WO2011089658A1 - 補正用治具を用いた検査装置の補正方法、補正用治具を搭載した検査装置 - Google Patents
補正用治具を用いた検査装置の補正方法、補正用治具を搭載した検査装置 Download PDFInfo
- Publication number
- WO2011089658A1 WO2011089658A1 PCT/JP2010/002320 JP2010002320W WO2011089658A1 WO 2011089658 A1 WO2011089658 A1 WO 2011089658A1 JP 2010002320 W JP2010002320 W JP 2010002320W WO 2011089658 A1 WO2011089658 A1 WO 2011089658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission image
- jig
- correction
- unit
- radiation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/081—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
- H05K13/0818—Setup of monitoring devices prior to starting mounting operations; Teaching of monitoring devices for specific products; Compensation of drifts during operation, e.g. due to temperature shifts
Definitions
- the present invention relates to a correction method for an inspection apparatus using a correction jig for the inspection apparatus, and an inspection apparatus equipped with the correction jig.
- substrates on which electronic components are mounted include BGA (Ball Grid Array) and LGA (Land Grid Array).
- the terminal which is the electrical connection part of the component, is located between the board and the component, and it is difficult to observe the state of solder that joins the component and the substrate with a conventional visual inspection apparatus using a camera. It is. Therefore, the substrate is irradiated with X-rays from a plurality of different directions, the three-dimensional shape of the solder at the joint is reconstructed into an image based on the transmission image, and an inspection is performed using a cross-sectional image obtained by cutting an arbitrary cross-section from the image.
- a technique has been proposed (see Patent Document 1).
- the present invention has been made in view of such circumstances, and an object thereof is to provide means for easily correcting the imaging system of the inspection apparatus.
- An aspect of the present invention relates to a correction method for an inspection apparatus.
- the transmission image captured using the jig as an object to be inspected is image-analyzed to identify the feature point of the jig displayed in the transmission image, and the feature point of the jig displayed in the transmission image Based on the amount of deviation from the center of the entire transmission image, the positional relationship between the radiation detector that acquires the transmission image and the inspection object is corrected.
- the apparatus includes a holding unit configured to be integrated with a jig to fix an object to be inspected, a detection unit that detects radiation transmitted through the object to be inspected or the jig, and generates a transmission image;
- the transmission object and the transmission image are acquired by moving the holding unit based on the deviation amount calculated from the feature point of the jig displayed on the transmission image of the jig and the center of the entire transmission image.
- a drive unit that corrects the positional relationship with the radiation detector.
- Still another aspect of the present invention also relates to an inspection apparatus.
- the apparatus includes a holding unit configured to be integrated with a jig to fix an object to be inspected, a detection unit that detects radiation transmitted through the object to be inspected or the jig, and generates a transmission image; Acquire the transmission image of the jig, identify the feature point of the jig displayed in the transmission image, and calculate the amount of deviation between the feature point of the jig displayed in the transmission image and the center of the entire transmission image And an imaging control unit that corrects a positional relationship between the object to be inspected and a radiation detector that acquires a transmission image based on the amount of deviation.
- means for easily correcting the imaging system of the inspection apparatus can be provided.
- FIG. 3 illustrates each functional block processed by the PC 10 according to the first embodiment.
- 6 is a flowchart showing a flow of position adjustment processing of a substrate holding unit using the correction jig according to the first embodiment.
- FIG. 3 is a diagram schematically illustrating a geometric positional relationship between the radiation generator, the substrate holding unit, and the detector according to the first embodiment. It is the figure which showed typically the external appearance of the board
- FIG. 9 is a diagram schematically illustrating a pixel value correction table in the case of FIG. 8.
- Each functional block which PC10 concerning Embodiment 2 processes is illustrated. 6 is a flowchart showing a flow of creating a correction table according to the second embodiment;
- Embodiment 1 An outline of the first embodiment of the present invention will be described.
- the correction jig is placed on the substrate holder so that the image is captured at the center of the detector, and the transmission image is captured.
- the center of the captured correction jig and the center of the transmission image are Measure the amount of deviation.
- the correction amount of the installation position of the correction jig in the substrate holder is calculated, and the position of the correction jig is corrected by moving the substrate holder. .
- FIG. 1 is a diagram schematically showing a radiation inspection apparatus 100 according to an embodiment.
- the radiation inspection apparatus 100 includes a PC (Personal Computer) 10, a monitor 12, and an imaging unit 32.
- the imaging unit 32 further includes a radiation quality changing unit 14, a radiation generator driving unit 16, a substrate holding unit driving unit 18, a detector driving unit 20, a radiation generator 22, a substrate holding unit 24, and a detector 26.
- the radiation generator 22 is a part that generates radiation such as X-rays, which generates radiation by, for example, colliding accelerated electrons with a target such as tungsten or diamond.
- the substrate holding unit 24 holds a substrate that is an object to be inspected.
- the substrate held by the substrate holder 24 is irradiated with radiation generated by the radiation generator 22, and the radiation transmitted through the substrate is captured as an image by the detector 26.
- the radiation transmission image of the substrate imaged by the detector 26 is referred to as a “transmission image”.
- the transmission image is sent to the PC 10 and is reconstructed into an image including the three-dimensional shape of the solder at the joint using a known technique such as a filtered back projection method (Filtered-Backprojection method, FBP method).
- the reconstructed image and the transparent image are stored in a storage in the PC 10 or an external storage (not shown).
- a reconstructed image an image reconstructed into a three-dimensional image including the three-dimensional shape of the solder at the joint portion based on the transmission image.
- An image obtained by cutting an arbitrary cross section from the reconstructed image is referred to as a “cross section image”.
- the reconstructed image and the cross-sectional image are output to the monitor 12.
- the monitor 12 displays not only the reconstructed image and the cross-sectional image, but also the inspection result of the solder joint state described later.
- the quality change unit 14 changes the quality of radiation generated by the radiation generator 22.
- the radiation quality is determined by a voltage (hereinafter referred to as “tube voltage”) applied to accelerate electrons colliding with the target and a current (hereinafter referred to as “tube current”) that determines the number of electrons.
- the quality changing unit 14 controls the tube voltage and the tube current. This can be achieved using known techniques such as transformers and rectifiers.
- the quality of radiation is determined by the brightness and hardness of radiation (spectral distribution of radiation).
- Increasing the tube current increases the number of electrons colliding with the target and the number of radiation photons generated.
- the brightness of radiation increases.
- some components such as capacitors are thicker than other components, and it is necessary to irradiate radiation with high brightness in order to capture transmission images of these components.
- the brightness of the radiation is adjusted by adjusting the tube current.
- the tube voltage is increased, the energy of electrons colliding with the target is increased, and the energy (spectrum) of the generated radiation is increased.
- the greater the energy of radiation the greater the penetration force of the substance and the less it is absorbed by the substance.
- the contrast of a transmission image captured using such radiation is low. Therefore, the tube voltage can be used to adjust the contrast of the transmission image.
- the radiation generator drive unit 16 has a drive mechanism such as a motor (not shown), and can move the radiation generator 22 up and down along an axis passing through its focal point. This makes it possible to change the irradiation field by changing the distance between the radiation generator 22 and the object to be inspected held by the substrate holder 24, and to change the magnification of the transmission image picked up by the detector 26. .
- the detector drive unit 20 also has a drive mechanism such as a motor (not shown), and rotates the detector 26 along the detector rotation path 30.
- the substrate holding unit driving unit 18 also has a drive mechanism such as a motor (not shown), and translates the substrate holding unit 24 on a plane on which the substrate rotation track 28 is stretched.
- the substrate holding unit 24 is configured to rotate and move on the substrate rotation track 28 in conjunction with the rotational movement of the detector 26. Thereby, it is possible to capture a transmission image while changing the relative positional relationship between the substrate held by the substrate holding unit 24 and the radiation generator 22.
- the rotation radius of the substrate rotation track 28 and the detector rotation track 30 is not fixed but can be freely changed. Thereby, it becomes possible to change the irradiation angle of the radiation irradiated to the components arranged on the substrate.
- the PC 10 controls all operations of the radiation inspection apparatus 100 described above. Although not shown, the PC 10 is connected to an input device such as a keyboard and a mouse and a communication interface such as a LAN.
- FIG. 2 illustrates each functional block processed by the PC 10 according to the first embodiment.
- the PC 10 includes a recording unit 34, a deviation amount specifying unit 36, a correction amount calculating unit 38, and an imaging control unit 40.
- the recording unit 34 stores a transmission image or the like of the correction jig on the substrate holding unit 24 acquired from the detector 26.
- the deviation amount specifying unit 36 acquires the transmission image of the correction jig from the recording unit 34 and specifies the deviation amount between the center of the correction jig displayed in the transmission image and the center of the transmission image.
- the correction amount calculation unit 38 acquires the current geometric positional relationship of the imaging system from the imaging control unit 40, acquires the shift amounts from the shift amount specifying unit 36, and based on the information, Since the center of the correction jig is displayed at the center, a correction amount for shifting the correction jig (hereinafter referred to as “center correction amount”) is calculated.
- the imaging control unit 40 instructs the beam quality changing unit 14 to change the tube voltage and the tube current, and controls the radiation generator driving unit 16, the substrate holding unit driving unit 18, and the detector driving unit 20 to control the reconstruction image. A transmission image necessary for generation is taken. Further, the position of the substrate holder 24 is adjusted via the substrate holder drive unit 18 in accordance with the center correction amount calculated by the correction amount calculator 38.
- Each functional block described above is realized by cooperation of a CPU that executes various arithmetic processes, hardware such as a RAM used as a work area for data storage and program execution, and software. Therefore, these functional blocks can be realized in various forms by a combination of hardware and software.
- FIG. 3 is a flowchart showing the flow of the position adjustment process of the substrate holder using the correction jig according to the first embodiment. The processing in this flowchart starts when the deviation amount specifying unit 36 acquires a transmission image of the correction jig.
- the deviation amount specifying unit 36 acquires a transmission image of the correction jig from the recording unit 34 (S10). Thereafter, the deviation amount specifying unit 36 specifies the center of the correction jig displayed in the transmission image, and specifies the deviation amount from the center of the transmission image (S12). When the deviation amount exceeds the predetermined allowable range (S14N), the correction amount calculation unit 38 acquires the geometric positional relationship of the current imaging system from the imaging control unit 40, and the deviation amount. Each deviation amount is acquired from the specifying unit 36, and a center correction amount is calculated based on the information (S16). The imaging control unit 40 adjusts the position of the substrate holding unit 24 via the substrate holding unit driving unit 18 in accordance with the center correction amount calculated by the correction amount calculating unit 38 (S18).
- FIG. 4 is a diagram schematically showing the geometric positional relationship between the radiation generator 22, the substrate holder 24, and the detector 26. As shown in FIG.
- the rotation center of the detector rotation trajectory 30 is defined as the origin O (0, 0, 0), and a straight line passing through the origin O and perpendicular to the plane on which the detector rotation trajectory 30 exists is defined as the Z axis.
- the coordinates of the point are (0, 0, Z t ).
- the rotation center of the substrate rotation trajectory 28 also exists on the Z axis, the coordinates of the point are set to (0, 0, Z s ).
- a jig whose transmission image is circular is used as a correction jig. For example, if a square metal plate is prepared and a circular hole centered on the intersection of the square diagonal lines is formed, the transmission image becomes a circular image centered on the intersection of the square diagonal lines.
- a correction jig is installed on the substrate holder 24 so that the center of the circle is on the substrate rotation track 28.
- the coordinates of the center of the circle are (X s , Y s , Z s ). If the ratio of the rotation radius of the substrate rotation trajectory 28 to the rotation radius of the detector rotation trajectory 30 is Z s vs. Z t , if the center of the detector 26 is on the detector rotation trajectory 30, the correction treatment is performed.
- the center of the circle which is the transparent image of the tool should be the center of the transparent image.
- the coordinates of the center of the circle are (X s , Y s , Z s ) on the XY plane. Projected on. Since the center of the transmission image is the center of the detector, if the coordinates are (X D , Y D , 0), the deviation amount ⁇ x in the X axis direction and the deviation amount ⁇ y in the Y axis direction are It becomes. Therefore, the substrate holding part 24 that holds the correction jig is moved in the X-axis direction and the Y-axis direction, respectively. If only shifted, the center of the circle, which is the transmission image of the correction jig, becomes the center of the transmission image. Therefore, equation (1) is the center correction amount.
- the deviation amount specifying unit 36 specifies the center of the circle that is the transmission image of the correction jig by image analysis, and specifies the deviation amounts ⁇ x and ⁇ y from the center of the transmission image.
- the correction amount calculation unit 38 obtains the Z coordinate of the radiation generator 22, the coordinates of the center of the substrate holding unit 24, and the coordinates of the center of the detector 26 from the imaging control unit 40, and based on the above equation (1).
- a center correction amount is calculated.
- the imaging control unit 40 acquires the center correction amount calculated by the correction amount calculation unit 38 and corrects the position of the substrate holding unit 24 via the substrate holding unit driving unit 18.
- the imaging control unit 40 stores the center correction amount in the recording unit 34.
- the substrate holding unit 24 and the detector 26 are rotated to acquire a transmission image. Therefore, the above-described center correction amount is obtained at a plurality of points on the rotation trajectory. The once obtained center correction amount is stored in the recording unit 34, and the center correction amount stored in the recording unit 34 is read and adjusted until the center correction amount is updated.
- FIG. 5 is a view schematically showing the appearance of the substrate holding part 24 including the correction jig 42 in part.
- a correction jig 42 is installed adjacent to the substrate holding part 24, and the substrate holding part 24 and the correction jig 42 are integrated.
- the substrate holder 24 can translate on the plane on which the substrate rotation track 28 extends. Therefore, during inspection, the inspection object is held by the substrate holding unit 24 as usual, and when it is necessary to correct the position of the substrate holding unit 24, the correction jig 42 is placed on the substrate rotation track 28. Is moved in parallel on the plane on which the substrate rotation trajectory 28 is stretched until it rides on.
- the step of installing the correction jig 42 in the substrate holding part 24 prior to the calculation of the center correction amount can be omitted.
- the inspection apparatus according to the first embodiment is often installed in an unmanned production line. The fact that the step of installing the correction jig 42 can be omitted leads to reduction of not only the time required for installation but also the time required for the engineer to go to the apparatus and the necessary expenses for that purpose, which can greatly reduce the cost.
- the center correction amount by using the above-described method for calculating the center correction amount, it is possible to update the center correction amount by using the free time between inspections. For this reason, the average required time for calculating the center correction amount is stored in the recording unit 34 in advance, and the free time between inspections is required for calculating the center correction amount. It can be determined whether or not there is more. This determination is performed by the deviation amount specifying unit 36. Alternatively, a dedicated configuration such as a center correction amount update start determination unit (not shown) may be prepared.
- FIG. 6 is a flowchart for explaining the flow of processing for updating the center correction amount by using the free time between inspections.
- the processing in this flowchart starts when, for example, a predetermined time is left between inspections.
- the deviation amount specifying unit 36 refers to the inspection schedule stored in the recording unit 34 in advance, and updates the center correction amount when there is sufficient time for calculating the center correction amount between inspections. (S20). Alternatively, the deviation amount specifying unit 36 acquires the timing of updating the center correction amount from the operator via a user interface such as a keyboard or a LAN (not shown).
- the deviation amount specifying unit 36 calculates how many central correction amounts can be updated, that is, the number N of times of updating, based on the inspection free time acquired from the recording unit 34. Further, the deviation amount specifying unit 36 specifies N locations in order from the oldest update among the center correction amounts recorded in the recording unit 34 (S22). Alternatively, the deviation amount specifying unit 36 acquires the location where the center correction amount is to be updated from the operator.
- the deviation amount specifying unit 36 sets a loop variable i in an internal work memory (not shown), and initializes the loop variable i with 1 (S24).
- the loop variable i is used to perform N updates specified as the number of updates of the center correction amount.
- the deviation amount specifying unit 36 acquires the transmission image of the correction jig 42 that has been imaged and stored in the recording unit 34, and the above-described deviation amount ⁇ x in the X-axis direction. and determine the shift amount [delta] y in the Y-axis direction, the correction amount calculation unit 38, Z-coordinate of the radiation generator 22 from the imaging control unit 40, the coordinates of the center of the substrate holder 24, and the coordinates of the center of the detector 26
- the center correction amount is acquired based on the above-described equation (1) (S28).
- the imaging control unit 40 acquires the center correction amount calculated by the correction amount calculation unit 38 and corrects the position of the substrate holding unit 24 via the substrate holding unit driving unit 18 (S30).
- the deviation amount specifying unit 36 updates the loop variable i with i + 1 (S32), and continues to update the center correction amount.
- the loop variable i becomes larger than N (S26N)
- the processing in this flowchart ends.
- Operation with the above configuration is as follows.
- the user installs the inspection apparatus according to the first embodiment on the production line.
- the inspection apparatus acquires a transmission image of the correction jig 42 provided in the substrate holding unit 24 when a predetermined time is left between the inspections, and the center is based on the above formula (1).
- a correction amount is calculated.
- the position of the substrate holder 24 is corrected based on the calculated center correction amount, and the center correction amount is stored in the inspection apparatus. Since the center correction amount is updated in order from the oldest, the geometric position of the imaging system of the inspection apparatus as a whole is appropriately corrected.
- the second embodiment relates to correction of the detector.
- the pixel value of the transmission image created when no radiation is irradiated to the detector is 0, and the pixel value of the transmission image created when radiation is irradiated until the maximum dynamic range of the detector is 100
- a table is created by examining changes in pixel values with respect to the radiation dose. Using the table, the pixel value of the transmission image is corrected so that the relationship between the pixel value of the transmission image and the radiation dose is linear.
- the distance between any two points on the radiation detector and the radiation source is different, the distance between the detector and the radiation source in view of the phenomenon that the radiation dose reaching the detector is different due to radiation attenuation. Based on the above, the pixel value of the transparent image is corrected.
- FIG. 7 is a diagram schematically showing the positional relationship between the radiation generator 22 and the point of interest 44 on the detector 26.
- the rotation center of the detector rotation trajectory 30 is defined as an origin O (0, 0, 0)
- a straight line passing through the origin O and perpendicular to the plane on which the detector rotation trajectory 30 exists is defined as the Z axis.
- the coordinates of the point are (0, 0, Z t ).
- the coordinates of the point of interest 44 on the detector 26 be (X D , Y D , 0).
- L 2 X D 2 + Y D 2 + Z t 2 is satisfied.
- the radiation generator 22 is a point light source.
- the amount of light (including radiation) emitted from the point light source is inversely proportional to the square of the distance L from the point light source. Accordingly, the amount of radiation emitted from the radiation generator 22 varies depending on the coordinates of the point of interest 44 on the detector 26.
- the amount of radiation I emitted from the radiation generator 22 and detected at the point of interest 44 be I (X D , Y D ) as a function of the X coordinate X D and Y coordinate Y D of the point of interest 44.
- the following equation (2) may be used to convert the received light amount I at the point of interest 44 into the received light amount I ′ at the origin O (0, 0, 0).
- FIG. 8 is a diagram schematically showing the relationship between the radiation applied to the detector 26 and the pixel value of the transmission image at that time.
- the amount of radiation received by the detector 26 is determined by the amount of photons that strike the detector 26.
- Increasing the time during which the detector 26 receives radiation ie, increasing the shutter time, increases the amount of received radiation.
- the tube current is increased, the density of photons per unit time increases, so that the amount of received radiation increases even during the same shutter time. Therefore, by changing the shutter time t or the tube current i, the amount of radiation when the maximum radiation amount allowed by the dynamic range of the detector 26 is set to 100% is set on the horizontal axis.
- Curve 48 is a curve obtained by plotting the pixel value of the transmission image when the radiation dose is changed from 0 to 100 in increments of 25 by controlling the shutter time t or the tube current i, and is made into a curve by interpolation. In the example of FIG. 8, the curve 48 exists below the broken line 46. This means that when the radiation dose is X%, the pixel value should be X when the radiation dose and the pixel value are in a linear relationship, but actually the pixel value is smaller than X. ing. Therefore, by preparing a correction table that increases the pixel value of the transmission image and correcting the pixel value, the radiation dose and the pixel value of the transmission image can be converted into a linear relationship.
- FIG. 9 is a diagram schematically showing a pixel value correction table in the case of FIG.
- a curve 50 in the figure is a correction table in the case where the horizontal axis is the pixel value of the transmission image before correction, and the vertical value is the value of the transmission image after correction, and the shape thereof is the reverse of the curve 48 in FIG. It becomes a function.
- FIG. 10 illustrates functional blocks processed by the PC 10 according to the second embodiment.
- the PC 10 includes a recording unit 34, an image correction unit 52, a correction table generation unit 54, and an imaging control unit 40.
- the correction table generation unit 54 further includes a pixel value correction table generation unit 56 and a received light amount correction table generation unit 58.
- the received light amount correction table generating unit 58 creates a received light amount correction table for correcting the influence of radiation attenuation based on the above-described equation (2). Equation (2) uses the geometric positional relationship between the radiation generator 22 and the detector 26 as a parameter. Therefore, the received light amount correction table generation unit 58 acquires the geometric positional relationship between the radiation generator 22 and the detector 26 from the imaging control unit 40, and each light receiving element value of the detector 26 in the coordinate system of FIG.
- a received light amount correction table in the form of a function of the equation (2) is generated with the position coordinates (X D , Y D ) as inputs.
- the pixel value correction table generation unit 56 creates a correction table so that the radiation dose and the pixel value of the transmission image are linear. For this reason, the pixel value correction table generation unit 56 instructs the imaging control unit 40 to irradiate the radiation dose from the radiation generator 22 at a predetermined interval between 0% and 100%, A pixel value of a transmission image in a state where there is no inspection object is acquired. Next, the pixel value correction table generation unit 56 complements the data of the radiation dose and the pixel value of the transmission image using a known interpolation technique such as spline interpolation, and the radiation dose and transmission image as shown by the curve 48 in FIG. A curve representing the relationship with the pixel value is obtained. Finally, an inverse function of the obtained curve is obtained to generate a pixel value correction table in which the radiation dose and the pixel value of the transmission image are linear.
- a known interpolation technique such as spline interpolation
- the image correction unit 52 acquires a pixel value correction table and a received light amount correction table from the pixel value correction table generation unit 56 and the received light amount correction table generation unit 58, respectively.
- the pixel value correction table and the received light amount correction table may be collectively referred to as a “correction table”.
- the acquired correction table the pixel value of the transmission image before correction stored in the recording unit 34 is corrected, and the result is stored in the recording unit 34.
- the pixel value correction table generation unit 56 instructs the imaging control unit 40 to create the pixel value correction table at each position while rotating the substrate holding unit 24 and the detector 26.
- a pixel value correction table and a received light amount correction table are created for each imaging condition (geometric relationship of the imaging system, tube current, tube voltage value) frequently used in advance, and stored in the recording unit 34. This makes it possible to perform correction quickly in the inspection process.
- the correction tables are updated in order from the correction table with the oldest creation time.
- FIG. 11 is a flowchart showing a flow of creating a correction table according to the second embodiment. The processing in this flowchart starts, for example, at the timing when the correction table is updated in the idle time between inspections.
- the received light amount correction table generation unit 58 acquires geometric information of the current imaging system from the imaging control unit 40 (S34), and generates a received light amount correction table based on the above equation (2) (S36).
- the pixel value correction table generation unit 56 instructs the imaging control unit 40 to change the radiation from the radiation generator 22 at a predetermined interval between 0% and 100% (S38).
- the pixel value correction table generation unit 56 acquires the pixel value of the transmission image of the correction jig 42 that has been imaged and recorded in the recording unit 34 (S40).
- the process returns to step S38 and continues to capture a transmission image.
- the pixel value correction table generation unit 56 calculates the curve representing the relationship between the radiation dose and the pixel value of the transmission image.
- a pixel value correction table is generated by obtaining an inverse function (S44).
- the pixel value correction table generation unit 56 sets new imaging conditions via the imaging control unit 40 (S48), and the correction table. Continue to generate.
- the correction table is generated with all the imaging conditions to be obtained (S46Y)
- the processing in this flowchart ends.
- Operation with the above configuration is as follows.
- the user installs the inspection apparatus according to the second embodiment on the production line.
- the inspection apparatus acquires a transmission image immediately after starting the inspection apparatus or when there is a predetermined time between inspection and inspection, and calculates a correction table based on the above equation (1).
- the calculated correction table is stored in the inspection apparatus, and the image correction unit 52 corrects the pixel value of the transmission image every time a transmission image is captured. Since the center correction amount is updated in order from the oldest, the pixel value of the transmission image of the inspection apparatus is appropriately corrected as a whole.
- the second embodiment it is possible to acquire a transmission image in which fluctuations in pixel values due to radiation attenuation are corrected.
- the first embodiment and the second embodiment have been described above. Any combination of these embodiments is also useful as an embodiment of the present invention. If the correction table is generated in the inspection apparatus including the substrate holding unit 24 in which the correction jig 42 is integrated by combining the first embodiment and the second embodiment, the first embodiment and the first embodiment will be described. In addition to the sum of the effects of the second aspect, the center correction amount can be calculated using the transmission image of the correction jig 42 in which the pixel value is appropriately corrected. Therefore, the calculation accuracy of the center correction amount is further improved. This is advantageous.
- the center correction amount calculated by the correction amount calculation unit 38 is acquired, and the imaging control unit 40 corrects the position of the substrate holding unit 24 via the substrate holding unit driving unit 18. As described above, the imaging control unit 40 may correct the position of the detector 26.
- the correction jig is not limited to a circle whose transmission image is circular, and has some characteristic points. Any shape can be used.
- a feature point is a point that can be specified by image analysis among shapes projected on a transparent image, for example, an end point of a line segment, a corner of a broken line, an intersection of two or more line segments, the tip of an arrow, In the case of a point-symmetric figure, it is the center of rotation or the center of gravity of an arbitrary figure.
- the deviation amount specifying unit 36 performs image analysis according to the feature points.
- the present invention can be applied to the correction of the inspection apparatus using the correction jig of the inspection apparatus and the inspection apparatus equipped with the correction jig.
Landscapes
- Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
保持部は、治具と一体に構成されている、被検査体を固定する。検出部は、前記被検査体または前記治具を透過した放射線を検出して透過画像を生成する。ずれ量特定部36は、前記治具の透過画像を取得してその透過画像に映し出された治具の特徴点を特定し、当該透過画像に映し出された治具の特徴点と前記透過画像全体の中心とのずれ量を算出する。撮像制御部40は、前記ずれ量に基づいて前記被検査体と透過画像を取得する放射線検出器との位置関係を補正する。
Description
本発明は検査装置の補正用治具を用いた検査装置の補正方法、補正用治具を搭載した検査装置に関する。
電子部品が実装された基板(以下「基板」という。)には、BGA(Ball Grid Array)やLGA(Land Grid Array)が実装されているものがある。これらの基板では、部品の電気接続部である端子は基板と部品との間に位置し、カメラを用いた従来の外観検査装置では部品と基板とを接合するはんだの状態を観察することが困難である。このため、基板に複数の異なる方向からX線を照射し、その透過画像に基づいて接合部分のはんだの立体形状を画像に再構成し、そこから任意断面を切り出した断面画像を用いて検査する技術が提案されている(特許文献1参照)。
被検査体の透過画像からその被検査体の立体形状を再構成する手法は種々存在するが、被検査体とX線照射部との距離や照射する角度、被検査体とX線検出器の距離等、透過画像を撮像する撮像系の幾何学的な位置関係が必要となる場合が多い。その場合、手法が仮定する幾何学的な位置関係と実際の撮像系とを一致させるのであるが、そのためには検査工程を止めて位置関係の計測をする等煩雑な手続が必要である。また、X線検出器を構成する複数の放射線受光素子について、その出力値のばらつきも抑えたい。
本発明はこうした状況に鑑みてなされたものであり、その目的は、検査装置の撮像系を簡便に補正する手段を提供することにある。
本発明のある態様は検査装置の補正方法に関する。この方法は、治具を被検査体として撮像された透過画像を画像解析して前記透過画像に映し出された治具の特徴点を特定し、当該透過画像に映し出された治具の特徴点と前記透過画像全体の中心とのずれ量に基づいて、透過画像を取得する放射線検出器と前記被検査体との位置関係を補正する。
本発明の別の態様は、検査装置に関する。この装置は、治具と一体に構成されている、被検査体を固定する保持部と、前記被検査体または前記治具を透過した放射線を検出して透過画像を生成する検出部と、前記治具の透過画像に映し出された治具の特徴点と前記透過画像全体の中心とから算出されたずれ量に基づいて前記保持部を移動することにより、前記被検査体と透過画像を取得する放射線検出器との位置関係を補正する駆動部とを含む。
本発明のさらに別の態様も、検査装置に関する。この装置は、治具と一体に構成されている、被検査体を固定する保持部と、前記被検査体または前記治具を透過した放射線を検出して透過画像を生成する検出部と、前記治具の透過画像を取得してその透過画像に映し出された治具の特徴点を特定し、当該透過画像に映し出された治具の特徴点と前記透過画像全体の中心とのずれ量を算出するずれ量特定部と、前記ずれ量に基づいて前記被検査体と透過画像を取得する放射線検出器との位置関係を補正する撮像制御部とを含む。
なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システム、コンピュータプログラム、データ構造、記録媒体等の間で変換したものもまた、本発明の態様として有効である。
本発明によれば、検査装置の撮像系を簡便に補正する手段を提供することができる。
(実施の形態1)
本発明の実施の形態1の概要を述べる。実施の形態1は、補正用治具が検出器の中心に撮像されるように基板保持部に設置してその透過画像を撮像し、撮像された補正用治具の中心と透過画像の中心とのずれ量を計測する。撮像時の撮像系の幾何学的な位置関係に基づいて、基板保持部における補正用治具の設置位置の補正量を計算し、基板保持部を動かすことで補正用治具の位置を補正する。
本発明の実施の形態1の概要を述べる。実施の形態1は、補正用治具が検出器の中心に撮像されるように基板保持部に設置してその透過画像を撮像し、撮像された補正用治具の中心と透過画像の中心とのずれ量を計測する。撮像時の撮像系の幾何学的な位置関係に基づいて、基板保持部における補正用治具の設置位置の補正量を計算し、基板保持部を動かすことで補正用治具の位置を補正する。
図1は実施の形態にかかる放射線検査装置100を模式的に表した図である。放射線検査装置100は、PC(Personal Computer)10、モニタ12、および撮像部32を含む。撮像部32はさらに、線質変更部14、放射線発生器駆動部16、基板保持部駆動部18、検出器駆動部20、放射線発生器22、基板保持部24、および検出器26を含む。
放射線発生器22はX線等の放射線を発生させる部分であり、これは例えば加速させた電子をタングステンやダイアモンド等のターゲットに衝突させることで放射線を発生する。
基板保持部24は被検査体である基板を保持する。基板保持部24に保持された基板に放射線発生器22で発生させた放射線を照射し、基板を透過した放射線を検出器26で画像として撮像する。以下、検出器26で撮像された基板の放射線透過画像を「透過画像」という。
透過画像はPC10に送られ、例えばフィルタ補正逆投影法(Filtered-Backprojection法、FBP法)等の既知の技術を用いて、接合部分のはんだの立体形状を含む画像に再構成される。再構成された画像や透過画像は、PC10内のストレージや、図示しない外部のストレージに記憶される。以下、透過画像に基づいて接合部分のはんだの立体形状を含む3次元画像に再構成された画像を「再構成画像」という。また、再構成画像から任意の断面を切り出した画像を「断面画像」という。再構成画像および断面画像はモニタ12に出力される。なお、モニタ12は再構成画像や断面画像のみならず、後述するはんだの接合状態の検査結果等も表示する。
線質変更部14は放射線発生器22で発生される放射線の線質を変更する。放射線の線質は、ターゲットに衝突させる電子を加速するために印加する電圧(以下「管電圧」という)や、電子の数を決定する電流(以下「管電流」という)によって定まる。線質変更部14は、これら管電圧と管電流とを制御する部分である。これは変圧器や整流器等、既知の技術を用いて実現できる。
ここで、放射線の線質は、放射線の輝度と硬さ(放射線のスペクトル分布)とで定まる。管電流を大きくすればターゲットに衝突する電子の数が増え、発生する放射線の光子の数も増える。その結果、放射線の輝度が大きくなる。例えばコンデンサ等の部品の中には他の部品と比較して厚みがあるものもあり、これらの部品の透過画像を撮像するには輝度の大きな放射線を照射する必要がある。このような場合に管電流を調整することで放射線の輝度を調整する。また、管電圧を高くするとターゲットに衝突する電子のエネルギーが大きくなり、発生する放射線のエネルギー(スペクトル)が大きくなる。一般に、放射線のエネルギーが大きいほど物質の貫通力が大きくなり、物質に吸収されにくくなる。そのような放射線を用いて撮像した透過画像のコントラストは低くなる。このため、管電圧は透過画像のコントラストを調整するのに利用できる。
放射線発生器駆動部16は図示しないモータ等の駆動機構を有しており、放射線発生器22をその焦点を通る軸に沿って上下に移動することができる。これにより放射線発生器22と基板保持部24に保持される被検査対象との距離を変えて照射野を変更し、検出器26に撮像される透過画像の拡大率を変更することが可能となる。
検出器駆動部20も図示しないモータ等の駆動機構を有しており、検出器回転軌道30に沿って検出器26を回転移動する。また、基板保持部駆動部18も図示しないモータ等の駆動機構を有しており、基板回転軌道28が張る平面上を、基板保持部24を平行移動させる。基板保持部24は、検出器26の回転移動と連動して、基板回転軌道28上を回転移動する構成となっている。これにより、基板保持部24が保持する基板と放射線発生器22との相対的な位置関係を変更させながら透過画像を撮像することが可能となる。
ここで、基板回転軌道28と検出器回転軌道30との回転半径は固定ではなく、自由に変更できる構成となっている。これにより、基板に配置される部品に照射する放射線の照射角度を変更することが可能となる。
PC10は、上記の放射線検査装置100の全動作を制御する。なお、図示されていないが、PC10にはキーボードやマウス等の入力装置、およびLAN等の通信インタフェースが接続されている。
図2は、実施の形態1にかかるPC10が処理する各機能ブロックを図示したものである。PC10は、記録部34、ずれ量特定部36、補正量算出部38、および撮像制御部40を含む。
記録部34は、検出器26から取得した基板保持部24上の補正用治具の透過画像等を記憶する。ずれ量特定部36は、記録部34から補正用治具の透過画像を取得し、その透過画像に映し出されている補正用治具の中心と、透過画像の中心とのずれ量を特定する。補正量算出部38は、撮像制御部40から現在の撮像系の幾何学的な位置関係を、取得し、ずれ量特定部36からずれ量をそれぞれ取得し、それらの情報に基づいて透過画像の中心に補正用治具の中心が映し出されるために補正用治具をずらす補正量(以下、「中心補正量」という。)を算出する。
撮像制御部40は、線質変更部14に管電圧および管電流の変更を指示し、放射線発生器駆動部16、基板保持部駆動部18、検出器駆動部20を制御して再構成画像の生成に必要な透過画像を撮像する。また、補正量算出部38が算出した中心補正量に従い、基板保持部駆動部18を介して基板保持部24の位置を調整する。
以上の各機能ブロックは、各種演算処理を実行するCPU、データの格納やプログラム実行のためのワークエリアとして利用されるRAMなどのハードウェア、およびソフトウェアの連携によって実現される。したがって、これらの機能ブロックはハードウェアおよびソフトウェアの組み合わせによって様々な形で実現することができる。
図3は、実施の形態1にかかる補正用治具を用いた基板保持部の位置調整処理の流れを示すフローチャートである。本フローチャートにおける処理は、ずれ量特定部36が補正用治具の透過画像を取得したときに開始する。
ずれ量特定部36は、記録部34から補正用治具の透過画像を取得する(S10)。その後ずれ量特定部36は、透過画像に映し出されている補正用治具の中心を特定し、透過画像の中心とのずれ量を特定する(S12)。ずれ量があらかじめ定められた許容の範囲を超えている場合には(S14N)、補正量算出部38は、撮像制御部40から現在の撮像系の幾何学的な位置関係を取得し、ずれ量特定部36からずれ量をそれぞれ取得し、それらの情報に基づいて中心補正量を算出する(S16)。撮像制御部40は、補正量算出部38が算出した中心補正量に従い、基板保持部駆動部18を介して基板保持部24の位置を調整する(S18)。
基板保持部24の位置を調整した後、再度補正用治具の透過画像画撮像され、ステップS12におけるずれ量があらかじめ定められた許容の範囲内になったとき(S14Y)、本フローチャートにおける処理は終了する。
図4は、放射線発生器22、基板保持部24、および検出器26の幾何学的位置関係を模式的に示した図である。
検出器回転軌道30の回転中心を原点O(0、0、0)とし、原点Oを通り検出器回転軌道30が存在する平面と垂直な直線をZ軸と定める。このとき、放射線発生器22の放射線源はZ軸上に存在するので、その点の座標を(0、0、Zt)とする。また、基板回転軌道28の回転中心もZ軸上に存在するので、その点の座標を(0、0、Zs)とする。
いま、補正用治具としてその透過画像が円形となる治具を用いることとする。これは例えば、正方形の金属板を用意してその正方形の対角線の交点を中心とする円形状の穴を開ければ、その透過画像は正方形の対角線の交点を中心とする円形状の画像となる。
円の中心が基板回転軌道28上に乗るように、基板保持部24に補正用治具を設置する。このとき、円の中心の座標を(Xs、Ys、Zs)とする。基板回転軌道28の回転半径と検出器回転軌道30の回転半径との比をZs対Ztとすれば、検出器26の中心が検出器回転軌道30上に乗っていれば、補正用治具の透過画像である円の中心は、透過画像の中心となるはずである。
上記のような関係にあるとき、円の中心の座標を(Xs、Ys、Zs)は、XY平面上では
に投影される。透過画像の中心は検出器の中心であるから、その座標を(XD、YD、0)とすれば、X軸方向のずれ量δxおよびY軸方向のずれ量δyは、
となる。したがって、補正用治具を保持する基板保持部24をX軸方向およびY軸方向にそれぞれ、
だけずらせば、補正用治具の透過画像である円の中心は、透過画像の中心となる。ゆえに、式(1)が中心補正量である。
そこで、ずれ量特定部36は、画像解析によって補正用治具の透過画像である円の中心を特定して、透過画像の中心とのずれ量δxおよびδyを特定する。補正量算出部38は、撮像制御部40から放射線発生器22のZ座標、基板保持部24の中心の座標、および検出器26の中心の座標を取得し、上述の式(1)に基づいて中心補正量を算出する。撮像制御部40は、補正量算出部38が算出した中心補正量を取得して、基板保持部駆動部18を介して基板保持部24の位置を補正する。撮像制御部40は中心補正量を記録部34に格納する。
基板の断面画像を再構成するためには、基板に複数の異なる方向からX線を照射し、その透過画像を取得する必要がある。そのために、基板保持部24および検出器26を回転させて透過画像を取得する。したがって、回転軌道上の複数の点において上述の中心補正量を求める。一度求めた中心補正量は記録部34に格納し、中心補正量を更新するまでの間は記録部34に格納した中心補正量を読み出して調整する。
図5は、補正用治具42を一部に含む基板保持部24の外観を模式的に示した図である。基板保持部24に隣接して補正用治具42を設置し、基板保持部24と補正用治具42とを一体化する。上述したとおり基板保持部24は基板回転軌道28が張る平面上を平行移動することができる。そこで、検査時には通常どおり基板保持部24に被検査体を保持して検査を行い、基板保持部24の位置補正をする必要が生じた場合には、補正用治具42が基板回転軌道28上に乗るまで基板回転軌道28が張る平面上を平行移動する。
このように基板保持部24と補正用治具42とを一体化することにより、中心補正量の算出に先立って基板保持部24に補正用治具42を設置する工程を省略できる。実施の形態1にかかる検査装置は無人の生産ラインに設置される場合も多くある。補正用治具42を設置する工程が省略できるということは設置にかかる時間のみならず、装置にエンジニアが出向く時間やそのために必要な経費等の削減にもつながり、大きなコスト減となりうる。
さらに、上述の中心補正量算出の手法を用いることで、検査と検査との合間の空き時間を利用して中心補正量を更新することが可能となる。このために、記録部34には、中心補正量を算出するための平均的な所要時間があらかじめ格納されており、検査と検査との合間の空き時間が中心補正量を算出するための所要時間以上あるか否かが判断できるようになっている。この判断は、ずれ量特定部36が行う。あるいは、図示しない中心補正量更新開始判断部等、専用の構成を用意してもよい。
図6は、検査と検査との合間の空き時間を利用して中心補正量を更新する処理の流れを説明するフローチャートである。本フローチャートにおける処理は、例えば、検査と検査との間に所定の時間が空いたときに開始する。
ずれ量特定部36は、あらかじめ記録部34に格納されている検査スケジュールを参照し、検査と検査との間に中心補正量算出のために十分な時間が空いている場合には中心補正量更新のタイミングと判断する(S20)。あるいは、ずれ量特定部36は図示しないキーボードやLAN等のユーザインタフェースを介して、オペレータより中心補正量更新のタイミングを取得する。
続いてずれ量特定部36は、記録部34から取得した検査の空き時間から、中心補正量を何カ所更新できるか、すなわち更新の回数Nを計算する。また、ずれ量特定部36は、記録部34に記録されている中心補正量のうち、最も更新が古いものから順にNカ所特定する(S22)。あるいは、ずれ量特定部36は中心補正量を更新すべき場所について、オペレータより取得する。
ずれ量特定部36は、図示しない内部のワークメモリにループ変数iを設定し、ループ変数iを1で初期化する(S24)。ここでループ変数iは、中心補正量の更新回数として特定したN回の更新を行うために用いられる。
ループ変数iがN以下の時(S26Y)、ずれ量特定部36は撮像されて記録部34に格納された補正用治具42の透過画像を取得して上述のX軸方向のずれ量δxおよびY軸方向のずれ量δyを求め、補正量算出部38は、撮像制御部40から放射線発生器22のZ座標、基板保持部24の中心の座標、および検出器26の中心の座標を取得し、上述の式(1)に基づいて中心補正量を算出する(S28)。撮像制御部40は、補正量算出部38が算出した中心補正量を取得して、基板保持部駆動部18を介して基板保持部24の位置を補正する(S30)。中心補正量が撮像制御部40により記録部34に格納されると、ずれ量特定部36はループ変数iをi+1で更新し(S32)、中心補正量の更新を継続する。ループ変数iがNより大きくなると(S26N)、本フローチャートにおける処理は終了する。
以上の構成による動作は以下のとおりである。ユーザは実施の形態1にかかる検査装置を生産ラインに設置する。検査装置は、検査と検査との間が所定の時間空いた場合には、基板保持部24に併設された補正用治具42の透過画像を取得し、上述の式(1)に基づいて中心補正量を算出する。算出した中心補正量に基づいて基板保持部24の位置を補正し、中心補正量は検査装置に格納される。中心補正量は更新が古いものから順に更新されるため、全体として検査装置の撮像系の幾何学的位置は適切に補正される。
以上説明したように実施の形態1によれば、被検査体の透過画像からその被検査体の立体形状を再構成するアルゴリズムが仮定する撮像系の幾何学的位置関係と、実際の撮像系とのずれ量を自動的に計測して補正することが可能となる。さらに、被検査体のである基板の保持部と、ずれ量推定に用いられる補正用治具を一体化することにより、ずれ量の計測に際して補正用治具を設置する工程を省略することができる。ずれ量の自動補正の手法と補正用治具が一体化された基板の保持部とを用いることで、検査と検査との合間の時間で、撮像系とのずれ量を自動的に補正することが可能となる。
(実施の形態2)
実施の形態2の概要を述べる。実施の形態2は検出器の補正に関する。検出器に放射線を全く照射しない場合に作成される透過画像の画素値を0とし、検出器のダイナミックレンジの最大となるまで放射線を照射した場合に作成される透過画像の画素値100とした場合に、放射線の照射量に対する画素値の変動を調べてテーブルを作成する。そのテーブルを用いて、透過画像の画素値と放射線の照射量との関係が線形となるように、透過画像の画素値を補正する。その前提として、放射線検出器上の任意の2点と放射線源との距離が異なる場合に放射線の減衰により検出器に到達する放射線量が相違する現象に鑑みて、検出器と放射線源との距離に基づいて透過画像の画素値を補正しておく。
実施の形態2の概要を述べる。実施の形態2は検出器の補正に関する。検出器に放射線を全く照射しない場合に作成される透過画像の画素値を0とし、検出器のダイナミックレンジの最大となるまで放射線を照射した場合に作成される透過画像の画素値100とした場合に、放射線の照射量に対する画素値の変動を調べてテーブルを作成する。そのテーブルを用いて、透過画像の画素値と放射線の照射量との関係が線形となるように、透過画像の画素値を補正する。その前提として、放射線検出器上の任意の2点と放射線源との距離が異なる場合に放射線の減衰により検出器に到達する放射線量が相違する現象に鑑みて、検出器と放射線源との距離に基づいて透過画像の画素値を補正しておく。
以下、実施の形態2の前提となる技術について説明する。また、実施の形態1と重複する説明は適宜省略する。
図7は、放射線発生器22と検出器26上の注目点44との位置関係を模式的に示した図である。図4の場合と同様に、検出器回転軌道30の回転中心を原点O(0、0、0)とし、原点Oを通り検出器回転軌道30が存在する平面と垂直な直線をZ軸と定める。このとき、放射線発生器22の放射線源はZ軸上に存在するので、その点の座標を(0、0、Zt)とする。
検出器26上の注目点44の座標を(XD、YD、0)とする。このとき注目点44と放射線発生器22との距離をLとすると、L2=XD
2+YD
2+Zt
2となる。放射線発生器22は点光源であり、一般に点光源から照射された光(放射線も含む)の光量は点光源からの距離Lの二乗に反比例する。したがって、検出器26上の注目点44の座標によって、放射線発生器22から放射された放射線の光量は変動することになる。
いま、放射線発生器22から放射され注目点44で検出された放射線の光量Iを、注目点44のX座標XDおよびY座標YDの関数としてI(XD、YD)とする。このとき、注目点44における受光量Iを、原点O(0、0、0)での受光量I’に変換するには以下の式(2)を用いればよい。
図8は、検出器26に照射する放射線と、その時の透過画像の画素値との関係を模式的に示した図である。検出器26が受光する放射線の量は、検出器26に衝突する光子の量によって定まる。検出器26が放射線を受光している時間を長くすること、すなわちシャッター時間を長くすれば受光される放射線の量が増加する。また、上述したように、管電流を大きくすると、単位時間あたりの光子の密度が増加するため、同一シャッター時間であっても受光される放射線の量が増加する。そこで、シャッター時間tまたは管電流iを変更して、検出器26のダイナミックレンジが許容する最大の放射線量を100%とした場合の放射線の量を横軸に設定する。
検出器26で受光される放射線の量が多いほど、画素値が大きく明るい画像として透過画像を作成する場合を考える。放射線量が100%の場合の画素値を100とし、放射線量が0%の場合の画素値を0としたとき、放射線量と透過画像の画素値とが線形の関係となるのは、破線46の関係を満たすときである。
曲線48は、シャッター時間tまたは管電流iを制御して、放射線量を0から25刻みで100のまで変更したときの透過画像の画素値をプロットし、補間により曲線としたものである。図8の例では、曲線48は破線46の下側に存在する。これは、放射線量がX%のとき、放射線量と画素値とが線形の関係にある場合には画素値がXとなるべきところ、実際にはXよりも小さな画素値となることを意味している。したがって透過画像の画素値を大きくするような補正テーブルを用意して画素値を補正すれば、放射線量と透過画像の画素値とを線形の関係に変換することができる。
図9は、図8の場合における画素値の補正テーブルを模式的に示した図である。図の曲線50は、補正前の透過画像の画素値を横軸とし補正後の透過画像のが素値を縦軸とした場合の補正テーブルであり、その形状は図8におけるの曲線48の逆関数となる。
図10は、実施の形態2にかかるPC10が処理する各機能ブロックを図示したものである。PC10は、記録部34、画像補正部52、補正テーブル生成部54、および撮像制御部40を含む。
補正テーブル生成部54はさらに、画素値補正テーブル生成部56と受光量補正テーブル生成部58とを含む。受光量補正テーブル生成部58は、上述の式(2)に基づいて放射線の減衰の影響を補正する受光量補正テーブルを作成する。式(2)は放射線発生器22と検出器26との幾何学的な位置関係をパラメータとする。そのため、受光量補正テーブル生成部58は撮像制御部40から放射線発生器22と検出器26との幾何学的な位置関係を取得して、図7の座標系における検出器26の各受光素値の位置座標(XD、YD)を入力とする式(2)の関数の形の受光量補正テーブルを作成する。
画素値補正テーブル生成部56は、放射線量と透過画像の画素値とが線形となるようにする補正テーブルを作成する。このため、画素値補正テーブル生成部56は撮像制御部40に指示して、放射線量を0%から100%までの間の所定の間隔で放射線発生器22から放射線を照射し、そのときの被検査体が何もない状態における透過画像の画素値を取得する。次いで、画素値補正テーブル生成部56は放射線量と透過画像の画素値とのデータをスプライン補間等の既知の補間技術を用いて補完し、図8の曲線48に示すような放射線量と透過画像の画素値との関係を表す曲線を求める。最後に、求めた曲線の逆関数を求めることで、放射線量と透過画像の画素値とを線形とする画素値補正テーブルを生成する。
画像補正部52は、画素値補正テーブル生成部56と受光量補正テーブル生成部58とからそれぞれ画素値補正テーブルと受光量補正テーブルとを取得する。以下、画素値補正テーブルと受光量補正テーブルとを合わせて「補正テーブル」ということがある。取得した補正テーブルを用いて、記録部34に格納されている補正前の透過画像の画素値を補正して、結果を記録部34に格納する。
上述したとおり、基板の断面画像を再構成するためには、基板に複数の異なる方向からX線を照射し、その透過画像を取得する必要がある。そのために、画素値補正テーブル生成部56は撮像制御部40に指示して基板保持部24および検出器26を回転させつつ、各位置における画素値補正テーブルを作成する。あらかじめ使用される頻度が高い撮像条件(撮像系の幾何学的関係や管電流、管電圧の値)それぞれについて画素値補正テーブルおよび受光量補正テーブルを作成し、それらを記録部34に格納しておくことで、検査の工程で素早く補正を実行することが可能となる。また、実施の形態1の場合と同様に、検査と検査との間に所定の空き時間があるときに、作成時刻が古い補正テーブルから順に補正テーブルを更新する。
図11は、実施の形態2にかかる補正テーブル作成の流れを示すフローチャートである。本フローチャートにおける処理は、例えば検査と検査との空き時間において補正テーブルを更新するタイミングに開始する。
受光量補正テーブル生成部58は、撮像制御部40から現在の撮像系の幾何学的情報を取得し(S34)、上述の式(2)に基づいて受光量補正テーブルを作成する(S36)。画素値補正テーブル生成部56は、撮像制御部40に指示して、放射線量を0%から100%までの間の所定の間隔で放射線発生器22から放射線を変更する(S38)。画素値補正テーブル生成部56は、撮像されて記録部34に記録された補正用治具42の透過画像の画素値を取得する(S40)。
放射線量を100%までの動かしておらず、まだ放射線量を変更する必要がある場合には(S42Y)、ステップS38に戻り、透過画像の撮像を継続する。放射線量を0%から100%まで動かしたときの透過画像の画素値が取得できたら(S42N)、画素値補正テーブル生成部56は、放射線量と透過画像の画素値との関係を表す曲線の逆関数を求めることで画素値補正テーブルを生成する(S44)。求めるべきすべての撮像条件で補正テーブルを生成していない場合には(S46N)、画素値補正テーブル生成部56は、撮像制御部40を介して新たな撮像条件を設定し(S48)、補正テーブルの生成を継続する。求めるべきすべての撮像条件で補正テーブルを生成すると(S46Y)、本フローチャートにおける処理は終了する。
以上の構成による動作は以下のとおりである。ユーザは実施の形態2にかかる検査装置を生産ラインに設置する。検査装置は、検査装置の起動直後や検査と検査との間が所定の時間空いた場合に透過画像を取得し、上述の式(1)に基づいて補正テーブルを算出する。算出した補正テーブルは検査装置に格納され、透過画像が撮像される度に画像補正部52が透過画像の画素値を補正する。中心補正量は更新が古いものから順に更新されるため、全体として検査装置の透過画像の画素値は適切に補正される。
以上のように、実施の形態2によれば、放射線の減衰による画素値の変動を補正した透過画像が取得できる。また、透過画像の画素値と放射線の照射量との関係が線形となる透過画像を取得することができる。また、そのような透過画像の取得に必要な補正テーブルを、検査と検査との空き時間を利用して自動的に取得することができる。
以上、実施の形態1および実施の形態2を説明した。これらの実施の形態の任意の組み合わせもまた本発明の実施の形態として有用である。実施の形態1と実施の形態2とを組み合わせ、補正用治具42が一体となっている基板保持部24を備える検査装置において補正テーブルを生成するようにすれば、実施の形態1および実施の形態2の効果の和に加え、さらに、画素値が適切に補正された補正用治具42の透過画像を用いて中心補正量を算出することができるので、中心補正量の算出精度をさらに高められる点で有利である。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
上記実施の形態1では、補正量算出部38が算出した中心補正量を取得して、撮像制御部40が、基板保持部駆動部18を介して基板保持部24の位置を補正する画愛について説明したが、撮像制御部40は、検出器26の位置を補正してもよい。
上記実施の形態1では、補正用治具としてその透過画像が円形となる治具を用いる場合について説明したが、補正用治具は透過画像が円形となるものに限らず、何らかの特徴点を持つ形状のものであればよい。特徴点とは、透過画像上に映し出された形状のうち画像解析によって特定可能な点のことであり、例えば、線分の端点、折れ線の角、ふたつ以上の線分の交点、矢印の先端、点対称図形の場合にはその回転中心、または任意の図形の重心である。この場合、ずれ量特定部36は、特徴点に応じた画像解析をすることになる。
10 PC、 18 基板保持部駆動部、 20 検出器駆動部、 22 放射線発生器、 24 基板保持部、 26 検出器、 28 基板回転軌道、 30 検出器回転軌道、 34 記録部、 36 ずれ量特定部、 38 補正量算出部、 40 撮像制御部、 42 補正用治具、 52 画像補正部、 54 補正テーブル生成部、 56 画素値補正テーブル生成部、 58 受光量補正テーブル生成部、 100 放射線検査装置。
本発明は検査装置の補正用治具を用いた検査装置の補正、および補正用治具を搭載した検査装置に利用できる。
Claims (4)
- 治具を被検査体として撮像された透過画像を画像解析して前記透過画像に映し出された治具の特徴点を特定し、当該透過画像に映し出された治具の特徴点と前記透過画像全体の中心とのずれ量に基づいて、透過画像を取得する放射線検出器と前記被検査体との位置関係を補正することを特徴とする検査装置の補正方法。
- 治具と一体に構成されている、被検査体を固定する保持部と、
前記被検査体または前記治具を透過した放射線を検出して透過画像を生成する検出部と、
前記治具の透過画像に映し出された治具の特徴点と前記透過画像全体の中心とから算出されたずれ量に基づいて前記保持部を移動することにより、前記被検査体と透過画像を取得する放射線検出器との位置関係を補正する駆動部とを含むことを特徴とする検査装置。 - 治具と一体に構成されている、被検査体を固定する保持部と、
前記被検査体または前記治具を透過した放射線を検出して透過画像を生成する検出部と、
前記治具の透過画像を取得してその透過画像に映し出された治具の特徴点を特定し、当該透過画像に映し出された治具の特徴点と前記透過画像全体の中心とのずれ量を算出するずれ量特定部と、
前記ずれ量に基づいて前記被検査体と透過画像を取得する放射線検出器との位置関係を補正する撮像制御部とを含むことを特徴とする検査装置。 - 前記ずれ量特定部は、検査のスケジュールを取得して検査と検査との空き時間を算出し、当該空き時間内で前記ずれ量を算出することができる場合には、前記治具の透過画像を取得して前記ずれ量を算出することを特徴とする請求項2に記載の検査装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10843824A EP2527822A1 (en) | 2010-01-19 | 2010-03-30 | Method for correcting inspecting apparatus using correcting jig, and inspecting apparatus having correcting jig mounted thereon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-009344 | 2010-01-19 | ||
JP2010009344A JP2011149738A (ja) | 2010-01-19 | 2010-01-19 | 補正用治具を用いた検査装置の補正方法、補正用治具を搭載した検査装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011089658A1 true WO2011089658A1 (ja) | 2011-07-28 |
Family
ID=44306482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002320 WO2011089658A1 (ja) | 2010-01-19 | 2010-03-30 | 補正用治具を用いた検査装置の補正方法、補正用治具を搭載した検査装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2527822A1 (ja) |
JP (1) | JP2011149738A (ja) |
WO (1) | WO2011089658A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013061257A (ja) * | 2011-09-14 | 2013-04-04 | Omron Corp | X線検査装置、x線検査装置の制御方法、x線検査装置を制御するためのプログラム、および、当該プログラムを格納した記録媒体 |
JP2013078361A (ja) * | 2011-09-30 | 2013-05-02 | Fujifilm Corp | 放射線撮影装置および放射線撮影システム |
HUP1600469A2 (en) * | 2016-07-27 | 2018-01-29 | Peter Teleki | Method for determining the geometric parameters and/or material state of a specimen based on in-situ radiographic imaging |
JP6763059B1 (ja) * | 2019-05-16 | 2020-09-30 | Ckd株式会社 | 検査装置、包装機及び包装体の検査方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0862159A (ja) * | 1994-08-25 | 1996-03-08 | Hitachi Ltd | 断層撮影装置 |
JP2006226875A (ja) | 2005-02-18 | 2006-08-31 | Matsushita Electric Ind Co Ltd | X線検査方法 |
JP2009036660A (ja) * | 2007-08-02 | 2009-02-19 | Toshiba It & Control Systems Corp | 断層撮影装置 |
WO2009078415A1 (ja) * | 2007-12-17 | 2009-06-25 | Uni-Hite System Corporation | X線検査装置および方法 |
-
2010
- 2010-01-19 JP JP2010009344A patent/JP2011149738A/ja active Pending
- 2010-03-30 EP EP10843824A patent/EP2527822A1/en not_active Withdrawn
- 2010-03-30 WO PCT/JP2010/002320 patent/WO2011089658A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0862159A (ja) * | 1994-08-25 | 1996-03-08 | Hitachi Ltd | 断層撮影装置 |
JP2006226875A (ja) | 2005-02-18 | 2006-08-31 | Matsushita Electric Ind Co Ltd | X線検査方法 |
JP2009036660A (ja) * | 2007-08-02 | 2009-02-19 | Toshiba It & Control Systems Corp | 断層撮影装置 |
WO2009078415A1 (ja) * | 2007-12-17 | 2009-06-25 | Uni-Hite System Corporation | X線検査装置および方法 |
Non-Patent Citations (1)
Title |
---|
ATSUSHI KITAHATA: "''Inline 3D-X-sen Kensa System 'BF-X1 '''", ELECTRONIC PACKAGING TECHNOLOGY, vol. 26, no. 1, 20 December 2009 (2009-12-20), pages 20 - 23, XP008171142 * |
Also Published As
Publication number | Publication date |
---|---|
JP2011149738A (ja) | 2011-08-04 |
EP2527822A1 (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5582841B2 (ja) | 被検査体の放射線検査装置、放射線検査方法およびプログラム | |
US8509512B2 (en) | Examination method, examination apparatus and examination program | |
JP2013096992A (ja) | 画像形成システムを用いて対象領域の三次元モデルを生成するための方法及び装置 | |
JPWO2009078415A1 (ja) | X線検査装置および方法 | |
US11835475B2 (en) | Inspection position identification method, three-dimensional image generation method, and inspection device | |
US9157874B2 (en) | System and method for automated x-ray inspection | |
US9606072B2 (en) | Radiation inspecting apparatus | |
WO2011089658A1 (ja) | 補正用治具を用いた検査装置の補正方法、補正用治具を搭載した検査装置 | |
JP6383707B2 (ja) | 撮影画像のずれ補正装置、撮影画像のずれ補正方法および撮影画像のずれ補正プログラム | |
JP2004045212A (ja) | コンピュータ断層撮影装置 | |
CN111223734A (zh) | 使用电子显微镜对样品成像的方法 | |
JP6676023B2 (ja) | 検査位置の特定方法及び検査装置 | |
KR20200018201A (ko) | X선 촬상 장치 | |
JP5884351B2 (ja) | X線検査装置、x線検査装置の制御方法、x線検査装置を制御するためのプログラム、および、当該プログラムを格納したコンピュータ読み取り可能な記録媒体 | |
JP2011191217A (ja) | X線検査方法、x線検査装置およびx線検査プログラム | |
JP6805200B2 (ja) | 移動制御装置、移動制御方法および移動制御プログラム | |
US11004243B2 (en) | CT reconstruction method using filtered back projection | |
JP6015404B2 (ja) | 放射線検査装置 | |
JP2005326260A (ja) | X線撮像装置 | |
JP2006184267A (ja) | X線検査装置、x線検査方法およびx線検査プログラム | |
JP2022098590A (ja) | Aiモデルの作成方法及び検査装置 | |
JP2006010429A (ja) | 実装基板検査装置 | |
JP2023053558A (ja) | 検査装置 | |
WO2024117099A1 (ja) | 検査装置 | |
JP2004340630A (ja) | コンピュータ断層撮像方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10843824 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010843824 Country of ref document: EP |