WO2011074614A1 - Millimeter wave image pickup device, millimeter wave image pickup system and program - Google Patents
Millimeter wave image pickup device, millimeter wave image pickup system and program Download PDFInfo
- Publication number
- WO2011074614A1 WO2011074614A1 PCT/JP2010/072578 JP2010072578W WO2011074614A1 WO 2011074614 A1 WO2011074614 A1 WO 2011074614A1 JP 2010072578 W JP2010072578 W JP 2010072578W WO 2011074614 A1 WO2011074614 A1 WO 2011074614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- millimeter wave
- detection value
- millimeter
- subject image
- wave sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/005—Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
Definitions
- the present invention relates to a millimeter wave imaging apparatus that receives a millimeter wave emitted from a subject and images the subject.
- This type of technology uses the fact that the signal level of the millimeter wave radiated between the person who is the subject and the other area is different, and the component (for example, hue, brightness, saturation, etc.) corresponding to the signal level is used.
- a captured image of a subject is generated by arranging pixels by value.
- the detection value from each millimeter wave sensor when the temperature of the observation region rises, the signal level of the millimeter wave radiated as thermal noise increases, so the detection value from each millimeter wave sensor also increases. At this time, if the temperature rises to some extent, the detection value from each millimeter wave sensor also increases, and all the components of each pixel to be determined according to this detection value all become the maximum value (or minimum value), and the pixels in the image The contrast between them cannot be maintained.
- the present invention has been made in view of these problems, and an object of the present invention is to provide a technique for generating a subject image in which contrast between pixels is appropriately maintained regardless of a temperature change in an observation region. It is.
- a first aspect of the present invention is a millimeter-wave imaging apparatus device, which is a region to be observed, and a radiator that emits a reference millimeter-wave is disposed in a part of the region.
- a lens antenna that captures a millimeter wave radiated from the observation region and forms a subject image, and a millimeter wave captured by the lens antenna is disposed in the imaging region that forms the subject image
- a millimeter wave sensor group that includes one or more millimeter wave sensors, each of which outputs a detection value corresponding to the received millimeter wave signal level, and a detection value output from the one or more millimeter wave sensors.
- image generation means for generating a subject image formed by arranging pixels of components corresponding to the detected value, and one of the one or more millimeter wave sensors that receives the millimeter wave emitted from the radiator.
- Correction value setting means for setting an error from a predetermined reference detection value as a correction value for each of the millimeter wave sensors, with respect to the detection value of the reference millimeter wave sensor determined as the millimeter wave sensor to perform,
- Detection value correction means for correcting the detection value of each millimeter wave sensor by the correction value set by the correction value setting means prior to the generation of the subject image by the image generation means.
- the correction value when correcting the detection value of each of the one or more millimeter wave sensors, the correction value is an error between the detection value of the reference millimeter wave sensor and the reference detection value.
- the correction value may be added to or subtracted from the detected value.
- the “reference detection value” in this configuration is preferably set to a detection value from a reference millimeter wave sensor in a state where thermal noise is sufficiently small. In this case, the contrast between pixels can be appropriately maintained.
- the detected value in the state of being can be set as the “reference detected value”.
- the “reference detection value” may be a preset value or a value that can be arbitrarily set. For the latter, for example, it can be considered as in the second aspect.
- the millimeter wave imaging apparatus includes reference setting means for setting a detection value detected by the reference millimeter wave sensor at a predetermined timing as a reference detection value.
- the correction value setting means sets an error between the detection value of the reference millimeter wave sensor and the reference detection value set by the reference setting means as a correction value for each of the millimeter wave sensors.
- the “predetermined timing” in this configuration may be any timing, for example, a timing at which a user performs a specific operation, a timing at which imaging is started by starting a millimeter wave imaging device, or the like. Can be considered.
- the millimeter wave sensor group may employ a millimeter wave sensor array in which a plurality of millimeter wave sensors are arranged in a matrix.
- a millimeter wave line sensor in which a plurality of millimeter wave sensors are arranged in a line may be employed.
- each of the above-described configurations may be configured as a third configuration (claim 3).
- the millimeter-wave sensor group of the millimeter-wave imaging device according to the third aspect of the present invention includes a plurality of millimeter-wave sensors arranged in a row in the imaging region, and a row of millimeter waves received by the millimeter-wave sensor.
- the line sensor outputs a detection value corresponding to the subject image.
- the millimeter-wave imaging device includes a reflector having a reflecting surface that reflects the millimeter wave captured by the lens antenna and guides it to the millimeter-wave sensor group, and is reflected by the reflecting surface of the reflector.
- the millimeter wave sensor group is formed by sequentially changing the reflection angle by the reflecting surface in order to displace the imaging region of the subject image by the millimeter wave along the direction intersecting the direction in which the millimeter wave sensor is arranged.
- a reflection angle changing means for sequentially outputting a detection value group corresponding to the subject image in the row corresponding to the reflection angle of the reflecting surface as the detection value corresponding to the subject image for one row.
- the image generation unit generates a subject image for one row in which pixels of a parameter corresponding to each detection value in the detection value group are arranged in one row. To do.
- the fourth aspect of the present invention is a radiator that is arranged in a region (observation region) to be observed and emits a millimeter wave as a reference in a part of the observation region.
- a millimeter-wave imaging system comprising the millimeter-wave imaging device according to any one of the above.
- the radiator in this configuration may be constituted by a thermal noise source that generates a reference thermal noise or a radio wave absorber, as in the fifth aspect of the present invention.
- the above-described program is composed of an ordered sequence of instructions suitable for processing by a computer system, and can be used for millimeter-wave imaging devices or users who use the same via various recording media and communication lines. It is provided.
- the millimeter wave radiated from the radiator is received by the reference millimeter wave sensor, and an error between the detection value of the reference millimeter wave sensor and the reference detection value is used as a correction value.
- the detection value of the wave sensor is corrected. Since the radiator is arranged in the observation region to emit the reference millimeter wave, for example, if the temperature of the observation region rises, thermal noise as a millimeter wave also increases. The detection value also increases.
- the error between the detection value of the reference millimeter wave sensor and the reference detection value fluctuates according to the temperature change of the observation region. Therefore, if the detection value of each millimeter wave sensor is corrected using this error as a correction value. The influence of the temperature change in the observation area can be removed from each detection value.
- the temperature of the observation region rises and all the pixel components that should be determined according to the detection values of each millimeter wave sensor become maximum values (or minimum values), the temperature changes from here As a result of the subtraction (or addition) of the error, the original detection value is restored.
- a reference detection value that is a reference for setting a correction value can be set each time at a predetermined timing. Therefore, if the detection value of the reference millimeter wave sensor is set as the reference detection value when the temperature of the observation region is sufficiently low, the detection value when the thermal noise as millimeter waves is small is used as the reference detection value. be able to.
- SYMBOLS 1 ... Millimeter wave imaging system, 2 ... Millimeter wave imaging device, 3 ... Radiator, 4 ... Millimeter wave imaging system, 5 ... Millimeter wave imaging device, 10 ... Lens antenna, 20 ... Millimeter wave sensor array, 22 ... Millimeter wave sensor , 22 ... reference millimeter wave sensor, 30 ... reflector, 32 ... reflecting surface, 34 ... displacement mechanism, 50 ... control unit, 60 ... millimeter wave line sensor, 100 ... observation region, 102 ... receiving antenna, 104 ... low noise amplifier, 108 ... detector.
- the millimeter wave imaging system 1 includes a millimeter wave imaging device 2 and a radiator that emits millimeter waves in an imaging region 100 to be imaged. 3.
- the millimeter wave imaging device 2 includes a lens antenna 10 that captures a millimeter wave radiated from the observation region 100 and forms a subject image, and an imaging region in which the millimeter wave captured by the lens antenna 10 forms a subject image.
- the arranged millimeter wave sensor array 20 and a control unit 50 that controls the operation of the entire millimeter wave imaging device 2 are provided.
- the millimeter wave sensor array 20 is an example of a millimeter wave sensor group.
- the millimeter wave sensor array 20 has a plurality of millimeter wave sensors 22 directed in the direction of arrival of millimeter waves in a matrix along a plane intersecting with the direction of arrival of millimeter waves in the imaging region.
- Each of the millimeter wave sensors 22 outputs a detection value corresponding to the received millimeter wave signal level.
- the detection value of each millimeter wave sensor 22 is the pixel information of the subject image corresponding to the position where the millimeter wave sensor 22 is arranged in the subject image formed in the imaging region (in this embodiment, the pixel value of the corresponding pixel). Information indicating light and shade).
- the millimeter wave sensor 22 is amplified by a reception antenna 102 for receiving millimeter waves, a low noise amplifier (LNA) 104 for amplifying a reception signal from the reception antenna 102, and an LNA 104. And a detector 108 for detecting the received signal and detecting the signal level.
- LNA low noise amplifier
- the radiator 3 is disposed in a partial region of the observation region 100 and radiates a millimeter wave serving as a reference toward the lens antenna 10 from the position thus disposed.
- the millimeter wave radiated from the radiator 3 is received by one of the predetermined millimeter wave sensors (hereinafter referred to as “reference millimeter wave sensor”) 22 among the millimeter wave sensors 22 in the millimeter wave sensor array 20. .
- the radiator 3 is configured by a thermal noise source that generates thermal noise as a reference or a radio wave absorber.
- a detection value of the reference millimeter wave sensor 22 that is, a detection value indicating a millimeter wave signal level emitted from the radiator 3 is acquired.
- the radiator 3 is composed of a radio wave absorber, the amount of millimeter wave radiation from here is remarkably small, and thus a detection value close to “0” is acquired as a detection value.
- a reference detection value serving as a reference for calculating a correction value in the subsequent processing is determined (s130).
- the detection value acquired in s120 is determined as the reference detection value.
- a correction value for correcting the detection value is determined based on the reference detection value determined in s130 (s140).
- an error (rd) between the reference detection value r determined in s130 and the detection value d detected by the reference millimeter-wave sensor at this time is calculated, and this is calculated for each millimeter-wave sensor 22. It is determined as a correction value.
- the correction value determined in s140 is set as a correction value for each detection value of the millimeter wave sensor 22 (s150).
- imaging should be terminated that is, imaging should not be continued.
- each detection value by the millimeter wave sensor 22 of the millimeter wave sensor array 20 is acquired (s180).
- each of the detection values acquired in s180 is corrected based on the correction value set at this time (s190).
- the set correction value is a positive value
- the absolute value of the correction value is subtracted from each of the detection values acquired in s180, and if the correction value is a negative value, in s180.
- the absolute value of the correction value is added to each acquired detection value.
- each piece of pixel information indicated by the detection value corrected in s190 is set as pixel information of a pixel corresponding to the position of the millimeter wave sensor 22 that detected the detection value, and the pixel (pixel) indicated by each piece of pixel information is indicated.
- a subject image formed by arranging (pixels of components indicated by information) is generated (s200). The subject image generated in this way is stored in an image memory for display on a display device.
- the process returns to s140 after the detection value is acquired from the reference millimeter wave sensor 22 (s210), as in s120.
- s140 in this case, an error between the detection value acquired in s210 and the reference detection value determined in s130 is determined as a correction value.
- s140 to s210 are repeated, and when it is determined that imaging should be terminated in s170 (s170: NO), the main imaging process is performed. finish.
- the detection value of each millimeter wave sensor 22 is corrected using the detection value (reference detection value) that is initially set as a reference (s130) and the variation of the detection value in the reference millimeter wave sensor as a correction value. After that (s190), a subject image is generated (s200).
- Second Embodiment (2-1) Overall Configuration As shown in FIG. 4, the millimeter wave imaging system 4 in this embodiment radiates millimeter waves in the millimeter wave imaging device 5 and the imaging region to be imaged. And the radiator 3 to be configured.
- the same configurations as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
- the millimeter wave imaging device 5 includes a lens antenna 10, a millimeter wave line sensor 60 in which a plurality of millimeter wave sensors 22 are arranged in a row, and a millimeter wave line sensor 60 that reflects the millimeter wave captured by the lens antenna 10. And a control unit 50 that controls the operation of the entire millimeter-wave imaging device 5.
- the millimeter wave line sensor 60 is a millimeter wave sensor group in the present invention.
- the millimeter wave line sensor 60 causes each of the plurality of millimeter wave sensors 22 oriented in the arrival direction of the millimeter wave in one direction along a plane intersecting with the arrival direction of the millimeter wave in the imaging region.
- Each of the millimeter wave sensors 22 outputs a detection value corresponding to the received millimeter wave signal level.
- the reflector 30 is provided with a displacement mechanism 34 for displacing the reflection angle of the millimeter wave by the reflection surface 32 along the direction intersecting the direction in which the millimeter wave sensor 22 is arranged.
- the reflection angle by the reflecting surface 32 of the reflector 30 is changed until the region of the image formed by the millimeter wave emitted from the radiator 3 overlaps the region where the millimeter wave sensor 22 is disposed. (S110).
- a command is given to the displacement mechanism 34 of the reflector 30 to displace the reflection angle of the millimeter wave by the reflecting surface 32 to a predetermined initial angle ⁇ ′.
- the reflection angle of the millimeter wave by the reflecting surface 32 is changed to the initial angle ⁇ ′ until the region of the image formed by the emitted millimeter wave overlaps the region where the millimeter wave sensor 22 is arranged (see FIG. 6). .
- a detection value indicating the signal level of is acquired (s120).
- a reference detection value serving as a reference for calculating a correction value in the subsequent processing is determined (s130).
- a correction value for correcting the detection value is determined (s140), and this correction value is set as a correction value (s150).
- scanning control is started to repeatedly and continuously change the reflection angle of the reflecting surface 32 of the reflector 30 within a certain angle range ⁇ ′′ (s160).
- the reflection mechanism 30 reflects the displacement mechanism 34 of the reflector 30.
- a command to continuously change the reflection angle of the millimeter wave by the surface 32 is issued, and the displacement mechanism 34 that has received this command continuously changes the reflection angle of the millimeter wave by the reflection surface 32 within a certain angle range ⁇ ′′. It will be changed repeatedly. Thereby, the observation area 100 is scanned by the millimeter wave line sensor 60.
- the angle range ⁇ ′′ in which the reflection angle is changed is set in advance so that the imaging area of the subject image by the millimeter wave captured by the lens antenna 10 overlaps the area where the millimeter wave sensor 22 is disposed. It has been done.
- each of the detection values acquired in s180 is corrected based on the correction value set at this time (s190), and each piece of pixel information indicated by the corrected detection value is converted into the detection value.
- a pixel information of the pixel corresponding to the detected position of the millimeter wave sensor 22 a subject image for one column formed by arranging pixels (pixels having a density indicated by the pixel information) indicated by each pixel information is generated (s200). ).
- the subject image generated in this way is stored in a storage area corresponding to the corresponding column in the image memory.
- the detection value is acquired from the reference millimeter wave sensor 22 (s210), and the process returns to s140, as in the above s120. If it is determined in s170 that the imaging should be terminated (s170: NO), the imaging process is terminated.
- (3) Action and Effect In the millimeter wave imaging devices 2 and 5 described above, the millimeter wave emitted from the radiator 3 is received by the reference millimeter wave sensor 22, and the detection value and the reference detection from the reference millimeter wave sensor 22 are received. The detection value of each millimeter wave sensor is corrected using an error from the value as a correction value (s120 to s210 in FIGS. 3 and 5).
- the radiator 3 is arranged in the observation region 100 so as to emit the reference millimeter wave, for example, if the temperature of the observation region 100 rises, thermal noise as a millimeter wave also increases.
- the detection value of the wave sensor 22 also increases.
- the error between the detection value of the reference millimeter wave sensor 22 and the reference detection value varies according to the temperature change of the observation region 100. Therefore, the detection value of each millimeter wave sensor 22 is determined using this error as a correction value. If corrected, the influence of the temperature change of the observation region 100 can be removed from each detection value.
- the temperature of the observation region 100 rises and all the pixel components to be determined according to the detection values of the millimeter wave sensors 22 become maximum values (or minimum values), the temperature changes from here. As a result of subtracting (or adding) the corresponding error, the original detection value is restored.
- the reference detection value that serves as a reference for setting the correction value can be set every time the imaging process is started (s120 in FIGS. 3 and 5). Therefore, if the imaging process is started when the temperature of the observation region 100 is sufficiently low, the detection value when the thermal noise as a millimeter wave is small can be set as the reference detection value.
- the “reference detection value” is set in the imaging process.
- the detection value in a state where the contrast between the pixels can be appropriately maintained may be fixedly set as a “reference detection value” in advance.
- the “reference detection value” is set at the timing immediately after the imaging process is activated (s120 in FIGS. 3 and 5).
- the timing for setting the “reference detection value” is not limited to this, and may be a timing at which the user performs a specific operation, for example.
- s200 in FIGS. 3 and 5 is an example of an image forming step by the image generation unit
- s140 and s150 in the figure are an example of correction by the correction value setting unit.
- S190 is an example of a correction step by the detection value correction unit
- s120 and s130 are examples of acquisition of the detection value and determination of the reference detection value by the reference setting unit.
- s110 and s160 in FIG. 5 are examples of the reflection angle changing step by the reflection angle changing means.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Radar Systems Or Details Thereof (AREA)
- Geophysics And Detection Of Objects (AREA)
- Studio Devices (AREA)
Abstract
A millimeter wave image pickup device is provided with a lens antenna which captures a millimeter wave radiated from a viewing region to focus a subject image, a millimeter wave sensor group which outputs a detection value corresponding to the signal level of the millimeter wave captured by the lens antenna, an image generation means which generates the subject image on the basis of detected values outputted from respective millimeter wave sensors, a correction value setting means which sets the error between the detection value of a reference millimeter wave sensor designated as a millimeter wave sensor for receiving a millimeter wave radiated from a radiator and a predetermined reference detection value as a correction value for each of the millimeter wave sensors, and a detection value correction means which corrects the detection value of each of the millimeter wave sensors by the correction value set by the correction value setting means before the generation of the subject image by the image generation means.
Description
本国際出願は、2009年12月15日に日本国特許庁に出願された日本国特許出願第2009-284080号に基づく優先権を主張するものであり、日本国特許出願第2009-284080号の全内容を本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2009-284080 filed with the Japan Patent Office on December 15, 2009, and is based on Japanese Patent Application No. 2009-284080. The entire contents are incorporated into this international application.
本発明は、被写体から放射されるミリ波を受信して被写体を撮像するミリ波撮像装置に関する。
The present invention relates to a millimeter wave imaging apparatus that receives a millimeter wave emitted from a subject and images the subject.
近年、人物などの被写体から放射されるミリ波を受信することによって、被写体を撮像し、その撮像画像から被写体において隠された金属・非金属類の武器や、密輸品を検出することが提案されている(特許文献1,2参照)。
In recent years, it has been proposed to capture a subject by receiving millimeter waves radiated from a subject such as a person, and detect metal or non-metallic weapons or smuggled goods hidden in the subject from the captured image. (See Patent Documents 1 and 2).
この種の技術では、被写体となる人物とそれ以外の領域とで放射されるミリ波の信号レベルが異なることを利用し、その信号レベルに応じた成分(例えば色相、明度、彩度など)の値で画素を配置することにより、被写体の撮像画像を生成している。
This type of technology uses the fact that the signal level of the millimeter wave radiated between the person who is the subject and the other area is different, and the component (for example, hue, brightness, saturation, etc.) corresponding to the signal level is used. A captured image of a subject is generated by arranging pixels by value.
上記のように複数のミリ波センサを利用して被写体の撮像画像を生成するミリ波撮像装置では、観察対象となる観察領域の温度が変化すると、画像における画素間のコントラストが適切に維持できなくなり、鮮明な画像が得られなくなることがある。
As described above, in a millimeter-wave imaging device that generates a captured image of a subject using a plurality of millimeter-wave sensors, the contrast between pixels in the image cannot be properly maintained when the temperature of the observation region to be observed changes. , A clear image may not be obtained.
例えば、観察領域の温度が上昇した場合には、熱雑音として放射されるミリ波の信号レベルが大きくなるため、ミリ波センサそれぞれからの検出値も同様に大きくなってしまう。このとき、温度がある程度高くなると、ミリ波センサそれぞれからの検出値も大きくなり、この検出値に応じて決めるべき各画素の成分が全て最大値(または最小値)となってしまい、画像における画素間のコントラストが維持できなくなる。
For example, when the temperature of the observation region rises, the signal level of the millimeter wave radiated as thermal noise increases, so the detection value from each millimeter wave sensor also increases. At this time, if the temperature rises to some extent, the detection value from each millimeter wave sensor also increases, and all the components of each pixel to be determined according to this detection value all become the maximum value (or minimum value), and the pixels in the image The contrast between them cannot be maintained.
本発明は、こうした問題に鑑みてなされたものであり、その目的は、観察領域の温度変化に拘わらず、画素間のコントラストが適切に維持された被写体像を生成するための技術を提供することである。
The present invention has been made in view of these problems, and an object of the present invention is to provide a technique for generating a subject image in which contrast between pixels is appropriately maintained regardless of a temperature change in an observation region. It is.
上記課題を解決するため本発明の第1局面は、ミリ波撮像装置装置であって、観察対象となる領域であり、該領域の一部において基準となるミリ波を放射する放射体が配置された観察領域について、該観察領域から放射されるミリ波を取り込んで被写体像を結像させるレンズアンテナと、前記レンズアンテナに取り込まれたミリ波が被写体像を結像する結像領域に配置された1以上のミリ波センサからなり、該ミリ波センサそれぞれが、受信したミリ波の信号レベルに応じた検出値を出力するミリ波センサ群と、前記1以上のミリ波センサから出力された検出値それぞれに基づいて、該検出値に応じた成分の画素を配置してなる被写体像を生成する画像生成手段と、前記1以上のミリ波センサのうち、前記放射体から放射されたミリ波を受信するミリ波センサとして定められた基準ミリ波センサの検出値について、あらかじめ定められた基準検出値との誤差を、前記ミリ波センサそれぞれに対する補正値として設定する補正値設定手段と、前記1以上のミリ波センサそれぞれの検出値を、前記画像生成手段による被写体像の生成に先立って、前記補正値設定手段により設定された補正値により補正する検出値補正手段と、を備えている。
In order to solve the above problems, a first aspect of the present invention is a millimeter-wave imaging apparatus device, which is a region to be observed, and a radiator that emits a reference millimeter-wave is disposed in a part of the region. A lens antenna that captures a millimeter wave radiated from the observation region and forms a subject image, and a millimeter wave captured by the lens antenna is disposed in the imaging region that forms the subject image A millimeter wave sensor group that includes one or more millimeter wave sensors, each of which outputs a detection value corresponding to the received millimeter wave signal level, and a detection value output from the one or more millimeter wave sensors. Based on each, image generation means for generating a subject image formed by arranging pixels of components corresponding to the detected value, and one of the one or more millimeter wave sensors that receives the millimeter wave emitted from the radiator. Correction value setting means for setting an error from a predetermined reference detection value as a correction value for each of the millimeter wave sensors, with respect to the detection value of the reference millimeter wave sensor determined as the millimeter wave sensor to perform, Detection value correction means for correcting the detection value of each millimeter wave sensor by the correction value set by the correction value setting means prior to the generation of the subject image by the image generation means.
この構成において、1以上のミリ波センサそれぞれの検出値を補正するに際しては、補正値が、基準ミリ波センサの検出値と基準検出値との誤差であることから、この誤差が相殺されるように検出値から補正値を加減算することとすればよい。
In this configuration, when correcting the detection value of each of the one or more millimeter wave sensors, the correction value is an error between the detection value of the reference millimeter wave sensor and the reference detection value. The correction value may be added to or subtracted from the detected value.
また、この構成における「基準検出値」は、熱雑音が充分に小さい状態における基準ミリ波センサからの検出値を設定しておくことが望ましく、この場合、画素間のコントラストを適切に維持できている状態での検出値を「基準検出値」とすることができる。
The “reference detection value” in this configuration is preferably set to a detection value from a reference millimeter wave sensor in a state where thermal noise is sufficiently small. In this case, the contrast between pixels can be appropriately maintained. The detected value in the state of being can be set as the “reference detected value”.
また、この「基準検出値」はあらかじめ設定した値であってもよいし、任意に設定できる値としてもよい。この後者のためには、例えば、第2局面のようにすることが考えられる。
The “reference detection value” may be a preset value or a value that can be arbitrarily set. For the latter, for example, it can be considered as in the second aspect.
本発明の第2局面のミリ波撮像装置は、所定のタイミングで前記基準ミリ波センサに検出された検出値を基準検出値として設定する基準設定手段、を備えている。そして、前記補正値設定手段は、前記基準ミリ波センサの検出値と前記基準設定手段により設定された基準検出値との誤差を、前記ミリ波センサそれぞれに対する補正値として設定する。
The millimeter wave imaging apparatus according to the second aspect of the present invention includes reference setting means for setting a detection value detected by the reference millimeter wave sensor at a predetermined timing as a reference detection value. The correction value setting means sets an error between the detection value of the reference millimeter wave sensor and the reference detection value set by the reference setting means as a correction value for each of the millimeter wave sensors.
この構成における「所定のタイミング」については、どのようなタイミングであってもよく、例えば、ユーザが特定の操作をしたタイミングや、ミリ波撮像装置を起動して撮像を開始したタイミングとすることなどが考えられる。
The “predetermined timing” in this configuration may be any timing, for example, a timing at which a user performs a specific operation, a timing at which imaging is started by starting a millimeter wave imaging device, or the like. Can be considered.
また、上記各構成において、ミリ波センサ群は、複数のミリ波センサがマトリクス状に配置されたミリ波センサアレイを採用すればよい。また、複数のミリ波センサが一列に配置されたミリ波ラインセンサを採用してもよい。
In each of the above configurations, the millimeter wave sensor group may employ a millimeter wave sensor array in which a plurality of millimeter wave sensors are arranged in a matrix. A millimeter wave line sensor in which a plurality of millimeter wave sensors are arranged in a line may be employed.
ミリ波センサ群としてラインセンサを採用するためには、上記各構成を第3の構成(請求項3)のようにするとよい。
本発明の第3局面のミリ波撮像装置の前記ミリ波センサ群は、前記結像領域において複数のミリ波センサが一列に配置されてなり、該ミリ波センサにより受信されたミリ波により一列分の被写体像に対応する検出値を出力するラインセンサとされている。 In order to employ a line sensor as the millimeter wave sensor group, each of the above-described configurations may be configured as a third configuration (claim 3).
The millimeter-wave sensor group of the millimeter-wave imaging device according to the third aspect of the present invention includes a plurality of millimeter-wave sensors arranged in a row in the imaging region, and a row of millimeter waves received by the millimeter-wave sensor. The line sensor outputs a detection value corresponding to the subject image.
本発明の第3局面のミリ波撮像装置の前記ミリ波センサ群は、前記結像領域において複数のミリ波センサが一列に配置されてなり、該ミリ波センサにより受信されたミリ波により一列分の被写体像に対応する検出値を出力するラインセンサとされている。 In order to employ a line sensor as the millimeter wave sensor group, each of the above-described configurations may be configured as a third configuration (claim 3).
The millimeter-wave sensor group of the millimeter-wave imaging device according to the third aspect of the present invention includes a plurality of millimeter-wave sensors arranged in a row in the imaging region, and a row of millimeter waves received by the millimeter-wave sensor. The line sensor outputs a detection value corresponding to the subject image.
さらに、本発明の第3局面のミリ波撮像装置は、前記レンズアンテナに取り込まれたミリ波を反射させて前記ミリ波センサ群へと導く反射面を有するリフレクタと、前記リフレクタの反射面で反射したミリ波による被写体像の結像領域を、前記ミリ波センサの配置された方向と交差する方向に沿って変位させるべく、前記反射面による反射角を順次変更させることにより、前記ミリ波センサ群に、一列分の被写体像に対応する検出値として、前記反射面の反射角に応じた列の被写体像に対応する検出値群を順に出力させる反射角変更手段と、を備えている。
Furthermore, the millimeter-wave imaging device according to the third aspect of the present invention includes a reflector having a reflecting surface that reflects the millimeter wave captured by the lens antenna and guides it to the millimeter-wave sensor group, and is reflected by the reflecting surface of the reflector. The millimeter wave sensor group is formed by sequentially changing the reflection angle by the reflecting surface in order to displace the imaging region of the subject image by the millimeter wave along the direction intersecting the direction in which the millimeter wave sensor is arranged. And a reflection angle changing means for sequentially outputting a detection value group corresponding to the subject image in the row corresponding to the reflection angle of the reflecting surface as the detection value corresponding to the subject image for one row.
そして、前記画像生成手段は、前記ミリ波センサ群から検出値群が出力される毎に、該検出値群における各検出値に応じたパラメータの画素を一列に配置した一列分の被写体像を生成する。
Then, each time a detection value group is output from the millimeter wave sensor group, the image generation unit generates a subject image for one row in which pixels of a parameter corresponding to each detection value in the detection value group are arranged in one row. To do.
また、上記課題を解決するため本発明の第4局面は、観察対象となる領域(観察領域)に配置され、該観察領域の一部において基準となるミリ波を放射する放射体と、上述したいずれかに記載のミリ波撮像装置と、からなることを特徴とするミリ波撮像システムである。
In order to solve the above-mentioned problem, the fourth aspect of the present invention is a radiator that is arranged in a region (observation region) to be observed and emits a millimeter wave as a reference in a part of the observation region. A millimeter-wave imaging system comprising the millimeter-wave imaging device according to any one of the above.
また、この構成における放射体は、本発明の第5局面のように、基準となる熱雑音を発生する熱雑音源,または,電波吸収体により構成されているとよい。
また、上記課題を解決するためには、上述した各構成における全ての手段として機能させるためのプログラム(本発明の第6局面)としてもよい。 In addition, the radiator in this configuration may be constituted by a thermal noise source that generates a reference thermal noise or a radio wave absorber, as in the fifth aspect of the present invention.
Moreover, in order to solve the said subject, it is good also as a program (6th aspect of this invention) for functioning as all the means in each structure mentioned above.
また、上記課題を解決するためには、上述した各構成における全ての手段として機能させるためのプログラム(本発明の第6局面)としてもよい。 In addition, the radiator in this configuration may be constituted by a thermal noise source that generates a reference thermal noise or a radio wave absorber, as in the fifth aspect of the present invention.
Moreover, in order to solve the said subject, it is good also as a program (6th aspect of this invention) for functioning as all the means in each structure mentioned above.
なお、上述したプログラムは、コンピュータシステムによる処理に適した命令の順番付けられた列からなるものであって、各種記録媒体や通信回線を介してミリ波撮像装置や、これを利用するユーザ等に提供されるものである。
Note that the above-described program is composed of an ordered sequence of instructions suitable for processing by a computer system, and can be used for millimeter-wave imaging devices or users who use the same via various recording media and communication lines. It is provided.
Note that the above-described program is composed of an ordered sequence of instructions suitable for processing by a computer system, and can be used for millimeter-wave imaging devices or users who use the same via various recording media and communication lines. It is provided.
上記各構成にかかるミリ波撮像装置では、放射体から放射されたミリ波を基準ミリ波センサで受信し、この基準ミリ波センサの検出値と基準検出値との誤差を補正値として、各ミリ波センサの検出値を補正している。放射体は、基準となるミリ波を放射すべく観察領域に配置されていることから、例えば、観察領域の温度が上昇すれば、ミリ波としての熱雑音も大きくなる結果、基準ミリ波センサの検出値も大きくなる。
In the millimeter wave imaging device according to each of the above configurations, the millimeter wave radiated from the radiator is received by the reference millimeter wave sensor, and an error between the detection value of the reference millimeter wave sensor and the reference detection value is used as a correction value. The detection value of the wave sensor is corrected. Since the radiator is arranged in the observation region to emit the reference millimeter wave, for example, if the temperature of the observation region rises, thermal noise as a millimeter wave also increases. The detection value also increases.
つまり、基準ミリ波センサの検出値と基準検出値との誤差は、観察領域の温度変化に応じて変動するものであるため、この誤差を補正値として各ミリ波センサの検出値を補正すれば、各検出値から観察領域の温度変化の影響を除去することができる。
In other words, the error between the detection value of the reference millimeter wave sensor and the reference detection value fluctuates according to the temperature change of the observation region. Therefore, if the detection value of each millimeter wave sensor is corrected using this error as a correction value. The influence of the temperature change in the observation area can be removed from each detection value.
例えば、観察領域の温度が上昇し、各ミリ波センサの検出値に応じて決めるべき画素の成分が全て最大値(または最小値)となってしまうような場合でも、ここから温度変化に応じた誤差が減算(または加算)される結果、本来的な検出値に戻される。
For example, even when the temperature of the observation region rises and all the pixel components that should be determined according to the detection values of each millimeter wave sensor become maximum values (or minimum values), the temperature changes from here As a result of the subtraction (or addition) of the error, the original detection value is restored.
こうして、補正された検出値に基づいて被写体像を生成すれば、観察領域の温度変化に拘わらず、画素間のコントラストが適切に維持された鮮明な被写体像とすることができる。
Thus, by generating a subject image based on the corrected detection value, it is possible to obtain a clear subject image in which the contrast between pixels is appropriately maintained regardless of the temperature change in the observation region.
また、上記第2局面では、補正値を設定するための基準となる基準検出値を、所定のタイミングで都度設定することができる。そのため、観察領域の温度が充分に低い状態の時に、基準ミリ波センサの検出値を基準検出値として設定しておけば、ミリ波としての熱雑音が小さい時の検出値を基準検出値とすることができる。
In the second aspect, a reference detection value that is a reference for setting a correction value can be set each time at a predetermined timing. Therefore, if the detection value of the reference millimeter wave sensor is set as the reference detection value when the temperature of the observation region is sufficiently low, the detection value when the thermal noise as millimeter waves is small is used as the reference detection value. be able to.
1…ミリ波撮像システム、2…ミリ波撮像装置、3…放射体、4…ミリ波撮像システム、5…ミリ波撮像装置、10…レンズアンテナ、20…ミリ波センサアレイ、22…ミリ波センサ、22…基準ミリ波センサ、30…リフレクタ、32…反射面、34…変位機構、50…制御部、60…ミリ波ラインセンサ、100…観察領域、102…受信アンテナ、104…ローノイズアンプ、108…検波器。
DESCRIPTION OF SYMBOLS 1 ... Millimeter wave imaging system, 2 ... Millimeter wave imaging device, 3 ... Radiator, 4 ... Millimeter wave imaging system, 5 ... Millimeter wave imaging device, 10 ... Lens antenna, 20 ... Millimeter wave sensor array, 22 ... Millimeter wave sensor , 22 ... reference millimeter wave sensor, 30 ... reflector, 32 ... reflecting surface, 34 ... displacement mechanism, 50 ... control unit, 60 ... millimeter wave line sensor, 100 ... observation region, 102 ... receiving antenna, 104 ... low noise amplifier, 108 ... detector.
以下に本発明の実施形態を図面と共に説明する。
(1) 第1実施形態
(1-1) 全体構成
ミリ波撮像システム1は、図1に示すように、ミリ波撮像装置2と、撮影対象となる撮影領域100においてミリ波を放射する放射体3と、で構成される。 Embodiments of the present invention will be described below with reference to the drawings.
(1) First Embodiment (1-1) Overall Configuration As shown in FIG. 1, the millimeterwave imaging system 1 includes a millimeter wave imaging device 2 and a radiator that emits millimeter waves in an imaging region 100 to be imaged. 3.
(1) 第1実施形態
(1-1) 全体構成
ミリ波撮像システム1は、図1に示すように、ミリ波撮像装置2と、撮影対象となる撮影領域100においてミリ波を放射する放射体3と、で構成される。 Embodiments of the present invention will be described below with reference to the drawings.
(1) First Embodiment (1-1) Overall Configuration As shown in FIG. 1, the millimeter
ミリ波撮像装置2は、観察領域100から放射されるミリ波を取り込んで被写体像を結像させるレンズアンテナ10と、レンズアンテナ10に取り込まれたミリ波が被写体像を結像する結像領域に配置されたミリ波センサアレイ20と、ミリ波撮像装置2全体の動作を制御する制御部50と、を備えている。なお、このミリ波センサアレイ20はミリ波センサ群の一例である。
The millimeter wave imaging device 2 includes a lens antenna 10 that captures a millimeter wave radiated from the observation region 100 and forms a subject image, and an imaging region in which the millimeter wave captured by the lens antenna 10 forms a subject image. The arranged millimeter wave sensor array 20 and a control unit 50 that controls the operation of the entire millimeter wave imaging device 2 are provided. The millimeter wave sensor array 20 is an example of a millimeter wave sensor group.
これらのうち、ミリ波センサアレイ20は、結像領域内において、ミリ波の到来方向に向けられた複数のミリ波センサ22それぞれを、ミリ波の到来方向と交差する平面に沿ってマトリクス状に配置したものであり、ミリ波センサ22それぞれが、受信したミリ波の信号レベルに応じた検出値を出力する。各ミリ波センサ22の検出値は、結像領域に結像される被写体像のうち、そのミリ波センサ22の配置された位置に対応する被写体像の画素情報(本実施形態においては該当画素の濃淡を示す情報)となる。
Among these, the millimeter wave sensor array 20 has a plurality of millimeter wave sensors 22 directed in the direction of arrival of millimeter waves in a matrix along a plane intersecting with the direction of arrival of millimeter waves in the imaging region. Each of the millimeter wave sensors 22 outputs a detection value corresponding to the received millimeter wave signal level. The detection value of each millimeter wave sensor 22 is the pixel information of the subject image corresponding to the position where the millimeter wave sensor 22 is arranged in the subject image formed in the imaging region (in this embodiment, the pixel value of the corresponding pixel). Information indicating light and shade).
また、ミリ波センサ22は、図2に示すように、ミリ波を受信するための受信アンテナ102と、受信アンテナ102からの受信信号を増幅するローノイズアンプ(LNA)104と、LNA104にて増幅された受信信号を検波し、その信号レベルを検出する検波器108と、から構成されている。
As shown in FIG. 2, the millimeter wave sensor 22 is amplified by a reception antenna 102 for receiving millimeter waves, a low noise amplifier (LNA) 104 for amplifying a reception signal from the reception antenna 102, and an LNA 104. And a detector 108 for detecting the received signal and detecting the signal level.
放射体3は、観察領域100の一部領域に配置されており、こうして配置された位置からレンズアンテナ10に向けて基準となるミリ波を放射する。こうして放射体3から放射されたミリ波は、ミリ波センサアレイ20におけるミリ波センサ22のうち、あらかじめ定められたいずれかのミリ波センサ(以降「基準ミリ波センサ」という)22により受信される。
The radiator 3 is disposed in a partial region of the observation region 100 and radiates a millimeter wave serving as a reference toward the lens antenna 10 from the position thus disposed. Thus, the millimeter wave radiated from the radiator 3 is received by one of the predetermined millimeter wave sensors (hereinafter referred to as “reference millimeter wave sensor”) 22 among the millimeter wave sensors 22 in the millimeter wave sensor array 20. .
なお、本実施形態において、放射体3は、基準となる熱雑音を発生する熱雑音源,または,電波吸収体により構成されている。
(1-2) 制御部50による撮像処理
以下に、制御部50が、内蔵するメモリに格納されたプログラムに従って実行する撮像処理の処理手順を図3に基づいて説明する。 In the present embodiment, theradiator 3 is configured by a thermal noise source that generates thermal noise as a reference or a radio wave absorber.
(1-2) Imaging Process byControl Unit 50 Hereinafter, a processing procedure of an imaging process executed by the control unit 50 according to a program stored in a built-in memory will be described with reference to FIG.
(1-2) 制御部50による撮像処理
以下に、制御部50が、内蔵するメモリに格納されたプログラムに従って実行する撮像処理の処理手順を図3に基づいて説明する。 In the present embodiment, the
(1-2) Imaging Process by
この撮像処理では、まず、ミリ波センサアレイ20におけるミリ波センサ22のうち、基準ミリ波センサ22の検出値、つまり放射体3から放射されるミリ波の信号レベルを示す検出値が取得される(s120)。ここで、放射体3を電波吸収体で構成した場合には、ここからのミリ波の放射量が著しく少ないことから、検出値としても「0」に近い検出値が取得されることとなる。
In this imaging process, first, among the millimeter wave sensors 22 in the millimeter wave sensor array 20, a detection value of the reference millimeter wave sensor 22, that is, a detection value indicating a millimeter wave signal level emitted from the radiator 3 is acquired. (S120). Here, when the radiator 3 is composed of a radio wave absorber, the amount of millimeter wave radiation from here is remarkably small, and thus a detection value close to “0” is acquired as a detection value.
次に、上記s120にて取得された検出値に基づき、以降の処理で補正値を算出するための基準となる基準検出値が決定される(s130)。ここでは、上記s120にて取得された検出値が基準検出値として決定される。
Next, based on the detection value acquired in s120, a reference detection value serving as a reference for calculating a correction value in the subsequent processing is determined (s130). Here, the detection value acquired in s120 is determined as the reference detection value.
次に、上記s130にて決定された基準検出値に基づいて、検出値を補正するための補正値が決定される(s140)。ここでは、上記s130にて決定された基準検出値rと、この時点で基準ミリ波センサに検出された検出値dと、の誤差(r-d)が算出され、これが各ミリ波センサ22の補正値として決定される。
Next, a correction value for correcting the detection value is determined based on the reference detection value determined in s130 (s140). Here, an error (rd) between the reference detection value r determined in s130 and the detection value d detected by the reference millimeter-wave sensor at this time is calculated, and this is calculated for each millimeter-wave sensor 22. It is determined as a correction value.
なお、このs140が撮像処理の起動後最初に行われる場合は、上記s130にて決定された基準検出値と、上記s120にて取得された検出値と、の誤差が補正値として決定されることとなるが、これら検出値は一致するため、「0」が補正値として決定される。
When this s140 is performed for the first time after the imaging process is started, an error between the reference detection value determined in s130 and the detection value acquired in s120 is determined as a correction value. However, since these detection values match, “0” is determined as the correction value.
次に、上記s140にて決定された補正値が、ミリ波センサ22それぞれの検出値に対する補正値として設定される(s150)。
次に、被写体像の撮像を継続すべきか否かがチェックされる(s170)。ここでは、ミリ波撮像装置2に対し、外部から撮像を終了するための指令(ユーザによる操作を含む)を受けた場合に、撮像を終了つまり撮像を継続すべきでないと判定される。 Next, the correction value determined in s140 is set as a correction value for each detection value of the millimeter wave sensor 22 (s150).
Next, it is checked whether or not imaging of the subject image should be continued (s170). Here, when receiving a command (including an operation by the user) for ending imaging from the outside to the millimeter-wave imaging device 2, it is determined that imaging should be terminated, that is, imaging should not be continued.
次に、被写体像の撮像を継続すべきか否かがチェックされる(s170)。ここでは、ミリ波撮像装置2に対し、外部から撮像を終了するための指令(ユーザによる操作を含む)を受けた場合に、撮像を終了つまり撮像を継続すべきでないと判定される。 Next, the correction value determined in s140 is set as a correction value for each detection value of the millimeter wave sensor 22 (s150).
Next, it is checked whether or not imaging of the subject image should be continued (s170). Here, when receiving a command (including an operation by the user) for ending imaging from the outside to the millimeter-
このs170で撮像を継続すべきと判定された場合(s170:YES)、ミリ波センサアレイ20のミリ波センサ22による検出値それぞれが取得される(s180)。
次に、上記s180にて取得された検出値それぞれが、この時点で設定されている補正値に基づいて補正される(s190)。ここでは、設定済みの補正値が正の値であれば、上記s180にて取得された検出値それぞれから補正値の絶対値が減算され、補正値が負の値であれば、上記s180にて取得された検出値それぞれに補正値の絶対値が加算される。 When it is determined in s170 that the imaging should be continued (s170: YES), each detection value by themillimeter wave sensor 22 of the millimeter wave sensor array 20 is acquired (s180).
Next, each of the detection values acquired in s180 is corrected based on the correction value set at this time (s190). Here, if the set correction value is a positive value, the absolute value of the correction value is subtracted from each of the detection values acquired in s180, and if the correction value is a negative value, in s180. The absolute value of the correction value is added to each acquired detection value.
次に、上記s180にて取得された検出値それぞれが、この時点で設定されている補正値に基づいて補正される(s190)。ここでは、設定済みの補正値が正の値であれば、上記s180にて取得された検出値それぞれから補正値の絶対値が減算され、補正値が負の値であれば、上記s180にて取得された検出値それぞれに補正値の絶対値が加算される。 When it is determined in s170 that the imaging should be continued (s170: YES), each detection value by the
Next, each of the detection values acquired in s180 is corrected based on the correction value set at this time (s190). Here, if the set correction value is a positive value, the absolute value of the correction value is subtracted from each of the detection values acquired in s180, and if the correction value is a negative value, in s180. The absolute value of the correction value is added to each acquired detection value.
次に、上記s190にて補正された検出値で示される画素情報それぞれを、その検出値を検出したミリ波センサ22の位置に対応する画素の画素情報とし、各画素情報で示される画素(画素情報で示される成分の画素)を配置してなる被写体像が生成される(s200)。こうして生成された被写体像は、表示装置への表示を行うべく画像メモリに格納される。
Next, each piece of pixel information indicated by the detection value corrected in s190 is set as pixel information of a pixel corresponding to the position of the millimeter wave sensor 22 that detected the detection value, and the pixel (pixel) indicated by each piece of pixel information is indicated. A subject image formed by arranging (pixels of components indicated by information) is generated (s200). The subject image generated in this way is stored in an image memory for display on a display device.
このs200が行われたら、上記s120と同様、基準ミリ波センサ22から検出値が取得された後(s210)、プロセスがs140へと戻る。この場合のs140では、s210で取得された検出値と、上記s130にて決定された基準検出値との誤差が補正値として決定される。
When this s200 is performed, the process returns to s140 after the detection value is acquired from the reference millimeter wave sensor 22 (s210), as in s120. In s140 in this case, an error between the detection value acquired in s210 and the reference detection value determined in s130 is determined as a correction value.
以降、撮像を継続すべきと判定されている間(s170「YES」)、s140~s210が繰り返され、上記s170で撮像を終了すべきと判定された場合(s170:NO)、本撮像処理が終了する。
Thereafter, while it is determined that imaging should be continued (s170 “YES”), s140 to s210 are repeated, and when it is determined that imaging should be terminated in s170 (s170: NO), the main imaging process is performed. finish.
このように、撮像処理では、初期設定された検出値(基準検出値)を基準として(s130)、基準ミリ波センサにおける検出値の変動分を補正値として各ミリ波センサ22の検出値を補正したうえで(s190)、被写体像を生成している(s200)。
(2) 第2実施形態
(2-1) 全体構成
本実施形態におけるミリ波撮像システム4は、図4に示すように、ミリ波撮像装置5と、撮影対象となる撮影領域においてミリ波を放射する放射体3と、で構成される。なお、本実施形態において、第1実施形態と同様の構成は、第1実施形態と同じ符号を付して詳細な説明を省略する。 As described above, in the imaging process, the detection value of eachmillimeter wave sensor 22 is corrected using the detection value (reference detection value) that is initially set as a reference (s130) and the variation of the detection value in the reference millimeter wave sensor as a correction value. After that (s190), a subject image is generated (s200).
(2) Second Embodiment (2-1) Overall Configuration As shown in FIG. 4, the millimeterwave imaging system 4 in this embodiment radiates millimeter waves in the millimeter wave imaging device 5 and the imaging region to be imaged. And the radiator 3 to be configured. In the present embodiment, the same configurations as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
(2) 第2実施形態
(2-1) 全体構成
本実施形態におけるミリ波撮像システム4は、図4に示すように、ミリ波撮像装置5と、撮影対象となる撮影領域においてミリ波を放射する放射体3と、で構成される。なお、本実施形態において、第1実施形態と同様の構成は、第1実施形態と同じ符号を付して詳細な説明を省略する。 As described above, in the imaging process, the detection value of each
(2) Second Embodiment (2-1) Overall Configuration As shown in FIG. 4, the millimeter
ミリ波撮像装置5は、レンズアンテナ10と、複数のミリ波センサ22が一列に配置されてなるミリ波ラインセンサ60と、レンズアンテナ10に取り込まれたミリ波を反射させてミリ波ラインセンサ60へと導く反射面32を有するリフレクタ30と、ミリ波撮像装置5全体の動作を制御する制御部50と、を備えている。なお、このミリ波ラインセンサ60が本発明におけるミリ波センサ群である。
The millimeter wave imaging device 5 includes a lens antenna 10, a millimeter wave line sensor 60 in which a plurality of millimeter wave sensors 22 are arranged in a row, and a millimeter wave line sensor 60 that reflects the millimeter wave captured by the lens antenna 10. And a control unit 50 that controls the operation of the entire millimeter-wave imaging device 5. The millimeter wave line sensor 60 is a millimeter wave sensor group in the present invention.
これらのうち、ミリ波ラインセンサ60は、結像領域内において、ミリ波の到来方向に向けられた複数のミリ波センサ22それぞれを、ミリ波の到来方向と交差する平面に沿って一方向に並べたものであり、ミリ波センサ22それぞれが、受信したミリ波の信号レベルに応じた検出値を出力する。
Among these, the millimeter wave line sensor 60 causes each of the plurality of millimeter wave sensors 22 oriented in the arrival direction of the millimeter wave in one direction along a plane intersecting with the arrival direction of the millimeter wave in the imaging region. Each of the millimeter wave sensors 22 outputs a detection value corresponding to the received millimeter wave signal level.
リフレクタ30には、反射面32によるミリ波の反射角を、ミリ波センサ22の配置された方向と交差する方向に沿って変位させるための変位機構34が備えられている。
(2-2) 制御部50による撮像処理
以下に、制御部50が、内蔵するメモリに格納されたプログラムに従って実行する撮像処理の処理手順を図5に基づいて説明する。 Thereflector 30 is provided with a displacement mechanism 34 for displacing the reflection angle of the millimeter wave by the reflection surface 32 along the direction intersecting the direction in which the millimeter wave sensor 22 is arranged.
(2-2) Imaging Processing byControl Unit 50 Hereinafter, a processing procedure of imaging processing executed by the control unit 50 in accordance with a program stored in a built-in memory will be described with reference to FIG.
(2-2) 制御部50による撮像処理
以下に、制御部50が、内蔵するメモリに格納されたプログラムに従って実行する撮像処理の処理手順を図5に基づいて説明する。 The
(2-2) Imaging Processing by
この撮像処理では、まず、放射体3から放射されるミリ波により結像する像の領域がミリ波センサ22の配置された領域に重複するまで、リフレクタ30の反射面32による反射角が変更される(s110)。ここでは、リフレクタ30の変位機構34に対し、反射面32によるミリ波の反射角を所定の初期角度θ’まで変位させるべく指令がなされ、この指令を受けた変位機構34は、放射体3から放射されるミリ波により結像する像の領域が、ミリ波センサ22の配置された領域に重複するまで、反射面32によるミリ波の反射角を初期角度θ’まで変更させる(図6参照)。
In this imaging process, first, the reflection angle by the reflecting surface 32 of the reflector 30 is changed until the region of the image formed by the millimeter wave emitted from the radiator 3 overlaps the region where the millimeter wave sensor 22 is disposed. (S110). Here, a command is given to the displacement mechanism 34 of the reflector 30 to displace the reflection angle of the millimeter wave by the reflecting surface 32 to a predetermined initial angle θ ′. The reflection angle of the millimeter wave by the reflecting surface 32 is changed to the initial angle θ ′ until the region of the image formed by the emitted millimeter wave overlaps the region where the millimeter wave sensor 22 is arranged (see FIG. 6). .
次に、上記s110にて反射角が初期角度まで変更された時点において、ミリ波ラインセンサ60におけるミリ波センサ22のうち、基準ミリ波センサの検出値、つまり放射体3から放射されるミリ波の信号レベルを示す検出値が取得される(s120)。
Next, at the time when the reflection angle is changed to the initial angle in s110, the detection value of the reference millimeter wave sensor among the millimeter wave sensors 22 in the millimeter wave line sensor 60, that is, the millimeter wave emitted from the radiator 3. A detection value indicating the signal level of is acquired (s120).
次に、上記s120にて取得された検出値に基づき、以降の処理で補正値を算出するための基準となる基準検出値が決定される(s130)。
次に、上記s130にて決定された基準検出値に基づいて、検出値を補正するための補正値が決定され(s140)、この補正値が補正値として設定される(s150)。 Next, based on the detection value acquired in s120, a reference detection value serving as a reference for calculating a correction value in the subsequent processing is determined (s130).
Next, based on the reference detection value determined in s130, a correction value for correcting the detection value is determined (s140), and this correction value is set as a correction value (s150).
次に、上記s130にて決定された基準検出値に基づいて、検出値を補正するための補正値が決定され(s140)、この補正値が補正値として設定される(s150)。 Next, based on the detection value acquired in s120, a reference detection value serving as a reference for calculating a correction value in the subsequent processing is determined (s130).
Next, based on the reference detection value determined in s130, a correction value for correcting the detection value is determined (s140), and this correction value is set as a correction value (s150).
次に、リフレクタ30の反射面32による反射角を、一定の角度範囲θ”で繰り返し連続的に変更する走査制御が開始される(s160)。ここでは、リフレクタ30の変位機構34に対し、反射面32によるミリ波の反射角を連続的に変更すべき旨の指令がなされ、この指令を受けた変位機構34は、一定の角度範囲θ”で反射面32によるミリ波の反射角を連続的に繰り返し変更するようになる。これにより、ミリ波ラインセンサ60による観察領域100の走査が行われる。
Next, scanning control is started to repeatedly and continuously change the reflection angle of the reflecting surface 32 of the reflector 30 within a certain angle range θ ″ (s160). Here, the reflection mechanism 30 reflects the displacement mechanism 34 of the reflector 30. A command to continuously change the reflection angle of the millimeter wave by the surface 32 is issued, and the displacement mechanism 34 that has received this command continuously changes the reflection angle of the millimeter wave by the reflection surface 32 within a certain angle range θ ″. It will be changed repeatedly. Thereby, the observation area 100 is scanned by the millimeter wave line sensor 60.
なお、ここで反射角が変更される角度範囲θ”は、レンズアンテナ10に取り込まれたミリ波による被写体像の結像領域が、ミリ波センサ22の配置された領域に重複するようにあらかじめ設定されたものである。
Here, the angle range θ ″ in which the reflection angle is changed is set in advance so that the imaging area of the subject image by the millimeter wave captured by the lens antenna 10 overlaps the area where the millimeter wave sensor 22 is disposed. It has been done.
次に、被写体像の撮像を継続すべきか否かがチェックされ(s170)、撮像を継続すべきと判定された場合(s170:YES)、ミリ波ラインセンサ60のミリ波センサ22による検出値それぞれが取得される(s180)。
Next, it is checked whether or not imaging of the subject image should be continued (s170), and when it is determined that imaging should be continued (s170: YES), each of the detection values by the millimeter wave sensor 22 of the millimeter wave line sensor 60 is detected. Is acquired (s180).
次に、上記s180にて取得された検出値それぞれが、この時点で設定されている補正値に基づいて補正され(s190)、補正された検出値で示される画素情報それぞれを、その検出値を検出したミリ波センサ22の位置に対応する画素の画素情報として、各画素情報で示される画素(画素情報で示される濃度の画素)を配置してなる一列分の被写体像が生成される(s200)。こうして生成された被写体像は、画像メモリのうち、該当する列に対応する記憶領域に格納される。
Next, each of the detection values acquired in s180 is corrected based on the correction value set at this time (s190), and each piece of pixel information indicated by the corrected detection value is converted into the detection value. As a pixel information of the pixel corresponding to the detected position of the millimeter wave sensor 22, a subject image for one column formed by arranging pixels (pixels having a density indicated by the pixel information) indicated by each pixel information is generated (s200). ). The subject image generated in this way is stored in a storage area corresponding to the corresponding column in the image memory.
このs200が行われたら、上記s120と同様、基準ミリ波センサ22から検出値が取得された後(s210)、プロセスがs140へと戻る。
そして、上記s170で撮像を終了すべきと判定された場合(s170:NO)、本撮像処理が終了する。
(3) 作用,効果
上述したミリ波撮像装置2,5では、放射体3にて放射されたミリ波を基準ミリ波センサ22で受信し、この基準ミリ波センサ22からの検出値と基準検出値との誤差を補正値として、各ミリ波センサの検出値を補正している(図3,図5のs120~s210)。 When this s200 is performed, the detection value is acquired from the reference millimeter wave sensor 22 (s210), and the process returns to s140, as in the above s120.
If it is determined in s170 that the imaging should be terminated (s170: NO), the imaging process is terminated.
(3) Action and Effect In the millimeterwave imaging devices 2 and 5 described above, the millimeter wave emitted from the radiator 3 is received by the reference millimeter wave sensor 22, and the detection value and the reference detection from the reference millimeter wave sensor 22 are received. The detection value of each millimeter wave sensor is corrected using an error from the value as a correction value (s120 to s210 in FIGS. 3 and 5).
そして、上記s170で撮像を終了すべきと判定された場合(s170:NO)、本撮像処理が終了する。
(3) 作用,効果
上述したミリ波撮像装置2,5では、放射体3にて放射されたミリ波を基準ミリ波センサ22で受信し、この基準ミリ波センサ22からの検出値と基準検出値との誤差を補正値として、各ミリ波センサの検出値を補正している(図3,図5のs120~s210)。 When this s200 is performed, the detection value is acquired from the reference millimeter wave sensor 22 (s210), and the process returns to s140, as in the above s120.
If it is determined in s170 that the imaging should be terminated (s170: NO), the imaging process is terminated.
(3) Action and Effect In the millimeter
放射体3は、基準となるミリ波を放射すべく観察領域100に配置されていることから、例えば、観察領域100の温度が上昇すれば、ミリ波としての熱雑音も大きくなる結果、基準ミリ波センサ22の検出値も大きくなる。
Since the radiator 3 is arranged in the observation region 100 so as to emit the reference millimeter wave, for example, if the temperature of the observation region 100 rises, thermal noise as a millimeter wave also increases. The detection value of the wave sensor 22 also increases.
つまり、基準ミリ波センサ22の検出値と基準検出値との誤差は、観察領域100の温度変化に応じて変動するものであるため、この誤差を補正値として各ミリ波センサ22の検出値を補正すれば、各検出値から観察領域100の温度変化の影響を除去することができる。
That is, the error between the detection value of the reference millimeter wave sensor 22 and the reference detection value varies according to the temperature change of the observation region 100. Therefore, the detection value of each millimeter wave sensor 22 is determined using this error as a correction value. If corrected, the influence of the temperature change of the observation region 100 can be removed from each detection value.
例えば、観察領域100の温度が上昇し、各ミリ波センサ22の検出値に応じて決めるべき画素の成分が全て最大値(または最小値)となってしまうような場合でも、ここから温度変化に応じた誤差が減算(または加算)される結果、本来的な検出値に戻される。
For example, even when the temperature of the observation region 100 rises and all the pixel components to be determined according to the detection values of the millimeter wave sensors 22 become maximum values (or minimum values), the temperature changes from here. As a result of subtracting (or adding) the corresponding error, the original detection value is restored.
こうして、補正された検出値に基づいて被写体像を生成すれば、観察領域100の温度変化に拘わらず、画素間のコントラストが適切に維持された鮮明な被写体像とすることができる。
Thus, by generating a subject image based on the corrected detection value, it is possible to obtain a clear subject image in which the contrast between the pixels is appropriately maintained regardless of the temperature change of the observation region 100.
また、上記実施形態では、補正値を設定するための基準となる基準検出値を、撮像処理が起動する都度設定することができる(図3,図5のs120)。そのため、観察領域100の温度が充分に低い状態の時に、撮像処理を起動させれば、ミリ波としての熱雑音が小さい時の検出値を基準検出値として設定することができる。
(4)変形例
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。 In the above embodiment, the reference detection value that serves as a reference for setting the correction value can be set every time the imaging process is started (s120 in FIGS. 3 and 5). Therefore, if the imaging process is started when the temperature of theobservation region 100 is sufficiently low, the detection value when the thermal noise as a millimeter wave is small can be set as the reference detection value.
(4) Modifications The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and can take various forms as long as they belong to the technical scope of the present invention. Needless to say.
(4)変形例
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。 In the above embodiment, the reference detection value that serves as a reference for setting the correction value can be set every time the imaging process is started (s120 in FIGS. 3 and 5). Therefore, if the imaging process is started when the temperature of the
(4) Modifications The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and can take various forms as long as they belong to the technical scope of the present invention. Needless to say.
例えば、上記実施形態においては、撮像処理において「基準検出値」を設定するように構成されている。しかし、画素間のコントラストを適切に維持できている状態での検出値を、あらかじめ固定的に「基準検出値」として設定しておいてもよい。
For example, in the above embodiment, the “reference detection value” is set in the imaging process. However, the detection value in a state where the contrast between the pixels can be appropriately maintained may be fixedly set as a “reference detection value” in advance.
また、上記実施形態では、撮像処理が起動された直後のタイミングで「基準検出値」を設定するように構成されている(図3,図5のs120)。しかし、「基準検出値」を設定するタイミングは、これに限らず、例えば、ユーザが特定の操作をしたタイミングとしてもよい。
(5)本発明との対応関係
以上説明した実施形態において、図3,図5におけるs200が画像生成手段による一例の画像形成ステップであり、同図s140,s150が補正値設定手段による一例の補正値決定・補正値設定の各ステップであり、同図s190が検出値補正手段による一例の補正ステップであり、同図s120,s130が基準設定手段による一例の検出値の取得・基準検出値決定の各ステップであり、図5のs110,s160が反射角変更手段による一例の反射角変更ステップである。 In the above embodiment, the “reference detection value” is set at the timing immediately after the imaging process is activated (s120 in FIGS. 3 and 5). However, the timing for setting the “reference detection value” is not limited to this, and may be a timing at which the user performs a specific operation, for example.
(5) Correspondence with the Present Invention In the embodiment described above, s200 in FIGS. 3 and 5 is an example of an image forming step by the image generation unit, and s140 and s150 in the figure are an example of correction by the correction value setting unit. S190 is an example of a correction step by the detection value correction unit, and s120 and s130 are examples of acquisition of the detection value and determination of the reference detection value by the reference setting unit. In each step, s110 and s160 in FIG. 5 are examples of the reflection angle changing step by the reflection angle changing means.
(5)本発明との対応関係
以上説明した実施形態において、図3,図5におけるs200が画像生成手段による一例の画像形成ステップであり、同図s140,s150が補正値設定手段による一例の補正値決定・補正値設定の各ステップであり、同図s190が検出値補正手段による一例の補正ステップであり、同図s120,s130が基準設定手段による一例の検出値の取得・基準検出値決定の各ステップであり、図5のs110,s160が反射角変更手段による一例の反射角変更ステップである。 In the above embodiment, the “reference detection value” is set at the timing immediately after the imaging process is activated (s120 in FIGS. 3 and 5). However, the timing for setting the “reference detection value” is not limited to this, and may be a timing at which the user performs a specific operation, for example.
(5) Correspondence with the Present Invention In the embodiment described above, s200 in FIGS. 3 and 5 is an example of an image forming step by the image generation unit, and s140 and s150 in the figure are an example of correction by the correction value setting unit. S190 is an example of a correction step by the detection value correction unit, and s120 and s130 are examples of acquisition of the detection value and determination of the reference detection value by the reference setting unit. In each step, s110 and s160 in FIG. 5 are examples of the reflection angle changing step by the reflection angle changing means.
Claims (6)
- ミリ波撮像装置であって、
観察対象となる領域であり、該領域の一部において基準となるミリ波を放射する放射体が配置された観察領域について、該観察領域から放射されるミリ波を取り込んで被写体像を結像させるレンズアンテナと、
前記レンズアンテナに取り込まれたミリ波が被写体像を結像する結像領域に配置された1以上のミリ波センサからなり、該ミリ波センサそれぞれが、受信したミリ波の信号レベルに応じた検出値を出力するミリ波センサ群と、
前記1以上のミリ波センサから出力された検出値それぞれに基づいて、該検出値に応じた成分の画素を配置してなる被写体像を生成する画像生成手段と、
前記1以上のミリ波センサのうち、前記放射体から放射されたミリ波を受信するミリ波センサとして定められた基準ミリ波センサの検出値について、あらかじめ定められた基準検出値との誤差を、前記ミリ波センサそれぞれに対する補正値として設定する補正値設定手段と、
前記1以上のミリ波センサそれぞれの検出値を、前記画像生成手段による被写体像の生成に先立って、前記補正値設定手段により設定された補正値により補正する検出値補正手段と、を備えている
ことを特徴とするミリ波撮像装置。 A millimeter wave imaging device,
For an observation region that is a region to be observed and in which a radiator that emits a reference millimeter wave is arranged in a part of the region, a millimeter wave emitted from the observation region is captured to form a subject image A lens antenna,
The millimeter wave captured by the lens antenna is composed of one or more millimeter wave sensors arranged in an imaging region where an object image is formed, and each of the millimeter wave sensors detects in accordance with the received millimeter wave signal level. A group of millimeter wave sensors that output values;
Image generation means for generating a subject image formed by arranging pixels of components corresponding to the detection values based on the detection values output from the one or more millimeter-wave sensors;
Among the one or more millimeter wave sensors, for a detection value of a reference millimeter wave sensor defined as a millimeter wave sensor that receives a millimeter wave emitted from the radiator, an error from a predetermined reference detection value is determined. Correction value setting means for setting as a correction value for each of the millimeter wave sensors;
Detection value correction means for correcting the detection value of each of the one or more millimeter wave sensors with the correction value set by the correction value setting means prior to the generation of the subject image by the image generation means. The millimeter wave imaging device characterized by the above-mentioned. - 所定のタイミングで前記基準ミリ波センサに検出された検出値を基準検出値として設定する基準設定手段、を備え、
前記補正値設定手段は、前記基準ミリ波センサの検出値と前記基準設定手段により設定された基準検出値との誤差を、前記ミリ波センサそれぞれに対する補正値として設定する
ことを特徴とする請求項1に記載のミリ波撮像装置。 A reference setting means for setting a detection value detected by the reference millimeter wave sensor at a predetermined timing as a reference detection value;
The correction value setting means sets an error between a detection value of the reference millimeter wave sensor and a reference detection value set by the reference setting means as a correction value for each of the millimeter wave sensors. The millimeter-wave imaging device according to 1. - 前記ミリ波センサ群は、前記結像領域において複数のミリ波センサが一列に配置されてなり、該ミリ波センサにより受信されたミリ波により一列分の被写体像に対応する検出値を出力するラインセンサとして構成されており、
さらに、
前記レンズアンテナに取り込まれたミリ波を反射させて前記ミリ波センサ群へと導く反射面を有するリフレクタと、
前記リフレクタの反射面で反射したミリ波による被写体像の結像領域を、前記ミリ波センサの配置された方向と交差する方向に沿って変位させるべく、前記反射面による反射角を順次変更させることにより、前記ミリ波センサ群に、一列分の被写体像に対応する検出値として、前記反射面の反射角に応じた列の被写体像に対応する検出値群を順に出力させる反射角変更手段と、を備え、
前記画像生成手段は、前記ミリ波センサ群から検出値群が出力される毎に、該検出値群における各検出値に応じたパラメータの画素を一列に配置した一列分の被写体像を生成する
ことを特徴とする請求項1または請求項2に記載のミリ波撮像装置。 The millimeter wave sensor group is a line in which a plurality of millimeter wave sensors are arranged in a row in the imaging region, and a detection value corresponding to the subject image for one row is output by the millimeter wave received by the millimeter wave sensor. Configured as a sensor,
further,
A reflector having a reflecting surface that reflects the millimeter wave captured by the lens antenna and guides it to the millimeter wave sensor group;
In order to displace the imaging area of the subject image by the millimeter wave reflected by the reflection surface of the reflector along the direction intersecting the direction in which the millimeter wave sensor is arranged, the reflection angle by the reflection surface is sequentially changed. Thus, the reflection angle changing means for sequentially outputting the detection value group corresponding to the subject image in the row corresponding to the reflection angle of the reflection surface as the detection value corresponding to the subject image for one row to the millimeter wave sensor group, With
The image generation means generates a subject image for one row in which pixels of a parameter corresponding to each detection value in the detection value group are arranged in a row each time a detection value group is output from the millimeter wave sensor group. The millimeter-wave imaging device according to claim 1 or 2, wherein - 観察対象となる領域(観察領域)に配置され、該観察領域の一部において基準となるミリ波を放射する放射体と、
請求項1から3のいずれかに記載のミリ波撮像装置と、からなる
ことを特徴とするミリ波撮像システム。 A radiator that is arranged in an observation target region (observation region) and emits a millimeter wave as a reference in a part of the observation region;
A millimeter-wave imaging system comprising: the millimeter-wave imaging device according to claim 1. - 前記放射体は、基準となる熱雑音を発生する熱雑音源,または,電波吸収体により構成されている
ことを特徴とする請求項4に記載のミリ波撮像システム。 The millimeter wave imaging system according to claim 4, wherein the radiator is configured by a thermal noise source that generates thermal noise as a reference or a radio wave absorber. - コンピュータを、請求項1から3のいずれかに記載の全ての手段として機能させるためのプログラム。 A program for causing a computer to function as all the means according to any one of claims 1 to 3.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2012042800A SG181630A1 (en) | 2009-12-15 | 2010-12-15 | Millimeter wave image pickup device, millimeter wave image pickup system and program |
CN2010800566315A CN102713670A (en) | 2009-12-15 | 2010-12-15 | Millimeter wave image pickup device, millimeter wave image pickup system and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009284080A JP2011127914A (en) | 2009-12-15 | 2009-12-15 | Millimeter wave image pickup device, millimeter wave image pickup system and program |
JP2009-284080 | 2009-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074614A1 true WO2011074614A1 (en) | 2011-06-23 |
Family
ID=44167366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072578 WO2011074614A1 (en) | 2009-12-15 | 2010-12-15 | Millimeter wave image pickup device, millimeter wave image pickup system and program |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2011127914A (en) |
CN (1) | CN102713670A (en) |
SG (1) | SG181630A1 (en) |
WO (1) | WO2011074614A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013126234A (en) * | 2011-12-16 | 2013-06-24 | Chuo Electronics Co Ltd | Output correction device, method, and program |
JP2013125021A (en) * | 2011-12-16 | 2013-06-24 | Chuo Electronics Co Ltd | Device, method, and program for correcting contrast, and possession detection device |
KR101884183B1 (en) * | 2011-12-21 | 2018-08-01 | (주)밀리시스 | Milimeter wave radiometer system and method thereof |
JP2013246138A (en) * | 2012-05-29 | 2013-12-09 | Maspro Denkoh Corp | Portable microwave measurement device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1151772A (en) * | 1997-07-31 | 1999-02-26 | Nec Corp | Radiometer |
JP2001264178A (en) * | 2000-03-15 | 2001-09-26 | Denso Corp | Infrared detector |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1940713A (en) * | 2005-09-30 | 2007-04-04 | 陈宇 | Imaging system based on sense |
JP2008241352A (en) * | 2007-03-26 | 2008-10-09 | Maspro Denkoh Corp | Millimeter-wave imaging device and picked-up image display device |
CN101571592B (en) * | 2009-05-22 | 2012-03-21 | 北京航空航天大学 | Passive millimeter wave scanning imaging system based on optical upconversion |
-
2009
- 2009-12-15 JP JP2009284080A patent/JP2011127914A/en active Pending
-
2010
- 2010-12-15 SG SG2012042800A patent/SG181630A1/en unknown
- 2010-12-15 CN CN2010800566315A patent/CN102713670A/en active Pending
- 2010-12-15 WO PCT/JP2010/072578 patent/WO2011074614A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1151772A (en) * | 1997-07-31 | 1999-02-26 | Nec Corp | Radiometer |
JP2001264178A (en) * | 2000-03-15 | 2001-09-26 | Denso Corp | Infrared detector |
Non-Patent Citations (1)
Title |
---|
JUN NAKATA ET AL.: "Real-time Calibration Method of MM-wave Image Using Upper-edge of Back-ground Temperature", 2009 NEN IEICE ELECTRONICS SOCIETY TAIKAI KOEN RONBUNSHU 1, 1 September 2009 (2009-09-01), pages 143 * |
Also Published As
Publication number | Publication date |
---|---|
JP2011127914A (en) | 2011-06-30 |
CN102713670A (en) | 2012-10-03 |
SG181630A1 (en) | 2012-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8804209B2 (en) | Image processing apparatus, image processing system, image processing method and computer readable medium | |
JP6969425B2 (en) | Optical range measuring device | |
US8743348B2 (en) | Optical distance detection system | |
US20180089847A1 (en) | Time-of-flight (tof) capturing apparatus and image processing method of reducing distortion of depth caused by multiple reflection | |
WO2011074614A1 (en) | Millimeter wave image pickup device, millimeter wave image pickup system and program | |
WO2010140689A1 (en) | Millimeter wave imaging device and program | |
US9160920B2 (en) | Imaging system and method of autofocusing the same | |
US8953233B2 (en) | Image reading apparatus and image data processing method | |
US20070070461A1 (en) | Method for adjusting image data | |
JP2009089138A (en) | Infrared ray camera | |
WO2009157552A1 (en) | Millimeter wave image pickup device | |
US8300276B2 (en) | Compensating for misalignment in an image scanner | |
EP3439286B1 (en) | Calibration of pixels for producing super resolution images | |
WO2021222504A1 (en) | Reference surface detection for mobile dimensioning | |
KR101840837B1 (en) | Apparatus and method for detecting dead pixel according to external infrared detector | |
WO2020084957A1 (en) | Fault detecting device, fault detecting method, program, and range finding device | |
JP6888429B2 (en) | Pattern irradiation device, imaging system and handling system | |
CN116209921A (en) | Method and apparatus for dynamic expansion of a time-of-flight camera system | |
TW552793B (en) | Method and related apparatus for compensating light inhomogeneity of light-distributing device of a scanner | |
JP2008278095A (en) | Image reading unit | |
JP2010107730A (en) | Image forming apparatus | |
US11460955B2 (en) | Projection system, position detection system, and method for controlling position detection system | |
US20220394221A1 (en) | Structured-light scanning system with thermal compensation | |
KR20190113251A (en) | Method of correcting non-uniformity for thermal image camera | |
US20120114182A1 (en) | Method and apparatus for measuring depth of field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080056631.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837640 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10837640 Country of ref document: EP Kind code of ref document: A1 |