[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011078578A2 - 건설기계의 동력제어장치 및 동력제어방법 - Google Patents

건설기계의 동력제어장치 및 동력제어방법 Download PDF

Info

Publication number
WO2011078578A2
WO2011078578A2 PCT/KR2010/009207 KR2010009207W WO2011078578A2 WO 2011078578 A2 WO2011078578 A2 WO 2011078578A2 KR 2010009207 W KR2010009207 W KR 2010009207W WO 2011078578 A2 WO2011078578 A2 WO 2011078578A2
Authority
WO
WIPO (PCT)
Prior art keywords
horsepower
engine
hydraulic pump
control unit
pump
Prior art date
Application number
PCT/KR2010/009207
Other languages
English (en)
French (fr)
Other versions
WO2011078578A3 (ko
Inventor
손원선
박덕우
방재석
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090130425A external-priority patent/KR101648982B1/ko
Priority claimed from KR1020090130426A external-priority patent/KR101630457B1/ko
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to CN201080058965.6A priority Critical patent/CN102713089B/zh
Priority to US13/518,743 priority patent/US8720629B2/en
Priority to EP10839775.3A priority patent/EP2518222B1/en
Priority to BR112012015598A priority patent/BR112012015598B1/pt
Publication of WO2011078578A2 publication Critical patent/WO2011078578A2/ko
Publication of WO2011078578A3 publication Critical patent/WO2011078578A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/26Power control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed

Definitions

  • the present invention relates to a power control device for a construction machine, such as an excavator, in particular, power control of a construction machine that can improve the fuel economy by controlling the rotational speed of the engine according to the load ratio of the engine so that the engine is constantly driven at the target rotational speed Relates to a device.
  • the present invention relates to a power control device and a control method of a construction machine, such as an excavator, in particular, a power control device of a construction machine that can prevent the hydraulic shock by gradually increasing the pump required horsepower according to the load pressure of the hydraulic pump And a control method.
  • the discharge flow rate of the hydraulic pump is controlled by various variables to satisfy various conditions such as work efficiency and fuel economy.
  • control method of the hydraulic pump is a flow control for controlling the discharge flow rate in accordance with the operation signal input from the operation unit (flow control) and the hydraulic pump in accordance with the discharge pressure of the hydraulic pump so that the required horsepower of the hydraulic pump is constant Constant horse power control for controlling the discharge flow rate and power shift control for controlling the discharge flow rate of the hydraulic pump in accordance with the load state of the engine.
  • the hydraulic pump is provided with a regulator for the control method as described above, the regulator is a work flow rate control unit for the work flow control, the back horsepower control unit for the back horsepower control, and the horsepower control (power shift control) It includes a horsepower control for.
  • the working flow rate adjusting unit receives the center bypassed negative cone pressure, the pilot pressure of the operation unit, or the load sensing pressure of each actuator to control the discharge flow rate of the hydraulic pump.
  • the back horsepower control unit receives the discharge pressure (load pressure) of the hydraulic pump to control the discharge flow rate of the hydraulic pump according to the set horsepower diagram.
  • the horsepower control unit controls the discharge flow rate of the hydraulic pump according to the target engine rotation speed set by the dial gauge of the engine and the load of the engine calculated from the current engine rotation speed.
  • the sudden increase in horsepower required of the hydraulic pump acts as a large load on the engine, so that the rotation speed of the engine drops rapidly below the set target rotation speed.
  • the engine rotation speed is sharply reduced, not only the amount of smoke increases but also the vibration increases.
  • the engine as in section B of FIG. 1, the engine power increase rate is low in the section in which the turbocharger operation reaches a steady state (turbo charger time lack section), so that the engine rotation speed is further reduced and the amount of smoke is reduced. And the vibration becomes larger.
  • the horsepower control unit lowers the driving of the hydraulic pump from the highest horsepower (200mA) to the lowest horsepower (600mA) to increase the engine rotational speed.
  • the flow rate of the hydraulic oil discharged from the hydraulic pump is reduced, which lowers the working efficiency of the construction machine.
  • FIG 2 is an isometric horsepower diagram schematically showing the process as described above. Referring to Figure 2, due to the time delay of the horsepower control time, it can be seen that the flow rate and the pressure is returned to the back horsepower diagram again after the discharge pressure of the hydraulic pump rapidly increases, as in the C diagram.
  • the control unit controls the horsepower control unit to reduce the flow rate of the hydraulic pump to return the engine rotational speed to the target rotational speed if the engine rotational speed is less than the target rotational speed Outputs Then, when the discharge flow rate of the hydraulic pump is controlled so that the rotation speed of the engine becomes larger than the target rotation speed, the control signal is output to the horsepower control unit again to increase the flow rate of the hydraulic pump. In this way, the rotational speed of the engine is manually controlled by the load of the hydraulic pump. As shown in FIG. 3, when the engine load ratio (load torque of the engine with respect to the engine maximum torque) increases, the rotational speed of the engine approaches the target rotational speed. As the engine load ratio decreases, the engine speed becomes higher than the target engine speed. As a result, even when the load transmitted from the hydraulic pump to the engine is small, energy loss is increased because the rotation speed of the engine is maintained high.
  • the present invention has been made in view of the above-described point, and an object thereof is to provide a power control device for a construction machine that can improve fuel efficiency by maintaining a constant rotation speed of an engine at a target rotation speed.
  • Another object of the present invention is to provide a hydraulic pump power control apparatus for a construction machine that can prevent the occurrence of hydraulic shock due to a time delay at the time of controlling horsepower.
  • Still another object of the present invention is to provide a power control device for a construction machine that can improve the working performance of a construction machine by preventing a sudden drop in the rotational speed of the engine even when a large operation amount is input from the operation unit.
  • Power control device for a construction machine for achieving the above object is an engine (10) connected to the hydraulic pump 20 to drive the hydraulic pump (20); And an engine load ratio defined by a ratio of the load torque of the engine to the engine maximum torque calculated from the input engine target rotation speed, and the engine rotation speed command value according to the engine load ratio such that the engine is driven at the target rotation speed. It includes a control unit 60 for calculating the output to the engine.
  • the control unit 60 calculates the engine maximum torque from the engine target rotation speed, calculates the engine load torque from the fuel injection amount command value output to the engine 10, and An engine controller (61) for calculating and outputting the engine load ratio from the calculated engine maximum torque and the engine load torque; And an equipment controller 62 which calculates the engine speed command value from the engine load ratio output from the engine controller 61 and outputs the engine speed command value to the engine controller 61, wherein the engine controller 61 is the equipment controller.
  • the fuel injection quantity command value is calculated and output to the engine 10 in accordance with the engine rotation speed command value transmitted from 62.
  • the power control device as described above comprises a horsepower control unit 30 for varying the horsepower of the hydraulic pump 20 by varying the swash plate angle of the hydraulic pump 20; And a pressure sensor 50 for detecting a load pressure Pd of the hydraulic oil discharged from the hydraulic pump 20, wherein the equipment controller 62 has a load pressure sensed by the pressure sensor 50.
  • the target pump required horsepower is calculated from Pd, and the horsepower control unit 30 is controlled so that the required horsepower of the hydraulic pump 20 gradually approaches the target pump required horsepower for a predetermined time ⁇ t.
  • the target pump required horsepower is set to the minimum horsepower (POmin), the load detected from the pressure sensor 50 If the pressure is the maximum set pressure (Pd2), the target pump required horsepower is set to the maximum horsepower (POmax), the maximum set pressure (Pd2) is the starting horsepower control starting point of the maximum horsepower (POmax) of the hydraulic pump 20 Is set equal to or smaller than the pressure Pd2.
  • the horsepower control unit 30 is a horsepower control unit 31 for adjusting the swash plate angle of the hydraulic pump 20 in accordance with the pilot pressure input from the pilot pump 33; And an electromagnetic proportional pressure reducing valve 32 for varying an opening amount of a flow path connecting the pilot pump 33 and the horsepower control unit 31 according to the magnitude of the current command value input from the equipment controller 62. .
  • the power control device for controlling the hydraulic pump 20 driven by the engine 10, by varying the swash plate angle of the hydraulic pump 20, the hydraulic pump 20 Horsepower control unit 30 for varying the horsepower required; A pressure sensor 50 for detecting a load pressure Pd of the hydraulic oil discharged from the hydraulic pump 20; And calculating a target pump required horsepower from the load pressure Pd sensed by the pressure sensor 50, and the required horsepower of the hydraulic pump 20 gradually increases to the target pump required horsepower for a predetermined time ⁇ t. It includes a control unit 60 for controlling the horsepower control unit 30 to approach.
  • the target pump required horsepower is set to the minimum horsepower POmin, and the pressure sensor
  • the target pump required horsepower is set to the maximum horsepower POmax, and the maximum set pressure Pd2 is the maximum horsepower of the hydraulic pump 20 It is less than or equal to the pressure Pd2 at the starting point of back horsepower control of POmax).
  • the predetermined time ⁇ t is proportional to the horsepower difference value ⁇ PO between the current pump required horsepower and the target pump required horsepower of the hydraulic pump 20.
  • the horsepower control unit 30 is a horsepower control unit 31 for adjusting the swash plate angle of the hydraulic pump 20 in accordance with the pilot pressure input from the pilot pump 33; And an electromagnetic proportional pressure reducing valve 32 for varying an opening amount of a flow path connecting the pilot pump 33 and the horsepower control unit 31 according to the magnitude of the current command value input from the controller 60.
  • the object as described above is a power control method of a construction machine for controlling the hydraulic pump 20 driven by the engine 10, the step of calculating the current pump required horsepower of the hydraulic pump 20; Calculating a target pump required horsepower from the load pressure Pd of the hydraulic oil discharged from the hydraulic pump 20; And gradually approaching the required horsepower of the hydraulic pump 20 from the current pump required horsepower to the target pump required horsepower for a predetermined time ⁇ t for a predetermined time ( ⁇ t). Can be achieved.
  • the power control method may further include calculating the predetermined time ⁇ t from the horsepower difference value ⁇ PO of the current pump required horsepower and the target pump required horsepower. .
  • the equipment control unit that receives the engine load ratio from the engine control unit calculates the engine rotation speed command value and outputs it to the engine control unit, thereby distributing the calculation load and facilitating application of the power control device of the present invention to an existing system. .
  • the target pump required horsepower is set to the minimum horsepower (POmin) to minimize the load applied to the engine by the hydraulic pump, thereby improving fuel economy.
  • the predetermined time ⁇ t is proportional to the horsepower difference value ⁇ PO of the current pump required horsepower and the target pump required horsepower of the hydraulic pump, if the horsepower difference value ⁇ PO is small, the horsepower is quickly controlled. If the horsepower difference value ( ⁇ PO) is large, it is possible to secure a sufficient control time such that the hydraulic shock does not occur.
  • the horsepower control unit with the electronic proportional pressure reducing valve for varying the opening amount of the flow path connecting the horsepower control unit, the pilot pump and the horsepower control unit, it is possible to apply the spirit of the present invention to a general hydraulic system universally .
  • FIG. 1 is a graph schematically showing a pump discharge flow rate and required horsepower, an engine output and a rotation speed, and a horsepower control current command value change according to an existing power control device under sudden operation conditions of an operation unit;
  • FIG. 2 is a graph showing a control process of FIG. 1 in a pressure-flow diagram (back horsepower diagram) of a hydraulic pump;
  • FIG. 3 is a graph schematically showing the engine rotation speed according to the conventional engine load ratio
  • FIG. 4 is a conceptual diagram schematically showing a power control apparatus for a construction machine according to an embodiment of the present invention
  • FIG. 5 is a graph schematically showing an engine rotation speed command value according to an engine load ratio set in the equipment control unit of FIG. 4;
  • FIG. 6 is a graph schematically showing the engine rotation speed according to the engine load ratio of the engine controlled by the power control device shown in FIG.
  • FIG. 7 is a flow chart schematically showing a power control process by the power control device shown in FIG.
  • FIG. 8 is a graph schematically showing a target pump required horsepower and a current command value with respect to a load pressure set in the controller of FIG. 3;
  • FIG. 9 is a graph schematically illustrating a rise time with respect to a horsepower difference value between a target pump power required and a current pump power required by the controller of FIG. 3;
  • FIG. 10 is a graph schematically illustrating a horsepower increase rate with respect to a specific horsepower difference value set in the controller of FIG. 4;
  • FIG. 11 is a graph schematically showing the maximum and minimum horsepower curves of the hydraulic pump shown in FIG. 4;
  • FIG. 12 is a graph schematically showing the pump discharge flow rate and required horsepower, engine output and rotation speed in accordance with the power control device shown in FIG.
  • FIG. 13 is a graph showing a control process of FIG. 12 in a pressure-flow diagram (back horsepower diagram) of a hydraulic pump;
  • 14A is a graph illustrating measurement of the boom rising speed and the engine rotation speed according to the control process of FIG. 1;
  • FIG. 14B is a graph illustrating measurement of a boom rising speed and an engine rotation speed according to the control process of FIG. 12.
  • Control unit 61 Engine control unit
  • a power control apparatus for a construction machine includes an engine 10 for driving a hydraulic pump 20 and a swash plate of the hydraulic pump 20 according to an input horsepower control signal.
  • a control unit 60 for outputting the horsepower control signal to the 30 and controlling the rotation speed of the engine is included in a power control unit.
  • the controller 60 includes an engine controller 61 and an equipment controller 62 such as an ECU (Electronic Control Unit).
  • an ECU Electronic Control Unit
  • the engine controller 61 outputs a fuel injection amount command value to the engine 10 to control the rotation speed of the engine 10.
  • the engine control unit 61 calculates the load torque of the engine from the current fuel injection amount command value and the current rotation speed of the engine.
  • the maximum torque of the engine for each rotational speed is set in the engine. Therefore, when the target rotational speed of the engine is input from the dial gauge 11, the engine control unit 61 may calculate the maximum torque of the engine corresponding to the target rotational speed.
  • the engine control unit 61 calculates and outputs the engine load ratio, which is the ratio of the load torque to the maximum torque, to the equipment control unit 62.
  • an engine rotational speed command value for an engine load ratio for maintaining the rotational speed of the engine 10 at the input target rotational speed is set.
  • the engine rotational speed command value with respect to the engine load ratio is also variable. Therefore, the set value as shown in FIG. 5 is set differently according to the magnitude of the target rotational speed of the engine. That is, the set values as shown in FIG. 5 are set for each target rotational speed of the engine and stored in the memory or the equipment controller 62.
  • the equipment control unit 62 selects a pattern corresponding to the input target rotational speed among the patterns shown in FIG. Thereafter, the equipment controller 62 calculates and outputs an engine speed command value corresponding to the engine load factor input from the selected pattern to the engine controller 61. Then, the engine control unit 61 calculates and outputs the fuel injection amount command value corresponding to the engine rotation speed command value to the engine 10. As a result, the rotational speed of the engine is controlled.
  • the engine speed command value increases as the engine load ratio increases. That is, when the load applied to the engine 10 from the hydraulic pump 20 increases, the fuel injection amount of the engine 10 increases, and when the load applied to the engine 10 from the hydraulic pump 20 decreases, the fuel injection amount Becomes smaller.
  • the rotational speed of the engine 10 can be kept constant at the target rotational speed as shown in FIG.
  • the engine control unit 61 calculates the engine maximum torque for the input engine target rotational speed and calculates the current engine load torque (S120). After that, the engine control unit 61 calculates the engine load ratio (S130).
  • the engine load factor is calculated by the following equation.
  • the engine controller 61 When the engine load factor is calculated, the engine controller 61 outputs the calculated engine load factor to the equipment controller 62.
  • the equipment control unit 62 when the engine target rotational speed is input from the dial gauge 11, the engine rotational speed command value according to the engine load ratio as shown in Figure 5 is set based on the input engine target rotational speed Select a pattern. Thereafter, the equipment control unit 62 calculates an engine speed command value corresponding to the engine load ratio output from the engine control unit 61 from the selected pattern as shown in FIG. 5 (S140). After that, the equipment control unit 62 outputs the calculated engine speed command value to the engine control unit 61. Then, the engine control unit 61 calculates a fuel injection amount command value from the input engine rotation speed command value and outputs it to the engine 10 (S150).
  • the power control device and the power control method have been described through the rotational speed control of the engine.
  • the power control device and the power control method through the control of the hydraulic pump 20 will be described.
  • the hydraulic pump 20 is a variable pump having a variable discharge flow rate due to the inclination of the swash plate 23.
  • the hydraulic pump 20 includes a regulator 40 for adjusting the swash plate 23. To be prepared.
  • the regulator 40 has a working horsepower control unit 41 for varying the discharge flow rate of the hydraulic pump 20 in accordance with a signal for the operation amount of the operation unit 42, and the horsepower required of the hydraulic pump 20 is constant It includes a horsepower control unit 43 for maintaining as, and a horsepower control unit 31 for adjusting the required horsepower of the hydraulic pump 20.
  • the working flow rate adjusting unit 41 is for adjusting the discharge flow rate of the hydraulic pump 20 according to a signal corresponding to the operation signal of the operation unit 42, and is proportional to the magnitude of the operation signal of the operation unit 42.
  • the discharge flow rate of the hydraulic pump 20 is increased.
  • the signal corresponding to the operation signal of the operation unit 42 is the negative pressure that is the bypass pressure passing through the main control valve 21, the posicon pressure which is a pilot pressure according to the operation of the operation unit 42 and each It may be composed of a signal for any one selected from the load sensing pressure of the actuator 22.
  • the back horsepower control unit 43 adjusts the discharge flow rate of the hydraulic pump 20 according to the discharge pressure of the hydraulic pump 20 to maintain the required horsepower of the hydraulic pump 20.
  • the back horsepower is variable by the horsepower control unit 31. Accordingly, the back horsepower control unit 43 adjusts the discharge flow rate of the hydraulic pump 20 along the variable back horsepower diagram of the current state.
  • the horsepower control unit 31 is for changing the required horsepower of the hydraulic pump 20, the pilot pressure discharged from the pilot pump 33 is applied.
  • the electromagnetic proportional pressure reducing valve 32 is installed between the horsepower control part 31 and the pilot pump 33, and the pilot pump 33 and the horsepower control part by the electromagnetic proportional pressure reducing valve 32.
  • the opening degree of the flow path which connects between 31 is adjusted.
  • the electromagnetic proportional pressure reducing valve 32 is converted according to the current command value output from the equipment control unit 62. Therefore, the horsepower control unit 31 is to change the swash plate angle of the hydraulic pump 20 in accordance with the current command value output from the equipment control unit 62.
  • the horsepower control unit 31 and the electromagnetic proportional pressure reducing valve 32 is defined as a horsepower control unit 30, unlike the embodiment is the horsepower control unit 31 and the electromagnetic proportional pressure reduction
  • the valve 32 may be implemented as one electromagnetic proportional pressure reducing valve in the electronically controlled pump. Therefore, the horsepower control unit 30 may not only be composed of the horsepower control unit 31 and the electromagnetic proportional pressure reducing valve 32 but also may be composed of one electromagnetic proportional pressure reducing valve in the electronically controlled pump.
  • the horsepower control unit 30 when the high current command value (for example, 600mA) output from the equipment control unit 62 to the electromagnetic proportional pressure reducing valve 32 The valve 32 increases the opening amount of the flow path between the pilot pump 33 and the horsepower control unit 31. Then, the horsepower control unit 31 adjusts the swash plate angle to reduce the discharge flow rate of the hydraulic pump 20 to reduce the required horsepower of the hydraulic pump 20.
  • the high current command value for example, 600mA
  • the electromagnetic proportional pressure reducing valve 32 is the pilot pump 33 and the horsepower control part 31. Reduce the opening amount of the flow path. Then, the horsepower control unit 31 increases the horsepower of the hydraulic pump 20 by adjusting the swash plate angle so that the discharge flow rate of the hydraulic pump 20 increases.
  • the pressure sensor 50 detects the discharge pressure of the hydraulic pump 20 and transmits it to the equipment controller 62.
  • the discharge pressure of the hydraulic pump 20 may be represented as a load pressure because it may vary depending on the load transmitted from the actuator 22 through the main control valve 21.
  • the equipment control unit 62 performs the following control function in addition to the engine rotation speed control described above.
  • the equipment control unit 62 calculates a current command value to be output to the electromagnetic proportional pressure reducing valve 32 and outputs it to the electromagnetic proportional pressure reducing valve 32. More specifically, the equipment control unit 62 is set to the target pump required horsepower for the load pressure (Pd) detected by the pressure sensor 50 as shown in FIG. Here, the target pump required horsepower may be converted into a current command value output to the electromagnetic proportional pressure reducing valve 32. Since the system of the present embodiment is a negative system in which the required horsepower of the hydraulic pump 20 rises in inverse proportion to the current command value, in FIG. 8, the magnitudes of the current command value and the target pump required horsepower vary in opposite directions depending on the load pressure Pd.
  • the pump horsepower increase / decrease rate is set in the said equipment control part 62 like FIG.
  • the pump horsepower increase and decrease rate of FIG. 9 represents a time for increasing the current pump required horsepower from the hydraulic pump 20 to the target pump required horsepower, and the larger the horsepower difference value ⁇ PO between the current pump required horsepower and the target pump required horsepower, the pump.
  • the horsepower rise time is set to be large.
  • the pump required horsepower increase rate with respect to the selected specific rise time ⁇ t1 is set as shown in FIG.
  • Pump horsepower increase rate as shown in Figure 10 may be stored in the form of a table for the rise time as a value respectively set according to the size of the rise time.
  • the equipment controller 62 calculates a target pump required horsepower from the set value as shown in FIG. 8. Thereafter, the equipment control unit 62 calculates a horsepower difference value ⁇ PO between the current pump required horsepower of the hydraulic pump 20 and the calculated target pump required horsepower.
  • the current pump required horsepower of the hydraulic pump 20 may be calculated from the load pressure Pd sensed by the pressure sensor 50 and the swash plate angle of the current hydraulic pump 20.
  • the equipment controller 62 calculates the rise time ⁇ t from the pump horsepower increase and decrease rate as shown in FIG. 9.
  • the horsepower increase rate as shown in FIG. 10 is calculated.
  • the equipment control unit 62 raises the current pump required horsepower to the target pump required horsepower at the calculated rise rate during the calculated rise time ⁇ t. That is, the equipment control unit 62 gradually raises the required horsepower of the hydraulic pump 20 to the target pump required horsepower for a predetermined time.
  • the target pump required horsepower is set to the minimum horsepower POmin when the load pressure Pd sensed by the pressure sensor 50 is the no load pressure Pd1, and the load pressure. If Pd is the maximum set pressure Pd2, the maximum horsepower POmax is set. At this time, as shown in Figure 11, the maximum set pressure (Pd2) is set equal to or less than the horsepower control starting point (Pd2) of the maximum horsepower (POmax) of the hydraulic pump 20, which is the hydraulic pump ( When the required horsepower of 20) reaches the target pump required horsepower, the discharge flow rate of the hydraulic pump 20 is secured as large as possible to improve the working performance of the construction machine.
  • the load pressure Pd sensed by the pressure sensor 50 is the no load pressure Pd1.
  • the equipment control unit 62 calculates the target pump required horsepower as the minimum horsepower POmin from FIG. 8 to maximize the electromagnetic proportional pressure reducing valve 32.
  • the current command value (for example, 600 mA) is output.
  • the electromagnetic proportional pressure reducing valve 32 opens the opening amount of the flow path connecting the horsepower control unit 31 and the pilot pump 33 to the maximum, whereby the horsepower control unit 31 opens the hydraulic pump 20. Run at minimum horsepower (POmin).
  • the equipment control unit 62 receives the increased load pressure Pd sensed by the pressure sensor 50 and calculates a target pump required horsepower according to the load pressure Pd received from the set value as shown in FIG. 8. . Then, the equipment control unit 62 calculates the horsepower difference value ⁇ PO of the current pump required horsepower and the target pump required horsepower of the hydraulic pump 20, and the horsepower difference value calculated from the set values shown in Figs. 9 and 10. The rise time ⁇ t and the rise rate with respect to ⁇ PO are calculated. Thereafter, the equipment control unit 62 gradually increases the current pump required horsepower to the target pump required horsepower calculated at the rising rate calculated during the rise time ⁇ t.
  • the equipment control unit 62 gradually raises the required horsepower of the hydraulic pump 20 to the target pump required horsepower calculated from the minimum horsepower POmin, so that the hydraulic shock does not occur as shown in FIG. 12. do.
  • the equipment control unit 62 it is possible to minimize the amount of smoke by preventing a sharp drop in the rotational speed of the engine, as well as to reduce the vibration caused by the engine speed decrease.
  • a process of raising the hydraulic pump 20 from the minimum horsepower POmin to the target pump horsepower is schematically illustrated in a pressure-flow diagram (back horsepower diagram).
  • the equipment control unit 62 raises the required horsepower of the hydraulic pump 20 during the rise time ⁇ t from the minimum horsepower POmin to the target pump required horsepower, and the horsepower during the rise time ⁇ t.
  • the adjusting unit 43 performs back horsepower control along a variable back horsepower diagram. As such, as the horsepower control and the horsepower control of the hydraulic pump 20 are performed at the same time, the horsepower, the flow rate and the load pressure are changed in the diagram as shown in FIG. 13, thereby preventing the hydraulic shock as shown in FIG. 2. It can be seen.
  • Figure 14a shows the boom rising speed and the engine rotational speed by the conventional power control device
  • Figure 14b shows the amount of change in the boom rising speed and the engine rotational speed by the power control device according to this embodiment.
  • the boom rising speed is rapidly increased due to the rapid flow rate and load pressure.
  • the engine rotational speed is drastically lowered, as in the E region, and thus horsepower control is started to lower the required horsepower of the hydraulic pump 20 to the minimum horsepower.
  • a section in which the boom rising speed is rather reduced occurs in the D region.
  • the workability of the construction machine is very deteriorated, but also the amount of smoke and the vibration are large.
  • the increase rate of the boom ascending speed is somewhat lower than that of FIG. 14A, but the boom ascending speed is not lowered in the F section and the engine rotational speed is not significantly reduced as in the G section. .
  • the increase rate of the boom ascending speed is somewhat lower than that of FIG. 14A, but the boom ascending speed is not lowered in the F section and the engine rotational speed is not significantly reduced as in the G section. .
  • horsepower control of the hydraulic pump 20 can be performed in consideration of the engine rotation speed.
  • horsepower control of the hydraulic pump 20 may be performed in consideration of the engine rotational speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

본 발명의 일 측면에 따른 건설기계의 동력제어장치는 유압펌프(20)와 연결되어 상기 유압펌프(20)를 구동시키는 엔진(10); 및 입력된 엔진 목표회전속도로부터 산출된 엔진 최대토크에 대한 상기 엔진의 부하토크의 비율로 정의되는 엔진 부하율을 산출하고, 상기 엔진이 상기 목표회전속도로 구동되도록 상기 엔진 부하율에 따른 엔진 회전속도 지령치를 산출하여 상기 엔진에 출력하는 제어부(60)를 포함한다. 본 발명의 다른 일 측면에 따른 유압펌프 제어장치는 엔진(10)에 의해 구동되는 유압펌프(20)를 제어하기 위한 것으로서, 상기 유압펌프(20)의 사판각을 가변시켜 상기 유압펌프(20)의 소요마력을 가변시키는 마력조절유닛(30); 상기 유압펌프(20)로부터 토출되는 작동유의 부하압력(Pd)을 감지하기 위한 압력센서(50); 및 상기 압력센서(50)에 의해 감지된 부하압력(Pd)으로부터 목표 펌프소요마력을 산출하고, 상기 유압펌프(20)의 소요마력이 기설정된 시간(Δt) 동안 상기 목표 펌프소요마력에 점진적으로 근접하도록 상기 마력조절유닛(30)을 제어하는 제어부(60)를 포함한다.

Description

건설기계의 동력제어장치 및 동력제어방법
본 발명은 굴삭기 등과 같은 건설기계의 동력제어장치에 관한 것으로서, 특히 엔진이 목표 회전속도로 일정하게 구동되도록 엔진의 회전속도를 엔진의 부하율에 따라 제어하여 연비를 향상시킬 수 있는 건설기계의 동력제어장치에 관한 것이다.
또한, 본 발명은 굴삭기 등과 같은 건설기계의 동력제어장치 및 제어방법에 관한 것으로서, 특히 유압펌프의 부하압력에 따라 펌프소요마력을 점진적으로 증가시킴으로써 유압충격을 방지할 수 있는 건설기계의 동력제어장치 및 제어방법에 관한 것이다.
일반적으로 굴삭기와 같은 건설기계는 엔진에 직결된 가변 용량형 유압펌프로부터 토출되는 작동유를 이용하여 붐, 아암 및 버켓 등 복수의 작업장치를 구동시킨다.
이러한 유압펌프의 토출유량은 작업의 효율성과 연비 등 여러가지 조건을 충족시킬 수 있도록 여러 가지 변수에 의해 제어된다.
보다 구체적으로, 유압펌프의 제어방법은 조작부로부터 입력되는 조작신호에 따라 토출 유량을 제어하는 작업 유량 제어(flow control)와, 유압펌프의 소요마력이 일정하도록 유압펌프의 토출압력에 따라 유압펌프의 토출유량을 제어하는 등마력 제어(constant horse power control)와, 엔진의 부하상태에 따라 유압펌프의 토출유량을 제어하는 마력제어(power shift control)를 포함한다.
전술한 바와 같은 제어방법를 위해 유압펌프에는 레귤레이터가 마련되며, 상기 레귤레이터는 상기 작업 유량 제어를 위한 작업 유량 조절부와, 상기 등마력 제어를 위한 등마력 조절부와, 상기 마력제어(power shift control)를 위한 마력 조절부를 포함한다. 상기 작업 유량 조절부는 센터바이패스된 네가콘 압력이나 조작부의 파일럿 압력 또는 각 액츄에이터의 로드센싱 압력을 입력받아 상기 유압펌프의 토출유량을 제어한다. 상기 등마력 조절부는 유압펌프의 토출압력(부하압력)을 입력받아 설정된 등마력 선도를 따라 유압펌프의 토출유량을 제어한다. 마지막으로, 상기 마력 조절부는 엔진의 다이얼 게이지 등에 의해 설정된 목표 엔진회전속도와 현재 엔진회전속도로부터 산출된 엔진의 부하에 따라 유압펌프의 토출유량을 제어한다.
전술한 바와 같은 동력 제어장치는, 도 1에 도시된 바와 같이, 조작부의 조작량이 급격히 증가하면 조작신호가 상기 작업 유량 제어부에 입력되어 유압펌프의 유량이 급격히 증가하게 되고, 이에 의해 유압펌프의 토출압력이 급격하게 증가하여 유압펌프의 소요마력이 급격히 증가하게 된다. 그리고, 급격히 증가된 상기 유압펌프의 토출압력이 등마력 조절부로 입력되어 유압펌프의 토출유량을 줄이기 시작한다.
그러나 등마력 조절부의 응답성 지연시간으로 인해 유압펌프의 토출압력이 상승하는 시점으로부터 일정 시간 후에 등마력 조절부에 의해 유압펌프의 유량을 줄이게 된다. 이와 같이 등마력 제어시점이 지연되는 시간동안 유압펌프의 토출압력은 계속적으로 상승하여 유압 충격이 발생하게 된다. 이와 같은 유압충격에 의해 도 1의 A구간과 같이 유압펌프의 소요마력이 급격히 증가시키는 구간이 발생하게 된다.
이와 같이, 유압펌프의 급격한 소요마력의 증가는 엔진에 큰 부하로 작용하게 되어 엔진의 회전속도는 설정된 목표회전속도 이하로 급격히 떨어지게 된다. 이와 같이 엔진 회전속도가 급격히 저하되면, 매연량이 증가할 뿐만 아니라 진동이 커지는 문제가 발생한다. 특히, 엔진은, 도 1의 B구간과 같이, 터보차저의 구동이 정상상태에 도달하는 구간(turbo charger time lack 구간)에서는 엔진의 출력 증가율이 낮은 상태이어서 전술한 엔진 회전속도가 더욱 떨어져서 매연량 및 진동이 더욱 커지게 된다.
한편, 엔진의 회전속도가 목표 회전속도로부터 급격하게 저하되면, 엔진의 회전속도를 상승시키기 위해 마력 조절부는 유압펌프의 구동을 최고마력(200mA)에서 최저마력(600mA)으로 저하시킨다. 이에 의해 유압펌프로부터 토출되는 작동유의 유량이 작아져서 건설기계의 작업효율이 저하되게 된다.
도 2는 전술한 바와 같은 과정을 개략적으로 나타낸 등마력 선도이다. 도 2를 참조하면, 등마력 제어 시점의 시간지연으로 인해, C 선도와 같이, 유압펌프의 토출압력이 급격하게 증가한 후에 다시 등마력 선도로 유량과 압력이 복귀됨을 알 수 있다.
전술한 바와 같은 종래의 동력 제어장치에 의한 문제점을 요약하면, 등마력 조절부에 의해 등마력 제어 시점의 시간지연으로 인해 유압펌프의 소요마력이 급격하게 증가하는 유압 충격이 발생하게 되고, 이에 의해 엔진의 회전속도가 급격히 저하되어 매연량 및 진동이 커지며, 엔진의 회전속도를 목표 회전속도로 회복시키기 위해 마력 조절부가 유압펌프를 최소마력으로 구동시키는 과정에서 유압펌프의 소요마력이 급격히 저하되어 건설기계의 작업 성능이 저하되는 문제점이 있다.
또한, 상기 엔진의 마력제어를 보다 구체적으로 설명하면, 제어부는 엔진 회전속도가 목표회전속도보다 작으면 엔진 회전속도를 목표회전속도로 복귀시키기 위해 유압펌프의 유량을 줄이도록 마력 조절부에 제어신호를 출력한다. 그리고, 유압펌프의 토출유량이 작아지도록 제어되어 엔진의 회전속도가 목표회전속도보다 커지게 되면, 다시 마력 조절부에 제어신호를 출력하여 유압펌프의 유량을 증가시킨다. 이와 같이 엔진의 회전속도는 유압펌프의 부하에 의해 수동적으로 제어되어, 도 3과 같이, 엔진 부하율(엔진 최대토크에 대한 엔진의 부하토크)이 커지면 엔진의 회전속도는 목표회전속도에 근접하게 되고, 엔진 부하율이 작아지면 엔진의 회전속도는 목표회전속도보다 높아진다. 이에 의해, 유압펌프로부터 엔진에 전달되는 부하가 적은 경우에도 엔진의 회전속도가 높은 상태를 유지하기 때문에 에너지 손실이 커지게 된다.
본 발명은 상술한 바와 같은 점을 감안하여 안출된 것으로서, 엔진의 회전속도를 목표 회전속도로 일정하게 유지시킴으로써 연비를 향상시킬 수 있는 건설기계의 동력제어장치를 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 등마력 제어시점의 시간지연에 의한 유압충격의 발생을 방지할 수 있는 건설기계의 유압펌프 동력제어장치를 제공하는데 있다.
본 발명의 또 다른 목적은 조작부로부터 급격히 큰 조작량이 입력되더라도 엔진의 회전속도의 급격한 저하를 방지하여 건설기계의 작업 성능을 향상시킬 수 있는 건설기계의 동력제어장치를 제공하는데 있다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 건설기계의 동력제어장치는 유압펌프(20)와 연결되어 상기 유압펌프(20)를 구동시키는 엔진(10); 및 입력된 엔진 목표회전속도로부터 산출된 엔진 최대토크에 대한 상기 엔진의 부하토크의 비율로 정의되는 엔진 부하율을 산출하고, 상기 엔진이 상기 목표회전속도로 구동되도록 상기 엔진 부하율에 따른 엔진 회전속도 지령치를 산출하여 상기 엔진에 출력하는 제어부(60)를 포함한다.
본 발명의 일 실시예에 의하면, 상기 제어부(60)는 상기 엔진 목표회전속도로부터 상기 엔진 최대토크를 산출하고, 상기 엔진(10)에 출력된 연료 분사량 지령치로부터 상기 엔진 부하토크를 산출하며, 상기 산출된 엔진 최대토크와 상기 엔진 부하토크로부터 상기 엔진 부하율을 산출하여 출력하는 엔진 제어부(61); 및 상기 엔진 제어부(61)로부터 출력된 상기 엔진 부하율로부터 상기 엔진 회전속도 지령치를 산출하여 상기 엔진 제어부(61)에 출력하는 장비 제어부(62)를 포함하며, 상기 엔진 제어부(61)는 상기 장비 제어부(62)로부터 전송된 엔진 회전속도 지령치에 따라 상기 연료 분사량 지령치를 산출하여 상기 엔진(10)에 출력한다.
전술한 바와 같은 동력제어장치는 상기 유압펌프(20)의 사판각을 가변시켜 상기 유압펌프(20)의 소요마력을 가변시키는 마력조절유닛(30); 및 상기 유압펌프(20)로부터 토출되는 작동유의 부하압력(Pd)을 감지하기 위한 압력센서(50)를 더 포함하며, 상기 장비 제어부(62)는 상기 압력센서(50)에 의해 감지된 부하압력(Pd)으로부터 목표 펌프소요마력을 산출하고, 상기 유압펌프(20)의 소요마력이 기설정된 시간(Δt) 동안 상기 목표 펌프소요마력에 점진적으로 근접하도록 상기 마력조절유닛(30)을 제어한다.
한편, 상기 압력센서(50)로부터 감지된 부하압력(Pd)이 무부하 압력(Pd1)인 경우, 상기 목표 펌프소요마력은 최소마력(POmin)으로 설정되고, 상기 압력센서(50)로부터 감지된 부하압력이 최대설정압력(Pd2)이면, 상기 목표 펌프소요마력은 최대마력(POmax)으로 설정되며, 상기 최대설정압력(Pd2)은 상기 유압펌프(20)의 최대마력(POmax)의 등마력 제어 시작점의 압력(Pd2)보다 작거나 같게 설정된다.
상기 마력조절유닛(30)은 파일럿 펌프(33)로부터 입력되는 파일럿 압력에 따라 상기 유압펌프(20)의 사판각을 조절하는 마력 조절부(31); 및 상기 장비 제어부(62)로부터 입력되는 전류 지령치의 크기에 따라 상기 파일럿 펌프(33)와 상기 마력 조절부(31)를 연결하는 유로의 개도량을 가변시키는 전자비례감압밸브(32)를 포함한다.
또한, 본 발명의 다른 일 측면에 따른 동력 제어장치는 엔진(10)에 의해 구동되는 유압펌프(20)를 제어하기 위한 것으로서, 상기 유압펌프(20)의 사판각을 가변시켜 상기 유압펌프(20)의 소요마력을 가변시키는 마력조절유닛(30); 상기 유압펌프(20)로부터 토출되는 작동유의 부하압력(Pd)을 감지하기 위한 압력센서(50); 및 상기 압력센서(50)에 의해 감지된 부하압력(Pd)으로부터 목표 펌프소요마력을 산출하고, 상기 유압펌프(20)의 소요마력이 기설정된 시간(Δt) 동안 상기 목표 펌프소요마력에 점진적으로 근접하도록 상기 마력조절유닛(30)을 제어하는 제어부(60)를 포함한다.
본 발명의 일 실시예에 의하면, 상기 압력센서(50)로부터 감지된 부하압력(Pd)이 무부하 압력(Pd1)인 경우, 상기 목표 펌프소요마력은 최소마력(POmin)으로 설정되고, 상기 압력센서(50)로부터 감지된 부하압력이 최대설정압력(Pd2)이면, 상기 목표펌프소요마력은 최대마력(POmax)으로 설정되며, 상기 최대설정압력(Pd2)은 상기 유압펌프(20)의 최대마력(POmax)의 등마력 제어 시작점의 압력(Pd2)보다 작거나 같다.
또한, 상기 기설정된 시간(Δt)은 상기 유압펌프(20)의 현재 펌프소요마력과 상기 목표 펌프소요마력의 마력차이값(ΔPO)에 비례한다.
상기 마력조절유닛(30)은 파일럿 펌프(33)로부터 입력되는 파일럿 압력에 따라 상기 유압펌프(20)의 사판각을 조절하는 마력 조절부(31); 및 상기 제어부(60)로부터 입력되는 전류 지령치의 크기에 따라 상기 파일럿 펌프(33)와 상기 마력 조절부(31)를 연결하는 유로의 개도량을 가변시키는 전자비례감압밸브(32)를 포함한다.
한편, 전술한 바와 같은 목적은 엔진(10)에 의해 구동되는 유압펌프(20)를 제어하기 위한 건설기계의 동력 제어방법으로서, 유압펌프(20)의 현재 펌프소요마력을 산출하는 단계; 상기 유압펌프(20)로부터 토출되는 작동유의 부하압력(Pd)으로부터 목표 펌프소요마력을 산출하는 단계; 및 상기 유압펌프(20)의 소요마력을 기설정된 시간(Δt) 동안 상기 현재 펌프소요마력으로부터 상기 목표 펌프소요마력까지 점진적으로 근접시키는 단계를 포함하는 것을 특징으로 하는 건설기계의 동력 제어방법에 의해서도 달성될 수 있다.
본 발명의 일 실시예에 의하면, 상기 동력 제어방법은 상기 현재 펌프소요마력과 상기 목표 펌프소요마력의 마력차이값(ΔPO)으로부터 상기 기설정된 시간(Δt)을 산출하는 단계를 더 포함할 수 있다.
이상에서 설명한 바와 같은 과제 해결 수단에 의하면, 엔진 부하율에 따른 엔진 회전속도 지령치를 산출하여 엔진에 출력함으로써, 엔진의 회전속도를 목표회전속도로 유지시킬 수 있고, 이에 의해 건설기계의 연비를 향상시킬 수 있고 진동을 줄일 수 있게 된다.
또한, 엔진 제어부로부터 엔진 부하율을 전송받은 장비 제어부가 엔진 회전속도 지령치를 연산하여 엔진 제어부에 출력함으로써, 연산부담을 분산시킬 수 있고, 본 발명의 동력제어장치를 기존의 시스템에 적용하기가 용이해진다.
또한, 유압펌프의 소요마력을 부하압력에 따라 점진적으로 가변시킴으로써, 종래 등마력 제어시점의 시간지연으로 발생하는 유압충격을 방지할 수 있게 된다. 또한, 유압충격을 방지함으로써, 엔진 회전속도가 유압펌프 부하에 의해 급격하게 저하되는 것을 방지할 수 있고, 이에 의해 엔진의 매연량 및 진동을 최소화할 수 있게 된다.
또한, 종래 엔진 회전속도의 복귀를 위해 유압펌프의 소요마력 급격히 감소시켜 건설기계의 작업성을 저하시키는 문제점이 있었으나, 유압펌프의 소요마력을 목표 펌프소요마력에 기설정된 시간 동안 점진적으로 근접시키므로써, 엔진의 회전속도를 복귀시킬 필요가 없고, 이로 인해 유압펌프의 소요마력이 감소되는 것을 방지할 수 있어 건설기계의 작업성을 향상시킬 수 있게 된다.
특히, 부하압력(Pd)이 무부하 압력(Pd1)인 경우 목표 펌프소요마력을 최소마력(POmin)으로 설정함으로써 유압펌프가 엔진에 가하는 부하를 최소화할 수 있고, 이에 의해 연비를 개선할 수 있게 된다.
또한, 목표 펌프소요마력이 최대마력(POmax)이 되는 최대설정압력(Pd2)을 유압펌프의 최대마력(POmax)의 등마력 제어 시작점의 압력(Pd2)보다 작거나 같게 설정함으로써, 유압펌프의 소요마력이 목표 펌프소요마력에 도달하는 시점에 유압펌프의 토출유량이 가능한 크게 확보할 수 있게 되고, 이에 의해 작업성을 더욱 향상시킬 수 있게 된다.
또한, 기설정된 시간(Δt)을 상기 유압펌프의 현재 펌프소요마력과 상기 목표 펌프소요마력의 마력차이값(ΔPO)에 비례하도록 설정함으로써, 마력차이값(ΔPO)이 작은 경우에는 신속하게 마력제어를 할 수 있고 마력차이값(ΔPO)이 큰 경우 유압충격이 발생하지 않을 정도의 충분한 제어 시간을 확보할 수 있게 된다.
한편, 마력조절유닛을 마력 조절부와 파일럿 펌프와 마력 조절부를 연결하는 유로의 개도량을 가변시키는 전자비례감압밸브로 구성함으로써, 본 발명의 사상을 일반적인 유압시스템에 범용적으로 적용할 수 있게 된다.
도 1은 조작부의 급조작 조건에서 기존 동력 제어장치에 따른 펌프 토출유량 및 소요마력과, 엔진 출력 및 회전속도와, 마력제어 전류지령치의 변화량을 개략적으로 나타낸 그래프,
도 2는 도 1의 제어 과정을 유압펌프의 압력-유량 선도(등마력 선도)에 나타낸 그래프,
도 3은 종래 엔진 부하율에 따른 엔진 회전속도를 개략적으로 나타낸 그래프,
도 4는 본 발명의 일 실시예에 따른 건설기계의 동력제어장치를 개략적으로 나타낸 개념도,
도 5는 도 4의 장비 제어부에 설정된 엔진 부하율에 따른 엔진 회전속도 지령치를 개략적으로 나타낸 그래프,
도 6은 도 4에 도시된 동력제어장치에 의해 제어된 엔진의 엔진 부하율에 따른 엔진 회전속도를 개략적으로 나타낸 그래프,
도 7을 도 4에 도시된 동력제어장치에 의한 동력 제어 과정을 개략적으로 나타낸 흐름도,
도 8는 도 3의 제어부에 설정된 부하압력에 대한 목표 펌프소요마력 및 전류 지령치를 개략적으로 나타낸 그래프,
도 9는 도 3의 제어부에 설정된 목표 펌프소요마력과 현재 펌프소요마력의 마력차이값에 대한 상승 시간을 개략적으로 나타낸 그래프,
도 10은 도 4의 제어부에 설정된 특정 마력차이값에 대한 마력 상승율을 개략적으로 나타낸 그래프,
도 11은 도 4에 도시된 유압펌프의 최대 등마력 선도와 최소 등마력 선도를 개략적으로 나타낸 그래프,
도 12은 조작부의 급조작 조건에서 도 4에 도시된 동력 제어장치에 따른 펌프 토출유량 및 소요마력과, 엔진 출력 및 회전속도를 개략적으로 나타낸 그래프,
도 13는 도 12의 제어과정을 유압펌프의 압력-유량 선도(등마력 선도)에 나타낸 그래프,
도 14a는 도 1의 제어과정에 따른 붐 상승속도와 엔진 회전속도를 측정하여 나타낸 그래프,
도 14b는 도 12의 제어과정에 따른 붐 상승속도와 엔진 회전속도를 측정하여 나타낸 그래프이다.
<도면의 주요 참조부호에 대한 설명>
10; 엔진 20; 유압펌프
30; 마력조절유닛 31; 마력 조절부
32; 전자비례감압밸브 33; 파일럿 펌프
40; 레귤레이터 50; 압력센서
60; 제어부 61; 엔진 제어부
62; 장비 제어부 ΔPO; 마력차이값
Δt; 상승시간, 기설정 시간 POmin; 펌프 최소마력
POmax; 펌프 최대마력 Pd; 부하압력
Pd1; 무부하 압력 Pd2; 최대설정압력
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 건설기계의 동력제어장치에 대하여 상세히 설명한다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 건설기계의 동력제어장치는 유압펌프(20)를 구동시키기 위한 엔진(10)과, 입력되는 마력제어신호에 따라 유압펌프(20)의 사판각을 가변시켜 유압펌프(20)의 소요마력을 가변시키는 마력조절유닛(30)과, 상기 유압펌프(20)로부터 토출되는 작동유의 압력을 감지하기 위한 압력센서(50)와, 상기 마력조절유닛(30)에 상기 마력제어신호를 출력함과 아울러 상기 엔진의 회전속도를 제어하기 위한 제어부(60)를 포함한다.
상기 제어부(60)는 ECU(Electronic Control Unit)과 같은 엔진 제어부(61)와 장비 제어부(62)를 포함한다.
상기 엔진 제어부(61)는 상기 엔진(10)에 연료 분사량 지령치를 출력하여 상기 엔진(10)의 회전속도를 제어한다. 또한, 상기 엔진 제어부(61)는 현재 연료 분사량 지령치와 엔진의 현재회전속도로부터 엔진의 부하토크를 산출한다. 또한, 엔진에는 각 회전속도에 대한 엔진의 최대토크가 설정된다. 따라서, 다이얼 게이지(11)로부터 엔진의 목표회전속도가 입력되면, 엔진 제어부(61)는 목표회전속도에 대응하는 엔진의 최대토크를 산출할 수 있다. 또한, 상기 엔진 제어부(61)는 최대토크에 대한 부하토크의 비율인 엔진 부하율을 산출하여 상기 장비 제어부(62)로 출력한다.
상기 장비 제어부(62)에는, 도 5에 도시된 바와 같이, 엔진(10)의 회전속도를 입력된 목표회전속도로 일정하게 유지시키기 위한 엔진 부하율에 대한 엔진 회전속도 지령치가 설정되어 있다. 여기서, 상기 목표회전속도가 가변되는 경우, 상기 엔진 부하율에 대한 엔진회전속도 지령치도 가변된다. 따라서, 도 5에 도시된 바와 같은 설정값은 엔진의 목표회전속도의 크기에 따라 다르게 설정되어 있다. 즉, 도 5에 도시된 바와 같은 설정값들은 엔진의 목표회전속도별로 설정되어 메모리나 장비 제어부(62)에 저장된다.
따라서, 상기 장비 제어부(62)에 엔진의 목표회전속도가 입력되면, 장비 제어부(62)는 도 5와 같은 패턴들 중 입력된 목표회전속도에 대응하는 패턴을 선택한다. 그런 후에, 상기 장비 제어부(62)는 선택된 패턴으로부터 입력된 엔진 부하율에 대응하는 엔진 회전속도 지령치를 산출하여 상기 엔진 제어부(61)에 출력한다. 그러면, 엔진 제어부(61)는 엔진 회전속도 지령치에 대응하는 연료분사량 지령치를 산출하여 엔진(10)에 출력한다. 이에 의해 엔진의 회전속도가 제어된다. 이때, 도 5에 도시된 바와 같이, 엔진 부하율이 커질수록 엔진 회전속도 지령치가 증가한다. 즉, 유압펌프(20)로부터 엔진(10)에 가해지는 부하가 커지면, 엔진(10)의 연료 분사량이 커지게 되고, 유압펌프(20)로부터 엔진(10)에 가해지는 부하가 작아지면 연료 분사량이 작아지게 된다.
결국, 엔진의 부하율에 따라 토크를 상승할 수 있도록 연료 분사량을 제어하여, 엔진(10)의 회전속도는, 도 6에 도시된 바와 같이, 목표회전속도로 항상 일정하게 유지될 수 있게 된다.
이하, 전술한 바와 같은 구성을 가지는 엔진의 회전속도 제어방법에 대하여 상세히 설명한다.
도 7을 참조하면, 우선 다이얼 게이지(11)로부터 엔진 목표회전속도가 설정되면, 엔진 목표회전속도는 엔진 제어부(61) 및 장비 제어부(62)로 전송된다(S110).
그러면, 엔진 제어부(61)는 입력된 엔진 목표회전속도에 대한 엔진 최대토크를 산출하고, 현재 엔진 부하토크를 산출한다(S120). 그런 후에, 엔진 제어부(61)는 엔진 부하율을 산출한다(S130). 엔진 부하율을 다음과 같은 수학식 1에 의해 산출된다.
수학식 1
Figure PCTKR2010009207-appb-M000001
엔진 부하율이 산출되면, 엔진 제어부(61)는 산출된 엔진 부하율을 장비 제어부(62)에 출력한다.
한편, 장비 제어부(62)는, 상기 다이얼 게이지(11)로부터 엔진 목표회전속도가 입력되면, 입력된 엔진 목표회전속도를 기초로 도 5에 도시된 바와 같은 엔진 부하율에 따른 엔진 회전속도 지령치가 설정된 패턴을 선택한다. 그런 후에, 장비 제어부(62)는 선택된 도 5와같은 패턴으로부터 상기 엔진 제어부(61)로부터 출력된 엔진 부하율에 대응하는 엔진 회전속도 지령치를 산출한다(S140). 그런 후에, 장비 제어부(62)는 산출된 엔진 회전속도 지령치를 엔진 제어부(61)에 출력한다. 그러면, 엔진 제어부(61)는 입력된 엔진 회전속도 지령치로부터 연료 분사량 지령치를 산출하여 엔진(10)에 출력한다(S150).
이상에서는 엔진의 회전속도 제어를 통해 동력제어장치 및 동력제어방법을 설명하였으며, 이하에서는 유압펌프(20)의 제어를 통한 동력제어장치 및 동력제어방법에 대하여 설명한다.
도 4를 참조하면, 상기 유압펌프(20)는 사판(23)의 기울기에 의해 토출 유량이 가변하는 가변형 펌프로서, 상기 유압펌프(20)에는 사판(23)을 조절하기 위한 레귤레이터(40)가 마련된다.
상기 레귤레이터(40)는 조작부(42)의 조작량에 대한 신호에 따라 상기 유압펌프(20)의 토출유량을 가변시키는 작업 유량 조절부(41)와, 상기 유압펌프(20)의 소요마력이 일정한 마력으로 유지시키기 위한 등마력 조절부(43)와, 상기 유압펌프(20)의 소요마력을 조절하기 위한 마력 조절부(31)를 포함한다.
상기 작업 유량 조절부(41)는 상기 조작부(42)의 조작신호에 대응하는 신호에 따라 유압펌프(20)의 토출 유량을 조절하기 위한 것으로서, 조작부(42)의 조작 신호의 크기에 비례하여 상기 유압펌프(20)의 토출 유량을 증가시킨다. 여기서, 상기 조작부(42)의 조작신호에 대응하는 신호는 메인 컨트롤 밸브(21)를 통과한 바이패스 압력인 네가콘 압력과, 상기 조작부(42)의 조작에 따른 파일럿 압력인 포지콘 압력 및 각 액츄에이터(22)의 로드센싱압력 중 선택된 어느 하나의 압력에 대한 신호로 구성될 수 있다.
상기 등마력 조절부(43)는 유압펌프(20)의 토출압력에 따라 상기 유압펌프(20)의 토출유량을 조절하여 상기 유압펌프(20)의 소요마력이 등마력을 유지하도록 하기 위한 것이다. 여기서, 상기 등마력은 상기 마력 조절부(31)에 의해 가변된다. 따라서, 상기 등마력 조절부(43)는 가변된 현 상태의 등마력 선도를 따라 상기 유압펌프(20)의 토출유량을 조절하게 된다.
상기 마력 조절부(31)는 상기 유압펌프(20)의 소요마력을 가변시키기 위한 것으로서, 파일럿 펌프(33)로부터 토출되는 파일럿 압력이 인가된다. 여기서, 상기 마력 조절부(31)와 파일럿 펌프(33)의 사이에는 전자비례감압밸브(32)가 설치되며, 상기 전자비례감압밸브(32)에 의해 상기 파일럿 펌프(33)와 상기 마력 조절부(31) 사이를 연결하는 유로의 개도량이 조절된다. 상기 전자비례감압밸브(32)는 상기 장비 제어부(62)로부터 출력되는 전류 지령치에 따라 변환된다. 따라서, 마력 조절부(31)는 상기 장비 제어부(62)로부터 출력되는 전류 지령치에 따라 상기 유압펌프(20)의 사판각을 가변시키게 된다.
본 실시예에서는 상기 마력 조절부(31)와 상기 전자비례감압밸브(32)를 포함하여 마력조절유닛(30)으로 정의하며, 본 실시예와 달리 상기 마력 조절부(31)와 상기 전자비례감압밸브(32)는 전자제어식 펌프에서는 하나의 전자비례감압밸브로 구현될 수 있다. 따라서, 마력조절유닛(30)은 마력 조절부(31)와 전자비례감압밸브(32)으로 이루어지는 것일 수 있을 뿐만 아니라 전자제어식 펌프에서 하나의 전자비례감압밸브로 이루어질 수도 있다.
상기 마력조절유닛(30)의 작동 과정에 대해 보다 구체적으로 살펴보면, 상기 장비 제어부(62)로부터 상기 전자비례감압밸브(32)에 높은 전류 지령치(예를 들면, 600mA)를 출력하면 상기 전자비례감압밸브(32)는 상기 파일럿 펌프(33)와 상기 마력 조절부(31)의 유로 개도량을 증가시킨다. 그러면 마력 조절부(31)는 상기 유압펌프(20)의 토출유량이 감소하도록 상기 사판각을 조절하여 유압펌프(20)의 소요마력을 감소시킨다.
전술한 바와 반대로, 상기 전자비례감압밸브(32)에 낮은 전류 지령치(예를 들면, 200mA)를 출력하면 상기 전자비례감압밸브(32)는 상기 파일럿 펌프(33)와 상기 마력 조절부(31)의 유로 개도량을 감소시킨다. 그러면 마력 조절부(31)는 상기 유압펌프(20)의 토출유량이 증가하도록 상기 사판각을 조절하여 유압펌프(20)의 소요마력을 증가시킨다.
상기 압력센서(50)는 상기 유압펌프(20)의 토출압력을 감지하여 상기 장비 제어부(62)에 전송한다. 상기 유압펌프(20)의 토출압력은 상기 메인 컨트롤 밸브(21)를 통해 액츄에이터(22)로부터 전달되는 부하에 따라 가변될 수 있기 때문에 부하압력으로 표현될 수도 있다.
상기 장비 제어부(62)는 전술한 엔진 회전속도 제어 이외에 다음과 같은 제어기능을 수행한다.
상기 장비 제어부(62)는 상기 전자비례감압밸브(32)에 출력될 전류 지령치를 산출하여 상기 전자비례감압밸브(32)에 출력한다. 보다 구체적으로, 상기 장비 제어부(62)에는 상기 압력센서(50)에 의해 감지된 부하압력(Pd)에 대한 목표 펌프소요마력이 도 8과 같이 설정되어 있다. 여기서, 상기 목표 펌프소요마력은 상기 전자비례감압밸브(32)에 출력하는 전류 지령치로 환산될 수 있다. 본 실시예의 시스템이 전류 지령치에 반비례하여 유압펌프(20)의 소요마력이 상승하는 네거티브 시스템이기 때문에 도 8에서는 전류 지령치와 목표 펌프소요마력의 크기는 부하압력(Pd)에 따라 서로 반대로 가변된다.
또한, 상기 장비 제어부(62)에는, 도 9와 같이, 펌프 마력 증감율이 설정되어 있다. 도 9의 펌프마력 증감율이란 유압펌프(20)의 현재 펌프소요마력으로부터 목표 펌프소요마력까지 상승시키기 위한 시간을 나타낸 것으로서, 현재 펌프소요마력과 목표 펌프소요마력의 마력차이값(ΔPO)이 클수록 펌프소요마력 상승시간이 커지도록 설정된다. 또한, 상기 장비 제어부(62)에는, 도 10과 같이, 선택된 특정 상승시간(Δt1)에 대한 펌프소요마력 증가율이 설정되어 있다. 도 10과 같은 펌프소요마력 증가율은 상승시간의 크기에 따라 각각 설정되는 값으로서 상승시간에 대한 테이블의 형태로 저장될 수 있다.
전술한 바와 같은 장비 제어부(62)는 압력센서(50)로부터 부하압력(Pd)이 입력되면, 도 8와 같은 설정값으로부터 목표 펌프소요마력을 산출한다. 그런 후에, 장비 제어부(62)는 유압펌프(20)의 현재 펌프소요마력과 산출된 목표 펌프소요마력의 마력차이값(ΔPO)을 산출한다. 유압펌프(20)의 현재 펌프소요마력은 압력센서(50)에 의해 감지된 부하압력(Pd)과 현재 유압펌프(20)의 사판각으로부터 산출될 수 있다.
마력차이값(ΔPO)이 산출되면, 장비 제어부(62)는 도 9와 같은 펌프마력 증감율로부터 상승시간(Δt)을 산출하게 된다. 상승시간(Δt)이 산출되면, 도 10과 같은 마력 상승율을 산출하게 된다.
마력상승율의 산출이 완료되면, 장비 제어부(62)는 산출된 상승시간(Δt) 동안 산출된 상승율로 현재 펌프소요마력을 목표 펌프소요마력까지 상승시킨다. 즉, 장비 제어부(62)는 일정 시간 동안 유압펌프(20)의 소요마력을 목표 펌프소요마력까지 점진적으로 상승시키게 된다.
한편, 도 8에 도시된 바와 같이, 목표 펌프소요마력은 상기 압력센서(50)에 의해 감지된 부하압력(Pd)이 무부하 압력(Pd1)인 경우, 최소마력(POmin)으로 설정되고, 부하압력(Pd)이 최대설정압력(Pd2)인 경우 최대마력(POmax)으로 설정된다. 이때, 도 11에 도시된 바와 같이, 상기 최대설정압력(Pd2)은 상기 유압펌프(20)의 최대마력(POmax)의 등마력 제어 시작점(Pd2)과 작거나 같게 설정되며, 이는 상기 유압펌프(20)의 소요마력이 목표 펌프소요마력에 도달했을 때 유압펌프(20)의 토출유량을 가능한 크게 확보하여 건설기계의 작업 성능을 향상시키기 위함이다.
이하, 전술한 바와 같은 구성을 가지는 유압펌프 제어를 통한 동력제어방법에 대하여 상세히 설명한다.
도 12를 참조하면, 우선, 조작부(42)의 조작량이 없는 상태에서, 상기 압력센서(50)에 의해 감지된 부하압력(Pd)은 무부하 압력(Pd1)이다. 무부하 압력(Pd1) 신호가 장비 제어부(62)에 전송되면, 장비 제어부(62)는, 도 8로부터, 목표 펌프소요마력을 최소마력(POmin)으로 산출하여 상기 전자비례감압밸브(32)에 최대 전류 지령치(예를 들면, 600mA)를 출력한다. 그러면, 전자비례감압밸브(32)는 마력 조절부(31)와 파일럿 펌프(33)를 연결하는 유로의 개도량을 최대로 개방하고, 이에 의해 마력 조절부(31)는 유압펌프(20)를 최소마력(POmin)으로 구동시킨다.
이와 같은 상태에서, 도 12에 도시된 바와 같이, 조작부(42)의 조작량을 급격히 증가시키면, 조작량에 대한 신호는 작업 유량 조절부(41)로 인가된다. 그러면, 작업 유량 조절부(41)는 유압펌프(20)의 유량을 급격히 증가시킨다. 그러나 유량이 급격히 증가하더라도 마력 조절부(31)에서는 유압펌프(20)를 최소마력(POmin)으로 구동시키고 있기 때문에 종래와 같이 급격하게 유량이 증가하거나 부하압력(Pd)이 증가하지 않는다. 그러나 작업장치의 구동력을 상승시키기 위해서는 상기 마력 조절부(31)를 통해 유압펌프(20)의 소요마력을 상승시켜야 한다.
이를 위해, 장비 제어부(62)는 압력센서(50)로부터 감지된 상승된 부하압력(Pd)을 입력받고, 도 8와 같은 설정치로부터 입력받은 부하압력(Pd)에 따른 목표 펌프소요마력을 산출한다. 그런 후에, 장비 제어부(62)는 유압펌프(20)의 현재 펌프소요마력과 목표 펌프소요마력의 마력차이값(ΔPO)을 산출하고, 도 9 및 도 10에 도시된 설정치로부터 산출된 마력차이값(ΔPO)에 대한 상승시간(Δt) 및 상승율을 산출한다. 그런 후에, 장비 제어부(62)는 현재 펌프소요마력을 상승시간(Δt) 동안 산출된 상승율로 산출된 목표 펌프소요마력까지 점진적으로 증가시킨다.
이와 같이, 장비 제어부(62)가 유압펌프(20)의 소요마력을 최소마력(POmin)으로부터 산출된 목표 펌프소요마력까지 점진적으로 상승시킴으로써, 도 12에 도시된 바와 같이, 유압 충격이 발생하지 않게 된다. 또한, 도 12에 도시된 바와 같이, 엔진의 회전속도의 급격한 저하를 방지하여 매연량을 최소화할 수 있음은 물론 엔진 회전속도 저하에 의해 발생하는 진동을 줄일 수 있게 된다.
한편, 종래에는 엔진 회전속도가 다이얼 게이지(11)로부터 설정된 목표 엔진 회전속도보다 낮게 떨어지면 유압펌프(20)의 소요마력을 최저로 낮추는 마력제어를 수행하여 건설기계의 작업성을 저하시켰으나, 본 실시예에서는 엔진의 회전속도의 저하 정도가 작을 뿐만 아니라 유압펌프(20)의 소요마력을 최저마력부터 목표 펌프소요마력까지 점진적으로 상승시킴으로써 건설기계의 작업성을 향상시킬 수 있게 된다.
도 13을 참조하면, 유압펌프(20)를 최소마력(POmin)에서 목표 펌프소요마력까지 상승하는 과정을 압력-유량 선도(등마력 선도)에 개략적으로 나타낸 것이다. 도 13를 참조하면, 장비 제어부(62)가 상승시간(Δt) 동안 유압펌프(20)의 소요마력을 최소마력(POmin)으로부터 목표 펌프소요마력까지 상승시키게 되며, 상승시간(Δt) 동안 등마력 조절부(43)는 가변되는 등마력 선도를 따라 등마력 제어를 하게 된다. 이와 같이, 유압펌프(20)의 마력제어와 등마력 제어가 동시에 수행됨에 따라 도 13와 같은 선도로 마력과 유량 및 부하압력이 변하게 되어, 도 2에 도시된 바와 같은 유압 충격을 방지할 수 있음을 알 수 있다.
도 14a는 종래 동력 제어장치에 의한 붐 상승속도 및 엔진 회전속도를 나타낸 것이고, 도 14b는 본 실시예에 따른 동력 제어장치에 의한 붐 상승속도 및 엔진 회전속도의 변화량을 나타낸 것이다.
도 14a를 참조하면, 종래에 붐 상승속도는 급격한 유량 및 부하압력이 증가하여 붐 상승속도가 급격히 증가한다. 그러나 유압 충격에 의해, E 영역과 같이, 엔진 회전속도가 급격한 저하되고, 이로 인해 마력 제어가 시작되어 유압펌프(20)의 소요마력이 최저마력으로 낮추어지게 된다. 이에 의해 D영역에는 붐 상승속도가 오히려 감소하는 구간이 발생하게 된다. 이로 인해, 건설기계의 작업성을 매우 악화시킬 뿐만 아니라 매연량 및 진동이 커지는 문제가 있었다.
그러나, 도 14b를 참조하면, 본 실시예에서는 도 14a와 비교하여 붐 상승속도의 증가율은 다소 낮으나, F 구간에서 붐 상승속도가 저하되지 않을 뿐만 아니라 G 구간과 같이 엔진 회전속도가 크게 저하되지 않는다. 이로 인해, 건설기계의 작업성을 향상시킬 수 있을 뿐만 아니라 매연 및 진동의 발생을 최소화할 수 있게 된다.
한편, 부하압력이 기준압력까지 상승하여 변동되지 않는 경우, 엔진 회전속도를 고려하여 유압펌프(20)의 마력제어를 수행할 수 있다. 또한, 부하 압력의 변동이 발생하여 엔진 회전속도가 변동되는 경우에도 엔진 회전속도를 고려하여 유압펌프(20)의 마력제어를 수행할 수도 있다.

Claims (11)

  1. 유압펌프(20)와 연결되어 상기 유압펌프(20)를 구동시키는 엔진(10); 및
    입력된 엔진 목표회전속도로부터 산출된 엔진 최대토크에 대한 상기 엔진의 부하토크의 비율로 정의되는 엔진 부하율을 산출하고, 상기 엔진이 상기 목표회전속도로 구동되도록 상기 엔진 부하율에 따른 엔진 회전속도 지령치를 산출하여 상기 엔진에 출력하는 제어부(60)를 포함하는 것을 특징으로 하는 건설기계의 동력제어장치.
  2. 제1항에 있어서,
    상기 제어부(60)는,
    상기 엔진 목표회전속도로부터 상기 엔진 최대토크를 산출하고, 상기 엔진(10)에 출력된 연료 분사량 지령치로부터 상기 엔진 부하토크를 산출하며, 상기 산출된 엔진 최대토크와 상기 엔진 부하토크로부터 상기 엔진 부하율을 산출하여 출력하는 엔진 제어부(61); 및
    상기 엔진 제어부(61)로부터 출력된 상기 엔진 부하율로부터 상기 엔진 회전속도 지령치를 산출하여 상기 엔진 제어부(61)에 출력하는 장비 제어부(62)를 포함하며,
    상기 엔진 제어부(61)는 상기 장비 제어부(62)로부터 전송된 엔진 회전속도 지령치에 따라 상기 연료 분사량 지령치를 산출하여 상기 엔진(10)에 출력하는 것을 특징으로 하는 건설기계의 동력제어장치.
  3. 제2항에 있어서,
    상기 유압펌프(20)의 사판각을 가변시켜 상기 유압펌프(20)의 소요마력을 가변시키는 마력조절유닛(30); 및
    상기 유압펌프(20)로부터 토출되는 작동유의 부하압력(Pd)을 감지하기 위한 압력센서(50)를 더 포함하며,
    상기 장비 제어부(62)는 상기 압력센서(50)에 의해 감지된 부하압력(Pd)으로부터 목표 펌프소요마력을 산출하고, 상기 유압펌프(20)의 소요마력이 기설정된 시간(Δt) 동안 상기 목표 펌프소요마력에 점진적으로 근접하도록 상기 마력조절유닛(30)을 제어하는 것을 특징으로 하는 건설기계의 동력제어장치.
  4. 제3항에 있어서,
    상기 압력센서(50)로부터 감지된 부하압력(Pd)이 무부하 압력(Pd1)인 경우, 상기 목표 펌프소요마력은 최소마력(POmin)으로 설정되고,
    상기 압력센서(50)로부터 감지된 부하압력이 최대설정압력(Pd2)이면, 상기 목표 펌프소요마력은 최대마력(POmax)으로 설정되며,
    상기 최대설정압력(Pd2)은 상기 유압펌프(20)의 최대마력(POmax)의 등마력 제어 시작점의 압력(Pd2)보다 작거나 같게 설정되는 것을 특징으로 하는 건설기계의 동력제어장치.
  5. 제3항에 있어서, 상기 마력조절유닛(30)은,
    파일럿 펌프(33)로부터 입력되는 파일럿 압력에 따라 상기 유압펌프(20)의 사판각을 조절하는 마력 조절부(31); 및
    상기 장비 제어부(62)로부터 입력되는 전류 지령치의 크기에 따라 상기 파일럿 펌프(33)와 상기 마력 조절부(31)를 연결하는 유로의 개도량을 가변시키는 전자비례감압밸브(32)를 포함하는 것을 특징으로 하는 건설기계의 동력제어장치.
  6. 엔진(10)에 의해 구동되는 유압펌프(20)를 제어하기 위한 건설기계의 동력 제어장치에 있어서,
    상기 유압펌프(20)의 사판각을 가변시켜 상기 유압펌프(20)의 소요마력을 가변시키는 마력조절유닛(30);
    상기 유압펌프(20)로부터 토출되는 작동유의 부하압력(Pd)을 감지하기 위한 압력센서(50); 및
    상기 압력센서(50)에 의해 감지된 부하압력(Pd)으로부터 목표 펌프소요마력을 산출하고, 상기 유압펌프(20)의 소요마력이 기설정된 시간(Δt) 동안 상기 목표 펌프소요마력에 점진적으로 근접하도록 상기 마력조절유닛(30)을 제어하는 제어부(60)를 포함하는 것을 특징으로 하는 건설기계의 동력 제어장치.
  7. 제6항에 있어서,
    상기 압력센서(50)로부터 감지된 부하압력(Pd)이 무부하 압력(Pd1)인 경우, 상기 목표 펌프소요마력은 최소마력(POmin)으로 설정되고,
    상기 압력센서(50)로부터 감지된 부하압력이 최대설정압력(Pd2)이면, 상기 목표 펌프소요마력은 최대마력(POmax)으로 설정되며,
    상기 최대설정압력(Pd2)은 상기 유압펌프(20)의 최대마력(POmax)의 등마력 제어 시작점의 압력(Pd2)보다 작거나 같은 것을 특징으로 하는 건설기계의 동력 제어장치.
  8. 제6항에 있어서,
    상기 기설정된 시간(Δt)은 상기 유압펌프(20)의 현재 펌프소요마력과 상기 목표 펌프소요마력의 마력차이값(ΔPO)에 비례하는 것을 특징으로 하는 건설기계의 동력 제어장치.
  9. 제6항에 있어서,
    상기 마력조절유닛(30)은,
    파일럿 펌프(33)로부터 입력되는 파일럿 압력에 따라 상기 유압펌프(20)의 사판각을 조절하는 마력 조절부(31); 및
    상기 제어부(60)로부터 입력되는 전류 지령치의 크기에 따라 상기 파일럿 펌프(33)와 상기 마력 조절부(31)를 연결하는 유로의 개도량을 가변시키는 전자비례감압밸브(32)를 포함하는 것을 특징으로 하는 건설기계의 동력 제어장치.
  10. 엔진(10)에 의해 구동되는 유압펌프(20)를 제어하기 위한 건설기계의 동력 제어방법에 있어서,
    유압펌프(20)의 현재 펌프소요마력을 산출하는 단계;
    상기 유압펌프(20)로부터 토출되는 작동유의 부하압력(Pd)으로부터 목표 펌프소요마력을 산출하는 단계; 및
    상기 유압펌프(20)의 소요마력을 기설정된 시간(Δt) 동안 상기 현재 펌프소요마력으로부터 상기 목표 펌프소요마력까지 점진적으로 근접시키는 단계를 포함하는 것을 특징으로 하는 건설기계의 동력 제어방법.
  11. 제10항에 있어서,
    상기 현재 펌프소요마력과 상기 목표 펌프소요마력의 마력차이값(ΔPO)으로부터 상기 기설정된 시간(Δt)을 산출하는 단계를 더 포함하는 것을 특징으로 하는 건설기계의 동력 제어방법.
PCT/KR2010/009207 2009-12-24 2010-12-22 건설기계의 동력제어장치 및 동력제어방법 WO2011078578A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080058965.6A CN102713089B (zh) 2009-12-24 2010-12-22 工程机械的动力控制装置
US13/518,743 US8720629B2 (en) 2009-12-24 2010-12-22 Power control apparatus and power control method of construction machine
EP10839775.3A EP2518222B1 (en) 2009-12-24 2010-12-22 Power control apparatus for a construction machine
BR112012015598A BR112012015598B1 (pt) 2009-12-24 2010-12-22 aparelho de controle de potência e método de controle de potência para maquinaria de construção

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0130426 2009-12-24
KR10-2009-0130425 2009-12-24
KR1020090130425A KR101648982B1 (ko) 2009-12-24 2009-12-24 건설기계의 유압펌프 제어장치 및 제어방법
KR1020090130426A KR101630457B1 (ko) 2009-12-24 2009-12-24 건설기계의 동력제어장치

Publications (2)

Publication Number Publication Date
WO2011078578A2 true WO2011078578A2 (ko) 2011-06-30
WO2011078578A3 WO2011078578A3 (ko) 2011-11-10

Family

ID=44196314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009207 WO2011078578A2 (ko) 2009-12-24 2010-12-22 건설기계의 동력제어장치 및 동력제어방법

Country Status (5)

Country Link
US (1) US8720629B2 (ko)
EP (1) EP2518222B1 (ko)
CN (1) CN102713089B (ko)
BR (1) BR112012015598B1 (ko)
WO (1) WO2011078578A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828834A (zh) * 2012-08-16 2012-12-19 三一重机有限公司 发动机功率控制方法、发动机功率控制器和控制系统
US9759212B2 (en) 2015-01-05 2017-09-12 Danfoss Power Solutions Inc. Electronic load sense control with electronic variable load sense relief, variable working margin, and electronic torque limiting

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110127343A (ko) * 2010-05-19 2011-11-25 두산산업차량 주식회사 중장비 작업기의 상승속도 제어장치
WO2013089293A1 (ko) * 2011-12-15 2013-06-20 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 효율 양호 rpm 구간 표시 장치
CN103032185B (zh) * 2012-12-20 2016-02-10 中联重科股份有限公司 汽车起重机的控制方法和控制装置与汽车起重机
US20140257675A1 (en) * 2013-03-07 2014-09-11 Honda Motor Co., Ltd. System and method for indicating engine power band information on a tachometer display
KR102054520B1 (ko) * 2013-03-21 2020-01-22 두산인프라코어 주식회사 건설기계 유압시스템의 제어방법
CN103362666B (zh) * 2013-07-29 2015-12-02 中联重科股份有限公司 功率匹配控制设备、方法、系统以及工程机械
KR102181125B1 (ko) * 2013-12-20 2020-11-20 두산인프라코어 주식회사 건설기계의 차량 제어 시스템 및 방법
EP2889433B1 (en) * 2013-12-20 2019-05-01 Doosan Infracore Co., Ltd. System and method of controlling vehicle of construction equipment
KR102102505B1 (ko) * 2013-12-26 2020-04-21 두산인프라코어 주식회사 건설기계의 유압시스템 및 유압시스템의 제어방법
KR102218354B1 (ko) * 2014-02-24 2021-02-23 스미토모 겐키 가부시키가이샤 쇼벨 및 쇼벨의 제어방법
JP6619939B2 (ja) * 2015-02-16 2019-12-11 川崎重工業株式会社 液圧駆動システム
JP6258886B2 (ja) * 2015-03-02 2018-01-10 株式会社日立建機ティエラ ハイブリッド式作業機械
CN105065128A (zh) * 2015-07-16 2015-11-18 柳州首光科技有限公司 一种可使发动机转速迅速上升的装置
CN107191440B (zh) * 2017-07-05 2019-05-28 河南工程学院 用于工程机械液压系统的控制方法
CN108386287B (zh) * 2018-03-21 2019-12-10 潍柴动力股份有限公司 一种发动机自适应系统及方法
CN113417332A (zh) * 2021-07-12 2021-09-21 上海华兴数字科技有限公司 工程机械的控制方法、控制装置、工程机械以及存储介质
CN114263226B (zh) * 2021-12-16 2023-03-31 湖南三一华源机械有限公司 速度控制方法、装置、系统及作业机械
CN114458461B (zh) * 2022-03-08 2022-11-15 雷沃工程机械集团有限公司 一种挖掘机发动机功率自动辨识方法
GB2616459A (en) * 2022-03-10 2023-09-13 Caterpillar Inc Controller, system, and method for controlling engine of machine

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3780292T2 (de) * 1986-08-15 1993-01-07 Komatsu Mfg Co Ltd Steuerungseinheit einer hydraulischen pumpe.
IN171213B (ko) * 1988-01-27 1992-08-15 Hitachi Construction Machinery
WO1990008263A1 (en) * 1989-01-18 1990-07-26 Hitachi Construction Machinery Co., Ltd. Hydraulic driving unit for construction machinery
DE3911706C2 (de) * 1989-04-10 1999-09-30 Linde Ag Verfahren zum Betreiben einer Antriebseinheit
JPH03164541A (ja) * 1989-11-21 1991-07-16 Yutani Heavy Ind Ltd 負荷率算出装置
JP2617634B2 (ja) * 1991-07-29 1997-06-04 株式会社小松製作所 静油圧−機械式伝動機の変速制御装置
JP3589710B2 (ja) 1994-09-28 2004-11-17 住友建機製造株式会社 建設機械のエンジンおよびポンプの制御装置
JPH0968169A (ja) * 1995-08-31 1997-03-11 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP3155722B2 (ja) 1997-03-06 2001-04-16 住友建機株式会社 建設機械のエンジン及び油圧ポンプ制御装置
JP3497060B2 (ja) * 1997-06-10 2004-02-16 日立建機株式会社 建設機械のエンジン制御装置
US6427107B1 (en) * 2001-06-28 2002-07-30 Caterpillar Inc. Power management system and method
KR100739419B1 (ko) * 2003-08-11 2007-07-13 가부시키가이샤 고마쓰 세이사쿠쇼 유압구동 제어장치 및 그것을 구비하는 유압셔블
JP4173162B2 (ja) * 2003-12-09 2008-10-29 株式会社小松製作所 建設機械の油圧駆動制御装置及び方法
JP2005210874A (ja) * 2004-01-26 2005-08-04 Yanmar Co Ltd ハイブリッドシステムにおけるモータジェネレータの制御方法
JP4413122B2 (ja) * 2004-10-13 2010-02-10 日立建機株式会社 油圧建設機械の制御装置
JP4804137B2 (ja) * 2005-12-09 2011-11-02 株式会社小松製作所 作業車両のエンジン負荷制御装置
JP4414972B2 (ja) * 2006-02-08 2010-02-17 ジヤトコ株式会社 車両の制御装置
JP5134238B2 (ja) * 2006-12-15 2013-01-30 株式会社小松製作所 作業車両のエンジン負荷制御装置
JP2008169796A (ja) * 2007-01-15 2008-07-24 Hitachi Constr Mach Co Ltd 油圧作業機械のエンジン回転数制御装置
JP5064160B2 (ja) * 2007-09-19 2012-10-31 株式会社小松製作所 エンジンの制御装置
JP5204783B2 (ja) * 2007-11-06 2013-06-05 日立建機株式会社 作業車両の排気ガス浄化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828834A (zh) * 2012-08-16 2012-12-19 三一重机有限公司 发动机功率控制方法、发动机功率控制器和控制系统
US9759212B2 (en) 2015-01-05 2017-09-12 Danfoss Power Solutions Inc. Electronic load sense control with electronic variable load sense relief, variable working margin, and electronic torque limiting

Also Published As

Publication number Publication date
US8720629B2 (en) 2014-05-13
CN102713089A (zh) 2012-10-03
WO2011078578A3 (ko) 2011-11-10
BR112012015598A2 (pt) 2017-12-19
BR112012015598B1 (pt) 2019-08-27
EP2518222A4 (en) 2018-07-04
CN102713089B (zh) 2015-03-25
EP2518222B1 (en) 2019-10-09
EP2518222A2 (en) 2012-10-31
US20120251332A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2011078578A2 (ko) 건설기계의 동력제어장치 및 동력제어방법
WO2015160004A1 (ko) 건설기계의 엔진, 유압펌프의 제어장치 및 그 제어방법
WO2014157988A1 (ko) 건설기계 유압펌프 제어 장치 및 방법
WO2011078543A2 (ko) 건설기계의 유압펌프 제어장치 및 제어방법
WO2012096526A2 (ko) 휠로더의 유압 펌프 제어 방법
CN101432529B (zh) 建筑机械的防过载装置
WO2014148855A1 (ko) 건설기계 유압시스템의 제어방법
WO2018190615A1 (ko) 건설 기계의 유압 시스템
WO2014157902A1 (ko) 건설기계의 유압시스템 및 제어방법
WO2013008964A1 (ko) 건설기계용 유압 액츄에이터 댐핑 제어시스템
WO2013022132A1 (ko) 건설기계의 압력 제어시스템
WO2011162429A1 (ko) 건설기계의 유압펌프 제어시스템
WO2012030003A1 (ko) 건설기계용 유압회로
WO2012015087A1 (ko) 건설기계용 선회유량 제어시스템 및 그 제어방법
WO2018117626A1 (ko) 건설 기계
WO2014168462A1 (ko) 건설기계의 유압펌프 제어 방법, 장치 및 시스템
WO2011078580A2 (ko) 건설기계의 유압제어장치
WO2014163362A1 (ko) 건설기계의 스풀 변위 가변 제어장치 및 제어방법
WO2017007185A1 (ko) 건설기계의 제어장치 및 제어방법
KR20110073710A (ko) 건설기계의 유압펌프 제어장치 및 제어방법
WO2019017740A1 (ko) 건설기계의 주행 속도 제어 방법 및 장치
WO2016200123A1 (ko) 건설기계의 제어장치 및 제어방법
WO2019172473A1 (en) Power mode recommendation system for construction machine
WO2016111395A1 (ko) 건설기계용 유압펌프 제어장치 및 그 제어방법
WO2016032204A1 (ko) 지게차용의 유압회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058965.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6223/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010839775

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015598

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012015598

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012015598

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120625