WO2011081076A1 - 電動パワーステアリング装置 - Google Patents
電動パワーステアリング装置 Download PDFInfo
- Publication number
- WO2011081076A1 WO2011081076A1 PCT/JP2010/073203 JP2010073203W WO2011081076A1 WO 2011081076 A1 WO2011081076 A1 WO 2011081076A1 JP 2010073203 W JP2010073203 W JP 2010073203W WO 2011081076 A1 WO2011081076 A1 WO 2011081076A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- housing
- output shaft
- shaft
- holding portion
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0403—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0409—Electric motor acting on the steering column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/16—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/22—Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears
- F16H55/24—Special devices for taking up backlash
Definitions
- the present invention relates to an electric power steering apparatus.
- the electric power steering device of Patent Document 1 includes a pair of bearings that support the lower end of the output shaft and an eccentric bearing holder that supports the pair of bearings at a lower position in the axial direction of the worm wheel.
- the center distance is increased or decreased by rotating the eccentric bearing holder and moving the lower end of the output shaft and the worm wheel in the radial direction.
- the electric power steering device of Patent Document 2 has been proposed.
- the electric power steering device of Patent Document 2 includes a worm shaft side housing that supports a worm shaft and a motor, and first and second housings that sandwich the worm shaft side housing vertically in the axial direction of the worm wheel. At least one of the first and second housings supports the worm wheel.
- the electric power steering apparatus of Patent Document 2 moves the worm shaft side housing relative to the first and second housings, thereby adjusting the center distance between the worm shaft and the worm wheel.
- An adjustment mechanism is provided. Specifically, the backlash adjusting mechanism rotates the cam shaft having the eccentric cam in the insertion hole through which the worm shaft side housing and the first and second housings are inserted in parallel with the worm wheel axis direction.
- Patent Document 1 the output characteristics of a torque sensor for detecting a steering torque, which is usually arranged above the worm wheel in the axial direction, is affected by the eccentricity. As a result, the assist characteristics are affected, and the steering feeling may be deteriorated.
- Patent Document 2 since the cam shaft through which the three housings are inserted is provided, the structure becomes complicated. In addition, it is necessary to improve the combination accuracy of multiple parts including the camshaft, which increases the manufacturing cost.
- the bearing that supports the output shaft that rotates together with the worm wheel cannot be disposed in the worm shaft-side housing, the bearing is disposed in the second housing below. Therefore, since the distance between the bearing and the worm wheel is large, the support accuracy of the worm wheel is deteriorated. For this reason, tooth contact worsens, As a result, an operation sound becomes loud or durability worsens.
- the present invention has been made based on such a background, and an object thereof is to provide an electric power steering device with low noise, good steering feeling and excellent durability.
- the present invention provides a steering shaft including an input shaft connected to a steering member, an output shaft connected to a steering mechanism, and a torsion bar connecting the input shaft and the output shaft, and the steering shaft.
- a torque sensor for detecting a steering torque loaded on the motor, an electric motor controlled based on the output of the torque sensor, a driving member and a driven member, and reducing the output rotation of the electric motor to the output shaft.
- a transmission mechanism for transmitting; a first bearing for rotatably supporting the output shaft; a first housing for supporting the first bearing; a second housing for rotatably supporting the drive member;
- the driven member is rotatable together with the output shaft, and the first housing holds a first bearing that supports the output shaft.
- the second housing Concentric with the holding portion, the second housing includes a fitting portion that fits into the eccentric fitting portion, and when adjusting a center-to-center distance between the driving member and the driven member, the second housing There is provided an electric power steering device configured such that the eccentric fitting portion of the first housing is rotated with respect to the fitting portion of the housing.
- the eccentric fitting portion when the eccentric fitting portion is rotated together with the first housing with respect to the fitting portion of the second housing, the driven member supported by the first bearing holding portion of the first housing via the output shaft.
- the center of the member and the center of the drive member supported by the second housing move relative to each other. Thereby, the distance between the centers can be adjusted, and as a result, the backlash between the driving member and the driven member can be appropriately adjusted.
- the torque sensor holding portion of the first housing is concentric with the first bearing holding portion of the first housing, the positional relationship between the torque sensor and the output shaft does not change. Therefore, there is little variation in detection performance of the torque sensor, and a good steering feeling can be obtained.
- the transmission mechanism may be a staggered shaft gear mechanism such as a worm gear mechanism including a worm shaft as a driving member and a worm wheel as a driven member.
- the transmission mechanism may be a parallel shaft gear mechanism such as a spur gear or a helical gear.
- the transmission mechanism may be a belt / pulley mechanism including a driving pulley as a driving member and a driven pulley as a driven member.
- a second bearing that rotatably supports the output shaft is provided, and the second housing includes a second bearing holding portion that holds the second bearing, and adjusts the distance between the centers.
- a gap is formed between the second bearing holding portion of the second housing and the second bearing to allow radial movement of the second bearing relative to the second housing. (Claim 2).
- the output shaft is twisted between the first bearing and the second bearing. Will not occur.
- the amount of the gap need only correspond to the adjustment of the distance between the centers, and may be a very small gap.
- An elastic body may be sandwiched between the gaps.
- the second bearing may be provided with a lock member capable of fixing the second bearing to the second bearing holding portion.
- the second bearing can be fixed to the second bearing holding portion.
- a gap for allowing the second bearing to move in the radial direction relative to the second housing may be formed between the second housing and the third housing. Item 4).
- the third housing holding the second bearing with respect to the second housing is allowed to move in the radial direction. Therefore, the first bearing and the second housing are allowed to move.
- the output shaft does not twist between the bearings. As a result, the rotational resistance of the output shaft does not increase.
- the amount of the gap need only correspond to the adjustment of the distance between the centers, and may be a very small gap.
- the first bearing may include a unique bearing that directly supports the output shaft (claim 5). In this case, it is possible to prevent the output shaft from being twisted when the center-to-center distance is adjusted.
- FIG. 1 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the relationship between the center positions of the bearing holding portion, the torque sensor holding portion, and the eccentric fitting portion in the first housing of FIG. 3 is a cross-sectional view taken along line III-III in FIG.
- FIG. 4 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to another embodiment of the present invention.
- FIG. 5 is an enlarged view of a main part of the electric power steering apparatus of FIG.
- FIG. 6 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to another embodiment of the present invention.
- FIG. 1 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the relationship between the center positions of the bearing holding portion, the torque sensor holding portion, and the eccentric fitting
- FIG. 7 is an enlarged view of a main part of the electric power steering apparatus of FIG.
- FIG. 8 is a schematic view showing the positional relationship of the centers of the bearing holding portion, the torque sensor holding portion, and the eccentric fitting portion in the first housing of FIG.
- FIG. 9 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to a reference embodiment of the present invention.
- FIG. 10 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to another reference embodiment of the present invention.
- FIG. 11 is a schematic perspective view of an attachment structure for attaching the steering column of the electric power steering apparatus to the vehicle body.
- FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering apparatus 1 as a vehicle steering apparatus according to an embodiment of the present invention.
- an electric power steering apparatus 1 includes a steering shaft 3 connected to a steering member 2 such as a steering wheel, an intermediate shaft 5 connected to the steering shaft 3 via a universal joint 4, an intermediate A pinion shaft 7 connected to the shaft 5 via a universal joint 6 and a rack 8a that meshes with the pinion 7a provided in the vicinity of the end of the pinion shaft 7 and has a steering extending in the axial direction as the left-right direction of the automobile. It has a rack shaft 8 as a shaft.
- the pinion shaft 7 and the rack shaft 8 constitute a steering mechanism A composed of a rack and pinion mechanism.
- the rack shaft 8 is supported in a housing 9 fixed to the vehicle body through a plurality of bearings (not shown) so as to be capable of linear reciprocation in the axial direction. Both end portions of the rack shaft 8 protrude to both sides of the housing 9, and tie rods 10 are coupled to the respective end portions. Each tie rod 10 is connected to a corresponding steered wheel 11 via a corresponding knuckle arm (not shown). When the steering member 2 is operated and the steering shaft 3 is rotated, this rotation is converted into a linear motion in the axial direction of the rack shaft 8 by the pinion 7a and the rack 8a. Thereby, the turning of the steered wheel 11 is achieved.
- the steering shaft 3 includes an input shaft 12 connected to the steering member 2 and an output shaft 13 connected to the intermediate shaft 5.
- the input shaft 12 and the output shaft 13 are connected via a torsion bar 14 so as to be relatively rotatable on the same axis. That is, when a steering torque of a predetermined value or more is input to the steering member 2, the input shaft 12 and the output shaft 13 rotate in the same direction while rotating relative to each other.
- the torque sensor 15 disposed around the steering shaft 3 detects the steering torque input to the steering member 2 based on the relative rotational displacement amounts of the input shaft 12 and the output shaft 13.
- the torque detection result of the torque sensor 15 and the vehicle speed detection result from the vehicle speed sensor 16 are input to an ECU 17 (Electronic Control Unit: electronic control unit) as a control device.
- ECU 17 Electronic Control Unit: electronic control unit
- the electric power steering apparatus 1 includes a steering assist mechanism B.
- the steering assist mechanism B includes an electric motor 18 for assisting steering, and a transmission mechanism 19 for transmitting the output torque of the electric motor 18 to the steering mechanism A.
- a three-phase brushless motor is used as the electric motor 18.
- the transmission mechanism 19 includes a worm gear mechanism having a worm shaft 20 as a driving member and a worm wheel 21 as a driven member that meshes with the worm 20c of the worm shaft 20.
- the worm shaft 20 is connected to the rotating shaft of the electric motor 18 through a joint so that torque can be transmitted.
- the worm wheel 21 is connected to the output shaft 13 of the steering shaft 3 so as to be able to rotate together and not to move in the axial direction.
- the worm wheel 21 When the electric motor 18 rotationally drives the worm shaft 20, the worm wheel 21 is rotationally driven by the worm shaft 20, and the worm wheel 21 and the output shaft 13 rotate together.
- the rotation of the output shaft 13 is transmitted to the pinion shaft 7 through the intermediate shaft 5.
- the rotation of the pinion shaft 7 is converted into the movement of the rack shaft 8 in the axial direction.
- the steered wheel 11 is steered. That is, when the worm shaft 20 is rotationally driven by the electric motor 18, the steered wheels 11 are steered, and the driver's steering is assisted.
- the electric motor 18 is controlled by the ECU 17.
- the ECU 17 drives and controls the electric motor 18 based on the torque detection result from the torque sensor 15 and the vehicle speed detection result from the vehicle speed sensor 16.
- a steering column 22 that rotatably supports the steering shaft 3 is fitted to the tube housing 23, a first housing 24 as an eccentric housing fitted to the lower end of the tube housing 23, and the first housing 24.
- the second housing 25 is provided.
- the tube housing 23 rotatably supports the input shaft 12 via a bearing 26 at its upper end.
- a first bearing 27 and a second bearing 28 that rotatably support the output shaft 13 are disposed on both sides of the worm wheel 21 sandwiched up and down (in the axial direction).
- the bearing 26, the 1st bearing 27, and the 2nd bearing 28 consist of rolling bearings, such as a ball bearing, for example.
- the first housing 24 includes a cylindrical portion 29 that is coaxially fitted to the lower end of the tube housing 23, an annular plate 30 that is orthogonally connected to the lower end of the cylindrical portion 29, and the annular plate 30.
- a cylindrical protrusion 31 extending downward from the vicinity of the outer periphery and a cylindrical protrusion 32 formed radially inward of the cylindrical protrusion 31 and extending downward from the annular plate 30 are provided.
- the first housing 24 is eccentric with respect to the first bearing holding portion 33 and the first bearing holding portion 33 that holds the outer ring 27 a of the first bearing 27 that rotatably supports the output shaft 13.
- the torque sensor holding part 35 for holding the torque sensor 15.
- the first housing 24 rotatably supports the output shaft 13 via a first bearing 27 held by the first bearing holding portion 33.
- the upper end of the cylindrical portion 29 of the first housing 24 is reduced in diameter, and a fitting portion 29 a that fits to the inner periphery of the lower end of the tube housing 23 is formed on the outer periphery thereof.
- the torque sensor holding portion 35 is provided on the inner periphery of the cylindrical portion 29 of the first housing 24.
- the first bearing holding portion 33 is provided on the inner periphery of the cylindrical protrusion 32, and the eccentric fitting portion 34 is provided on the outer periphery of the cylindrical protrusion 31.
- the fitting portion 29a, the torque sensor holding portion 35, and the first bearing holding portion 33 are formed on concentric cylindrical surfaces having a common center C1.
- the eccentric fitting portion 34 is formed on a cylindrical surface that is eccentric with respect to the first bearing holding portion 33. That is, the center C2 of the eccentric fitting part 34 is offset by a predetermined amount from the center C1 of the first bearing holding part 33 and the torque sensor holding part 35.
- the direction in which the center C2 of the eccentric fitting portion 34 is offset is preferably a direction that is orthogonal to both the worm shaft 20 and the central axis of the worm wheel 21.
- the second housing 25 includes a fitting portion 36 that can be fitted to the eccentric fitting portion 34 of the first housing 24, and a second bearing holding portion 37 that holds the second bearing 28. Yes.
- the fitting portion 36 and the second bearing holding portion 37 are formed on cylindrical surfaces that are eccentric to each other. Further, the inner diameter of the second bearing holding portion 37 is made a minute amount larger than the outer diameter of the outer ring 28 a of the second bearing 28. Accordingly, a gap S can be provided between the second bearing holding portion 37 and the outer ring 28 a of the second bearing 28.
- This gap S is second with respect to the second housing 25 when adjusting the center distance D between the worm shaft 20 and the worm wheel 21, that is, when adjusting the backlash between the worm shaft 20 and the worm wheel 21. This is to allow movement of the bearing 28 in the radial direction.
- the outer ring 28a of the second bearing 28 is held in the second bearing by being screwed into the threaded portion adjacent to the second bearing holding portion 37 and pressing the end surface of the outer ring 28a of the second bearing 28.
- a lock member 38 that is fixed to the portion 37 is provided.
- the lock member 38 is loosened during the above-described backlash adjustment, and is stopped after the adjustment is completed.
- the inner ring 28b of the second bearing 28 is fitted to the output shaft 13 so as not to be relatively rotatable.
- the inner ring 28 b of the second bearing 28 is sandwiched between a step portion 50 formed on the output shaft 13 and a retaining ring 51 locked to the outer peripheral groove of the output shaft 13, whereby the second bearing 28.
- the axial movement of the output shaft 13 is restricted.
- the worm wheel 21 includes an annular cored bar 21a coupled to the output shaft 13 so as to be integrally rotatable, and a synthetic resin member 21b that surrounds the cored bar 21a and has teeth 21c formed on the outer periphery.
- the cored bar 21a is inserted into a mold at the time of resin molding of the synthetic resin member 21b, for example.
- one end 20 a and the other end 20 b of the worm shaft 20 are rotatably supported by a pair of bearings 39 and 40 held by the second housing 25.
- Inner rings 39 a and 40 a of the pair of bearings 39 and 40 are fitted into corresponding constricted portions of the worm shaft 20.
- the outer rings 39 b and 40 b of the pair of bearings 39 and 40 are respectively held by bearing holding portions 41 and 42 of the second housing 25.
- the outer ring 39b of the bearing 39 that supports the one end 20a of the worm shaft 20 is positioned in contact with the step 43 of the second housing 25.
- the inner ring 39a of the bearing 39 is restricted from moving toward the other end 20b by contacting the positioning step 44 of the worm shaft 20.
- the inner ring 40a of the bearing 40 that supports the vicinity of the other end portion 20b (joint side end portion) of the worm shaft 20 is brought into contact with the positioning step portion 45 of the worm shaft 20 so as to move toward the one end portion 20a side. Movement is regulated.
- the outer ring 40b of the bearing 40 is biased toward the bearing 39 by a screw member 46 for preload adjustment.
- the screw member 46 is screwed into a screw hole 47 formed in the second housing 25, thereby applying a preload to the pair of bearings 39, 40 and positioning the worm shaft 20 in the axial direction.
- the lock nut 48 is a nut engaged with the screw member 46 in order to stop the screw member 46 after the preload adjustment.
- the other end portion 20b of the worm shaft 20 is connected to the rotary shaft 18a of the electric motor 18 through a spline joint 49, for example, so that torque can be transmitted.
- the eccentric fitting portion 34 of the first housing 24 rotates.
- the center of 20 moves relatively.
- the center distance D between the worm shaft 20 and the worm wheel 21 can be adjusted, and as a result, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 21 can be adjusted appropriately.
- the outer ring 28 a of the second bearing 28 is fixed to the second bearing holding portion 37 of the second housing 25 by tightening the lock member 38.
- the torque sensor holding portion 35 of the first housing 24 is concentric with the first bearing holding portion 33 of the first housing 24, the torque sensor 15 and the torque sensor 15 can be rotated even if the first housing 24 is rotationally displaced.
- the positional relationship with the output shaft 13 does not change. Therefore, there is little variation in the detection performance of the torque sensor 15, and a good steering feeling can be obtained through obtaining stable assist performance.
- the eccentric fitting portion 34 of the first housing 24 is fitted to the fitting portion 36 of the counterpart second housing 25. That is, since the housings 24 and 25 are directly fitted to each other, another part such as a cam shaft as in Patent Document 2 can be eliminated, and the structure can be simplified. Moreover, there is no restriction
- a second bearing 28 facing the first bearing 27 with the worm wheel 21 sandwiched in the axial direction of the output shaft 13 is provided. Further, when adjusting the distance D between the centers, a gap S that allows the radial movement of the second bearing 28 to the second bearing holding portion 37 of the second housing 25 can be provided. did. Therefore, the output shaft 13 is not twisted between the first bearing 27 and the second bearing 28 regardless of the adjustment of the center distance D, and as a result, the rotational resistance of the output shaft 13 is increased. There is no.
- the amount of the gap S may correspond to an adjustment amount (for example, about several tens of ⁇ m) of the center distance D, and may be a very small gap.
- FIG. 4 shows another embodiment of the present invention.
- the present embodiment is different from the embodiment of FIG. 1 as follows. That is, a third housing 52 that functions as an end housing connected to the bottom of the second housing 125 is provided, and the second bearing 28 is provided by the second bearing holding portion 53 provided in the third housing 52. To keep. Further, when adjusting the center-to-center distance between the worm shaft 20 and the worm wheel 21, a gap S1 for allowing the second housing 125 to move in the radial direction with respect to the second housing 125 has a second housing. It is formed between 125 and the third housing 52.
- an insertion hole 55 is formed in the bottom wall 54 of the second housing 125.
- the third housing 52 has a cylindrical portion 56 inserted through the insertion hole 55 and an annular plate 57 extending radially outward from the outer periphery of the cylindrical portion 56 and extending along the bottom wall 54. is doing.
- the second bearing holding portion 53 is provided on the inner periphery of the cylindrical portion 56 of the third housing 52.
- the outer ring 28 a of the second bearing 28 fitted to the second bearing holding portion 53 is engaged with a step portion 58 formed on the inner periphery of the cylindrical portion 56 and an inner peripheral groove of the cylindrical portion 56. It is sandwiched between the retaining ring 59 and the movement in the axial direction is restricted.
- the inner diameter of the insertion hole 55 of the second housing 125 is larger by a predetermined amount than the outer diameter of the cylindrical portion 56 of the third housing 52, and the inner periphery of the insertion hole 55 and the outer periphery of the cylindrical portion 56 are The gap S1 is provided between the two.
- the fitting portion 36 fitted to the eccentric fitting portion 34 of the first housing 24 and the inner periphery of the insertion hole 55 are formed on cylindrical surfaces that are eccentric to each other.
- the second bearing holding portion 53 and the outer periphery of the cylindrical portion 56 are formed on concentric cylindrical surfaces.
- the fixing screw 61 loosely fitted in the screw insertion hole 60 formed in the third housing 52 is inserted into the screw hole 62 formed in the bottom wall 54 of the second housing 125.
- the second housing 125 and the third housing 52 are fixed by being screwed.
- the same operational effects as the embodiment of FIG. 1 can be obtained.
- the fixing screw 61 is loosened, and the second housing 125 and the third housing 52 are separated by the gap S1. Allow relative movement.
- the output shaft 13 is not twisted between the first bearing 27 and the second bearing 28 regardless of the adjustment of the center-to-center distance, and consequently the rotational resistance of the output shaft 13 is increased.
- the amount of the gap S1 only needs to correspond to the adjustment amount of the center-to-center distance (for example, about several tens of ⁇ m), and may be a very small gap.
- the third housing 52 is fixed to the second housing 125 by the fixing screw 61.
- FIGS. 6 to 8 show another embodiment of the present invention.
- the present embodiment is different from the embodiment of FIGS. 1 and 3 as follows. That is, in the embodiment of FIGS. 1 and 3, the output shaft 13 is supported at both ends by the first and second bearings 27 and 28 disposed on both sides of the worm wheel 21. Further, the first bearing 27 is held by the first bearing holding portion 33 of the first housing 24 as an eccentric housing. Further, the second bearing 28 is held in the second bearing holding portion 37 of the second housing 25 that supports the worm shaft 20 as shown in FIG. 1, or the second housing 28 as shown in FIG. The second bearing holding portion 53 of the third housing 52 connected to 125 is held.
- the bearing directly supporting the output shaft 13 is the first bearing holding of the first housing 224 as an eccentric housing. Only the first bearing 227 supported by the portion 233 was used. Further, the first bearing 227 is arranged inward in the radial direction of the synthetic resin member 65 of the worm wheel 63 of the transmission mechanism 119, and the center position of the synthetic resin member 65 with respect to the axial direction of the output shaft 13; The center position of the first bearing 227 is matched or substantially matched.
- the first housing 224 includes a cylindrical portion 229 that is coaxially fitted to the lower end of the tube housing 23, and an annular plate 230 that is orthogonally connected to the lower end of the cylindrical portion 229.
- a cylindrical projection 231 extending upward from the vicinity of the outer periphery of the annular plate 230 and a cylindrical projection 232 extending downward from the inner periphery of the annular plate 230 are provided.
- a fitting portion 229 a that fits to the outer periphery of the lower end of the tube housing 23 is provided on the inner periphery of the upper end of the tubular portion 229, and a torque sensor holding portion 235 is provided on the inner periphery of the tubular portion 229.
- a first bearing holding portion 233 that holds the outer ring 227 a of the first bearing 227 is provided on the inner periphery of the cylindrical protrusion 232.
- an eccentric fitting portion 234 that is eccentric with respect to the first bearing holding portion 233 is provided on the outer periphery of the cylindrical projection 231, and the eccentric fitting portion 234 has an inner end of the upper end of the second housing 225.
- a fitting portion 236 facing the periphery is fitted.
- FIG. 8 which is a schematic view
- the fitting portion 229a, the torque sensor holding portion 235, and the first bearing holding portion 233 are formed on concentric cylindrical surfaces having a common center C11, and are eccentrically fitted.
- the joining portion 234 is formed on a cylindrical surface having a center C12 offset by a predetermined amount with respect to the center C11.
- the worm wheel 63 includes an annular core metal 64 coupled to the output shaft 13 so as to be integrally rotatable, and the annular synthetic resin member 65 surrounding the periphery of the core metal 64 and having teeth 651 formed on the outer periphery.
- the core metal 64 is inserted into the mold when the synthetic resin member 65 is molded with resin, for example.
- the cored bar 64 includes an inner cylinder 66 fitted and fixed to the outer periphery of the output shaft 13, an outer cylinder 67 fitted and fixed to the inner periphery of the synthetic resin member 65, one end 67 a (lower end) of the outer cylinder 67, and an inner An annular connecting portion 68 for connecting the tube 66 is provided.
- the cylindrical projection 232 of the first housing 224 is disposed radially inward of the outer cylinder 67.
- the outer ring 227 a of the first bearing 227 is sandwiched between an annular flange 69 that extends radially inward from one end of the cylindrical protrusion 232 and a retaining ring 70 that is locked in the inner peripheral groove of the cylindrical protrusion 232.
- the inner ring 227b of the first bearing 227 is sandwiched between the end surface 66a of the inner tube 66 of the core metal 64 and the retaining ring 71 locked to the outer peripheral groove of the output shaft 13, whereby the output shaft 13 is restricted from moving in the axial direction of the first bearing 227 with respect to 13.
- the same operational effects as the embodiment of FIG. 1 can be obtained. That is, the center distance between the worm shaft 20 and the worm wheel 63 can be adjusted by rotating the first housing 224 as an eccentric housing with respect to the second housing 225. Thereby, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 63 can be adjusted appropriately. Further, since the first bearing 227 that directly supports the output shaft 13 is the only bearing, it is possible to prevent the output shaft 13 from being twisted when the center distance is adjusted.
- the first bearing 227 is disposed radially inward of the synthetic resin member 65 of the worm wheel 63, and the center position of the synthetic resin member 65 and the center of the first bearing 227 with respect to the axial direction of the output shaft 13. The position is matched or substantially matched. Therefore, the electric power steering device 1 can be reduced in size in the axial direction. Moreover, since the support accuracy of the worm wheel 63 can be increased, the tooth contact is good. As a result, noise reduction can be realized in combination with the above-described backlash adjustment, and durability can be improved.
- the support center (bearing center) of the first bearing 27 is disposed radially inward of the engagement center between the worm shaft 20 and the worm wheel 21, the worm shaft 20 and the worm wheel 21 are engaged with each other.
- the operating point of the torque fluctuation coincides with the support center of the first bearing 27. Accordingly, since the swinging of the output shaft 13 can be completely suppressed, it is possible to surely prevent the meshing position from being shifted and abnormal rattling. As a result, an appropriate backlash is always maintained and a smooth steering assist force can be transmitted.
- FIG. 9 shows a reference embodiment of the present invention.
- the present embodiment is mainly different from the embodiment of FIG. 1 in that a first housing 324 and a second housing 325 connected to the lower portion of the first housing 324 are provided.
- the housing 325 is configured as an eccentric housing having an eccentric fitting portion 334.
- the first housing 324 includes a fitting portion 329 a of the cylindrical portion 329 fitted to the tube housing 23, a torque sensor holding portion 335 that holds the torque sensor 15, and a first bearing 27 that holds the first bearing 27.
- the bearing holding portion 333 has a cylindrical surface concentric with each other.
- the first housing 324 has a fitting portion 336 that fits into the eccentric fitting portion 334 of the second housing 325 as a cylindrical surface that is eccentric with respect to the concentric cylindrical surface.
- the first bearing holding portion 333 Between the first bearing holding portion 333 and the outer periphery of the outer ring 27a of the first bearing 27, when the distance between the centers of the worm shaft 20 and the worm wheel 21 is adjusted, the first bearing holding portion 333 is A gap S ⁇ b> 2 is formed for allowing the first bearing 27 to move in the radial direction. Between the first bearing holding portion 333 and the outer periphery of the outer ring 27a of the first bearing 27, an annular elastic member 72 is interposed in an elastically compressed state. The elastic member 72 prevents rattling of the first bearing 27 in the first bearing holding portion 333, and prevents generation of noise due to the rattling.
- the first housing 324 extends to the lower side of the worm shaft 20, and the fitting portion 336 is provided eccentrically with respect to the fitting portion 329a on the inner periphery of the extended end.
- the second housing 325 includes an inner cylinder 73, an outer cylinder 74, and a connecting wall 75 that connects the inner cylinder 73 and the outer cylinder 74.
- a second bearing holding portion 337 for holding the second bearing 28 is formed on the inner periphery of the inner cylinder 73, and the above-mentioned eccentricity with respect to the second bearing holding portion 337 is provided on the outer periphery of the outer cylinder 74.
- An eccentric fitting portion 334 is formed.
- the outer ring 28 a of the second bearing 28 is sandwiched between a stepped portion 76 formed on the inner periphery of the inner cylinder 73 and a retaining ring 77, whereby the shaft of the second bearing 28 with respect to the second housing 325.
- Directional movement is restricted.
- the same components as those of the embodiment of FIG. 1 are denoted by the same reference numerals as those of the embodiment of FIG.
- the first housing is accompanied with the rotation of the eccentric fitting portion 334 of the second housing 325.
- the shaft core of the worm shaft 20 supported by 324 and the shaft core of the worm wheel 21 supported by the second housing 325 via the second bearing 28 move relative to each other. Thereby, the distance between the centers of the worm shaft 20 and the worm wheel 21 can be adjusted, and as a result, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 21 can be adjusted appropriately.
- a gap S2 is provided so that the first bearing 27 is allowed to move in the radial direction with respect to the first bearing holding portion 333 of the first housing 324 when adjusting the distance between the centers. Therefore, the output shaft 13 is not twisted between the first bearing 27 and the second bearing 28 regardless of the adjustment of the center-to-center distance. As a result, the rotational resistance of the output shaft 13 does not increase.
- the amount of the gap S2 only needs to correspond to an adjustment amount of the center-to-center distance (for example, about several tens of ⁇ m), and may be a very small gap.
- the torque sensor 15 held by the torque sensor holding unit 335 and the output shaft 13 slightly changes.
- the torque sensor 15 can be made less susceptible to eccentricity. As a result, a good steering feeling can be obtained through obtaining stable assist performance.
- FIG. 10 shows another reference embodiment of the present invention.
- the present embodiment is mainly different from the embodiment of FIG. 6 in that a first housing 424 and a second housing 425 connected to the lower portion of the first housing 424 are provided.
- the housing 425 is configured as an eccentric housing having an eccentric fitting portion 434.
- the first housing 424 has a fitting portion 429a of a cylindrical portion 429 fitted to the tube housing 23 and a torque sensor holding portion 435 that holds the torque sensor 15 as concentric cylindrical surfaces.
- the first housing 424 has a fitting portion 436 that is fitted to the eccentric fitting portion 434 of the second housing 425 as a cylindrical surface that is eccentric with respect to the concentric cylindrical surface.
- the first housing 424 extends to the lower side of the worm shaft 20, and the fitting portion 436 is provided eccentrically with respect to the fitting portion 429a on the inner periphery of the extended end.
- the second housing 425 includes a small cylinder 78 and a large cylinder 79 that extend in opposite directions in the axial direction, and a connecting wall 80 that connects the small cylinder 78 and the large cylinder 79.
- a second bearing holding portion 437 that holds the first bearing 427 is formed on the inner periphery of the small cylinder 78.
- the eccentric fitting portion 434 that is eccentric with respect to the first bearing holding portion 433 is formed on the outer periphery of the large cylinder 79.
- the outer ring 427 a of the first bearing 427 is sandwiched between a step portion 81 formed on the inner periphery of the small cylinder 78 and a retaining ring 82. Thereby, the axial movement of the first bearing 427 relative to the second housing 425 is restricted.
- the worm wheel 83 of the transmission mechanism 419 includes an annular cored bar 84 coupled to the output shaft 13 so as to be integrally rotatable, and the annular synthetic resin member 85 that surrounds the cored bar 84 and has teeth 851 formed on the outer periphery. Is provided.
- the core metal 84 is inserted into the mold when the synthetic resin member 85 is molded with resin, for example.
- the cored bar 84 includes a small cylinder 86 and a large cylinder 87 that extend on the same side in the axial direction, and an annular connecting wall 88 that connects between opposing ends of the small cylinder 86 and the large cylinder 87.
- the small cylinder 86 is fitted to the outer periphery of the output shaft 13 so as to be able to rotate together.
- the large cylinder 87 is fitted and fixed to the inner periphery of the synthetic resin member 85.
- the small cylinder 78 of the second housing 425 is disposed radially inward of the large cylinder 87 of the cored bar 84 of the worm wheel 83.
- the tip of the small cylinder 78 is in contact with or close to the end surface of the inner ring 427 b of the first bearing 427.
- the inner ring 427 b of the first bearing 427 is sandwiched between a step portion 89 formed on the outer periphery of the output shaft 13 and a retaining ring 90 locked to the outer peripheral groove of the output shaft 13.
- the axial movement of the output shaft 13 with respect to the bearing 427 is restricted.
- the first housing is accompanied with the rotation of the eccentric fitting portion 434 of the second housing 425.
- the center of the worm shaft 20 supported by 424 and the center of the worm wheel 83 supported by the second housing 425 via the first bearing 427 move relative to each other. Thereby, the distance between the centers of the worm shaft 20 and the worm wheel 83 can be adjusted, and as a result, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 83 can be adjusted appropriately.
- the bearing that directly supports the output shaft 13 is the only bearing 427, the output shaft 13 can be prevented from being twisted when the center-to-center distance is adjusted. Further, the positional relationship between the torque sensor 15 held by the torque sensor holding portion 435 and the output shaft 13 slightly changes with the adjustment of the center-to-center distance. However, by using, for example, a Hall IC or other non-contact type sensor as the torque sensor 15, the torque sensor 15 can be made less susceptible to eccentricity. As a result, a good steering feeling can be obtained through obtaining stable assist performance.
- FIG. 11 is a perspective view of an attachment structure D for attaching the steering column 22 of the electric power steering apparatus 1 of each embodiment described above to the vehicle body.
- the mounting structure D is fixed to one of a vehicle body side bracket 91 fixed to, for example, a cross member (not shown) of the vehicle body, and a pair of housings that are relatively rotated during center distance adjustment (backlash adjustment).
- Column side bracket 92 is provided.
- the column-side bracket 92 is formed with a screw insertion hole 93 having an arc shape centered on the central axis of the output shaft 13.
- a pair of screw insertion holes 93 is provided.
- the pair of screw insertion holes 93 are disposed at asymmetrical positions that are not point-symmetric with respect to the output shaft 13, thereby preventing erroneous mounting of the column side bracket 92 (the column side bracket 92 is mounted upside down). It is prevented.
- a misassembly prevention protrusion may be extended from a part of the peripheral edge of the column side bracket 92.
- the first and second fixing screws 94 and 95 are inserted into the respective screw insertion holes 93.
- the first and second fixing screws 94 and 95 are screwed into screw holes (not shown) of bosses 96 and 97 formed on the other of the pair of housings, respectively.
- the first fixing screw 94 is inserted through a screw insertion hole (not shown) made of a circular hole of the vehicle body side bracket 91 and a screw insertion hole 93 made of the long hole of the column side bracket 92, and the corresponding screw Screwed into the hole. That is, the first fixing screw 94 fastens the vehicle body side bracket 91 and the column side bracket 92 together with the steering column 22.
- each of the above embodiments is an electric power steering device (so-called column assist type electric power steering device) in which the worm wheel is connected to the output shaft of the steering shaft so as to be able to rotate together.
- the present invention is not limited to this, and may be applied to an electric power steering device (so-called pinion assist type electric power steering device) of a type in which a worm wheel is connected to a pinion shaft so as to be able to rotate together.
- the transmission mechanism is a worm gear mechanism including a worm shaft as a driving member and a worm wheel as a driven member, but instead of a staggered shaft gear mechanism such as a worm gear mechanism, a spur gear, A parallel shaft gear mechanism such as a helical gear may be used.
- the transmission mechanism may be a belt / pulley mechanism including a driving pulley as a driving member and a driven pulley as a driven member.
- SYMBOLS 1 Electric power steering apparatus, 2 ... Steering member, 3 ... Steering shaft, 12 ... Input shaft, 13 ... Output shaft, 14 ... Torsion bar, 15 ... Torque sensor, 18 ... Electric motor, 19; 119; 419 ... Transmission mechanism , 20 ... Worm shaft (drive member), 21; 63 ... Worm wheel (driven member), 22 ... Steering column, 24; 224 ... First housing, 25; 125; 225 ... Second housing, 27 ... First 227 ... 1st bearing (only bearing), 28 ... 2nd bearing, 33; 233 ... 1st bearing holding part, 34; 234 ... Eccentric fitting part, 36; 236 ... fitting part, 37; 53 ... second bearing holding portion, 52 ... third housing, S; S1 ... gap
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Power Steering Mechanism (AREA)
- Gear Transmission (AREA)
- Support Of The Bearing (AREA)
Abstract
Description
しかしながら、ウォーム軸がウォームホイールの軸線とは平行な方向に変位するので、噛み合い中心位置がずれる。このため、歯当たりにバラツキが生じるので、作動音が大きくなったり、耐久性が低下したりするという問題がある。
特許文献2では、3つのハウジングを挿通するカム軸を設けるので、構造が複雑になる。しかも、カム軸を含む多部品の組合せ精度を高める必要があり、製造コストが高くなる。また、ウォームホイールと同伴回転する出力軸を支持する軸受を、ウォーム軸側ハウジングに配置できないので、当該軸受を下方の第2のハウジングに配置している。したがって、軸受とウォームホイールとの距離が離れているので、ウォームホイールの支持精度が悪くなる。このため、歯当たりが悪くなり、その結果、作動音が大きくなったり、耐久性が悪くなったりする。
また、上記出力軸を回転可能に支持する第2の軸受と、上記第2の軸受を保持する第2の軸受保持部を有する第3のハウジングと、を備え、上記中心間距離を調整するときに上記第2のハウジングに対して上記第2の軸受の径方向移動を許容するための隙間が、上記第2のハウジングと上記第3のハウジングとの間に形成されている場合がある(請求項4)。この場合、中心間距離を調整するときに、上記第2のハウジングに対する上記第2の軸受を保持した第3のハウジングの径方向移動が許容されるので、上記第1の軸受と上記第2の軸受間で出力軸がこじりを生ずることがない。ひいては、出力軸の回転抵抗が大きくなるようなことがない。上記隙間の量は、中心間距離の調整分に相当すればよく、非常に微小な隙間でよい。
図1は、本発明の一実施形態に係る車両用操舵装置としての電動パワーステアリング装置1の概略構成を示す模式図である。図1を参照して、電動パワーステアリング装置1は、ステアリングホイール等の操舵部材2に連結しているステアリングシャフト3と、ステアリングシャフト3に自在継手4を介して連結された中間軸5と、中間軸5に自在継手6を介して連結されたピニオン軸7と、ピニオン軸7の端部近傍に設けられたピニオン7aに噛み合うラック8aを有して自動車の左右方向としての軸方向に延びる転舵軸としてのラック軸8とを有している。ピニオン軸7およびラック軸8によりラックアンドピニオン機構からなる転舵機構Aが構成されている。
操舵部材2が操作されてステアリングシャフト3が回転されると、この回転がピニオン7aおよびラック8aによって、ラック軸8の軸方向への直線運動に変換される。これにより、転舵輪11の転舵が達成される。
また、伝達機構19は、駆動部材としてのウォーム軸20と、ウォーム軸20のウォーム20cと噛み合う被動部材としてのウォームホイール21とを有するウォームギヤ機構により構成されている。ウォーム軸20は、電動モータ18の回転軸と継手を介してトルク伝達可能に連結されている。ウォームホイール21は、ステアリングシャフト3の出力軸13と同伴回転可能に且つ軸方向に移動不能に連結されている。
ステアリングシャフト3を回転可能に支持するステアリングコラム22は、チューブハウジング23と、このチューブハウジング23の下端に嵌合された偏心ハウジングとしての第1のハウジング24と、この第1のハウジング24に嵌合された第2のハウジング25とを備えている。
また、第1のハウジング24は、出力軸13を回転可能に支持する第1の軸受27の外輪27aを保持する第1の軸受保持部33と、この第1の軸受保持部33に対して偏心した偏心嵌合部34と、上記トルクセンサ15を保持するトルクセンサ保持部35とを有している。第1のハウジング24は、その第1の軸受保持部33によって保持した第1の軸受27を介して出力軸13を回転可能に支持している。
第2の軸受28の内輪28bは、出力軸13に相対回転不能に嵌合されている。第2の軸受28の内輪28bは、出力軸13に形成された段部50と出力軸13の外周溝に係止された止め輪51との間に挟持され、これにより、第2の軸受28と出力軸13の軸方向相対移動が規制され、その結果、出力軸13の軸方向移動が規制されている。
次いで、図3を参照して、ウォーム軸20の一端部20aおよび他端部20bは、第2のハウジング25によって保持された一対の軸受39,40によってそれぞれ回転可能に支持されている。一対の軸受39、40の内輪39a、40aは、ウォーム軸20の、対応するくびれ部に嵌合されている。一対の軸受39,40の外輪39b、40bは、第2のハウジング25の軸受保持部41、42に、それぞれ保持されている。
本実施の形態によれば、ロック部材38を緩めた状態で、第2のハウジング25に対して第1のハウジング24を回転させると、第1のハウジング24の偏心嵌合部34の回転に伴って、第1のハウジング24の第1の軸受保持部33によって出力軸13を介して支持されたウォームホイール21の中心と、第2のハウジング25によって軸受39,40を介して支持されたウォーム軸20の中心とが相対移動する。これにより、ウォーム軸20とウォームホイール21の中心間距離Dを調整することができ、その結果、ウォーム軸20とウォームホイール21間の歯面間のバックラッシを適正に調整することができる。バックラッシの調整後は、ロック部材38の締め付けによって、第2の軸受28の外輪28aを第2のハウジング25の第2の軸受保持部37に止定する。
上記第2の軸受保持部53は、第3のハウジング52の筒状部56の内周に設けられている。第2の軸受保持部53に嵌合された第2の軸受28の外輪28aは、筒状部56の内周に形成された段部58と、筒状部56の内周溝に係止された止め輪59との間に挟持され、軸方向移動を規制されている。
第2のハウジング125において、第1のハウジング24の偏心嵌合部34に嵌合される嵌合部36と、挿通孔55の内周とは、互いに偏心した円筒面に形成されている。また、第3のハウジング52において、第2の軸受保持部53と筒状部56の外周とは、同心の円筒面に形成されている。
本実施の形態においても、図1の実施の形態と同じ作用効果を奏することができる。また、偏心ハウジングとしての第1のハウジング24を回転させて中心間距離の調整を行う前に、上記固定ねじ61を緩めて、上記隙間S1によって第2のハウジング125と第3のハウジング52との相対移動を許容しておく。これにより、中心間距離の調整に拘らず、第1の軸受27と第2の軸受28間で出力軸13がこじりを生ずることがなく、ひいては、出力軸13の回転抵抗が大きくなるようなことがない。上記の隙間S1の量は、中心間距離の調整量(例えば数十μm程度)に相当すればよく、非常に微小な隙間でよい。中心間距離の調整後は、上記固定ねじ61によって第3のハウジング52を第2のハウジング125に止定する。
筒状部229の上端の内周に、チューブハウジング23の下端の外周に嵌合する嵌合部229aが設けられ、筒状部229の内周に、トルクセンサ保持部235が設けられている。また、筒状突起232の内周に、第1の軸受227の外輪227aを保持する第1の軸受保持部233が設けられている。
概略図である図8に示すように、嵌合部229a、トルクセンサ保持部235および第1の軸受保持部233は、共通の中心C11を有する互いに同心の円筒面に形成されており、偏心嵌合部234は、中心C11に対して所定量オフセットされた中心C12を有する円筒面に形成されている。
芯金64は、出力軸13の外周に嵌合固定された内筒66と、合成樹脂部材65の内周に嵌合固定された外筒67と、外筒67の一端67a(下端)と内筒66を連結する環状の連結部68とを備えている。第1のハウジング224の筒状突起232は、外筒67の径方向内方に配置されている。
また、上記第1の軸受227をウォームホイール63の合成樹脂部材65の径方向内方に配置し、出力軸13の軸方向に関して、合成樹脂部材65の中心位置と、第1の軸受227の中心位置とが一致または略一致するようにした。したがって、電動パワーステアリング装置1の軸方向に小型化することができる。しかも、ウォームホイール63の支持精度を高くできるので、歯当たりが良好となる。その結果、上記のバックラッシ調整と相まって低騒音化を実現でき、また耐久性を向上することができる。
第1のハウジング324が、チューブハウジング23に嵌合される筒状部329の嵌合部329aと、トルクセンサ15を保持するトルクセンサ保持部335と、第1の軸受27を保持する第1の軸受保持部333とを互いに同心の円筒面として有している。また、第1のハウジング324が、第2のハウジング325の偏心嵌合部334に嵌合する嵌合部336を、上記同心の円筒面に対して偏心した円筒面として有している。
第2のハウジング325は、内筒73と、外筒74と、内筒73および外筒74間を連結する連結壁75とを備えている。内筒73の内周に、第2の軸受28を保持する第2の軸受保持部337が形成されており、外筒74の外周に、第2の軸受保持部337に対して偏心した上記の偏心嵌合部334が形成されている。第2の軸受28の外輪28aは、内筒73の内周に形成された段部76と止め輪77との間に挟持され、これにより、第2のハウジング325に対する第2の軸受28の軸方向移動が規制されている。
本参考形態によれば、偏心ハウジングとしての第2のハウジング325を第1のハウジング324に対して回転させると、第2のハウジング325の偏心嵌合部334の回転に伴って、第1のハウジング324によって支持されたウォーム軸20の軸芯と、第2のハウジング325によって第2の軸受28を介して支持されたウォームホイール21の軸芯とが、相対移動する。これにより、ウォーム軸20とウォームホイール21の中心間距離を調整することができ、その結果、ウォーム軸20とウォームホイール21間の歯面間のバックラッシを適正に調整することができる。
第1のハウジング424が、チューブハウジング23に嵌合される筒状部429の嵌合部429aと、トルクセンサ15を保持するトルクセンサ保持部435とを、互いに同心の円筒面として有している。また、第1のハウジング424は、第2のハウジング425の偏心嵌合部434に嵌合する嵌合部436を、上記同心の円筒面に対して偏心した円筒面として有している。
第2のハウジング425は、互いに軸方向の逆向きに延びる小筒78および大筒79と、小筒78および大筒79間を連結する連結壁80とを備えている。小筒78の内周に、第1の軸受427を保持する第2の軸受保持部437が形成されている。大筒79の外周に、第1の軸受保持部433に対して偏心した上記の偏心嵌合部434が形成されている。第1の軸受427の外輪427aは、小筒78の内周に形成された段部81と止め輪82との間に挟持されている。これにより、第2のハウジング425に対する第1の軸受427の軸方向移動が規制されている。
芯金84は、互いに軸方向の同側に延びる小筒86および大筒87と、小筒86および大筒87の対向端部間を連結する環状の連結壁88とを有している。小筒86は、出力軸13の外周に同伴回転可能に嵌合されている。大筒87は、合成樹脂部材85の内周に嵌合固定されている。第2のハウジング425の小筒78は、ウォームホイール83の芯金84の大筒87の径方向内方に配置されている。小筒78の先端は、第1の軸受427の内輪427bの端面に当接または近接している。
本参考形態によれば、偏心ハウジングとしての第2のハウジング425を第1のハウジング424に対して回転させると、第2のハウジング425の偏心嵌合部434の回転に伴って、第1のハウジング424によって支持されたウォーム軸20の中心と、第2のハウジング425によって第1の軸受427を介して支持されたウォームホイール83の中心とが、相対移動する。これにより、ウォーム軸20とウォームホイール83の中心間距離を調整することができ、その結果、ウォーム軸20とウォームホイール83間の歯面間のバックラッシを適正に調整することができる。
また、中心間距離の調整に伴って、トルクセンサ保持部435に保持されたトルクセンサ15と出力軸13との位置関係は若干変化する。しかし、トルクセンサ15として、例えばホールICその他の非接触式のセンサを用いることにより、トルクセンサ15が偏心の影響を受け難くすることができる。ひいては安定したアシスト性能を得ることを通じて、良好な操舵フィーリングを得ることができる。
第1の固定ねじ94は、車体側ブラケット91の円孔からなるねじ挿通孔(図示せず)と、コラム側ブラケット92の上記長孔からなるねじ挿通孔93とを挿通して、対応するねじ孔にねじ込み固定されている。すなわち、第1の固定ねじ94は、車体側ブラケット91およびコラム側ブラケット92をステアリングコラム22に対して共締めしている。
本出願は2009年12月28日に日本国特許庁に提出された特願2009-298343号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
Claims (5)
- 電動パワーステアリング装置が、
操舵部材に連なる入力軸、転舵機構に連なる出力軸、並びに入力軸および出力軸を連結するトーションバーを含むステアリングシャフトと、
上記ステアリングシャフトに負荷される操舵トルクを検出するトルクセンサと、
上記トルクセンサの出力に基づいて制御される電動モータと、
駆動部材および被動部材を含み、上記電動モータの出力回転を減速して上記出力軸に伝達する伝達機構と、
上記出力軸を回転可能に支持する第1の軸受と、
上記第1の軸受を支持する第1のハウジングと、
上記駆動部材を回転可能に支持する第2のハウジングと、を備え、
上記被動部材は、上記出力軸と同伴回転可能であり、
上記第1のハウジングは、上記第1の軸受を保持する第1の軸受保持部と、上記第1の軸受保持部に対して偏心した偏心嵌合部と、上記トルクセンサを保持するトルクセンサ保持部と、を含み、
上記トルクセンサ保持部は、上記第1の軸受保持部と同心をなし、
上記第2のハウジングは、上記偏心嵌合部に嵌合する嵌合部を含み、
上記駆動部材および上記被動部材間の中心間距離を調整するときに、上記第2のハウジングの上記嵌合部に対して上記第1のハウジングの上記偏心嵌合部が回転されるように構成されている。 - 請求項1に記載の電動パワーステアリング装置において、
上記出力軸を回転可能に支持する第2の軸受を備え、
上記第2のハウジングは、上記第2の軸受を保持する第2の軸受保持部を含み、
上記中心間距離を調整するときに上記第2のハウジングに対する上記第2の軸受の径方向移動を許容するための隙間が、上記第2のハウジングの上記第2の軸受保持部と上記第2の軸受との間に形成されている電動パワーステアリング装置。 - 請求項2に記載の電動パワーステアリング装置において、
上記第2の軸受の外輪を上記第2の軸受保持部に止定可能なロック部材を備える。 - 請求項1に記載の電動パワーステアリング装置において、
上記出力軸を回転可能に支持する第2の軸受と、
上記第2の軸受を保持する第2の軸受保持部を有する第3のハウジングと、を備え、
上記中心間距離を調整するときに上記第2のハウジングに対して上記第2の軸受の径方向移動を許容するための隙間が、上記第2のハウジングと上記第3のハウジングとの間に形成されている。 - 請求項1に記載の電動パワーステアリング装置において、上記第1の軸受は、上記出力軸を直接支持する唯一の軸受を含む。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10840933.5A EP2520474A4 (en) | 2009-12-28 | 2010-12-22 | POWER ASSISTED STEERING DEVICE |
CN201080059484.7A CN102712338B (zh) | 2009-12-28 | 2010-12-22 | 电动动力转向装置 |
US13/513,942 US8727065B2 (en) | 2009-12-28 | 2010-12-22 | Electric power steering device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-298343 | 2009-12-28 | ||
JP2009298343A JP5418834B2 (ja) | 2009-12-28 | 2009-12-28 | 電動パワーステアリング装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011081076A1 true WO2011081076A1 (ja) | 2011-07-07 |
Family
ID=44226483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073203 WO2011081076A1 (ja) | 2009-12-28 | 2010-12-22 | 電動パワーステアリング装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8727065B2 (ja) |
EP (1) | EP2520474A4 (ja) |
JP (1) | JP5418834B2 (ja) |
CN (1) | CN102712338B (ja) |
WO (1) | WO2011081076A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013168476A1 (ja) * | 2012-05-11 | 2013-11-14 | 株式会社エフ・シー・シー | セラシ歯車装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011084510A1 (de) * | 2011-06-10 | 2012-12-13 | Robert Bosch Gmbh | Lenksystem in einem Fahrzeug |
JP5917070B2 (ja) * | 2011-09-28 | 2016-05-11 | 住友重機械工業株式会社 | ロックドトレーン機構を備えた風力発電用の増速機 |
KR101702249B1 (ko) * | 2013-03-14 | 2017-02-03 | 히타치 오토모티브 시스템즈 스티어링 가부시키가이샤 | 파워 스티어링 장치의 토크 검출 구조 및 이것을 이용한 파워 스티어링 장치 |
US9200700B2 (en) * | 2013-04-05 | 2015-12-01 | Kessler Crane, Inc. | Motion control system |
JP6447509B2 (ja) * | 2013-11-21 | 2019-01-09 | 日本精工株式会社 | 電動式パワーステアリング装置用トルク測定ユニット及びその組立方法 |
JP6458982B2 (ja) * | 2014-09-08 | 2019-01-30 | 株式会社ジェイテクト | ウォーム減速機 |
JP2016064790A (ja) * | 2014-09-25 | 2016-04-28 | 株式会社ショーワ | ステアリング装置 |
JP6396201B2 (ja) * | 2014-12-22 | 2018-09-26 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
EP3056767A1 (de) * | 2015-02-13 | 2016-08-17 | IMS Gear GmbH | Kunststoffelement zur spielfreien Lagerung |
KR20170027170A (ko) * | 2015-09-01 | 2017-03-09 | 주식회사 만도 | 자동차의 조향컬럼 |
CN105151114A (zh) * | 2015-09-30 | 2015-12-16 | 安徽江淮汽车股份有限公司 | 一种电动转向管柱蜗轮蜗杆结构 |
JP6558444B2 (ja) * | 2015-11-12 | 2019-08-14 | 日本精工株式会社 | 電動式パワーステアリング装置及びその製造方法 |
US20180086364A1 (en) * | 2016-09-23 | 2018-03-29 | Mando Corporation | Steering column for vehicle |
DE102019118673A1 (de) | 2019-07-10 | 2021-01-14 | Thyssenkrupp Ag | Elektromechanische Servolenkung mit Schwenkpendel-Lageranordnung |
KR20220068781A (ko) * | 2020-11-19 | 2022-05-26 | 주식회사 만도 | 스티어링 칼럼 및 이를 포함하는 스티어링 장치 |
TWI831556B (zh) * | 2023-01-03 | 2024-02-01 | 東佑達自動化科技股份有限公司 | 可調整間隙之旋轉裝置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1134888A (ja) | 1997-05-19 | 1999-02-09 | Nippon Seiko Kk | 電動式パワーステアリング装置 |
JP2001213339A (ja) * | 2000-01-31 | 2001-08-07 | Kayaba Ind Co Ltd | 動力伝達装置 |
JP2002127918A (ja) * | 2000-10-20 | 2002-05-09 | Nsk Ltd | 電動式パワーステアリング装置及びその組み付け方法 |
JP2003063421A (ja) * | 2001-08-30 | 2003-03-05 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
JP2005035346A (ja) | 2003-07-17 | 2005-02-10 | Unisia Jkc Steering System Co Ltd | 電動パワーステアリング装置 |
JP2006088775A (ja) * | 2004-09-21 | 2006-04-06 | Favess Co Ltd | 電動パワーステアリング装置 |
JP2006520716A (ja) * | 2003-03-25 | 2006-09-14 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 電気式の駆動ユニット |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003072566A (ja) * | 2001-08-31 | 2003-03-12 | Koyo Seiko Co Ltd | 盗難防止機能を備えた電動パワーステアリング装置とその製造方法 |
JP4196831B2 (ja) * | 2001-12-03 | 2008-12-17 | 日本精工株式会社 | 電動パワーステアリング装置 |
JP3898548B2 (ja) | 2001-12-27 | 2007-03-28 | 株式会社ジェイテクト | 車両のステアリング装置 |
CN100476241C (zh) * | 2003-06-25 | 2009-04-08 | 日本精工株式会社 | 蜗轮减速器及电动式动力转向装置 |
JP2007196927A (ja) * | 2006-01-27 | 2007-08-09 | Showa Corp | 電動舵取装置 |
JP4808541B2 (ja) * | 2006-04-26 | 2011-11-02 | 本田技研工業株式会社 | 電動パワーステアリング装置 |
KR101148664B1 (ko) * | 2007-04-06 | 2012-05-21 | 주식회사 만도 | 유격 조절 감속기 및 이를 장착한 전동식 파워 스티어링장치 |
-
2009
- 2009-12-28 JP JP2009298343A patent/JP5418834B2/ja not_active Expired - Fee Related
-
2010
- 2010-12-22 WO PCT/JP2010/073203 patent/WO2011081076A1/ja active Application Filing
- 2010-12-22 US US13/513,942 patent/US8727065B2/en not_active Expired - Fee Related
- 2010-12-22 EP EP10840933.5A patent/EP2520474A4/en not_active Withdrawn
- 2010-12-22 CN CN201080059484.7A patent/CN102712338B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1134888A (ja) | 1997-05-19 | 1999-02-09 | Nippon Seiko Kk | 電動式パワーステアリング装置 |
JP2001213339A (ja) * | 2000-01-31 | 2001-08-07 | Kayaba Ind Co Ltd | 動力伝達装置 |
JP2002127918A (ja) * | 2000-10-20 | 2002-05-09 | Nsk Ltd | 電動式パワーステアリング装置及びその組み付け方法 |
JP2003063421A (ja) * | 2001-08-30 | 2003-03-05 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
JP2006520716A (ja) * | 2003-03-25 | 2006-09-14 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 電気式の駆動ユニット |
JP2005035346A (ja) | 2003-07-17 | 2005-02-10 | Unisia Jkc Steering System Co Ltd | 電動パワーステアリング装置 |
JP2006088775A (ja) * | 2004-09-21 | 2006-04-06 | Favess Co Ltd | 電動パワーステアリング装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2520474A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013168476A1 (ja) * | 2012-05-11 | 2013-11-14 | 株式会社エフ・シー・シー | セラシ歯車装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2011136653A (ja) | 2011-07-14 |
EP2520474A1 (en) | 2012-11-07 |
CN102712338A (zh) | 2012-10-03 |
CN102712338B (zh) | 2014-12-03 |
US20120241246A1 (en) | 2012-09-27 |
JP5418834B2 (ja) | 2014-02-19 |
US8727065B2 (en) | 2014-05-20 |
EP2520474A4 (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011081076A1 (ja) | 電動パワーステアリング装置 | |
US7278334B2 (en) | Electric power steering apparatus | |
US6705176B2 (en) | Electric power steering apparatus | |
JP4868215B2 (ja) | 電動パワーステアリング装置 | |
US20070158131A1 (en) | Electric power steering device | |
JP3763347B2 (ja) | 電動式舵取装置 | |
JP3658683B2 (ja) | 電動式舵取装置 | |
US7779959B2 (en) | Electric power steering apparatus | |
JP2019089355A (ja) | パワーステアリング装置 | |
JP2007190969A (ja) | 電動パワーステアリング装置 | |
JP2011136652A (ja) | 電動パワーステアリング装置 | |
JP2007216721A (ja) | 電動パワーステアリング装置 | |
JP4016815B2 (ja) | 電動パワーステアリング装置 | |
JP4352325B2 (ja) | 電動パワーステアリング装置 | |
JP2003154945A (ja) | 電動式動力舵取装置 | |
JP2003095119A (ja) | 電動式パワーステアリング装置 | |
JP3780172B2 (ja) | 電動式動力舵取装置 | |
JP4235894B2 (ja) | 電動パワーステアリング装置 | |
JP2010025159A (ja) | 減速機および電動パワーステアリング装置 | |
JP2010069987A (ja) | 電動パワーステアリング装置 | |
JP2007191071A (ja) | 電動パワーステアリング装置 | |
JP4716074B2 (ja) | 電動式動力舵取装置 | |
JPH10297505A (ja) | 電動式パワーステアリング装置 | |
JP2010047111A (ja) | 車両用操舵装置 | |
JP4039271B2 (ja) | 減速装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080059484.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10840933 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 13513942 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2010840933 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010840933 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |