WO2011083564A1 - Ponシステム、加入者側装置、局側装置および通信方法 - Google Patents
Ponシステム、加入者側装置、局側装置および通信方法 Download PDFInfo
- Publication number
- WO2011083564A1 WO2011083564A1 PCT/JP2010/050033 JP2010050033W WO2011083564A1 WO 2011083564 A1 WO2011083564 A1 WO 2011083564A1 JP 2010050033 W JP2010050033 W JP 2010050033W WO 2011083564 A1 WO2011083564 A1 WO 2011083564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- side device
- period
- subscriber
- transmission
- onu
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/44—Star or tree networks
Definitions
- the present invention relates to a PON (Passive Optical Network) system composed of an OLT (Optical Line Terminal: station side device) and an ONU (Optical Network Unit: subscriber side device).
- OLT Optical Line Terminal: station side device
- ONU Optical Network Unit: subscriber side device
- a PON system which is one of FTTH (Fiber To The Home) is rapidly spreading due to its high speed and economy.
- a station side device OLT
- ONUs subscriber side devices
- an optical splitter that branches signal outputs to a plurality of optical fibers.
- a TE Terminal Equipment
- HGW Home Gate Way
- VoIP-TA Voice over Internet Protocol-Terminal Adapter
- PC Personal Computer
- the ONU installed in the user's home always establishes a link with the OLT or TE even during standby when data communication is not performed in order to support services that require real-time performance such as optical telephones. Therefore, there is a problem that the power consumption of the ONU increases.
- Non-Patent Document 1 defines a new protocol and an OAM (Operation Administration and Maintenance) message, and transmits a request to shift from the ONU to the sleep mode, and the OLT returns the ONU based on the request. Is allowed to operate in sleep mode. In this way, in the method described in Non-Patent Document 1 below, the ONU is prevented from consuming unnecessary power when there is no communication.
- OAM Operaation Administration and Maintenance
- Patent Document 1 discloses a method of operating an ONU with power saving in order to ensure a lifeline even when a power failure occurs and the ONU becomes battery-driven in an emergency such as a disaster.
- Patent Document 2 a method is disclosed in which the ONU monitors communication in the downstream direction (direction to the user equipment) and reduces power consumption based on the reception status of the user equipment.
- the ONU of the PON system monitors the status of the logical link and the physical link, and controls to shift the mounted circuit to the low power consumption mode when the logical link and the physical link are disconnected. A method is disclosed.
- ITU-T International Telecommunication Union Telecommunication Standardization Sector
- RC-TD Standardization Contribution SG15Q2
- the ONU defines only the normal mode (transmission / reception enabled state) or the sleep mode, and the upstream communication (direction from the ONU to the OLT) and the downstream are defined. Communication (direction from OLT to ONU) is not distinguished. Therefore, for example, when there is uplink communication, it is necessary to operate the downlink communication circuit, and conversely, when there is downlink communication, it is necessary to operate the uplink communication circuit. Therefore, there is a problem that the power saving efficiency of the ONU is low.
- Non-Patent Document 1 a dedicated OAM frame for handshaking for performing sleep control between the OLT and the ONU is used. Therefore, there is a problem that an extra communication band is used for sleep control.
- the present invention has been made in view of the above, and an object thereof is to provide a PON system, a subscriber-side device, a station-side device, and a communication method that can improve the efficiency of power saving.
- the present invention provides a plurality of subscriber-side devices, a station-side device that allocates an uplink communication band to each subscriber-side device and performs multiplex communication, PON (Passive Optical Network) system, wherein the station side device specifies a part of a period in a subsequent band update cycle as a data transfer period for downlink data, and allocates a band before transferring the downlink data.
- PON Passive Optical Network
- PON control means for notifying the subscriber side device is provided, the subscriber side device receiving means for receiving the downlink data transmitted from the station side device, and the data included in the band allocation result And a state control unit that shifts the receiving unit to a power saving state or a normal state based on a transfer period.
- the PON system according to the present invention has an effect that the efficiency of power saving can be improved.
- FIG. 1 is a diagram illustrating a configuration example of the PON system according to the first embodiment.
- FIG. 2 is a diagram illustrating an example of an operation within the band update period according to the first embodiment.
- FIG. 3 is a diagram illustrating a configuration example of a GATE frame according to the first embodiment.
- FIG. 4 is a flowchart illustrating an example of the power saving control operation of the PON system according to the first embodiment.
- FIG. 5 is a diagram illustrating an example of power saving control according to the first embodiment.
- FIG. 6 is a diagram illustrating an example of contents of a GATE frame according to the first embodiment.
- FIG. 7 is a diagram illustrating an example of contents of a GATE frame according to the first embodiment.
- FIG. 1 is a diagram illustrating a configuration example of the PON system according to the first embodiment.
- FIG. 2 is a diagram illustrating an example of an operation within the band update period according to the first embodiment.
- FIG. 3 is a diagram illustrating a configuration
- FIG. 8 is a diagram illustrating an example of power saving control when the next operation determination time is set to a time that is one band update cycle or more ahead.
- FIG. 9 is a diagram illustrating a configuration example of the PON system according to the second embodiment.
- FIG. 10 is a diagram illustrating an example of an operation within the band update period according to the second embodiment.
- FIG. 11 is a diagram illustrating a configuration example of a GATE frame according to the second embodiment.
- FIG. 12 is a flowchart illustrating an example of the power saving control operation of the PON system according to the second embodiment.
- FIG. 13 is a diagram illustrating an example of power saving control according to the second embodiment.
- FIG. 14 is a diagram illustrating a content example of a GATE frame according to the second embodiment.
- FIG. 15 is a diagram illustrating an example of contents of a GATE frame according to the second embodiment.
- FIG. 16 is a diagram illustrating an example of power saving control according to the second embodiment in the case where a time that is one band update period or more ahead of the ONU is set as the transmission timing of the GATE frame.
- FIG. 17 is a diagram illustrating a configuration example of the PON system according to the third embodiment.
- FIG. 18 is a flowchart illustrating an example of the power saving control operation of the PON system according to the third embodiment.
- FIG. 19 is a diagram illustrating an example of power saving control according to the third embodiment.
- FIG. 20 is a diagram illustrating a content example of a GATE frame according to the third embodiment.
- FIG. 21 is a diagram illustrating a content example of a GATE frame according to the third embodiment.
- FIG. 22 is a diagram illustrating a content example of a GATE frame according to the third embodiment.
- FIG. 1 is a diagram showing a configuration example of a first embodiment of a PON system according to the present invention.
- the PON system of the present embodiment includes an OLT 1 and an ONU 2 connected to the OLT 1 via a splitter 3.
- the OLT 1 is connected to the upper apparatus 4, and the ONU 2 is connected to the lower apparatus 5.
- the number of ONUs 2 connected to the OLT 1 via the splitter 3 may be any number of one or more.
- the OLT 1 includes a buffer 10, a write control unit 11, a buffer management unit 12, a read control unit 13, a transmission timing determination unit 14, a frame multiplexing unit 15, an optical transmitter 16, an optical receiver 17, a frame separation unit 18, and a PON control unit. 19.
- the buffer 10 is a buffer for temporarily storing downlink data addressed to the ONU 2 received from the host device 4.
- the write control unit 11 controls the writing of data to the buffer 10, and the read control unit 13 controls the reading of data stored in the buffer 10.
- the buffer management unit 12 manages the amount of data stored in the buffer 10 based on the write information of the write control unit 11 and the read information of the read control unit 13.
- the frame multiplexing unit 15 generates a user frame storing the downlink data read from the buffer 10 by the read control unit 13, and multiplexes the generated user frame and the control frame.
- the optical transmitter 16 converts the multiplexed frame, which is an electrical signal, into an optical signal and transmits it to the ONU 2 via the splitter 3.
- the transmission timing determination unit 14 determines the transmission timing of the downlink data based on the data amount (downstream buffer amount) accumulated in the buffer 10 notified from the buffer management unit 12, and performs the PON control on the determined transmission timing. Notification to the unit 19.
- the PON controller 19 (PON controller) 19 performs a predetermined process based on the control frame received from the ONU 2 and generates a control frame to be transmitted to the ONU 2, and also transmits an upstream data band (transmission time band) to the ONU 2. Is assigned.
- the optical receiver 17 converts the optical signal received from the ONU 2 into an electrical signal and outputs it to the frame separation unit 18.
- the frame separation unit 18 separates the electrical signal received from the optical receiver 17 into a control frame and a user frame, outputs the control frame to the PON control unit 19, and transmits the user frame to the host device 4.
- the ONU 2 includes a buffer 20, a write control unit 21, a buffer management unit 22, a read control unit 23, a frame multiplexing unit 24, an optical transmitter 25, a PON control unit 26, an optical receiver 27, a frame separation unit 28, and a reception timing instruction unit. 29.
- the buffer 20 is a buffer that temporarily stores uplink data (data to be transmitted to the OLT 1) received from the lower-level device 5.
- the write control unit 21 controls the writing of data to the buffer 20, and the read control unit 23 controls the reading of data stored in the buffer 20.
- the buffer management unit 22 manages the amount of data stored in the buffer 20 based on the write information of the write control unit 21 and the read information of the read control unit 23.
- the frame multiplexing unit 24 generates a user frame storing the uplink data read from the buffer 20 by the read control unit 23, and multiplexes the generated user frame and the control frame.
- the optical transmitter 25 converts the multiplexed frame, which is an electrical signal, into an optical signal and transmits it to the OLT 1 via the splitter 3.
- the optical receiver 27 converts the optical signal received from the OLT 1 into an electrical signal and outputs it to the frame separation unit 28.
- the frame separation unit 28 separates the electrical signal received from the optical receiver 27 into a control frame and a user frame, outputs the control frame to the PON control unit 26, and transmits the user frame to the lower apparatus 5.
- the frame separation unit 28 also outputs a GATE frame, which is a control frame for notifying the band allocation result transmitted from the OLT 1, to the reception timing instruction unit 29.
- GATE frame downlink data is transmitted from OLT 1 to ONU 2 as downlink transmission information as well as a bandwidth allocation result for transmission of uplink data from ONU 2 as in the conventional case.
- the information of the time zone to be used is stored.
- the PON control unit 26 performs a predetermined process based on the control frame received from the OLT 1 and generates a control frame to be transmitted to the OLT 1.
- the PON control unit 26 is a control frame that notifies the upstream buffer amount and requests bandwidth allocation based on the data amount (upstream buffer amount) accumulated in the buffer 20 notified from the buffer management unit 22.
- a Report frame is generated.
- the reception timing instruction unit (state control means) 29 obtains a reception time zone in which the device receives an optical signal from the OLT 1 based on the GATE frame transmitted from the OLT 1 and can receive in the obtained reception time zone.
- the optical receiver 27 and the frame separation unit 28 are activated so as to achieve a proper state.
- the reception timing instruction unit 29 sets the optical receiver 27 and the like to the start time of the reception time zone. Is activated by a predetermined preparation time.
- the reception timing instruction unit 29 shifts the optical receiver 27 and the frame separation unit 28 to a power saving mode that is in a state of saving power (downlink power saving).
- a power saving method for the optical receiver 27 and the frame separation unit 28 is performed using a technique such as power gating and clock gating.
- both the power saving in the upstream direction and the power saving in the downstream direction are performed. Only power saving may be performed.
- the power saving components may not be all of the above-described components, but may be one or more of the above-described components, and other related components may be power-saving. Also good.
- the PON control unit 19 saves power in the frame multiplexing unit 15 and the optical transmitter 16 in a time zone that is not allocated to the ONU 2 as an upstream data transmission time zone. Further, in a time zone during which no optical signal is transmitted to the ONU 2, the transmission timing determination unit 14 saves power in the optical transmitter 16, the frame multiplexing unit 15, and the readout control unit 13. The transmission timing determination unit 14 may control the power saving of the optical transmitter 16, the frame multiplexing unit 15, and the readout control unit 13 by the PON control unit 19. In addition, although power saving of such OLT1 was performed here, power saving of OLT1 does not need to be implemented, and power saving of only one of the down direction or the up direction is performed. You may make it implement. In addition, the power saving components may not be all of the above-described components, but may be one or more of the above-described components, and other related components may be power-saving. Also good.
- FIG. 2 is a diagram illustrating an example of the operation within the band update period according to the present embodiment.
- bandwidth allocation is performed in units of a predetermined bandwidth update period.
- the bandwidth update period can be divided into a data transfer period and a next period operation determination period.
- the ONU 2 receives the GATE frame for the own device received from the OLT 1 and transmits a Report frame storing the uplink buffer amount of the own device to the OLT 1.
- a time called a time stamp using a PON clock used for synchronization between the OLT 1 and the ONU 2 defined by MPCP (Multi Point Control Protocol) is used.
- the transmission duration uses, for example, TQ (Time Quanta), which is an MPCP processing unit.
- TQ Time Quanta
- the transmission duration is stored as a transmission data amount, the transmission data amount can be converted into a transmission duration based on the line speed.
- the OLT 1 allocates bandwidth to each ONU (transmission start time and transmission continuation) within the data transfer period of the next bandwidth update cycle based on the uplink buffer amount included in the Report frame received in the previous bandwidth update cycle. Time allocation) and the transmission time of downlink data from the own apparatus to each ONU within the data transfer period of the next bandwidth update cycle. Then, the bandwidth allocation result is notified to each ONU using the GATE frame in the next cycle operation determination period.
- the ONU 2 transmits uplink data to the OLT 1 based on the transmission start time and the transmission duration specified by the GATE frame received in the previous band update cycle. Further, the OLT 1 transmits the downlink data from the own apparatus to each ONU based on the downlink data transmission time allocated in the previous band update period in the data transfer period.
- the operation in each band update cycle so far is the same as that of a normal PON system.
- a transfer period (transmission start time and transmission duration) during which OLT 1 transmits a downlink frame (user frame of downlink data) is added to a GATE frame that notifies the transmission start time and transmission duration of uplink data.
- the transmission duration is from the transmission of the first downlink frame to the transmission of the last downlink frame within one band update period (data transfer period). Since the transmission continuation time is notified by the data amount, the total data amount transmitted in one bandwidth update cycle is notified. Further, a time at which the OLT 1 transmits the GATE frame next time is added to the GATE frame.
- FIG. 3 is a diagram illustrating a configuration example of a GATE frame according to the present embodiment.
- the GATE frame according to the present embodiment includes header information including a destination, a frame type, time, and the like, uplink transmission information, and downlink transmission information.
- the uplink transmission information includes the transmission start time and the transmission duration time of the uplink data assigned by the OLT 1 to the ONU 2 as in the conventional case.
- the downlink transmission information is divided into two types: data transfer period information and operation determination period information.
- the data transfer period information includes a transmission start time and a transmission continuation time when the OLT 1 transmits downlink data to the ONU 2 in the next bandwidth update cycle.
- the operation determination period information is information related to a time zone in which the OLT 1 next transmits a GATE frame (performs band allocation), and the transmission start time and transmission duration time of the GATE frame (the length of the GATE frame: GATE length). )including.
- the reception timing instruction unit 29 determines the reception time zone based on the data transfer period information of the downlink transmission information stored in the GATE frame so that reception is possible in the reception time zone.
- Each unit related to downlink reception optical receiver 27 and frame separation unit 28: hereinafter referred to as downlink reception unit
- the ONU 2 needs to activate the downlink receiving unit in order to receive the GATE frame.
- the OLT 1 performs burst transmission of downlink data within a predetermined transmission period. Then, the OLT 1 notifies the time when the burst transmission of the downlink data is performed as the operation determination period information of the downlink transmission information, whereby the ONU 2 can grasp the time when the GATE frame should be received next. Therefore, the ONU 2 can save power in the downlink receiving unit in a time zone other than the time zone stored in the data transfer period information of the downlink transmission information and in a time zone other than the time when the GATE frame should be received. . Similarly, in the OLT 1, in a time zone in which no downlink data is transmitted and no GATE frame is transmitted, each unit (optical transmitter 16, frame multiplexing unit 15, readout control unit 13, etc.) related to downlink data transmission saves power. Can be
- each unit related to uplink transmission (the optical transmitter 25, the frame multiplexing unit 24, and the readout) is read based on the uplink transmission information included in the GATE frame. It is possible to save power in the control unit 23 and the like.
- FIG. 4 is a flowchart illustrating an example of the power saving control operation of the PON system according to the present embodiment.
- the transmission timing determination unit 14 determines whether or not the current time is the operation determination time (step S1), and if it is not the operation determination time (No in step S1), repeats step S1.
- the operation determination time is the time when the operation is determined next, and is determined by the PON control unit 19 at the time of transmitting the GATE frame and notified to the transmission timing determination unit 14.
- the operation determination time is set for each band update period.
- the OLT 1 transmits the operation determination period information as downlink transmission information in the GATE frame
- the operation determination time is the GATE frame in which the transmission start time and the transmission duration time are notified by the operation determination period information. This is the time at which the processing for obtaining the information stored in (band update processing) is started.
- the transmission start time of the operation determination period information is set as a time after a minute considering the processing time of the band update process from the operation determination time.
- the transmission timing determination unit 14 receives the downlink buffer amount (the total frame accumulation amount accumulated in the buffer 10) from the buffer management unit 12 (Ste S2). Then, the transmission timing determination unit 14 determines the transmission start time and the transmission data amount (corresponding to the transmission continuation time) of downlink data for the ONU 2 based on the downlink buffer amount (step S3). The determined downlink data transmission start time and transmission data amount are retained.
- the transmission timing determination unit 14 determines whether or not the operation determination period transmission time (transmission start time of the operation determination period information of the GATE frame transmitted to the ONU 2) has been reached (step S4), and the operation determination period transmission time If not (step S4, No), repeat step S4.
- the transmission timing determination unit 14 activates the transmission block (downlink transmission unit) and shifts to a state in which downlink transmission is possible (step S5). Then, the PON control unit 19 is notified of the downlink data transmission start time and transmission data amount determined in step S3 to the PON control unit 19, and the PON control unit 19 stores the ONU allocation result for uplink transmission. The notified transmission start time and transmission data amount are added to the frame as data transfer period information of downlink transmission information. At this time, the PON control unit 19 also determines the next operation determination time, obtains the operation determination period information corresponding to the operation determination time, adds it to the GATE frame, and adds the data transfer period information and the operation determination period information. The added GATE frame is transmitted to the ONU 2 via the frame multiplexing unit 15 and the optical transmitter 16 (step S6).
- the PON control unit 19 instructs the transmission timing determination unit 14 to save the transmission block.
- the transmission timing determination unit 14 saves the transmission block. (Step S7).
- the transmission timing determination unit 14 determines whether there is downlink data (user data) to be transmitted within the data transfer period of the current bandwidth update cycle (step S8), and when there is no user data (step S8). In S8 No), the process returns to Step S1.
- step S9 If there is downlink data (user data) to be transmitted within the data transfer period of the current bandwidth update cycle (Yes in step S8), whether or not the transmission start time (downlink data transmission start time) of the data transfer period has come Is determined (step S9), and if the transmission start time of downlink data is not reached (No in step S9), step S9 is repeated.
- step S9 When the downlink data transmission start time is reached (Yes in step S9), the transmission block is activated to shift to a state in which downlink transmission is possible (step S10). Then, the transmission timing determination unit 14 instructs the read control unit 13 to read data based on the transmission start time and the data amount of the downlink data, and the read control unit 13 sends the data from the buffer 10 based on the instruction. Read and output to the frame multiplexing unit 15 (step S11).
- the frame multiplexing unit 15 generates a user frame storing the data received from the read control unit 13, and transmits it to the ONU 2 via the optical transmitter 16 (step S12).
- the frame multiplexing unit 15 multiplexes the control frame and the user frame and transmits the multiplexed frame to the ONU 2.
- the transmission timing determination unit 14 determines whether or not downlink data transmission is scheduled to continue in the band update period based on the transmission start time and data amount of the downlink data that is held (step S13). If there is a transmission schedule (step S13, Yes), the process returns to step S11. When there is no transmission plan (No in step S13), power saving is performed on the transmission block (step S14), and the process returns to step S1.
- the reception timing instruction unit 29 determines whether or not the reception time of the GATE frame obtained based on the transmission start time of the operation cycle determination period information notified from the OLT 1 by the GATE frame is reached (step S21).
- the reception block downlink reception unit
- Step S21 is repeated.
- step S22 when receiving the GATE frame from the OLT 1 (step S23), the reception timing instruction unit 29 saves power in the reception block (step S24). Then, it is determined whether or not there is information (information for which transmission duration is not 0) indicating that downlink data is transmitted in the data (user data) transfer period stored in the received GATE frame (step S25). If there is no information indicating that there is downlink data transmission (No in step S25), the process returns to step S21.
- information information for which transmission duration is not 0
- the reception timing instruction unit 29 receives the downlink frame reception time obtained based on the transmission start time of the data transfer period information of the GATE frame. Is determined (step S26), and if it is not the transmission start time of the data transfer period information (No in step S26), step S26 is repeated.
- the reception timing instruction unit 29 activates the reception block (step S27).
- the ONU 2 receives the user frame (downlink data) from the OLT 1 (step S28), ends the reception (after the transmission duration time has elapsed), saves power in the reception block (step S29), and returns to step S21.
- step S22 and step S27 the activation of the reception block in step S22 and step S27 is activated before the scheduled reception time if preparation time is required from when the activation instruction is issued until it becomes ready for reception. To give instructions.
- FIG. 5 is a diagram illustrating an example of power saving control according to the present embodiment.
- the OLT 1 receives the downlink data addressed to the ONU # 1 to ONU # 3 from the upper apparatus 4.
- the OLT 1 determines the transmission start time and the transmission continuation time for transmitting the user frame storing the downlink data based on the downlink buffer amount, and sets the GATE frame storing the determined information as the ONU # 1 to ONU #. 3 to send.
- the transmission start time and the GATE length of the next GATE frame are stored as operation determination period information and transmitted.
- the OLT 1 transmits the GATE frame 71 addressed to the ONU # 1, the GATE frame 72 addressed to the ONU2 in the next period operation determination period.
- FIG. 6 is a diagram illustrating an example of the content of a GATE frame 71 transmitted to ONU # 1
- FIG. 7 is a diagram illustrating an example of the content of a GATE frame 72 transmitted to ONU # 2.
- the start time # 1 is stored at the transmission start time and the duration # 1 is stored as the transmission duration as data transfer period information.
- the start time # 2 is stored at the transmission start time and the GATE length is stored at the transmission continuation time as the operation determination period information.
- the start time # 1 is stored at the transmission start time and the duration # 1 is stored as the transmission continuation time as data transfer period information.
- the start time # 3 is stored at the transmission start time and the GATE length is stored at the transmission continuation time as the operation determination period information.
- the data transfer period information is the same information in the GATE frame 71 and the GATE frame 72 because the total period for transmitting the downlink frame within one band update cycle is stored.
- the operation determination period information is different in the GATE frame 71 and the GATE frame 72 because the transmission time zone is different for each ONU.
- the reception block when no GATE frame is received and no downstream frame is received, the reception block is in a power saving state. Then, the reception block is activated only before the overhead 61 corresponding to the preparation period for starting the reception block from the reception time of the GATE frame or the reception time of the downstream frame. Further, the reception block is shifted to the power saving state at the reception end time (the reception end time obtained based on the transmission start time and the transmission continuation time). At this time, it is assumed that a period of overhead 62 is required from when the power saving instruction is issued until the power saving state is actually entered.
- ONU # 1 to ONU # 3 activate the reception block just before the overhead time 61 shown in FIG. 6 by the overhead 61, and after the continuation time # 1 has elapsed from the start time # 1, Save power.
- the ONU # 1 activates the reception block just before the overhead 61 in the preparation period from the start time # 2 shown in FIG. 6, and saves power after the continuation time # 2 has elapsed from the start time # 2.
- the reception block is activated only by the preparation period 61 before the start time # 3 shown in FIG. 7, and power is saved after the continuation time # 3 has elapsed from the start time # 3.
- FIG. 5 an example is shown in which the OLT 1 transmits a GATE frame at each band update period. However, there is no data transmitted from the ONU # 1 to ONU # 3 and no data transmitted from the OLT1.
- the next operation determination time may be a time that is one band update cycle or more ahead.
- FIG. 8 is a diagram illustrating an example of power saving control when the next operation determination time is set to a time that is one band update cycle or more ahead.
- the GATE frames 71 and 72 shown in FIG. 6 and FIG. 7 are transmitted in the same manner as in FIG. 5, but in the example of FIG. 8, the start time # 2 and the start time # 2 are GATE frames.
- the time is one band update cycle or more ahead of the time at which 71 and 72 are transmitted. Therefore, as shown in FIG. 8, the power saving state can be continued for a long time, and the number of overheads 61 and 62 can be reduced.
- Bandwidth allocation for this GATE frame can be performed individually according to the individual data transmission / reception states of the ONU # 1 to ONU # 3. That is, it is possible to allocate a bandwidth for some ONUs in the next bandwidth update cycle and to allocate a bandwidth for different or all ONUs in subsequent bandwidth update cycles.
- the OLT 1 determines the transmission start time and transmission duration of the downlink user frame, the transmission start time and transmission duration of the next GATE frame, and the upstream band for the ONU 2
- the determined two types of transmission start time and transmission duration are stored in the GATE frame that notifies the allocation of the transmission. Since both the downlink user frame and the GATE frame are downlink communications from the OLT 1, both of these two types of transmission start times and transmission continuation times can be considered as downlink communication times.
- power saving of the uplink transmission unit and power saving of the downlink reception unit are performed independently, and the downlink reception unit is set in the power saving state in a time zone other than the downlink communication time based on the GATE frame. Therefore, it is possible to efficiently save power while continuing normal communication. In addition, since no special frame transmission is required, power can be saved without wasting bandwidth.
- the power saving efficiency can be further improved. Further, since the downlink data received by the OLT 1 when the downlink receiving unit of the ONU 2 is in the power saving state is accumulated in the buffer 10 and transmitted when the downlink communication is resumed, there is an effect that no frame loss occurs.
- the ONU transmits a request for the sleep mode to the OLT based on the uplink communication status known by the ONU, and shifts to the sleep mode after receiving the permission from the OLT. For this reason, it takes time until the ONU can enter the sleep mode until it actually enters the sleep mode, which consumes extra power.
- the ONU 2 can shift to the power saving state based on the transmission start time and the transmission duration time of the uplink communication notified by the GATE frame. Can be further enhanced.
- the OLT did not determine the time frame for transmitting the downlink frame in advance and transmitted it in an arbitrary time zone within the data transfer period.
- the OLT transmits the downlink frame. Since the transmission time zone to be transmitted is determined in advance, it is possible to activate the downlink transmission unit in the transmission time zone and save power in the downlink transmission unit in a data transfer period other than the transmission time zone. Therefore, the OLT 1 can save power compared to the conventional case.
- the transmission continuation time is notified by the data amount, but may be notified by other information (time, the number of clocks, etc.) without using the data amount.
- the downlink communication information is added after the uplink transmission information, but the downlink transmission information can be transmitted separately from the uplink transmission information.
- FIG. FIG. 9 is a diagram showing a configuration example of the second embodiment of the PON system according to the present invention.
- the PON system of the present embodiment is the same as the PON system of the first embodiment, except that the OLT 1 of the PON system of the first embodiment is replaced with an OLT 1a.
- Components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
- the OLT 1a includes the buffer 10, the write control unit 11, the buffer management unit 12, the read control unit 13, and the transmission timing determination unit 14 of the OLT 1 according to the first embodiment.
- the buffer 10a is divided into areas for storing data for each ONU, and the write control unit 11a corresponds the downlink data received from the host device 4 to the ONU that is the destination of the downlink data in the buffer 10a.
- the write control unit 11a has a function as a destination classification unit that classifies the downlink data for each destination ONU.
- the buffer 10a also includes a broadcast area in addition to the area for each ONU, and the write control unit 11a stores downlink data to be transmitted by broadcast in that area.
- the buffer management unit 12a manages the buffer accumulation amount for each region, and the read control unit 13a reads data from the buffer 11a for each region.
- the transmission timing determination unit 14a of the OLT 1a determines a period (transmission start time and transmission duration) for transmitting a downlink frame for each ONU, and notifies the corresponding ONU of the determined period.
- the transmission period to be transmitted to all ONUs within one bandwidth update period is collectively determined and notified to all ONUs.
- each ONU has a downlink frame addressed to that ONU. Will be notified of the time to send.
- FIG. 10 is a diagram illustrating an example of an operation within the band update period according to the present embodiment.
- the data transfer period within the bandwidth update period is divided into a broadcast / multicast transfer period and other periods (period in which frames are unicasted to each ONU).
- the second embodiment is the same as the first embodiment.
- a GATE frame for notifying the ONU 2 of the uplink transmission bandwidth allocation result is transmitted, and as a response, the ONU 2 transmits a report frame storing the uplink buffer amount.
- the OLT 1a transmits a broadcast frame and a multicast frame during the broadcast / multicast transfer period shown in FIG.
- a user frame transmitted by unicast to each ONU is transmitted in a data transfer period other than the broadcast multicast transfer period.
- FIG. 11 is a diagram illustrating a configuration example of a GATE frame according to the present embodiment.
- the GATE frame of the present embodiment has a configuration in which broadcast / multicast transfer period information is added to the GATE frame of the first embodiment.
- the broadcast / multicast transfer period information is composed of the transmission start time and the transmission continuation time of the broadcast / multicast transfer period shown in FIG.
- the data transfer period information stores different information for each ONU.
- the ONU 2 activates the downlink receiving unit in the time zone corresponding to the broadcast / multicast transfer period information and the data transfer period information (addressed to its own device) based on such a GATE frame, and receives the downlink in other time zones. To save power.
- FIG. 12 is a flowchart showing an example of the power saving control operation of the PON system of the present embodiment. Based on FIG. 12, the operation of the OLT 1a will be described. Step S1 is the same as step S1 of the first embodiment.
- the transmission timing determination unit 14a acquires the buffer accumulation amount for each ONU from the buffer management unit 12a (step S3a), and for each ONU based on the buffer accumulation amount for each ONU.
- the transmission start time and transmission data amount (transmission continuation time) of the downlink frame are determined (step S3a).
- the broadcast / multicast transfer period is determined as a predetermined period from the beginning of the data transfer period, and the broadcast / multicast transfer period is not determined based on the data amount.
- the broadcast / multicast transfer period may be determined based on the accumulation amount of data transmitted by broadcast / multicast.
- Step S4 and subsequent steps are the same as those in the first embodiment except that steps S9a and S11a are performed instead of steps S9 and S11, respectively.
- step S9a it is determined whether it is the transmission start time of the data transfer period for each ONU.
- step S11a data is read from the corresponding area of the buffer 10a for each ONU.
- the operation of the ONU 2 is the same as that of the first embodiment.
- the reception timing control unit 29 refers to the broadcast / multicast transfer period information of the GATE frame and activates the downlink transmission unit even in the broadcast / multicast transfer period.
- the operations of the present embodiment other than those described above are the same as those of the first embodiment.
- FIG. 13 is a diagram illustrating an example of power saving control according to the present embodiment.
- ONUs # 1 to # 3 having the same configuration as the ONU 2 are connected to the OLT 1a.
- the OLT 1a receives downlink data addressed to the ONU # 1 to ONU # 3 from the upper apparatus 4. Then, the OLT 1a transmits the downstream frame to the ONU # 1 to ONU # 3, and transmits the GATE frame 73 addressed to the ONU # 1, the GATE frame 74 addressed to the ONU # 2 in the next period operation determination period.
- FIG. 14 is a diagram illustrating an example of contents of a GATE frame 73 transmitted to ONU # 1
- FIG. 15 is a diagram illustrating an example of contents of a GATE frame 74 transmitted to ONU # 2.
- the GATE frame 73 transmitted to the ONU # 1 stores the start time # 4 at the transmission start time as the operation determination period information, and the start time # at the transmission start time as the data transfer period information. 2 is stored, the duration # 2 is stored in the transmission duration, the start time # 1 is stored in the transmission start time, and the duration # 1 is stored in the transmission duration as broadcast / multicast transfer period information.
- the GATE frame 73 transmitted to the ONU # 1 stores the start time # 4 at the transmission start time as the operation determination period information, and the start time # at the transmission start time as the data transfer period information. 2 is stored, the duration # 2 is stored in the transmission duration, the start time # 1 is stored in the transmission start time, and the duration # 1 is stored in the transmission duration as broadcast / multicast transfer period information.
- the GATE frame 74 stores the start time # 5 at the transmission start time as the operation determination period information, and stores the start time # 3 at the transmission start time as the data transfer period information. Assume that the duration # 3 is stored in the transmission duration, the start time # 1 is stored in the transmission start time, and the duration # 1 is stored in the transmission duration as broadcast / multicast transfer period information.
- ONU # 1 to ONU # 3 receive the downlink only during the period in which the downlink frame addressed to itself is transmitted in the data transfer period (except for the broadcast / multicast transfer period). It is possible to save the power of the downlink receiving unit.
- FIG. 16 is a diagram illustrating an example of power saving control according to the present embodiment in the case where a time that is one band update period or more ahead of the ONU 2 is set as the transmission timing of the GATE frame.
- FIG. 16 illustrates an example in which the start time # 5 (transmission start time of the operation determination period information) notified by the GATE frame 74 is after the period illustrated in FIG.
- the downlink receiving unit can be continuously put into the power saving state including the reception period of the GATE frame, so that the power saving efficiency can be further improved.
- the transmission timing determination unit 14a of the OLT 1a determines the transmission time zone of the downlink frame based on the downlink buffer amount for each ONU, and corresponds to the transmission time zone determined for each ONU. The ONU was notified. Therefore, the same effect as that of the first embodiment can be obtained, and the power saving state period can be further ensured longer than that of the first embodiment.
- FIG. 17 is a diagram illustrating a configuration example of the third embodiment of the PON system according to the present invention.
- the PON system of the present embodiment is the same as the PON system of the first embodiment, except that the OLT 1 of the PON system of the first embodiment is replaced with an OLT 1b.
- Components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
- the OLT 1b includes the buffer 10, the write control unit 11, the buffer management unit 12, the read control unit 13, and the transmission timing determination unit 14 of the OLT 1 according to the first embodiment, and the buffer control unit 10b, the write control unit 11b, the buffer management unit 12b, and the read control, respectively. This is the same as the OLT 1 in the embodiment except that the unit 13b and the transmission timing determination unit 14b are replaced.
- the OLT 1a determines the transmission time zone of the downlink frame based on the downlink buffer amount for each ONU. However, in this embodiment, the transmission time zone is determined based on the data delay class.
- the write control unit 11b uses, as the downlink data received from the host device 4, low delay data that is data of a class that requires low delay based on the delay class, and delay that does not require low delay. It is classified into non-low-latency data that is class data. That is, the write control unit 11b has a function as a destination classifying unit that classifies downlink data for each destination ONU and a function of a delay class classification unit that classifies downlink data for each delay class.
- the buffer 10b is divided into areas for low delay and non-low delay, and further divided into areas for each ONU. It is also assumed that a broadcast data area is provided as in the second embodiment.
- the buffer 10b has a low delay for ONU # 1, a low delay for ONU # 2,..., A non-low delay for ONU # 1, a non-low delay for ONU # 2,. It is assumed that it is divided into areas. Here, it is assumed that the data addressed to the broadcast has non-low delay and one area for broadcasting is used. However, when there is data addressed to the broadcast of the low-delay class, the broadcast is defined as the low-delay class. It may be divided into two non-low delay classes.
- the delay class is identified using, for example, a VLAN (Virtual Local Area Network) CoS (Class of Service) value, a TCP / IP (Transmission Control Protocol / Internet Protocol) port number, and the like.
- the write control unit 11b classifies the downlink data received from the host device 4 into low delay data and non-low delay data based on the VLAN CoS value, TCP / IP port number, etc., and further classifies each destination ONU. Then, the data is stored in the corresponding area of the buffer 10b.
- the buffer management unit 12b obtains the downlink buffer amount for each region, and the read control unit 11b reads the data stored in the buffer 10b for each region.
- FIG. 18 is a flowchart showing an example of the power saving control operation of the PON system of the present embodiment. Based on FIG. 18, the operation of the OLT 1b will be described. Step S1 is the same as that in the first embodiment.
- the transmission timing determination unit 14b acquires the delay class and the buffer accumulation amount for each ONU from the buffer management unit 12b (step S2b). Then, downlink bandwidth allocation is performed based on the delay class and the buffer accumulation amount for each ONU (step S31), and the transmission start time and transmission data amount (transmission duration) of the downlink frame are determined for each ONU (step S3b).
- the downlink frame transmission start time and amount of transmission data are determined in the same manner as in the second embodiment, and for non-low-delay data, data received over a plurality of bandwidth update periods are collected together.
- the transmission start time and transmission data amount of the downstream frame are determined so as to transmit.
- the transmission start time and the amount of transmission data are transmitted so that they are transmitted together in one transmission time zone.
- non-low delay data for example, when transmitting a low delay class of an ONU having the same destination as the destination of non-low delay data, it is transmitted within the bandwidth update period for transmitting the data of the low delay class. And Alternatively, if the downstream buffer amount corresponding to the non-low delay data for a certain ONU is equal to or less than a predetermined threshold value, the non-low delay data is not transmitted to the ONU and is stored in the buffer 10b during the bandwidth update period. When the downstream buffer amount corresponding to the non-low delay data of the ONU exceeds a predetermined threshold value, the non-low delay data may be transmitted in the next band update cycle.
- the cycle for transmitting the non-low delay data is determined as a predetermined number of bandwidth update cycles, and the transmission start time and the transmission are transmitted so that the non-low delay data for each ONU is transmitted for each predetermined number of bandwidth update cycles.
- the amount of data may be determined.
- Step S4 and subsequent steps are the same as those in the first embodiment except that steps S9b and S11b are performed instead of steps S9 and S11, respectively.
- step S9b for each ONU, it is determined whether it is the transmission start time of the data transfer period of low delay data and non-low delay data.
- step S11b the low delay data or non-low delay data in the buffer 10b is determined for each ONU. Read data from the corresponding area.
- the operation of the ONU 2 is the same as that of the first embodiment.
- the reception timing control unit 29 refers to the broadcast / multicast transfer period information of the GATE frame and activates the downlink transmission unit even in the broadcast / multicast transfer period.
- the configuration of the GATE frame according to the present embodiment is the same as the configuration of the GATE frame according to the second embodiment.
- the operations of the present embodiment other than those described above are the same as those of the first embodiment.
- FIG. 19 is a diagram illustrating an example of power saving control according to the present embodiment.
- ONUs # 1 to # 3 having the same configuration as the ONU 2 are connected to the OLT 1b.
- the OLT 1b receives the low-delay class downlink data addressed to the ONU # 1 and ONU # 3, the non-low-delay class downlink data addressed to the ONU # 2, and the non-low-delay class from the host device 4 in the first bandwidth update cycle. Receive data addressed to the broadcast.
- the OLT 1b then transmits a low-delay class downlink frame to the ONU # 1, ONU # 3 at the next bandwidth update cycle, and sends a GATE frame 75 addressed to the ONU # 1, a GATE frame 76 addressed to the ONU # 2, and so on. Send. Further, in this band update cycle, the OLT 1b receives the low delay class data from the higher level apparatus 4 to the ONU # 2 and the non-low delay class data to the ONU # 2. Then, in the third band update cycle, the downstream frames of the low delay class and the non-low delay class are transmitted to the ONU # 2, and the GATE frame including the GATE frame 77 addressed to the ONU # 2 is transmitted.
- FIG. 20 is a diagram illustrating an example of the contents of a GATE frame 75 transmitted to ONU # 1
- FIG. 21 is a diagram illustrating an example of the contents of a GATE frame 76 transmitted to ONU # 2.
- FIG. 22 is a diagram showing an example of the contents of a GATE frame 77 transmitted to ONU # 2.
- the GATE frame 75 transmitted to the ONU # 1 stores the start time # 3 at the transmission start time as the operation determination period information, and the start time # at the transmission start time as the data transfer period information. 2 is stored, the duration # 2 is stored in the transmission duration, the start time # 1 is stored in the transmission start time, and the duration # 1 is stored in the transmission duration as broadcast / multicast transfer period information. And In the GATE frame 76, the start time # 4 is stored at the transmission start time as the operation determination period information, and the transmission start time is not specified as the data transfer period information (because there is no transmission to the ONU # 2). Assume that 0 is stored as the transmission duration, the start time # 1 is stored as the transmission start time, and the duration # 1 is stored as the transmission duration as broadcast / multicast transfer period information.
- the GATE frame 77 transmitted to the ONU # 2 stores the start time # 7 at the transmission start time as the operation determination period information, and starts at the transmission start time as the data transfer period information.
- Time # 5 is stored
- duration # 5 is stored in the transmission duration
- transmission start time is not specified as broadcast / multicast transfer period information (because broadcast data is not transmitted)
- transmission duration is 0. Assume that it is stored.
- start time # 1 to duration # 1 start time # 2 to duration # 2, and start The downlink receiving unit is activated between time # 3 and duration # 3, and power is saved otherwise.
- start time # 6 transmission start time of the operation determination period information notified in the GATE frame of the second band update period
- downstream time # 6 transmission continuation time of the operation determination period information notified in the GATE frame of the second bandwidth update period
- the downlink receiving unit In ONU # 2, in the second bandwidth update cycle, the downlink receiving unit is activated between start time # 1 and duration # 1 and between start time # 4 and duration # 4. In other cases, it saves power. In ONU # 2, in the third band update cycle, the downlink receiving unit is activated between start time # 5 and duration # 5 and between start time # 7 and duration # 7. In other cases, it saves power. As shown in FIG. 19, the OLT 1b receives data addressed to the ONU # 2 in the first bandwidth update cycle and the second bandwidth update cycle, but in the second bandwidth update cycle, the non-low delay class data is received. Without transmission, both the non-low delay class and the low delay class are transmitted in the third bandwidth update period.
- the delay class is classified into two, but may be classified into three or more. For example, based on the delay class, data is classified into three, A, B, and C. A is transmitted in the same manner as in the first embodiment, B is transmitted together every three band update periods, and C is transmitted. The frequency of transmission is changed based on the delay class, such as transmitting in batches every five band update periods.
- the data is classified based on the delay class for each ONU, but the data of all ONUs may be classified based on the delay class without being distinguished for each destination.
- low-delay data is transmitted in the same manner as in the first embodiment, and for non-low-delay data, data received at one or more bandwidth update cycles are collected together in one bandwidth update cycle regardless of the ONU destination. To send in.
- the data addressed to each ONU is classified for each delay class and stored in the buffer 10b, and the transmission timing determination unit 14b of the OLT 1b determines the downlink frame based on the downlink buffer amount for each ONU.
- the transmission timing determination unit 14b of the OLT 1b determines the downlink frame based on the downlink buffer amount for each ONU.
- the subscriber-side device makes a bandwidth request based on the buffer amount in the Report frame.
- the bandwidth request based on the buffer amount is not essential, and the present invention is not limited to this. Therefore, as long as the bandwidth request can be made, the subscriber side apparatus may transmit any information to the station side apparatus.
- the example of the time division multiplexing PON system has been described.
- the data transfer band of the downlink data is notified in advance as a band allocation result, and the subscriber side apparatus is based on the band allocation result.
- the configuration can be applied to a communication system other than time division multiplexing as long as the configuration can shift to the power saving state.
- the present invention can be applied to a point-to-multipoint communication system using wavelength division multiplexing, code division multiplexing, or the like.
- the present invention is not limited to optical communication but can be applied to a wired or wireless communication system.
- the subscriber side apparatus intermittently controls the power receiving state of the receiver that receives the electric signal based on the band allocation result, not the optical receiver, and more efficiently saves power. Can do.
- the PON system, the subscriber-side device, the station-side device, and the communication method according to the present invention are useful for a PON system that saves power, and in particular, saves power without reducing the bandwidth. Suitable for PON system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
Abstract
ONU2と、OLT1と、を備えるPONシステムであって、OLT1は、下りデータを格納するためのバッファ10と、帯域更新周期ごとに、下りデータのデータ転送期間を決定する送信タイミング決定部14と、データ転送期間をGATEフレームに付加して送信するPON制御部19と、を備え、ONU2は、OLT1から受信した下りデータに対して所定の受信処理を行う光受信器27およびフレーム分離部28と、GATEフレームに含まれるデータ転送期間に基づいて、光受信器27およびフレーム分離部28を省電力状態または通常状態へ移行させる受信タイミング指示部29と、を備える。
Description
本発明は、OLT(Optical Line Terminal:局側装置)とONU(Optical Network Unit:加入者側装置)とで構成されるPON(Passive Optical Network)システムに関する。
局とユーザ宅を接続するアクセス網として、FTTH(Fiber To The Home)の1方式であるPONシステムが、その高速性と経済性の点から急速に普及している。PONシステムでは、局側装置(OLT)が、複数の光ファイバに信号出力を分岐させる光スプリッタを介して、複数の加入者側装置(ONU)と接続している。また、ONUには、たとえばLANケーブルを介し、TE(Terminal Equipment)が接続される。TEには、HGW(Home Gate Way)、VoIP-TA(Voice over Internet Protocol-Terminal Adapter)、PC(Personal Computer)等が該当する。
ユーザ宅内に設置されたONUでは、光電話等のリアルタイム性が必要とされるサービスに対応するため、データ通信を行わない待機時にも常にOLTやTEとリンクを確立する。したがって、ONUの消費電力が大きくなるという問題点があった。
この問題を解決するために、下記非特許文献1では新しいプロトコルおよびOAM(Operation Administration and Maintenance)メッセージを定義して、ONUからスリープモードへ移行するリクエストを送信し、OLTが、リクエストに基づいてONUに対してスリープモードで動作することを許可する。このようにして、下記非特許文献1に記載の方法では、通信がない場合にONUが不要な電力を消費することを抑えている。
また、下記特許文献1では、災害等の緊急に、停電になりONUがバッテリ駆動となった場合にも、ライフラインを確保するためにONUを省電力で動作させる方法が開示されている。
また、下記特許文献2では、ONUが、下り方向(ユーザ機器への方向)の通信を監視してユーザ機器の受信状況に基づいて電力消費を低減する方法が開示されている。また、下記特許文献3では、PONシステムのONUが、論理リンク、物理リンクの状態を監視し、論理リンク、物理リンクが切断されている状態では、搭載回路を低消費電力モードに移行させるよう制御する方法が開示されている。
ITU-T(International Telecommunication Union Telecommunication Standardization Sector)標準化寄書 SG15Q2 Intended type of document(R-C-TD):GR-4,"ONU power-save annex",PMC-Sierra,April 2008
しかしながら、上記非特許文献1に記載の方法では、ONUは通常モード(送受信可能な状態)かスリープモードのいずれかの状態しか定義しておらず、上り通信(ONUからOLTへの方向)と下り通信(OLTからONUの方向)の区別をしていない。そのため、たとえば、上り通信がある場合には下り通信用回路も動作させる必要があり、逆に下り通信がある場合には上り通信用回路を動作させる必要がある。そのため、ONUの省電力効率が低い、という問題があった。
また、上記非特許文献1に記載の方法では、OLTとONUの間でスリープ制御をするためのハンドシェイク用の専用のOAMフレームを用いる。そのため、スリープ制御のために余分に通信帯域を使う、という問題があった。
また、上記特許文献1に記載の方法では、電話のような最低限必要な通信に係る処理のみを機能させ、帯域更新周期を伸ばし装置制御用の通信をなるべく行わないようにしている。そのため、通常の通信を行っている際の低消費電力化については開示されていない。
また、上記特許文献2の方法では、下りのマルチキャストフレームに注目し、マルチキャストフレームの非通信時にマルチキャスト用回路を省電力化する。そのため、ユニキャストフレーム時には省電力化できず、また、マルチキャストフレームの通信が継続した場合には低消費電力化を実現する事ができない、という問題点があった。
また、上記特許文献3の方法では、リンク断の発生を低消費電力モードへの遷移トリガとしているため、リンクを維持して通信を継続しながら低消費電力にすることができない、という問題点があった。
本発明は、上記に鑑みてなされたものであって、省電力化の効率を向上させることができるPONシステム、加入者側装置、局側装置および通信方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、複数の加入者側装置と、各加入者側装置に対して上り通信の帯域を割当て、多重通信を行う局側装置と、を備えるPON(Passive Optical Network)システムであって、前記局側装置は、次回以降の帯域更新周期における一部の期間を下りデータのデータ転送期間として特定し、前記下りデータの転送前に帯域割当て結果として前記加入者側装置へ通知するPON制御手段を備え、前記加入者側装置は、前記局側装置から送信された前記下りデータを受信する受信手段と、前記帯域割当結果に含まれる前記データ転送期間に基づいて、前記受信手段を省電力状態または通常状態へ移行させる状態制御手段と、を備える、ことを特徴とする。
本発明にかかるPONシステムは、省電力化の効率を向上させることができるという効果を奏する。
以下に、本発明にかかるPONシステム、加入者側装置、局側装置および通信方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明にかかるPONシステムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態のPONシステムは、OLT1と、スプリッタ3経由でOLT1と接続するONU2と、で構成される。また、OLT1は上位装置4と接続し、ONU2は下位装置5と接続する。なお、図1では、ONU2を1台のみ記載しているが、スプリッタ3を経由してOLT1に接続するONU2の台数は1台以上の何台でもよい。
図1は、本発明にかかるPONシステムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態のPONシステムは、OLT1と、スプリッタ3経由でOLT1と接続するONU2と、で構成される。また、OLT1は上位装置4と接続し、ONU2は下位装置5と接続する。なお、図1では、ONU2を1台のみ記載しているが、スプリッタ3を経由してOLT1に接続するONU2の台数は1台以上の何台でもよい。
OLT1は、バッファ10,書き込み制御部11,バッファ管理部12,読み出し制御部13,送信タイミング決定部14,フレーム多重部15,光送信器16,光受信器17,フレーム分離部18,PON制御部19で構成される。
バッファ10は、上位装置4から受信するONU2宛ての下りデータを一時的に蓄積するためのバッファである。書き込み制御部11は、バッファ10へのデータの書き込みを制御し、読み出し制御部13は、バッファ10に蓄積されているデータの読み出しを制御する。バッファ管理部12は、書き込み制御部11の書き込み情報および読み出し制御部13の読み出し情報に基づいて、バッファ10へ蓄積されているデータ量を管理する。
フレーム多重部15は、読み出し制御部13がバッファ10から読みだした下りデータを格納したユーザフレームを生成し、生成したユーザフレームと制御フレームとを多重する。光送信器16は、電気信号である多重後のフレームを光信号に変換して、スプリッタ3経由でONU2へ送信する。また、送信タイミング決定部14は、バッファ管理部12から通知されるバッファ10へ蓄積されているデータ量(下りバッファ量)に基づいて下りデータの送信タイミングを決定し、決定した送信タイミングをPON制御部19へ通知する。
PON制御部(PON controller)19は、ONU2から受信した制御フレームに基づいて所定の処理を行うとともにONU2に送信する制御フレームを生成し、また、ONU2に対して上りデータの帯域(送信時間帯)を割当てる。
光受信器17は、ONU2から受信した光信号を電気信号へ変換してフレーム分離部18へ出力する。フレーム分離部18は、光受信器17から受け取った電気信号を制御フレームとユーザフレームに分離し、制御フレームをPON制御部19へ出力し、ユーザフレームを上位装置4へ送信する。
ONU2は、バッファ20,書き込み制御部21,バッファ管理部22,読み出し制御部23,フレーム多重部24,光送信器25,PON制御部26,光受信器27,フレーム分離部28,受信タイミング指示部29で構成される。
バッファ20は、下位装置5から受信した上りデータ(OLT1へ送信するデータ)を一時的に蓄積するバッファである。書き込み制御部21は、バッファ20へのデータの書き込みを制御し、読み出し制御部23は、バッファ20に蓄積されているデータの読み出しを制御する。バッファ管理部22は、書き込み制御部21の書き込み情報および読み出し制御部23の読み出し情報に基づいて、バッファ20へ蓄積されているデータ量を管理する。
フレーム多重部24は、読み出し制御部23がバッファ20から読みだした上りデータを格納したユーザフレームを生成し、生成したユーザフレームと制御フレームとを多重する。光送信器25は、電気信号である多重後のフレームを光信号に変換して、スプリッタ3経由でOLT1へ送信する。
光受信器27は、OLT1から受信した光信号を電気信号へ変換してフレーム分離部28へ出力する。フレーム分離部28は、光受信器27から受け取った電気信号を制御フレームとユーザフレームに分離し、制御フレームをPON制御部26へ出力し、ユーザフレームを下位装置5へ送信する。なお、フレーム分離部28は、OLT1から送信される帯域割当結果を通知するための制御フレームであるGATEフレームについては、受信タイミング指示部29にも出力する。なお、本実施の形態では、後述のように、GATEフレームには、従来と同様のONU2からの上りデータの送信に対する帯域割当結果だけでなく、下り送信情報として、OLT1からONU2へ下りデータが送信される時間帯の情報が格納されている。
PON制御部26は、OLT1から受信した制御フレームに基づいて所定の処理を行うとともにOLT1に送信する制御フレームを生成する。また、PON制御部26は、バッファ管理部22から通知されるバッファ20に蓄積しているデータ量(上りバッファ量)に基づいて、上りバッファ量を通知して帯域割当を要求する制御フレームであるReportフレームを生成する。
また、受信タイミング指示部(状態制御手段)29は、OLT1から送信されるGATEフレームに基づいて、自装置がOLT1からの光信号を受信する受信時間帯を求め、求めた受信時間帯で受信可能な状態となるよう光受信器27およびフレーム分離部28を活性化させる。なお、一般に光受信器27等は活性化させてから実際に受信可能となるまで所定の準備期間が必要となるため、受信タイミング指示部29は、光受信器27等を受信時間帯の開始時刻に対して所定の準備時間分だけ前に活性化させる。また、受信タイミング指示部29は、受信時間帯が終了すると、光受信器27およびフレーム分離部28を省電力化(下り方向の省電力化)した状態である省電力モードへ移行させる。光受信器27およびフレーム分離部28の省電力化の方法については、どのような方法を用いてもよいが、パワーゲーティング、クロックゲーティング等の手法を用いて省電力化を行う。
また、PON制御部26は、GATEフレームで通知される割当結果(上りデータ送信に対する)に基づいて、上り送信を行わない時間帯では上り送信に必要な構成部(光送信器25、フレーム多重部24および読み出し制御部23等)を省電力化(上り方向省電力化)する。なお、本実施の形態では、上り方向の省電力化と上述の下り方向の省電力化(光受信器27、フレーム分離部28の省電力化)の両方を実施するようにしたが、下り方向の省電力化のみを行うようにしてもよい。また、省電力化させる構成要素は、上記の構成要素全てでなくてもよく、上記の構成要素のうちの1つ以上としてもよいし、他の関連する構成要素を省電力化させるようにしてもよい。
また、OLT1でも、PON制御部19が、ONU2に上りデータの送信時間帯として割当てていない時間帯についてはフレーム多重部15および光送信器16を省電力化する。また、ONU2に光信号を送信しない時間帯については、送信タイミング決定部14が、光送信器16、フレーム多重部15および読み出し制御部13を省電力化する。なお、送信タイミング決定部14が、光送信器16、フレーム多重部15および読み出し制御部13の省電力化の制御はPON制御部19が行ってもよい。なお、ここでは、このようなOLT1の省電力化を行うようにしたが、OLT1の省電力化は実施しなくてもよいし、また、下り方向または上り方向のいずれか一方のみの省電力を実施するようにしてもよい。また、省電力化させる構成要素は、上記の構成要素全てでなくてもよく、上記の構成要素のうちの1つ以上としてもよいし、他の関連する構成要素を省電力化させるようにしてもよい。
つぎに、本実施の形態の動作を説明する。図2は、本実施の形態の帯域更新周期内の動作の一例を示す図である。PONシステムでは、あらかじめ定めた帯域更新周期を単位として、帯域割当を行う。図2に示すように、帯域更新周期は、データ転送期間と次周期動作決定期間に分けることができる。次周期動作決定期間では、OLT1は、ONU2ごとに割当てた次の帯域更新周期で上りデータの送信開始時刻と送信継続時間(=送信データ量)が格納されたGATEフレームを送信する。
ONU2は、帯域更新周期では、OLT1から受信した自装置に対するGATEフレームを受信するとともに、OLT1に対して自装置の上りバッファ量を格納したReportフレームを送信する。なお、送信開始時刻はたとえば、MPCP(Multi Point Control Protocol)で規定されているOLT1とONU2間で同期するために用いられるPONクロックを用いたタイムスタンプと呼ばれる時刻を用いる。また、送信継続時間は、たとえば、MPCPの処理単位であるTQ(Time Quanta)を利用する。送信継続時間は送信データ量として格納されているが、回線速度に基づいて送信データ量を送信継続時間に変換することができる。
OLT1は、1つ前の帯域更新周期で受信したReportフレームに含まれる上りバッファ量に基づいて、次の帯域更新周期のデータ転送期間内での各ONUへの帯域割当(送信開始時刻および送信継続時間の割当)を行うとともに、次の帯域更新周期のデータ転送期間内での自装置から各ONUへの下りデータの送信時間を割当てる。そして、次周期動作決定期間で帯域割当結果を各ONUへGATEフレームを用いて通知する。
データ転送期間では、ONU2は、1つ前の帯域更新周期で受信したGATEフレームで指定された送信開始時刻と送信継続時間に基づいて、OLT1へ上りデータを送信する。また、OLT1は、データ転送期間では、1つ前の帯域更新周期で割当てた下りデータの送信時間に基づいて自装置から各ONUへの下りデータを送信する。ここまでの各帯域更新周期の動作は、通常のPONシステムと同様である。
本実施の形態では、上りデータの送信開始時刻および送信継続時間を通知するGATEフレームに、OLT1が下りフレーム(下りデータのユーザフレーム)を送信する転送期間(送信開始時間および送信継続時間)を付加する。なお、本実施の形態では、1つの帯域更新周期(データ転送期間)内で、最初の下りフレームを送信してから最後の下りフレームを送信するまでを送信継続時間とする。なお、送信継続時間はデータ量で通知するため、1つの帯域更新周期で送信する総データ量を通知することになる。また、さらに、このGATEフレームに、次にOLT1がGATEフレームを送信する時刻を付加する。
図3は、本実施の形態のGATEフレームの構成例を示す図である。図3に示すように、本実施の形態のGATEフレームは、宛先、フレーム種別および時間等を含むヘッダ情報と、上り送信情報と、下り送信情報と、で構成される。上り送信情報は、従来と同様に、OLT1がONU2に割当てた上りデータの送信開始時刻および送信継続時間を含む。下り送信情報は、データ転送期間情報と動作決定期間情報の2種類に分かれている。データ転送期間情報は、次の帯域更新周期でOLT1がそのONU2に対して下りデータを送信する送信開始時刻および送信継続時間を含む。また、動作決定期間情報は、次にOLT1がGATEフレームを送信する(帯域割当を実施する)時間帯に関する情報であり、GATEフレームの送信開始時刻および送信継続時間(GATEフレームの長さ:GATE長)を含む。
ONU2では、図3で例示したGATEフレームを受信すると、下りデータを受信すべき時間帯を把握することができる。したがって、上述のように、受信タイミング指示部29が、このGATEフレームに格納された下り送信情報のデータ転送期間情報に基づいて受信時間帯を決定し、受信時間帯で受信が可能となるように下り受信に関する各部(光受信器27およびフレーム分離部28:以下、下り受信部という)を省電力化または活性化することができる。
また、ONU2はGATEフレームの受信のために、下り受信部を活性化させる必要がある。本実施の形態では、OLT1が下りデータをあらかじめ定めた送信期間内にバースト送信する。そして、OLT1が下り送信情報の動作決定期間情報として、下りデータのバースト送信を行う時間帯を通知することにより、ONU2では、次にGATEフレームを受信すべき時刻を把握することができる。したがってONU2は、下り送信情報のデータ転送期間情報に格納されている時間帯以外の時間帯で、かつGATEフレームを受信すべき時刻以外の時間帯では、下り受信部を省電力化することができる。また、同様にOLT1でも、下りデータを送信せず、かつGATEフレームも送信しない時間帯では、下りデータの送信に関する各部(光送信器16、フレーム多重部15、読み出し制御部13等)を省電力化することができる。
なお、上りデータについては、PONシステムでは従来からバースト送信を行っており、ONU2では、GATEフレームに含まれる上り送信情報に基づいて、上り送信に関する各部(光送信器25、フレーム多重部24、読み出し制御部23等)を省電力化することができる。
つぎに、本実施の形態の詳細動作について説明する。図4は、本実施の形態のPONシステムの省電力制御動作の一例を示すフローチャートである。図4に基づいて、まず、OLT1の動作を説明する。OLT1では、送信タイミング決定部14が、現在の時刻が動作決定時刻であるか否かを判断し(ステップS1)、動作決定時刻でない場合(ステップS1 No)には、ステップS1を繰り返す。
なお、動作決定時刻は、次に動作決定を行う時刻であり、PON制御部19がGATEフレームの送信時に決定して、送信タイミング決定部14へ通知しておくこととする。また、動作決定時刻は、たとえば、帯域更新周期ごとにGATEフレームを送信する場合には、帯域更新周期ごとに設定されることになる。OLT1は、図3で例示したようにGATEフレームで下り送信情報として動作決定期間情報を送信するが、動作決定時刻は、この動作決定期間情報で送信開始時刻および送信継続時間を通知されるGATEフレームに格納される情報を求める処理(帯域更新処理)を開始する時刻である。動作決定期間情報の送信開始時刻は、動作決定時刻から帯域更新処理の処理時間を考慮した分後の時刻として設定する。
現在の時刻が動作決定時刻である場合(ステップS1 Yes)には、送信タイミング決定部14は、バッファ管理部12から下りバッファ量(バッファ10に蓄積されている全フレーム蓄積量)を受理する(ステップS2)。そして、送信タイミング決定部14は、下りバッファ量に基づいて、ONU2に対する下りデータの送信開始時刻および送信データ量(送信継続時間に対応)を決定する(ステップS3)。なお、決定した下りデータの送信開始時刻および送信データ量は保持しておくこととする。
つぎに、送信タイミング決定部14は、動作決定期間送信時刻(ONU2に送信したGATEフレームの動作決定期間情報の送信開始時刻)に至ったか否かを判断し(ステップS4)、動作決定期間送信時刻になっていない場合(ステップS4 No)は、ステップS4を繰り返す。
動作決定期間送信時刻になった場合は、送信タイミング決定部14は、送信ブロック(下り送信部)を活性化し、下り送信が可能な状態へ移行させる(ステップS5)。そして、PON制御部19へ、ステップS3で決定した下りデータの送信開始時刻および送信データ量をPON制御部19へ通知し、PON制御部19が、ONUの上り送信への割当結果を格納したGATEフレームに、通知された送信開始時刻および送信データ量を、下り送信情報のデータ転送期間情報として付加する。この際、PON制御部19は、次の動作決定時間も決定し、その動作決定時間に対応する動作決定期間情報を求めて、GATEフレームにさらに付加し、データ転送期間情報および動作決定期間情報を付加後のGATEフレームをフレーム多重部15および光送信器16経由でONU2へ送信する(ステップS6)。
PON制御部19は、ステップS6のGATEフレームの送信を終了すると、送信タイミング決定部14へ送信ブロックを省電力化するよう指示し、送信タイミング決定部14はその通知を受けると送信ブロックを省電力化する(ステップS7)。
つぎに、送信タイミング決定部14は、現在の帯域更新周期のデータ転送期間内に、送信する下りデータ(ユーザデータ)があるか否かを判断し(ステップS8)、ユーザデータがない場合(ステップS8 No)には、ステップS1に戻る。
現在の帯域更新周期のデータ転送期間内に、送信する下りデータ(ユーザデータ)がある場合(ステップS8 Yes)は、データ転送期間の送信開始時間(下りデータの送信開始時刻)になったか否かを判断し(ステップS9)、下りデータの送信開始時刻になっていない場合(ステップS9 No)には、ステップS9を繰り返す。
下りデータの送信開始時刻になった場合(ステップS9 Yes)には、送信ブロックを活性化し、下り送信が可能な状態へ移行させる(ステップS10)。そして、送信タイミング決定部14は、下りデータの送信開始時刻およびデータ量に基づいて読み出し制御部13に対して、データの読み出しを指示し、読み出し制御部13は指示に基づいてバッファ10からデータを読み出してフレーム多重部15へ出力する(ステップS11)。
フレーム多重部15は、読み出し制御部13から受け取ったデータを格納したユーザフレームを生成し、光送信器16経由でONU2へ送信する(ステップS12)。なお、フレーム多重部15は、PON制御部19から出力された制御フレームがある場合には、制御フレームとユーザフレームを多重した後にONU2へ送信する。
送信タイミング決定部14は、保持している下りデータの送信開始時刻およびデータ量に基づいて、その帯域更新周期内で続いて下りデータの送信が予定されているか否かを判断し(ステップS13)、送信予定がある場合(ステップS13 Yes)には、ステップS11に戻る。送信予定が無い場合(ステップS13 No)は、送信ブロックの省電力化を行い(ステップS14)、ステップS1に戻る。
つぎにONU2の詳細動作を説明する。ONU2では、受信タイミング指示部29は、GATEフレームによりOLT1から通知された動作周期決定期間情報の送信開始時刻に基づいて求めたGATEフレームの受信時間になったか否かを判断し(ステップS21)、動作決定期間受信時刻になった場合(ステップS21 Yes)には、GATEフレームを受信するために、受信ブロック(下り受信部)を活性化させる(ステップS22)。動作決定期間受信時刻になっていない場合(ステップS21 No)には、ステップS21を繰り返す。
ステップS22の後、受信タイミング指示部29は、OLT1からGATEフレームを受信すると(ステップS23)、受信ブロックを省電力化する(ステップS24)。そして、受信したGATEフレームに格納されているデータ(ユーザデータ)転送期間に下りデータの送信があることを示す情報(送信継続時間が0でない情報)が有るか否かを判断し(ステップS25)、下りデータの送信があることを示す情報が無い場合(ステップS25 No)には、ステップS21に戻る。
GATEフレームに下りデータの送信があることを示す情報が有る場合(ステップS25 Yes)、受信タイミング指示部29は、GATEフレームのデータ転送期間情報の送信開始時刻に基づいて求めた下りフレームの受信時刻になったか否かを判断し(ステップS26)、データ転送期間情報の送信開始時刻になっていない場合(ステップS26 No)には、ステップS26を繰り返す。
データ転送期間情報の送信開始時刻になった場合(ステップS26 Yes)には、受信タイミング指示部29は、受信ブロックを活性化する(ステップS27)。そして、ONU2は、OLT1からユーザフレーム(下りデータ)を受信し(ステップS28)、受信終了後(送信継続時間の経過後)、受信ブロックを省電力化し(ステップS29)、ステップS21に戻る。
なお、ステップS22およびステップS27の受信ブロックの活性化は、活性化の指示をだしてから受信可能な状態となるまでに準備時間が必要な場合には、受信を予定する時刻より前に活性化の指示をだすようにする。
図5は、本実施の形態の省電力制御の一例を示す図である。図5の例では、ONU2と同様の構成を有するONU#1~#3がOLT1に接続しているとする。OLT1は、上位装置4から、ONU#1~ONU#3宛ての下りデータを受信する。OLT1は、上述のように、下りバッファ量に基づいて下りデータを格納したユーザフレームを送信する送信開始時刻および送信継続時間を決定し、決定した情報を格納したGATEフレームをONU#1~ONU#3へ送信する。また、このときのGATEフレームには、次のGATEフレームを送信開始する時刻とGATE長とを動作決定期間情報として格納して送信する。そして、OLT1は、次周期動作決定期間でONU#1宛てのGATEフレーム71,ONU2宛てのGATEフレーム72,…を送信する。
図6は、ONU#1へ送信するGATEフレーム71の内容例を示す図であり、図7は、ONU#2へ送信するGATEフレーム72の内容例を示す図である。図6に示すように、ONU#1へ送信するGATEフレーム71には、データ転送期間情報として、送信開始時刻に開始時刻#1が格納され、送信継続時間に継続時間#1が格納されているとする。また、GATEフレーム71には、動作決定期間情報として、送信開始時刻に開始時刻#2が格納され、送信継続時間にGATE長が格納されているとする。また、ONU#2へ送信するGATEフレーム72には、データ転送期間情報として、送信開始時刻に開始時刻#1が格納され、送信継続時間に継続時間#1が格納されているとする。また、GATEフレーム72には、動作決定期間情報として、送信開始時刻に開始時刻#3が格納され、送信継続時間にGATE長が格納されているとする。データ転送期間情報については、1帯域更新周期内で下りフレームを送信するトータルの期間が格納されるため、GATEフレーム71とGATEフレーム72では同一の情報となる。これに対し、動作決定期間情報については、ONUごとに送信時間帯が異なるため、GATEフレーム71とGATEフレーム72では異なる情報となる。
そして、ONU#1~ONU#3では、上述のように、GATEフレームの受信がなく、下りフレームの受信がない場合には、受信ブロックを省電力状態としている。そして、GATEフレームの受信時刻または下りフレームの受信時刻より、受信ブロックの起動のための準備期間に対応するオーバヘッド61だけ前に、受信ブロックを活性化する。また、受信終了時間(送信開始時間と送信継続時間に基づいて求めた受信終了時間)に、受信ブロックを省電力状態へ移行させる。この際、省電力の指示をだしてから、実際に省電力状態となるまでには、オーバヘッド62の期間が必要であるとする。
図5では、ONU#1~ONU#3は、図6に示した開始時刻#1よりオーバヘッド61だけ前に、受信ブロックを活性化させ、開始時刻#1から継続時間#1が経過した後、省電力化する。そして、ONU#1では、図6に示した開始時刻#2より準備期間のオーバヘッド61だけ前に、受信ブロックを活性化させ、開始時刻#2から継続時間#2が経過した後に省電力化する。また、ONU#2では、図7に示した開始時刻#3より準備期間61だけ前に、受信ブロックを活性化させ、開始時刻#3から継続時間#3が経過した後、省電力化する。
図5の例では、帯域更新周期ごとに、OLT1がGATEフレームを送信する例を示しているが、ONU#1~ONU#3から送信するデータが無く、OLT1から送信するデータも無い場合等には、次の動作決定時刻を1帯域更新周期以上先の時刻としてもよい。図8は、次の動作決定時刻を1帯域更新周期以上先の時刻とした場合の省電力制御の一例を示す図である。
図8では、図5の場合と同様に図6,図7で示したGATEフレーム71,72をそれぞれ送信するとするが、図8の例では、開始時刻#2および開始時刻#2は、GATEフレーム71,72を送信した時刻より1帯域更新周期以上先の時刻としている。したがって、図8に示すように、省電力状態を長時間継続することができ、また、オーバヘッド61,62の回数を低減することができる。このGATEフレームのための帯域割当ては、各ONU#1~ONU#3個別のデータ送受信状態に応じて、個別に行うことができる。すなわち、次回の帯域更新周期に一部のONUに対する帯域を割当て、次々回以降の帯域更新周期に異なる或いは全てのONUに対する帯域を割当てるということも可能である。
このように、本実施の形態では、OLT1が、下りユーザフレームの送信開始時刻および送信継続時間と、次のGATEフレームの送信開始時刻および送信継続時間と、を決定し、ONU2に対して上り帯域の割当を通知するGATEフレームに、決定した2種類の送信開始時刻および送信継続時間を格納して送信する。下りユーザフレームもGATEフレームのどちらもOLT1からの下り通信であるため、これら2種類の送信開始時刻および送信継続時間は、いずれも下り通信時間と考えることができる。ONU2では、上り送信部の省電力化と下り受信部の省電力化を独立に行うこととし、GATEフレームに基づいて下り通信時間以外の時間帯で、下り受信部を省電力状態とする。そのため、通常通信を継続しながら、効率良く省電力化を行うことができる。また、特別なフレームの送信を必要としないため、帯域を浪費することなく省電力化を行うことができる。
また、省電力化と活性化に移行する際のオーバヘッドの大きい構成要素がある場合にも、フレームをまとめてバースト送信するため、その省電力化/活性化の移行回数が減り総和を小さくすることが出来るので、より省電力化の効率を向上させることができる。また、ONU2の下り受信部が省電力化状態である場合にOLT1が受信した下りデータは、バッファ10に蓄積して下り通信の再開時に送信するため、フレームロスが発生しないという効果もある。
また、従来のPONシステムでは、ONUは、自身が把握している上り通信状況に基づいてスリープモードへのリクエストをOLTへ送信し、OLTからの許可を受信した後にスリープモードへ移行する。そのため、ONUがスリープモードへ移行可能な状態となってから実際にスリープモードに移行するまでに時間がかかりその分消費電力を余分に消費する。これに対し、本実施の形態では、ONU2が、GATEフレームで通知された上り通信の送信開始時間と送信継続時間に基づいて省電力状態へ移行することができるため、従来に比べ、省電力効果をさらに高めることができる。
また、従来のPONシステムでは、スリープモードのONUへ送信するデータが発生した場合、OLTは、すぐにそのデータを送信することができず、下り通信が不要に遅延する可能性がある。これに対し、本実施の形態では、下り通信と上り通信と独立に省電力化しているため、上り送信部を省電力化している状態でOLT1からONU2へ下りデータを送信することができ、通信の遅延を低減することができる。
また、従来のPONシステムでは、OLTは、下りフレームを送信する時間帯をあらかじめ決定しておらずデータ転送期間内の任意の時間帯で送信していたが、本実施の形態では、下りフレームを送信する送信時間帯をあらかじめ決定するため、下り送信部をその送信時間帯で活性化させ、送信時間帯以外のデータ転送期間で下り送信部を省電力化することができる。したがって、従来に比べ、OLT1を省電力化することができる。
なお、上述の説明では、送信継続時間をデータ量で通知するようにしたが、データ量を用いずに他の情報(時間やクロック数等)で通知するようにしても構わない。また、図3等では上り送信情報の後に下り通信情報を付加したが、上り送信情報とは別に下り送信情報を送信するようにすることも可能である。
実施の形態2.
図9は、本発明にかかるPONシステムの実施の形態2の構成例を示す図である。本実施の形態のPONシステムは、実施の形態1のPONシステムのOLT1をOLT1aに代える以外は、実施の形態1のPONシステムと同様である。実施の形態1と同一の機能を有する構成要素は、実施の形態1と同一の符号を付して説明を省略する。
図9は、本発明にかかるPONシステムの実施の形態2の構成例を示す図である。本実施の形態のPONシステムは、実施の形態1のPONシステムのOLT1をOLT1aに代える以外は、実施の形態1のPONシステムと同様である。実施の形態1と同一の機能を有する構成要素は、実施の形態1と同一の符号を付して説明を省略する。
OLT1aは、実施の形態1のOLT1のバッファ10,書き込み制御部11,バッファ管理部12,読み出し制御部13,送信タイミング決定部14をそれぞれバッファ10a,書き込み制御部11a,バッファ管理部12a,読み出し制御部13a,送信タイミング決定部14aに代える以外は実施の形態のOLT1と同様である。
本実施の形態では、バッファ10aは、ONUごとにデータを格納する領域に分かれているとし、書き込み制御部11aは、上位装置4から受信した下りデータをバッファ10aの下りデータの宛先のONUに対応する領域に格納する。すなわち、書き込み制御部11aは、宛先のONUごとに下りデータを分類する宛先分類手段としての機能を有する。また、バッファ10aは、ONUごとの領域の他にブロードキャスト用の領域も備えており、書き込み制御部11aはブロードキャストにより送信する下りデータをその領域に格納する。また、バッファ管理部12aは、領域ごとにバッファ蓄積量を管理し、読み出し制御部13aは領域ごとにバッファ11aからデータを読み出す。
そして、OLT1aの送信タイミング決定部14aは、ONUごとに下りフレームを送信する期間(送信開始時間および送信継続時間)を決定し、決定した期間を対応するONUへ通知する。実施の形態1では、1帯域更新周期内で全ONUへ送信する送信期間を一括して定めて、全ONUへ通知したが、本実施の形態では、ONUごとに、それぞれそのONU宛ての下りフレームを送信する時間を通知することになる。
つぎに、本実施の形態の動作を説明する。図10は、本実施の形態の帯域更新周期内の動作の一例を示す図である。図10に示すように、本実施の形態では、帯域更新周期内のデータ転送期間をブロードキャスト/マルチキャスト転送期間とそれ以外(各ONUへユニキャストでフレームを転送する期間)に分けているが、それ以外は実施の形態1と同様である。
次周期動作決定期間では、実施の形態1と同様に、ONU2へ上り送信の帯域割当結果を通知するGATEフレームが送信され、また、その応答としてONU2が上りバッファ量を格納したReportフレームを送信する。
本実施の形態では、OLT1aは、ブロードキャストフレームおよびマルチキャストフレームについては、図10に示したブロードキャスト/マルチキャスト転送期間に送信する。そして、各ONUへユニキャストで送信するユーザフレームは、ブロードキャストマルチキャスト転送期間以外のデータ転送期間に送信する。
図11は、本実施の形態のGATEフレームの構成例を示す図である。図11に示すように、本実施の形態のGATEフレームは、実施の形態1のGATEフレームにブロードキャスト/マルチキャスト転送期間情報を追加した構成となる。ブロードキャスト/マルチキャスト転送期間情報は、図10で示したブロードキャスト/マルチキャスト転送期間の送信開始時間および送信継続時間で構成される。ただし、本実施の形態では、データ転送期間情報は、ONUごとに異なる情報が格納されることになる。
ONU2では、このようなGATEフレームに基づいて、ブロードキャスト/マルチキャスト転送期間情報およびデータ転送期間情報(自装置宛て)に対応する時間帯で下り受信部を活性化させ、それ以外の時間帯で下り受信部を省電力化する。
図12は、本実施の形態のPONシステムの省電力制御動作の一例を示すフローチャートである。図12に基づいて、OLT1aの動作を説明する。ステップS1は、実施の形態1のステップS1と同様である。動作決定時刻になった場合(ステップS1 Yes)、送信タイミング決定部14aは、バッファ管理部12aからONUごとのバッファ蓄積量を取得し(ステップS3a)、ONUごとのバッファ蓄積量に基づいてONUごとに下りフレームの送信開始時刻および送信データ量(送信継続時間)を決定する(ステップS3a)。なお、ここでは、ブロードキャスト/マルチキャスト転送期間は、データ転送期間の最初から所定の期間として定めておくこととし、データ量に基づいたブロードキャスト/マルチキャスト転送期間の決定は行わないこととするが、これに限らず、ブロードキャスト/マルチキャストで送信するデータの蓄積量に基づいてブロードキャスト/マルチキャスト転送期間を決定するようにしてもよい。
ステップS4以降は、ステップS9,S11の代わりにそれぞれステップS9a,ステップS11aを実施する以外は、実施の形態1と同様である。ステップS9aでは、ONUごとにデータ転送期間の送信開始時間であるかを判断し、ステップS11aでは、ONUごとにバッファ10aの対応する領域からデータを読み出す。
また、ONU2の動作は、実施の形態1と同様である。ただし、受信タイミング制御部29は、GATEフレームのブロードキャスト/マルチキャスト転送期間情報を参照し、ブロードキャスト/マルチキャスト転送期間でも下り送信部を活性化する。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
図13は、本実施の形態の省電力制御の一例を示す図である。図13の例では、ONU2と同様の構成を有するONU#1~#3がOLT1aに接続しているとする。OLT1aは、上位装置4から、ONU#1~ONU#3宛ての下りデータを受信する。そして、OLT1aは、ONU#1~ONU#3へ下りフレームを送信し、次周期動作決定期間でONU#1宛てのGATEフレーム73,ONU#2宛てのGATEフレーム74,…を送信する。
図14は、ONU#1へ送信するGATEフレーム73の内容例を示す図であり、図15は、ONU#2へ送信するGATEフレーム74の内容例を示す図である。図14に示すように、ONU#1へ送信するGATEフレーム73には、動作決定期間情報として、送信開始時刻に開始時刻#4が格納され、データ転送期間情報として、送信開始時刻に開始時刻#2が格納され、送信継続時間に継続時間#2が格納され、ブロードキャスト/マルチキャスト転送期間情報として、送信開始時刻に開始時刻#1が格納され、送信継続時間に継続時間#1が格納されているとする。また、図15に示すように、GATEフレーム74には、動作決定期間情報として、送信開始時刻に開始時刻#5が格納され、データ転送期間情報として、送信開始時刻に開始時刻#3が格納され、送信継続時間に継続時間#3が格納され、ブロードキャスト/マルチキャスト転送期間情報として、送信開始時刻に開始時刻#1が格納され、送信継続時間に継続時間#1が格納されているとする。
図13に示すように、本実施の形態では、ONU#1~ONU#3は、データ転送期間(ブロードキャスト/マルチキャスト転送期間を除く)では、自装置宛ての下りフレームが送信される期間のみ下り受信部を活性化し、それ以外は下り受信部を省電力化することができる。
なお、図13の例では、GATEフレームは全ONUに帯域更新周期ごとに送信するようにしているが、送受信するデータがないONUについては1帯域更新周期以上先をGATEフレームの送信タイミングとしてもよい。図16は、ONU2に対して1帯域更新周期以上先の時刻をGATEフレームの送信タイミングとする場合の本実施の形態の省電力制御の一例を示す図である。図16では、GATEフレーム74で通知される開始時刻#5(動作決定期間情報の送信開始時間)が、図16で示した期間より後となる例を示している。
図16に示すように、ONU#2では、GATEフレームの受信期間も含めて継続して下り受信部を省電力化状態とすることができるため、より省電力化の効率を向上させることができる。
このように、本実施の形態では、OLT1aの送信タイミング決定部14aは、ONUごとの下りバッファ量に基づいて下りフレームの送信時間帯を決定し、ONUごとに定めた送信時間帯をそれぞれ対応するONUへ通知するようにした。そのため、実施の形態1と同様の効果が得られるとともに、実施の形態1に比べ、さらに省電力状態の期間を長く確保することができる。
実施の形態3.
図17は、本発明にかかるPONシステムの実施の形態3の構成例を示す図である。本実施の形態のPONシステムは、実施の形態1のPONシステムのOLT1をOLT1bに代える以外は、実施の形態1のPONシステムと同様である。実施の形態1と同一の機能を有する構成要素は、実施の形態1と同一の符号を付して説明を省略する。
図17は、本発明にかかるPONシステムの実施の形態3の構成例を示す図である。本実施の形態のPONシステムは、実施の形態1のPONシステムのOLT1をOLT1bに代える以外は、実施の形態1のPONシステムと同様である。実施の形態1と同一の機能を有する構成要素は、実施の形態1と同一の符号を付して説明を省略する。
OLT1bは、実施の形態1のOLT1のバッファ10,書き込み制御部11,バッファ管理部12,読み出し制御部13,送信タイミング決定部14をそれぞれバッファ10b,書き込み制御部11b,バッファ管理部12b,読み出し制御部13b,送信タイミング決定部14bに代える以外は実施の形態のOLT1と同様である。
実施の形態1では、OLT1aが、ONUごとの下りバッファ量に基づいて下りフレームの送信時間帯を決定したが、本実施の形態では、データを遅延クラスに基づいて送信時間帯を決定する。
本実施の形態では、書き込み制御部11bは、上位装置4から受信した下りデータを、遅延クラスに基づいて、低遅延が要求されるクラスのデータである低遅延データと、低遅延が要求されない遅延クラスのデータである非低遅延データと、に分類する。すなわち、書き込み制御部11bは、宛先のONUごとに下りデータを分類する宛先分類手段としての機能と、遅延クラスごとに下りデータを分類する遅延クラス分類手段と、の機能を有する。バッファ10bは、低遅延用と非低遅延量の領域に分かれており、さらにONUごとの領域に分かれているとする。また、実施の形態2と同様にブロードキャストのデータ用の領域も備えているとする。ここでは、バッファ10bは、図17に示すように、ONU#1用低遅延,ONU#2用低遅延,…,ONU#1用非低遅延,ONU#2用非低遅延,…,ブロードキャスト用の領域に分割されているとする。なお、ここでは、ブロードキャスト宛のデータは非低遅延であるとし、ブロードキャスト用の領域を1つとしているが、低遅延クラスのブロードキャスト宛のデータが存在する場合には、ブロードキャスト用を低遅延クラスと非低遅延クラスの2つに分けてもよい。
本実施の形態では、遅延クラスの識別を、たとえば、VLAN(Virtual Local Area Network)のCoS(Class of Service)値、TCP/IP(Transmission Control Protocol/Internet Protocol)のポート番号等を用いて行う。書き込み制御部11bは、上位装置4から受信した下りデータを、VLANのCoS値、TCP/IPのポート番号等に基づいて低遅延データと非低遅延データに分類し、さらに宛先のONUごとに分類して、バッファ10bの対応する領域へ格納する。バッファ管理部12bは、領域ごとに下りバッファ量を求め、読み出し制御部11bは、領域ごとにバッファ10bに格納されたデータを読み出すこととする。
図18は、本実施の形態のPONシステムの省電力制御動作の一例を示すフローチャートである。図18に基づいて、OLT1bの動作を説明する。ステップS1は、実施の形態1と同様である。動作決定時刻になった場合(ステップS1 Yes)、送信タイミング決定部14bは、バッファ管理部12bから遅延クラスおよびONUごとのバッファ蓄積量を取得する(ステップS2b)。そして、遅延クラスおよびONUごとのバッファ蓄積量に基づいて下り帯域割当てを行い(ステップS31)、ONUごとに下りフレームの送信開始時刻および送信データ量(送信継続時間)を決定する(ステップS3b)。
具体的には、低遅延データについては、実施の形態2と同様に下りフレームの送信開始時刻および送信データ量を決定し、非低遅延データについては、複数帯域更新周期にわたって受信したデータをまとめて送信するように下りフレームの送信開始時刻および送信データ量を決定する。その際、1つのONUに同一帯域更新周期内で低遅延データと非低遅延データの両方を送信する場合は、それらをまとめて1つの送信時間帯で送信するように送信開始時刻および送信データ量を決定する。
非低遅延データの送信タイミングについては、たとえば、非低遅延データの宛先と同一宛先のONUの低遅延クラスを送信する場合に、その低遅延クラスのデータを送信する帯域更新周期内で送信することとする。または、あるONUについて非低遅延データに対応する下りバッファ量が所定のしきい値以下の場合は、その帯域更新周期では、そのONUへ非低遅延データを送信せずバッファ10bに蓄積したままとし、そのONUの非低遅延データに対応する下りバッファ量が所定のしきい値を超えた場合に、次の帯域更新周期で非低遅延データを送信することとしてもよい。または、非低遅延データを送信する周期を、所定数の帯域更新周期ごとと定めておき、所定数の帯域更新周期ごとに、ONUごとの非低遅延データを送信するよう、送信開始時刻および送信データ量を決定するようにしてもよい。
ステップS4以降は、ステップS9,S11の代わりにそれぞれステップS9b,ステップS11bを実施する以外は、実施の形態1と同様である。ステップS9bでは、ONUごとに、低遅延データおよび非低遅延データのデータ転送期間の送信開始時間であるかを判断し、ステップS11bでは、ONUごとにバッファ10bの低遅延データまたは非低遅延データに対応する領域からデータを読み出す。
また、ONU2の動作は、実施の形態1と同様である。ただし、受信タイミング制御部29は、実施の形態2と同様に、GATEフレームのブロードキャスト/マルチキャスト転送期間情報を参照し、ブロードキャスト/マルチキャスト転送期間でも下り送信部を活性化する。なお、本実施の形態のGATEフレームの構成は実施の形態2のGATEフレームの構成と同様である。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
図19は、本実施の形態の省電力制御の一例を示す図である。図19の例では、ONU2と同様の構成を有するONU#1~#3がOLT1bに接続しているとする。OLT1bは、はじめの帯域更新周期で、上位装置4から、ONU#1,ONU#3宛ての低遅延クラスの下りデータと、ONU#2宛ての非低遅延クラスの下りデータと、非低遅延クラスのブロードキャスト宛のデータを受信する。そして、OLT1bは、次の帯域更新周期で、ONU#1,ONU#3へ低遅延クラスの下りフレームを送信し、ONU#1宛てのGATEフレーム75,ONU#2宛てのGATEフレーム76,…を送信する。また、この帯域更新周期で、OLT1bは、上位装置4からONU#2へ低遅延クラスのデータとONU#2へ非低遅延クラスのデータとを受信する。そして、3番目の帯域更新周期では、ONU#2へ低遅延クラスおよび非低遅延クラスの下りフレームを送信し、ONU#2宛てのGATEフレーム77を含むGATEフレームを送信する。
図20は、ONU#1へ送信するGATEフレーム75の内容例を示す図であり、図21は、ONU#2へ送信するGATEフレーム76の内容例を示す図である。また、図22は、ONU#2へ送信するGATEフレーム77の内容例を示す図である。
図20に示すように、ONU#1へ送信するGATEフレーム75には、動作決定期間情報として、送信開始時刻に開始時刻#3が格納され、データ転送期間情報として、送信開始時刻に開始時刻#2が格納され、送信継続時間に継続時間#2が格納され、ブロードキャスト/マルチキャスト転送期間情報として、送信開始時刻に開始時刻#1が格納され、送信継続時間に継続時間#1が格納されているとする。また、GATEフレーム76には、動作決定期間情報として、送信開始時刻に開始時刻#4が格納され、データ転送期間情報として、送信開始時刻は指定されず(ONU#2への送信は無いため)、送信継続時間は0が格納され、ブロードキャスト/マルチキャスト転送期間情報として、送信開始時刻に開始時刻#1が格納され、送信継続時間に継続時間#1が格納されているとする。
また、図22に示すように、ONU#2へ送信するGATEフレーム77には、動作決定期間情報として、送信開始時刻に開始時刻#7が格納され、データ転送期間情報として、送信開始時刻に開始時刻#5が格納され、送信継続時間に継続時間#5が格納され、ブロードキャスト/マルチキャスト転送期間情報として、送信開始時刻は指定されず(ブロードキャストデータの送信は無いため)、送信継続時間に0が格納されているとする。
この場合、図19に示すように、ONU#1では、2番目の帯域更新周期では、開始時刻#1から継続時間#1の間と、開始時刻#2から継続時間#2の間と、開始時刻#3から継続時間#3の間と、で下り受信部を活性化し、それ以外では省電力化する。また、ONU#1では、3番目の帯域更新周期では、下りフレームの受信が無いため、開始時刻#6(2番目の帯域更新周期のGATEフレームで通知された動作決定期間情報の送信開始時刻)から継続時間#6(2番目の帯域更新周期のGATEフレームで通知された動作決定期間情報の送信継続時間)の間で下り受信部を活性化し、それ以外では省電力化する。
また、ONU#2では、2番目の帯域更新周期では、開始時刻#1から継続時間#1の間と、開始時刻#4から継続時間#4の間と、で下り受信部を活性化し、それ以外では省電力化する。また、ONU#2では、3番目の帯域更新周期では、開始時刻#5から継続時間#5の間と、開始時刻#7から継続時間#7の間と、で下り受信部を活性化し、それ以外では省電力化する。図19に示すように、OLT1bは、ONU#2宛てのデータをはじめの帯域更新周期および2番目の帯域更新周期で受信しているが、2番目の帯域更新周期では非低遅延クラスのデータを送信せず、3番目の帯域更新周期で非低遅延クラスと低遅延クラスの両方を送信している。
なお、本実施の形態では、遅延クラスを2つに分類しているが、3つ以上に分類してもよい。たとえば、遅延クラスに基づいてデータをA,B,Cの3つに分類し、Aについては実施の形態1と同様に送信し、Bについては3帯域更新周期ごとにまとめて送信し、Cについては5帯域更新周期ごとにまとめて送信する等のように、遅延クラスに基づいて送信する頻度を変えるようにする。
なお、本実施の形態では、ONUごとに遅延クラスに基づいてデータを分類したが、宛先ごとに区別せず全ONUのデータを、遅延クラスに基づいて分類してもよい。この場合、低遅延データについては実施の形態1と同様に送信し、非低遅延データについては、ONUの宛先によらず、1以上の帯域更新周期で受信したデータをまとめて1つの帯域更新周期で送信するようにする。
このように、本実施の形態では、各ONU宛のデータを遅延クラスごとに分類してバッファ10bに格納し、OLT1bの送信タイミング決定部14bは、ONUごとの下りバッファ量に基づいて下りフレームの送信時間帯を決定する際に、遅延を許容する非低遅延データについては、送信を待機し、複数帯域更新周期内に受信した非低遅延データをまとめて1つの帯域更新周期内で送信するようにした。そのため、実施の形態2と同様の効果が得られるとともに、さらに省電力状態の期間を長く確保することができる。
また、上述の実施の形態では、加入者側装置がReportフレームでバッファ量に基づく帯域要求を行ったが、バッファ量に基づく帯域要求は必須ではなく本発明はこれに限定されない。従って、帯域要求を行うことができれば、加入者側装置はどのような情報を局側装置に送信してもよい。
また、上述の実施の形態では、時分割多重のPONシステムの例を説明したが、下りデータのデータ転送帯域を帯域割当て結果として事前に通知し、この帯域割当て結果に基づいて加入者側装置が省電力状態に移行できる構成であれば、時分割多重以外の通信システムにも適用可能なことはいうまでもない。例えば、波長分割多重、符号分割多重等を使用するポイントツーマルチポイント通信システムにも、本発明は適用可能である。
また、本発明は、光通信に限らず、有線若しくは無線の通信システムにも適用可能である。その際には、加入者側装置は、光受信器ではなく、帯域割当て結果に基づいて電気信号を受信する受信器を間欠的に省電力状態に制御し、より効率的に省電力を図ることができる。
以上のように、本発明にかかるPONシステム、加入者側装置、局側装置および通信方法は、省電力化を図るPONシステムに有用であり、特に、帯域を圧迫せずに省電力化を図るPONシステムに適している。
1,1a,1b OLT
2 ONU
3 スプリッタ
4 上位装置
5 下位装置
10,10a,10b,20 バッファ
11,11a,11b,21 書き込み制御部
12,12a,12b,22 バッファ管理部
13,13a,13b,23 読み出し制御部
14,14a,14b 送信タイミング決定部
15,24 フレーム多重部
16,25 光送信器
17,27 光受信器
18,28 フレーム分離部
19,26 PON制御部
29 受信タイミング指示部
2 ONU
3 スプリッタ
4 上位装置
5 下位装置
10,10a,10b,20 バッファ
11,11a,11b,21 書き込み制御部
12,12a,12b,22 バッファ管理部
13,13a,13b,23 読み出し制御部
14,14a,14b 送信タイミング決定部
15,24 フレーム多重部
16,25 光送信器
17,27 光受信器
18,28 フレーム分離部
19,26 PON制御部
29 受信タイミング指示部
Claims (15)
- 複数の加入者側装置と、各加入者側装置に対して上り通信の帯域を割当て、多重通信を行う局側装置と、を備えるPON(Passive Optical Network)システムであって、
前記局側装置は、
次回以降の帯域更新周期における一部の期間を下りデータのデータ転送期間として特定し、前記下りデータの転送前に帯域割当て結果として前記加入者側装置へ通知する制御手段を備え、
前記加入者側装置は、
前記局側装置から送信された前記下りデータを受信する受信手段と、
前記帯域割当結果に含まれる前記データ転送期間に基づいて、前記受信手段を省電力状態または通常状態へ移行させる状態制御手段と、
を備える、
ことを特徴とするPONシステム。 - 前記制御手段は、前記帯域更新周期内に前記下りデータの転送期間と前記帯域割当て結果を送信する転送期間とを割当て、
前記状態制御手段は、前記帯域割当て結果を送信する転送期間において、他の加入者側装置に割当てられた転送期間に前記受信手段を省電力状態へ移行させる、
ことを特徴とする請求項1に記載のPONシステム。 - 前記制御手段は、前記データ転送期間を複数の前記加入者側装置に共通の転送期間として割当て、この転送期間内に各加入者側装置個別の転送期間を指定せずに、前記帯域割当て結果を送信することを特徴とする請求項1又は2に記載のPONシステム。
- 前記制御手段は、複数の前記加入者側装置に異なる前記データ転送期間を指定して前記帯域割当て結果を送信することを特徴とする請求項1又は2に記載のPONシステム。
- 前記制御手段は、1つのゲートフレームを用いて送信する前記帯域割当て結果に、ユニキャスト通信用の期間情報及びマルチキャスト通信用の期間情報を指定することを特徴とする請求項1又は2に記載のPONシステム。
- 前記制御手段は、次回の帯域更新周期で特定の加入者側装置に送信する前記下りデータがない場合には、当該特定の加入者側装置に対する前記データ転送期間として次々回以降の帯域更新周期の期間を指定することを特徴とする請求項1~5のいずれか1項に記載のPONシステム。
- 前記局側装置は、自装置から前記加入者側装置へ送信する下りデータを格納するためのバッファをさらに備え、
前記局側装置の制御手段は、前記帯域更新周期ごとに下りデータの転送期間であるデータ転送期間を決定する送信タイミング決定手段と、
前記データ転送期間に基づき前記帯域割当て結果の送信を制御するPON制御手段と、 を備えることを特徴とする請求項1に記載のPONシステム。 - 前記加入者側装置は、
上り通信の送信処理を行う上り送信手段と、
前記上り通信の帯域割当結果に基づいて、前記受信手段と異なる期間で前記上り送信手段を省電力状態または通常状態へ移行させる加入者側PON制御手段と、
さらに備える、
ことを特徴とする請求項1に記載のPONシステム。 - 前記バッファに宛先の前記加入者側装置ごとに前記下りデータを格納する宛先分類手段、
をさらに備え、
送信タイミング決定手段は、前記加入者側装置ごとの前記バッファに格納されている前記下りデータの蓄積量に基づいて、前記データ転送期間を前記加入者側装置ごとに決定する、
ことを特徴とする請求項7に記載のPONシステム。 - 前記加入者側装置ごとに前記帯域割当結果の送信を行なわない帯域更新周期を含む、
ことを特徴とする請求項9に記載のPONシステム。 - 前記下りデータを遅延に対する要求に基づいて複数の遅延クラスごとに分類して、分類した前記下りデータを遅延クラスごとに前記バッファに格納する遅延クラス分類手段と、
前記送信タイミング決定手段は、低遅延が要求されていない遅延クラスの前記下りデータについては、1以上の帯域更新周期で受信した前記下りデータを1つの帯域更新周期内に送信するよう前記データ転送期間を決定する、
ことを特徴とする請求項7に記載のPONシステム。 - 前記下りデータを遅延に対する要求に基づいて複数の遅延クラスごと、かつ宛先の前記加入者ごとに分類し、遅延クラスごとかつ宛先の前記加入者ごとに前記バッファに前記下りデータを格納する遅延クラス分類手段、
をさらに備え、
前記送信タイミング決定手段は、前記加入者側装置ごとの前記バッファに格納されている前記下りデータの蓄積量に基づいて、前記データ転送期間を前記加入者側装置ごとに決定し、また、低遅延が要求されていない遅延クラスの前記下りデータについては、1以上の帯域更新周期で受信した前記下りデータを1つの帯域更新周期内に送信するよう前記データ転送期間を決定する、
ことを特徴とする請求項9または10に記載のPONシステム。 - 加入者側装置と、所定の帯域更新周期ごとに、前記加入者側装置に対して前記加入者側装置から自装置への方向の通信である上り通信の帯域を割当て、割当てた帯域を前記加入者側装置へ帯域割当結果として通知する局側装置と、を備えるPONシステムにおける前記加入者側装置であって、
前記局側装置から受信した下りデータに対して所定の受信処理を行う受信手段と、
前記局側装置から下りデータの転送期間が付加された前記帯域割当結果を受信し、前記帯域割当結果に含まれる前記データ転送期間に基づいて、前記下り受信手段を省電力状態または通常状態へ移行させる受信タイミング指示手段と、
を備える、
ことを特徴とする加入者側装置。 - 加入者側装置と、所定の帯域更新周期ごとに、前記加入者側装置に対して前記加入者側装置から自装置への方向の通信である上り通信の帯域を割当て、割当てた帯域を前記加入者側装置へ帯域割当結果として通知する局側装置と、を備えるPONシステムにおける局側装置であって、
自装置から前記加入者側装置へ送信する下りデータを格納するためのバッファと、
前記帯域更新周期ごとに、前記下りデータの転送期間であるデータ転送期間を決定する送信タイミング決定手段と、
前記データ転送期間を前記帯域割当結果に付加し、付加後の前記帯域割当結果を前記加入者側装置へ送信するPON制御手段と、
を備える、
ことを特徴とする局側装置。 - 次回以降の帯域更新周期で下りデータが転送される期間を指定した帯域割当て結果を、局側装置から加入者側装置へ送信するステップと、
前記帯域割当て結果送信後の前記帯域更新周期において、前記局側装置が前記下りデータを送信するステップと、
前記加入者側装置が受信した前記帯域割当て結果に基づいて、前記下りデータを受信する光受信器を前記帯域更新周期内の一部期間において省電力状態にするステップと、
前記加入者側装置が受信した前記帯域割当て結果に基づいて、前記帯域更新周期内の他の期間において前記光受信器を受信状態にするステップと、
を備えたことを特徴とするポイントツーマルチポイント通信システムの通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/050033 WO2011083564A1 (ja) | 2010-01-05 | 2010-01-05 | Ponシステム、加入者側装置、局側装置および通信方法 |
TW099147159A TW201145859A (en) | 2010-01-05 | 2010-12-31 | Passive optical network system, optical network unit, optical line terminal and communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/050033 WO2011083564A1 (ja) | 2010-01-05 | 2010-01-05 | Ponシステム、加入者側装置、局側装置および通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011083564A1 true WO2011083564A1 (ja) | 2011-07-14 |
Family
ID=44305308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050033 WO2011083564A1 (ja) | 2010-01-05 | 2010-01-05 | Ponシステム、加入者側装置、局側装置および通信方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201145859A (ja) |
WO (1) | WO2011083564A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011182395A (ja) * | 2010-02-18 | 2011-09-15 | Mitsubishi Electric R & D Centre Europe Bv | 光ネットワークユニットの電力消費を低減するための方法、デバイス、及びシステム並びにコンピュータープログラム |
JP2013030954A (ja) * | 2011-07-28 | 2013-02-07 | Sumitomo Electric Ind Ltd | 通信制御方法、通信システム、局側装置および宅側装置 |
JP2013106066A (ja) * | 2011-11-10 | 2013-05-30 | Sumitomo Electric Ind Ltd | 光通信システム、光通信システムの制御方法および宅側装置 |
JP2014007707A (ja) * | 2012-06-27 | 2014-01-16 | Nippon Telegr & Teleph Corp <Ntt> | 加入者側光通信装置の省電力方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007089027A (ja) * | 2005-09-26 | 2007-04-05 | Mitsubishi Electric Corp | 光ネットワーク装置 |
JP2007274534A (ja) * | 2006-03-31 | 2007-10-18 | Nec Access Technica Ltd | 光通信システム |
JP2008113193A (ja) * | 2006-10-30 | 2008-05-15 | Mitsubishi Electric Corp | 加入者側装置及びその消費電力制御システム |
JP2009267496A (ja) * | 2008-04-22 | 2009-11-12 | Nakayo Telecommun Inc | 光終端装置およびデータ中継方法 |
-
2010
- 2010-01-05 WO PCT/JP2010/050033 patent/WO2011083564A1/ja active Application Filing
- 2010-12-31 TW TW099147159A patent/TW201145859A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007089027A (ja) * | 2005-09-26 | 2007-04-05 | Mitsubishi Electric Corp | 光ネットワーク装置 |
JP2007274534A (ja) * | 2006-03-31 | 2007-10-18 | Nec Access Technica Ltd | 光通信システム |
JP2008113193A (ja) * | 2006-10-30 | 2008-05-15 | Mitsubishi Electric Corp | 加入者側装置及びその消費電力制御システム |
JP2009267496A (ja) * | 2008-04-22 | 2009-11-12 | Nakayo Telecommun Inc | 光終端装置およびデータ中継方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011182395A (ja) * | 2010-02-18 | 2011-09-15 | Mitsubishi Electric R & D Centre Europe Bv | 光ネットワークユニットの電力消費を低減するための方法、デバイス、及びシステム並びにコンピュータープログラム |
JP2013030954A (ja) * | 2011-07-28 | 2013-02-07 | Sumitomo Electric Ind Ltd | 通信制御方法、通信システム、局側装置および宅側装置 |
JP2013106066A (ja) * | 2011-11-10 | 2013-05-30 | Sumitomo Electric Ind Ltd | 光通信システム、光通信システムの制御方法および宅側装置 |
JP2014007707A (ja) * | 2012-06-27 | 2014-01-16 | Nippon Telegr & Teleph Corp <Ntt> | 加入者側光通信装置の省電力方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201145859A (en) | 2011-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8958699B2 (en) | ONU with wireless connectivity capability | |
JP5463165B2 (ja) | 省電力化可能なponシステムにおける、onuのスリープ状態からの復旧方法 | |
JP5084953B2 (ja) | 光終端局装置およびponシステム | |
WO2014050898A1 (ja) | 光無線アクセスシステム | |
JP5878991B2 (ja) | 光無線アクセスシステム | |
JP5790097B2 (ja) | 加入者側端末装置及び加入者側端末装置の消費電力制御方法 | |
EP2737645A1 (en) | Energy efficient dynamic bandwidth allocation for optical networks | |
WO2011083564A1 (ja) | Ponシステム、加入者側装置、局側装置および通信方法 | |
CN105282048B (zh) | 业务通道管理方法、装置及光传输设备 | |
US9762401B2 (en) | Method and apparatus for managing data transmission in a communication network | |
JP5718258B2 (ja) | 加入者側通信装置、加入者側ゲートウェイ装置及び宅内通信システム | |
JP2007049376A (ja) | 光加入者線端局装置、光加入者線終端装置および下り帯域制御方法 | |
JP5365874B2 (ja) | Pon光通信システム、局側装置及び消費電力制御方法 | |
JP2012049739A (ja) | Onu、光通信システム及びonuの休止方法 | |
JP2011135501A (ja) | 通信システム、親局装置および子局装置 | |
WO2012049703A1 (ja) | 局側装置 | |
JP2014120883A (ja) | 子局装置、親局装置、光通信システムおよび帯域制御方法 | |
JP2004153539A (ja) | 通信システムおよび子局装置 | |
US8873959B2 (en) | 802.3av compliant method using small timescale bandwidth assignment for increased ONU downstream energy efficiency | |
JP5994689B2 (ja) | 電力制御装置、電力制御プログラム及び通信装置 | |
JP2015073181A (ja) | 受動光網システム | |
JP2013026774A (ja) | 通信制御方法、通信システム、局側装置および宅側装置 | |
JP2013106204A (ja) | 局側装置および通信制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10842082 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10842082 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |