[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011083990A2 - Method and device for sending data via cross-carrier scheduling in wireless communication system supporting plurality of component carriers - Google Patents

Method and device for sending data via cross-carrier scheduling in wireless communication system supporting plurality of component carriers Download PDF

Info

Publication number
WO2011083990A2
WO2011083990A2 PCT/KR2011/000087 KR2011000087W WO2011083990A2 WO 2011083990 A2 WO2011083990 A2 WO 2011083990A2 KR 2011000087 W KR2011000087 W KR 2011000087W WO 2011083990 A2 WO2011083990 A2 WO 2011083990A2
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
downlink
component carrier
pdcch
uplink
Prior art date
Application number
PCT/KR2011/000087
Other languages
French (fr)
Korean (ko)
Other versions
WO2011083990A3 (en
Inventor
김소연
정재훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110000826A external-priority patent/KR101763596B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/519,764 priority Critical patent/US9247562B2/en
Publication of WO2011083990A2 publication Critical patent/WO2011083990A2/en
Publication of WO2011083990A3 publication Critical patent/WO2011083990A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present invention relates to wireless communication, and more particularly, to a data transmission method through cross-carrier scheduling and a terminal device using the same in a wireless communication system supporting a plurality of component carriers.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, hereinafter referred to as 'LTE'), and an LTE-Advanced (hereinafter referred to as 'LTE-A') communication system are outlined.
  • 'LTE' 3rd Generation Partnership Project Long Term Evolution
  • 'LTE-A' LTE-Advanced
  • the cell is set to one of the bandwidth of 1.25MHz, 2.5MHz, 5MHz, 10MHz, 15MHz, 20MHz, etc. for one carrier to provide a downlink / uplink transmission service to multiple terminals. In this case, different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information for downlink data and informs the user equipment of time / frequency domain, encoding, data size, and hybrid automatic repeat and reQuest (HARQ) related information.
  • HARQ hybrid automatic repeat and reQuest
  • the base station transmits uplink scheduling information to the corresponding terminal for uplink (UL) data and informs the user of the time / frequency domain, encoding, data size, and hybrid automatic retransmission request related information.
  • An interface for transmitting user traffic or control traffic may be used between base stations.
  • Wireless communication technology has been developed up to LTE based on Wideband Code Division Multiple Access (WCDMA), but the needs and expectations of users and operators continue to increase.
  • WCDMA Wideband Code Division Multiple Access
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • LTE-A LTE-A
  • One of the major differences between LTE and LTE-A systems is the difference in system bandwidth and the introduction of repeaters.
  • the LTE-A system aims to support broadband of up to 100 MHz, and for this purpose, carrier aggregation (or carrier aggregation) or bandwidth aggregation (or bandwidth aggregation) (which achieves broadband using multiple frequency blocks) ( carrier aggregation or bandwidth aggregation) technology is used.
  • Carrier aggregation allows the use of multiple frequency blocks as one large logical frequency band to use a wider frequency band.
  • the bandwidth of each frequency block may be defined based on the bandwidth of the system block used in the LTE system.
  • Each frequency block is transmitted using a component carrier.
  • LTE-A As carrier aggregation technology is adopted in the LTE-A system, which is a next-generation communication system, a method for a terminal to receive a signal from a base station or a repeater in a system supporting a plurality of carriers is required.
  • CIF carrier indicator field
  • the present invention provides a method of operating a terminal for transmitting a data burst through cross-carrier scheduling in a system supporting a plurality of component carriers, the downlink control channel (PDCCH) in the control region in the sub-frame
  • DCI downlink control information
  • CIF carrier indicator field
  • the carrier indicator field may indicate an index value indicating each component carrier according to a component carrier configuration allocated to the terminal.
  • the carrier indicator field may be an index value indicating a downlink component carrier.
  • the downlink control information may be a downlink scheduling assignment including downlink resource allocation information or an uplink grant including uplink resource allocation information.
  • the identified downlink component carrier is characterized in that the downlink component carrier is configured with at least one uplink component carrier and linkage.
  • the carrier indicator field is characterized in that represented by 3 bits.
  • the present invention also provides a terminal for transmitting a data burst through cross-carrier scheduling in a system supporting a plurality of component carriers, the terminal comprising: a wireless communication unit for transmitting and receiving a radio signal; And a control unit connected to the wireless communication unit, wherein the control unit transmits downlink control information (DCI) including a carrier indicator field (CIF) from a base station through a downlink control channel (PDCCH) in a control region within a subframe. And control the wireless communication unit to receive the downlink component carrier indicated by the carrier indicator field, determine the uplink component carrier to which the identified downlink component carrier and linkage are set, and determine the determined uplink component carrier. And controlling the wireless communication unit to transmit an uplink data burst to the base station through.
  • DCI downlink control information
  • CIF carrier indicator field
  • PDCCH downlink control channel
  • the present invention uses a UE-specific carrier indicator field (CIF), that is, by indexing each component carriers according to the component carrier configuration assigned to each terminal and informs the indexing value to the CIF, There is an effect that can schedule all terminals with a CIF of a fixed size.
  • CIF UE-specific carrier indicator field
  • 1 is a view for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • FIG. 2 is a diagram illustrating a structure of a radio frame used in a 3GPP LTE system that is an example of a mobile communication system.
  • 3 (a) is a diagram showing a structure of a downlink subframe of a 3GPP LTE system which is an example of a mobile communication system.
  • 3 (b) is a view showing a structure of an uplink subframe of a 3GPP LTE system which is an example of a mobile communication system.
  • FIG. 4 illustrates a downlink time-frequency resource grid structure used in the present invention.
  • 5 is a block diagram showing a configuration of a PDCCH.
  • FIG. 6 illustrates an example of resource mapping of a PDCCH.
  • FIG. 8 is an exemplary diagram illustrating monitoring of a PDCCH.
  • FIG. 9A illustrates a concept of managing multiple carriers by multiple MACs in a base station
  • FIG. 9B illustrates a concept of managing multiple carriers by multiple MACs in a terminal.
  • FIG. 10A is a diagram for describing a concept in which a single MAC manages a multicarrier in a base station
  • FIG. 10B is a view for explaining a concept in which a single MAC manages a multicarrier in a terminal. .
  • 11 illustrates an example of a multicarrier.
  • FIG. 13 illustrates an example of a component carrier (CC) set.
  • FIG. 14A illustrates a method of establishing a cell-specific carrier indicator field (CIF).
  • CIF cell-specific carrier indicator field
  • FIG. 14 (b) is a diagram illustrating a UE-specific CIF setting method according to an embodiment of the present invention.
  • 15 is a block diagram showing a wireless communication system according to an embodiment of the present invention.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), and an advanced mobile station (AMS).
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • the repeater may be referred to as a relay node (RN), a relay station (RS), a relay, or the like.
  • a user equipment and a repeater may receive information from a base station through downlink, and the terminal and repeater may also transmit information through uplink.
  • the information transmitted or received by the terminal and the repeater includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal and the repeater.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S101). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE obtains more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information on the PDCCH. It may be (S102).
  • a physical downlink control channel (PDCCH)
  • a physical downlink control channel (PDSCH)
  • S102 physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S103 to S106).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S103 and S105), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S104 and S106).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure described above, the UE performs a PDCCH / PDSCH reception (S107) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S108) may be performed.
  • Information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). Include.
  • the terminal may transmit the above-described information, such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 2 is a diagram illustrating a structure of a radio frame used in a 3GPP LTE system as an example of a mobile communication system.
  • one radio frame has a length of 10 ms (327200 Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 Ts).
  • the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols or a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the above-described radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe, the number of OFDM symbols or SC-FDMA symbols included in the slot may be variously changed. have.
  • 3 is a diagram illustrating a structure of downlink and uplink subframes of a 3GPP LTE system as an example of a mobile communication system.
  • one downlink subframe includes two slots in the time domain. Up to three OFDM symbols of the first slot in the downlink subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels used in 3GPP LTE systems include a PCFICH (Physical Control Format Indicator Channel), PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI indicates uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command for arbitrary UE groups.
  • the PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • ACK Acknowledgement
  • NACK Not-Acknowledgement
  • the PDCCH which is a downlink physical channel will be briefly described. A detailed description of the PDCCH will be described below with reference to FIGS. 5 to 8.
  • the base station sets a resource allocation and transmission format of the PDSCH (also referred to as a DL grant), a resource allocation information of the PUSCH (also referred to as a UL grant) through a PDCCH, a set of transmission power control commands for an arbitrary terminal and individual terminals in a group. And activation of Voice over Internet Protocol (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of an aggregation of one or several consecutive Control Channel Elements (CCEs).
  • the PDCCH composed of one or several consecutive CCEs may be transmitted through the control region after subblock interleaving.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of possible bits of the PDCCH are determined by the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI Downlink control information
  • DCI format 0 indicates uplink resource allocation information
  • DCI formats 1 to 2 indicate downlink resource allocation information
  • DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups. .
  • the base station may transmit scheduling assignment information and other control information through the PDCCH.
  • the physical control channel may be transmitted in one aggregation or a plurality of continuous control channel elements (CCEs).
  • CCEs continuous control channel elements
  • One CCE includes nine Resource Element Groups (REGs).
  • the number of RBGs that are not allocated to the Physical Control Format Indicator CHhannel (PCFICH) or the Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH) is N REG .
  • the available CCEs in the system are from 0 to N CCE -1 (where to be).
  • the PDCCH supports multiple formats as shown in Table 3 below.
  • the base station may determine the PDCCH format according to how many areas, such as control information, to send.
  • the UE may reduce overhead by reading control information in units of CCE.
  • the repeater can also read control information and the like in units of R-CCE.
  • a resource element RE
  • R-CCE relay-control channel element
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated to a physical uplink control channel (PUCCH) that carries uplink control information.
  • the data area is allocated to a Physical Uplink Shared CHannel (PUSCH) for carrying user data.
  • PUCCH Physical Uplink Shared CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PUCCH for one UE is allocated to an RB pair in one subframe. RBs belonging to the RB pair occupy different subcarriers in each of two slots. The RB pair assigned to the PUCCH is frequency hopped at the slot boundary.
  • FIG. 4 illustrates a downlink time-frequency resource grid structure used in the present invention.
  • the downlink signal transmitted in each slot Subcarriers and It is used as a resource grid structure composed of orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • Represents the number of resource blocks (RBs) in downlink Represents the number of subcarriers constituting one RB, Denotes the number of OFDM symbols in one downlink slot.
  • the number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP) and the interval of subcarriers. In case of multi-antenna transmission, one resource grid may be defined per one antenna port.
  • CP cyclic prefix
  • Each element in the resource grid for each antenna port is called a resource element (RE) and is uniquely identified by an index pair (k, l) in the slot.
  • k is the index in the frequency domain
  • l is the index in the time domain and k is 0, ..., Has any one of the values l is 0, ..., Has any one of the values.
  • the resource block shown in FIG. 4 is used to describe a mapping relationship between certain physical channels and resource elements.
  • the RB may be divided into a physical resource block (PRB) and a virtual resource block (VRB).
  • PRB physical resource block
  • VRB virtual resource block
  • the one PRB is a time domain Contiguous OFDM symbols and frequency domain It is defined as two consecutive subcarriers. here and May be a predetermined value. E.g and Can be given as Table 1 below. So one PRB It consists of four resource elements.
  • One PRB may correspond to one slot in the time domain and 180 kHz in the frequency domain, but is not limited thereto.
  • PRB is at 0 in the frequency domain Has a value up to.
  • the relation between the PRB number nPRB in the frequency domain and the resource element (k, l) in one slot is Satisfies.
  • the size of the VRB is equal to the size of the PRB.
  • the VRB may be defined by being divided into a localized VRB (LVRB) and a distributed VRB (DVRB). For each type of VRB, a pair of VRBs in two slots in one subframe are assigned together a single VRB number n VRBs .
  • the VRB may have the same size as the PRB.
  • Two types of VRBs are defined, the first type being a localized VRB (LVRB) and the second type being a distributed VRB (DVRB).
  • LVRB localized VRB
  • DVRB distributed VRB
  • a pair of VRBs are allocated over two slots of one subframe with a single VRB index (hereinafter may also be referred to as VRB number).
  • VRB number belonging to the first slot of the two slots constituting one subframe VRBs from 0 each Is assigned an index of any one of the two slots VRBs likewise start with 0 Any one of the indexes is allocated.
  • the radio frame structure, the downlink subframe and the uplink subframe, and the downlink time-frequency resource lattice structure described in FIGS. 2 to 4 may also be applied between the base station and the repeater.
  • 5 is a block diagram showing the configuration of a PDCCH.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask the CRC (510).
  • CRC cyclic redundancy check
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI)
  • P-RNTI P-RNTI
  • SI-RNTI system information-RNTI
  • RARNTI random access-RNTI
  • TPC-RNTI may be masked to the CRC to indicate a transmit power control (TPC) command for a plurality of terminals.
  • the PDCCH carries control information for the corresponding specific UE (called UE-specific control information), and if another RNTI is used, the PDCCH is shared by all or a plurality of terminals in the cell. (common) carries control information.
  • the DCC added with the CRC is encoded to generate coded data (520).
  • Encoding includes channel encoding and rate matching.
  • the coded data is modulated to generate modulation symbols (530).
  • the modulation symbols are mapped to a physical resource element (RE) (540). Each modulation symbol is mapped to an RE.
  • RE physical resource element
  • FIG. 6 shows an example of resource mapping of a PDCCH.
  • R0 represents a reference signal of the first antenna
  • R1 represents a reference signal of the second antenna
  • R2 represents a reference signal of the third antenna
  • R3 represents a reference signal of the fourth antenna.
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG (denoted as quadruplet in the figure) contains four REs and one CCE contains nine REGs.
  • ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
  • a plurality of logically continuous CCEs are input to an interleaver.
  • the interleaver performs a function of mixing input CCEs in REG units.
  • frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe.
  • the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
  • FIG. 8 is an exemplary diagram illustrating monitoring of a PDCCH.
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a PDCCH candidate), and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the UE does not know where its PDCCH is transmitted using which CCE aggregation level or DCI format at which position in the control region.
  • a plurality of PDCCHs may be transmitted in one subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • the monitoring means that the UE attempts to decode the PDCCH according to the monitored PDCCH format.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH.
  • the UE monitors the PDCCH in the corresponding search space.
  • the search space is divided into a common search space and a UE-specific search space.
  • the common search space is a space for searching for a PDCCH having common control information.
  • the common search space includes 16 CCEs up to CCE indexes 0 to 15 and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
  • the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • Table 4 below shows the number of PDCCH candidates monitored by the UE.
  • the size of the search space is determined by Table 4, and the starting point of the search space is defined differently from the common search space and the terminal specific search space.
  • the starting point of the common search space is fixed irrespective of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level and / or the slot number in the radio frame. Can vary.
  • the terminal specific search space and the common search space may overlap.
  • the search space S (L) k is defined as a set of PDCCH candidates.
  • the CCE corresponding to the PDCCH candidate m in the search space S (L) k is given as follows.
  • N CCE, k can be used for transmission of the PDCCH in the control region of subframe k.
  • the control region includes a set of CCEs numbered from 0 to N CCE, k ⁇ 1.
  • M (L) is the number of PDCCH candidates at CCE aggregation level L in a given search space.
  • the variable Y k is defined as follows.
  • n s is a slot number in a radio frame.
  • a DCI format and a search space to be monitored are determined according to a transmission mode of the PDSCH.
  • Table 5 below shows an example of PDCCH monitoring configured with C-RNTI.
  • the 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
  • CC component carrier
  • 3GPP LTE is supported only when the bandwidth of the downlink and the bandwidth of the uplink are the same or different in the situation where one CC is defined for the downlink and the uplink, respectively.
  • the 3GPP LTE system supports up to 20MHz and may be different in uplink bandwidth and downlink bandwidth, but only one CC is supported in the uplink and the downlink.
  • Spectrum aggregation supports a plurality of CCs.
  • Spectral aggregation is introduced to support increased throughput, to prevent cost increases due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • RF radio frequency
  • Spectral aggregation can be divided into contiguous spectral aggregation where aggregation is between successive carriers in the frequency domain and non-contiguous spectral aggregation where aggregation is between discontinuous carriers.
  • the number of CCs aggregated between the downlink and the uplink may be set differently. The case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the downlink component carrier and the uplink component carrier may be collectively referred to as a 'cell'. That is, 'cell' may be used as a concept for a pair of DL CC and UL CC.
  • 'cell' should be distinguished from the term 'cell' as an area covered by a generally used base station.
  • the size (ie bandwidth) of the CC may be different. For example, assuming that 5 CCs are used to configure a 70 MHz band, a 5 MHz carrier (CC # 0) + 20 MHz carrier (CC # 1) + 20 MHz carrier (CC # 2) + 20 MHz carrier (CC # 3) It may also be configured as a + 5MHz carrier (CC # 4).
  • PHY physical layer
  • MAC layer 2
  • FIG. 9A illustrates a concept of managing a multicarrier by a plurality of MACs in a base station
  • FIG. 9B illustrates a concept of managing a multicarrier by a plurality of MACs in a terminal.
  • each carrier may control 1: 1 by each MAC.
  • each carrier may be used contiguously or non-contiguous. This can be applied to the uplink / downlink irrespective.
  • the TDD system is configured to operate N multiple carriers including downlink and uplink transmission in each carrier, and the FDD system is configured to use multiple carriers for uplink and downlink, respectively.
  • asymmetric carrier merging may be supported in which the number of carriers and / or the bandwidth of the carriers are merged in uplink and downlink.
  • FIG. 10 (a) is a diagram for explaining a concept of managing a multicarrier by one MAC in a base station
  • FIG. 10 (b) is a diagram for explaining a concept in which one MAC manages a multicarrier in a terminal. .
  • one MAC manages and operates one or more frequency carriers to perform transmission and reception. Frequency carriers managed in one MAC do not need to be contiguous with each other, which is advantageous in terms of resource management.
  • one PHY means one component carrier for convenience.
  • one PHY does not necessarily mean an independent radio frequency (RF) device.
  • RF radio frequency
  • one independent RF device means one PHY, but is not limited thereto, and one RF device may include several PHYs.
  • channel, PDCCH may be transmitted by mapping to a physical resource in an individual component carrier.
  • the PDCCH for channel allocation or grant-related control information related to PDSCH or PUSCH (Physical Uplink Shared Channel) transmission unique to each UE is classified and encoded according to component carriers to which the corresponding physical shared channel is transmitted. It can be generated as a PDCCH. This is referred to as separate coded PDCCH.
  • control information for physical shared channel transmission of various component carriers may be configured and transmitted as one PDCCH, which is referred to as a joint coded PDCCH.
  • a base station In order to support downlink or uplink carrier aggregation, a base station is configured such that a PDCCH and / or PDSCH for transmitting control information and / or data transmission can be transmitted uniquely for a specific terminal or repeater, or the PDCCH And / or component carriers that are subject to measurement and / or reporting as preparation for performing connection establishment for PDSCH transmission. This is expressed as component carrier allocation for any purpose.
  • the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
  • the RRC signaling terminal-specific or repeater-specific RRC signaling
  • the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
  • the RRC signaling terminal-specific or repeater-specific RRC signaling
  • the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
  • the RRC signaling terminal-specific or repeater-specific RRC signaling
  • the base station controls the component carrier allocation information in the L3 RRM (radio resource management)
  • the RRC signaling terminal-specific or repeater-specific RRC signaling
  • dynamic dynamic
  • FIG. 11 shows an example of a multicarrier.
  • PDCCH and PDSCH are independently transmitted in each DL CC
  • PUCCH and PUSCH are independently transmitted in each UL CC.
  • a multiple carrier system refers to a system supporting multiple carriers based on spectral aggregation, as described above.
  • Adjacent spectral and / or non-adjacent spectral aggregation may be used in a multi-carrier system, and either symmetric or asymmetric aggregation may be used.
  • linkage between a DL CC and a UL CC may be defined.
  • the linkage may be configured through EARFCN information included in the downlink system information, and is configured using a fixed DL / UL Tx / Rx separation relationship.
  • the linkage refers to a mapping relationship between a DL CC through which a PDCCH carrying an UL grant is transmitted and a UL CC using the UL grant.
  • the linkage may be a mapping relationship between a DL CC (or UL CC) in which data for HARQ is transmitted and a UL CC (or DL CC) in which HARQ ACK / NACK signal is transmitted.
  • the linkage information may be informed to the terminal by the base station as part of a higher layer message or system information such as an RRC message.
  • the linkage between the DL CC and the UL CC may be fixed but may be changed between cells / terminals.
  • the split coded PDCCH means that the PDCCH can carry control information such as resource allocation for PDSCH / PUSCH for one carrier. That is, the PDCCH and PDSCH, the PDCCH and the PUSCH correspond to 1: 1 respectively.
  • a joint coded PDCCH means that one PDCCH can carry resource allocation for PDSCH / PUSCH of a plurality of CCs.
  • One PDCCH may be transmitted through one CC or may be transmitted through a plurality of CCs.
  • split coding will be described based on the downlink channel PDSCH-PDSCH. However, this may also be applied to the relationship of PDCCH-PUSCH.
  • CC scheduling is possible in two ways.
  • the first is that a PDCCH-PDSCH pair is transmitted in one CC.
  • This CC is called a self-secheduling CC.
  • the PDCCH allocates PDSCH resources on the same CC or allocates PUSCH resources on a linked UL CC.
  • the DL CC on which the PDSCH is transmitted or the UL CC on which the PUSCH is transmitted is determined. That is, the PUSCH is transmitted on a DL CC in which the PDCCH and the PDSCH are different from each other, or on a UL CC not linked with the DL CC in which the PDCCH is transmitted. This is called cross-carrier scheduling.
  • the CC on which the PDCCH is transmitted may be referred to as a PDCCH carrier, a monitoring carrier, or a scheduling carrier, and the CC on which the PDSCH / PUSCH is transmitted may be referred to as a PDSCH / PUSCH carrier or a scheduled carrier.
  • Cross-carrier scheduling may be activated / deactivated for each terminal, and the terminal on which cross-carrier scheduling is activated may receive a DCI including CIF.
  • the UE may know which scheduled CC the PDCCH received from the CIF included in the DCI is control information.
  • the DL-UL linkage predefined by cross-carrier scheduling may be overriding. That is, cross-carrier scheduling may schedule a CC other than the linked CC regardless of the DL-UL linkage.
  • the first PDCCH 1201 of the DL CC # 1 carries the DCI for the PDSCH 1202 of the same DL CC # 1.
  • the second PDCCH 1211 of the DL CC # 1 carries the DCI for the PDSCH 1212 of the DL CC # 2.
  • the third PDCCH 1221 of the DL CC # 1 carries the DCI for the PUSCH 1222 of the UL CC # 3 that is not linked.
  • the DCI of the PDCCH may include a carrier indicator field (CIF).
  • CIF indicates a DL CC or UL CC scheduled through DCI.
  • the second PDCCH 1211 may include a CIF indicating DL CC # 2.
  • the third PDCCH 1221 may include a CIF indicating the UL CC # 3.
  • the CIF of the third PDCCH 1221 may be informed by the CIF value corresponding to the DL CC, not the CIF value corresponding to the UL CC.
  • the CIF of the third PDCCH 1221 indicates the DL CC # 3 linked with the UL CC # 3, so that the PUSCH may indirectly indicate the scheduled UL CC # 3.
  • the DCI of the PDCCH includes the PUSCH scheduling and the CIF indicates the DL CC
  • the UE may determine that the PUSCH is scheduled on the UL CC linked with the DL CC.
  • it is possible to indicate a larger number of CCs than a method of notifying all DL / UL CCs using a CIF having a limited bit length (for example, 3 bit length CIF).
  • a UE using cross-carrier scheduling needs to monitor PDCCHs of a plurality of scheduled CCs for the same DCI format in a control region of one scheduling CC. For example, if a transmission mode of each of the plurality of DL CCs is different, a plurality of PDCCHs for different DCI formats may be monitored in each DL CC. Same transfer mode
  • the UE needs to monitor PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
  • UE DL CC set a set of DL CCs scheduled for the UE to receive PDSCH
  • UE UL CC set a set of UL CCs scheduled for the UE to transmit a PUSCH
  • PDCCH monitoring set A set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the UE DL CC set or may be a subset of the UE DL CC set.
  • the PDCCH monitoring set may include at least one of DL CCs in the UE DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
  • the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
  • the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be set to cell-specific or UE-specific.
  • FIG. 13 shows an example of a CC set. 4 DL CCs (DL CC # 1, # 2, # 3, # 4) as UE DL CC set, 2 UL CCs (UL CC # 1, # 2) as UE UL CC set, DL CC as PDCCH monitoring set Assume that two (DL CC # 2, # 3) are allocated to the terminal.
  • the DL CC # 2 in the PDCCH monitoring set transmits the PDCCH for the PDSCH of the DL CC # 1 / # 2 in the UE DL CC set and the PDCCH for the PUSCH of the UL CC # 1 in the UE UL CC set.
  • the DL CC # 3 in the PDCCH monitoring set transmits the PDCCH for the PDSCH of the DL CC # 3 / # 4 in the UE DL CC set and the PDCCH for the PUSCH of the UL CC # 2 in the UE UL CC set.
  • Linkage may be set between CCs included in the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set.
  • a PDCCH-PDSCH linkage is configured between DL CC # 2 which is a scheduling CC and DL CC # 1 which is a scheduled CC
  • a PDCCH-PUSCH linkage is configured for DL CC # 2 and UL CC # 1.
  • the PDCCH-PDSCH linkage is set between the DL CC # 3 which is the scheduling CC and the DL CC # 4 which is the scheduled CC
  • the PDCCH-PUSCH linkage is set for the DL CC # 3 and the UL CC # 2.
  • the information about the scheduling CC or the PDCCH-PDSCH / PUSCH linkage information may be informed by the base station to the terminal through cell-specific signaling or terminal-specific signaling.
  • both the DL CC and the UL CC may not be linked to each of the DL CCs in the PDCCH monitoring set.
  • the UL CC for PUSCH transmission may be limited to the UL CC linked to the DL CC in the UE DL CC set.
  • the CIF may be set differently according to linkages of the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set.
  • a carrier indication field (CIF) is received from a base station in a cross-carrier scheduling enabled terminal according to an embodiment of the present invention
  • a method of interpreting the CIF will be described.
  • FIG. 14 is a diagram illustrating a CIF setting method.
  • FIG. 14A illustrates a cell-specific carrier indicator field (CIF) setting method
  • FIG. 14B illustrates a UE-specific CIF setting method.
  • CIF cell-specific carrier indicator field
  • a cell-specific CIF method indexes all component carriers (CCs) configured in a specific cell, and indicates an index value corresponding to the CC to each UE. will be.
  • the CCs are indexed as '000', '001', '010', '100', and '101' for each CC.
  • the indexing value is reported to the CIF.
  • the CIF is fixed to 3 bits, whereas one cell can use cell deployment using more than 8 CCs that can be expressed as 3 bits, that is, 8 or more CCs. Therefore, cell-specific CIF indexing has the advantage that unified indexing can be used for all terminals, but it is impossible to properly schedule all terminals with only 3-bit CIF according to cell configuration.
  • the UE-specific CIF setting method refers to a method of indexing each CC according to a CC configuration allocated to each UE and notifying the corresponding indexing to the CIF.
  • component carrier configurations allocated to UE 0 are CC0, CC1, and CC3
  • component carrier configurations allocated to UE 1 are CC1, CC2, and CC4.
  • the base station indexes CCO, CC1, and CC3 for UE 0 as '000', '001', and '010', and informs UE 0 of the indexing value as CIF. Further, the base station indexes CC1, CC2, and CC4 for UE 1 to '000', '001', and '010', respectively, and informs UE 1 of the indexing value as CIF.
  • Method 1 is a method of independently allocating 3 bits of CIF to DL grants for DL CCs and 3 bits of CIF to UL grants for UL CCs.
  • DCI format 0 which is the UL grant DCI format of LTE (Rel-8)
  • the size is always the same as the DCI format 1A, which is the DL grant DCI format
  • a flag corresponding to 1 bit is used to distinguish the DL / UL grant. Paste it.
  • Method 2 is a method in which independent CIF is not transmitted to a UL grant for a UL CC.
  • cross-carrier scheduling is activated by a user equipment.
  • the terminal When receiving UL grant, the terminal is linked with DL CC which has received UL grant. Automatically recognize that the grant for the UL CC is transmitted to the UL CC that is linked with the DL CC.
  • the indexing indicated by the CIF actually attached to the UL grant is sent to the indexing for the DL CC, and the terminal reads the corresponding CIF and automatically recognizes that it is a grant for the UL CC linked to the DL CC indicated by the CIF.
  • the UE can know whether the DCI received from the base station is a DL grant or a UL grant through the size of the DCI fomat size.
  • Method 3 is a method in which 3 states of CIF, that is, ⁇ 000, 001, 010, 011, 100, 101, 110, 111 ⁇ , are shared by DL / UL grant. For example, up to ⁇ 000 ⁇ 100 ⁇ , five states are used for the DL CC, and the remaining three states are used for the UL CC.
  • a DL CC and a UL CC may be used by fixing a state in which the DL / UL can be used.
  • the CIF may be variably interpreted according to the carrier assignment state of the terminal.
  • UE A is assigned with four DL CCs and two UL CCs, four states of 000 to 011 are for indicating a DL CC, and two states for 100 to 101 are for indicating a UL CC. It can be interpreted as.
  • the DL grant or the UL grant is distinguished by the state of the CIF, it is not necessary to attach a flag for distinguishing DL / UL like the method 1 above.
  • the above DL / UL DCI mode indicator is preferably present at a certain position, but as defined in the Rel-8 LTE system, the same position as the position where the DCI format indicator exists in DCI formats 0 and 1A is used as the position of the mode indicator. It is desirable to decide. By doing so, the DCI DL / UL mode can be consistently distinguished at a certain position regardless of the DCI mode.
  • the portion that can be changed for the CIF may be as follows.
  • Change of CIF interpretation method As described above, it may be considered to change the mapping relationship between CIF and DL / UL CC. For example, when referring to CC with 3 bits of CIF, if the total number of DL CCs and UL CCs cannot be expressed as a state allowed for CC indexing in 3 bits, independent indexing is performed for DL CCs and UL CCs instead. It may include an indicator that specifies a DCI format. On the contrary, when the allowed state can be expressed, indexing by mixing DL / UL CC can be used to distinguish between DL DCI or UL DCI even when reporting only the value of CIF. In this case, it does not include DL / UL DCI mode separator. Can be determined. In this case, whether the DL / UL DCI mode indicator is present may be determined implicitly according to the CC configuration of the UE as described above, but may be explicitly set to UE-specific dedicated signaling together with the CC configuration.
  • Such determination criteria may vary depending on the UE-specific CC configuration, but may be determined according to the system-specific CC configuration. In other words, the UE may automatically set such an interpretation method according to the total number of CCs present in the system.
  • CIF Change the meaning of CIF: You can change the mapping meaning of CIF depending on the total number of carriers in the system. In this case, the meaning may be a criterion for applying a CIF mapping method, that is, applying a UE-specific interpretation or selecting a cell-specific (system-specific interpretation).
  • CIF when the number of CCs present in the system can be expressed as an acceptable state of CIF, CIF is interpreted by system-specific indexing. Otherwise, CIF is interpreted UE-specific. That is, a method of mapping a value indicated by the CIF with a CC according to the UE-specific CC configuration.
  • the bit position occupied by the DCI format may vary depending on the presence or absence of a mode indicator. For example, if it is possible to know whether the DL DCI or UL DCI through the CIF, remove the position used as a mode indicator in the DCI format and concatenation the remaining fields to read the bit field, or the mode indicator is outside the DCI If defined, the terminal can read the DCI field by mapping the bit field after shifting by the position occupied by the mode indicator.
  • 15 is a block diagram showing a wireless communication system according to an embodiment of the present invention.
  • the base station 1510 includes a controller 1511, a memory 1512, and a radio frequency unit (RF) unit 1513.
  • RF radio frequency unit
  • the controller 1511 implements the proposed function, process and / or method. Layers of the air interface protocol may be implemented by the controller 1511.
  • the controller 1511 may operate a multi-carrier and configure a carrier indicator field (CIF).
  • CIF carrier indicator field
  • the memory 1512 is connected to the controller 1511 and stores protocols and parameters for multi-carrier operation.
  • the RF unit 1513 is connected to the control unit 1511 and transmits and / or receives a radio signal.
  • the terminal 1520 includes a controller 1521, a memory 1522, and a radio communication (RF) unit 1523.
  • RF radio communication
  • the controller 1521 implements the proposed function, process and / or method. Layers of the air interface protocol may be implemented by the controller 1521.
  • the controller 1521 may operate a multi-carrier and use cross-carrier scheduling on the multi-carrier based on a carrier indicator field (CIF).
  • CIF carrier indicator field
  • the memory 1512 is connected to the controller 1521 and stores a protocol or parameter for multi-carrier operation.
  • the RF unit 1513 is connected to the control unit 1521 to transmit and / or receive a radio signal.
  • the controllers 1511 and 1521 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device.
  • the memories 1512 and 1522 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage devices.
  • the RF unit 1513 and 1523 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 1512 and 1522 and executed by the controllers 1511 and 1521.
  • the memories 1512 and 1522 may be inside or outside the controllers 1511 and 1521, and may be connected to the controllers 1511 and 1521 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to an operating method for terminals for sending data bursts via cross-carrier scheduling in a system supporting a plurality of component carriers, comprising the steps of: receiving, from a base station, downlink control information (DCI) including a carrier indicator field (CIF), via a downlink control channel (PDCCH) in a control region within a subframe; identifying a downlink component carrier indicated by the carrier indicator field, and then determining the uplink component carrier in which a linkage has been set with the downlink component carrier so identified; and sending an uplink data burst to the base station via the uplink component carrier so determined.

Description

복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 크로스-캐리어 스케쥴링을 통한 데이터 전송 방법 및 장치Method and apparatus for data transmission through cross-carrier scheduling in a wireless communication system supporting a plurality of component carriers
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 크로스-캐리어 스케쥴링(cross-carrier scheduling)을 통한 데이터 전송 방법과 이를 이용하는 단말 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a data transmission method through cross-carrier scheduling and a terminal device using the same in a wireless communication system supporting a plurality of component carriers.
본 발명이 적용될 수 있는 이동통신 시스템의 일례로서 3GPP LTE(3rd Generation Partnership Project Long Term Evolution, 이하 'LTE'라 함), LTE-Advanced(이하, 'LTE-A'라 함) 통신 시스템에 대해 개략적으로 설명한다.As an example of a mobile communication system to which the present invention can be applied, a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, hereinafter referred to as 'LTE'), and an LTE-Advanced (hereinafter referred to as 'LTE-A') communication system are outlined. Explain.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 하나의 캐리어에 대해 1.25MHz, 2.5MHz, 5MHz, 10MHz, 15MHz, 20MHz 등의 대역폭 중 하나로 설정하여 여러 단말에게 하향링크/상향링크 전송 서비스를 제공한다. 이때, 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, 하이브리드 자동 재전송 요청(Hybrid Automatic Repeat and reQuest, HARQ) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink, UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, 하이브리드 자동 재전송 요청 관련 정보 등을 알려준다. 기지국 간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다.One or more cells exist in one base station. The cell is set to one of the bandwidth of 1.25MHz, 2.5MHz, 5MHz, 10MHz, 15MHz, 20MHz, etc. for one carrier to provide a downlink / uplink transmission service to multiple terminals. In this case, different cells may be configured to provide different bandwidths. The base station controls data transmission and reception for a plurality of terminals. The base station transmits downlink scheduling information for downlink data and informs the user equipment of time / frequency domain, encoding, data size, and hybrid automatic repeat and reQuest (HARQ) related information. In addition, the base station transmits uplink scheduling information to the corresponding terminal for uplink (UL) data and informs the user of the time / frequency domain, encoding, data size, and hybrid automatic retransmission request related information. An interface for transmitting user traffic or control traffic may be used between base stations.
무선 통신 기술은 광대역 코드분할 다중 접속(Wideband Code division Multiple Access, WCDMA)를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.Wireless communication technology has been developed up to LTE based on Wideband Code Division Multiple Access (WCDMA), but the needs and expectations of users and operators continue to increase. In addition, as other radio access technologies continue to be developed, new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
최근 3GPP는 LTE에 대한 후속 기술에 대한 표준화 작업을 진행하고 있다. 본 명세서에서는 상기 기술을 'LTE-A'라고 지칭한다. LTE 시스템과 LTE-A 시스템의 주요 차이점 중 하나는 시스템 대역폭의 차이와 중계기 도입이다. Recently, 3GPP is working on standardization of subsequent technologies for LTE. In the present specification, the above technique is referred to as 'LTE-A'. One of the major differences between LTE and LTE-A systems is the difference in system bandwidth and the introduction of repeaters.
LTE-A 시스템은 최대 100MHz의 광대역을 지원할 것을 목표로 하고 있으며, 이를 위해 복수의 주파수 블록을 사용하여 광대역을 달성하는 캐리어 어그리게이션(또는 캐리어 병합) 또는 대역폭 어그리게이션(또는 대역폭 병합)(carrier aggregation 또는 bandwidth aggregation) 기술을 사용하도록 하고 있다. 캐리어 어그리게이션은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 주파수 블록을 하나의 커다란 논리 주파수 대역으로 사용하도록 한다. 각 주파수 블록의 대역폭은 LTE 시스템에서 사용되는 시스템 블록의 대역폭에 기초하여 정의될 수 있다. 각각의 주파수 블록은 컴포넌트 캐리어(component carrier)를 이용하여 전송된다. The LTE-A system aims to support broadband of up to 100 MHz, and for this purpose, carrier aggregation (or carrier aggregation) or bandwidth aggregation (or bandwidth aggregation) (which achieves broadband using multiple frequency blocks) ( carrier aggregation or bandwidth aggregation) technology is used. Carrier aggregation allows the use of multiple frequency blocks as one large logical frequency band to use a wider frequency band. The bandwidth of each frequency block may be defined based on the bandwidth of the system block used in the LTE system. Each frequency block is transmitted using a component carrier.
차세대 통신 시스템인 LTE-A 시스템에서 캐리어 병합 기술을 채용함에 따라, 복수의 캐리어를 지원하는 시스템에서 단말이 기지국 또는 중계기로부터 신호를 수신하기 위한 방법이 필요하게 되었다.As carrier aggregation technology is adopted in the LTE-A system, which is a next-generation communication system, a method for a terminal to receive a signal from a base station or a repeater in a system supporting a plurality of carriers is required.
본 발명은 하향링크 제어 정보(DCI)에 포함된 캐리어 지시자 필드(CIF)를 이용하여 크로스-캐리어 스케쥴링된 상향링크 컴포넌트 캐리어를 결정함으로써 데이터를 전송하기 위한 방법 및 장치를 제공함에 목적이 있다.It is an object of the present invention to provide a method and apparatus for transmitting data by determining a cross-carrier scheduled uplink component carrier using a carrier indicator field (CIF) included in downlink control information (DCI).
본 발명은 복수의 컴포넌트 캐리어를 지원하는 시스템에서 크로스 캐리어 스케쥴링(cross-carrier scheduling)을 통해 데이터 버스트를 전송하기 위한 단말의 동작 방법에 있어서, 서브 프레임 내의 제어 영역에서 하향링크 제어 채널(PDCCH)을 통해, 캐리어 지시자 필드(CIF)를 포함하는 하향링크 제어 정보(DCI)를 기지국으로부터 수신하는 단계; 상기 캐리어 지시자 필드가 지시하는 하향링크 컴포넌트 캐리어를 확인한 후, 상기 확인된 하향링크 컴포넌트 캐리어와 링키지가 설정된 상향링크 컴포넌트 캐리어를 결정하는 단계; 및 상기 결정된 상향링크 컴포넌트 캐리어를 통해 상기 기지국으로 상향링크 데이터 버스트를 전송하는 단계를 포함하여 이루어진다.The present invention provides a method of operating a terminal for transmitting a data burst through cross-carrier scheduling in a system supporting a plurality of component carriers, the downlink control channel (PDCCH) in the control region in the sub-frame Receiving, from the base station, downlink control information (DCI) including a carrier indicator field (CIF); Identifying a downlink component carrier indicated by the carrier indicator field, and then determining an uplink component carrier for which the identified downlink component carrier and linkage are set; And transmitting an uplink data burst to the base station through the determined uplink component carrier.
또한, 상기 캐리어 지시자 필드는 상기 단말에게 할당된 컴포넌트 캐리어 구성에 따라 각 컴포넌트 캐리어를 지시하는 인덱스(index) 값을 나타내는 것을 특징으로 한다.The carrier indicator field may indicate an index value indicating each component carrier according to a component carrier configuration allocated to the terminal.
또한, 상기 캐리어 지시자 필드는 하향링크 컴포넌트 캐리어를 지시하는 인덱스 값인 것을 특징으로 한다.The carrier indicator field may be an index value indicating a downlink component carrier.
또한, 상기 하향링크 제어 정보는 하향링크 자원 할당 정보를 포함하는 하향링크 스케쥴링 할당(DL scheduling assignment)이거나 상향링크 자원 할당 정보를 포함하는 상향링크 그랜트(UL grant)인 것을 특징으로 한다.The downlink control information may be a downlink scheduling assignment including downlink resource allocation information or an uplink grant including uplink resource allocation information.
또한, 상기 확인된 하향링크 컴포넌트 캐리어는 적어도 하나의 상향링크 컴포넌트 캐리어와 링키지가 설정된 하향링크 컴포넌트 캐리어인 것을 특징으로 한다.In addition, the identified downlink component carrier is characterized in that the downlink component carrier is configured with at least one uplink component carrier and linkage.
또한, 상기 캐리어 지시자 필드는 3 비트로 표현되는 것을 특징으로 한다.In addition, the carrier indicator field is characterized in that represented by 3 bits.
또한, 본 발명은 복수의 컴포넌트 캐리어를 지원하는 시스템에서 크로스 캐리어 스케쥴링(cross-carrier scheduling)을 통해 데이터 버스트를 전송하기 위한 단말에 있어서, 무선 신호를 송신 및 수신하는 무선통신부; 및 상기 무선통신부와 연결되는 제어부를 포함하되, 상기 제어부는 서브 프레임 내의 제어 영역에서 하향링크 제어 채널(PDCCH)을 통해, 캐리어 지시자 필드(CIF)를 포함하는 하향링크 제어 정보(DCI)를 기지국으로부터 수신하도록 상기 무선통신부를 제어하며, 상기 캐리어 지시자 필드가 지시하는 하향링크 컴포넌트 캐리어를 확인한 후, 상기 확인된 하향링크 컴포넌트 캐리어와 링키지가 설정된 상향링크 컴포넌트 캐리어를 결정하며, 상기 결정된 상향링크 컴포넌트 캐리어를 통해 상기 기지국으로 상향링크 데이터 버스트를 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 한다.The present invention also provides a terminal for transmitting a data burst through cross-carrier scheduling in a system supporting a plurality of component carriers, the terminal comprising: a wireless communication unit for transmitting and receiving a radio signal; And a control unit connected to the wireless communication unit, wherein the control unit transmits downlink control information (DCI) including a carrier indicator field (CIF) from a base station through a downlink control channel (PDCCH) in a control region within a subframe. And control the wireless communication unit to receive the downlink component carrier indicated by the carrier indicator field, determine the uplink component carrier to which the identified downlink component carrier and linkage are set, and determine the determined uplink component carrier. And controlling the wireless communication unit to transmit an uplink data burst to the base station through.
본 발명은 단말-특정한(UE-specific) 캐리어 지시자 필드(CIF)를 사용함으로써 즉, 각 단말에게 할당된 컴포넌트 캐리어 구성에 따라 각 컴포넌트 캐리어들을 인덱싱(indexing)하고 상기 인덱싱 값을 CIF로 알려줌으로써, 고정된 크기의 CIF를 가지고 모든 단말을 스케쥴링 해줄 수 있는 효과가 있다.The present invention uses a UE-specific carrier indicator field (CIF), that is, by indexing each component carriers according to the component carrier configuration assigned to each terminal and informs the indexing value to the CIF, There is an effect that can schedule all terminals with a CIF of a fixed size.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.1 is a view for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
도 2는 이동통신 시스템의 일 예인 3GPP LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도.2 is a diagram illustrating a structure of a radio frame used in a 3GPP LTE system that is an example of a mobile communication system.
도 3 (a)는 이동통신 시스템의 일 예인 3GPP LTE 시스템의 하향링크 서브프레임의 구조를 나타낸 도.3 (a) is a diagram showing a structure of a downlink subframe of a 3GPP LTE system which is an example of a mobile communication system.
도 3 (b)는 이동통신 시스템의 일 예인 3GPP LTE 시스템의 상향링크 서브프레임의 구조를 나타낸 도.3 (b) is a view showing a structure of an uplink subframe of a 3GPP LTE system which is an example of a mobile communication system.
도 4는 본 발명에서 사용되는 하향링크의 시간-주파수 자원 격자 구조(resource grid structure)를 나타낸 도.4 illustrates a downlink time-frequency resource grid structure used in the present invention.
도 5는 PDCCH의 구성을 나타낸 블록도.5 is a block diagram showing a configuration of a PDCCH.
도 6은 PDCCH의 자원 맵핑의 예를 나타낸 도.6 illustrates an example of resource mapping of a PDCCH.
도 7은 시스템 대역에서의 CCE 인터리빙을 나타낸 도.7 illustrates CCE interleaving in the system band.
도 8은 PDCCH의 모니터링을 나타낸 예시도.8 is an exemplary diagram illustrating monitoring of a PDCCH.
도 9의 (a)는 기지국에서 복수의 MAC이 멀티 캐리어를 관리하는 개념을 설명한 도면이고, 도 9의 (b)는 단말에서 복수의 MAC이 멀티캐리어를 관리하는 개념을 설명하기 위한 도.FIG. 9A illustrates a concept of managing multiple carriers by multiple MACs in a base station, and FIG. 9B illustrates a concept of managing multiple carriers by multiple MACs in a terminal.
도 10의 (a)는 기지국에서 하나의 MAC이 멀티캐리어를 관리하는 개념을 설명하기 위한 도면이고, 도 10의 (b)는 단말에서 하나의 MAC이 멀티캐리어를 관리하는 개념을 설명하기 위한 도.FIG. 10A is a diagram for describing a concept in which a single MAC manages a multicarrier in a base station, and FIG. 10B is a view for explaining a concept in which a single MAC manages a multicarrier in a terminal. .
도 11은 다중 반송파의 일 예를 나타낸 도.11 illustrates an example of a multicarrier.
도 12는 크로스-반송파 스케줄링의 일 예를 나타낸 도.12 illustrates an example of cross-carrier scheduling.
도 13은 컴포넌트 캐리어(CC) 집합의 일 예를 나타낸 도.13 illustrates an example of a component carrier (CC) set.
도 14 (a)는 셀-특정(cell-specific) CIF(carrier indicator field) 설정 방법을 나타낸 도.FIG. 14A illustrates a method of establishing a cell-specific carrier indicator field (CIF). FIG.
도 14 (b)는 본 발명의 일 실시 예에 따른 단말-특정(UE-specific) CIF 설정 방법을 나타낸 도.14 (b) is a diagram illustrating a UE-specific CIF setting method according to an embodiment of the present invention.
도 15는 본 발명의 일 실시 예에 따른 무선통신 시스템을 나타낸 블록도.15 is a block diagram showing a wireless communication system according to an embodiment of the present invention.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details. For example, the following detailed description will be described in detail on the assumption that the mobile communication system is a 3GPP LTE, LTE-A system, but is also applied to any other mobile communication system except for the specific matters of the 3GPP LTE, LTE-A. Applicable
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
아울러, 이하의 설명에 있어서 단말은 사용자 기기(User Equipment, UE), 모바일 스테이션(Mobile Station, MS), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 중계기는 릴레이 노드(Relay Node, RN), 릴레이 스테이션(Relay Station, RS), 릴레이 등으로 호칭 될 수도 있다.In addition, in the following description, it is assumed that a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), and an advanced mobile station (AMS). In addition, it is assumed that the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP). The repeater may be referred to as a relay node (RN), a relay station (RS), a relay, or the like.
이동 통신 시스템에서 단말(User Equipment), 중계기는 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말, 중계기는 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말, 중계기가 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말, 중계기가 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.In a mobile communication system, a user equipment and a repeater may receive information from a base station through downlink, and the terminal and repeater may also transmit information through uplink. The information transmitted or received by the terminal and the repeater includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal and the repeater.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.FIG. 1 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S101). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S101). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S102).Upon completion of the initial cell search, the UE obtains more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information on the PDCCH. It may be (S102).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S103 내지 단계 S106). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S103 및 S105), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104 및 S106). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.On the other hand, when the first access to the base station or there is no radio resource for signal transmission, the terminal may perform a random access procedure (RACH) for the base station (steps S103 to S106). To this end, the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S103 and S105), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S104 and S106). In the case of contention-based RACH, a contention resolution procedure may be additionally performed.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S107) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S108)을 수행할 수 있다. 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 정보는 하향링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.After performing the procedure described above, the UE performs a PDCCH / PDSCH reception (S107) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure. Control Channel (PUCCH) transmission (S108) may be performed. Information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). Include. In the 3GPP LTE system, the terminal may transmit the above-described information, such as CQI / PMI / RI through the PUSCH and / or PUCCH.
도 2는 이동통신 시스템의 일 예인 3GPP LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.2 is a diagram illustrating a structure of a radio frame used in a 3GPP LTE system as an example of a mobile communication system.
도 2를 참조하면, 하나의 무선 프레임(radio frame)은 10ms(327200Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.1552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다. Referring to FIG. 2, one radio frame has a length of 10 ms (327200 Ts) and consists of 10 equally sized subframes. Each subframe has a length of 1 ms and consists of two slots. Each slot has a length of 0.5 ms (15360 Ts). Here, Ts represents a sampling time and is represented by Ts = 1 / (15 kHz x 2048) = 3.1552 x 10 -8 (about 33 ns). The slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
LTE 시스템에서 하나의 자원블록(Resource Block, RB)은 12개의 부반송파 ×7(6)개의 OFDM 심볼 또는 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼 또는 SC-FDMA 심볼의 수는 다양하게 변경될 수 있다.In an LTE system, one resource block (RB) includes 12 subcarriers x 7 (6) OFDM symbols or a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol. Transmission time interval (TTI), which is a unit time for transmitting data, may be determined in units of one or more subframes. The structure of the above-described radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe, the number of OFDM symbols or SC-FDMA symbols included in the slot may be variously changed. have.
도 3은 이동통신 시스템의 일 예인 3GPP LTE 시스템의 하향링크 및 상향링크 서브프레임의 구조를 나타낸 도면이다. 3 is a diagram illustrating a structure of downlink and uplink subframes of a 3GPP LTE system as an example of a mobile communication system.
도 3의 (a)를 참조하면, 하나의 하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함한다. 하향링크 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심볼들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. Referring to FIG. 3A, one downlink subframe includes two slots in the time domain. Up to three OFDM symbols of the first slot in the downlink subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
3GPP LTE 시스템 등에서 사용되는 하향링크 제어채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫 번째 OFDM 심볼에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심볼의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(Downlink Control Information, DCI)라고 한다. DCI는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 및 임의의 단말 그룹들에 대한 상향링크 전송 파워 제어 명령 등을 가리킨다. PHICH는 상향링크 HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.Downlink control channels used in 3GPP LTE systems include a PCFICH (Physical Control Format Indicator Channel), PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid-ARQ Indicator Channel). The PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe. Control information transmitted through the PDCCH is called downlink control information (DCI). DCI indicates uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command for arbitrary UE groups. The PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
이하에서 하향링크 물리채널인 PDCCH에 대해서 간략히 살펴보기로 한다. PDCCH에 대한 구체적인 설명은 이하 도 5 내지 도 8에서 구체적으로 설명하기로 한다.Hereinafter, the PDCCH which is a downlink physical channel will be briefly described. A detailed description of the PDCCH will be described below with reference to FIGS. 5 to 8.
기지국은 PDCCH를 통해 PDSCH의 자원 할당 및 전송 포맷(이를 DL grant라고도 한다), PUSCH의 자원 할당 정보(이를 UL grant라고도 한다), 임의의 단말, 그룹 내 개별 단말들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 전송할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(Control Channel Elements)의 집합(aggregation)으로 구성된다. The base station sets a resource allocation and transmission format of the PDSCH (also referred to as a DL grant), a resource allocation information of the PUSCH (also referred to as a UL grant) through a PDCCH, a set of transmission power control commands for an arbitrary terminal and individual terminals in a group. And activation of Voice over Internet Protocol (VoIP). A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs. The PDCCH consists of an aggregation of one or several consecutive Control Channel Elements (CCEs).
하나 또는 몇몇 연속적인 CCE의 집합으로 구성된 PDCCH는 서브블록 인터리빙(subblock interleaving)을 거친 후에 제어 영역을 통해 전송될 수 있다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트 수가 결정된다. The PDCCH composed of one or several consecutive CCEs may be transmitted through the control region after subblock interleaving. CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel. The CCE corresponds to a plurality of resource element groups. The format of the PDCCH and the number of possible bits of the PDCCH are determined by the correlation between the number of CCEs and the coding rate provided by the CCEs.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. 다음 표 1은 DCI 포맷에 따른 DCI를 나타낸다.Control information transmitted through the PDCCH is called downlink control information (DCI). Table 1 below shows DCI according to DCI format.
표 1
Figure PCTKR2011000087-appb-T000001
Table 1
Figure PCTKR2011000087-appb-T000001
DCI 포맷 0은 상향링크 자원 할당 정보를 가리키고, DCI 포맷 1~2는 하향링크 자원 할당 정보를 가리키고, DCI 포맷 3, 3A는 임의의 단말 그룹들에 대한 상향링크 TPC(transmit power control) 명령을 가리킨다. DCI format 0 indicates uplink resource allocation information, DCI formats 1 to 2 indicate downlink resource allocation information, and DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups. .
LTE 시스템에서 기지국이 PDCCH를 전송을 위해 자원을 매핑하는 방안에 대해 간단히 살펴본다.In the LTE system, a brief description will be given of a method for mapping a resource for transmitting a PDCCH by a base station.
일반적으로, 기지국은 PDCCH를 통하여 스케줄링 할당 정보 및 다른 제어 정보를 전송할 수 있다. 물리 제어 채널은 하나의 집합(aggregation) 또는 복수 개의 연속 제어 채널 요소(CCE: Control Channel Element)로 전송될 수 있다. 하나의 CCE는 9개의 자원 요소 그룹(Resource Element Group, REG)들을 포함한다. PCFICH(Physical Control Format Indicator CHhannel) 또는 PHICH(Physical Hybrid Automatic Repeat Request Indicator Channel)에 할당되지 않은 RBG의 개수는 NREG이다. 시스템에서 이용가능한 CCE는 0부터 NCCE-1까지 이다(여기서
Figure PCTKR2011000087-appb-I000001
이다). PDCCH는 다음 표 3에 나타낸 바와 같이 다중 포맷을 지원한다. n개의 연속 CCE들로 구성된 하나의 PDCCH는 i mod n =0을 수행하는 CCE부터 시작한다(여기서 i는 CCE 번호이다). 다중 PDCCH들은 하나의 서브프레임으로 전송될 수 있다.
In general, the base station may transmit scheduling assignment information and other control information through the PDCCH. The physical control channel may be transmitted in one aggregation or a plurality of continuous control channel elements (CCEs). One CCE includes nine Resource Element Groups (REGs). The number of RBGs that are not allocated to the Physical Control Format Indicator CHhannel (PCFICH) or the Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH) is N REG . The available CCEs in the system are from 0 to N CCE -1 (where
Figure PCTKR2011000087-appb-I000001
to be). The PDCCH supports multiple formats as shown in Table 3 below. One PDCCH composed of n consecutive CCEs starts with a CCE that performs i mod n = 0 (where i is a CCE number). Multiple PDCCHs may be transmitted in one subframe.
표 2
Figure PCTKR2011000087-appb-T000002
TABLE 2
Figure PCTKR2011000087-appb-T000002
표 2를 참조하면, 기지국은 제어 정보 등을 몇 개의 영역으로 보낼 지에 따라 PDCCH 포맷을 결정할 수 있다. 단말은 CCE 단위로 제어 정보 등을 읽어서 오버헤드를 줄일 수 있다. 마찬가지로, 중계기도 R-CCE 단위로 제어 정보 등을 읽을 수 있다. LTE-A 시스템에서는, 임의의 중계기를 위한 R-PDCCH를 전송하기 위해 R-CCE(Relay-Control Channel Element) 단위로 자원 요소(Resource Element, RE)를 매핑할 수 있다. Referring to Table 2, the base station may determine the PDCCH format according to how many areas, such as control information, to send. The UE may reduce overhead by reading control information in units of CCE. Similarly, the repeater can also read control information and the like in units of R-CCE. In the LTE-A system, a resource element (RE) may be mapped in units of a relay-control channel element (R-CCE) to transmit an R-PDCCH for an arbitrary repeater.
도 3의 (b)를 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역 및 데이터 영역으로 나누어질 수 있다. 제어 영역은 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control CHannel)로 할당된다. 데이터 영역은 사용자 데이터를 나르기 위한 PUSCH(Physical Uplink Shared CHannel)로 할당된다. 단일 반송파 특성을 유지하기 위하여, 하나의 단말은 PUCCH 및 PUSCH를 동시에 전송하지 않는다. 하나의 단말을 위한 PUCCH는 하나의 서브프레임에서 RB 페어로 할당된다. RB 페어에 속하는 RB들은 각 2개의 슬롯에서 서로 다른 부반송파를 차지하고 있다. PUCCH에 할당된 RB 페어는 슬롯 경계(slot boundary)에서 주파수 호핑된다.Referring to FIG. 3B, an uplink subframe may be divided into a control region and a data region in the frequency domain. The control region is allocated to a physical uplink control channel (PUCCH) that carries uplink control information. The data area is allocated to a Physical Uplink Shared CHannel (PUSCH) for carrying user data. In order to maintain a single carrier characteristic, one UE does not simultaneously transmit a PUCCH and a PUSCH. PUCCH for one UE is allocated to an RB pair in one subframe. RBs belonging to the RB pair occupy different subcarriers in each of two slots. The RB pair assigned to the PUCCH is frequency hopped at the slot boundary.
도 4는 본 발명에서 사용되는 하향링크의 시간-주파수 자원 격자 구조(resource grid structure)를 나타낸 도면이다.4 illustrates a downlink time-frequency resource grid structure used in the present invention.
각 슬롯에서 전송되는 하향링크 신호는
Figure PCTKR2011000087-appb-I000002
개의 부반송파(subcarrier)와
Figure PCTKR2011000087-appb-I000003
개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼로 구성되는 자원 격자(resource grid) 구조로 이용한다. 여기서,
Figure PCTKR2011000087-appb-I000004
은 하향링크에서의 자원 블록(RB: Resource Block)의 개수를 나타내고,
Figure PCTKR2011000087-appb-I000005
는 하나의 RB을 구성하는 부반송파의 개수를 나타내고,
Figure PCTKR2011000087-appb-I000006
는 하나의 하향링크 슬롯에서의 OFDM 심볼의 개수를 나타낸다.
Figure PCTKR2011000087-appb-I000007
의 크기는 셀 내에서 구성된 하향링크 전송 대역폭에 따라 달라지며
Figure PCTKR2011000087-appb-I000008
을 만족해야 한다. 여기서,
Figure PCTKR2011000087-appb-I000009
는 무선 통신 시스템이 지원하는 가장 작은 하향링크 대역폭이며
Figure PCTKR2011000087-appb-I000010
는 무선 통신 시스템이 지원하는 가장 큰 하향링크 대역폭이다.
Figure PCTKR2011000087-appb-I000011
=6이고
Figure PCTKR2011000087-appb-I000012
=110일 수 있지만, 이에 한정되는 것은 아니다. 하나의 슬롯 내에 포함된 OFDM 심볼의 개수는 순환 전치(CP: Cyclic Prefix)의 길이 및 부반송파의 간격에 따라 다를 수 있다. 다중안테나 전송의 경우에, 하나의 안테나 포트 당 하나의 자원 격자가 정의될 수 있다.
The downlink signal transmitted in each slot
Figure PCTKR2011000087-appb-I000002
Subcarriers and
Figure PCTKR2011000087-appb-I000003
It is used as a resource grid structure composed of orthogonal frequency division multiplexing (OFDM) symbols. here,
Figure PCTKR2011000087-appb-I000004
Represents the number of resource blocks (RBs) in downlink,
Figure PCTKR2011000087-appb-I000005
Represents the number of subcarriers constituting one RB,
Figure PCTKR2011000087-appb-I000006
Denotes the number of OFDM symbols in one downlink slot.
Figure PCTKR2011000087-appb-I000007
The size of depends on the downlink transmission bandwidth configured within the cell.
Figure PCTKR2011000087-appb-I000008
Must be satisfied. here,
Figure PCTKR2011000087-appb-I000009
Is the smallest downlink bandwidth supported by the wireless communication system.
Figure PCTKR2011000087-appb-I000010
Is the largest downlink bandwidth supported by the wireless communication system.
Figure PCTKR2011000087-appb-I000011
= 6
Figure PCTKR2011000087-appb-I000012
= 110, but is not limited thereto. The number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP) and the interval of subcarriers. In case of multi-antenna transmission, one resource grid may be defined per one antenna port.
각 안테나 포트에 대한 자원 격자 내의 각 요소는 자원 요소(RE: Resource Element)라고 불리우며, 슬롯 내의 인덱스 쌍 (k,l)에 의해 유일하게 식별된다. 여기서, k는 주파수 영역에서의 인덱스이고, l는 시간 영역에서의 인덱스이며 k는 0,...,
Figure PCTKR2011000087-appb-I000013
중 어느 하나의 값을 갖고, l는 0,...,
Figure PCTKR2011000087-appb-I000014
중 어느 하나의 값을 갖는다.
Each element in the resource grid for each antenna port is called a resource element (RE) and is uniquely identified by an index pair (k, l) in the slot. Where k is the index in the frequency domain, l is the index in the time domain and k is 0, ...,
Figure PCTKR2011000087-appb-I000013
Has any one of the values l is 0, ...,
Figure PCTKR2011000087-appb-I000014
Has any one of the values.
도 4에 도시된 자원 블록은 어떤 물리 채널과 자원 요소들 간의 매핑(mapping) 관계를 기술하기 위해 사용된다. RB는 물리 자원 블록(PRB: Physical Resource Block)과 가상 자원 블록(VRB: Virtual Resource Block)으로 나눌 수 있다. 상기 하나의 PRB는 시간 영역의
Figure PCTKR2011000087-appb-I000015
개의 연속적인 OFDM 심볼과 주파수 영역의
Figure PCTKR2011000087-appb-I000016
개의 연속적인 부반송파로 정의된다. 여기서
Figure PCTKR2011000087-appb-I000017
Figure PCTKR2011000087-appb-I000018
는 미리 결정된 값일 수 있다. 예를 들어
Figure PCTKR2011000087-appb-I000019
Figure PCTKR2011000087-appb-I000020
는 다음 표 1과 같이 주어질 수 있다. 따라서 하나의 PRB는
Figure PCTKR2011000087-appb-I000021
개의 자원 요소로 구성된다. 하나의 PRB는 시간 영역에서는 하나의 슬롯에 대응되고 주파수 영역에서는 180kHz에 대응될 수 있지만 이에 한정되는 것은 아니다.
The resource block shown in FIG. 4 is used to describe a mapping relationship between certain physical channels and resource elements. The RB may be divided into a physical resource block (PRB) and a virtual resource block (VRB). The one PRB is a time domain
Figure PCTKR2011000087-appb-I000015
Contiguous OFDM symbols and frequency domain
Figure PCTKR2011000087-appb-I000016
It is defined as two consecutive subcarriers. here
Figure PCTKR2011000087-appb-I000017
and
Figure PCTKR2011000087-appb-I000018
May be a predetermined value. E.g
Figure PCTKR2011000087-appb-I000019
and
Figure PCTKR2011000087-appb-I000020
Can be given as Table 1 below. So one PRB
Figure PCTKR2011000087-appb-I000021
It consists of four resource elements. One PRB may correspond to one slot in the time domain and 180 kHz in the frequency domain, but is not limited thereto.
표 3
Figure PCTKR2011000087-appb-T000003
TABLE 3
Figure PCTKR2011000087-appb-T000003
PRB는 주파수 영역에서 0에서
Figure PCTKR2011000087-appb-I000022
까지의 값을 갖는다. 주파수 영역에서의 PRB 넘버(number) nPRB와 하나의 슬롯 내에서의 자원 요소 (k,l) 사이의 관계는
Figure PCTKR2011000087-appb-I000023
를 만족한다.
PRB is at 0 in the frequency domain
Figure PCTKR2011000087-appb-I000022
Has a value up to. The relation between the PRB number nPRB in the frequency domain and the resource element (k, l) in one slot is
Figure PCTKR2011000087-appb-I000023
Satisfies.
상기 VRB의 크기는 PRB의 크기와 같다. VRB는 로컬형 VRB(Localized VRB, LVRB)와 분산형 VRB(Distributed VRB, DVRB)로 나뉘어 정의될 수 있다. 각 타입의 VRB에 대해, 하나의 서브프레임 내의 두 개의 슬롯에 있는 한 쌍의 VRB는 단일 VRB 넘버 nVRB가 함께 할당된다. The size of the VRB is equal to the size of the PRB. The VRB may be defined by being divided into a localized VRB (LVRB) and a distributed VRB (DVRB). For each type of VRB, a pair of VRBs in two slots in one subframe are assigned together a single VRB number n VRBs .
상기 VRB은 PRB과 동일한 크기를 가질 수 있다. 두 가지 타입의 VRB이 정의되는데, 첫째 타입은 로컬형 VRB(Localized VRB, LVRB)이고, 둘째 타입은 분산형 VRB(Distributed VRB, DVRB)이다. 각 타입의 VRB에 대해, 한 쌍(pair)의 VRB이 단일의 VRB 인덱스 (이하, VRB 넘버(number)로 지칭될 수도 있다)를 가지고 1개의 서브프레임의 2개의 슬롯에 걸쳐 할당된다. 다시 말하면, 하나의 서브프레임을 구성하는 2개의 슬롯 중 제 1 슬롯에 속하는
Figure PCTKR2011000087-appb-I000024
개의 VRB들은 각각 0부터
Figure PCTKR2011000087-appb-I000025
중 어느 하나의 인덱스 (Index)를 할당받고, 위의 2개의 슬롯 중 제 2 슬롯에 속하는
Figure PCTKR2011000087-appb-I000026
개의 VRB들도 마찬가지로 각각 0부터
Figure PCTKR2011000087-appb-I000027
중 어느 하나의 인덱스를 할당받는다.
The VRB may have the same size as the PRB. Two types of VRBs are defined, the first type being a localized VRB (LVRB) and the second type being a distributed VRB (DVRB). For each type of VRB, a pair of VRBs are allocated over two slots of one subframe with a single VRB index (hereinafter may also be referred to as VRB number). In other words, belonging to the first slot of the two slots constituting one subframe
Figure PCTKR2011000087-appb-I000024
VRBs from 0 each
Figure PCTKR2011000087-appb-I000025
Is assigned an index of any one of the two slots
Figure PCTKR2011000087-appb-I000026
VRBs likewise start with 0
Figure PCTKR2011000087-appb-I000027
Any one of the indexes is allocated.
상술한 바와 같은 도 2 내지 도 4에 기재된 무선 프레임 구조, 하향링크 서브프레임 및 상향링크 서브프레임, 하향링크의 시간-주파수 자원 격자 구조 등은 기지국과 중계기 간에서도 적용될 수 있다.As described above, the radio frame structure, the downlink subframe and the uplink subframe, and the downlink time-frequency resource lattice structure described in FIGS. 2 to 4 may also be applied between the base station and the repeater.
이하에서 LTE 시스템에서 기지국이 단말에게 PDCCH를 내려보내기 위한 과정을 설명한다. Hereinafter, a process for sending a PDCCH to a terminal by a base station in an LTE system will be described.
도 5는 PDCCH의 구성을 나타낸 블록도이다. 5 is a block diagram showing the configuration of a PDCCH.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다(510).The base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask the CRC (510).
특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RARNTI(random access-RNTI)가 CRC에 마스킹될 수 있다. 복수의 단말에 대한 TPC(transmit power control) 명령을 지시하기 위해 TPC-RNTI가 CRC에 마스킹될 수 있다.If the PDCCH is for a specific terminal, a unique identifier of the terminal, for example, a C-RNTI (Cell-RNTI) may be masked to the CRC. Alternatively, if the PDCCH is for a paging message, a paging indication identifier, for example, P-RNTI (P-RNTI), may be masked to the CRC. If it is a PDCCH for system information, a system information identifier and a system information-RNTI (SI-RNTI) may be masked to the CRC. A random access-RNTI (RARNTI) may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the UE. TPC-RNTI may be masked to the CRC to indicate a transmit power control (TPC) command for a plurality of terminals.
C-RNTI가 사용되면 PDCCH는 해당하는 특정 단말을 위한 제어정보(이를 단말 특정(UE-specific) 제어정보라 함)를 나르고, 다른 RNTI가 사용되면 PDCCH는 셀내 모든 또는 복수의 단말이 수신하는 공용(common) 제어정보를 나른다.If the C-RNTI is used, the PDCCH carries control information for the corresponding specific UE (called UE-specific control information), and if another RNTI is used, the PDCCH is shared by all or a plurality of terminals in the cell. (common) carries control information.
CRC가 부가된 DCI를 인코딩하여 부호화된 데이터(coded data)를 생성한다(520). 인코딩은 채널 인코딩과 레이트 매칭(rate matching)을 포함한다.The DCC added with the CRC is encoded to generate coded data (520). Encoding includes channel encoding and rate matching.
부호화된 데이터는 변조되어 변조 심벌들이 생성된다(530).The coded data is modulated to generate modulation symbols (530).
변조심벌들은 물리적인 RE(resource element)에 맵핑된다(540). 변조심벌 각각은 RE에 맵핑된다.The modulation symbols are mapped to a physical resource element (RE) (540). Each modulation symbol is mapped to an RE.
도 6은 PDCCH의 자원 맵핑의 예를 나타낸다. 6 shows an example of resource mapping of a PDCCH.
도 6을 참조하면, R0은 제1 안테나의 기준신호, R1은 제2 안테나의 기준신호, R2는 제3 안테나의 기준신호, R3는 제4 안테나의 기준신호를 나타낸다.Referring to FIG. 6, R0 represents a reference signal of the first antenna, R1 represents a reference signal of the second antenna, R2 represents a reference signal of the third antenna, and R3 represents a reference signal of the fourth antenna.
서브 프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.The control region in the subframe includes a plurality of control channel elements (CCEs). The CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs). The REG includes a plurality of resource elements. The format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
하나의 REG(도면에서는 쿼드러플릿(quadruplet)으로 표시)는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.One REG (denoted as quadruplet in the figure) contains four REs and one CCE contains nine REGs. {1, 2, 4, 8} CCEs may be used to configure one PDCCH, and each element of {1, 2, 4, 8} is called a CCE aggregation level.
하나 또는 그 이상의 CCE로 구성된 제어채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.A control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
도 7은 시스템 대역에 CCE를 분산시키는 예를 나타낸다.7 shows an example of distributing CCEs in a system band.
도 7을 참조하면, 논리적으로 연속된 복수의 CCE가 인터리버(interleaver)로 입력된다. 상기 인터리버는 입력된 복수의 CCE를 REG 단위로 뒤섞는 기능을 수행한다.Referring to FIG. 7, a plurality of logically continuous CCEs are input to an interleaver. The interleaver performs a function of mixing input CCEs in REG units.
따라서, 하나의 CCE를 이루는 주파수/시간 자원은 물리적으로 서브프레임의 제어 영역 내에서 전체 주파수/시간영역에 흩어져서 분포한다. 결국, 제어 채널은 CCE 단위로 구성되지만 인터리빙은 REG 단위로 수행됨으로써 주파수 다이버시티(diversity)와 간섭 랜덤화(interference randomization) 이득을 최대화할 수 있다.Accordingly, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe. As a result, the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
도 8은 PDCCH의 모니터링을 나타낸 예시도이다. 8 is an exemplary diagram illustrating monitoring of a PDCCH.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 PDCCH 후보(candidate)라 함)의 CRC에 원하는 식별자를 디마스킹하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 단말은 자신의 PDCCH가 제어 영역 내에서 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷을 사용하여 전송되는지 알지 못한다.In 3GPP LTE, blind decoding is used to detect the PDCCH. Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a PDCCH candidate), and checking a CRC error to determine whether the corresponding PDCCH is its control channel. The UE does not know where its PDCCH is transmitted using which CCE aggregation level or DCI format at which position in the control region.
하나의 서브 프레임 내에서 복수의 PDCCH가 전송될 수 있다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.A plurality of PDCCHs may be transmitted in one subframe. The UE monitors the plurality of PDCCHs in every subframe. In this case, the monitoring means that the UE attempts to decode the PDCCH according to the monitored PDCCH format.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 단말은 해당되는 검색 공간 내에서 PDCCH를 모니터링한다.In 3GPP LTE, a search space is used to reduce the burden of blind decoding. The search space may be referred to as a monitoring set of the CCE for the PDCCH. The UE monitors the PDCCH in the corresponding search space.
검색 공간은 공용 검색 공간(common search space)과 단말 특정 검색 공간(UE-specific search space)로 나뉜다. 공용 검색 공간은 공용 제어정보를 갖는 PDCCH를 검색하는 공간으로 CCE 인덱스 0~15까지 16개 CCE로 구성되고, {4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다.The search space is divided into a common search space and a UE-specific search space. The common search space is a space for searching for a PDCCH having common control information. The common search space includes 16 CCEs up to CCE indexes 0 to 15 and supports a PDCCH having a CCE aggregation level of {4, 8}. However, PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space. The UE-specific search space supports a PDCCH having a CCE aggregation level of {1, 2, 4, 8}.
다음 표 4는 단말에 의해 모니터링되는 PDCCH 후보의 개수를 나타낸다.Table 4 below shows the number of PDCCH candidates monitored by the UE.
표 4
Figure PCTKR2011000087-appb-T000004
Table 4
Figure PCTKR2011000087-appb-T000004
검색 공간의 크기는 상기 표 4에 의해 정해지고, 검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예를 들어, C-RNTI), CCE 집합 레벨 및/또는 무선프레임내의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복될(overlap) 수 있다.The size of the search space is determined by Table 4, and the starting point of the search space is defined differently from the common search space and the terminal specific search space. The starting point of the common search space is fixed irrespective of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level and / or the slot number in the radio frame. Can vary. When the start point of the terminal specific search space is in the common search space, the terminal specific search space and the common search space may overlap.
집합 레벨 L∈{1,2,3,4}에서 검색 공간 S(L)k는 PDCCH 후보의 집합으로 정의된다. 검색 공간S(L) k의 PDCCH 후보m에 대응하는 CCE는 다음과 같이 주어진다.At the aggregation level L '{1,2,3,4}, the search space S (L) k is defined as a set of PDCCH candidates. The CCE corresponding to the PDCCH candidate m in the search space S (L) k is given as follows.
수학식 1
Figure PCTKR2011000087-appb-M000001
Equation 1
Figure PCTKR2011000087-appb-M000001
여기서, i=0,1,...,L-1, m=0,...,M(L)-1, NCCE,k는 서브프레임 k의 제어영역내에서 PDCCH의 전송에 사용할 수 있는 CCE의 전체 개수이다. 제어영역은 0부터 NCCE,k-1로 넘버링된 CCE들의 집합을 포함한다. M(L)은 주어진 검색 공간에서의 CCE 집합 레벨 L에서 PDCCH 후보의 개수이다. 공용 검색 공간에서, Yk는 2개의 집합 레벨, L=4 및 L=8,에 대해 0으로 셋팅된다. 집합 레벨 L의 단말 특정 검색 공간에서, 변수 Yk는 다음과 같이 정의된다.Where i = 0,1, ..., L-1, m = 0, ..., M (L) -1, N CCE, k can be used for transmission of the PDCCH in the control region of subframe k. The total number of CCEs present. The control region includes a set of CCEs numbered from 0 to N CCE, k −1. M (L) is the number of PDCCH candidates at CCE aggregation level L in a given search space. In the common search space, Y k is set to zero for two aggregation levels, L = 4 and L = 8. In the UE-specific search space of the aggregation level L, the variable Y k is defined as follows.
수학식 2
Figure PCTKR2011000087-appb-M000002
Equation 2
Figure PCTKR2011000087-appb-M000002
여기서, Y-1=nRNTI≠0, A=39827, D=65537, k=floor(ns/2), ns는 무선 프레임내의 슬롯 번호(slot number)이다.Where Y −1 = n RNTI ≠ 0, A = 39827, D = 65537, k = floor (n s / 2), n s is a slot number in a radio frame.
단말이 C-RNTI를 이용하여 PDCCH를 모니터링할 때, PDSCH의 전송 모드(transmission mode)에 따라 모니터링할 DCI 포맷과 검색 공간이 결정된다. When the UE monitors the PDCCH using the C-RNTI, a DCI format and a search space to be monitored are determined according to a transmission mode of the PDSCH.
다음 표 5는 C-RNTI가 설정된 PDCCH 모니터링의 예를 나타낸다.Table 5 below shows an example of PDCCH monitoring configured with C-RNTI.
표 5
Figure PCTKR2011000087-appb-T000005
Table 5
Figure PCTKR2011000087-appb-T000005
이하에서, 다중 반송파(multiple carrier) 시스템에 대해 기술한다.Hereinafter, a multiple carrier system will be described.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. The 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
이는 3GPP LTE는 각각 하향링크와 상향링크에 대하여 각각 하나의 CC가 정의되어 있는 상황에서, 하향링크의 대역폭과 상향링크의 대역폭이 같거나 다른 경우에 대해서만 지원되는 것을 의미한다. 예를 들어, 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크에 하나의 CC 만을 지원한다.This means that 3GPP LTE is supported only when the bandwidth of the downlink and the bandwidth of the uplink are the same or different in the situation where one CC is defined for the downlink and the uplink, respectively. For example, the 3GPP LTE system supports up to 20MHz and may be different in uplink bandwidth and downlink bandwidth, but only one CC is supported in the uplink and the downlink.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 스펙트럼 집성은 증가되는 수율(throughput)을 지원하고, 광대역 RF(radio frequency) 소자의 도입으로 인한 비용 증가를 방지하고, 기존 시스템과의 호환성을 보장하기 위해 도입되는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.Spectrum aggregation (or bandwidth aggregation, also known as carrier aggregation) supports a plurality of CCs. Spectral aggregation is introduced to support increased throughput, to prevent cost increases due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
스펙트럼 집성은 집성이 주파수 영역에서 연속적인 반송파들 사이에서 이루어지는 인접(contiguous) 스펙트럼 집성과 집성이 불연속적인 반송파들 사이에 이루어지는 비인접(non-contiguous) 스펙트럼 집성으로 나눌 수 있다. 하향링크와 상향링크 간에 집성되는 CC들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.Spectral aggregation can be divided into contiguous spectral aggregation where aggregation is between successive carriers in the frequency domain and non-contiguous spectral aggregation where aggregation is between discontinuous carriers. The number of CCs aggregated between the downlink and the uplink may be set differently. The case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
또한, 하향링크 컴포넌트 캐리어와 상향링크 컴포넌트 캐리어를 합쳐서 '셀(cell)'이라 명칭하기도 한다. 즉, DL CC와 UL CC 한 쌍에 대한 개념으로 '셀'을 사용하기도 한다. 여기서, 말하는 '셀'은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.In addition, the downlink component carrier and the uplink component carrier may be collectively referred to as a 'cell'. That is, 'cell' may be used as a concept for a pair of DL CC and UL CC. Here, the term 'cell' should be distinguished from the term 'cell' as an area covered by a generally used base station.
CC의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz carrier (CC #0) + 20MHz carrier (CC #1) + 20MHz carrier (CC #2) + 20MHz carrier (CC #3) + 5MHz carrier (CC #4)과 같이 구성될 수도 있다.The size (ie bandwidth) of the CC may be different. For example, assuming that 5 CCs are used to configure a 70 MHz band, a 5 MHz carrier (CC # 0) + 20 MHz carrier (CC # 1) + 20 MHz carrier (CC # 2) + 20 MHz carrier (CC # 3) It may also be configured as a + 5MHz carrier (CC # 4).
임의의 셀 또는 단말의 입장에서 할당되어 있는 복수 개의 상향링크 또는 하향링크 캐리어 대역에 대한 전송을 위한 물리 계층(physical layer(PHY))과 계층 2(layer 2 (MAC))의 구성은 다음 도 9 및 도 10과 같이 나타낼 수 있다.The configuration of a physical layer (PHY) and layer 2 (layer 2 (MAC)) for transmission for a plurality of uplink or downlink carrier bands allocated from the point of view of any cell or terminal is shown in FIG. 9. And as shown in FIG. 10.
도 9의 (a)는 기지국에서 복수의 MAC이 멀티 캐리어를 관리하는 개념을 설명한 도면이고, 도 9의 (b)는 단말에서 복수의 MAC이 멀티캐리어를 관리하는 개념을 설명하기 위한 도면이다. FIG. 9A illustrates a concept of managing a multicarrier by a plurality of MACs in a base station, and FIG. 9B illustrates a concept of managing a multicarrier by a plurality of MACs in a terminal.
도 9의 (a) 및 (b)와 같이 각각의 캐리어를 각각의 MAC이 1:1로 제어할 수도 있다. 복수의 캐리어를 지원하는 시스템에서 각 캐리어는 인접하거나 또는 인접하지 않게(non-contiguous) 사용될 수 있다. 이는 상향링크/하향링크에 구분없이 적용될 수 있다. TDD 시스템은 각각의 캐리어 안에 하향링크와 상향링크의 전송을 포함하는 N개의 다수 캐리어를 운영하도록 구성되며, FDD 시스템은 다수의 캐리어를 상향링크와 하향링크에 각각 사용하도록 구성된다. FDD 시스템의 경우, 상향링크와 하향링크에서 병합되는 캐리어의 수 및/또는 캐리어의 대역폭이 다른 비대칭적 캐리어 병합도 지원할 수 있다.As shown in (a) and (b) of FIG. 9, each carrier may control 1: 1 by each MAC. In a system supporting multiple carriers, each carrier may be used contiguously or non-contiguous. This can be applied to the uplink / downlink irrespective. The TDD system is configured to operate N multiple carriers including downlink and uplink transmission in each carrier, and the FDD system is configured to use multiple carriers for uplink and downlink, respectively. In the case of the FDD system, asymmetric carrier merging may be supported in which the number of carriers and / or the bandwidth of the carriers are merged in uplink and downlink.
도 10의 (a)는 기지국에서 하나의 MAC이 멀티캐리어를 관리하는 개념을 설명하기 위한 도면, 도 10의 (b)는 단말에서 하나의 MAC이 멀티캐리어를 관리하는 개념을 설명하기 위한 도면이다.FIG. 10 (a) is a diagram for explaining a concept of managing a multicarrier by one MAC in a base station, and FIG. 10 (b) is a diagram for explaining a concept in which one MAC manages a multicarrier in a terminal. .
도 10의 (a) 및 (b)를 참조하면, 하나의 MAC이 하나 이상의 주파수 캐리어를 관리 및 운영하여 송수신을 수행한다. 하나의 MAC에서 관리되는 주파수 캐리어들은 서로 인접(contiguous)할 필요가 없기 때문에 자원의 관리 측면에서 보다 유연(flexible) 하다는 장점이 있다. 도 10의 (a) 및 (b)에서 하나의 PHY는 편의상 하나의 컴포넌트 캐리어를 의미하는 것으로 한다. 여기서, 하나의 PHY는 반드시 독립적인 RF(Radio Frequency) 디바이스를 의미하는 것은 아니다. 일반적으로 하나의 독립적인 RF 디바이스는 하나의 PHY를 의미하나, 반드시 이에 국한되는 것은 아니며, 하나의 RF 디바이스는 여러 개의 PHY를 포함할 수 있다. Referring to (a) and (b) of FIG. 10, one MAC manages and operates one or more frequency carriers to perform transmission and reception. Frequency carriers managed in one MAC do not need to be contiguous with each other, which is advantageous in terms of resource management. In (a) and (b) of FIG. 10, one PHY means one component carrier for convenience. Here, one PHY does not necessarily mean an independent radio frequency (RF) device. In general, one independent RF device means one PHY, but is not limited thereto, and one RF device may include several PHYs.
또한, 상기 도 10의 (a) 및 (b)에서의 구성을 지원하기 위한 MAC 계층의 패킷 스케쥴러로부터 생성되는 L1/L2 제어 시그널링의 제어 정보들을 전송하는 일련의 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)은 개별 컴포넌트 캐리어 안의 물리 자원으로 맵핑하여 전송될 수 있다. In addition, a series of physical downlink control channels for transmitting control information of L1 / L2 control signaling generated from the packet scheduler of the MAC layer to support the configuration of FIGS. 10A and 10B. channel, PDCCH) may be transmitted by mapping to a physical resource in an individual component carrier.
이때, 특히 개별 단말 고유의 PDSCH 또는 PUSCH(physical uplink shared channel) 전송에 관련한 채널 할당 또는 그랜트(grant) 관련 제어정보에 대한 PDCCH는 해당 물리 공유 채널이 전송되어지는 컴포넌트 캐리어 별로 구분되어 인코딩되어 구분된 PDCCH로서 생성될 수 있다. 이를 개별 코딩된(separate coded) PDCCH라고 표현한다. 이와 다른 방법으로서, 여러 컴포넌트 캐리어들의 물리 공유 채널 전송을 위한 제어 정보들이 하나의 PDCCH로서 구성되어 전송될 수도 있는데 이를 조인트 코딩된(joint coded) PDCCH라고 표현한다.In this case, in particular, the PDCCH for channel allocation or grant-related control information related to PDSCH or PUSCH (Physical Uplink Shared Channel) transmission unique to each UE is classified and encoded according to component carriers to which the corresponding physical shared channel is transmitted. It can be generated as a PDCCH. This is referred to as separate coded PDCCH. Alternatively, control information for physical shared channel transmission of various component carriers may be configured and transmitted as one PDCCH, which is referred to as a joint coded PDCCH.
기지국은 하향링크 또는 상향링크 캐리어 병합을 지원하기 위하여 특정 단말 또는 중계기 별로 고유하게 상황에 맞춰 제어정보 및 데이터 전송을 수행하기 위한 PDCCH 및/또는 PDSCH이 전송될 수 있도록 연결이 설정되어 있거나, 상기 PDCCH 및/또는 PDSCH 전송을 위한 연결 설정을 수행할 준비과정으로서의 측정(measurement) 및/또는 보고(reporting)의 대상이 되는 컴포넌트 캐리어들을 할당할 수 있다. 이를 임의의 목적에 따른 컴포넌트 캐리어 할당으로 표현한다. In order to support downlink or uplink carrier aggregation, a base station is configured such that a PDCCH and / or PDSCH for transmitting control information and / or data transmission can be transmitted uniquely for a specific terminal or repeater, or the PDCCH And / or component carriers that are subject to measurement and / or reporting as preparation for performing connection establishment for PDSCH transmission. This is expressed as component carrier allocation for any purpose.
이때, 기지국은 컴포넌트 캐리어 할당 정보를 L3 RRM(radio resource management)에서 제어하는 경우에 제어의 동적 특성(dynamic)에 따라 일련의 단말 또는 중계기 고유의 RRC 시그널링(단말-특정 또는 중계기-특정 RRC 시그널링)으로 전송할 수도 있고, L1/L2 제어 시그널링으로 일련의 PDCCH를 통해서나 본 제어정보만의 전송을 위한 일련의 전용 물리 제어 채널(dedicated physical control channel)을 통해 전송할 수도 있다. In this case, when the base station controls the component carrier allocation information in the L3 RRM (radio resource management), the RRC signaling (terminal-specific or repeater-specific RRC signaling) unique to a series of terminals or repeaters according to dynamic characteristics of the control (dynamic) It may be transmitted through the L1 / L2 control signaling or through a series of PDCCHs or through a series of dedicated physical control channels for transmitting only this control information.
도 11은 다중 반송파의 일 예를 나타낸다. 11 shows an example of a multicarrier.
DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다.Although there are three DL CCs and three UL CCs, the number of DL CCs and UL CCs is not limited. PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC.
이하에서, 다중 반송파(multiple carrier) 시스템이라 함은 상기에서도 살핀 것처럼, 스펙트럼 집성을 기반으로 하여 다중 반송파를 지원하는 시스템을 말한다. Hereinafter, a multiple carrier system refers to a system supporting multiple carriers based on spectral aggregation, as described above.
다중 반송파 시스템에서 인접 스펙트럼 집성 및/또는 비인접 스펙트럼 집성이 사용될 수 있으며, 또한 대칭적 집성 또는 비대칭적 집성 어느 것이나 사용될 수 있다.Adjacent spectral and / or non-adjacent spectral aggregation may be used in a multi-carrier system, and either symmetric or asymmetric aggregation may be used.
다중 반송파 시스템에서, DL CC와 UL CC간의 링키지(linkage)가 정의될 수 있다. 링키지는 하향링크 시스템 정보에 포함되어 있는 EARFCN 정보를 통해 구성될 수 있으며, 고정된 DL/UL Tx/Rx separation 관계를 이용해 구성된다. 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 말한다.In a multi-carrier system, linkage between a DL CC and a UL CC may be defined. The linkage may be configured through EARFCN information included in the downlink system information, and is configured using a fixed DL / UL Tx / Rx separation relationship. The linkage refers to a mapping relationship between a DL CC through which a PDCCH carrying an UL grant is transmitted and a UL CC using the UL grant.
또는, 링키지는 HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계일 수도 있다. 링키지 정보는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보의 일부로써 기지국이 단말에게 알려줄 수 있다. DL CC와 UL CC간의 링키지는 고정될 수도 있지만, 셀간/단말 간 변경될 수 있다.Alternatively, the linkage may be a mapping relationship between a DL CC (or UL CC) in which data for HARQ is transmitted and a UL CC (or DL CC) in which HARQ ACK / NACK signal is transmitted. The linkage information may be informed to the terminal by the base station as part of a higher layer message or system information such as an RRC message. The linkage between the DL CC and the UL CC may be fixed but may be changed between cells / terminals.
분할 코딩(separate coding)된 PDCCH는 PDCCH가 하나의 반송파에 대한 PDSCH/PUSCH를 위한 자원 할당과 같은 제어정보를 나를 수 있는 것을 말한다. 즉, PDCCH와 PDSCH, PDCCH와 PUSCH가 각각 1:1로 대응된다. The split coded PDCCH means that the PDCCH can carry control information such as resource allocation for PDSCH / PUSCH for one carrier. That is, the PDCCH and PDSCH, the PDCCH and the PUSCH correspond to 1: 1 respectively.
조인트 코딩(joint coding)된 PDCCH는 하나의 PDCCH가 복수의 CC의 PDSCH/PUSCH를 위한 자원 할당을 나를 수 있는 것을 말한다. 하나의 PDCCH는 하나의 CC를 통해 전송될 수 있고, 또는 복수의 CC를 통해 전송될 수도 있다.A joint coded PDCCH means that one PDCCH can carry resource allocation for PDSCH / PUSCH of a plurality of CCs. One PDCCH may be transmitted through one CC or may be transmitted through a plurality of CCs.
이하에서 편의상 하향링크 채널인 PDSCH-PDSCH를 기준으로 분할코딩의 예를 설명하지만, 이는 PDCCH-PUSCH의 관계에도 그대로 적용할 수 있다.Hereinafter, for convenience, an example of split coding will be described based on the downlink channel PDSCH-PDSCH. However, this may also be applied to the relationship of PDCCH-PUSCH.
다중 반송파 시스템에서, CC 스케줄링은 2가지 방법이 가능하다.In a multi-carrier system, CC scheduling is possible in two ways.
첫 번째는 하나의 CC에서 PDCCH-PDSCH 쌍이 전송되는 것이다. 이 CC를 자기-스케줄링(self-secheduling) CC라 한다. 또한, 이는 PUSCH가 전송되는 UL CC는 해당되는 PDCCH가 전송되는 DL CC에 링크된 CC가 됨을 의미한다.The first is that a PDCCH-PDSCH pair is transmitted in one CC. This CC is called a self-secheduling CC. In addition, this means that the UL CC on which the PUSCH is transmitted becomes the CC linked to the DL CC on which the corresponding PDCCH is transmitted.
즉, PDCCH는 동일한 CC상에서 PDSCH 자원을 할당하거나, 링크된 UL CC상에서 PUSCH 자원을 할당하는 것이다.That is, the PDCCH allocates PDSCH resources on the same CC or allocates PUSCH resources on a linked UL CC.
두 번째는, PDCCH가 전송되는 DL CC에 상관없이 PDSCH가 전송되는 DL CC 또는 PUSCH가 전송되는 UL CC가 정해지는 것이다. 즉, PDCCH와 PDSCH가 서로 다른 DL CC에서 전송되거나 PDCCH가 전송된 DL CC와 링키지되지 않은 UL CC를 통해 PUSCH가 전송되는 것이다. 이를 크로스-반송파(cross-carrier) 스케줄링이라 한다.Second, regardless of the DL CC on which the PDCCH is transmitted, the DL CC on which the PDSCH is transmitted or the UL CC on which the PUSCH is transmitted is determined. That is, the PUSCH is transmitted on a DL CC in which the PDCCH and the PDSCH are different from each other, or on a UL CC not linked with the DL CC in which the PDCCH is transmitted. This is called cross-carrier scheduling.
PDCCH가 전송되는 CC를 PDCCH 반송파, 모니터링 반송파 또는 스케줄링(scheduling) 반송파라 하고, PDSCH/PUSCH가 전송되는 CC를 PDSCH/PUSCH 반송파 또는 스케줄링된(scheduled) 반송파라 할 수 있다.The CC on which the PDCCH is transmitted may be referred to as a PDCCH carrier, a monitoring carrier, or a scheduling carrier, and the CC on which the PDSCH / PUSCH is transmitted may be referred to as a PDSCH / PUSCH carrier or a scheduled carrier.
크로스-반송파 스케줄링은 단말 별로 활성화/비활성화될 수 있으며, 크로스-반송파 스케줄링이 활성화된 단말은 CIF가 포함된 DCI를 수신할 수 있다. 단말은 DCI에 포함된 CIF로부터 수신한 PDCCH가 어느 스케줄링된 CC에 대한 제어 정보인지 알 수 있다.Cross-carrier scheduling may be activated / deactivated for each terminal, and the terminal on which cross-carrier scheduling is activated may receive a DCI including CIF. The UE may know which scheduled CC the PDCCH received from the CIF included in the DCI is control information.
크로스-반송파 스케줄링에 의해 미리 정의된 DL-UL 링키지는 오버라이딩(overriding)할 수 있다. 즉, 크로스 반송파 스케줄링은 DL-UL 링키지에 상관없이 링크된 CC가 아닌 다른 CC를 스케줄링할 수 있다.The DL-UL linkage predefined by cross-carrier scheduling may be overriding. That is, cross-carrier scheduling may schedule a CC other than the linked CC regardless of the DL-UL linkage.
도 12는 크로스-반송파 스케줄링의 일 예를 나타낸다. 12 shows an example of cross-carrier scheduling.
DL CC #1과 UL CC #1이 링크되어 있고, DL CC #2과 UL CC #2이 링크되어 있고, DL CC #3과 UL CC #3이 링크되어 있다고 하자.It is assumed that DL CC # 1 and UL CC # 1 are linked, DL CC # 2 and UL CC # 2 are linked, and DL CC # 3 and UL CC # 3 are linked.
DL CC #1의 제1 PDCCH(1201)은 동일한 DL CC #1의 PDSCH(1202)에 대한 DCI를 나른다. DL CC #1의 제2 PDCCH(1211)은 DL CC #2의 PDSCH(1212)에 대한 DCI를 나른다. DL CC #1의 제3 PDCCH(1221)은 링크되어 있지 않은 UL CC #3의 PUSCH(1222)에 대한 DCI를 나른다.The first PDCCH 1201 of the DL CC # 1 carries the DCI for the PDSCH 1202 of the same DL CC # 1. The second PDCCH 1211 of the DL CC # 1 carries the DCI for the PDSCH 1212 of the DL CC # 2. The third PDCCH 1221 of the DL CC # 1 carries the DCI for the PUSCH 1222 of the UL CC # 3 that is not linked.
크로스-반송파 스케줄링을 위해, PDCCH의 DCI는 CIF(carrier indicator field)를 포함할 수 있다. CIF는 DCI를 통해 스케줄링되는 DL CC 또는 UL CC를 지시한다. 예를 들어, 제2 PDCCH(1211)는 DL CC #2를 가리키는 CIF를 포함할 수 있다. 제3 PDCCH(1221)은 UL CC #3을 가리키는 CIF를 포함할 수 있다.For cross-carrier scheduling, the DCI of the PDCCH may include a carrier indicator field (CIF). CIF indicates a DL CC or UL CC scheduled through DCI. For example, the second PDCCH 1211 may include a CIF indicating DL CC # 2. The third PDCCH 1221 may include a CIF indicating the UL CC # 3.
또는, 제3 PDCCH(1221)의 CIF는 UL CC에 해당하는 CIF 값이 아닌 DL CC에 해당되는 CIF 값으로 알려줄 수 있다.Alternatively, the CIF of the third PDCCH 1221 may be informed by the CIF value corresponding to the DL CC, not the CIF value corresponding to the UL CC.
즉, 제3 PDCCH(1221)의 CIF는 UL CC #3과 링크된 DL CC #3을 가리킴으로써, PUSCH가 스케줄링된 UL CC #3을 간접적으로 지시할 수 있다. PDCCH의 DCI가 PUSCH 스케줄링을 포함하고, CIF가 DL CC를 가리키면, 단말은 DL CC와 링크된 UL CC상의 PUSCH 스케줄링임을 판단할 수 있기 때문이다. 이를 통해 제한된 비트 길이 (예, 3bit길이의 CIF)를 가지는 CIF를 이용해 모든 DL/UL CC를 알려주는 방법보다 많은 개수의 CC를 지시할 수 있는 효과가 있다.That is, the CIF of the third PDCCH 1221 indicates the DL CC # 3 linked with the UL CC # 3, so that the PUSCH may indirectly indicate the scheduled UL CC # 3. This is because if the DCI of the PDCCH includes the PUSCH scheduling and the CIF indicates the DL CC, the UE may determine that the PUSCH is scheduled on the UL CC linked with the DL CC. Through this, it is possible to indicate a larger number of CCs than a method of notifying all DL / UL CCs using a CIF having a limited bit length (for example, 3 bit length CIF).
크로스-반송파 스케줄링을 사용하는 단말은 하나의 스케줄링 CC의 제어영역내에서 동일한 DCI 포맷에 대해 복수의 스케줄링된 CC의 PDCCH를 모니터링하는 것이 필요하다. 예를 들어, 복수의 DL CC들 각각의 전송 모드가 다르면, 각 DL CC에서 다른 DCI 포맷에 대한 복수의 PDCCH를 모니터링할 수 있다. 동일한 전송 모드를A UE using cross-carrier scheduling needs to monitor PDCCHs of a plurality of scheduled CCs for the same DCI format in a control region of one scheduling CC. For example, if a transmission mode of each of the plurality of DL CCs is different, a plurality of PDCCHs for different DCI formats may be monitored in each DL CC. Same transfer mode
사용하더라도, 각 DL CC의 대역폭이 다르면, 동일한 DCI 포맷하에서 DCI 포맷의 페이로드(payload)의 크기가 달라 복수의 PDCCH를 모니터링할 수 있다.Even if used, if the bandwidth of each DL CC is different, a plurality of PDCCHs can be monitored because the payload size of the DCI format is different under the same DCI format.
결과적으로, 크로스-반송파 스케줄링이 가능할 때, 단말은 CC별 전송 모드 및/또는 대역폭에 따라 모니터링 CC의 제어영역에서 복수의 DCI에 대한 PDCCH를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.As a result, when cross-carrier scheduling is possible, the UE needs to monitor PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
먼저, 다중 반송파 시스템에서, 다음과 같은 용어를 정의한다First, in the multi-carrier system, the following terms are defined.
UE DL CC 집합 : 단말이 PDSCH를 수신하도록 스케줄링된 DL CC의 집합UE DL CC set: a set of DL CCs scheduled for the UE to receive PDSCH
UE UL CC 집합 : 단말이 PUSCH를 전송하도록 스케줄링된 UL CC의 집합UE UL CC set: a set of UL CCs scheduled for the UE to transmit a PUSCH
PDCCH 모니터링 집합(monitoring set) : PDCCH 모니터링을 수행하는 적어도 하나의 DL CC의 집합. PDCCH 모니터링 집합은 UE DL CC 집합과 같거나, UE DL CC 집합의 부집합(subset)일 수 있다. PDCCH 모니터링 집합은 UE DL CC 집합내의 DL CC들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 UE DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC에 대한 자기-스케줄링(self-scheduling)은 항상 가능하도록 설정될 수 있다.PDCCH monitoring set: A set of at least one DL CC that performs PDCCH monitoring. The PDCCH monitoring set may be the same as the UE DL CC set or may be a subset of the UE DL CC set. The PDCCH monitoring set may include at least one of DL CCs in the UE DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set. The DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
UE DL CC 집합, UE UL CC 집합 및 PDCCH 모니터링 집합은 셀-특정적(cell-specific) 또는 단말-특정적(UE-specific)으로 설정될 수 있다.The UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be set to cell-specific or UE-specific.
도 13은 CC 집합의 일 예를 나타낸다. UE DL CC 집합으로 DL CC 4개 (DL CC #1, #2, #3, #4), UE UL CC 집합으로 UL CC 2개 (UL CC #1, #2), PDCCH 모니터링 집합으로 DL CC 2개 (DL CC #2, #3)가 단말에 할당되었다고 하자.13 shows an example of a CC set. 4 DL CCs (DL CC # 1, # 2, # 3, # 4) as UE DL CC set, 2 UL CCs (UL CC # 1, # 2) as UE UL CC set, DL CC as PDCCH monitoring set Assume that two (DL CC # 2, # 3) are allocated to the terminal.
PDCCH 모니터링 집합 내의 DL CC #2는 UE DL CC 집합내의 DL CC #1/#2의 PDSCH에 대한 PDCCH와 UE UL CC 집합 내의 UL CC #1의 PUSCH에 대한 PDCCH를 전송한다. PDCCH 모니터링 집합 내의 DL CC #3은 UE DL CC 집합 내의 DL CC #3/#4의 PDSCH에 대한 PDCCH와 UE UL CC 집합내의 UL CC #2의 PUSCH에 대한 PDCCH를 전송한다.The DL CC # 2 in the PDCCH monitoring set transmits the PDCCH for the PDSCH of the DL CC # 1 / # 2 in the UE DL CC set and the PDCCH for the PUSCH of the UL CC # 1 in the UE UL CC set. The DL CC # 3 in the PDCCH monitoring set transmits the PDCCH for the PDSCH of the DL CC # 3 / # 4 in the UE DL CC set and the PDCCH for the PUSCH of the UL CC # 2 in the UE UL CC set.
UE DL CC 집합, UE UL CC 집합 및 PDCCH 모니터링 집합에 포함되는 CC들간에 링키지가 설정될 수 있다. 도 13의 예에서, 스케줄링 CC인 DL CC #2와 스케줄링된 CC인 DL CC #1간에 PDCCH-PDSCH 링키지가 설정되고, DL CC #2와 UL CC #1은 PDCCH-PUSCH 링키지가 설정되는 것이다. 또한, 스케줄링 CC인 DL CC #3과 스케줄링된 CC인 DL CC #4간에 PDCCH-PDSCH 링키지가 설정되고, DL CC #3과 UL CC #2은 PDCCH-PUSCH 링키지가 설정되는 것이다. 이와 같은 스케줄링 CC에 관한 정보 또는 PDCCH-PDSCH/PUSCH 링키지 정보는 셀-특정 시그널링 또는 단말-특정 시그널링을 통해 기지국이 단말에게 알려줄 수 있다.Linkage may be set between CCs included in the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set. In the example of FIG. 13, a PDCCH-PDSCH linkage is configured between DL CC # 2 which is a scheduling CC and DL CC # 1 which is a scheduled CC, and a PDCCH-PUSCH linkage is configured for DL CC # 2 and UL CC # 1. In addition, the PDCCH-PDSCH linkage is set between the DL CC # 3 which is the scheduling CC and the DL CC # 4 which is the scheduled CC, and the PDCCH-PUSCH linkage is set for the DL CC # 3 and the UL CC # 2. The information about the scheduling CC or the PDCCH-PDSCH / PUSCH linkage information may be informed by the base station to the terminal through cell-specific signaling or terminal-specific signaling.
또는, PDCCH 모니터링 집합내의 DL CC들 각각에 대해 DL CC와 UL CC 양자를 링크시키지 않을 수 있다. PDCCH 모니터링 집합내의 DL CC와 UE DL CC 집합내의 DL CC를 링크시킨 후, PUSCH 전송을 위한 UL CC는 UE DL CC 집합 내의 DL CC에 링크된 UL CC로 한정할 수 있다.Alternatively, both the DL CC and the UL CC may not be linked to each of the DL CCs in the PDCCH monitoring set. After linking the DL CC in the PDCCH monitoring set and the DL CC in the UE DL CC set, the UL CC for PUSCH transmission may be limited to the UL CC linked to the DL CC in the UE DL CC set.
UE DL CC 집합, UE UL CC 집합 및 PDCCH 모니터링 집합의 링키지에 따라 CIF가 다르게 설정될 수 있다.The CIF may be set differently according to linkages of the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set.
이하에서, 본 발명의 일 실시 예에 따라 크로스-캐리어 스케쥴링이 활성화된 단말에서 캐리어 지시 필드(CIF)를 기지국으로부터 수신한 경우, 상기 CIF를 해석하는 방법에 대해 살펴보기로 한다.Hereinafter, when a carrier indication field (CIF) is received from a base station in a cross-carrier scheduling enabled terminal according to an embodiment of the present invention, a method of interpreting the CIF will be described.
먼저, 본 발명의 일 실시 예에 따른 CIF 해석 방법을 설명하기에 앞서, 셀-특정(cell-specific) CIF(carrier indicator field) 설정 방법 및 단말-특정(UE-specific) CIF 설정 방법에 대해 간략히 설명하기로 한다.First, before describing the CIF interpretation method according to an embodiment of the present invention, a brief description of a cell-specific carrier indicator field (CIF) configuration method and a UE-specific CIF configuration method Let's explain.
도 14는 CIF 설정 방법을 나타낸 도이다.14 is a diagram illustrating a CIF setting method.
도 14a는 셀-특정(cell-specific) CIF(carrier indicator field) 설정 방법을 나타낸 도이며, 도 14b는 단말-특정(UE-specific) CIF 설정 방법을 나타낸 도이다.FIG. 14A illustrates a cell-specific carrier indicator field (CIF) setting method, and FIG. 14B illustrates a UE-specific CIF setting method.
도 14a에 도시된 바와 같이, 셀-특정(cell-specific) CIF 방법은 특정 셀에서 구성하는 모든 컴포넌트 캐리어(CC)들에 대해서 indexing을 하고, 상기 CC에 해당하는 index 값을 각 단말에게 indication하는 것이다.As shown in FIG. 14A, a cell-specific CIF method indexes all component carriers (CCs) configured in a specific cell, and indicates an index value corresponding to the CC to each UE. will be.
도 14a를 참조하면, 셀에서 구성하는 CC가 CC0~CC4까지 5개인 경우, 각 CC에 대해서 '000', '001', '010', '100', '101'로 인덱싱을 하고, 단말에게 상기 인덱싱 값을 CIF로 알려주게 된다.Referring to FIG. 14A, when there are 5 CCs configured in a cell from CC0 to CC4, the CCs are indexed as '000', '001', '010', '100', and '101' for each CC. The indexing value is reported to the CIF.
여기서, CIF는 3비트로 고정되어 있는데 반해, 하나의 셀은 3비트로 표현 가능한 8개의 CC를 넘어서는, 즉 8개 이상의 CC들을 사용하여 cell deployment를 할 수 있다. 따라서, cell-specific한 CIF indexing은 모든 단말에게 unified indexing을 사용할 수 있다는 장점이 있지만, cell configuration에 따라 3비트의 CIF만을 가지고 제대로 모든 단말들을 스케줄링 해줄 수 없게 된다.Here, the CIF is fixed to 3 bits, whereas one cell can use cell deployment using more than 8 CCs that can be expressed as 3 bits, that is, 8 or more CCs. Therefore, cell-specific CIF indexing has the advantage that unified indexing can be used for all terminals, but it is impossible to properly schedule all terminals with only 3-bit CIF according to cell configuration.
또한, 도 14b에 도시된 바와 같이, UE-specific CIF 설정 방법은 각 단말에게 할당된 CC configuration에 따라서 각 CC들을 indexing하고 해당 indexing을 CIF로 알려주는 방법을 말한다.In addition, as shown in FIG. 14B, the UE-specific CIF setting method refers to a method of indexing each CC according to a CC configuration allocated to each UE and notifying the corresponding indexing to the CIF.
도 14b를 참조하면, UE 0에 할당된 컴포넌트 캐리어 구성은 CC0, CC1, CC3이 며, UE 1에 할당된 컴포넌트 캐리어 구성은 CC1, CC2, CC4가 된다. Referring to FIG. 14B, component carrier configurations allocated to UE 0 are CC0, CC1, and CC3, and component carrier configurations allocated to UE 1 are CC1, CC2, and CC4.
따라서, 기지국은 UE 0에 대한 CCO, CC1, CC3에 대해 각각 '000', '001', '010'으로 indexing하고 상기 indexing 값을 UE 0에게 CIF로 알려준다. 또한, 기지국은 UE 1에 대한 CC1, CC2, CC4에 대해 각각 '000', '001', '010'으로 indexing하고 상기 indexing 값을 UE 1에게 CIF로 알려준다.Accordingly, the base station indexes CCO, CC1, and CC3 for UE 0 as '000', '001', and '010', and informs UE 0 of the indexing value as CIF. Further, the base station indexes CC1, CC2, and CC4 for UE 1 to '000', '001', and '010', respectively, and informs UE 1 of the indexing value as CIF.
이하에서는, 단말-특정(UE-specific) CIF 방법에서 단말이 기지국으로부터 CIF를 수신하는 경우, 상기 CIF를 해석하는 방법에 대해 구체적으로 살펴보기로 한다.Hereinafter, when a UE receives a CIF from a base station in a UE-specific CIF method, a method of interpreting the CIF will be described in detail.
방법 1: DL/UL independent CIF assignmentMethod 1: DL / UL independent CIF assignment
방법 1의 경우는 DL CC들에 대한 DL grant들에 3bit의 CIF를, UL CC들에 대한 UL grant들에 3bit의 CIF를 각각 독립적으로 할당하는 방법이다. LTE(Rel-8)의 UL grant DCI format인 DCI format 0의 경우에는 DL grant DCI format인 DCI format 1A와 사이즈가 항상 같기 때문에, DL/UL grant의 구별을 위해서 1bit에 해당하는 플래그(flag)를 붙여준다. Method 1 is a method of independently allocating 3 bits of CIF to DL grants for DL CCs and 3 bits of CIF to UL grants for UL CCs. In the case of DCI format 0, which is the UL grant DCI format of LTE (Rel-8), since the size is always the same as the DCI format 1A, which is the DL grant DCI format, a flag corresponding to 1 bit is used to distinguish the DL / UL grant. Paste it.
즉, {000~ 111}까지의 3비트로 표현될 수 있는 8개의 state를 각각 DL/UL에 독립적으로 사용하는 경우에는 DCI format안의 CIF만으로 DL grant인지 UL grant인지 구별할 수 없기 때문에 DL/UL를 구별하기 위한 플래그(flag)를 붙인다.That is, when eight states each of which can be represented by 3 bits from {000 to 111} are independently used for DL / UL, DL / UL cannot be distinguished because only CIF in DCI format can be distinguished from DL grant or UL grant. Add a flag to distinguish it.
방법 2: implicit UL CIF assignmentMethod 2: implicit UL CIF assignment
방법 2는 UL CC에 대한 UL grant에는 독립적인 CIF를 전송하지 않는 방법이다. Method 2 is a method in which independent CIF is not transmitted to a UL grant for a UL CC.
(1) UL grant에 대해서 cross-carrier scheduling을 하고자 하는 경우에는 단말이 cross-carrier scheduling이 활성화(activation)되어 있고, UL grant를 수신한 경우에는 UL grant를 수신한 DL CC와 링키지(linkage) 되어 있는 UL CC에 대한 grant임을 자동적으로 인식하고 상기 DL CC와 링키지 되어 있는 UL CC로 데이터를 전송한다.(1) In case of performing cross-carrier scheduling with respect to UL grant, cross-carrier scheduling is activated by a user equipment. When receiving UL grant, the terminal is linked with DL CC which has received UL grant. Automatically recognize that the grant for the UL CC is transmitted to the UL CC that is linked with the DL CC.
(2) UL grant에 붙여서 보내는 CIF가 실제로 indication하는 indexing은 DL CC에 대한 indexing으로 보내고, 단말은 해당 CIF를 읽고 CIF가 indication하는 DL CC와 linkage된 UL CC에 대한 grant임을 자동적으로 인식하고 해당 UL CC로 데이터 를 전송한다. 여기서, 단말은 DCI fomat size의 크기를 통해, 기지국으로부터 수신되는 DCI가 DL grant인지 UL grant인지를 알 수 있다.(2) The indexing indicated by the CIF actually attached to the UL grant is sent to the indexing for the DL CC, and the terminal reads the corresponding CIF and automatically recognizes that it is a grant for the UL CC linked to the DL CC indicated by the CIF. Send data to CC. Here, the UE can know whether the DCI received from the base station is a DL grant or a UL grant through the size of the DCI fomat size.
방법 3: DL/UL combined CIF assignmentMethod 3: DL / UL combined CIF assignment
방법 3은 3bit의 CIF 즉, {000, 001, 010, 011, 100, 101, 110, 111} 8개 state들을 DL/UL grant가 공유하여 사용하는 방법이다. 일 예로, {000~100}까지 5개 state는 DL CC를 위해서 사용하고, 나머지 3개의 state는 UL CC를 위해서 사용하는 것이다. Method 3 is a method in which 3 states of CIF, that is, {000, 001, 010, 011, 100, 101, 110, 111}, are shared by DL / UL grant. For example, up to {000 ~ 100}, five states are used for the DL CC, and the remaining three states are used for the UL CC.
상기 일 예와 같이 DL/UL이 각각 사용할 수 있는 state를 고정시켜 DL CC 및UL CC를 사용할 수 있다. 하지만, 단말의 carrier assignment 상태에 따라서 가변적으로 CIF를 해석하도록 할 수도 있다. As in the above example, a DL CC and a UL CC may be used by fixing a state in which the DL / UL can be used. However, the CIF may be variably interpreted according to the carrier assignment state of the terminal.
일 예로, 단말 A는 DL CC 4개, UL CC 2개를 할당 받았다고 하면, 000~011의 4개 state는 DL CC를 indication하기 위한 것으로, 100~101의 두 개 state는 UL CC를 indication하기 위한 것으로 해석할 수 있다. 상기와 같은 방법에서는 CIF의 state로 DL grant인지 UL grant인지가 구별되기 때문에 상기 방법 1과 같이 DL/UL 구별을 위한 flag를 따로 붙일 필요가 없게 된다.For example, if UE A is assigned with four DL CCs and two UL CCs, four states of 000 to 011 are for indicating a DL CC, and two states for 100 to 101 are for indicating a UL CC. It can be interpreted as. In the above method, since the DL grant or the UL grant is distinguished by the state of the CIF, it is not necessary to attach a flag for distinguishing DL / UL like the method 1 above.
앞서의 DL/UL DCI mode indicator는 일정한 위치에 존재하는 것이 바람직하나, Rel-8 LTE system에 정의된 바와 같이 DCI format 0과 1A에서 DCI format indicator가 존재하는 위치와 같은 위치를 mode indicator의 위치로 결정하는 것이 바람직하다. 이렇게 함으로써 DCI mode에 상관없이 일정한 위치에 DCI DL/UL mode를 일관되게 구분하게 만들 수 있다.The above DL / UL DCI mode indicator is preferably present at a certain position, but as defined in the Rel-8 LTE system, the same position as the position where the DCI format indicator exists in DCI formats 0 and 1A is used as the position of the mode indicator. It is desirable to decide. By doing so, the DCI DL / UL mode can be consistently distinguished at a certain position regardless of the DCI mode.
또한, 상기 방법 1 내지 3의 hybrid 형태로 DL/UL CC configuration이 3비트 CIF로 표현 가능한 범위 안에 들어올 때(즉, 임의의 단말에게 할당된 DL/UL CC의 총 수가 8개를 초과하지 않는 경우에)는 상기 방법 3을 사용하고, DL/UL CC configuration이 3비트 CIF로 표현 가능한 범위를 벗어나는 경우에는 (즉, 임의의 단말에게 할당된 DL/UL CC의 총 수가 8개를 초과하는 경우에) 상기 방법 1 내지 방법 2를 사용할 수도 있다.In addition, when the DL / UL CC configuration in the hybrid form of the methods 1 to 3 falls within the range that can be expressed by the 3-bit CIF (that is, the total number of DL / UL CCs allocated to any UE does not exceed 8). E) uses the method 3 above, and if the DL / UL CC configuration is out of the range that can be represented by the 3-bit CIF (that is, the total number of DL / UL CC allocated to any terminal exceeds 8) ) Method 1 to Method 2 may be used.
즉, 단말의 DL/UL CC configuration에 따라 CIF interpretation을 가변적으로 하는 방법을 사용하도록 할 수 있다.That is, it is possible to use a method of varying the CIF interpretation according to the DL / UL CC configuration of the terminal.
단말의 CC configuration에 따라서 CIF에 대한 변경이 발생할 수 있는 부분은 하기와 같은 것이 있을 수 있다.According to the CC configuration of the terminal, the portion that can be changed for the CIF may be as follows.
1. CIF의 해석 방법의 변경: 이는 앞서 기술한 바와 같이 CIF와 DL/UL CC와의 매핑 관계를 변경하는 것을 고려할 수 있다. 예로 3비트의 CIF로 CC를 지칭하는 경우 DL CC와 UL CC의 총개수가 3bit에서 CC indexing으로 허용된 state로 표현이 불가한 경우에 DL CC와 UL CC에 대해서 독립적인 indexing을 수행하고 대신에 DCI format을 지정하는 indicator를 포함할 수 있다. 반대로 허용된 state로 표현이 가능한 경우에는 DL/UL CC를 혼합하여 indexing함으로써, CIF의 값만 보고도 DL DCI인지 UL DCI인지 구분할 수 있게 되며 이 경우에는 DL/UL DCI mode 구분자를 포함하지 않는 형태로 결정될 수 있다. 이 때 DL/UL DCI mode indicator의 존재 여부는 단말의 CC configuration에 따라서 implicit하게 앞서와 같이 결정될 수 있으나, CC configuration과 함께 explicit하게 UE-specific dedicated signaling으로 설정될 수 있다. 1. Change of CIF interpretation method: As described above, it may be considered to change the mapping relationship between CIF and DL / UL CC. For example, when referring to CC with 3 bits of CIF, if the total number of DL CCs and UL CCs cannot be expressed as a state allowed for CC indexing in 3 bits, independent indexing is performed for DL CCs and UL CCs instead. It may include an indicator that specifies a DCI format. On the contrary, when the allowed state can be expressed, indexing by mixing DL / UL CC can be used to distinguish between DL DCI or UL DCI even when reporting only the value of CIF. In this case, it does not include DL / UL DCI mode separator. Can be determined. In this case, whether the DL / UL DCI mode indicator is present may be determined implicitly according to the CC configuration of the UE as described above, but may be explicitly set to UE-specific dedicated signaling together with the CC configuration.
이와 같은 결정 기준은 UE-specific CC configuration에 따라서 달라질 수 있으나, system-specific CC configuration에 따라서 결정될 수 있다. 즉, system에 존재하는 총 CC의 개수에 따라서 UE가 이와 같은 해석 방법을 변경하는 것을 자동으로 설정할 수 있다.Such determination criteria may vary depending on the UE-specific CC configuration, but may be determined according to the system-specific CC configuration. In other words, the UE may automatically set such an interpretation method according to the total number of CCs present in the system.
2. CIF의 의미 변경: 시스템에서 사용하고 있는 총 carrier 수에 따라서 CIF의 mapping의미를 변경할 수 있다. 이 때, 의미는 CIF의 매핑 방법, 즉 UE-specific interpretation을 적용하거나 cell-specific(system-specific interpretation)을 선택하는 기준이 될 수 있다. 2. Change the meaning of CIF: You can change the mapping meaning of CIF depending on the total number of carriers in the system. In this case, the meaning may be a criterion for applying a CIF mapping method, that is, applying a UE-specific interpretation or selecting a cell-specific (system-specific interpretation).
즉, 시스템에 존재하는 CC의 개수가 CIF의 허용 가능한 state로 표현 가능한 경우에는 system-specific indexing으로 CIF를 해석하는 것이며, 그렇지 않은 경우에는 CIF를 UE-specific하게 해석하는 방안이다. 즉 UE-specific CC configuration에 따라서 CIF가 나타내는 값을 CC와 mapping하는 방안이다.That is, when the number of CCs present in the system can be expressed as an acceptable state of CIF, CIF is interpreted by system-specific indexing. Otherwise, CIF is interpreted UE-specific. That is, a method of mapping a value indicated by the CIF with a CC according to the UE-specific CC configuration.
앞에서 mode indicator의 존재 유무에 따라서 DCI format이 차지하는 bit position이 달라질 수 있다. 예를 들어, DL DCI인지 UL DCI인지를 CIF를 통해서 알 수 있을 경우에, DCI format에서 mode indicator로 사용되던 위치를 제거하고 나머지 field를 concatenation시켜서 bit field를 읽어내거나, 혹은 mode indicator가 DCI 외부에 정의된다면 mode indicator가 차지하는 위치만큼 shift후 bit field를 매핑하여 단말은 DCI field를 읽어 낼 수 있다.The bit position occupied by the DCI format may vary depending on the presence or absence of a mode indicator. For example, if it is possible to know whether the DL DCI or UL DCI through the CIF, remove the position used as a mode indicator in the DCI format and concatenation the remaining fields to read the bit field, or the mode indicator is outside the DCI If defined, the terminal can read the DCI field by mapping the bit field after shifting by the position occupied by the mode indicator.
도 15는 본 발명의 일 실시 예에 따른 무선통신 시스템을 나타낸 블록도이다.15 is a block diagram showing a wireless communication system according to an embodiment of the present invention.
기지국(1510)는 제어부(1511), 메모리(1512) 및 무선통신(RF)부(radio frequency unit)(1513)을 포함한다.The base station 1510 includes a controller 1511, a memory 1512, and a radio frequency unit (RF) unit 1513.
제어부(1511)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 제어부(1511)에 의해 구현될 수 있다. The controller 1511 implements the proposed function, process and / or method. Layers of the air interface protocol may be implemented by the controller 1511.
제어부(1511)는 다중 반송파를 운영하고, 캐리어 지시자 필드(CIF)를 구성할 수 있다.The controller 1511 may operate a multi-carrier and configure a carrier indicator field (CIF).
메모리(1512)는 제어부(1511)와 연결되어, 다중 반송파 운영을 위한 프로토콜이나 파라미터를 저장한다. RF부(1513)는 제어부(1511)와 연결되어, 무선 신호를 송신 및/또는 수신한다.The memory 1512 is connected to the controller 1511 and stores protocols and parameters for multi-carrier operation. The RF unit 1513 is connected to the control unit 1511 and transmits and / or receives a radio signal.
단말(1520)은 제어부(1521), 메모리(1522) 및 무선통신(RF)부(1523)을 포함한다.The terminal 1520 includes a controller 1521, a memory 1522, and a radio communication (RF) unit 1523.
제어부(1521)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 제어부(1521)에 의해 구현될 수 있다. 제어부(1521)는 다중 반송파를 운영하고, 캐리어 지시자 필드(CIF)를 기반으로 다중 반송파상의 크로스-캐리어 스케쥴링을 사용할 수 있다.The controller 1521 implements the proposed function, process and / or method. Layers of the air interface protocol may be implemented by the controller 1521. The controller 1521 may operate a multi-carrier and use cross-carrier scheduling on the multi-carrier based on a carrier indicator field (CIF).
메모리(1512)는 제어부(1521)와 연결되어, 다중 반송파 운영을 위한 프로토콜이나 파라미터를 저장한다. RF부(1513)는 제어부(1521)와 연결되어, 무선 신호를 송신 및/또는 수신한다.The memory 1512 is connected to the controller 1521 and stores a protocol or parameter for multi-carrier operation. The RF unit 1513 is connected to the control unit 1521 to transmit and / or receive a radio signal.
제어부(1511, 1521)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(1512,1522)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1513,1523)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1512,1522)에 저장되고, 제어부(1511, 1521)에 의해 실행될 수 있다. 메모리(1512,1522)는 제어부(1511, 1521) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 제어부(1511, 1521)와 연결될 수 있다.The controllers 1511 and 1521 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device. The memories 1512 and 1522 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage devices. The RF unit 1513 and 1523 may include a baseband circuit for processing a radio signal. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in the memories 1512 and 1522 and executed by the controllers 1511 and 1521. The memories 1512 and 1522 may be inside or outside the controllers 1511 and 1521, and may be connected to the controllers 1511 and 1521 by various well-known means.

Claims (12)

  1. 복수의 컴포넌트 캐리어를 지원하는 시스템에서 크로스 캐리어 스케쥴링(cross-carrier scheduling)을 통해 데이터 버스트를 전송하기 위한 단말의 동작 방법에 있어서,A method of operating a terminal for transmitting data bursts through cross-carrier scheduling in a system supporting a plurality of component carriers,
    서브 프레임 내의 제어 영역에서 하향링크 제어 채널(PDCCH)을 통해, 캐리어 지시자 필드(CIF)를 포함하는 하향링크 제어 정보(DCI)를 기지국으로부터 수신하는 단계;Receiving, from a base station, downlink control information (DCI) including a carrier indicator field (CIF) through a downlink control channel (PDCCH) in a control region within a subframe;
    상기 캐리어 지시자 필드가 지시하는 하향링크 컴포넌트 캐리어를 확인한 후, 상기 확인된 하향링크 컴포넌트 캐리어와 링키지가 설정된 상향링크 컴포넌트 캐리어를 결정하는 단계; 및Identifying a downlink component carrier indicated by the carrier indicator field, and then determining an uplink component carrier for which the identified downlink component carrier and linkage are set; And
    상기 결정된 상향링크 컴포넌트 캐리어를 통해 상기 기지국으로 상향링크 데이터 버스트를 전송하는 단계를 포함하여 이루어지는 것을 특징으로 하는 방법. Transmitting an uplink data burst to the base station via the determined uplink component carrier.
  2. 제 1항에 있어서,The method of claim 1,
    상기 캐리어 지시자 필드는 상기 단말에게 할당된 컴포넌트 캐리어 구성에 따라 각 컴포넌트 캐리어를 지시하는 인덱스(index) 값을 나타내는 것을 특징으로 하는 방법.The carrier indicator field is characterized in that the index (index) indicating each component carrier according to the component carrier configuration assigned to the terminal.
  3. 제 1항에 있어서,The method of claim 1,
    상기 캐리어 지시자 필드는 하향링크 컴포넌트 캐리어를 지시하는 인덱스 값인 것을 특징으로 하는 방법.The carrier indicator field is an index value indicating a downlink component carrier.
  4. 제 1항에 있어서,The method of claim 1,
    상기 하향링크 제어 정보는 하향링크 자원 할당 정보를 포함하는 하향링크 스케쥴링 할당(DL scheduling assignment)이거나 상향링크 자원 할당 정보를 포함하는 상향링크 그랜트(UL grant)인 것을 특징으로 하는 방법.The downlink control information may be a downlink scheduling assignment including downlink resource allocation information or an uplink grant including uplink resource allocation information.
  5. 제 1항에 있어서,The method of claim 1,
    상기 확인된 하향링크 컴포넌트 캐리어는 적어도 하나의 상향링크 컴포넌트 캐리어와 링키지가 설정된 하향링크 컴포넌트 캐리어인 것을 특징으로 하는 방법.The identified downlink component carrier is a downlink component carrier characterized in that the linkage is configured with at least one uplink component carrier.
  6. 제 1항에 있어서,The method of claim 1,
    상기 캐리어 지시자 필드는 3 비트로 표현되는 것을 특징으로 하는 방법.And wherein the carrier indicator field is represented by three bits.
  7. 복수의 컴포넌트 캐리어를 지원하는 시스템에서 크로스 캐리어 스케쥴링(cross-carrier scheduling)을 통해 데이터 버스트를 전송하기 위한 단말에 있어서,A terminal for transmitting a data burst through cross-carrier scheduling in a system supporting a plurality of component carriers,
    무선 신호를 송신 및 수신하는 무선통신부; 및A wireless communication unit for transmitting and receiving a wireless signal; And
    상기 무선통신부와 연결되는 제어부를 포함하되, 상기 제어부는,Including a control unit connected to the wireless communication unit, The control unit,
    서브 프레임 내의 제어 영역에서 하향링크 제어 채널(PDCCH)을 통해, 캐리어 지시자 필드(CIF)를 포함하는 하향링크 제어 정보(DCI)를 기지국으로부터 수신하도록 상기 무선통신부를 제어하며,Controlling the wireless communication unit to receive downlink control information (DCI) including a carrier indicator field (CIF) from a base station through a downlink control channel (PDCCH) in a control region within a subframe,
    상기 캐리어 지시자 필드가 지시하는 하향링크 컴포넌트 캐리어를 확인한 후, 상기 확인된 하향링크 컴포넌트 캐리어와 링키지가 설정된 상향링크 컴포넌트 캐리어를 결정하며,Identifying a downlink component carrier indicated by the carrier indicator field, and then determining an uplink component carrier configured with the identified downlink component carrier and linkage,
    상기 결정된 상향링크 컴포넌트 캐리어를 통해 상기 기지국으로 상향링크 데이터 버스트를 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 하는 단말. And controlling the wireless communication unit to transmit an uplink data burst to the base station through the determined uplink component carrier.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 캐리어 지시자 필드는 상기 단말에게 할당된 컴포넌트 캐리어 구성에 따라 각 컴포넌트 캐리어를 지시하는 인덱스(index) 값을 나타내는 것을 특징으로 하는 단말.And the carrier indicator field indicates an index value indicating each component carrier according to a component carrier configuration allocated to the terminal.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 하향링크 제어 정보는 하향링크 자원 할당 정보를 포함하는 하향링크 스케쥴링 할당(DL scheduling assignment)이거나 상향링크 자원 할당 정보를 포함하는 상향링크 그랜트(UL grant)인 것을 특징으로 하는 단말.The downlink control information is a downlink scheduling assignment including DL resource assignment information or a UL grant including uplink resource allocation information.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 캐리어 지시자 필드는 하향링크 데이터 버스트가 전송되는 하향링크 컴포넌트 캐리어를 지시하는 것을 특징으로 하는 단말.Wherein the carrier indicator field indicates a downlink component carrier on which a downlink data burst is transmitted.
  11. 제 7항에 있어서,The method of claim 7, wherein
    상기 캐리어 지시자 필드는 3 비트로 표현되는 것을 특징으로 하는 단말.The carrier indicator field is characterized in that represented by three bits.
  12. 제 7항에 있어서,The method of claim 7, wherein
    상기 캐리어 지시자 필드는 하향링크 컴포넌트 캐리어를 지시하는 인덱스 값인 것을 특징으로 하는 단말.And the carrier indicator field is an index value indicating a downlink component carrier.
PCT/KR2011/000087 2010-01-06 2011-01-06 Method and device for sending data via cross-carrier scheduling in wireless communication system supporting plurality of component carriers WO2011083990A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/519,764 US9247562B2 (en) 2010-01-06 2011-01-06 Method and device for sending data via cross-carrier scheduling in wireless communication system supporting plurality of component carriers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US29250110P 2010-01-06 2010-01-06
US61/292,501 2010-01-06
KR10-2011-0000826 2011-01-05
KR1020110000826A KR101763596B1 (en) 2010-01-06 2011-01-05 apparatus and method for transmitting data burst using cross-carrier scheduling in wireless communication system supporting multiple component carrier

Publications (2)

Publication Number Publication Date
WO2011083990A2 true WO2011083990A2 (en) 2011-07-14
WO2011083990A3 WO2011083990A3 (en) 2011-11-10

Family

ID=44305953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000087 WO2011083990A2 (en) 2010-01-06 2011-01-06 Method and device for sending data via cross-carrier scheduling in wireless communication system supporting plurality of component carriers

Country Status (1)

Country Link
WO (1) WO2011083990A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493154A (en) * 2011-07-25 2013-01-30 Nec Corp Communicating control channel reference signal patterns in the control region of a sub-frame in a cellular communication system
WO2017150925A1 (en) * 2016-03-02 2017-09-08 삼성전자 주식회사 Method and device for transmitting, by terminal, uplink control information in communication system
CN114175810A (en) * 2019-08-01 2022-03-11 高通股份有限公司 Managing cross-carrier scheduling by wireless devices
US11974295B2 (en) 2011-07-25 2024-04-30 Nec Corporation Communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090024272A (en) * 2006-06-20 2009-03-06 닛본 덴끼 가부시끼가이샤 Sub-carrier allocation for control data in a communication system
KR20090027614A (en) * 2006-05-08 2009-03-17 모토로라 인코포레이티드 Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
KR20090121368A (en) * 2007-03-20 2009-11-25 가부시키가이샤 엔티티 도코모 Base station, communication terminal, transmission method, and reception method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090027614A (en) * 2006-05-08 2009-03-17 모토로라 인코포레이티드 Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
KR20090024272A (en) * 2006-06-20 2009-03-06 닛본 덴끼 가부시끼가이샤 Sub-carrier allocation for control data in a communication system
KR20090121368A (en) * 2007-03-20 2009-11-25 가부시키가이샤 엔티티 도코모 Base station, communication terminal, transmission method, and reception method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716103B2 (en) 2011-07-25 2020-07-14 Nec Corporation Communication system
CN103081550A (en) * 2011-07-25 2013-05-01 日本电气株式会社 Providing a beamformed physical downlink control channel (PDCCH) on an extension carrier of a mobile communication system
US9271272B2 (en) 2011-07-25 2016-02-23 Nec Corporation Communications system with multiple PDCCH with associated multiple DMRS patterns
RU2621313C1 (en) * 2011-07-25 2017-06-01 Нек Корпорейшн Ensuring physical control channel downlink (pdcch) beamformed expansion for carrierc commuinicational system
GB2493154A (en) * 2011-07-25 2013-01-30 Nec Corp Communicating control channel reference signal patterns in the control region of a sub-frame in a cellular communication system
RU2731253C2 (en) * 2011-07-25 2020-08-31 Нек Корпорейшн Providing a physical downlink control channel (pdcch) with a formed beam pattern on a mobile system expansion carrier
US11337204B2 (en) 2011-07-25 2022-05-17 Nec Coproration Communication system
US11974295B2 (en) 2011-07-25 2024-04-30 Nec Corporation Communication system
WO2017150925A1 (en) * 2016-03-02 2017-09-08 삼성전자 주식회사 Method and device for transmitting, by terminal, uplink control information in communication system
US10492213B2 (en) 2016-03-02 2019-11-26 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
US11089613B2 (en) 2016-03-02 2021-08-10 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
US11825510B2 (en) 2016-03-02 2023-11-21 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
CN114175810A (en) * 2019-08-01 2022-03-11 高通股份有限公司 Managing cross-carrier scheduling by wireless devices

Also Published As

Publication number Publication date
WO2011083990A3 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011145823A2 (en) Method and device for configuring a carrier indication field for a multi-carrier
WO2019112209A1 (en) Method for transmitting or receiving signal in wireless communication system and apparatus therefor
WO2013066075A1 (en) Method for determining the transmission of a sounding reference signal in a wireless communication system, and terminal therefor
WO2018203681A1 (en) Method for transmitting or receiving signal in wireless communication system and apparatus therefor
WO2011115463A2 (en) Apparatus and method for transmitting/receiving control information in a wireless communication system that supports carrier aggregation
WO2014062041A1 (en) Method and device for monitoring downlink control channel in wireless communication system
WO2017010798A1 (en) Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
WO2010120142A2 (en) Apparatus and method for monitoring control channel in multi-carrier system
WO2019009665A1 (en) Method and apparatus for handling multiple numerologies in wireless communication system
WO2011007985A2 (en) Method in which a receiver transmits control information in a wireless communication system
WO2013151394A1 (en) Method and apparatus for aggregating carriers in wireless communication systems
WO2010095913A2 (en) Control channel monitoring apparatus in multi-carrier system and method thereof
WO2011065797A2 (en) Terminal device for receiving signal in wireless communication system for supporting a plurality of component carriers and method thereof
WO2011142608A9 (en) Method for transmitting an srs-triggering-based srs in a wireless communication system
WO2012177073A2 (en) Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
WO2010013959A2 (en) Method and apparatus of receiving data in wireless communication system
WO2012150822A2 (en) Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
WO2013027987A2 (en) Method for terminal deciding uplink transmission power in macro cell environment comprising remote radio head (rrh), and terminal apparatus for same
WO2010123331A2 (en) Method and apparatus for transmitting and receiving control signal for merging carriers in transmission
WO2010131929A2 (en) Apparatus and method for monitoring control channel in multi-carrier system
WO2010062061A2 (en) Communication method and apparatus in multi-carrier system
WO2017150942A1 (en) Method and apparatus for transreceiving wireless signal in wireless communication system
WO2013176531A1 (en) Signal transceiving method and apparatus for same
WO2013025086A2 (en) Method for allocating a control channel and apparatus therefor
WO2011105769A2 (en) Method and device for transmitting uplink acknowledgement information in a wireless communication system supporting multiple carriers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13519764

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11731928

Country of ref document: EP

Kind code of ref document: A2