 V型 槽 B1夹角中心线平行的光信号垂直传输孔 B4与外部光信号接口 E连接。
此为单纤双向光器件利用 V型槽结构的另一种形式。
工作原理: A是光源激光器, B是本发明的 V型槽主体, 构成单纤双 向光器件模块的所有部件由 B连接在一起, C是滤波片, D是探测器, E是 连接外部光纤的外部光信号接口适配器。
本地信号转换为光信号并传出的工作原理: A发出光信号, 经过 C的 直通滤波层, 将光信号耦合进入 E的光纤, 并转接至外部光纤。
外部光信号传入并转换为电信号的工作原理:外部光信号通过外部光纤 经过 E内的光纤传入并经过 C, 通过 C的 90度反射层传入 D, D接受光信 号后转换为电信号。
图 8是本发明一种单纤三向光器件模块实施例基本结构示意图: 本实施例采用图 1所示的 V型槽主体结构, 主体 B内的 V型槽 B1的 V型槽口 B2连接第一探测器 D1,与 V型槽 B1夹角中心线平行的光信号垂 直传输孔 B4与第二探测器 D2连接, 与 V型槽两侧壁连通的第一水平传输 孔 B3a连接激光器 A, 与 V型槽两侧壁连通的第二水平传输孔 B3b连接外 部光信号接口 E, V型槽 B1两侧壁分别贴放第一滤波片 C1和第二滤波片 C2 o
此为单纤三向光模块核心光器件, 通过 V型槽结构将输入 /输出光信号 进行有效管理。
工作原理: A是光源激光器, B是本发明的 V型槽主体, 构成单纤三 向光器件模块的所有部件由 B连接在一起, C1、C2是滤波片, D1 是数据信号探测器, D2是模拟信号探测器, E是连接外部光纤的外部光信 号接口适配器。
本地信号转换为光信号并传出的工作原理: A 发出光信号, 经过 Cl、 C2的直通滤波层, 将光信号耦合进入 E的光纤并转接至外部光纤。
外部数据光信号传入并转换为数据电信号的工作原理:外部光信号通过 外部光纤经过 E内的光纤传入并经过 C1, 通过 C1的 90度折射层传入 D1, D1接受数据光信号后转换为数据电信号。
外部模拟光信号传入并转换为模拟电信号的工作原理:外部光信号通过 外部光纤经过 E内的光纤传入并经过 C2的反射层传入 D2, D2接受模拟光 信号后转换为模拟电信号。
图 9是本发明第二种单纤三向光器件模块实施例基本结构示意图。
本实施例采用图 2所示的 V型槽主体结构,主体 B内的第一 V型槽 B la 和第二 V型槽 Bib共用的 V型槽口 B2连接第一探测器 D1, 与 V型槽 B1 夹角中心线平行的光信号垂直传输孔 B4与第二探测器 D2连接, 与第一 V 型槽 Bla—侧壁连通的第一水平传输孔 B3a连接激光器 A, 与第二 V型槽 Bib一侧壁连通的第三水平传输孔 B3c连接外部光信号接口 E, 第一 V型 槽 Bla与第二 V型槽 Bib两内侧壁由第二水平传输孔 B3b连通,第一 V型 槽 Bla和第二 V型槽 Bib两外侧壁分别贴放第一滤波片 C1和第二滤波片 C2 o 此为单纤三向光器件利用 V型槽结构的另一种形式。
工作原理: A是光源激光器, B是本发明的 V型槽主体, 构成单纤三 向光器件模块的所有部件由 B连接在一起, C1、C2是滤波片, D1 是数据信号探测器, D2是模拟信号探测器, E是连接外部光纤的外部光信 号接口适配器。
本地信号转换为光信号并传出的工作原理: A 发出光信号, 经过 Cl、 C2的直通滤波层, 将光信号耦合进入 E的光纤并转接至外部光纤。
外部数据光信号传入并转换为数据电信号的工作原理:外部光信号通过 外部光纤经过 E内的光纤传入并经过 C1的直通滤波层,经过 C1的 90度反 射层传入 Dl, D1接受数据光信号后转换为数据电信号。
外部模拟光信号传入并转换为模拟电信号的工作原理:外部光信号通过 外部光纤经过 E内的光纤传入并经过 C2的 90度反射层传入 D2, D2接受 模拟光信号后转换为模拟电信号。
图 10是本发明第三种单纤三向光器件模块实施例基本结构示意图: 本 实施例采用图 3所示的 V型槽主体结构, 主体 B内的第一 V型槽 Bla的第 一 V型槽口 B2a连接激光器 A, 与 V型槽夹角中心线平行的光信号垂直传 输孔 B4将第一 V型槽 Bla与第二 V型槽 Bib连通, 第一 V型槽 Bla的第 一水平传输孔 B3a与第一探测器 D1连接, 第二 V型槽 Bib的第二水平传 输孔 B3b与第二探测器 D2连接, 第二 V型槽 Bib的第二 V型槽口 B2b连 接外部光信号接口 E, 第一 V型槽 Bla和第二 V型槽 Bib相通的两侧壁分 别贴放第一滤波片 C1和第二滤波片 C2。
此为单纤双向光器件利用 V型槽结构的另一种形式。
工作原理: A是光源激光器, B是本发明的 V型槽主体, 构成单纤三 向光器件模块的所有部件由 B连接在一起, Cl、 C2是滤波片, D1是数据 信号探测器, D2是模拟信号探测器, E是连接外部光纤的光纤连接器。
本地信号转换为光信号并传出的工作原理: A发出光信号, 经过 Cl、 C2的直通滤波层, 将光信号耦合进入 E的光纤并转接至外部光纤。
外部数据光信号传入并转换为数据电信号的工作原理:外部光信号通过 外部光纤经过 E内的光纤传入并经过 C1的直通滤波层,经过 C1的 90度反 射层传入 Dl, D1接受数据光信号后转换为数据电信号。
外部模拟光信号传入并转换为模拟电信号的工作原理:外部光信号通过 外部光纤经过 E内的光纤传入并经过 C2的 90°反射层传入 D2, D2接受模 拟光信号后转换为模拟电信号。
本发明的 V型槽主体是一种光信号管理的封装结构, 该结构由 1个或 多个 V型槽组成, 其排列形式和连接可根据需要灵活变化, 其光信号传输 孔系的增设或取舍可根据需要灵活变化, 不受上述实施例限制。
这种结构特别适合于设计用于光纤到户光模块的 BOSA结构 ,V型槽中 心线与光信号方向垂直; C可以是滤波片、 透镜、 折射镜、 反射镜, C固定 在 V型槽壁。
同理, 由本发明的 V型槽主体封装的光器件模块更是根据需要灵活变 化, 不受上述实施例限制。
本发明的核心是 V型槽主体内的 90°V型槽的设计,使 BOSA的封装结 构简单化,不仅将封装主体与滤波片载体一体化, 而且从结构上保证了激光 器、 探测器、 外部光纤的光路对准的精度。 因此, 凡是光器件封装主体内有 V型槽对光信号传输方向进行管理的, 均属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种光信号管理用光器件模块式封装 V型槽主体, 包括主体 B, 其 特征在于: 主体 (B) 内有 1个或多个 V型槽 (B1 ), 主体 (B) 内还有 V 型槽 (B1 ) 的两侧壁与外界连通的光信号传输孔系, 光信号传输孔系包括 与 V型槽夹角中心线垂直和 /或平行的光信号传输孔, V型槽 (B1 ) 的夹角 Θ1为 90。±10。。
2. 根据权利要求 1所述的光信号管理用光器件模块式封装 V型槽主体, 其特征在于: V型槽 (B1 ) 的夹角 Θ1为 90 °。
3. 根据权利要求 1所述的光信号管理用光器件模块式封装 V型槽主体, 其特征在于: 主体(B) 内与 V型槽(B1 )夹角中心线垂直的水平传输孔包 括与 V型槽 (B1 ) 两侧壁分别连通的第一水平传输孔 (B3a) 和 /或第二水 平传输孔 (B3b), 第一水平传输孔 (B3a) 与第二水平传输孔 (B3b) 共轴
4. 根据权利要求 1或 3所述的光信号管理用光器件模块式封装 V型槽 主体, 其特征在于: 主体 (B) 内包括多个 V型槽 (B1 ), 多个 V型槽同向 并列串联, 即相邻的 V型槽的相邻的水平传输孔共用。
5. 根据权利要求 1或 2所述的光信号管理用光器件模块式封装 V型槽 主体, 其特征在于: 主体 (B) 内包括多个 V型槽, 多个 V型槽中有一对 或多对 V型槽反向连接,即一对反向连接的 V型槽之间由与 V型槽夹角中 心线平行的光信号垂直传输孔(B4)在主体(B) 内连通; 反向连接的 V型 槽与其他 V型槽之间根据需要由主体 (B) 内的光信号传输孔连通。
6. 一种由权利要求 1〜5任一 V型槽主体封装的光器件模块,包括所述 的 V型槽主体 (B), 其特征在于: 主体 (B) 内的 V型槽 (B1 ) 的 V型槽 口、 V型槽对外联系的水平传输孔孔口、垂直传输孔孔口连接所需光器件和 外部光信号接口, V型槽 (B1 ) 两侧壁贴放光管理镜片构成光器件模块。
7. 根据权利要求 6所述的光器件模块, 其特征在于: 主体(B) 内的 V 型槽(B1 ) 的 V型槽口 (B2)连接探测器(D), 与 V型槽两侧壁连通的第 一水平传输孔(B3a)和第二水平传输孔(B3b)分别连接激光器(A)和外 部光信号接口 (E), V型槽 (B1 ) 两侧壁分别贴放第一滤波片 (C1 ) 和第 二滤波片 (C2), 构成一种单纤双向光器件模块。
8. 根据权利要求 6所述的光器件模块, 其特征在于: 主体(B) 内的 V 型槽 (B1)的 V型槽口 (B2)连接激光器 (A), 与 V型槽一侧壁连通的第一水平 传输孔 (B3 ) 连接探测器 (D), V型槽 (B1 ) 对应第一水平传输孔 (B3 ) 的侧壁贴放滤波片 (C), 与 V型槽 (B1 ) 夹角中心线平行的光信号传输孔
(B4) 与外部光信号接口 (E) 连接, 构成一种单纤双向光器件模块。
9. 根据权利要求 6所述的光器件模块, 其特征在于: 主体(B) 内的 V 型槽 (B1 ) 的 V型槽口 (B2) 连接第一探测器 (D1 ), 与 V型槽 (B1 ) 夹 角中心线平行的光信号传输孔 (B4) 与第二探测器 (D2) 连接, 与 V型槽 两侧壁连通的第一水平传输孔(B3a)连接激光器(A), 与 V型槽两侧壁连 通的第二水平传输孔(B3b)连接外部光信号接口 (E), V型槽 (B1 )两侧 壁分别贴放第一滤波片 (C1 )和第二滤波片 (C2), 构成一种单纤三向光器 件模块。
10. 根据权利要求 6所述的光器件模块, 其特征在于: 主体 (B) 内的 第一 V型槽 (Bla) 和第二 V型槽 (Bib) 共用的 V型槽口 (B2) 连接第 一探测器 (Dl ), 与 V型槽 (B1 ) 夹角中心线平行的光信号传输孔 (B4) 与第二探测器(D2 )连接, 与第一 V型槽(Bla)—侧壁连通的第一水平传 输孔 (B3a) 连接激光器 (A), 与第二 V型槽 (Bib) —侧壁连通的第三水 平传输孔 (B3c) 连接外部光信号接口 (E), 第一 V型槽 (Bla) 和第二 V 型槽 (Bib) 两外侧壁分别贴放第一滤波片 (C1 ) 和第二滤波片 (C2 ), 构 成一种单纤三向光器件模块。
11. 根据权利要求 6所述的光器件模块, 其特征在于: 主体 (B) 内的 第一 V型槽 (Bla) 的第一 V型槽口 (B2a) 连接激光器 (A), 与 V型槽 夹角中心线平行的光信号传输孔 (B4) 将第一 V型槽 (Bla) 与第二 V型 槽 (Bib) 连通, 第一 V 型槽 (Bla) 的第一水平传输孔 (B3a) 与第一探 测器 (D1 ) 连接, 第二 V型槽 (Bib) 的第二水平传输孔 (B3b) 与第二探 测器(D2 )连接, 第二 V型槽 (Bib) 的第二 V型槽口 (B2b)连接外部光 信号接口 (E), 第一 V型槽 (Bla) 和第二 V型槽 (Bib)相通的两侧壁分 别贴放第一滤波片 (C1 )和第二滤波片 (C2 ), 构成一种单纤三向光器件模 块。
PCT/CN2010/080116 2010-01-28 2010-12-22 光信号管理用光器件模块式封装v型槽主体及其光器件模块 WO2011091693A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012550303A JP2013518304A (ja) 2010-01-28 2010-12-22 光信号管理用光デバイスモジュール式パッケージングv型溝体及びその光デバイスモジュール
US13/559,689 US9086550B2 (en) 2010-01-28 2012-07-27 Optical device packaging structure and optical device module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010114191.6 2010-01-28
CN 201010114191 CN101770054B (zh) 2010-01-28 2010-01-28 光信号管理用光器件模块式封装v型槽主体及其光器件模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/559,689 Continuation-In-Part US9086550B2 (en) 2010-01-28 2012-07-27 Optical device packaging structure and optical device module

Publications (1)

Publication Number Publication Date
WO2011091693A1 true WO2011091693A1 (zh) 2011-08-04

Family

ID=42503027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080116 WO2011091693A1 (zh) 2010-01-28 2010-12-22 光信号管理用光器件模块式封装v型槽主体及其光器件模块

Country Status (4)

Country Link
US (1) US9086550B2 (zh)
JP (1) JP2013518304A (zh)
CN (1) CN101770054B (zh)
WO (1) WO2011091693A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770054B (zh) * 2010-01-28 2012-07-04 武汉优信光通信设备有限责任公司 光信号管理用光器件模块式封装v型槽主体及其光器件模块
CN103840310A (zh) * 2014-03-19 2014-06-04 索尔思光电(成都)有限公司 光模块支持热插拔系统
CN105652393B (zh) * 2016-03-18 2018-01-05 武汉华工正源光子技术有限公司 基于光学基座的单纤双向器件的封装结构及封装方法
CN109254355A (zh) * 2018-10-15 2019-01-22 深圳市亚派光电器件有限公司 光接收器件
CN113176639A (zh) * 2021-06-25 2021-07-27 武汉联特科技股份有限公司 集成式双向光器件以及光学装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142680A (en) * 1997-07-09 2000-11-07 Alps Electric Co., Ltd. Optical transmission/reception module
CN2606496Y (zh) * 2003-04-04 2004-03-10 深圳飞通光电股份有限公司 一种单光纤双向传输光电收发模块(一)
CN2606497Y (zh) * 2003-04-04 2004-03-10 深圳飞通光电股份有限公司 一种单光纤双向传输光电收发模块( 二)
CN1570688A (zh) * 2004-04-26 2005-01-26 武汉电信器件有限公司 单纤三向光电组件
CN2676502Y (zh) * 2004-03-08 2005-02-02 武汉光迅科技有限责任公司 三端口单纤双向器件
CN101770054A (zh) * 2010-01-28 2010-07-07 武汉优信光通信设备有限责任公司 光信号管理用光器件模块式封装v型槽主体及其光器件模块
CN201662637U (zh) * 2010-01-28 2010-12-01 武汉优信光通信设备有限责任公司 光信号管理用光器件模块式封装v型槽主体及其光器件模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524789A (ja) * 1998-04-30 2003-08-19 インフィネオン テクノロジース アクチエンゲゼルシャフト マルチチャネル用途に対する双方向光モジュール
KR100640421B1 (ko) * 2004-12-28 2006-10-31 삼성전자주식회사 다파장용 광소자 모듈
JP2006235482A (ja) * 2005-02-28 2006-09-07 Japan Aviation Electronics Industry Ltd 光モニタモジュール
CN102449518B (zh) * 2009-06-01 2014-07-02 三菱电机株式会社 光发送接收模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142680A (en) * 1997-07-09 2000-11-07 Alps Electric Co., Ltd. Optical transmission/reception module
CN2606496Y (zh) * 2003-04-04 2004-03-10 深圳飞通光电股份有限公司 一种单光纤双向传输光电收发模块(一)
CN2606497Y (zh) * 2003-04-04 2004-03-10 深圳飞通光电股份有限公司 一种单光纤双向传输光电收发模块( 二)
CN2676502Y (zh) * 2004-03-08 2005-02-02 武汉光迅科技有限责任公司 三端口单纤双向器件
CN1570688A (zh) * 2004-04-26 2005-01-26 武汉电信器件有限公司 单纤三向光电组件
CN101770054A (zh) * 2010-01-28 2010-07-07 武汉优信光通信设备有限责任公司 光信号管理用光器件模块式封装v型槽主体及其光器件模块
CN201662637U (zh) * 2010-01-28 2010-12-01 武汉优信光通信设备有限责任公司 光信号管理用光器件模块式封装v型槽主体及其光器件模块

Also Published As

Publication number Publication date
US9086550B2 (en) 2015-07-21
CN101770054A (zh) 2010-07-07
CN101770054B (zh) 2012-07-04
US20120288243A1 (en) 2012-11-15
JP2013518304A (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
US9322987B2 (en) Multicore fiber coupler between multicore fibers and optical waveguides
JP5198353B2 (ja) レンズアレイおよびこれを備えた光モジュール
CN104364690B (zh) 具有高耦合效率的允许未对准的全内反射光纤接口模块和组件
EP3063574B1 (en) Multiplexed optoelectronic engines
CN205427247U (zh) 一种用于多路并行传输的光收发组件
US9178620B2 (en) Optical interface for bidirectional communications
WO2011091693A1 (zh) 光信号管理用光器件模块式封装v型槽主体及其光器件模块
CN106597616B (zh) 一种光模块
TW201423183A (zh) 光纖連接器
CN103278894A (zh) 耦合组件及应用其的光纤阵列模块、光收发引擎模块
CN205229523U (zh) 一种用于多路并行传输的光收发模块
CN1469144A (zh) 光波导、光模块及其制造方法
CN102621641A (zh) 光纤连接器
CN106908911A (zh) 一种用于多路并行传输的光收发组件
CN102169214A (zh) 用于并行传输的光收发组件
JP2015114548A (ja) 光合分波器および光通信システム
CN108693607A (zh) 光通信模组及双向光通信模组
CN203941321U (zh) 光学组件
JP5550353B2 (ja) レンズアレイおよびこれを備えた光モジュール
US9046667B2 (en) Photoelectric conversion device and optical fiber coupling connector
TW201423182A (zh) 光電耦合件及其使用的光電轉換裝置
WO2022083041A1 (zh) 一种光模块
CN201063636Y (zh) Plc型单纤双向双端口组件
CN102841413A (zh) 用于宽带高速传输的并行光收发组件
CN201662637U (zh) 光信号管理用光器件模块式封装v型槽主体及其光器件模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012550303

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844470

Country of ref document: EP

Kind code of ref document: A1