[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011081076A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2011081076A1
WO2011081076A1 PCT/JP2010/073203 JP2010073203W WO2011081076A1 WO 2011081076 A1 WO2011081076 A1 WO 2011081076A1 JP 2010073203 W JP2010073203 W JP 2010073203W WO 2011081076 A1 WO2011081076 A1 WO 2011081076A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
housing
output shaft
shaft
holding portion
Prior art date
Application number
PCT/JP2010/073203
Other languages
English (en)
French (fr)
Inventor
九郎丸 善和
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to EP10840933.5A priority Critical patent/EP2520474A4/en
Priority to CN201080059484.7A priority patent/CN102712338B/zh
Priority to US13/513,942 priority patent/US8727065B2/en
Publication of WO2011081076A1 publication Critical patent/WO2011081076A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears
    • F16H55/24Special devices for taking up backlash

Definitions

  • the present invention relates to an electric power steering apparatus.
  • the electric power steering device of Patent Document 1 includes a pair of bearings that support the lower end of the output shaft and an eccentric bearing holder that supports the pair of bearings at a lower position in the axial direction of the worm wheel.
  • the center distance is increased or decreased by rotating the eccentric bearing holder and moving the lower end of the output shaft and the worm wheel in the radial direction.
  • the electric power steering device of Patent Document 2 has been proposed.
  • the electric power steering device of Patent Document 2 includes a worm shaft side housing that supports a worm shaft and a motor, and first and second housings that sandwich the worm shaft side housing vertically in the axial direction of the worm wheel. At least one of the first and second housings supports the worm wheel.
  • the electric power steering apparatus of Patent Document 2 moves the worm shaft side housing relative to the first and second housings, thereby adjusting the center distance between the worm shaft and the worm wheel.
  • An adjustment mechanism is provided. Specifically, the backlash adjusting mechanism rotates the cam shaft having the eccentric cam in the insertion hole through which the worm shaft side housing and the first and second housings are inserted in parallel with the worm wheel axis direction.
  • Patent Document 1 the output characteristics of a torque sensor for detecting a steering torque, which is usually arranged above the worm wheel in the axial direction, is affected by the eccentricity. As a result, the assist characteristics are affected, and the steering feeling may be deteriorated.
  • Patent Document 2 since the cam shaft through which the three housings are inserted is provided, the structure becomes complicated. In addition, it is necessary to improve the combination accuracy of multiple parts including the camshaft, which increases the manufacturing cost.
  • the bearing that supports the output shaft that rotates together with the worm wheel cannot be disposed in the worm shaft-side housing, the bearing is disposed in the second housing below. Therefore, since the distance between the bearing and the worm wheel is large, the support accuracy of the worm wheel is deteriorated. For this reason, tooth contact worsens, As a result, an operation sound becomes loud or durability worsens.
  • the present invention has been made based on such a background, and an object thereof is to provide an electric power steering device with low noise, good steering feeling and excellent durability.
  • the present invention provides a steering shaft including an input shaft connected to a steering member, an output shaft connected to a steering mechanism, and a torsion bar connecting the input shaft and the output shaft, and the steering shaft.
  • a torque sensor for detecting a steering torque loaded on the motor, an electric motor controlled based on the output of the torque sensor, a driving member and a driven member, and reducing the output rotation of the electric motor to the output shaft.
  • a transmission mechanism for transmitting; a first bearing for rotatably supporting the output shaft; a first housing for supporting the first bearing; a second housing for rotatably supporting the drive member;
  • the driven member is rotatable together with the output shaft, and the first housing holds a first bearing that supports the output shaft.
  • the second housing Concentric with the holding portion, the second housing includes a fitting portion that fits into the eccentric fitting portion, and when adjusting a center-to-center distance between the driving member and the driven member, the second housing There is provided an electric power steering device configured such that the eccentric fitting portion of the first housing is rotated with respect to the fitting portion of the housing.
  • the eccentric fitting portion when the eccentric fitting portion is rotated together with the first housing with respect to the fitting portion of the second housing, the driven member supported by the first bearing holding portion of the first housing via the output shaft.
  • the center of the member and the center of the drive member supported by the second housing move relative to each other. Thereby, the distance between the centers can be adjusted, and as a result, the backlash between the driving member and the driven member can be appropriately adjusted.
  • the torque sensor holding portion of the first housing is concentric with the first bearing holding portion of the first housing, the positional relationship between the torque sensor and the output shaft does not change. Therefore, there is little variation in detection performance of the torque sensor, and a good steering feeling can be obtained.
  • the transmission mechanism may be a staggered shaft gear mechanism such as a worm gear mechanism including a worm shaft as a driving member and a worm wheel as a driven member.
  • the transmission mechanism may be a parallel shaft gear mechanism such as a spur gear or a helical gear.
  • the transmission mechanism may be a belt / pulley mechanism including a driving pulley as a driving member and a driven pulley as a driven member.
  • a second bearing that rotatably supports the output shaft is provided, and the second housing includes a second bearing holding portion that holds the second bearing, and adjusts the distance between the centers.
  • a gap is formed between the second bearing holding portion of the second housing and the second bearing to allow radial movement of the second bearing relative to the second housing. (Claim 2).
  • the output shaft is twisted between the first bearing and the second bearing. Will not occur.
  • the amount of the gap need only correspond to the adjustment of the distance between the centers, and may be a very small gap.
  • An elastic body may be sandwiched between the gaps.
  • the second bearing may be provided with a lock member capable of fixing the second bearing to the second bearing holding portion.
  • the second bearing can be fixed to the second bearing holding portion.
  • a gap for allowing the second bearing to move in the radial direction relative to the second housing may be formed between the second housing and the third housing. Item 4).
  • the third housing holding the second bearing with respect to the second housing is allowed to move in the radial direction. Therefore, the first bearing and the second housing are allowed to move.
  • the output shaft does not twist between the bearings. As a result, the rotational resistance of the output shaft does not increase.
  • the amount of the gap need only correspond to the adjustment of the distance between the centers, and may be a very small gap.
  • the first bearing may include a unique bearing that directly supports the output shaft (claim 5). In this case, it is possible to prevent the output shaft from being twisted when the center-to-center distance is adjusted.
  • FIG. 1 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the relationship between the center positions of the bearing holding portion, the torque sensor holding portion, and the eccentric fitting portion in the first housing of FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to another embodiment of the present invention.
  • FIG. 5 is an enlarged view of a main part of the electric power steering apparatus of FIG.
  • FIG. 6 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to another embodiment of the present invention.
  • FIG. 1 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the relationship between the center positions of the bearing holding portion, the torque sensor holding portion, and the eccentric fitting
  • FIG. 7 is an enlarged view of a main part of the electric power steering apparatus of FIG.
  • FIG. 8 is a schematic view showing the positional relationship of the centers of the bearing holding portion, the torque sensor holding portion, and the eccentric fitting portion in the first housing of FIG.
  • FIG. 9 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to a reference embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional schematic diagram showing a schematic configuration of an electric power steering apparatus according to another reference embodiment of the present invention.
  • FIG. 11 is a schematic perspective view of an attachment structure for attaching the steering column of the electric power steering apparatus to the vehicle body.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering apparatus 1 as a vehicle steering apparatus according to an embodiment of the present invention.
  • an electric power steering apparatus 1 includes a steering shaft 3 connected to a steering member 2 such as a steering wheel, an intermediate shaft 5 connected to the steering shaft 3 via a universal joint 4, an intermediate A pinion shaft 7 connected to the shaft 5 via a universal joint 6 and a rack 8a that meshes with the pinion 7a provided in the vicinity of the end of the pinion shaft 7 and has a steering extending in the axial direction as the left-right direction of the automobile. It has a rack shaft 8 as a shaft.
  • the pinion shaft 7 and the rack shaft 8 constitute a steering mechanism A composed of a rack and pinion mechanism.
  • the rack shaft 8 is supported in a housing 9 fixed to the vehicle body through a plurality of bearings (not shown) so as to be capable of linear reciprocation in the axial direction. Both end portions of the rack shaft 8 protrude to both sides of the housing 9, and tie rods 10 are coupled to the respective end portions. Each tie rod 10 is connected to a corresponding steered wheel 11 via a corresponding knuckle arm (not shown). When the steering member 2 is operated and the steering shaft 3 is rotated, this rotation is converted into a linear motion in the axial direction of the rack shaft 8 by the pinion 7a and the rack 8a. Thereby, the turning of the steered wheel 11 is achieved.
  • the steering shaft 3 includes an input shaft 12 connected to the steering member 2 and an output shaft 13 connected to the intermediate shaft 5.
  • the input shaft 12 and the output shaft 13 are connected via a torsion bar 14 so as to be relatively rotatable on the same axis. That is, when a steering torque of a predetermined value or more is input to the steering member 2, the input shaft 12 and the output shaft 13 rotate in the same direction while rotating relative to each other.
  • the torque sensor 15 disposed around the steering shaft 3 detects the steering torque input to the steering member 2 based on the relative rotational displacement amounts of the input shaft 12 and the output shaft 13.
  • the torque detection result of the torque sensor 15 and the vehicle speed detection result from the vehicle speed sensor 16 are input to an ECU 17 (Electronic Control Unit: electronic control unit) as a control device.
  • ECU 17 Electronic Control Unit: electronic control unit
  • the electric power steering apparatus 1 includes a steering assist mechanism B.
  • the steering assist mechanism B includes an electric motor 18 for assisting steering, and a transmission mechanism 19 for transmitting the output torque of the electric motor 18 to the steering mechanism A.
  • a three-phase brushless motor is used as the electric motor 18.
  • the transmission mechanism 19 includes a worm gear mechanism having a worm shaft 20 as a driving member and a worm wheel 21 as a driven member that meshes with the worm 20c of the worm shaft 20.
  • the worm shaft 20 is connected to the rotating shaft of the electric motor 18 through a joint so that torque can be transmitted.
  • the worm wheel 21 is connected to the output shaft 13 of the steering shaft 3 so as to be able to rotate together and not to move in the axial direction.
  • the worm wheel 21 When the electric motor 18 rotationally drives the worm shaft 20, the worm wheel 21 is rotationally driven by the worm shaft 20, and the worm wheel 21 and the output shaft 13 rotate together.
  • the rotation of the output shaft 13 is transmitted to the pinion shaft 7 through the intermediate shaft 5.
  • the rotation of the pinion shaft 7 is converted into the movement of the rack shaft 8 in the axial direction.
  • the steered wheel 11 is steered. That is, when the worm shaft 20 is rotationally driven by the electric motor 18, the steered wheels 11 are steered, and the driver's steering is assisted.
  • the electric motor 18 is controlled by the ECU 17.
  • the ECU 17 drives and controls the electric motor 18 based on the torque detection result from the torque sensor 15 and the vehicle speed detection result from the vehicle speed sensor 16.
  • a steering column 22 that rotatably supports the steering shaft 3 is fitted to the tube housing 23, a first housing 24 as an eccentric housing fitted to the lower end of the tube housing 23, and the first housing 24.
  • the second housing 25 is provided.
  • the tube housing 23 rotatably supports the input shaft 12 via a bearing 26 at its upper end.
  • a first bearing 27 and a second bearing 28 that rotatably support the output shaft 13 are disposed on both sides of the worm wheel 21 sandwiched up and down (in the axial direction).
  • the bearing 26, the 1st bearing 27, and the 2nd bearing 28 consist of rolling bearings, such as a ball bearing, for example.
  • the first housing 24 includes a cylindrical portion 29 that is coaxially fitted to the lower end of the tube housing 23, an annular plate 30 that is orthogonally connected to the lower end of the cylindrical portion 29, and the annular plate 30.
  • a cylindrical protrusion 31 extending downward from the vicinity of the outer periphery and a cylindrical protrusion 32 formed radially inward of the cylindrical protrusion 31 and extending downward from the annular plate 30 are provided.
  • the first housing 24 is eccentric with respect to the first bearing holding portion 33 and the first bearing holding portion 33 that holds the outer ring 27 a of the first bearing 27 that rotatably supports the output shaft 13.
  • the torque sensor holding part 35 for holding the torque sensor 15.
  • the first housing 24 rotatably supports the output shaft 13 via a first bearing 27 held by the first bearing holding portion 33.
  • the upper end of the cylindrical portion 29 of the first housing 24 is reduced in diameter, and a fitting portion 29 a that fits to the inner periphery of the lower end of the tube housing 23 is formed on the outer periphery thereof.
  • the torque sensor holding portion 35 is provided on the inner periphery of the cylindrical portion 29 of the first housing 24.
  • the first bearing holding portion 33 is provided on the inner periphery of the cylindrical protrusion 32, and the eccentric fitting portion 34 is provided on the outer periphery of the cylindrical protrusion 31.
  • the fitting portion 29a, the torque sensor holding portion 35, and the first bearing holding portion 33 are formed on concentric cylindrical surfaces having a common center C1.
  • the eccentric fitting portion 34 is formed on a cylindrical surface that is eccentric with respect to the first bearing holding portion 33. That is, the center C2 of the eccentric fitting part 34 is offset by a predetermined amount from the center C1 of the first bearing holding part 33 and the torque sensor holding part 35.
  • the direction in which the center C2 of the eccentric fitting portion 34 is offset is preferably a direction that is orthogonal to both the worm shaft 20 and the central axis of the worm wheel 21.
  • the second housing 25 includes a fitting portion 36 that can be fitted to the eccentric fitting portion 34 of the first housing 24, and a second bearing holding portion 37 that holds the second bearing 28. Yes.
  • the fitting portion 36 and the second bearing holding portion 37 are formed on cylindrical surfaces that are eccentric to each other. Further, the inner diameter of the second bearing holding portion 37 is made a minute amount larger than the outer diameter of the outer ring 28 a of the second bearing 28. Accordingly, a gap S can be provided between the second bearing holding portion 37 and the outer ring 28 a of the second bearing 28.
  • This gap S is second with respect to the second housing 25 when adjusting the center distance D between the worm shaft 20 and the worm wheel 21, that is, when adjusting the backlash between the worm shaft 20 and the worm wheel 21. This is to allow movement of the bearing 28 in the radial direction.
  • the outer ring 28a of the second bearing 28 is held in the second bearing by being screwed into the threaded portion adjacent to the second bearing holding portion 37 and pressing the end surface of the outer ring 28a of the second bearing 28.
  • a lock member 38 that is fixed to the portion 37 is provided.
  • the lock member 38 is loosened during the above-described backlash adjustment, and is stopped after the adjustment is completed.
  • the inner ring 28b of the second bearing 28 is fitted to the output shaft 13 so as not to be relatively rotatable.
  • the inner ring 28 b of the second bearing 28 is sandwiched between a step portion 50 formed on the output shaft 13 and a retaining ring 51 locked to the outer peripheral groove of the output shaft 13, whereby the second bearing 28.
  • the axial movement of the output shaft 13 is restricted.
  • the worm wheel 21 includes an annular cored bar 21a coupled to the output shaft 13 so as to be integrally rotatable, and a synthetic resin member 21b that surrounds the cored bar 21a and has teeth 21c formed on the outer periphery.
  • the cored bar 21a is inserted into a mold at the time of resin molding of the synthetic resin member 21b, for example.
  • one end 20 a and the other end 20 b of the worm shaft 20 are rotatably supported by a pair of bearings 39 and 40 held by the second housing 25.
  • Inner rings 39 a and 40 a of the pair of bearings 39 and 40 are fitted into corresponding constricted portions of the worm shaft 20.
  • the outer rings 39 b and 40 b of the pair of bearings 39 and 40 are respectively held by bearing holding portions 41 and 42 of the second housing 25.
  • the outer ring 39b of the bearing 39 that supports the one end 20a of the worm shaft 20 is positioned in contact with the step 43 of the second housing 25.
  • the inner ring 39a of the bearing 39 is restricted from moving toward the other end 20b by contacting the positioning step 44 of the worm shaft 20.
  • the inner ring 40a of the bearing 40 that supports the vicinity of the other end portion 20b (joint side end portion) of the worm shaft 20 is brought into contact with the positioning step portion 45 of the worm shaft 20 so as to move toward the one end portion 20a side. Movement is regulated.
  • the outer ring 40b of the bearing 40 is biased toward the bearing 39 by a screw member 46 for preload adjustment.
  • the screw member 46 is screwed into a screw hole 47 formed in the second housing 25, thereby applying a preload to the pair of bearings 39, 40 and positioning the worm shaft 20 in the axial direction.
  • the lock nut 48 is a nut engaged with the screw member 46 in order to stop the screw member 46 after the preload adjustment.
  • the other end portion 20b of the worm shaft 20 is connected to the rotary shaft 18a of the electric motor 18 through a spline joint 49, for example, so that torque can be transmitted.
  • the eccentric fitting portion 34 of the first housing 24 rotates.
  • the center of 20 moves relatively.
  • the center distance D between the worm shaft 20 and the worm wheel 21 can be adjusted, and as a result, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 21 can be adjusted appropriately.
  • the outer ring 28 a of the second bearing 28 is fixed to the second bearing holding portion 37 of the second housing 25 by tightening the lock member 38.
  • the torque sensor holding portion 35 of the first housing 24 is concentric with the first bearing holding portion 33 of the first housing 24, the torque sensor 15 and the torque sensor 15 can be rotated even if the first housing 24 is rotationally displaced.
  • the positional relationship with the output shaft 13 does not change. Therefore, there is little variation in the detection performance of the torque sensor 15, and a good steering feeling can be obtained through obtaining stable assist performance.
  • the eccentric fitting portion 34 of the first housing 24 is fitted to the fitting portion 36 of the counterpart second housing 25. That is, since the housings 24 and 25 are directly fitted to each other, another part such as a cam shaft as in Patent Document 2 can be eliminated, and the structure can be simplified. Moreover, there is no restriction
  • a second bearing 28 facing the first bearing 27 with the worm wheel 21 sandwiched in the axial direction of the output shaft 13 is provided. Further, when adjusting the distance D between the centers, a gap S that allows the radial movement of the second bearing 28 to the second bearing holding portion 37 of the second housing 25 can be provided. did. Therefore, the output shaft 13 is not twisted between the first bearing 27 and the second bearing 28 regardless of the adjustment of the center distance D, and as a result, the rotational resistance of the output shaft 13 is increased. There is no.
  • the amount of the gap S may correspond to an adjustment amount (for example, about several tens of ⁇ m) of the center distance D, and may be a very small gap.
  • FIG. 4 shows another embodiment of the present invention.
  • the present embodiment is different from the embodiment of FIG. 1 as follows. That is, a third housing 52 that functions as an end housing connected to the bottom of the second housing 125 is provided, and the second bearing 28 is provided by the second bearing holding portion 53 provided in the third housing 52. To keep. Further, when adjusting the center-to-center distance between the worm shaft 20 and the worm wheel 21, a gap S1 for allowing the second housing 125 to move in the radial direction with respect to the second housing 125 has a second housing. It is formed between 125 and the third housing 52.
  • an insertion hole 55 is formed in the bottom wall 54 of the second housing 125.
  • the third housing 52 has a cylindrical portion 56 inserted through the insertion hole 55 and an annular plate 57 extending radially outward from the outer periphery of the cylindrical portion 56 and extending along the bottom wall 54. is doing.
  • the second bearing holding portion 53 is provided on the inner periphery of the cylindrical portion 56 of the third housing 52.
  • the outer ring 28 a of the second bearing 28 fitted to the second bearing holding portion 53 is engaged with a step portion 58 formed on the inner periphery of the cylindrical portion 56 and an inner peripheral groove of the cylindrical portion 56. It is sandwiched between the retaining ring 59 and the movement in the axial direction is restricted.
  • the inner diameter of the insertion hole 55 of the second housing 125 is larger by a predetermined amount than the outer diameter of the cylindrical portion 56 of the third housing 52, and the inner periphery of the insertion hole 55 and the outer periphery of the cylindrical portion 56 are The gap S1 is provided between the two.
  • the fitting portion 36 fitted to the eccentric fitting portion 34 of the first housing 24 and the inner periphery of the insertion hole 55 are formed on cylindrical surfaces that are eccentric to each other.
  • the second bearing holding portion 53 and the outer periphery of the cylindrical portion 56 are formed on concentric cylindrical surfaces.
  • the fixing screw 61 loosely fitted in the screw insertion hole 60 formed in the third housing 52 is inserted into the screw hole 62 formed in the bottom wall 54 of the second housing 125.
  • the second housing 125 and the third housing 52 are fixed by being screwed.
  • the same operational effects as the embodiment of FIG. 1 can be obtained.
  • the fixing screw 61 is loosened, and the second housing 125 and the third housing 52 are separated by the gap S1. Allow relative movement.
  • the output shaft 13 is not twisted between the first bearing 27 and the second bearing 28 regardless of the adjustment of the center-to-center distance, and consequently the rotational resistance of the output shaft 13 is increased.
  • the amount of the gap S1 only needs to correspond to the adjustment amount of the center-to-center distance (for example, about several tens of ⁇ m), and may be a very small gap.
  • the third housing 52 is fixed to the second housing 125 by the fixing screw 61.
  • FIGS. 6 to 8 show another embodiment of the present invention.
  • the present embodiment is different from the embodiment of FIGS. 1 and 3 as follows. That is, in the embodiment of FIGS. 1 and 3, the output shaft 13 is supported at both ends by the first and second bearings 27 and 28 disposed on both sides of the worm wheel 21. Further, the first bearing 27 is held by the first bearing holding portion 33 of the first housing 24 as an eccentric housing. Further, the second bearing 28 is held in the second bearing holding portion 37 of the second housing 25 that supports the worm shaft 20 as shown in FIG. 1, or the second housing 28 as shown in FIG. The second bearing holding portion 53 of the third housing 52 connected to 125 is held.
  • the bearing directly supporting the output shaft 13 is the first bearing holding of the first housing 224 as an eccentric housing. Only the first bearing 227 supported by the portion 233 was used. Further, the first bearing 227 is arranged inward in the radial direction of the synthetic resin member 65 of the worm wheel 63 of the transmission mechanism 119, and the center position of the synthetic resin member 65 with respect to the axial direction of the output shaft 13; The center position of the first bearing 227 is matched or substantially matched.
  • the first housing 224 includes a cylindrical portion 229 that is coaxially fitted to the lower end of the tube housing 23, and an annular plate 230 that is orthogonally connected to the lower end of the cylindrical portion 229.
  • a cylindrical projection 231 extending upward from the vicinity of the outer periphery of the annular plate 230 and a cylindrical projection 232 extending downward from the inner periphery of the annular plate 230 are provided.
  • a fitting portion 229 a that fits to the outer periphery of the lower end of the tube housing 23 is provided on the inner periphery of the upper end of the tubular portion 229, and a torque sensor holding portion 235 is provided on the inner periphery of the tubular portion 229.
  • a first bearing holding portion 233 that holds the outer ring 227 a of the first bearing 227 is provided on the inner periphery of the cylindrical protrusion 232.
  • an eccentric fitting portion 234 that is eccentric with respect to the first bearing holding portion 233 is provided on the outer periphery of the cylindrical projection 231, and the eccentric fitting portion 234 has an inner end of the upper end of the second housing 225.
  • a fitting portion 236 facing the periphery is fitted.
  • FIG. 8 which is a schematic view
  • the fitting portion 229a, the torque sensor holding portion 235, and the first bearing holding portion 233 are formed on concentric cylindrical surfaces having a common center C11, and are eccentrically fitted.
  • the joining portion 234 is formed on a cylindrical surface having a center C12 offset by a predetermined amount with respect to the center C11.
  • the worm wheel 63 includes an annular core metal 64 coupled to the output shaft 13 so as to be integrally rotatable, and the annular synthetic resin member 65 surrounding the periphery of the core metal 64 and having teeth 651 formed on the outer periphery.
  • the core metal 64 is inserted into the mold when the synthetic resin member 65 is molded with resin, for example.
  • the cored bar 64 includes an inner cylinder 66 fitted and fixed to the outer periphery of the output shaft 13, an outer cylinder 67 fitted and fixed to the inner periphery of the synthetic resin member 65, one end 67 a (lower end) of the outer cylinder 67, and an inner An annular connecting portion 68 for connecting the tube 66 is provided.
  • the cylindrical projection 232 of the first housing 224 is disposed radially inward of the outer cylinder 67.
  • the outer ring 227 a of the first bearing 227 is sandwiched between an annular flange 69 that extends radially inward from one end of the cylindrical protrusion 232 and a retaining ring 70 that is locked in the inner peripheral groove of the cylindrical protrusion 232.
  • the inner ring 227b of the first bearing 227 is sandwiched between the end surface 66a of the inner tube 66 of the core metal 64 and the retaining ring 71 locked to the outer peripheral groove of the output shaft 13, whereby the output shaft 13 is restricted from moving in the axial direction of the first bearing 227 with respect to 13.
  • the same operational effects as the embodiment of FIG. 1 can be obtained. That is, the center distance between the worm shaft 20 and the worm wheel 63 can be adjusted by rotating the first housing 224 as an eccentric housing with respect to the second housing 225. Thereby, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 63 can be adjusted appropriately. Further, since the first bearing 227 that directly supports the output shaft 13 is the only bearing, it is possible to prevent the output shaft 13 from being twisted when the center distance is adjusted.
  • the first bearing 227 is disposed radially inward of the synthetic resin member 65 of the worm wheel 63, and the center position of the synthetic resin member 65 and the center of the first bearing 227 with respect to the axial direction of the output shaft 13. The position is matched or substantially matched. Therefore, the electric power steering device 1 can be reduced in size in the axial direction. Moreover, since the support accuracy of the worm wheel 63 can be increased, the tooth contact is good. As a result, noise reduction can be realized in combination with the above-described backlash adjustment, and durability can be improved.
  • the support center (bearing center) of the first bearing 27 is disposed radially inward of the engagement center between the worm shaft 20 and the worm wheel 21, the worm shaft 20 and the worm wheel 21 are engaged with each other.
  • the operating point of the torque fluctuation coincides with the support center of the first bearing 27. Accordingly, since the swinging of the output shaft 13 can be completely suppressed, it is possible to surely prevent the meshing position from being shifted and abnormal rattling. As a result, an appropriate backlash is always maintained and a smooth steering assist force can be transmitted.
  • FIG. 9 shows a reference embodiment of the present invention.
  • the present embodiment is mainly different from the embodiment of FIG. 1 in that a first housing 324 and a second housing 325 connected to the lower portion of the first housing 324 are provided.
  • the housing 325 is configured as an eccentric housing having an eccentric fitting portion 334.
  • the first housing 324 includes a fitting portion 329 a of the cylindrical portion 329 fitted to the tube housing 23, a torque sensor holding portion 335 that holds the torque sensor 15, and a first bearing 27 that holds the first bearing 27.
  • the bearing holding portion 333 has a cylindrical surface concentric with each other.
  • the first housing 324 has a fitting portion 336 that fits into the eccentric fitting portion 334 of the second housing 325 as a cylindrical surface that is eccentric with respect to the concentric cylindrical surface.
  • the first bearing holding portion 333 Between the first bearing holding portion 333 and the outer periphery of the outer ring 27a of the first bearing 27, when the distance between the centers of the worm shaft 20 and the worm wheel 21 is adjusted, the first bearing holding portion 333 is A gap S ⁇ b> 2 is formed for allowing the first bearing 27 to move in the radial direction. Between the first bearing holding portion 333 and the outer periphery of the outer ring 27a of the first bearing 27, an annular elastic member 72 is interposed in an elastically compressed state. The elastic member 72 prevents rattling of the first bearing 27 in the first bearing holding portion 333, and prevents generation of noise due to the rattling.
  • the first housing 324 extends to the lower side of the worm shaft 20, and the fitting portion 336 is provided eccentrically with respect to the fitting portion 329a on the inner periphery of the extended end.
  • the second housing 325 includes an inner cylinder 73, an outer cylinder 74, and a connecting wall 75 that connects the inner cylinder 73 and the outer cylinder 74.
  • a second bearing holding portion 337 for holding the second bearing 28 is formed on the inner periphery of the inner cylinder 73, and the above-mentioned eccentricity with respect to the second bearing holding portion 337 is provided on the outer periphery of the outer cylinder 74.
  • An eccentric fitting portion 334 is formed.
  • the outer ring 28 a of the second bearing 28 is sandwiched between a stepped portion 76 formed on the inner periphery of the inner cylinder 73 and a retaining ring 77, whereby the shaft of the second bearing 28 with respect to the second housing 325.
  • Directional movement is restricted.
  • the same components as those of the embodiment of FIG. 1 are denoted by the same reference numerals as those of the embodiment of FIG.
  • the first housing is accompanied with the rotation of the eccentric fitting portion 334 of the second housing 325.
  • the shaft core of the worm shaft 20 supported by 324 and the shaft core of the worm wheel 21 supported by the second housing 325 via the second bearing 28 move relative to each other. Thereby, the distance between the centers of the worm shaft 20 and the worm wheel 21 can be adjusted, and as a result, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 21 can be adjusted appropriately.
  • a gap S2 is provided so that the first bearing 27 is allowed to move in the radial direction with respect to the first bearing holding portion 333 of the first housing 324 when adjusting the distance between the centers. Therefore, the output shaft 13 is not twisted between the first bearing 27 and the second bearing 28 regardless of the adjustment of the center-to-center distance. As a result, the rotational resistance of the output shaft 13 does not increase.
  • the amount of the gap S2 only needs to correspond to an adjustment amount of the center-to-center distance (for example, about several tens of ⁇ m), and may be a very small gap.
  • the torque sensor 15 held by the torque sensor holding unit 335 and the output shaft 13 slightly changes.
  • the torque sensor 15 can be made less susceptible to eccentricity. As a result, a good steering feeling can be obtained through obtaining stable assist performance.
  • FIG. 10 shows another reference embodiment of the present invention.
  • the present embodiment is mainly different from the embodiment of FIG. 6 in that a first housing 424 and a second housing 425 connected to the lower portion of the first housing 424 are provided.
  • the housing 425 is configured as an eccentric housing having an eccentric fitting portion 434.
  • the first housing 424 has a fitting portion 429a of a cylindrical portion 429 fitted to the tube housing 23 and a torque sensor holding portion 435 that holds the torque sensor 15 as concentric cylindrical surfaces.
  • the first housing 424 has a fitting portion 436 that is fitted to the eccentric fitting portion 434 of the second housing 425 as a cylindrical surface that is eccentric with respect to the concentric cylindrical surface.
  • the first housing 424 extends to the lower side of the worm shaft 20, and the fitting portion 436 is provided eccentrically with respect to the fitting portion 429a on the inner periphery of the extended end.
  • the second housing 425 includes a small cylinder 78 and a large cylinder 79 that extend in opposite directions in the axial direction, and a connecting wall 80 that connects the small cylinder 78 and the large cylinder 79.
  • a second bearing holding portion 437 that holds the first bearing 427 is formed on the inner periphery of the small cylinder 78.
  • the eccentric fitting portion 434 that is eccentric with respect to the first bearing holding portion 433 is formed on the outer periphery of the large cylinder 79.
  • the outer ring 427 a of the first bearing 427 is sandwiched between a step portion 81 formed on the inner periphery of the small cylinder 78 and a retaining ring 82. Thereby, the axial movement of the first bearing 427 relative to the second housing 425 is restricted.
  • the worm wheel 83 of the transmission mechanism 419 includes an annular cored bar 84 coupled to the output shaft 13 so as to be integrally rotatable, and the annular synthetic resin member 85 that surrounds the cored bar 84 and has teeth 851 formed on the outer periphery. Is provided.
  • the core metal 84 is inserted into the mold when the synthetic resin member 85 is molded with resin, for example.
  • the cored bar 84 includes a small cylinder 86 and a large cylinder 87 that extend on the same side in the axial direction, and an annular connecting wall 88 that connects between opposing ends of the small cylinder 86 and the large cylinder 87.
  • the small cylinder 86 is fitted to the outer periphery of the output shaft 13 so as to be able to rotate together.
  • the large cylinder 87 is fitted and fixed to the inner periphery of the synthetic resin member 85.
  • the small cylinder 78 of the second housing 425 is disposed radially inward of the large cylinder 87 of the cored bar 84 of the worm wheel 83.
  • the tip of the small cylinder 78 is in contact with or close to the end surface of the inner ring 427 b of the first bearing 427.
  • the inner ring 427 b of the first bearing 427 is sandwiched between a step portion 89 formed on the outer periphery of the output shaft 13 and a retaining ring 90 locked to the outer peripheral groove of the output shaft 13.
  • the axial movement of the output shaft 13 with respect to the bearing 427 is restricted.
  • the first housing is accompanied with the rotation of the eccentric fitting portion 434 of the second housing 425.
  • the center of the worm shaft 20 supported by 424 and the center of the worm wheel 83 supported by the second housing 425 via the first bearing 427 move relative to each other. Thereby, the distance between the centers of the worm shaft 20 and the worm wheel 83 can be adjusted, and as a result, the backlash between the tooth surfaces between the worm shaft 20 and the worm wheel 83 can be adjusted appropriately.
  • the bearing that directly supports the output shaft 13 is the only bearing 427, the output shaft 13 can be prevented from being twisted when the center-to-center distance is adjusted. Further, the positional relationship between the torque sensor 15 held by the torque sensor holding portion 435 and the output shaft 13 slightly changes with the adjustment of the center-to-center distance. However, by using, for example, a Hall IC or other non-contact type sensor as the torque sensor 15, the torque sensor 15 can be made less susceptible to eccentricity. As a result, a good steering feeling can be obtained through obtaining stable assist performance.
  • FIG. 11 is a perspective view of an attachment structure D for attaching the steering column 22 of the electric power steering apparatus 1 of each embodiment described above to the vehicle body.
  • the mounting structure D is fixed to one of a vehicle body side bracket 91 fixed to, for example, a cross member (not shown) of the vehicle body, and a pair of housings that are relatively rotated during center distance adjustment (backlash adjustment).
  • Column side bracket 92 is provided.
  • the column-side bracket 92 is formed with a screw insertion hole 93 having an arc shape centered on the central axis of the output shaft 13.
  • a pair of screw insertion holes 93 is provided.
  • the pair of screw insertion holes 93 are disposed at asymmetrical positions that are not point-symmetric with respect to the output shaft 13, thereby preventing erroneous mounting of the column side bracket 92 (the column side bracket 92 is mounted upside down). It is prevented.
  • a misassembly prevention protrusion may be extended from a part of the peripheral edge of the column side bracket 92.
  • the first and second fixing screws 94 and 95 are inserted into the respective screw insertion holes 93.
  • the first and second fixing screws 94 and 95 are screwed into screw holes (not shown) of bosses 96 and 97 formed on the other of the pair of housings, respectively.
  • the first fixing screw 94 is inserted through a screw insertion hole (not shown) made of a circular hole of the vehicle body side bracket 91 and a screw insertion hole 93 made of the long hole of the column side bracket 92, and the corresponding screw Screwed into the hole. That is, the first fixing screw 94 fastens the vehicle body side bracket 91 and the column side bracket 92 together with the steering column 22.
  • each of the above embodiments is an electric power steering device (so-called column assist type electric power steering device) in which the worm wheel is connected to the output shaft of the steering shaft so as to be able to rotate together.
  • the present invention is not limited to this, and may be applied to an electric power steering device (so-called pinion assist type electric power steering device) of a type in which a worm wheel is connected to a pinion shaft so as to be able to rotate together.
  • the transmission mechanism is a worm gear mechanism including a worm shaft as a driving member and a worm wheel as a driven member, but instead of a staggered shaft gear mechanism such as a worm gear mechanism, a spur gear, A parallel shaft gear mechanism such as a helical gear may be used.
  • the transmission mechanism may be a belt / pulley mechanism including a driving pulley as a driving member and a driven pulley as a driven member.
  • SYMBOLS 1 Electric power steering apparatus, 2 ... Steering member, 3 ... Steering shaft, 12 ... Input shaft, 13 ... Output shaft, 14 ... Torsion bar, 15 ... Torque sensor, 18 ... Electric motor, 19; 119; 419 ... Transmission mechanism , 20 ... Worm shaft (drive member), 21; 63 ... Worm wheel (driven member), 22 ... Steering column, 24; 224 ... First housing, 25; 125; 225 ... Second housing, 27 ... First 227 ... 1st bearing (only bearing), 28 ... 2nd bearing, 33; 233 ... 1st bearing holding part, 34; 234 ... Eccentric fitting part, 36; 236 ... fitting part, 37; 53 ... second bearing holding portion, 52 ... third housing, S; S1 ... gap

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Steering Mechanism (AREA)
  • Gear Transmission (AREA)
  • Support Of The Bearing (AREA)

Abstract

 電動パワーステアリング装置(1) が、被動部材(21)と同伴回転する出力軸(13)を、第1の軸受(27;227)を介して支持する第1のハウジング(24;224)と、駆動部材(20)を回転可能に支持する第2のハウジング(25;125;225)とを備える。第1のハウジング(24;224)は、第1の軸受(24;224)を保持する第1の軸受保持部(33;233)に対して偏心した偏心嵌合部(34;234)を含む。偏心嵌合部(34;234)は、第2のハウジング(25;125;225)の嵌合部(36;236)に嵌合する。駆動部材(20)および被動部材(21)間の中心間距離(D) を調整するときに、第2のハウジング(25;125;225)の嵌合部(36;236)に対して第1のハウジング(24;224)の偏心嵌合部(34;234)が回転されるように構成されている。

Description

電動パワーステアリング装置
 本発明は電動パワーステアリング装置に関する。
 この種の電動パワーステアリング装置において、歯打ち音による騒音を低減する構造が提案されている。具体的には、減速機のウォーム軸の一端に偏心カム機構が設けられる。ウォーム軸とウォームホイールの中心間距離を増減してウォーム軸とウォームホイール間のバックラッシを調整することにより、歯打ち音による騒音が低減される。
 しかしながら、ウォーム軸がウォームホイールの軸線とは平行な方向に変位するので、噛み合い中心位置がずれる。このため、歯当たりにバラツキが生じるので、作動音が大きくなったり、耐久性が低下したりするという問題がある。
 そこで、特許文献1の電動パワーステアリング装置が提案されている。特許文献1の電動パワーステアリング装置は、ウォームホイールの軸線方向の下方位置で、出力軸の下端を支持する一対の軸受と、上記一対の軸受を支持する偏心軸受ホルダとを備える。その偏心軸受ホルダを回転させて、出力軸の下端およびウォームホイールを径方向に移動させることにより、上記中心間距離が増減される。
 また、特許文献2の電動パワーステアリング装置が提案されている。特許文献2の電動パワーステアリング装置は、ウォーム軸およびモータを支持するウォーム軸側ハウジングと、このウォーム軸側ハウジングをウォームホイールの軸線方向の上下で挟む第1および第2ハウジングとを備える。第1および第2のハウジングの少なくとも一方が、ウォームホイールを支持する。また、特許文献2の電動パワーステアリング装置は、上記ウォーム軸側ハウジングを、第1および第2ハウジングに対して相対移動させ、これにより、ウォーム軸とウォームホイールとの中心間距離を調整するバックラッシュ調整機構を備える。具体的には、バックラッシ調整機構は、ウォーム軸側ハウジング並びに第1および第2ハウジングをウォームホイール軸線方向とは平行に挿通する挿通孔内で、偏心カムを有するカム軸を回転させる。
特開平11-34888号公報 特開2005-35346号公報
 特許文献1では、通例、ウォームホイールの軸線方向の上方に配置される操舵トルク検出用のトルクセンサの出力特性が、上記偏心の影響を受ける。結果として、アシスト特性に影響し、操舵フィーリングが悪くなるおそれがある。
 特許文献2では、3つのハウジングを挿通するカム軸を設けるので、構造が複雑になる。しかも、カム軸を含む多部品の組合せ精度を高める必要があり、製造コストが高くなる。また、ウォームホイールと同伴回転する出力軸を支持する軸受を、ウォーム軸側ハウジングに配置できないので、当該軸受を下方の第2のハウジングに配置している。したがって、軸受とウォームホイールとの距離が離れているので、ウォームホイールの支持精度が悪くなる。このため、歯当たりが悪くなり、その結果、作動音が大きくなったり、耐久性が悪くなったりする。
 本発明は、かかる背景のもとになされたものであり、低騒音で操舵フィーリングが良く且つ耐久性に優れた電動パワーステアリング装置を提供することを目的とする。
 上記目的を達成するため、本発明は、一局面において、操舵部材に連なる入力軸、転舵機構に連なる出力軸、並びに入力軸および出力軸を連結するトーションバーを含むステアリングシャフトと、上記ステアリングシャフトに負荷される操舵トルクを検出するトルクセンサと、上記トルクセンサの出力に基づいて制御される電動モータと、駆動部材および被動部材を含み、上記電動モータの出力回転を減速して上記出力軸に伝達する伝達機構と、上記出力軸を回転可能に支持する第1の軸受と、上記第1の軸受を支持する第1のハウジングと、上記駆動部材を回転可能に支持する第2のハウジングと、を備え、上記被動部材は、上記出力軸と同伴回転可能であり、上記第1のハウジングは、上記出力軸を支持する第1の軸受を保持する第1の軸受保持部と、上記第1の軸受保持部に対して偏心した偏心嵌合部と、上記トルクセンサを保持するトルクセンサ保持部と、を含み、上記トルクセンサ保持部は、上記第1の軸受保持部と同心をなし、上記第2のハウジングは、上記偏心嵌合部に嵌合する嵌合部を含み、上記駆動部材および上記被動部材間の中心間距離を調整するときに、上記第2のハウジングの上記嵌合部に対して上記第1のハウジングの上記偏心嵌合部が回転されるように構成されている電動パワーステアリング装置を提供する(請求項1)。
 本発明では、第2のハウジングの嵌合部に対して第1のハウジングとともに偏心嵌合部を回転させると、第1のハウジングの第1の軸受保持部によって出力軸を介して支持された被動部材の中心と、第2のハウジングによって支持された駆動部材の中心とが相対移動する。これにより、中心間距離を調整することができ、その結果、駆動部材と被動部材間のバックラッシを適正に調整することができる。このとき、第1のハウジングのトルクセンサ保持部は、当該第1のハウジングの第1の軸受保持部と同心とされているので、トルクセンサと出力軸との位置関係は変わらない。したがって、トルクセンサの検出性能のばらつきが少なく、ひいては良好な操舵フィーリングを得ることができる。
 また、第1のハウジングの偏心嵌合部を相手方の第2のハウジングの嵌合部に嵌合しているので、特許文献2のようなカム軸等の別部品を廃止でき、構造を簡素化することができる。また、出力軸を支持する第1の軸受の配置に特許文献2のような制限がなく、第1の軸受を被動部材に近づけて配置することが可能である。したがって、被動部材の支持精度が高くなるので、歯当たりが良好である。その結果、上記のバックラッシ調整と相まって低騒音化を実現でき、また耐久性を向上することができる。
 伝達機構は、駆動部材としてのウォーム軸および被動部材としてのウォームホイールを含むウォームギヤ機構等の食い違い軸歯車機構であってもよい。また、伝達機構は、平歯車、はすば歯車等の平行軸歯車機構であってもよい。また、伝達機構は、駆動部材としての駆動プーリおよび被動部材としての被動プーリを含むベルト・プーリ機構であってもよい。
 また、上記出力軸を回転可能に支持する第2の軸受が設けられ、上記第2のハウジングは、上記第2の軸受を保持する第2の軸受保持部を含み、上記中心間距離を調整するときに上記第2のハウジングに対する上記第2の軸受の径方向移動を許容するための隙間が、上記第2のハウジングの上記第2の軸受保持部と上記第2の軸受との間に形成されている場合がある(請求項2)。この場合、中心間距離を調整するときに、上記第2のハウジングに対する上記第2の軸受の径方向移動が許容されるので、上記第1の軸受と上記第2の軸受間で出力軸がこじりを生ずることがない。ひいては、出力軸の回転抵抗が大きくなるようなことがない。上記隙間の量は、中心間距離の調整分に相当すればよく、非常に微小な隙間でよい。また、上記隙間に、弾性体を挟み込んでもよい。
 また、上記第2の軸受を上記第2の軸受保持部に止定可能なロック部材を備える場合がある(請求項3)。この場合、中心間距離の調整後に、上記第2の軸受を上記第2の軸受保持部に止定することができる。
 また、上記出力軸を回転可能に支持する第2の軸受と、上記第2の軸受を保持する第2の軸受保持部を有する第3のハウジングと、を備え、上記中心間距離を調整するときに上記第2のハウジングに対して上記第2の軸受の径方向移動を許容するための隙間が、上記第2のハウジングと上記第3のハウジングとの間に形成されている場合がある(請求項4)。この場合、中心間距離を調整するときに、上記第2のハウジングに対する上記第2の軸受を保持した第3のハウジングの径方向移動が許容されるので、上記第1の軸受と上記第2の軸受間で出力軸がこじりを生ずることがない。ひいては、出力軸の回転抵抗が大きくなるようなことがない。上記隙間の量は、中心間距離の調整分に相当すればよく、非常に微小な隙間でよい。
 また、上記第1の軸受は、上記出力軸を直接支持する唯一の軸受を含む場合がある(請求項5)。この場合、中心間距離を調整したときに、出力軸にこじりが生ずることを抑制することができる。
図1は本発明の一実施の形態の電動パワーステアリング装置の概略構成を示す部分断面模式図である。 図2は図1の第1のハウジングにおいて、軸受保持部、トルクセンサ保持部および偏心嵌合部の中心位置に関係を示す概略図である。 図3は図1のIII -III 線に沿う断面図である。 図4は本発明の別の実施の形態の電動パワーステアリング装置の概略構成を示す部分断面模式図である。 図5は図4の電動パワーステアリング装置の要部の拡大図である。 図6は本発明の別の実施の形態の電動パワーステアリング装置の概略構成を示す部分断面模式図である。 図7は図6の電動パワーステアリング装置の要部の拡大図である。 図8は図6の第1のハウジングにおいて、軸受保持部、トルクセンサ保持部および偏心嵌合部の中心の位置関係を示す概略図である。 図9は本発明の参考形態の電動パワーステアリング装置の概略構成を示す部分断面模式図である。 図10は本発明の別の参考形態の電動パワーステアリング装置の概略構成を示す部分断面模式図である。 図11は電動パワーステアリング装置のステアリングコラムを車体に取り付けるための取付構造の概略斜視図である。
 以下には、図面を参照して、この発明の実施形態について具体的に説明する。
 図1は、本発明の一実施形態に係る車両用操舵装置としての電動パワーステアリング装置1の概略構成を示す模式図である。図1を参照して、電動パワーステアリング装置1は、ステアリングホイール等の操舵部材2に連結しているステアリングシャフト3と、ステアリングシャフト3に自在継手4を介して連結された中間軸5と、中間軸5に自在継手6を介して連結されたピニオン軸7と、ピニオン軸7の端部近傍に設けられたピニオン7aに噛み合うラック8aを有して自動車の左右方向としての軸方向に延びる転舵軸としてのラック軸8とを有している。ピニオン軸7およびラック軸8によりラックアンドピニオン機構からなる転舵機構Aが構成されている。
 ラック軸8は、車体に固定されるハウジング9内に、図示しない複数の軸受を介して、軸方向に直線往復動可能に支持されている。ラック軸8の両端部はハウジング9の両側へ突出し、各端部にはそれぞれタイロッド10が結合されている。各タイロッド10は対応するナックルアーム(図示せず)を介して対応する転舵輪11に連結されている。
 操舵部材2が操作されてステアリングシャフト3が回転されると、この回転がピニオン7aおよびラック8aによって、ラック軸8の軸方向への直線運動に変換される。これにより、転舵輪11の転舵が達成される。
 ステアリングシャフト3は、操舵部材2に連結された入力軸12と、中間軸5に連結された出力軸13とを含む。入力軸12と出力軸13とは、トーションバー14を介して同一軸線上で相対回転可能に連結されている。すなわち、操舵部材2に所定値以上の操舵トルクが入力されると、入力軸12および出力軸13は、互いに相対回転しつつ同一方向に回転するようになっている。
 ステアリングシャフト3の周囲に配置されたトルクセンサ15は、入力軸12および出力軸13の相対回転変位量に基づいて、操舵部材2に入力された操舵トルクを検出する。また、トルクセンサ15のトルク検出結果および車速センサ16からの車速検出結果は、制御装置としてのECU17(Electronic Control Unit :電子制御ユニット)に入力される。
 電動パワーステアリング装置1は、操舵補助機構Bを備えている。操舵補助機構Bは、操舵補助用の電動モータ18と、電動モータ18の出力トルクを転舵機構Aに伝動するための伝達機構19とを含む。電動モータ18としては、例えば、三相のブラシレスモータが用いられている。
 また、伝達機構19は、駆動部材としてのウォーム軸20と、ウォーム軸20のウォーム20cと噛み合う被動部材としてのウォームホイール21とを有するウォームギヤ機構により構成されている。ウォーム軸20は、電動モータ18の回転軸と継手を介してトルク伝達可能に連結されている。ウォームホイール21は、ステアリングシャフト3の出力軸13と同伴回転可能に且つ軸方向に移動不能に連結されている。
 電動モータ18がウォーム軸20を回転駆動すると、ウォーム軸20によってウォームホイール21が回転駆動され、ウォームホイール21および出力軸13が同伴回転する。そして、出力軸13の回転は、中間軸5を介してピニオン軸7に伝達される。ピニオン軸7の回転は、ラック軸8の軸方向への移動に変換される。これにより、転舵輪11が転舵される。すなわち、電動モータ18によってウォーム軸20を回転駆動することで、転舵輪11が転舵され、運転者の操舵が補助されるようになっている。
 電動モータ18は、ECU17によって制御される。ECU17は、トルクセンサ15からのトルク検出結果や車速センサ16からの車速検出結果等に基づいて電動モータ18を駆動制御する。
 ステアリングシャフト3を回転可能に支持するステアリングコラム22は、チューブハウジング23と、このチューブハウジング23の下端に嵌合された偏心ハウジングとしての第1のハウジング24と、この第1のハウジング24に嵌合された第2のハウジング25とを備えている。
 チューブハウジング23は、その上端において軸受26を介して入力軸12を回転可能に支持している。ウォームホイール21を上下に(軸線方向に)挟んだ両側において、出力軸13を回転可能に支持する第1の軸受27および第2の軸受28が配置されている。軸受26、第1の軸受27および第2の軸受28は、例えば玉軸受等の転がり軸受からなる。
 第1のハウジング24は、チューブハウジング23の下端に同軸的に嵌合された筒状部29と、この筒状部29の下端に直交状に連結された環状板30と、この環状板30の外周近傍から下方に延びる筒状突起31と、この筒状突起31の径方向内方に形成され環状板30から下方に延びる筒状突起32とを有している。
 また、第1のハウジング24は、出力軸13を回転可能に支持する第1の軸受27の外輪27aを保持する第1の軸受保持部33と、この第1の軸受保持部33に対して偏心した偏心嵌合部34と、上記トルクセンサ15を保持するトルクセンサ保持部35とを有している。第1のハウジング24は、その第1の軸受保持部33によって保持した第1の軸受27を介して出力軸13を回転可能に支持している。
 第1のハウジング24の筒状部29の上端は縮径され、その外周にチューブハウジング23の下端の内周に嵌合する嵌合部29aが形成されている。上記トルクセンサ保持部35は、第1のハウジング24の筒状部29の内周に設けられている。上記第1の軸受保持部33は、筒状突起32の内周に設けられ、上記偏心嵌合部34は、筒状突起31の外周に設けられている。
 概略図である図2に示すように、嵌合部29aおよびトルクセンサ保持部35と第1の軸受保持部33とは、共通の中心C1を有する同心の円筒面に形成されている。偏心嵌合部34は第1の軸受保持部33に対して偏心した円筒面に形成されている。すなわち、偏心嵌合部34の中心C2は、第1の軸受保持部33およびトルクセンサ保持部35の中心C1から所定量オフセットされている。偏心嵌合部34の中心C2をオフセットさせる方向は、ウォーム軸20とウォームホイール21の中心軸線の双方に対して直交する方向であれば好ましい。
 第2のハウジング25は、第1のハウジング24の偏心嵌合部34に嵌合可能な嵌合部36と、上記第2の軸受28を保持する第2の軸受保持部37とを有している。嵌合部36と第2の軸受保持部37とは、互いに偏心した円筒面に形成されている。また、第2の軸受保持部37の内径は、第2の軸受28の外輪28aの外径よりも、微小量大きくされている。したがって、第2の軸受保持部37と第2の軸受28の外輪28aとの間に隙間Sを設け得るようになっている。この隙間Sは、ウォーム軸20とウォームホイール21の中心間距離Dを調整するとき、すなわち、ウォーム軸20とウォームホイール21間のバックラッシを調整するときに、第2のハウジング25に対して第2の軸受28の径方向の移動を許容するためのものである。
 また、第2の軸受保持部37に隣接するねじ部に螺合されて、第2の軸受28の外輪28aの端面を押圧することにより、第2の軸受28の外輪28aを第2の軸受保持部37に固定するロック部材38が設けられている。ロック部材38は、上記のバックラッシ調整のときには緩められ、調整終了後に止定される。
 第2の軸受28の内輪28bは、出力軸13に相対回転不能に嵌合されている。第2の軸受28の内輪28bは、出力軸13に形成された段部50と出力軸13の外周溝に係止された止め輪51との間に挟持され、これにより、第2の軸受28と出力軸13の軸方向相対移動が規制され、その結果、出力軸13の軸方向移動が規制されている。
 ウォームホイール21は、出力軸13に一体回転可能に結合される環状の芯金21aと、芯金21aの周囲を取り囲み外周に歯部21cを形成した合成樹脂部材21bとを備える。芯金21aは、例えば合成樹脂部材21bの樹脂成形時に金型内にインサートされるものである。
 次いで、図3を参照して、ウォーム軸20の一端部20aおよび他端部20bは、第2のハウジング25によって保持された一対の軸受39,40によってそれぞれ回転可能に支持されている。一対の軸受39、40の内輪39a、40aは、ウォーム軸20の、対応するくびれ部に嵌合されている。一対の軸受39,40の外輪39b、40bは、第2のハウジング25の軸受保持部41、42に、それぞれ保持されている。
 ウォーム軸20の一端部20aを支持する軸受39の外輪39bは、第2のハウジング25の段部43に当接して位置決めされている。一方、軸受39の内輪39aは、ウォーム軸20の位置決め段部44に当接されることによって、他端部20b側への移動が規制されている。また、ウォーム軸20の、他端部20b(継手側端部)の近傍を支持する軸受40の内輪40aは、ウォーム軸20の位置決め段部45に当接されることによって、一端部20a側への移動が規制されている。
 軸受40の外輪40bは、予圧調整用のねじ部材46によって、軸受39側へ付勢されている。ねじ部材46は、第2のハウジング25に形成されたねじ孔47にねじ込まれることで、一対の軸受39、40に予圧を付与すると共に、ウォーム軸20を、軸方向に位置決めしている。ロックナット48は、予圧調整後のねじ部材46を止定するために、当該ねじ部材46に係合されるナットである。
 ウォーム軸20の他端部20bは、例えばスプライン継手49を介して、電動モータ18の回転軸18aとトルク伝達可能に連結されている。
 本実施の形態によれば、ロック部材38を緩めた状態で、第2のハウジング25に対して第1のハウジング24を回転させると、第1のハウジング24の偏心嵌合部34の回転に伴って、第1のハウジング24の第1の軸受保持部33によって出力軸13を介して支持されたウォームホイール21の中心と、第2のハウジング25によって軸受39,40を介して支持されたウォーム軸20の中心とが相対移動する。これにより、ウォーム軸20とウォームホイール21の中心間距離Dを調整することができ、その結果、ウォーム軸20とウォームホイール21間の歯面間のバックラッシを適正に調整することができる。バックラッシの調整後は、ロック部材38の締め付けによって、第2の軸受28の外輪28aを第2のハウジング25の第2の軸受保持部37に止定する。
 第1のハウジング24のトルクセンサ保持部35は、第1のハウジング24の第1の軸受保持部33と同心とされているので、第1のハウジング24を回転変位させても、トルクセンサ15と出力軸13との位置関係は変わらない。したがって、トルクセンサ15の検出性能のばらつきが少なく、ひいては安定したアシスト性能を得ることを通じて、良好な操舵フィーリングを得ることができる。
 また、第1のハウジング24の偏心嵌合部34を相手方の第2のハウジング25の嵌合部36に嵌合している。すなわちハウジング24,25どうしを直接嵌合させているので、特許文献2のようなカム軸等の別部品を廃止でき、構造を簡素化することができる。また、出力軸13を支持する軸受の配置に特許文献2のような制限がなく、第1の軸受27をウォームホイール21に近づけて配置することが可能である。したがって、ウォームホイール21の支持精度が高いので、歯当たりが良好であり、その結果、上記のバックラッシ調整と相まって低騒音化を実現でき、また耐久性を向上することができる。
 上記第1の軸受27に対してウォームホイール21を出力軸13の軸方向に挟んで対向する第2の軸受28を設けている。また、中心間距離Dを調整するときに、第2のハウジング25の第2の軸受保持部37に対して第2の軸受28の径方向移動が許容されるような隙間Sを設け得るようにした。したがって、中心間距離Dの調整に拘らず、第1の軸受27と第2の軸受28間で出力軸13がこじりを生ずることがなく、ひいては、出力軸13の回転抵抗が大きくなるようなことがない。上記の隙間Sの量は、中心間距離Dの調整量(例えば数十μm程度)に相当すればよく、非常に微小な隙間でよい。
 次いで、図4は本発明の別の実施の形態を示している。図4を参照して、本実施の形態が図1の実施の形態と異なるのは、下記である。すなわち、第2のハウジング125の底に連結されるエンドハウジングとして機能する第3のハウジング52を設け、その第3のハウジング52に設けられた第2の軸受保持部53によって、第2の軸受28を保持するようにしている。また、ウォーム軸20とウォームホイール21間の中心間距離を調整するときに、第2のハウジング125に対して第2の軸受28の径方向移動を許容するための隙間S1が、第2のハウジング125と第3のハウジング52との間に形成されている。
 図4および拡大図である図5を参照して、第2のハウジング125の底壁54には、挿通孔55が形成されている。第3のハウジング52は、上記挿通孔55に挿通された筒状部56と、この筒状部56の外周から径方向外方に延び、上記底壁54に沿わされた環状板57とを有している。
 上記第2の軸受保持部53は、第3のハウジング52の筒状部56の内周に設けられている。第2の軸受保持部53に嵌合された第2の軸受28の外輪28aは、筒状部56の内周に形成された段部58と、筒状部56の内周溝に係止された止め輪59との間に挟持され、軸方向移動を規制されている。
 第2のハウジング125の挿通孔55の内径は、第3のハウジング52の筒状部56の外径よりも所定量大きくされており、上記挿通孔55の内周と筒状部56の外周との間に、上記隙間S1が設けられている。
 第2のハウジング125において、第1のハウジング24の偏心嵌合部34に嵌合される嵌合部36と、挿通孔55の内周とは、互いに偏心した円筒面に形成されている。また、第3のハウジング52において、第2の軸受保持部53と筒状部56の外周とは、同心の円筒面に形成されている。
 また、図5に示すように、第3のハウジング52に形成されたねじ挿通孔60に遊嵌された固定ねじ61が、第2のハウジング125の底壁54に形成されたねじ孔62に、ねじ込まれることにより、第2のハウジング125と第3のハウジング52が固定されるようになっている。
 本実施の形態においても、図1の実施の形態と同じ作用効果を奏することができる。また、偏心ハウジングとしての第1のハウジング24を回転させて中心間距離の調整を行う前に、上記固定ねじ61を緩めて、上記隙間S1によって第2のハウジング125と第3のハウジング52との相対移動を許容しておく。これにより、中心間距離の調整に拘らず、第1の軸受27と第2の軸受28間で出力軸13がこじりを生ずることがなく、ひいては、出力軸13の回転抵抗が大きくなるようなことがない。上記の隙間S1の量は、中心間距離の調整量(例えば数十μm程度)に相当すればよく、非常に微小な隙間でよい。中心間距離の調整後は、上記固定ねじ61によって第3のハウジング52を第2のハウジング125に止定する。
 次いで、図6~図8は本発明の別の実施の形態を示している。本実施の形態が図1および図3の実施の形態と異なるのは、下記である。すなわち、図1および図3の実施の形態では、ウォームホイール21を挟んだ両側に配置された第1および第2の軸受27,28によって出力軸13を両持ち支持していた。また、第1の軸受27を、偏心ハウジングとしての第1のハウジング24の第1の軸受保持部33に保持していた。また、第2の軸受28を、図1のように、ウォーム軸20を支持する第2のハウジング25の第2の軸受保持部37に保持するか、または図3のように、第2のハウジング125に連結された第3のハウジング52の第2の軸受保持部53に保持するようにしていた。
 これに対して、本実施の形態では、図6および拡大図である図7に示すように、出力軸13を直接支持する軸受は、偏心ハウジングとしての第1のハウジング224の第1の軸受保持部233によって支持された第1の軸受227のみとした。また、伝達機構119のウォームホイール63の合成樹脂部材65の径方向の内方に、第1の軸受227を配置するようにし、出力軸13の軸方向に関して、合成樹脂部材65の中心位置と、第1の軸受227の中心位置とが一致または略一致するようにした。
 より具体的には、第1のハウジング224は、チューブハウジング23の下端に同軸的に嵌合された筒状部229と、この筒状部229の下端に直交状に連結された環状板230と、この環状板230の外周近傍からから上方に延びる筒状突起231と、環状板230の内周から下方に延びる筒状突起232とを有している。
 筒状部229の上端の内周に、チューブハウジング23の下端の外周に嵌合する嵌合部229aが設けられ、筒状部229の内周に、トルクセンサ保持部235が設けられている。また、筒状突起232の内周に、第1の軸受227の外輪227aを保持する第1の軸受保持部233が設けられている。
 また、筒状突起231の外周に、上記第1の軸受保持部233に対して偏心した偏心嵌合部234が設けられており、この偏心嵌合部234に第2のハウジング225の上端の内周に面けられた嵌合部236が嵌合している。
 概略図である図8に示すように、嵌合部229a、トルクセンサ保持部235および第1の軸受保持部233は、共通の中心C11を有する互いに同心の円筒面に形成されており、偏心嵌合部234は、中心C11に対して所定量オフセットされた中心C12を有する円筒面に形成されている。
 ウォームホイール63は、出力軸13に一体回転可能に結合される環状の芯金64と、芯金64の周囲を取り囲み外周に歯部651を形成した環状の上記合成樹脂部材65とを備える。芯金64は、例えば合成樹脂部材65の樹脂成形時に金型内にインサートされるものである。
 芯金64は、出力軸13の外周に嵌合固定された内筒66と、合成樹脂部材65の内周に嵌合固定された外筒67と、外筒67の一端67a(下端)と内筒66を連結する環状の連結部68とを備えている。第1のハウジング224の筒状突起232は、外筒67の径方向内方に配置されている。
 第1の軸受227の外輪227aは、筒状突起232の一端から径方向内方へ延びる環状のフランジ69と、筒状突起232の内周溝に係止された止め輪70との間に挟持され、これにより、第1の軸受227の軸方向移動が規制されている。また、第1の軸受227の内輪227bは、芯金64の内筒66の端面66aと、出力軸13の外周溝に係止された止め輪71との間に挟持され、これにより、出力軸13に対する第1の軸受227の軸方向移動が規制されている。
 本実施の形態においても、図1の実施の形態と同じ作用効果を奏することができる。すなわち、偏心ハウジングとしての第1のハウジング224を第2のハウジング225に対して回転させることにより、ウォーム軸20とウォームホイール63の中心間距離を調整することができる。これにより、ウォーム軸20とウォームホイール63間の歯面間のバックラッシを適正に調整することができる。また、出力軸13を直接支持する第1の軸受227を唯一の軸受としたので、中心間距離を調整したときに、出力軸13にこじりが生ずることを抑制することができる。
 また、中心間距離の調整に拘らず、トルクセンサ15と出力軸13との位置関係は変わらないので、トルクセンサ15の検出性能のばらつきが少なく、ひいては安定したアシスト性能を得ることを通じて、良好な操舵フィーリングを得ることができる。
 また、上記第1の軸受227をウォームホイール63の合成樹脂部材65の径方向内方に配置し、出力軸13の軸方向に関して、合成樹脂部材65の中心位置と、第1の軸受227の中心位置とが一致または略一致するようにした。したがって、電動パワーステアリング装置1の軸方向に小型化することができる。しかも、ウォームホイール63の支持精度を高くできるので、歯当たりが良好となる。その結果、上記のバックラッシ調整と相まって低騒音化を実現でき、また耐久性を向上することができる。
 また、第1の軸受27の支持中心(軸受中心)が、ウォーム軸20とウォームホイール21の噛み合い中心の径方向内方に配置される場合には、ウォーム軸20とウォームホイール21の噛合時のトルク変動の作用点が、第1の軸受27の支持中心と一致することになる。したがって、出力軸13の揺動を完全に抑制できることにより、噛み合い位置のずれや異常なガタつきを確実に防止することができる。結果として、常に、適正なバックラッシが維持されて円滑な操舵補助力の伝達が可能となる。
 次いで、図9は本発明の参考形態を示している。図9を参照して、本参考形態が図1の実施の形態と主に異なるのは、第1のハウジング324とこれの下部に連結された第2のハウジング325とが設けられ、第2のハウジング325が、偏心嵌合部334を有する偏心ハウジングに構成されている点である。
 第1のハウジング324が、チューブハウジング23に嵌合される筒状部329の嵌合部329aと、トルクセンサ15を保持するトルクセンサ保持部335と、第1の軸受27を保持する第1の軸受保持部333とを互いに同心の円筒面として有している。また、第1のハウジング324が、第2のハウジング325の偏心嵌合部334に嵌合する嵌合部336を、上記同心の円筒面に対して偏心した円筒面として有している。
 第1の軸受保持部333と第1の軸受27の外輪27aの外周との間には、ウォーム軸20とウォームホイール21との中心間距離を調整するときに、第1の軸受保持部333に対する第1の軸受27の径方向移動を許容するための隙間S2が形成されている。第1の軸受保持部333と第1の軸受27の外輪27aの外周との間には、環状の弾性部材72が弾性的に圧縮された状態で介在している。弾性部材72は、第1の軸受保持部333内での第1の軸受27のがたつきを防止し、そのがたつきに起因した騒音の発生を防止する。
 第1のハウジング324は、ウォーム軸20の下方まで延設されており、その延設端の内周に、上記嵌合部336が上記嵌合部329aに対して偏心して設けられている。
 第2のハウジング325は、内筒73と、外筒74と、内筒73および外筒74間を連結する連結壁75とを備えている。内筒73の内周に、第2の軸受28を保持する第2の軸受保持部337が形成されており、外筒74の外周に、第2の軸受保持部337に対して偏心した上記の偏心嵌合部334が形成されている。第2の軸受28の外輪28aは、内筒73の内周に形成された段部76と止め輪77との間に挟持され、これにより、第2のハウジング325に対する第2の軸受28の軸方向移動が規制されている。
 図9において、図1の実施の形態と同じ構成要素には図1の実施の形態と同じ参照符号を付してある。
 本参考形態によれば、偏心ハウジングとしての第2のハウジング325を第1のハウジング324に対して回転させると、第2のハウジング325の偏心嵌合部334の回転に伴って、第1のハウジング324によって支持されたウォーム軸20の軸芯と、第2のハウジング325によって第2の軸受28を介して支持されたウォームホイール21の軸芯とが、相対移動する。これにより、ウォーム軸20とウォームホイール21の中心間距離を調整することができ、その結果、ウォーム軸20とウォームホイール21間の歯面間のバックラッシを適正に調整することができる。
 また、中心間距離を調整するときに、第1のハウジング324の第1の軸受保持部333に対して第1の軸受27の径方向移動が許容されるような隙間S2を設けてある。したがって、中心間距離の調整に拘らず、第1の軸受27と第2の軸受28間で出力軸13がこじりを生ずることがない。ひいては、出力軸13の回転抵抗が大きくなるようなことがない。上記の隙間S2の量は、中心間距離の調整量(例えば数十μm程度)に相当すればよく、非常に微小な隙間でよい。
 また、中心間距離の調整に伴って、トルクセンサ保持部335に保持されたトルクセンサ15と出力軸13との位置関係は若干変化する。しかし、トルクセンサ15として、例えばホールICその他の非接触式のセンサを用いることにより、トルクセンサ15が偏心の影響を受け難くすることができる。ひいては安定したアシスト性能を得ることを通じて、良好な操舵フィーリングを得ることができる。
 次いで、図10は本発明の別の参考形態を示している。図10を参照して、本参考形態が図6の実施の形態と主に異なるのは、第1のハウジング424とこれの下部に連結された第2のハウジング425とが設けられ、第2のハウジング425が、偏心嵌合部434を有する偏心ハウジングに構成されている点である。
 第1のハウジング424が、チューブハウジング23に嵌合される筒状部429の嵌合部429aと、トルクセンサ15を保持するトルクセンサ保持部435とを、互いに同心の円筒面として有している。また、第1のハウジング424は、第2のハウジング425の偏心嵌合部434に嵌合する嵌合部436を、上記同心の円筒面に対して偏心した円筒面として有している。
 第1のハウジング424は、ウォーム軸20の下方まで延設されており、その延設端の内周に、上記嵌合部436が上記嵌合部429aに対して偏心して設けられている。
 第2のハウジング425は、互いに軸方向の逆向きに延びる小筒78および大筒79と、小筒78および大筒79間を連結する連結壁80とを備えている。小筒78の内周に、第1の軸受427を保持する第2の軸受保持部437が形成されている。大筒79の外周に、第1の軸受保持部433に対して偏心した上記の偏心嵌合部434が形成されている。第1の軸受427の外輪427aは、小筒78の内周に形成された段部81と止め輪82との間に挟持されている。これにより、第2のハウジング425に対する第1の軸受427の軸方向移動が規制されている。
 伝達機構419のウォームホイール83は、出力軸13に一体回転可能に結合される環状の芯金84と、芯金84の周囲を取り囲み外周に歯部851を形成した環状の上記合成樹脂部材85とを備える。芯金84は、例えば合成樹脂部材85の樹脂成形時に金型内にインサートされるものである。
 芯金84は、互いに軸方向の同側に延びる小筒86および大筒87と、小筒86および大筒87の対向端部間を連結する環状の連結壁88とを有している。小筒86は、出力軸13の外周に同伴回転可能に嵌合されている。大筒87は、合成樹脂部材85の内周に嵌合固定されている。第2のハウジング425の小筒78は、ウォームホイール83の芯金84の大筒87の径方向内方に配置されている。小筒78の先端は、第1の軸受427の内輪427bの端面に当接または近接している。
 第1の軸受427の内輪427bは、出力軸13の外周に形成された段部89と、出力軸13の外周溝に係止された止め輪90との間に挟持され、これにより、第1の軸受427に対する出力軸13の軸方向移動が規制されている。
 本参考形態によれば、偏心ハウジングとしての第2のハウジング425を第1のハウジング424に対して回転させると、第2のハウジング425の偏心嵌合部434の回転に伴って、第1のハウジング424によって支持されたウォーム軸20の中心と、第2のハウジング425によって第1の軸受427を介して支持されたウォームホイール83の中心とが、相対移動する。これにより、ウォーム軸20とウォームホイール83の中心間距離を調整することができ、その結果、ウォーム軸20とウォームホイール83間の歯面間のバックラッシを適正に調整することができる。
 また、出力軸13を直接支持する軸受を唯一の軸受427としたので、中心間距離を調整したときに、出力軸13にこじりが生ずることを抑制することができる。
 また、中心間距離の調整に伴って、トルクセンサ保持部435に保持されたトルクセンサ15と出力軸13との位置関係は若干変化する。しかし、トルクセンサ15として、例えばホールICその他の非接触式のセンサを用いることにより、トルクセンサ15が偏心の影響を受け難くすることができる。ひいては安定したアシスト性能を得ることを通じて、良好な操舵フィーリングを得ることができる。
 次いで、図11は、上述した各形態の電動パワーステアリング装置1のステアリングコラム22を車体に取り付けるための取付構造Dの斜視図である。本取付構造Dは、車体の例えばクロスメンバー(図示せず)に固定される車体側ブラケット91と、中心間距離調整(バックラッシ調整)のときに相対回転される一対のハウジングの一方に固定されたコラム側ブラケット92とを備えている。
 コラム側ブラケット92には、出力軸13の中心軸線を中心とする円弧状をなすねじ挿通孔93が形成されている。ねじ挿通孔93は、一対設けられている。これら一対のねじ挿通孔93は、出力軸13を中心に関して点対称でない非対称な位置に配置されており、これにより、コラム側ブラケット92の誤組み付け(コラム側ブラケット92が裏返して取り付けられること)が防止されている。さらに、図示していないが、コラム側ブラケット92の周縁の一部から誤組み付け防止用の突起を延設するようにしてもよい。
 各ねじ挿通孔93に、第1および第2の固定ねじ94,95が挿通されている。これら第1および第2の固定ねじ94,95は、上記一対のハウジングの他方に形成されたボス96,97のねじ孔(図示せず)に、それぞれ、ねじ込み固定されている。
 第1の固定ねじ94は、車体側ブラケット91の円孔からなるねじ挿通孔(図示せず)と、コラム側ブラケット92の上記長孔からなるねじ挿通孔93とを挿通して、対応するねじ孔にねじ込み固定されている。すなわち、第1の固定ねじ94は、車体側ブラケット91およびコラム側ブラケット92をステアリングコラム22に対して共締めしている。   
 本発明は上記各実施の形態に限定されるものではない。例えば、上記各実施の形態は、ウォームホイールがステアリングシャフトの出力軸と同伴回転可能に連結されるタイプの電動パワーステアリング装置(いわゆるコラム・アシスト型の電動パワーステアリング装置)であったが、これに限らず、ウォームホイールをピニオン軸と同伴回転可能に連結するタイプの電動パワーステアリング装置(いわゆるピニオン・アシスト型の電動パワーステアリング装置)に適用するようにしてもよい。
 また、上記各実施の形態では、伝達機構が、駆動部材としてのウォーム軸および被動部材としてのウォームホイールを含むウォームギヤ機構であったが、ウォームギヤ機構等の食い違い軸歯車機構に代えて、平歯車、はすば歯車等の平行軸歯車機構を用いてもよい。また、伝達機構が、駆動部材としての駆動プーリと、被動部材としての被動プーリとを含むベルト・プーリ機構であってもよい。その他、本発明の請求項記載の範囲内において種々の変更が可能である。
 以上、本発明を具体的な態様により詳細に説明したが、上記の内容を理解した当業者は、その変更、改変及び均等物を容易に考えられるであろう。したがって、本発明はクレームの範囲とその均等の範囲とするべきである。
 本出願は2009年12月28日に日本国特許庁に提出された特願2009-298343号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 1…電動パワーステアリング装置、2…操舵部材、3…ステアリングシャフト、12…入力軸、13…出力軸、14…トーションバー、15…トルクセンサ、18…電動モータ、19;119;419…伝達機構、20…ウォーム軸(駆動部材)、21;63…ウォームホイール(被動部材)、22…ステアリングコラム、24;224…第1のハウジング、25;125;225…第2のハウジング、27…第1の軸受、227…第1の軸受(唯一の軸受)、28…第2の軸受、33;233…第1の軸受保持部、34;234…偏心嵌合部、36;236…嵌合部、37;53…第2の軸受保持部、52…第3のハウジング、S;S1…隙間

Claims (5)

  1.  電動パワーステアリング装置が、
     操舵部材に連なる入力軸、転舵機構に連なる出力軸、並びに入力軸および出力軸を連結するトーションバーを含むステアリングシャフトと、
     上記ステアリングシャフトに負荷される操舵トルクを検出するトルクセンサと、
     上記トルクセンサの出力に基づいて制御される電動モータと、
     駆動部材および被動部材を含み、上記電動モータの出力回転を減速して上記出力軸に伝達する伝達機構と、
     上記出力軸を回転可能に支持する第1の軸受と、
     上記第1の軸受を支持する第1のハウジングと、
     上記駆動部材を回転可能に支持する第2のハウジングと、を備え、
     上記被動部材は、上記出力軸と同伴回転可能であり、
     上記第1のハウジングは、上記第1の軸受を保持する第1の軸受保持部と、上記第1の軸受保持部に対して偏心した偏心嵌合部と、上記トルクセンサを保持するトルクセンサ保持部と、を含み、
     上記トルクセンサ保持部は、上記第1の軸受保持部と同心をなし、
     上記第2のハウジングは、上記偏心嵌合部に嵌合する嵌合部を含み、
     上記駆動部材および上記被動部材間の中心間距離を調整するときに、上記第2のハウジングの上記嵌合部に対して上記第1のハウジングの上記偏心嵌合部が回転されるように構成されている。
  2.  請求項1に記載の電動パワーステアリング装置において、
     上記出力軸を回転可能に支持する第2の軸受を備え、
     上記第2のハウジングは、上記第2の軸受を保持する第2の軸受保持部を含み、
     上記中心間距離を調整するときに上記第2のハウジングに対する上記第2の軸受の径方向移動を許容するための隙間が、上記第2のハウジングの上記第2の軸受保持部と上記第2の軸受との間に形成されている電動パワーステアリング装置。
  3.  請求項2に記載の電動パワーステアリング装置において、
     上記第2の軸受の外輪を上記第2の軸受保持部に止定可能なロック部材を備える。
  4.  請求項1に記載の電動パワーステアリング装置において、
     上記出力軸を回転可能に支持する第2の軸受と、
     上記第2の軸受を保持する第2の軸受保持部を有する第3のハウジングと、を備え、
     上記中心間距離を調整するときに上記第2のハウジングに対して上記第2の軸受の径方向移動を許容するための隙間が、上記第2のハウジングと上記第3のハウジングとの間に形成されている。
  5.  請求項1に記載の電動パワーステアリング装置において、上記第1の軸受は、上記出力軸を直接支持する唯一の軸受を含む。
PCT/JP2010/073203 2009-12-28 2010-12-22 電動パワーステアリング装置 WO2011081076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10840933.5A EP2520474A4 (en) 2009-12-28 2010-12-22 POWER ASSISTED STEERING DEVICE
CN201080059484.7A CN102712338B (zh) 2009-12-28 2010-12-22 电动动力转向装置
US13/513,942 US8727065B2 (en) 2009-12-28 2010-12-22 Electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-298343 2009-12-28
JP2009298343A JP5418834B2 (ja) 2009-12-28 2009-12-28 電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2011081076A1 true WO2011081076A1 (ja) 2011-07-07

Family

ID=44226483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073203 WO2011081076A1 (ja) 2009-12-28 2010-12-22 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US8727065B2 (ja)
EP (1) EP2520474A4 (ja)
JP (1) JP5418834B2 (ja)
CN (1) CN102712338B (ja)
WO (1) WO2011081076A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168476A1 (ja) * 2012-05-11 2013-11-14 株式会社エフ・シー・シー セラシ歯車装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084510A1 (de) * 2011-06-10 2012-12-13 Robert Bosch Gmbh Lenksystem in einem Fahrzeug
JP5917070B2 (ja) * 2011-09-28 2016-05-11 住友重機械工業株式会社 ロックドトレーン機構を備えた風力発電用の増速機
KR101702249B1 (ko) * 2013-03-14 2017-02-03 히타치 오토모티브 시스템즈 스티어링 가부시키가이샤 파워 스티어링 장치의 토크 검출 구조 및 이것을 이용한 파워 스티어링 장치
US9200700B2 (en) * 2013-04-05 2015-12-01 Kessler Crane, Inc. Motion control system
JP6447509B2 (ja) * 2013-11-21 2019-01-09 日本精工株式会社 電動式パワーステアリング装置用トルク測定ユニット及びその組立方法
JP6458982B2 (ja) * 2014-09-08 2019-01-30 株式会社ジェイテクト ウォーム減速機
JP2016064790A (ja) * 2014-09-25 2016-04-28 株式会社ショーワ ステアリング装置
JP6396201B2 (ja) * 2014-12-22 2018-09-26 株式会社ジェイテクト 電動パワーステアリング装置
EP3056767A1 (de) * 2015-02-13 2016-08-17 IMS Gear GmbH Kunststoffelement zur spielfreien Lagerung
KR20170027170A (ko) * 2015-09-01 2017-03-09 주식회사 만도 자동차의 조향컬럼
CN105151114A (zh) * 2015-09-30 2015-12-16 安徽江淮汽车股份有限公司 一种电动转向管柱蜗轮蜗杆结构
JP6558444B2 (ja) * 2015-11-12 2019-08-14 日本精工株式会社 電動式パワーステアリング装置及びその製造方法
US20180086364A1 (en) * 2016-09-23 2018-03-29 Mando Corporation Steering column for vehicle
DE102019118673A1 (de) 2019-07-10 2021-01-14 Thyssenkrupp Ag Elektromechanische Servolenkung mit Schwenkpendel-Lageranordnung
KR20220068781A (ko) * 2020-11-19 2022-05-26 주식회사 만도 스티어링 칼럼 및 이를 포함하는 스티어링 장치
TWI831556B (zh) * 2023-01-03 2024-02-01 東佑達自動化科技股份有限公司 可調整間隙之旋轉裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134888A (ja) 1997-05-19 1999-02-09 Nippon Seiko Kk 電動式パワーステアリング装置
JP2001213339A (ja) * 2000-01-31 2001-08-07 Kayaba Ind Co Ltd 動力伝達装置
JP2002127918A (ja) * 2000-10-20 2002-05-09 Nsk Ltd 電動式パワーステアリング装置及びその組み付け方法
JP2003063421A (ja) * 2001-08-30 2003-03-05 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2005035346A (ja) 2003-07-17 2005-02-10 Unisia Jkc Steering System Co Ltd 電動パワーステアリング装置
JP2006088775A (ja) * 2004-09-21 2006-04-06 Favess Co Ltd 電動パワーステアリング装置
JP2006520716A (ja) * 2003-03-25 2006-09-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 電気式の駆動ユニット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072566A (ja) * 2001-08-31 2003-03-12 Koyo Seiko Co Ltd 盗難防止機能を備えた電動パワーステアリング装置とその製造方法
JP4196831B2 (ja) * 2001-12-03 2008-12-17 日本精工株式会社 電動パワーステアリング装置
JP3898548B2 (ja) 2001-12-27 2007-03-28 株式会社ジェイテクト 車両のステアリング装置
CN100476241C (zh) * 2003-06-25 2009-04-08 日本精工株式会社 蜗轮减速器及电动式动力转向装置
JP2007196927A (ja) * 2006-01-27 2007-08-09 Showa Corp 電動舵取装置
JP4808541B2 (ja) * 2006-04-26 2011-11-02 本田技研工業株式会社 電動パワーステアリング装置
KR101148664B1 (ko) * 2007-04-06 2012-05-21 주식회사 만도 유격 조절 감속기 및 이를 장착한 전동식 파워 스티어링장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134888A (ja) 1997-05-19 1999-02-09 Nippon Seiko Kk 電動式パワーステアリング装置
JP2001213339A (ja) * 2000-01-31 2001-08-07 Kayaba Ind Co Ltd 動力伝達装置
JP2002127918A (ja) * 2000-10-20 2002-05-09 Nsk Ltd 電動式パワーステアリング装置及びその組み付け方法
JP2003063421A (ja) * 2001-08-30 2003-03-05 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2006520716A (ja) * 2003-03-25 2006-09-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 電気式の駆動ユニット
JP2005035346A (ja) 2003-07-17 2005-02-10 Unisia Jkc Steering System Co Ltd 電動パワーステアリング装置
JP2006088775A (ja) * 2004-09-21 2006-04-06 Favess Co Ltd 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2520474A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168476A1 (ja) * 2012-05-11 2013-11-14 株式会社エフ・シー・シー セラシ歯車装置

Also Published As

Publication number Publication date
JP2011136653A (ja) 2011-07-14
EP2520474A1 (en) 2012-11-07
CN102712338A (zh) 2012-10-03
CN102712338B (zh) 2014-12-03
US20120241246A1 (en) 2012-09-27
JP5418834B2 (ja) 2014-02-19
US8727065B2 (en) 2014-05-20
EP2520474A4 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2011081076A1 (ja) 電動パワーステアリング装置
US7278334B2 (en) Electric power steering apparatus
US6705176B2 (en) Electric power steering apparatus
JP4868215B2 (ja) 電動パワーステアリング装置
US20070158131A1 (en) Electric power steering device
JP3763347B2 (ja) 電動式舵取装置
JP3658683B2 (ja) 電動式舵取装置
US7779959B2 (en) Electric power steering apparatus
JP2019089355A (ja) パワーステアリング装置
JP2007190969A (ja) 電動パワーステアリング装置
JP2011136652A (ja) 電動パワーステアリング装置
JP2007216721A (ja) 電動パワーステアリング装置
JP4016815B2 (ja) 電動パワーステアリング装置
JP4352325B2 (ja) 電動パワーステアリング装置
JP2003154945A (ja) 電動式動力舵取装置
JP2003095119A (ja) 電動式パワーステアリング装置
JP3780172B2 (ja) 電動式動力舵取装置
JP4235894B2 (ja) 電動パワーステアリング装置
JP2010025159A (ja) 減速機および電動パワーステアリング装置
JP2010069987A (ja) 電動パワーステアリング装置
JP2007191071A (ja) 電動パワーステアリング装置
JP4716074B2 (ja) 電動式動力舵取装置
JPH10297505A (ja) 電動式パワーステアリング装置
JP2010047111A (ja) 車両用操舵装置
JP4039271B2 (ja) 減速装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059484.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840933

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13513942

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010840933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010840933

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE