[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011074226A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2011074226A1
WO2011074226A1 PCT/JP2010/007210 JP2010007210W WO2011074226A1 WO 2011074226 A1 WO2011074226 A1 WO 2011074226A1 JP 2010007210 W JP2010007210 W JP 2010007210W WO 2011074226 A1 WO2011074226 A1 WO 2011074226A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
box
refrigerator
compressor
heat insulation
Prior art date
Application number
PCT/JP2010/007210
Other languages
French (fr)
Japanese (ja)
Inventor
剛樹 平井
亜有子 中村
理 上野
嘉浩 伊藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080057241.XA priority Critical patent/CN102656413B/en
Priority to BR112012014435A priority patent/BR112012014435B8/en
Priority to JP2011545949A priority patent/JP5671705B2/en
Publication of WO2011074226A1 publication Critical patent/WO2011074226A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet

Definitions

  • This invention relates to the refrigerator provided with the heat insulation box.
  • the heat insulation box used for a refrigerator has a recessed part in the lower part on the back side, as disclosed in Patent Document 1, for example.
  • FIG. 18 is a cross-sectional view of the refrigerator described in Patent Document 1.
  • the heat insulating box 2 of the refrigerator 1 has an outer box 3 made of steel plate and an inner box 4 made of resin. Between the outer box 3 and the inner box 4, a heat insulating material 5 is filled by foaming.
  • the heat insulation box 2 has a recess 2a at the bottom on the back side.
  • the recessed part 2a is formed in the shape which notched the part of the back
  • a machine room 8 is provided in the recess 2a.
  • the machine room 8 is provided with a compressor 6 and a compressor support 7 that supports the compressor 6.
  • the compressor 6 forms part of the refrigeration cycle.
  • the structure of the lower part of the heat insulation box 2 has a great influence on the rigidity of the heat insulation box 2.
  • the rigidity is lowered.
  • the heat insulation box 2 rigidity is lowered, the heat insulation box 2 is distorted, so that the durability of the heat insulation box 2 is lowered. Further, due to this distortion, a gap is generated in the heat insulating box 2. Due to this gap, the heat insulating property of the heat insulating box 2 is lowered.
  • the present invention provides a refrigerator with high rigidity of a heat insulating box.
  • the refrigerator according to the present invention includes a refrigerator main body having a heat insulating box with a storage chamber formed therein.
  • the heat insulating box includes an outer box, an inner box, and a heat insulating wall formed by a heat insulating material filled between the outer box and the inner box.
  • the refrigerator which concerns on this invention has a storage part which accommodates the external apparatus exposed to external air in the refrigerating-cycle related apparatus containing the apparatus which comprises a refrigerating cycle.
  • a storage part is arrange
  • the refrigerator according to the present invention includes a heat insulating wall in which a bottom surface portion of the lowermost storage chamber and a bottom surface portion of the storage portion are integrally formed. With this configuration, the rigidity of the lower portion of the outer box is increased, so that the rigidity of the entire heat insulating box is increased.
  • the rigidity of the heat insulating box is increased. Thereby, a highly reliable refrigerator with little distortion can be obtained.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the refrigerator in the present embodiment.
  • FIG. 3 is an exploded perspective view of the heat insulation box in the same embodiment.
  • FIG. 4 is a bottom view of the refrigerator in the present embodiment.
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG.
  • FIG. 6 is a cross-sectional view of the refrigerator in the second embodiment of the present invention.
  • FIG. 7 is an exploded perspective view of the heat insulation box in the same embodiment.
  • FIG. 8 is a cross-sectional view of the refrigerator in the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing another configuration of the refrigerator in the present embodiment.
  • FIG. 10 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the heat insulation box in the same embodiment.
  • FIG. 12 is a cross-sectional view of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 13 is an exploded perspective view of the heat insulation box in the same embodiment.
  • FIG. 14 is a cross-sectional view of the refrigerator in the sixth embodiment of the present invention.
  • FIG. 15 is an exploded perspective view of the heat insulation box in the same embodiment.
  • FIG. 16 is a cross-sectional view of the refrigerator in the seventh embodiment of the present invention.
  • FIG. 17 is an exploded perspective view of the heat insulation box in the same embodiment.
  • FIG. 18 is a cross-sectional view of a conventional refrigerator.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the refrigerator according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the refrigerator as viewed from the right side.
  • FIG. 3 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment.
  • FIG. 4 is a bottom view of the refrigerator according to the present embodiment.
  • the left side is the front of the refrigerator.
  • the lower side is the front of the refrigerator.
  • the heat insulating box 21 of the refrigerator main body 20 includes an inner box 22, an outer box 23, and a heat insulating material 24.
  • the inner box 22 is made of resin.
  • the outer box 23 is formed of a metal magnetic material such as a steel plate and a material having good thermal conductivity.
  • the heat insulating material 24 is filled between the inner box 22 and the outer box 23.
  • a heat insulating wall is formed by the inner box 22, the outer box 23, and the heat insulating material 24 filled therebetween. That is, the heat insulating material 24 sandwiched between the wall surfaces constituting the inner box 22 and the outer box 23 acts as a heat insulating wall.
  • the heat insulation box 21 has a front opening 21a on the front surface.
  • the inside of the heat insulation box 21 is partitioned by partition walls 25, 26, 27, and 28. As a result, a plurality of storage chambers are formed in the heat insulating box 21.
  • the plurality of storage rooms are a refrigerator room 29, an ice making room 30, a first freezer room 31, a second freezer room 32, and a vegetable room 33 from the top. As shown in FIG. 1, the ice making chamber 30 and the first freezing chamber 31 are formed side by side.
  • Each storage room has a door.
  • the doors are a refrigerator compartment door 29a, an ice making compartment door 30a, a first freezer compartment door 31a, a second freezer compartment door 32a, and a vegetable compartment door 33a.
  • Each door has an insulating wall.
  • the front opening 21a is closed by closing each door. That is, each storage chamber is opened and closed by each door.
  • the refrigerator compartment door 29a includes an upper hinge 34 at the upper right end and a lower hinge 35 at the lower right end.
  • Each of the upper hinge 34 and the lower hinge 35 has a rotation axis.
  • the storage room corresponding to the other doors is a drawer type. That is, the doors are opened and closed in the front-rear direction with respect to the heat insulating box 21 by the rail members 36 provided in the respective storage chambers.
  • the rail member 36 is configured according to the drawer capacity and the drawer length of each storage room.
  • the ice making chamber 30 with a small capacity and the vegetable room 33 with a large capacity are configured with different members and at different positions.
  • each door When each door is closed, a space 37 of about 5 mm is formed between the surface of each door on the heat insulating box 21 side and the front opening 21a.
  • a gasket 38 is provided around the surface of each door on the heat insulating box 21 side.
  • the gasket 38 provided on the refrigerator compartment door 29 a is illustrated, but the gasket 38 is provided similarly on the doors of other storage compartments.
  • the gasket 38 has a magnet. Due to the magnetic force of the magnet, the gasket 38 is in close contact with the steel plate constituting the outer box 23 around the front opening 21a. Thereby, each storage chamber is sealed.
  • the heat insulation box 21 is provided with a refrigeration cycle for cooling the refrigerator body 20.
  • the refrigeration cycle includes a compressor 50, a condenser including a side refrigerant pipe 52 and a front refrigerant pipe 53, a decompressor (not shown), and an evaporator 51 in order. In this way, a series of refrigerant flow paths is configured.
  • frost is generated in the evaporator 51 by the operation of the refrigeration cycle. Melting frost into water is called defrosting. Water generated by melting frost is called defrost water. Therefore, the refrigerator main body 20 has the defrost water process part 100 for evaporating defrost water as a refrigeration cycle related apparatus required for a refrigerating cycle.
  • the external devices exposed to the outside air are the compressor 50 and the defrost water treatment unit 100.
  • a reciprocating compressor is used as the compressor 50 that is an external device exposed to the outside air.
  • the reciprocating compressor compresses the refrigerant as the piston reciprocates inside the cylinder.
  • isobutane is used as the refrigerant.
  • Isobutane is a hydrocarbon-based refrigerant.
  • Isobutane is generally used as a refrigerant for household refrigerators as an alternative chlorofluorocarbon. Isobutane is flammable and has a higher specific gravity than air.
  • the defrosting water treatment unit 100 that is an external device exposed to the outside air is provided at the lower back of the heat insulating box 21. Specifically, a hole 61 a is formed in the lower part of the back member 61. A resin storage part 101 is mounted in the hole 61a. The storage unit 101 is open on the back side, and is provided with a compressor 50 and a defrosted water treatment unit 102 therein. The storage unit 101, the compressor 50, and the defrost water treatment unit 102 constitute a defrost water treatment unit 100.
  • the side refrigerant pipe 52 as a condenser is fixed to the inside of the left and right side surfaces of the outer box 23, that is, to the heat insulating material 24 side.
  • the front refrigerant pipe 53 as a condenser is fixed to the vicinity of the front opening 21 a of the outer box 23 and to the heat insulating material 24 side. That is, the side refrigerant pipe 52 and the front refrigerant pipe 53 are located inside the heat insulating wall.
  • the side refrigerant pipe 52 and the front refrigerant pipe 53 occupy 80% or more of the total length of the condenser.
  • the front refrigerant pipe 53 is formed by a single pipe with the upper side of the heat insulating box 21 as an open end.
  • the front refrigerant pipe 53 is disposed in the same manner as the side refrigerant pipe 52 above the partition wall 25, that is, on the side of the refrigerator compartment 29, at a position of 90 mm from the front opening 21 a to the back side. That is, the front refrigerant pipe 53 is fixed to the heat insulating material 24 side of the outer box 23.
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. That is, FIG. 5 is a cross-sectional view of the front left side below the partition wall 25 of the heat insulation box 21 cut horizontally.
  • the lower side is the front side of the refrigerator body 20.
  • the front refrigerant pipe 53 is disposed along the front flange 23 a of the outer box 23 below the partition wall 25.
  • the front flange 23a of the outer box 23 includes an outer flange 23b that is the front surface of the storage chamber, and an inner flange 23c that is formed on the back side of the outer flange 23b.
  • the lower part of the front refrigerant pipe 53 is a corner formed by the inner flange 23c and the front flange 23a, and is disposed on the side where the heat insulating material 24 is filled.
  • the side refrigerant pipe 52 and the front refrigerant pipe 53 constitute a part of the refrigeration cycle as a condenser.
  • the side refrigerant pipe 52 and the front refrigerant pipe 53 radiate heat of condensation when the refrigerant is condensed. By this heat dissipation, dew condensation on the left and right side surfaces of the heat insulating box 21 and the vicinity of the front opening 21a and the gasket 38 is prevented. That is, the side refrigerant pipe 52 and the front refrigerant pipe 53 act as a heating element.
  • the outer box 23 includes a main member 60, an upper surface member 62, and a back member 61.
  • the main member 60 is formed by integrating the bottom surface portion 60a and the left and right side surface portions 60b.
  • the upper surface member 62 forms the upper surface of the outer box 23.
  • the back member 61 forms the back of the outer box 23, that is, the back surface of the refrigerator body 20.
  • a vacuum heat insulating material 70 is provided in a portion of the side refrigerant pipe 52 facing at least the ice making chamber 30, the first freezing chamber 31, and the second freezing chamber 32.
  • the vacuum heat insulating material 70 is fixed to the heat insulating material 24 side of the main member 60 with the side refrigerant pipe 52 interposed therebetween.
  • the heat conductivity of the vacuum heat insulating material 70 is smaller than the heat conductivity of the heat insulating material 24.
  • the heat insulating box 21 includes two front support legs 80 and two back support legs 90 as support legs on the bottom surface.
  • the front support legs 80 are provided at the left and right corners on the front side of the refrigerator body 20.
  • the back side support legs 90 are provided at the left and right corners on the back side of the refrigerator main body 20.
  • the front support leg 80 is a bottom surface of the main member 60 and is fixed to the inner side from both side surfaces.
  • the front end portion 81 of the front support leg 80 is provided so as to protrude from the front opening 21a to the same position as the front surface of the vegetable compartment door 33a.
  • the refrigerator main body 20 is supported by the front end portion 81.
  • the leg back side support leg 90 is provided on the bottom surface of the main member 60 and in the chamfering region 21 c of the left and right corners on the back side of the heat insulating box 21.
  • the chamfered region 21 c is surrounded by the surface of the chamfered portion 21 b provided at the left and right corners on the back side of the heat insulating box 21, the extended surface of the side surface of the refrigerator body 20, and the extended surface of the back surface of the refrigerator body 20. Area.
  • the back end 91 of the back support leg 90 is provided so as to protrude to the innermost part of the heat insulating box 21.
  • the refrigerator main body 20 is supported by the rear end portion 91.
  • the adjuster is a leg having a height adjusting function.
  • the position of the refrigerator main body 20 with respect to the ground plane is adjusted by the adjuster.
  • the caster is a leg provided with a roller or the like. The caster facilitates the movement of the refrigerator body 20.
  • a lower concave portion 22b is formed in the lower part of the rear side of the vegetable chamber 33, that is, the lower part of the inner side of the inner box 22.
  • the lower concave portion 22b is formed corresponding to the shape of the storage unit 101 that stores the defrost water processing unit 100 that is an external device exposed to the outside air.
  • a heat insulating material 24 is filled between the lower concave portion 22b and the storage portion 101.
  • the heat insulating material 24 is also filled between the left and right side surfaces and the bottom surface of the storage unit 101 and the main member 60. In this way, a heat insulating wall around the storage portion 101 is formed.
  • the heat insulating walls around the storage unit 101 have the same thickness as the heat insulating walls on the left and right side surfaces and the bottom surface of the vegetable room 33.
  • the thickness of the heat insulating wall on the bottom surface on the foremost side of the storage unit 101 is ⁇ 10% of the thickness of the heat insulating wall on the bottom surface on the farthest side of the vegetable room 33, that is, a thickness of 90% to 110%. That's it.
  • a heat insulating wall on the side surface is formed around the storage unit 101.
  • the heat insulating walls on the side surfaces include left and right heat insulating walls constituting the left and right surfaces of the heat insulating box 21 and heat insulating walls formed between the storage unit 101 and the vegetable compartment 33.
  • the thickness of the heat insulating wall on the side surface of the storage unit 101 is most desirably ⁇ 10% of the thickness of the heat insulating wall on the bottom surface of the storage unit 101, that is, 90% to 110%.
  • the thickness of the heat insulating wall on the side surface of the storage unit 101 is ⁇ 15% of the thickness of the heat insulating wall on the bottom surface of the storage unit 101, that is, 85% to 115%. Also good. Even in this case, the rigidity in the vicinity of the bottom surface portion is not biased, and the heat insulating box 21 having high rigidity is formed.
  • the heat insulating wall at the bottom of the storage unit 101 is substantially horizontal (including horizontal) with the heat insulating wall on the bottom surface of the vegetable compartment 33, and is formed integrally with the heat insulating wall of the heat insulating box 21.
  • the storage part 101 provided in the lower part of the back side of the vegetable compartment 33 which is the lowest storage room of the heat insulation box 21 is provided with an extending part 101 a extending from the heat insulating wall 60 a on the bottom surface of the vegetable compartment 33.
  • the heat insulating wall 60a on the bottom surface of the vegetable chamber 33 and the extending portion 101a are integrally formed.
  • the back side of the storage unit 101 is covered with a cover 101b.
  • the cover 101b is formed with an opening that communicates with outside air that is the air around the refrigerator. With this opening, the storage unit 101 has air in and out of the outside air. That is, the inside of the storage unit 101 is exposed to the outside air.
  • the heat insulating material 24 When using a foam heat insulating material as the heat insulating material 24, the heat insulating material 24 is filled between the inner box 22 and the outer box 23. Simultaneously with this filling, the heat insulating material 24 is filled around the storage portion 101, whereby the rigidity of the heat insulating box 21 is further increased.
  • the compressor 50 When the compressor 50 operates, the refrigerant is compressed.
  • the compressed refrigerant becomes high temperature and high pressure and is discharged from the compressor 50.
  • the discharged refrigerant dissipates heat by exchanging heat with air around the refrigerator body 20 in the condenser. Due to this heat dissipation, condensation of the left and right side surface portions 60b of the main member 60, the vicinity of the front surface opening 21a, and the gasket 38 is prevented.
  • the refrigerant is condensed by heat radiation and becomes a condensate.
  • the refrigerant that has become the condensate is decompressed in the decompressor.
  • the decompressed refrigerant evaporates by exchanging heat with the air inside the storage chamber in the evaporator.
  • the air around the evaporator becomes cold.
  • the storage room is cooled.
  • the side refrigerant pipe 52 and the front refrigerant pipe 53 bear most of the heat radiation required for the condenser.
  • isobutane is used as the refrigerant.
  • Isobutane is a hydrocarbon-based refrigerant.
  • Table 1 shows physical property values of isobutane, R134a and CO 2 in a saturated solution at ⁇ 30 ° C.
  • R134a is a conventional alternative chlorofluorocarbon.
  • CO 2 is a natural refrigerant.
  • the refrigeration capacity per unit volume of isobutane is 520.8 kJ.
  • the refrigerating capacity per unit volume of R134a is 971.6 kJ. That is, the refrigeration capacity per unit volume of isobutane is about 1 ⁇ 2 compared to R134a. Therefore, in order to make the refrigerating capacity by isobutane equivalent to R134a, the compressor 50 is configured to have a cylinder volume approximately twice as large.
  • the refrigeration capacity per unit volume of CO 2 is 11258.5 kJ.
  • refrigerating capacity per unit volume of isobutane when compared to CO 2, it is about 1/20. Therefore, in order to make the refrigeration capacity by isobutane equal to CO 2 , the compressor 50 is configured to have a cylinder volume about 20 times.
  • a compressor with a large cylinder volume has a large amount of unbalance inside the compressor. For this reason, the compressor 50 having a large cylinder volume tends to increase vibration.
  • the rigidity of the lower portion of the heat insulation box 21 is improved and the rigidity of the heat insulation box 21 is improved, the compression is performed even when the compressor 50 having a large cylinder volume is mounted. The refrigerator vibration due to the vibration of the machine 50 is suppressed.
  • a machine room 104 is formed by the lower concave portion 22b, the storage portion 101, and the heat insulating material 24 filled therebetween.
  • the compressor 50 is disposed in the machine room 104.
  • the rigidity of the machine room 104 is high. Therefore, even when the compressor 50 having a large cylinder volume is mounted, the vibration of the compressor 50 transmitted to the refrigerator is reduced. That is, it is possible to mount the compressor 50 having a large cylinder volume.
  • the vacuum heat insulating material 70 is provided closer to the storage chamber than the side refrigerant pipe 52. Thereby, the heat radiated from the side refrigerant pipe 52 is reduced from entering the storage chamber.
  • the vacuum heat insulating material 70 is provided at a location facing at least the ice making chamber 30, the first freezing chamber 31, and the second freezing chamber 32.
  • the vacuum heat insulating material 70 has a higher specific gravity than the heat insulating material 24. Therefore, the weight of the refrigerator main body 20 is reduced by reducing the amount of the vacuum heat insulating material 70 used.
  • the vacuum heat insulating material 70 is provided in many places. Specifically, the vacuum heat insulating material 70 is provided on both side surfaces, the bottom surface, and the back surface of the heat insulating box 21. This further reduces heat penetration into the storage chamber. By reducing the heat intrusion, the power consumption of the refrigerator body 20 is reduced. In addition, the vacuum heat insulating material 70 has higher rigidity than a heat insulating material made of urethane. For this reason, the vacuum heat insulating material 70 has an effect of improving the rigidity of the heat insulating box 21.
  • the outer box 23 includes a main member 60, a back member 61, and a top member 62. By dividing and manufacturing in this way, each molding process is simplified. On the other hand, there is a concern that the rigidity of the heat insulating box 21 is lowered by dividing it. However, the inventors confirmed that the refrigerator main body 20 is distorted from the vicinity of the bottom surface of the heat insulating box 21 when food is stored in the storage room.
  • the cause of distortion of the heat insulation box 21 is that the largest force is applied to the upper front side of the heat insulation box 21 by opening and closing the refrigerating compartment door 29a. Since the refrigerator compartment 29 is a storage compartment provided at the uppermost part of the heat insulating box 21, the influence of this force is great.
  • the refrigerator compartment door 29a is the heaviest among the refrigerator doors. Since the refrigerator compartment door 29a has a door pocket, a heavy object such as a beverage bottle is stored therein. For this reason, when the refrigerator compartment door 29a opens, a large load is applied to the upper hinge 34 and the lower hinge 35 that support the refrigerator compartment door 29a.
  • the lower recessed part 22b which forms the machine room 104 is located on the diagonal line of the refrigerator compartment door 29a where the above big load is applied.
  • the rigidity in the vicinity of the lower recess 22b by improving the rigidity in the vicinity of the lower recess 22b, bending of the entire refrigerator when the refrigerator compartment door 29a is opened is suppressed.
  • the accommodating part 101 which accommodates the external apparatus exposed to external air among refrigeration cycle related apparatuses is arrange
  • the heat insulation box 21 has a heat insulation wall in which the bottom part of the vegetable compartment 33 and the bottom part of the storage part 101 are integrally formed. With this configuration, the rigidity in the vicinity of the bottom surface of the heat insulating box 21 is increased.
  • the rigidity of the side wall of the heat insulation box 21 becomes high because the main member 60 is formed by integrating the bottom surface portion 60a and the left and right side surface portions 60b. For this reason, the deformation of the heat insulation box 21 is suppressed for a long time even with a large load of the refrigerator compartment door 29a. Furthermore, since the rigidity in the vicinity of the bottom surface of the heat insulation box 21 is increased, distortion of the heat insulation box 21 is prevented.
  • the main member 60 does not have a notch in the bottom surface portion 60a.
  • the front side of the main member 60 supports the refrigerator compartment door 29 a via the upper hinge 34 and the lower hinge 35.
  • a forward stress is applied to the refrigerator main body 20.
  • the refrigerator main body 20 becomes slightly forward-slip. That is, stress concentrates on the lower part of the front surface of the heat insulating box 21, particularly in the vicinity of the fixing portion of the front support leg 80. Therefore, when providing a cutout in the main member 60, the cutout is provided in the back side of the heat insulation box 21 as much as possible.
  • the refrigerator compartment door 29a is often provided with a food storage unit for storing a beverage bottle or the like called a door pocket. That is, in use, the total weight of the refrigerator compartment door 29a often increases. For this reason, it is necessary to pay more attention to stress concentration due to opening and closing of the refrigerator compartment door 29a.
  • a gap is generated around the engaging portion between the outer box 23 and the refrigerator compartment door 29a.
  • a gap is generated between the outer box 23 and the heat insulating material 24 or between the outer box 23 and the inner box 22.
  • cold air enters the gap, and there is a possibility that dew condensation occurs around the engaging portion between the outer box 23 and the refrigerator compartment door 29a.
  • the rigidity of the heat insulation box 21 is high, a deformation
  • the reliability for preventing the refrigerator body 20 from falling to the front side is determined by the position of the front end portion 81 of the front support leg 80 in the front-rear direction.
  • the reliability with respect to the fall prevention is improved as the front end portion 81 protrudes from the front opening 21a.
  • the front opening 21a when the front end portion 81 is disposed so as to protrude from the front opening 21a, stress concentrates on the fixing portion of the front support leg 80 due to the lever principle. Therefore, when the front opening 21a is used as a reference surface, the amount of protrusion of the fixed portion of the front support leg 80 toward the back side is equal to or greater than the amount of protrusion of the front end portion 81 forward. It is desirable.
  • the back side support leg 90 be disposed as far back as possible with respect to the heat insulating box 21. Thereby, the fall to the back side of the refrigerator main body 20 is prevented.
  • the back side support leg 90 is disposed so as to protrude rearward from the back surface of the heat insulating box body 21, the depth dimension required for installing the refrigerator main body 20 becomes large.
  • the defrost water treatment of the evaporator 51 will be described.
  • the defrost water in which the frost has melted flows into the defrost water treatment unit 102.
  • the defrost water treatment unit 102 evaporates the defrost water by using heat from the heat source and wind from the blower.
  • the evaporated defrost water is exhausted from the back side of the defrost water treatment unit 100. Thereby, defrost water does not overflow from the defrost water processing unit 102.
  • the defrost water treatment unit 102 is provided beside the compressor 50. Therefore, the heat radiation from the compressor 50 is used as a heat source for evaporating the defrost water.
  • ⁇ Defrost water treatment timing is set periodically according to conditions such as continuous operation time of the refrigeration cycle, outside air temperature and humidity.
  • conditions such as continuous operation time of the refrigeration cycle, outside air temperature and humidity.
  • Conventional refrigerators are equipped with a compressor support that supports the compressor.
  • the compressor support base supports the compressor for a long period of time.
  • the compressor support base is formed using a steel plate thicker than the outer box. For this reason, the conventional refrigerator is heavy.
  • the defrost water treatment unit 100 of the present embodiment is entirely covered with the heat insulating material 24 except for the open surface of the storage unit 101.
  • the storage unit 101 is made of resin, sufficient rigidity can be obtained. Therefore, sufficient rigidity can be obtained even when a compressor support such as a conventional refrigerator is not used. That is, since the resin storage unit 101 replaces the conventional compressor support, the weight of the refrigerator main body 20 is reduced.
  • the rigidity of the bottom surface of the heat insulating box 21 is greatly improved.
  • the rigidity of the side wall is greatly improved.
  • the heat insulating walls around the storage unit 101 that is the outline of the defrost water treatment unit 100 are substantially the same as the heat insulating walls on both the left and right side surfaces and the bottom surface of the vegetable room 33 that are part of the heat insulating wall of the heat insulating box 21.
  • the heat insulating wall at the bottom of the storage unit 101 is substantially horizontal (including horizontal) with the heat insulating wall on the bottom of the vegetable compartment 33.
  • the heat insulating wall around the storage portion 101 is formed integrally and continuously with the heat insulating wall of the heat insulating box 21.
  • the heat insulating box 21 is configured by forming the main member 60 by integrating the bottom surface portion 60a and the left and right side surface portions 60b. Accordingly, the rigidity of the lower portion of the outer box 23 is increased, so that the rigidity of the heat insulating box 21 is increased.
  • the defrost water treatment unit 100 has a heat insulating wall continuous with the bottom surface 60a of the heat insulating box 21 at the lower part. That is, the heat insulation box 21 does not have a notch in the bottom surface portion 60a. Thereby, the rigidity of the heat insulation box 21 further increases.
  • the left and right side portions of the defrost water treatment unit 100 have heat insulating walls that are continuous with the left and right side surface portions 60 b of the heat insulating box body 21. That is, the defrost water processing unit 100 and the heat insulating box 21 are connected via the heat insulating material 24. Thereby, the rigidity of the heat insulation box 21 further increases.
  • the heat insulation wall of the bottom surface portion 60a of the heat insulation box 21 and the heat insulation wall below the defrost water treatment unit 100 are substantially horizontal (including horizontal) and have substantially the same thickness. Thereby, a bending point is hard to generate
  • the back side support leg 90 of the refrigerator body 20 is provided at a position that does not protrude from the chamfered area. Thereby, the back side support leg 90 can be provided in the back side of the heat insulation box 21 without increasing the depth dimension of the refrigerator main body 20. With this configuration, the refrigerator main body 20 is prevented from falling backward while ensuring the installation of the refrigerator main body 20.
  • the storage room located at the top is the refrigerator compartment 29. That is, the difference between the temperature inside the storage room and the temperature of the outside air is small. For this reason, the tendency that condensation does not occur easily is remarkable. Therefore, since it is difficult for dew condensation to occur, it is not necessary to increase the thickness of the heat insulating wall of the heat insulating box 21 in a portion where there is no refrigerant pipe. That is, the capacity of the storage room can be increased.
  • the lower part of the front opening 21a is close to the installation surface. For this reason, air convection hardly occurs. As a result, condensation is likely to occur in the lower portion of the front opening 21a.
  • the side refrigerant pipe 52 and the front refrigerant pipe 53 pass through the bottom surface of the heat insulating box 21. For this reason, generation
  • the heat generated from the control board can be used by disposing the control board on the upper surface member 62. This more reliably prevents condensation.
  • the front refrigerant pipe 53 is disposed away from the front flange 23a on both sides of the refrigerator compartment 29. Specifically, the front refrigerant pipe 53 is disposed on the heat insulating material 24 side of the main member 60 and at a position of 90 mm from the front surface to the back side.
  • the front refrigerant pipe 53 has an upper part farther from the front surface of the heat insulating box 21 than a lower part. For this reason, the penetration
  • the front refrigerant pipe 53 installed at a position of 100 mm from the front opening 21a to the back side has sufficient heat to prevent condensation on the front opening 21a.
  • the upper part of the front refrigerant pipe 53 can be eliminated.
  • the upper surface of the refrigerator compartment 29 faces the bottom surface portion 60a.
  • Energy consumption can be reduced by providing an integrally formed heating element at a location other than the top surface. In this case, energy consumption is further reduced by forming the front refrigerant
  • the heat radiation amount is reduced.
  • the reduced heat dissipation can be compensated.
  • a necessary heat radiation amount can be ensured without increasing the heat intrusion into the storage chamber.
  • the front refrigerant pipe 53 is disposed on the heat insulating material 24 side of the inner flange 23c of the front flange 23a. Thereby, since the front refrigerant
  • the front refrigerant pipe 53 is disposed while being in contact with the front flange 23a, and is then disposed away from the front opening 21a. That is, the front refrigerant pipe 53 is separated from the front flange 23a in the middle of the path.
  • the front refrigerant pipe 53 is separated from the front flange 23a, it is not necessary to provide a notch in the inner flange 23c. Since there is no notch, when the heat insulating material 24 is foamed and filled, the possibility that the heat insulating material 24 leaks is reduced. Further, the front refrigerant pipe 53 is prevented from being damaged by the front refrigerant pipe 53 coming into contact with the notch.
  • the upper part of the front refrigerant pipe 53 is formed with an open end.
  • the main member 60 is formed integrally with a bottom surface portion 60a and left and right side surface portions 60b with the upper side of the heat insulating box 21 being an open end. Since the front refrigerant pipe 53 and the main member 60 are both formed with the open ends on the upper side, the refrigerator main body 20 can be easily assembled.
  • the front refrigerant pipe 53 is formed integrally with at least a part of the side surface portion 60b of the outer box 23 and the bottom surface portion 60a. This eliminates the need to provide a heating element above the front opening 21a. Furthermore, since heat intrusion into the storage room is reduced, the amount of power consumption is reduced. Moreover, it is not necessary to provide a heating element such as a heater by using the refrigerant pipe as the heating element. That is, it is not necessary to supply power to the heater, and the power consumption is further reduced.
  • the storage room located at the top is a refrigerator room 29.
  • the cooling temperature of the refrigerator compartment 29 is a refrigerator temperature zone. Therefore, even if the heating element is not provided on the upper surface of the heat insulating box 21, condensation is prevented. That is, power consumption is reduced.
  • the front refrigerant pipe 53 is disposed on the heat insulating material 24 side of the inner flange 23c of the front flange 23a.
  • the upper part of the front refrigerant pipe 53 is disposed on the back side from the front opening 21a at a position of 90 mm, which is a position within 100 mm. Thereby, the length of the front refrigerant
  • FIG. 6 is a cross-sectional view of the refrigerator in the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the refrigerator as viewed from the right side.
  • FIG. 7 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment.
  • the same reference numerals are used for the same configurations as those in the first embodiment.
  • the heat insulating box 201 of the refrigerator main body 200 includes a resin inner box 202, a metal magnetic outer box 203, and a heat insulating material 24 filled therebetween. Composed.
  • a heat insulating wall is formed by the inner box 202, the outer box 203, and the heat insulating material 24.
  • the heat insulation box 201 has a front opening 201a on the front surface.
  • the heat insulation box 201 has a top surface storage portion 201b which is a heat insulation box recess in the upper part on the back side.
  • the outer box 203 includes a main member 260, a top front member 262, a top back member 213, and a back member 261.
  • the main member 260 is formed by integrating the bottom surface portion 260a and the left and right side surface portions 260b.
  • the upper surface front side member 262 forms the front side of the upper surface of the outer box 203.
  • the upper surface back side member 213 is made of resin and forms a top surface storage portion 201b which is a heat insulating box recess.
  • the back member 261 forms the back of the outer box 203, that is, the back surface of the refrigerator main body 200.
  • the compressor 220 constituting the refrigeration cycle is supported by the upper surface back side member 213. That is, the compressor 220 is accommodated in the top surface accommodating part 201b which is a heat insulation box recessed part.
  • the upper surface back side member 213 has a box shape with the upper surface and the back surface opened.
  • the upper surface rear side member 213 is formed so as to face the upper concave portion 202 a provided at the upper side of the inner box 202.
  • a space between the front surface and the bottom surface of the upper surface back side member 213 and the inner box 202 is filled with a heat insulating material 24.
  • the heat insulating material 24 is filled between the left and right side surfaces of the upper surface back side member 213 and the left and right side surface portions 260 b of the main member 260.
  • the defrost water treatment unit 230 is provided in the lower part on the back side of the heat insulation box 201. Specifically, a resin storage portion 231 is mounted in a hole formed in the lower portion of the back member 261. The storage unit 231 is open on the back side and stores external devices that are exposed to the outside air among the refrigeration cycle-related devices. A defrost water treatment unit 232 that is an external device is provided inside. The storage unit 231 and the defrost water treatment unit 232 constitute a defrost water treatment unit 230.
  • a lower recess 202b is formed in the lower part of the back side of the vegetable chamber 33, that is, the lower part of the inner side of the inner box 202.
  • the lower recessed part 202b is formed corresponding to the shape of the storage part 231 that is an outline of the defrosting water treatment part 230.
  • a space between the lower recess 202b and the storage portion 231 is filled with the heat insulating material 24.
  • the heat insulating material 24 is also filled between the left and right side surfaces and the bottom surface of the storage portion 231 and the main member 260. In this way, a heat insulating wall around the storage portion 231 is formed.
  • the heat insulation walls around the storage portion 231 have substantially the same thickness as the heat insulation walls on the left and right side surfaces and the bottom surface of the vegetable room 33.
  • the heat insulation wall at the bottom of the storage portion 231 is substantially horizontal (including horizontal) with the heat insulation wall on the bottom surface of the vegetable compartment 33.
  • the heat insulation wall around the storage portion 231 is formed continuously and integrally with the heat insulation wall of the heat insulation box 201.
  • the heat insulating material 24 is filled between the inner box 202 and the outer box 203, and at the same time, the heat insulating material 24 is filled around the storage portion 231. By doing so, the rigidity of the heat insulating box 201 is increased.
  • the rigidity of the heat insulating box 201 is affected by the rigidity of the bottom surface portion 260a.
  • the heat insulation box 201 has a top surface storage portion 201b which is a heat insulation box recess for disposing the compressor 220, not on the bottom surface portion 260a but on the upper back side of the uppermost storage chamber of the heat insulation box 201. Therefore, as compared with the case where the compressor 220 is stored in the storage unit 231 at the bottom on the back side, the space volume of the storage unit 231 at the bottom on the back side is small. Furthermore, since the compressor 220 that is a vibration source is not housed, the rigidity of the heat insulating box 201 is hardly lowered.
  • the compressor 220 and the open ends of the side refrigerant pipe 52 and the front refrigerant pipe 53 are both positioned above the heat insulating box 201. With this configuration, waste of a route for reciprocating the refrigerant pipe is reduced as compared with the case where the compressor is disposed below. That is, the side refrigerant pipe 52 and the front refrigerant pipe 53 can be shortened. For this reason, invasion of heat into the storage chamber is reduced.
  • the compressor 220 and the defrost water treatment unit 230 are separately disposed above and below the heat insulation box 201.
  • the compressor 50 and the defrost water treatment unit 100 are both disposed in the storage unit 101. Accordingly, the lower recess 202b and the storage portion 231 in the present embodiment can be made smaller than the lower recess 22b and the storage portion 101 in the first embodiment.
  • the compressor 220 is disposed in the top surface storage portion 201b at the upper rear side of the refrigerator body 200. Thereby, the lower recessed part 202b and the accommodating part 231 of the back
  • the compressor 220 Since the compressor 220 is disposed on the upper back side of the refrigerator main body 200, the waste heat of the compressor 220 can be circulated to the upper surface of the refrigerator main body 200. Thereby, dew condensation on the upper surface of the refrigerator body 200 is prevented. There is no need to separately provide a heating element for preventing condensation on the upper surface. Therefore, the heat insulation wall on the upper surface of the heat insulation box 201 can be thinned, and the volume of the storage chamber can be increased.
  • the side refrigerant pipe 52 and the front refrigerant pipe 53 have an open end on the upper side of the heat insulation box 201. Therefore, it is possible to consolidate the welded portions of the piping into the top surface storage portion 201b which is a heat insulating box recess without extending the piping. For this reason, workability at the time of manufacture improves.
  • FIG. 8 is a cross-sectional view of the refrigerator in the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing another configuration of the refrigerator according to the present embodiment. 8 and 9 are cross-sectional views of the refrigerator as viewed from the right side.
  • the same reference numerals are used for the same configurations as those in the first embodiment.
  • configurations and technical ideas that do not hinder the application of the first and second embodiments in combination can be applied in combination.
  • the heat insulating box body 301 of the refrigerator main body 300 includes a resin inner box 302, a metal magnetic outer box 303, and a heat insulating material 24 filled therebetween. Composed. A heat insulating wall is formed by the inner box 302, the outer box 303, and the heat insulating material 24.
  • the heat insulation box 301 has a front opening 301a on the front surface.
  • the outer box 303 includes a main member 360, a top front member 362, and a back member 361.
  • the main member 360 is formed by integrating the bottom surface portion 360a and the left and right side surface portions.
  • the heat insulation box 301 has a top surface storage portion 301b that is a heat insulation box recess for disposing the compressor 220.
  • the top surface storage portion 301b is disposed not on the bottom surface portion 360a of the heat insulating box body 301 but on the upper back side of the uppermost storage chamber of the heat insulating box body 301.
  • the heat insulation box 301 includes a back member 361 that forms the back surface of the heat insulation box 301, a top front member 362 that forms the top surface of the heat insulation box 301, and a top surface that forms the back and bottom surfaces of the top surface storage portion 301b.
  • the control board 358 is disposed at a position lower than the compressor 220.
  • the storage portion of the control board 358 is formed by the upper surface back side member 313.
  • the upper surface back side member 313 is formed of a metal plate.
  • the upper surface back side member 313 has a box shape with an upper surface and a back surface opened.
  • the upper surface rear side member 313 is formed to face the top surface storage portion 301 b provided at the upper side of the inner box 302.
  • the upper surface back side member 313 is formed by integrating a back surface member 361 and an upper surface front side member 362.
  • the heat insulating box 301 is configured by filling the heat insulating material 24 between the inner box 302 and the outer box 303.
  • a control board 358 which is an external device exposed to the outside air among the refrigeration cycle related devices, is provided on the upper surface rear side member 313.
  • the heat insulating box 301 has higher rigidity on the upper side in addition to the bottom surface.
  • the upper surface back side member 313 is formed of a metal plate, the rigidity of the heat insulating box 301 is further increased. Thereby, durability of the refrigerator main body 300 improves.
  • the compressor 220 having a large weight is disposed above.
  • the center of gravity of the refrigerator main body 300 is on the back side.
  • the upper surface back side member 313 is formed of a metal plate having a specific gravity greater than that of the resin.
  • the rigidity of the heat insulation box body 301 is increased together with the rigidity of the lower surface of the compressor support part 313a. Thereby, durability of the refrigerator main body 300 improves.
  • a step is provided in the top surface storage portion 301b.
  • a control board 358 is accommodated in this step. Even with such a configuration, the rigidity of the top surface storage portion 301b is increased.
  • FIG. 9 shows a configuration in which a compressor 220 and a control board 358 are arranged below as another configuration of the refrigerator of the present embodiment.
  • the storage portion 331 is provided with a step.
  • the heat insulation box 301 includes a back member 361 that forms the back surface of the heat insulation box 301, a top front member 362 that forms the top surface of the heat insulation box 301, and a bottom surface that forms a machine room at the bottom on the back side of the storage unit 331. Side member 323.
  • the control board 358 is disposed at a position higher than the compressor 220.
  • the storage portion of the control board 358 is formed by the lower surface back side member 323.
  • the lower surface back side member 323 is formed in a step shape by a metal plate.
  • the lower back member 323 has a box shape with an open rear surface.
  • the lower surface back side member 323 is formed by integrating the back surface member 361 and the upper surface front side member 362.
  • the heat insulating box 301 is configured by filling the heat insulating material 24 between the inner box 302 and the outer box 303.
  • FIG. 10 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of the refrigerator as viewed from the right side.
  • FIG. 11 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment.
  • the same reference numerals are used for the same configurations as in the first to third embodiments. Further, regarding the same configuration as in the first to third embodiments, the same operational effects are obtained, and thus the description thereof is omitted.
  • the present embodiment is different from the second embodiment in that the control board 458 is disposed at a position lower than the compressor 220.
  • the heat insulating box 401 of the refrigerator main body 400 includes an inner box 202, an outer box 403, and a heat insulating material 24 filled between them, as in the second embodiment. Composed.
  • the heat insulation box 401 has a top surface storage portion 401b which is a heat insulation box recess in the upper part on the back side. That is, the heat insulation box 401 has high rigidity.
  • the outer box 403 includes a main member 260, an upper surface front side member 262, an upper surface back side member 413, and a back surface member 461.
  • the upper surface back side member 413 is made of resin and has a shape in which the upper surface and the back surface are open.
  • the upper surface rear side member 413 is formed so as to face the upper concave portion 202 a formed in the upper portion on the inner side of the inner box 202.
  • the heat insulating material 24 is filled between the upper surface back side member 413, the inner box 202, and the main member 260. In this way, the top surface storage portion 401b is formed.
  • the upper surface back side member 413 has a compressor support part 413a and a flange part 413b extending downward from the compressor support part 413a.
  • a control board housing portion 413c is formed at the center in the left-right direction of the flange portion 413b.
  • the compressor 220 is supported by the compressor support portion 413a.
  • a control board 458 for controlling the operation of the refrigerator main body 400 is housed in the control board housing portion 413c.
  • a vacuum heat insulating material 70 is provided in a portion of the side refrigerant pipe 52 facing at least the ice making chamber 30, the first freezing chamber 31, and the second freezing chamber 32.
  • the vacuum heat insulating material 70 is fixed to the heat insulating material 24 side of the main member 260 with the side refrigerant pipe 52 interposed therebetween.
  • the vacuum heat insulating material 70 in the present embodiment has a specific gravity larger than that of the heat insulating material 24 and has a low thermal conductivity.
  • the vacuum heat insulating material 70 has a lower area or thickness greater than the upper area or thickness from the center of the heat insulating box 401 in the vertical direction.
  • the center in the vertical direction of the heat insulating box 401 is the vertical center of the partition wall 25 as indicated by the lower end surface 29b of the refrigerator compartment 29 or the one-dot chain line 25a in FIG.
  • the compressor cover 423 covers the upper surface and the back surface of the upper surface back side member 413.
  • the compressor cover 423 has an exhaust port 423a at a position corresponding to the outer side in the left-right direction of the control board housing portion 413c of the upper surface back side member 413.
  • the compressor support in the conventional refrigerator supports the compressor for a long time. Therefore, the conventional compressor support base is formed using a steel plate thicker than the outer box in order to obtain sufficient rigidity. For this reason, the conventional refrigerator is heavy.
  • the upper surface back side of the refrigerator main body 400 is configured by filling the heat insulating material 24 between the upper surface back side member 413 and the inner box 202. With this configuration, sufficient rigidity can be obtained, and a heavy steel plate compressor support is unnecessary.
  • the control board accommodating part 413c is integrally molded, a separate configuration for accommodating the control board is not necessary.
  • the upper surface back side member 413 is made of resin. Therefore, the number of parts and the weight of the refrigerator are reduced. Thereby, workability
  • the compressor 220 is supported by the compressor support portion 413a.
  • the control board 458 is accommodated in a control board accommodation part 413c located below the compressor support part 413a. That is, the control board 458 is disposed at a position lower than the compressor 220. Since warm air rises, the control board 458 is not warmed by exhaust heat from the compressor 220. That is, the temperature rise of the control board 458 is suppressed.
  • isobutane is used as the refrigerant.
  • Isobutane is flammable and has a higher specific gravity than air.
  • the compressor cover 423 has an exhaust port 423 a outside the control board 458 in the left-right direction. That is, there is no exhaust port 423a immediately above the control board 458. For this reason, even if the flammable refrigerant leaks, the refrigerant flows down through the side of the control board 458. For this reason, the contact of the refrigerant with the control board 458 is suppressed.
  • control board 458 is disposed at the center in the left-right direction of the heat insulation box 401, and the exhaust ports 423a are formed on both sides of the control board 458.
  • control board 458 can be disposed close to one side of the heat insulating box 401.
  • the exhaust port 423a can be formed on one side with respect to the control board 458.
  • a ventilation mechanism such as a fan next to the compressor 220, it is possible to flow air from the control board 458 side to the exhaust port 423a side.
  • the vacuum heat insulating material 70 is disposed between the side refrigerant pipe 52 and the storage chamber. This greatly reduces the heat radiated from the side refrigerant pipe 52 from entering the storage chamber.
  • the top surface storage unit 401 b is located at the top of the heat insulation box 401.
  • the compressor 220, the condenser, the piping, and the like in the top surface storage unit 401b, the position of the center of gravity of the refrigerator main body 400 is increased.
  • the compressor 220 has a large weight among the components constituting the refrigerator main body 400. For this reason, the refrigerator main body 400 easily falls.
  • the vacuum heat insulating material 70 has a lower area or thickness than the upper area or thickness from the center of the heat insulating box 401 in the vertical direction. Therefore, since the center of gravity of the refrigerator body 400 moves downward, the refrigerator body 400 is prevented from falling.
  • the vacuum heat insulating material 70 is made of an inorganic material.
  • the density of the vacuum heat insulating material 70 is 200 to 250 kg / m 3 .
  • the heat insulating material 24 is configured by a foam heat insulating material such as urethane.
  • the density of the heat insulating material 24 is 20 to 50 kg / m 3 . Therefore, the vacuum heat insulating material 70 has a density four times or more that of the heat insulating material 24.
  • the refrigerator compartment door 29a is a rotary door type
  • the ice making room door 30a, the first freezer compartment door 31a, the second freezer compartment door 32a, and the vegetable compartment door 33a are a drawer type.
  • the ice making door 30a, the first freezer compartment door 31a, the second freezer compartment door 32a, and the vegetable compartment door 33a are of the revolving door type, they are accompanied by opening and closing of the door as compared with the case of the drawer type.
  • the change in the center of gravity position of the refrigerator main body 400 is small. That is, the refrigerator body 400 is further prevented from falling by making the door a revolving door type.
  • the compressor 220 is disposed on the back side of the heat insulating box 401. That is, the weight on the back side is increased as compared with the front side of the refrigerator main body 400. Thereby, possibility that the refrigerator main body 400 will fall to the front side, ie, a user's direction, is reduced.
  • the compressor 220 is disposed in a top surface storage portion 401 b formed at the upper back of the heat insulating box 401.
  • the opening height of the refrigerator compartment 29 equivalent to the past is ensured without increasing the height of the refrigerator main body 400.
  • usability is not impaired.
  • the upper part on the back side of the refrigerator compartment 29 is a place that is difficult for the user to reach. Therefore, even if the upper recessed portion 202a of the inner box 202 protrudes to the inside of the refrigerator compartment 29, the usability is not impaired.
  • the compressor support portion 413a and the control board housing portion 413c are integrally formed to constitute the upper surface back side member 413. Thereby, the number of parts of the refrigerator main body 400 is reduced. Moreover, the refrigerator main body 400 can be easily assembled.
  • the control board 458 is disposed at a position lower than the compressor 220. Thereby, the temperature rise of the control board 458 due to the exhaust heat of the compressor 220 is prevented. That is, the reliability of the refrigerator main body 400 is improved.
  • the heat insulation box 401 includes an upper surface back side member 413, an outer box 403, an inner box 202, and a heat insulating material 24 filled therebetween.
  • the compressor 220 is supported.
  • the upper surface back side member 413 is comprised with the resin material. That is, the strength for supporting the compressor 220 is ensured, and the upper portion of the refrigerator main body 400 is reduced in weight. Thereby, the fall of the refrigerator main body 400 is prevented, and safety is improved.
  • the vacuum heat insulating material 70 whose specific gravity is larger than that of the heat insulating material 24 is arranged more below the center of the heat insulating box 401 in the vertical direction. Thereby, since the center of gravity of the refrigerator main body 400 moves downward, the refrigerator main body 400 is prevented from falling.
  • the exhaust port 423a of the compressor cover 423 is formed on the outer side in the left-right direction of the control board housing portion 413c.
  • the compressor 220 is disposed in a top surface storage portion 401 b formed at the upper back of the heat insulating box 401. Thereby, the area of the front opening 201a equivalent to the conventional one is ensured without increasing the height of the refrigerator main body 400. That is, usability is not impaired.
  • FIG. 12 is a cross-sectional view of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the refrigerator as viewed from the right side.
  • FIG. 13 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment.
  • the same reference numerals are used for the same configurations as in the first to fourth embodiments. Further, regarding the same configuration as in the first to fourth embodiments, since the same function and effect are obtained, the description thereof is omitted.
  • the present embodiment is different from the fourth embodiment in that the control board 458 is disposed at a position higher than the compressor 220.
  • the outer box 503 includes a main member 260, an upper surface front side member 262, an upper surface back side member 513, and a back surface member 561.
  • the upper surface back side member 513 is made of resin and has a shape in which the upper surface and the back surface are open.
  • the upper surface back side member 513 is formed so as to face the upper concave portion 202 a formed in the upper part on the back side of the inner box 202.
  • the heat insulating material 24 is filled between the upper surface back side member 513, the inner box 202, and the main member 260. In this way, the top surface storage portion 501b which is a heat insulating box recess is formed.
  • the upper back member 513 has a double bottom structure.
  • the upper surface back side member 513 has a compressor support portion 513a on the lower bottom surface.
  • the upper surface back side member 513 has a control board housing portion 513c on the upper bottom surface.
  • the compressor 220 is supported by the compressor support portion 513a.
  • the control board 458 is disposed in the control board housing part 513c. Thus, the compressor 220 and the control board 458 are arrange
  • the compressor cover 523 covers the upper surface and the back surface of the upper surface back side member 513.
  • the compressor cover 523 has an exhaust port 523 a at a position on the back side of the refrigerator main body 500.
  • isobutane As the refrigerant, isobutane is used. Isobutane is a flammable gas. Isobutane has an explosion limit in the air of 1.8 to 8.4 vol%. Isobutane has an ignition temperature of 460 ° C. For this reason, when isobutane leaks and flows into the control board 458, the isobutane may come into contact with the spark generated on the control board 458.
  • isobutane has a higher specific gravity than air.
  • the control board housing portion 513c is located on the upper bottom surface of the upper surface back side member 513. That is, the control board 458 is located above the compressor 220. Therefore, even if isobutane leaks, it is difficult for isobutane to flow into the control board 458. That is, the safety of the refrigerator main body 500 is ensured.
  • the compressor 220 is located under the control board housing part 513c.
  • the control board housing part 513c with a sheet-like heat insulating material, it is reduced that the exhaust heat of the compressor 220 is transmitted to the control board housing part 513c. That is, the temperature rise of the control board 458 is suppressed.
  • the heat insulating material 24 inside the upper bottom surface of the upper surface back side member 513 a heat insulating effect can be further obtained without increasing the number of parts.
  • the control board 458 When the control board 458 is disposed at a position deviated in the left-right direction instead of directly above the compressor 220, the distance between the control board 458 and the compressor 220 is increased. As a result, heat conduction from the compressor 220 to the control board 458 is reduced. Furthermore, since the space in the vertical direction of the top surface storage unit 501b is effectively used, the volume of the storage chamber can be increased by reducing the upper recess 202a.
  • the cover of the control board 458 is formed integrally with the compressor cover 523. For this reason, the number of parts of the refrigerator main body 500 is reduced. Further, the refrigerator main body 500 can be easily assembled.
  • the compressor cover 523 can be configured to be a plug-in type from above with respect to the back surface of the refrigerator main body 500.
  • the compressor cover 523 is fixed by screws from above after being inserted into the heat insulating box 501. That is, the compressor cover 523 is attached and detached only from the top.
  • the refrigerator main body 500 is often installed close to the rear wall. With this configuration, when the control board 458 fails, maintenance can be performed without moving the refrigerator main body 500 forward.
  • Isobutane used as a refrigerant is flammable and has a higher specific gravity than air.
  • the refrigerant leaks from the compressor 220 or the welded portion around the compressor 220, the refrigerant is discharged from the exhaust port 523a to the rear of the refrigerator main body 500. For this reason, it is suppressed that a refrigerant
  • FIG. 14 is a cross-sectional view of the refrigerator in the sixth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the refrigerator as viewed from the right side.
  • FIG. 15 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment.
  • the same reference numerals are used for the same configurations as in the first to fifth embodiments. Further, regarding the same configuration as in the first to fifth embodiments, since the same function and effect are obtained, the description thereof is omitted.
  • the configuration of the upper portion of the heat insulating box 601 is different from those of the second to fifth embodiments.
  • the outer box 603 includes a main member 260, an upper surface member 662, and a back member 661.
  • the configuration of the upper surface member 662 will be described in detail later.
  • the heat insulating material 24 is filled between the outer box 603 and the inner box 602. Thus, the heat insulation box 601 is comprised.
  • the upper surface member 662 is made of resin and has a shape in which the upper and left and right sides are opened. As shown by the alternate long and short dash line in FIG. 15, the upper surface member 662 is arranged so that the position in the height direction of the upper end of the upper surface member 662 matches the position in the height direction of the upper end of the main member 260. It is disposed between the left and right side portions 260b.
  • the upper surface member 662 has a compressor support portion 613a on the bottom surface on the back side.
  • the compressor 220 is supported by the compressor support portion 613a.
  • the upper surface member 662 has a control board housing portion 613c on the front side.
  • a control board 458 is disposed in the control board housing portion 613c.
  • the upper surface member 662 includes a partition plate 662c between the compressor support portion 613a and the control board housing portion 613c.
  • the height of the partition plate 662c is at least higher than the welding position of the compressor 220.
  • a condenser 669 is disposed on the upper surface member 662 closer to the compressor 220 than the partition plate 662c. In this way, the inside of the upper surface member 662 constitutes the machine room 604.
  • a fan 611 is disposed on the partition plate 662c.
  • the fan 611 flows the air inside the upper surface member 662, that is, the air in the machine room 604 from the front to the rear.
  • the refrigerator main body 600 has an operation unit (not shown) for the user to perform temperature setting and the like.
  • the operation portion is disposed in a front recess 662d provided on the front surface of the upper surface member 662.
  • the operation unit is connected to the control board 458.
  • the air inlet 662e is formed on the front surface of the upper surface member 662 on the left and right outer sides of the front recess 662d.
  • An exhaust port 662 f is formed on the back surface of the upper surface member 662.
  • the upper surface member 662 is joined to the inner box 602 through the front member 612.
  • the front member 612 is made of a metal magnetic material such as a steel plate. With this configuration, the gasket 38 is in close contact with the front opening 201a over the entire circumference. Therefore, each storage chamber is sealed.
  • the upper surface member 662 is made of resin.
  • the upper surface member 662 can be integrally formed of a metal magnetic body such as a steel plate together with the front surface member 612. In this case, the number of parts of the refrigerator main body 600 is reduced and the assembly is facilitated.
  • the refrigerator main body 600 has a plate-shaped machine room cover 623.
  • the machine room cover 623 covers the upper surface of the machine room 604.
  • a vent 623a is formed in the machine room cover 623 as necessary.
  • the control board 458 is disposed above the front side of the refrigerator main body 600. Thereby, when exchanging control board 458 etc., work can be performed from the front side of refrigerator body 600. That is, maintenance becomes easy.
  • the control board 458 is directly connected to the operation unit. For this reason, the number of parts of the refrigerator main body 600 is reduced and the assembly is facilitated.
  • the operation unit is disposed inside the front recess 662d of the upper surface member 662.
  • the operation unit can be disposed on the front surface of the refrigerator compartment door 29 a or on the wall surface inside the refrigerator compartment 29.
  • the operation unit is disposed at a position considering user's usability. Specifically, the operation unit is disposed at a position higher than the center line 25a of the partition wall 25 and at a position close to the front surface of the refrigerator main body 600 or the front opening 201a. In any of the above positions, the distance from the control board 458 disposed on the upper front side of the heat insulating box 601 is small. That is, the wiring and configuration can be simplified.
  • the compressor 220 is disposed at the back of the refrigerator main body 600.
  • the control board 458 is disposed in front of the refrigerator main body 600. With this configuration, the distance between the compressor 220 and the control board 458 is large. Therefore, the influence of the exhaust heat from the compressor 220 received by the control board 458 is small. That is, the temperature rise of the control board 458 is suppressed. For this reason, the reliability of the control board 458 is improved.
  • the entire upper surface of the heat insulating box 601 becomes the machine room 604. Therefore, regardless of the position of the heat insulating box 601 where the side refrigerant pipe 52 and the front refrigerant pipe 53 are arranged, the pipe is extended straight up and introduced into the machine room 604. Can do. That is, the shape of the piping or the like can be simplified. Furthermore, assembly such as pipe connection is facilitated.
  • the upper surface member 662 has a shape in which the upper and left and right sides are open. That is, in the machine room 604, the bottom surface, the front surface, and the back surface are integrally formed.
  • a box-shaped machine room 604 can be mounted on the planar upper surface member 662.
  • interior components such as the compressor 220, the control board 458, the condenser 669, and the fan 611 can be disposed in the machine chamber 604 in advance.
  • the refrigerator main body 600 can be easily assembled.
  • the upper surface member 662 forms the entire upper surface of the heat insulating box 601.
  • the front member 612 is configured as a member different from the top member 662. For this reason, the front member 612 can be made smaller than the configuration using the upper surface front member 262 in the fourth embodiment. In general, the appearance of the front member 612 is important. For this reason, the front member 612 is subjected to processing such as painting. That is, the front member 612 has a higher material cost than a member such as the back member 661 that is not visible to the user. Accordingly, the manufacturing cost is reduced because the area of the front member 612 is small.
  • isobutane As the refrigerant, isobutane is used. Isobutane is flammable and has a higher specific gravity than air. The height of the partition plate 662 c is higher than the welding position of the compressor 220. Therefore, even if the refrigerant leaks, the refrigerant is prevented from flowing into the control board housing portion 613c. That is, the safety of the refrigerator main body 600 is ensured.
  • the fan 611 disposed on the partition plate 662c causes air to flow from the control board housing portion 613c to the compressor support portion 613a. Thereby, it is further prevented that the refrigerant flows into the control board housing portion 613c. Moreover, the temperature rise of the compressor 220 is suppressed by this wind. That is, the reliability of the compressor 220 is improved.
  • the control board 458 is disposed in front of the compressor 220, the maintainability of the refrigerator main body 600 is improved and the assembly is facilitated.
  • the machine room 604 is disposed on the entire upper surface of the heat insulating box 601. Thereby, the shape of the component which goes in and out of the machine room 604 can be simplified. Therefore, the refrigerator main body 600 can be easily assembled.
  • FIG. 16 is a cross-sectional view of the refrigerator in the seventh embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the refrigerator as viewed from the right side.
  • FIG. 17 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment.
  • the same reference numerals are used for the same configurations as in the first to sixth embodiments. Further, regarding the same configuration as in the first to sixth embodiments, since the same function and effect are obtained, the description thereof is omitted.
  • the present embodiment is different from the sixth embodiment in that the bottom surface on the back side of the upper surface member 762 is configured to be lower than the bottom surface on the front side.
  • the outer box 703 includes a main member 260, an upper surface member 762, and a back member 661.
  • the configuration of the upper surface member 762 will be described in detail later.
  • the heat insulating material 24 is filled between the outer box 703 and the inner box 702.
  • the heat insulation box 701 is comprised.
  • the upper surface member 762 is made of resin and has a shape in which the upper and left and right sides are opened. As shown by the alternate long and short dash line in FIG. 17, the upper surface member 762 is placed in the outer box 703 so that the position in the height direction of the upper end of the upper surface member 762 matches the position in the height direction of the upper end of the main member 260. Arranged.
  • the upper surface member 762 has a compressor support portion 713a on the bottom surface on the back side.
  • the compressor 220 is supported by the compressor support portion 713a.
  • the upper surface member 762 includes a control board housing portion 713c on the front side.
  • a control board 458 is disposed in the control board housing portion 713c. Further, when the upper surface member 762 compares the bottom surface on the back side with the bottom surface on the front side, the bottom surface on the back side is configured to be low. That is, the compressor 220 is disposed at a position lower than the control board 458. In this way, the inside of the upper surface member 762 constitutes the machine room 704.
  • the air inlet 762e is formed on the front surface of the upper surface member 762 on the left and right outer sides of the front surface recess 762d.
  • An exhaust port 762 f is formed on the back surface of the upper surface member 762.
  • the refrigerator main body 700 has a plate-like machine room cover 623 as in the sixth embodiment.
  • the machine room cover 623 covers the upper surface of the machine room 704.
  • a vent 623a is formed in the machine room cover 623 as necessary.
  • Isobutane is used as the refrigerant. Isobutane is flammable and has a higher specific gravity than air.
  • the compressor 220 is disposed at a position lower than the control board 458. Therefore, even if the refrigerant leaks, the refrigerant is prevented from flowing into the control board 458. That is, the safety of the refrigerator main body 700 is ensured.
  • the air can flow from the control board housing part 713c to the compressor support part 713a. This further prevents the leaked refrigerant from flowing into the control board housing portion 713c. Moreover, the temperature rise of the compressor 220 is suppressed by this wind. That is, the reliability of the compressor 220 is improved.
  • the present invention can provide a refrigerator having high heat insulation box rigidity without increasing the weight. Therefore, this invention can be utilized for the other store

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigerator is provided with a refrigerator body (20) which has a heat-insulated box (21) in which storage chambers including a cold-storage chamber (29) are formed. The heat-insulated box (21) is provided with an outer box (23), an inner box (22), and a heat-insulating material (24) disposed between the outer box (23) and the inner box (22). The refrigerator is also provided with a containing section (101) which contains, among refrigeration cycle-related devices including devices constituting the refrigeration cycle, external devices exposed to the outside air. The containing section (101) is disposed at the rear of the lower portion of the lowermost storage chamber of the heat-insulated box (21). The refrigerator is also provided with a heat-insulated wall which is formed by integrating together the bottom surface of the lowermost storage chamber and the bottom surface of the containing section. The configuration increases the rigidity of the lower part of the outer box (23), and as a result, the rigidity of the entire heat-insulated box (21) is high.

Description

冷蔵庫refrigerator
 本発明は、断熱箱体を備えた冷蔵庫に関する。 This invention relates to the refrigerator provided with the heat insulation box.
 冷蔵庫に用いられる断熱箱体は、例えば特許文献1に開示されたように、奥側下部に凹部を有する。図18は、特許文献1に記載された冷蔵庫の断面図である。冷蔵庫1の断熱箱体2は、鋼板製の外箱3と樹脂製の内箱4とを有する。外箱3と内箱4との間には、断熱材5が発泡により充填される。断熱箱体2は、奥側下部に凹部2aを有する。凹部2aは、断熱箱体2の奥側下部の一部を、左右方向全体に切り欠いた形状に形成される。凹部2aには、機械室8が設けられる。機械室8には、圧縮機6と、圧縮機6を支持する圧縮機支持台7とが設けられる。圧縮機6は、冷凍サイクルの一部を形成する。 The heat insulation box used for a refrigerator has a recessed part in the lower part on the back side, as disclosed in Patent Document 1, for example. FIG. 18 is a cross-sectional view of the refrigerator described in Patent Document 1. The heat insulating box 2 of the refrigerator 1 has an outer box 3 made of steel plate and an inner box 4 made of resin. Between the outer box 3 and the inner box 4, a heat insulating material 5 is filled by foaming. The heat insulation box 2 has a recess 2a at the bottom on the back side. The recessed part 2a is formed in the shape which notched the part of the back | inner side lower part of the heat insulation box 2 to the whole left-right direction. A machine room 8 is provided in the recess 2a. The machine room 8 is provided with a compressor 6 and a compressor support 7 that supports the compressor 6. The compressor 6 forms part of the refrigeration cycle.
 断熱箱体2の下部の構成は、断熱箱体2の剛性に大きな影響を与える。しかしながら、上記構成の断熱箱体2は、奥側下部に凹部2aを有するため、剛性が低下する。断熱箱体2剛性が低下した場合、断熱箱体2が歪むことにより、断熱箱体2の耐久性が低下する。また、この歪みにより、断熱箱体2に隙間が発生する。この隙間により、断熱箱体2の断熱性が低下する。 The structure of the lower part of the heat insulation box 2 has a great influence on the rigidity of the heat insulation box 2. However, since the heat insulation box 2 having the above configuration has the recess 2a in the lower part on the back side, the rigidity is lowered. When the heat insulation box 2 rigidity is lowered, the heat insulation box 2 is distorted, so that the durability of the heat insulation box 2 is lowered. Further, due to this distortion, a gap is generated in the heat insulating box 2. Due to this gap, the heat insulating property of the heat insulating box 2 is lowered.
特許第2846602号公報Japanese Patent No. 2846602
 本発明は、断熱箱体の剛性が高い冷蔵庫を提供する。本発明に係る冷蔵庫は、内部に貯蔵室が形成された断熱箱体を有する冷蔵庫本体を備える。さらに本発明に係る冷蔵庫は、断熱箱体は、外箱と、内箱と、外箱と内箱との間に充填された断熱材により形成された断熱壁とを有する。さらに本発明に係る冷蔵庫は、冷凍サイクルを構成する機器を含む冷凍サイクル関連機器の中で、外気に曝される外部機器を収納する収納部を有する。さらに本発明に係る冷蔵庫は、収納部が、断熱箱体の最下部の貯蔵室の、奥側下部に配置される。さらに本発明に係る冷蔵庫は、最下部の貯蔵室の底面部と収納部の底面部とが一体により形成された断熱壁を備える。この構成により、外箱の下部の剛性が高くなるため、断熱箱体全体の剛性が高くなる。 The present invention provides a refrigerator with high rigidity of a heat insulating box. The refrigerator according to the present invention includes a refrigerator main body having a heat insulating box with a storage chamber formed therein. Further, in the refrigerator according to the present invention, the heat insulating box includes an outer box, an inner box, and a heat insulating wall formed by a heat insulating material filled between the outer box and the inner box. Furthermore, the refrigerator which concerns on this invention has a storage part which accommodates the external apparatus exposed to external air in the refrigerating-cycle related apparatus containing the apparatus which comprises a refrigerating cycle. Furthermore, as for the refrigerator which concerns on this invention, a storage part is arrange | positioned at the back | inner side lower part of the lowermost store room of a heat insulation box. Furthermore, the refrigerator according to the present invention includes a heat insulating wall in which a bottom surface portion of the lowermost storage chamber and a bottom surface portion of the storage portion are integrally formed. With this configuration, the rigidity of the lower portion of the outer box is increased, so that the rigidity of the entire heat insulating box is increased.
 この様に、本発明によれば、断熱箱体の剛性が高まる。これにより、歪が少なく信頼性の高い冷蔵庫を得ることができる。 Thus, according to the present invention, the rigidity of the heat insulating box is increased. Thereby, a highly reliable refrigerator with little distortion can be obtained.
図1は、本発明の実施の形態1における冷蔵庫の正面図である。FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention. 図2は、同本実施の形態における冷蔵庫の断面図である。FIG. 2 is a cross-sectional view of the refrigerator in the present embodiment. 図3は、同本実施の形態における断熱箱体の分解斜視図である。FIG. 3 is an exploded perspective view of the heat insulation box in the same embodiment. 図4は、同本実施の形態における冷蔵庫の底面図である。FIG. 4 is a bottom view of the refrigerator in the present embodiment. 図5は、図1の5-5線における断面図である。FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 図6は、本発明の実施の形態2における冷蔵庫の断面図である。FIG. 6 is a cross-sectional view of the refrigerator in the second embodiment of the present invention. 図7は、同本実施の形態における断熱箱体の分解斜視図である。FIG. 7 is an exploded perspective view of the heat insulation box in the same embodiment. 図8は、本発明の実施の形態3における冷蔵庫の断面図である。FIG. 8 is a cross-sectional view of the refrigerator in the third embodiment of the present invention. 図9は、同本実施の形態における冷蔵庫の別な構成を示す断面図である。FIG. 9 is a cross-sectional view showing another configuration of the refrigerator in the present embodiment. 図10は、本発明の実施の形態4における冷蔵庫の断面図である。FIG. 10 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention. 図11は、同本実施の形態における断熱箱体の分解斜視図である。FIG. 11 is an exploded perspective view of the heat insulation box in the same embodiment. 図12は、本発明の実施の形態5における冷蔵庫の断面図である。FIG. 12 is a cross-sectional view of the refrigerator in the fifth embodiment of the present invention. 図13は、同本実施の形態における断熱箱体の分解斜視図である。FIG. 13 is an exploded perspective view of the heat insulation box in the same embodiment. 図14は、本発明の実施の形態6における冷蔵庫の断面図である。FIG. 14 is a cross-sectional view of the refrigerator in the sixth embodiment of the present invention. 図15は、同本実施の形態における断熱箱体の分解斜視図である。FIG. 15 is an exploded perspective view of the heat insulation box in the same embodiment. 図16は、本発明の実施の形態7における冷蔵庫の断面図である。FIG. 16 is a cross-sectional view of the refrigerator in the seventh embodiment of the present invention. 図17は、同本実施の形態における断熱箱体の分解斜視図である。FIG. 17 is an exploded perspective view of the heat insulation box in the same embodiment. 図18は、従来の冷蔵庫の断面図である。FIG. 18 is a cross-sectional view of a conventional refrigerator.
 (実施の形態1)
 図1は、本発明の実施の形態1における冷蔵庫の正面図である。図2は、本実施の形態の冷蔵庫の断面図である。図2は、冷蔵庫を右側方から見た断面図である。図3は、本実施の形態の冷蔵庫の断熱箱体の分解斜視図である。図4は、本実施の形態の冷蔵庫の底面図である。なお、図2において左側が冷蔵庫の正面である。図4において、下側が冷蔵庫の正面である。
(Embodiment 1)
FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the refrigerator according to the present embodiment. FIG. 2 is a cross-sectional view of the refrigerator as viewed from the right side. FIG. 3 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment. FIG. 4 is a bottom view of the refrigerator according to the present embodiment. In FIG. 2, the left side is the front of the refrigerator. In FIG. 4, the lower side is the front of the refrigerator.
 冷蔵庫本体20の断熱箱体21は、内箱22と、外箱23と、断熱材24とから構成される。内箱22は、樹脂で形成される。外箱23は、鋼板などの金属磁性体で、かつ、熱伝導性の良い材料で形成される。断熱材24は、内箱22と外箱23との間に充填される。内箱22と、外箱23と、それらの間に充填された断熱材24とにより、断熱壁が形成される。つまり、内箱22や外箱23などを構成する壁面で挟まれた断熱材24が、断熱壁として作用する。断熱箱体21は、前面に、前面開口部21aを有する。断熱箱体21の内部は、仕切壁25、26、27、28により仕切られる。これにより、断熱箱体21には、複数の貯蔵室が形成される。複数の貯蔵室は、上から、冷蔵室29、製氷室30、第1の冷凍室31、第2の冷凍室32、野菜室33である。なお、図1に示すように、製氷室30と第1の冷凍室31とは横に並んで形成される。 The heat insulating box 21 of the refrigerator main body 20 includes an inner box 22, an outer box 23, and a heat insulating material 24. The inner box 22 is made of resin. The outer box 23 is formed of a metal magnetic material such as a steel plate and a material having good thermal conductivity. The heat insulating material 24 is filled between the inner box 22 and the outer box 23. A heat insulating wall is formed by the inner box 22, the outer box 23, and the heat insulating material 24 filled therebetween. That is, the heat insulating material 24 sandwiched between the wall surfaces constituting the inner box 22 and the outer box 23 acts as a heat insulating wall. The heat insulation box 21 has a front opening 21a on the front surface. The inside of the heat insulation box 21 is partitioned by partition walls 25, 26, 27, and 28. As a result, a plurality of storage chambers are formed in the heat insulating box 21. The plurality of storage rooms are a refrigerator room 29, an ice making room 30, a first freezer room 31, a second freezer room 32, and a vegetable room 33 from the top. As shown in FIG. 1, the ice making chamber 30 and the first freezing chamber 31 are formed side by side.
 各貯蔵室は、各々、ドアを備える。具体的には、各々のドアは、冷蔵室ドア29a、製氷室ドア30a、第1の冷凍室ドア31a、第2の冷凍室ドア32a、野菜室ドア33aである。各々のドアは、断熱壁を有する。各々のドアが閉じられることにより、前面開口部21aが閉じられる。つまり、各貯蔵室は、各ドアによって開閉される。冷蔵室ドア29aは、右上端に上部ヒンジ34、右下端に下部ヒンジ35を備える。上部ヒンジ34および下部ヒンジ35は、各々、回転軸を有する。これにより、冷蔵室ドア29aは、断熱箱体21に対して、回動して開閉する。他のドアに対応する貯蔵室は引き出し式である。つまり、各貯蔵室に備えられたレール部材36によって、各ドアは、断熱箱体21に対して、前後方向に開閉する。 Each storage room has a door. Specifically, the doors are a refrigerator compartment door 29a, an ice making compartment door 30a, a first freezer compartment door 31a, a second freezer compartment door 32a, and a vegetable compartment door 33a. Each door has an insulating wall. The front opening 21a is closed by closing each door. That is, each storage chamber is opened and closed by each door. The refrigerator compartment door 29a includes an upper hinge 34 at the upper right end and a lower hinge 35 at the lower right end. Each of the upper hinge 34 and the lower hinge 35 has a rotation axis. Thereby, the refrigerator compartment door 29a rotates with respect to the heat insulation box 21, and opens and closes. The storage room corresponding to the other doors is a drawer type. That is, the doors are opened and closed in the front-rear direction with respect to the heat insulating box 21 by the rail members 36 provided in the respective storage chambers.
 レール部材36は、各貯蔵室の引出し容量や、引出し長さに応じて構成される。例えば、容量の小さい製氷室30と、容量の大きい野菜室33とでは、異なる部材や、異なる位置で構成される。 The rail member 36 is configured according to the drawer capacity and the drawer length of each storage room. For example, the ice making chamber 30 with a small capacity and the vegetable room 33 with a large capacity are configured with different members and at different positions.
 各ドアを閉じた場合、各ドアの断熱箱体21側の面と、前面開口部21aとの間には、5mm程度の空間37が形成される。各ドアの断熱箱体21側の面の周囲には、ガスケット38が設けられる。なお、図1においては、冷蔵室ドア29aに設けたガスケット38を図示したが、他の貯蔵室のドアにも同様にガスケット38が設けられる。ガスケット38はマグネットを有する。マグネットの磁力により、前面開口部21aの周囲である、外箱23を構成する鋼板に、ガスケット38が密着する。これにより、各貯蔵室は密閉される。 When each door is closed, a space 37 of about 5 mm is formed between the surface of each door on the heat insulating box 21 side and the front opening 21a. A gasket 38 is provided around the surface of each door on the heat insulating box 21 side. In FIG. 1, the gasket 38 provided on the refrigerator compartment door 29 a is illustrated, but the gasket 38 is provided similarly on the doors of other storage compartments. The gasket 38 has a magnet. Due to the magnetic force of the magnet, the gasket 38 is in close contact with the steel plate constituting the outer box 23 around the front opening 21a. Thereby, each storage chamber is sealed.
 断熱箱体21には、冷蔵庫本体20を冷却するための冷凍サイクルが設けられる。冷凍サイクルは、圧縮機50と、側部冷媒配管52や前部冷媒配管53などからなる凝縮器と、減圧器(図示せず)と、蒸発器51とを順に連通させて構成される。この様にして、一連の冷媒流路が構成される。 The heat insulation box 21 is provided with a refrigeration cycle for cooling the refrigerator body 20. The refrigeration cycle includes a compressor 50, a condenser including a side refrigerant pipe 52 and a front refrigerant pipe 53, a decompressor (not shown), and an evaporator 51 in order. In this way, a series of refrigerant flow paths is configured.
 また、冷凍サイクルの運転により、蒸発器51には霜が発生する。霜を融かして水にする事を除霜と言う。霜を融かして発生した水を除霜水と言う。よって冷凍サイクルに必要となる冷凍サイクル関連機器として、冷蔵庫本体20は、除霜水を蒸発させるための除霜水処理部100を有する。 Moreover, frost is generated in the evaporator 51 by the operation of the refrigeration cycle. Melting frost into water is called defrosting. Water generated by melting frost is called defrost water. Therefore, the refrigerator main body 20 has the defrost water process part 100 for evaporating defrost water as a refrigeration cycle related apparatus required for a refrigerating cycle.
 これらの冷凍サイクルの各機器を含む冷凍サイクル関連機器の中で、外気に曝される外部機器は、圧縮機50および除霜水処理部100である。外気に曝される外部機器である圧縮機50には、往復運動型圧縮機が用いられる。往復運動型圧縮機は、ピストンがシリンダの内部を往復運動することにより、冷媒の圧縮を行う。冷媒としては、例えばイソブタンが用いられる。イソブタンは、炭化水素系の冷媒である。イソブタンは、一般的に、代替フロンとして家庭用冷蔵庫の冷媒として用いられる。イソブタンは、可燃性であり、また、空気より比重が大きい。 Among the refrigeration cycle-related devices including these refrigeration cycle devices, the external devices exposed to the outside air are the compressor 50 and the defrost water treatment unit 100. A reciprocating compressor is used as the compressor 50 that is an external device exposed to the outside air. The reciprocating compressor compresses the refrigerant as the piston reciprocates inside the cylinder. For example, isobutane is used as the refrigerant. Isobutane is a hydrocarbon-based refrigerant. Isobutane is generally used as a refrigerant for household refrigerators as an alternative chlorofluorocarbon. Isobutane is flammable and has a higher specific gravity than air.
 外気に曝される外部機器である除霜水処理部100は、断熱箱体21の奥側下部に設けられる。具体的には、背面部材61の下部に、孔61aが形成される。孔61aには、樹脂製の収納部101が装着される。収納部101は、背面側が開放されており、内部に圧縮機50と除霜水処理ユニット102とが設けられる。収納部101、圧縮機50、除霜水処理ユニット102により、除霜水処理部100が構成される。 The defrosting water treatment unit 100 that is an external device exposed to the outside air is provided at the lower back of the heat insulating box 21. Specifically, a hole 61 a is formed in the lower part of the back member 61. A resin storage part 101 is mounted in the hole 61a. The storage unit 101 is open on the back side, and is provided with a compressor 50 and a defrosted water treatment unit 102 therein. The storage unit 101, the compressor 50, and the defrost water treatment unit 102 constitute a defrost water treatment unit 100.
 図4に示すように、凝縮器としての側部冷媒配管52は、外箱23の左右の両側面の内側、つまり断熱材24の側に固着される。凝縮器としての前部冷媒配管53は、外箱23の前面開口部21a近傍で、かつ、断熱材24の側に固着される。つまり、側部冷媒配管52および前部冷媒配管53は、断熱壁の内側に位置する。側部冷媒配管52および前部冷媒配管53は、凝縮器の全長の80%以上を占める。 As shown in FIG. 4, the side refrigerant pipe 52 as a condenser is fixed to the inside of the left and right side surfaces of the outer box 23, that is, to the heat insulating material 24 side. The front refrigerant pipe 53 as a condenser is fixed to the vicinity of the front opening 21 a of the outer box 23 and to the heat insulating material 24 side. That is, the side refrigerant pipe 52 and the front refrigerant pipe 53 are located inside the heat insulating wall. The side refrigerant pipe 52 and the front refrigerant pipe 53 occupy 80% or more of the total length of the condenser.
 ここで、前部冷媒配管53が外箱23に配設される位置について説明する。前部冷媒配管53は、図3に示すように、断熱箱体21の上側を開放端とした1本の配管により形成される。前部冷媒配管53は、仕切壁25より上方、つまり、冷蔵室29の側方においては、前面開口部21aから奥側に90mmの位置に、側部冷媒配管52と同様に配設される。つまり、前部冷媒配管53は、外箱23の断熱材24側に固着される。 Here, the position where the front refrigerant pipe 53 is disposed in the outer box 23 will be described. As shown in FIG. 3, the front refrigerant pipe 53 is formed by a single pipe with the upper side of the heat insulating box 21 as an open end. The front refrigerant pipe 53 is disposed in the same manner as the side refrigerant pipe 52 above the partition wall 25, that is, on the side of the refrigerator compartment 29, at a position of 90 mm from the front opening 21 a to the back side. That is, the front refrigerant pipe 53 is fixed to the heat insulating material 24 side of the outer box 23.
 一方、前部冷媒配管53は、仕切壁25より下方においては、より前面側に配設される。図5は、図1の5-5線における断面図である。つまり、図5は、断熱箱体21の仕切壁25より下方の前面左側を水平に切断した断面図である。図5において、下側が冷蔵庫本体20の正面側である。前部冷媒配管53は、仕切壁25より下方においては、外箱23の前面フランジ23aに沿って配設される。外箱23の前面フランジ23aは、貯蔵室の前面である外フランジ23bと、外フランジ23bの背面側に形成される内フランジ23cとから構成される。従って、前部冷媒配管53の下部は、内フランジ23cと前面フランジ23aとにより形成される角部であって、断熱材24が充填される側に配設される。 On the other hand, the front refrigerant pipe 53 is disposed more on the front side below the partition wall 25. FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. That is, FIG. 5 is a cross-sectional view of the front left side below the partition wall 25 of the heat insulation box 21 cut horizontally. In FIG. 5, the lower side is the front side of the refrigerator body 20. The front refrigerant pipe 53 is disposed along the front flange 23 a of the outer box 23 below the partition wall 25. The front flange 23a of the outer box 23 includes an outer flange 23b that is the front surface of the storage chamber, and an inner flange 23c that is formed on the back side of the outer flange 23b. Accordingly, the lower part of the front refrigerant pipe 53 is a corner formed by the inner flange 23c and the front flange 23a, and is disposed on the side where the heat insulating material 24 is filled.
 上述の通り、側部冷媒配管52および前部冷媒配管53は、凝縮器として冷凍サイクルの一部を構成する。側部冷媒配管52および前部冷媒配管53は、冷媒が凝縮するときの凝縮熱を放熱する。この放熱により、断熱箱体21の左右の側面と前面開口部21aの近傍、およびガスケット38の結露が防止される。つまり、側部冷媒配管52および前部冷媒配管53は、発熱体として作用する。 As described above, the side refrigerant pipe 52 and the front refrigerant pipe 53 constitute a part of the refrigeration cycle as a condenser. The side refrigerant pipe 52 and the front refrigerant pipe 53 radiate heat of condensation when the refrigerant is condensed. By this heat dissipation, dew condensation on the left and right side surfaces of the heat insulating box 21 and the vicinity of the front opening 21a and the gasket 38 is prevented. That is, the side refrigerant pipe 52 and the front refrigerant pipe 53 act as a heating element.
 図3および図4に示すように、外箱23は、主部材60と上面部材62と背面部材61とから構成される。主部材60は、底面部60aと左右の側面部60bとの一体化により形成される。上面部材62は、外箱23の上面を形成する。背面部材61は、外箱23の奥、つまり、冷蔵庫本体20の背面を形成する。 3 and 4, the outer box 23 includes a main member 60, an upper surface member 62, and a back member 61. The main member 60 is formed by integrating the bottom surface portion 60a and the left and right side surface portions 60b. The upper surface member 62 forms the upper surface of the outer box 23. The back member 61 forms the back of the outer box 23, that is, the back surface of the refrigerator body 20.
 側部冷媒配管52の、少なくとも製氷室30、第1の冷凍室31、第2の冷凍室32と対向する部分には、真空断熱材70が設けられる。真空断熱材70は、主部材60の断熱材24の側に、側部冷媒配管52を挟んで固着される。真空断熱材70の熱伝導率は、断熱材24の熱伝導率よりも小さい。 A vacuum heat insulating material 70 is provided in a portion of the side refrigerant pipe 52 facing at least the ice making chamber 30, the first freezing chamber 31, and the second freezing chamber 32. The vacuum heat insulating material 70 is fixed to the heat insulating material 24 side of the main member 60 with the side refrigerant pipe 52 interposed therebetween. The heat conductivity of the vacuum heat insulating material 70 is smaller than the heat conductivity of the heat insulating material 24.
 断熱箱体21は、底面に、支持脚として、2つの前側支持脚80および、2つの奥側支持脚90を備える。前側支持脚80は、冷蔵庫本体20の前側の左右のコーナに設けられる。奥側支持脚90は、冷蔵庫本体20の奥側の左右のコーナに設けられる。 The heat insulating box 21 includes two front support legs 80 and two back support legs 90 as support legs on the bottom surface. The front support legs 80 are provided at the left and right corners on the front side of the refrigerator body 20. The back side support legs 90 are provided at the left and right corners on the back side of the refrigerator main body 20.
 具体的には、前側支持脚80は、主部材60の底面であって、両側面より内側に固着される。前側支持脚80の前側先端部81は、野菜室ドア33aの前面とほぼ同じ位置にまで、前面開口部21aより突出して設けられる。前側先端部81によって、冷蔵庫本体20が支持される。 Specifically, the front support leg 80 is a bottom surface of the main member 60 and is fixed to the inner side from both side surfaces. The front end portion 81 of the front support leg 80 is provided so as to protrude from the front opening 21a to the same position as the front surface of the vegetable compartment door 33a. The refrigerator main body 20 is supported by the front end portion 81.
 脚奥側支持脚90は、主部材60の底面であって、断熱箱体21の奥側の左右のコーナの面取り領域21cに設けられる。面取り領域21cとは、断熱箱体21の奥側の左右のコーナに設けられた面取り部21bの面と、冷蔵庫本体20の側面の延長面と、冷蔵庫本体20の背面の延長面とで囲まれた領域である。奥側支持脚90の奥側先端部91は、断熱箱体21の最も奥の近傍まで突出して設けられる。奥側先端部91によって、冷蔵庫本体20が支持される。 The leg back side support leg 90 is provided on the bottom surface of the main member 60 and in the chamfering region 21 c of the left and right corners on the back side of the heat insulating box 21. The chamfered region 21 c is surrounded by the surface of the chamfered portion 21 b provided at the left and right corners on the back side of the heat insulating box 21, the extended surface of the side surface of the refrigerator body 20, and the extended surface of the back surface of the refrigerator body 20. Area. The back end 91 of the back support leg 90 is provided so as to protrude to the innermost part of the heat insulating box 21. The refrigerator main body 20 is supported by the rear end portion 91.
 前側支持脚80および奥側支持脚90としては、例えば、アジャスターやキャスターが用いられる。アジャスターは、高さ調節機能を備えた脚である。アジャスターにより、接地面に対する冷蔵庫本体20の姿勢が調節される。キャスターは、ローラーなどを備えた脚である。キャスターにより、冷蔵庫本体20の移動が容易となる。 As the front support leg 80 and the back support leg 90, for example, an adjuster or a caster is used. The adjuster is a leg having a height adjusting function. The position of the refrigerator main body 20 with respect to the ground plane is adjusted by the adjuster. The caster is a leg provided with a roller or the like. The caster facilitates the movement of the refrigerator body 20.
 野菜室33の奥側下部、つまり、内箱22の奥側下部には、下凹部22bが形成される。下凹部22bは、外気に曝される外部機器である除霜水処理部100を収納する収納部101の形状に対応して形成される。下凹部22bと収納部101との間には、断熱材24が充填される。また、収納部101の左右の両側面および底面と、主部材60との間にも断熱材24が充填される。この様にして、収納部101の周囲の断熱壁が形成される。収納部101の周囲の断熱壁は、野菜室33の左右の両側面および底面の断熱壁と、同じの厚さを有する。 A lower concave portion 22b is formed in the lower part of the rear side of the vegetable chamber 33, that is, the lower part of the inner side of the inner box 22. The lower concave portion 22b is formed corresponding to the shape of the storage unit 101 that stores the defrost water processing unit 100 that is an external device exposed to the outside air. Between the lower concave portion 22b and the storage portion 101, a heat insulating material 24 is filled. The heat insulating material 24 is also filled between the left and right side surfaces and the bottom surface of the storage unit 101 and the main member 60. In this way, a heat insulating wall around the storage portion 101 is formed. The heat insulating walls around the storage unit 101 have the same thickness as the heat insulating walls on the left and right side surfaces and the bottom surface of the vegetable room 33.
 この同じの厚さとは、ほぼ同じ厚さの場合を含む。具体的には、収納部101の最も前面側の底面の断熱壁の厚さは、野菜室33の最も奥側の底面の断熱壁の厚さの±10%、すなわち90%~110%の厚さである。 This same thickness includes the case of almost the same thickness. Specifically, the thickness of the heat insulating wall on the bottom surface on the foremost side of the storage unit 101 is ± 10% of the thickness of the heat insulating wall on the bottom surface on the farthest side of the vegetable room 33, that is, a thickness of 90% to 110%. That's it.
 また、収納部101の周囲には、底面の断熱壁以外に、側面の断熱壁が形成される。側面の断熱壁は、断熱箱体21の左右面を構成する左右の断熱壁と、収納部101と野菜室33との間に形成される断熱壁からなる。収納部101の側面の断熱壁の厚さは、収納部101の底面の断熱壁の厚さの±10%、すなわち90%~110%の厚さであることが最も望ましい。しかしながら、設計上の制約等により、収納部101の側面の断熱壁の厚さは、収納部101の底面の断熱壁の厚さの±15%、すなわち85%~115%の厚さであってもよい。この場合であっても、底面部の近傍の剛性は偏らず、剛性の高い断熱箱体21が形成される。収納部101の下部の断熱壁は、野菜室33の底面の断熱壁と略水平(水平を含む)であり、断熱箱体21の断熱壁と連続して一体的に形成される。 In addition to the heat insulating wall on the bottom surface, a heat insulating wall on the side surface is formed around the storage unit 101. The heat insulating walls on the side surfaces include left and right heat insulating walls constituting the left and right surfaces of the heat insulating box 21 and heat insulating walls formed between the storage unit 101 and the vegetable compartment 33. The thickness of the heat insulating wall on the side surface of the storage unit 101 is most desirably ± 10% of the thickness of the heat insulating wall on the bottom surface of the storage unit 101, that is, 90% to 110%. However, due to design restrictions, the thickness of the heat insulating wall on the side surface of the storage unit 101 is ± 15% of the thickness of the heat insulating wall on the bottom surface of the storage unit 101, that is, 85% to 115%. Also good. Even in this case, the rigidity in the vicinity of the bottom surface portion is not biased, and the heat insulating box 21 having high rigidity is formed. The heat insulating wall at the bottom of the storage unit 101 is substantially horizontal (including horizontal) with the heat insulating wall on the bottom surface of the vegetable compartment 33, and is formed integrally with the heat insulating wall of the heat insulating box 21.
 断熱箱体21の最下部の貯蔵室である野菜室33の奥側下部に備えられた収納部101は、野菜室33の底面の断熱壁60aから延出した延出部101aを備える。野菜室33の底面の断熱壁60aと延出部101aとは一体的に形成される。また、収納部101の背面側は、カバー101bにより覆われる。カバー101bには、冷蔵庫の周囲の空気である外気と連通する開口が形成される。この開口により、収納部101には、外気との空気の出入がある。つまり、収納部101の内部は外気に曝される。 The storage part 101 provided in the lower part of the back side of the vegetable compartment 33 which is the lowest storage room of the heat insulation box 21 is provided with an extending part 101 a extending from the heat insulating wall 60 a on the bottom surface of the vegetable compartment 33. The heat insulating wall 60a on the bottom surface of the vegetable chamber 33 and the extending portion 101a are integrally formed. The back side of the storage unit 101 is covered with a cover 101b. The cover 101b is formed with an opening that communicates with outside air that is the air around the refrigerator. With this opening, the storage unit 101 has air in and out of the outside air. That is, the inside of the storage unit 101 is exposed to the outside air.
 断熱材24として発泡断熱材を用いる場合は、内箱22と外箱23との間に断熱材24を充填する。この充填と同時に、収納部101の周囲に断熱材24を充填することにより、断熱箱体21の剛性がさらに増す。 When using a foam heat insulating material as the heat insulating material 24, the heat insulating material 24 is filled between the inner box 22 and the outer box 23. Simultaneously with this filling, the heat insulating material 24 is filled around the storage portion 101, whereby the rigidity of the heat insulating box 21 is further increased.
 以上のように構成された冷蔵庫について、動作、作用を説明する。 The operation and action of the refrigerator configured as described above will be described.
 圧縮機50が動作することにより、冷媒が圧縮される。圧縮された冷媒は、高温かつ高圧となり、圧縮機50から吐出される。吐出された冷媒は、凝縮器において、冷蔵庫本体20の周りの空気と熱交換することにより放熱する。この放熱により、主部材60の左右の側面部60b、前面開口部21aの近傍、およびガスケット38の結露が防止される。放熱によって冷媒は凝縮し、凝縮液となる。凝縮液となった冷媒は、減圧器において減圧される。減圧された冷媒は、蒸発器において、貯蔵室の内部の空気と熱交換することにより蒸発する。この蒸発により、蒸発器の周辺の空気が低温となる。この低温となった空気を貯蔵室の内部に循環させることにより、貯蔵室が冷却される。凝縮器として必要な放熱量の大部分は、側部冷媒配管52および前部冷媒配管53が担う。 When the compressor 50 operates, the refrigerant is compressed. The compressed refrigerant becomes high temperature and high pressure and is discharged from the compressor 50. The discharged refrigerant dissipates heat by exchanging heat with air around the refrigerator body 20 in the condenser. Due to this heat dissipation, condensation of the left and right side surface portions 60b of the main member 60, the vicinity of the front surface opening 21a, and the gasket 38 is prevented. The refrigerant is condensed by heat radiation and becomes a condensate. The refrigerant that has become the condensate is decompressed in the decompressor. The decompressed refrigerant evaporates by exchanging heat with the air inside the storage chamber in the evaporator. Due to this evaporation, the air around the evaporator becomes cold. By circulating this low-temperature air inside the storage room, the storage room is cooled. The side refrigerant pipe 52 and the front refrigerant pipe 53 bear most of the heat radiation required for the condenser.
 本実施の形態においては、冷媒としてイソブタンを用いる。イソブタンは、炭化水素系の冷媒である。 In this embodiment, isobutane is used as the refrigerant. Isobutane is a hydrocarbon-based refrigerant.
 表1に、イソブタン、R134a、COの-30℃の飽和液における物性値を示す。R134aは、従来の代替フロンである。COは自然冷媒である。 Table 1 shows physical property values of isobutane, R134a and CO 2 in a saturated solution at −30 ° C. R134a is a conventional alternative chlorofluorocarbon. CO 2 is a natural refrigerant.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、イソブタンの単位体積当たりの冷凍能力は520.8kJである。これに対して、R134aの単位体積当たりの冷凍能力は971.6kJである。つまり、イソブタンの単位体積当たりの冷凍能力は、R134aと比較すると、約1/2である。従って、イソブタンによる冷凍能力をR134aと同等にするために、圧縮機50は、約2倍の気筒容積を有するように構成される。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, the refrigeration capacity per unit volume of isobutane is 520.8 kJ. On the other hand, the refrigerating capacity per unit volume of R134a is 971.6 kJ. That is, the refrigeration capacity per unit volume of isobutane is about ½ compared to R134a. Therefore, in order to make the refrigerating capacity by isobutane equivalent to R134a, the compressor 50 is configured to have a cylinder volume approximately twice as large.
 COの単位体積当たりの冷凍能力は11258.5kJである。つまり、イソブタンの単位体積当たりの冷凍能力は、COと比較すると、約1/20である。従って、イソブタンによる冷凍能力をCOと同等にするために、圧縮機50は、約20倍の気筒容積を有するように構成される。 The refrigeration capacity per unit volume of CO 2 is 11258.5 kJ. In other words, refrigerating capacity per unit volume of isobutane, when compared to CO 2, it is about 1/20. Therefore, in order to make the refrigeration capacity by isobutane equal to CO 2 , the compressor 50 is configured to have a cylinder volume about 20 times.
 一般的に、気筒容積が大きい圧縮機は、圧縮機の内部のアンバランス量が大きい。このため、気筒容積が大きい圧縮機50は、振動が増加する傾向がある。本実施の形態においては、断熱箱体21の下部の剛性が向上することにより、断熱箱体21の剛性が向上するこのため、気筒容積が大きい圧縮機50を搭載した場合であっても、圧縮機50の振動による冷蔵庫の振動が抑制される。 Generally, a compressor with a large cylinder volume has a large amount of unbalance inside the compressor. For this reason, the compressor 50 having a large cylinder volume tends to increase vibration. In the present embodiment, since the rigidity of the lower portion of the heat insulation box 21 is improved and the rigidity of the heat insulation box 21 is improved, the compression is performed even when the compressor 50 having a large cylinder volume is mounted. The refrigerator vibration due to the vibration of the machine 50 is suppressed.
 さらに、下凹部22bと、収納部101と、これらの間に充填された断熱材24とにより、機械室104が形成される。圧縮機50は機械室104に配設される。断熱材24が充填されることにより、機械室104の剛性は高い。従って、気筒容積が大きい圧縮機50を搭載した場合であっても、圧縮機50の振動が冷蔵庫に伝達することが低減される。つまり、気筒容積の大きい圧縮機50を搭載することが可能である。 Furthermore, a machine room 104 is formed by the lower concave portion 22b, the storage portion 101, and the heat insulating material 24 filled therebetween. The compressor 50 is disposed in the machine room 104. By filling the heat insulating material 24, the rigidity of the machine room 104 is high. Therefore, even when the compressor 50 having a large cylinder volume is mounted, the vibration of the compressor 50 transmitted to the refrigerator is reduced. That is, it is possible to mount the compressor 50 having a large cylinder volume.
 前述のとおり、側部冷媒配管52よりも貯蔵室の側には、真空断熱材70が設けられる。これにより、側部冷媒配管52から放熱された熱が貯蔵室へ侵入することが低減される。 As described above, the vacuum heat insulating material 70 is provided closer to the storage chamber than the side refrigerant pipe 52. Thereby, the heat radiated from the side refrigerant pipe 52 is reduced from entering the storage chamber.
 なお、本実施の形態においては、真空断熱材70は、少なくとも製氷室30、第1の冷凍室31、第2の冷凍室32と対向する場所に設けられる。一般的に、真空断熱材70は、断熱材24よりも比重が大きい。従って、真空断熱材70の使用量を低減することにより、冷蔵庫本体20の重量は小さくなる。 In this embodiment, the vacuum heat insulating material 70 is provided at a location facing at least the ice making chamber 30, the first freezing chamber 31, and the second freezing chamber 32. In general, the vacuum heat insulating material 70 has a higher specific gravity than the heat insulating material 24. Therefore, the weight of the refrigerator main body 20 is reduced by reducing the amount of the vacuum heat insulating material 70 used.
 一方、冷蔵庫本体20の重量が大きくなっても良い場合は、真空断熱材70は、多くの場所に設けられる。具体的には、真空断熱材70は、断熱箱体21の両側面、底面、背面に設けられる。これにより、貯蔵室への熱の侵入が、さらに低減する。熱の侵入が低減することにより、冷蔵庫本体20の消費電力量が低減する。加えて、真空断熱材70は、ウレタンによって作られた断熱材と比べて剛性が高い。このため、真空断熱材70は、断熱箱体21の剛性を向上させる効果を有する。 On the other hand, when the weight of the refrigerator main body 20 may be increased, the vacuum heat insulating material 70 is provided in many places. Specifically, the vacuum heat insulating material 70 is provided on both side surfaces, the bottom surface, and the back surface of the heat insulating box 21. This further reduces heat penetration into the storage chamber. By reducing the heat intrusion, the power consumption of the refrigerator body 20 is reduced. In addition, the vacuum heat insulating material 70 has higher rigidity than a heat insulating material made of urethane. For this reason, the vacuum heat insulating material 70 has an effect of improving the rigidity of the heat insulating box 21.
 外箱23は、主部材60と背面部材61と上面部材62とから構成される。この様に分割して作製することにより、各々の成型加工が簡素化される。一方、分割して作製することにより、断熱箱体21としての剛性の低下が懸念される。しかしながら、貯蔵室に食品を収納した場合、冷蔵庫本体20は、断熱箱体21の底面近傍から歪が生じることを、発明者らは確認した。 The outer box 23 includes a main member 60, a back member 61, and a top member 62. By dividing and manufacturing in this way, each molding process is simplified. On the other hand, there is a concern that the rigidity of the heat insulating box 21 is lowered by dividing it. However, the inventors confirmed that the refrigerator main body 20 is distorted from the vicinity of the bottom surface of the heat insulating box 21 when food is stored in the storage room.
 断熱箱体21が歪む原因としては、回転式である冷蔵室ドア29aの開閉によって、断熱箱体21の上部前面側に最も大きな力が掛かることであると推測される。冷蔵室29は、断熱箱体21の最上部に備えられる貯蔵室であるため、この力の影響は大きい。 It is presumed that the cause of distortion of the heat insulation box 21 is that the largest force is applied to the upper front side of the heat insulation box 21 by opening and closing the refrigerating compartment door 29a. Since the refrigerator compartment 29 is a storage compartment provided at the uppermost part of the heat insulating box 21, the influence of this force is great.
 冷蔵室ドア29aは、冷蔵庫のドアの中で最も重量が大きい。冷蔵室ドア29aは、ドアポケットを有するため、飲料ビンなど重量の大きい物が収納される。このため、冷蔵室ドア29aが開いたとき、冷蔵室ドア29aを支える上部ヒンジ34および下部ヒンジ35に大きな荷重が掛かる。 The refrigerator compartment door 29a is the heaviest among the refrigerator doors. Since the refrigerator compartment door 29a has a door pocket, a heavy object such as a beverage bottle is stored therein. For this reason, when the refrigerator compartment door 29a opens, a large load is applied to the upper hinge 34 and the lower hinge 35 that support the refrigerator compartment door 29a.
 断熱箱体21において、上記のような大きな荷重が掛かる冷蔵室ドア29aの対角線上に、機械室104を形成する下凹部22bが位置する。本実施の形態のように、下凹部22b近傍の剛性を向上させることにより、冷蔵室ドア29aが開いた場合の、冷蔵庫全体の撓みが抑制される。 In the heat insulation box 21, the lower recessed part 22b which forms the machine room 104 is located on the diagonal line of the refrigerator compartment door 29a where the above big load is applied. As in the present embodiment, by improving the rigidity in the vicinity of the lower recess 22b, bending of the entire refrigerator when the refrigerator compartment door 29a is opened is suppressed.
 本実施の形態においては、冷凍サイクル関連機器の中で外気に曝される外部機器を収納する収納部101は、断熱箱体21の最下部の貯蔵室である野菜室33の奥側下部に配置される。また、断熱箱体21は、野菜室33の底面部と収納部101の底面部とが一体化により形成された断熱壁を有する。この構成により、断熱箱体21の底面近傍の剛性が高くなる。 In this Embodiment, the accommodating part 101 which accommodates the external apparatus exposed to external air among refrigeration cycle related apparatuses is arrange | positioned in the back | inner side lower part of the vegetable compartment 33 which is the lowest storage room of the heat insulation box 21. Is done. Moreover, the heat insulation box 21 has a heat insulation wall in which the bottom part of the vegetable compartment 33 and the bottom part of the storage part 101 are integrally formed. With this configuration, the rigidity in the vicinity of the bottom surface of the heat insulating box 21 is increased.
 また、主部材60が底面部60aと左右の側面部60bとの一体化により形成されることにより、断熱箱体21の側壁の剛性が高くなる。このため、冷蔵室ドア29aの大きな荷重に対しても、長期間、断熱箱体21の変形が抑制される。さらに、断熱箱体21の底面近傍の剛性が高くなることにより、断熱箱体21の歪みが防止される。 Moreover, the rigidity of the side wall of the heat insulation box 21 becomes high because the main member 60 is formed by integrating the bottom surface portion 60a and the left and right side surface portions 60b. For this reason, the deformation of the heat insulation box 21 is suppressed for a long time even with a large load of the refrigerator compartment door 29a. Furthermore, since the rigidity in the vicinity of the bottom surface of the heat insulation box 21 is increased, distortion of the heat insulation box 21 is prevented.
 本実施の形態においては、主部材60は、底面部60aに切り欠きを有しない。しかしながら、切り欠きが必要な場合は、なるべく狭い範囲で、かつ、できる限り断熱箱体21の奥側に切り欠きを設けることが望ましい。主部材60の前側は、上部ヒンジ34と下部ヒンジ35とを介して、冷蔵室ドア29aを支える。冷蔵室ドア29aの開閉により、冷蔵庫本体20に、前方向への応力が掛かる。これにより、冷蔵庫本体20が、やや前のめりになる。つまり、断熱箱体21の前面下部、特に前側支持脚80の固着部の近傍に応力が集中する。従って、主部材60に切り欠きを設ける場合は、できる限り断熱箱体21の奥側に切り欠きを設ける。 In the present embodiment, the main member 60 does not have a notch in the bottom surface portion 60a. However, when a cutout is necessary, it is desirable to provide a cutout in the narrowest possible range and as far as possible in the heat insulation box 21. The front side of the main member 60 supports the refrigerator compartment door 29 a via the upper hinge 34 and the lower hinge 35. By opening and closing the refrigerator compartment door 29a, a forward stress is applied to the refrigerator main body 20. Thereby, the refrigerator main body 20 becomes slightly forward-slip. That is, stress concentrates on the lower part of the front surface of the heat insulating box 21, particularly in the vicinity of the fixing portion of the front support leg 80. Therefore, when providing a cutout in the main member 60, the cutout is provided in the back side of the heat insulation box 21 as much as possible.
 近年、冷蔵室ドア29aには、ドアポケットと呼ばれる、飲料ビンなどを収納する食品貯蔵部が設けられることが多い。つまり、使用時において、冷蔵室ドア29aの総重量が増加することが多い。このため、冷蔵室ドア29aの開閉による応力の集中に対して、さらに注意が必要である。 In recent years, the refrigerator compartment door 29a is often provided with a food storage unit for storing a beverage bottle or the like called a door pocket. That is, in use, the total weight of the refrigerator compartment door 29a often increases. For this reason, it is necessary to pay more attention to stress concentration due to opening and closing of the refrigerator compartment door 29a.
 ここで、冷蔵室29の周辺の断熱箱体21が変形した場合、例えば、外箱23と冷蔵室ドア29aとの係合部の周辺において、隙間が発生する。具体的には、外箱23と断熱材24との間、もしくは、外箱23と内箱22との間に隙間が発生する。この場合、隙間に冷気が入り、外箱23と冷蔵室ドア29aとの係合部の周辺で結露が発生する可能性がある。しかしながら、本実施の形態においては、断熱箱体21の剛性が高いため、変形が抑制される。このため、上記のような結露の発生が抑制される。 Here, when the heat insulation box 21 around the refrigerator compartment 29 is deformed, for example, a gap is generated around the engaging portion between the outer box 23 and the refrigerator compartment door 29a. Specifically, a gap is generated between the outer box 23 and the heat insulating material 24 or between the outer box 23 and the inner box 22. In this case, cold air enters the gap, and there is a possibility that dew condensation occurs around the engaging portion between the outer box 23 and the refrigerator compartment door 29a. However, in this Embodiment, since the rigidity of the heat insulation box 21 is high, a deformation | transformation is suppressed. For this reason, generation | occurrence | production of the above dew condensation is suppressed.
 冷蔵庫本体20の前側への転倒防止に対する信頼性は、前側支持脚80の前側先端部81の前後方向の位置により、決定される。この転倒防止に対する信頼性は、前側先端部81が前面開口部21aより突出されるほど、向上する。ここで、前側先端部81が前面開口部21aより突出して配設された場合、てこの原理により、前側支持脚80の固着部に、応力が集中する。従って、前面開口部21aを基準面とした場合、前側支持脚80の固着部の奥側への突出量は、前側先端部81の前方への突出量と比較して、同等もしくはそれ以上であることが望ましい。一方で、本実施の形態に示すように、前側先端部81は、野菜室ドア33aの前面より前方に出ないことが、美観の上で望ましい。 The reliability for preventing the refrigerator body 20 from falling to the front side is determined by the position of the front end portion 81 of the front support leg 80 in the front-rear direction. The reliability with respect to the fall prevention is improved as the front end portion 81 protrudes from the front opening 21a. Here, when the front end portion 81 is disposed so as to protrude from the front opening 21a, stress concentrates on the fixing portion of the front support leg 80 due to the lever principle. Therefore, when the front opening 21a is used as a reference surface, the amount of protrusion of the fixed portion of the front support leg 80 toward the back side is equal to or greater than the amount of protrusion of the front end portion 81 forward. It is desirable. On the other hand, as shown in the present embodiment, it is desirable in terms of beauty that the front end portion 81 does not protrude forward from the front surface of the vegetable compartment door 33a.
 同様に、奥側支持脚90は、断熱箱体21に対して、できる限り奥側に配設されることが望ましい。これにより、冷蔵庫本体20の奥側への転倒が防止される。一方で、奥側支持脚90が断熱箱体21の背面より後方へ突出して配設された場合、冷蔵庫本体20の設置に必要な奥行き寸法が大きくなる。 Similarly, it is desirable that the back side support leg 90 be disposed as far back as possible with respect to the heat insulating box 21. Thereby, the fall to the back side of the refrigerator main body 20 is prevented. On the other hand, when the back side support leg 90 is disposed so as to protrude rearward from the back surface of the heat insulating box body 21, the depth dimension required for installing the refrigerator main body 20 becomes large.
 蒸発器51の除霜水処理について説明する。冷凍サイクルの運転が停止されると、蒸発器51に付着した霜は融ける。霜が融けた除霜水は、除霜水処理ユニット102に流れ込む。除霜水処理ユニット102は、熱源からの熱や送風機からの風を利用することにより、除霜水を蒸発させる。蒸発した除霜水は、除霜水処理部100の奥側から排気される。これにより、除霜水は、除霜水処理ユニット102から溢れない。除霜水処理ユニット102は、圧縮機50の横に設けられる。従って、除霜水を蒸発させるための熱源として、圧縮機50からの放熱が利用される。 The defrost water treatment of the evaporator 51 will be described. When the operation of the refrigeration cycle is stopped, the frost attached to the evaporator 51 is melted. The defrost water in which the frost has melted flows into the defrost water treatment unit 102. The defrost water treatment unit 102 evaporates the defrost water by using heat from the heat source and wind from the blower. The evaporated defrost water is exhausted from the back side of the defrost water treatment unit 100. Thereby, defrost water does not overflow from the defrost water processing unit 102. The defrost water treatment unit 102 is provided beside the compressor 50. Therefore, the heat radiation from the compressor 50 is used as a heat source for evaporating the defrost water.
 除霜水処理のタイミングは、冷凍サイクルの連続運転時間、外気温、湿度などの条件により定期的に設定される。前回の除霜水処理と次回の除霜水処理との間隔が短い場合、蒸発器51に付着する霜の量は少ない。このため、除霜水を蒸発させるための処理時間は、短く設定される。逆に、この間隔が長い場合は、蒸発器51に付着する霜の量は多い。このため、除霜水を蒸発させるための処理時間は、長く設定される。この様に設定することにより、除霜水は除霜水処理ユニット102から溢れない。 ¡Defrost water treatment timing is set periodically according to conditions such as continuous operation time of the refrigeration cycle, outside air temperature and humidity. When the interval between the previous defrost water treatment and the next defrost water treatment is short, the amount of frost adhering to the evaporator 51 is small. For this reason, the processing time for evaporating defrost water is set short. Conversely, when this interval is long, the amount of frost that adheres to the evaporator 51 is large. For this reason, the processing time for evaporating defrost water is set long. By setting in this way, the defrost water does not overflow from the defrost water treatment unit 102.
 従来の冷蔵庫は、圧縮機を支持する圧縮機支持台を備える。圧縮機支持台は、長期間、圧縮機を支持する。圧縮機支持台は、充分な剛性を得るために、外箱よりも厚い鋼板を用いて形成される。このため、従来の冷蔵庫は重量が大きい。 Conventional refrigerators are equipped with a compressor support that supports the compressor. The compressor support base supports the compressor for a long period of time. In order to obtain sufficient rigidity, the compressor support base is formed using a steel plate thicker than the outer box. For this reason, the conventional refrigerator is heavy.
 本実施の形態の除霜水処理部100は、収納部101の開放面以外は、全て断熱材24により覆われる。この構成により、収納部101が樹脂製であっても、充分な剛性を得ることができる。従って、従来の冷蔵庫の様な圧縮機支持台を用いない場合であっても、充分な剛性を得ることができる。つまり、樹脂製の収納部101が、従来の圧縮機支持台を代替するため、冷蔵庫本体20の重量が軽減される。 The defrost water treatment unit 100 of the present embodiment is entirely covered with the heat insulating material 24 except for the open surface of the storage unit 101. With this configuration, even if the storage unit 101 is made of resin, sufficient rigidity can be obtained. Therefore, sufficient rigidity can be obtained even when a compressor support such as a conventional refrigerator is not used. That is, since the resin storage unit 101 replaces the conventional compressor support, the weight of the refrigerator main body 20 is reduced.
 以上のように、断熱箱体21の下面奥部の剛性が大幅に向上する。この上で、断熱箱体21の下面奥部と側壁とが一体的に形成されるため、側壁の剛性が大幅に向上する。 As described above, the rigidity of the bottom surface of the heat insulating box 21 is greatly improved. In addition, since the bottom surface of the heat insulation box 21 and the side wall are integrally formed, the rigidity of the side wall is greatly improved.
 除霜水処理部100の外郭である収納部101の周囲の断熱壁は、断熱箱体21の断熱壁の一部である、野菜室33の左右の両側面および底面の断熱壁と、ほぼ同じ厚さを有する。収納部101の下部の断熱壁は、野菜室33の底面の断熱壁と略水平(水平を含む)である。また、収納部101の周囲の断熱壁は、断熱箱体21の断熱壁と連続して一体的に形成される。これにより、各貯蔵室に収納した食品の荷重による応力が、断熱箱体21に底面部60aに掛かった場合であっても、屈曲点が、底面部60aに発生することが抑制される。従って、断熱箱体21は歪み難く、長期間の使用に対する耐久性が向上する。 The heat insulating walls around the storage unit 101 that is the outline of the defrost water treatment unit 100 are substantially the same as the heat insulating walls on both the left and right side surfaces and the bottom surface of the vegetable room 33 that are part of the heat insulating wall of the heat insulating box 21. Has a thickness. The heat insulating wall at the bottom of the storage unit 101 is substantially horizontal (including horizontal) with the heat insulating wall on the bottom of the vegetable compartment 33. Further, the heat insulating wall around the storage portion 101 is formed integrally and continuously with the heat insulating wall of the heat insulating box 21. Thereby, even if it is a case where the stress by the load of the foodstuff accommodated in each storage chamber is applied to the heat insulation box 21 on the bottom face part 60a, it is suppressed that a bending point generate | occur | produces in the bottom face part 60a. Therefore, the heat insulation box 21 is not easily distorted, and durability against long-term use is improved.
 以上のように、主部材60が底面部60aと左右の側面部60bとの一体化により形成されることにより、断熱箱体21が構成される。従って、外箱23の下部の剛性が増すことにより、断熱箱体21の剛性が増す。 As described above, the heat insulating box 21 is configured by forming the main member 60 by integrating the bottom surface portion 60a and the left and right side surface portions 60b. Accordingly, the rigidity of the lower portion of the outer box 23 is increased, so that the rigidity of the heat insulating box 21 is increased.
 除霜水処理部100は、下部に、断熱箱体21の底面部60aと連続した断熱壁を有する。つまり、断熱箱体21は、底面部60aに切り欠きを有しない。これにより、断熱箱体21の剛性がさらに増す。 The defrost water treatment unit 100 has a heat insulating wall continuous with the bottom surface 60a of the heat insulating box 21 at the lower part. That is, the heat insulation box 21 does not have a notch in the bottom surface portion 60a. Thereby, the rigidity of the heat insulation box 21 further increases.
 除霜水処理部100の左右の側部は、断熱箱体21の左右の側面部60bと連続した断熱壁を有する。つまり、除霜水処理部100と断熱箱体21とが、断熱材24を介して連結される。これにより、断熱箱体21の剛性がさらに増す。 The left and right side portions of the defrost water treatment unit 100 have heat insulating walls that are continuous with the left and right side surface portions 60 b of the heat insulating box body 21. That is, the defrost water processing unit 100 and the heat insulating box 21 are connected via the heat insulating material 24. Thereby, the rigidity of the heat insulation box 21 further increases.
 断熱箱体21の底面部60aの断熱壁と、除霜水処理部100の下部の断熱壁とが略水平(水平を含む)に、かつ、ほぼ同じ厚さを有する。これにより、断熱箱体21の底面部60aに屈曲点が発生し難い。このため、断熱箱体21の剛性および耐久性が増す。さらに、この構成においては、断熱材24が均一に充填される。つまり、前面開口部21aを下に向けて、断熱材24を断熱箱体21の背面から注入して発泡させることにより充填を行う場合、発泡の流れが阻害されない。これにより、断熱材24は均一に発泡し、断熱性能が向上する。 The heat insulation wall of the bottom surface portion 60a of the heat insulation box 21 and the heat insulation wall below the defrost water treatment unit 100 are substantially horizontal (including horizontal) and have substantially the same thickness. Thereby, a bending point is hard to generate | occur | produce in the bottom face part 60a of the heat insulation box 21. FIG. For this reason, the rigidity and durability of the heat insulation box 21 are increased. Further, in this configuration, the heat insulating material 24 is uniformly filled. That is, when filling is performed by injecting and foaming the heat insulating material 24 from the back surface of the heat insulating box 21 with the front opening 21a facing downward, the flow of foaming is not hindered. Thereby, the heat insulating material 24 foams uniformly and heat insulation performance improves.
 断熱箱体21の奥側の左右のコーナに、面取り領域が設けられる。冷蔵庫本体20の奥側支持脚90は、面取り領域からはみ出ない位置に設けられる。これにより、冷蔵庫本体20の奥行き寸法を増加させることなく、断熱箱体21の奥側に奥側支持脚90を備えることができる。この構成により、冷蔵庫本体20の設置性を確保しつつ、冷蔵庫本体20が後方に転倒することが抑制される。 Chamfering areas are provided at the left and right corners on the back side of the heat insulation box 21. The back side support leg 90 of the refrigerator body 20 is provided at a position that does not protrude from the chamfered area. Thereby, the back side support leg 90 can be provided in the back side of the heat insulation box 21 without increasing the depth dimension of the refrigerator main body 20. With this configuration, the refrigerator main body 20 is prevented from falling backward while ensuring the installation of the refrigerator main body 20.
 前部冷媒配管53の上側が開放されるため、冷蔵庫本体20の上面を通る冷媒配管を配設する必要が無い。このため、貯蔵室への熱の侵入が低減される。一般的に、前面開口部21aの上部においては、冷気が下方へ流れる。このため、前面開口部21aの上部においては、結露は発生し難い。特に、本実施の形態においては、最上部に位置する貯蔵室は冷蔵室29である。つまり、貯蔵室の内部の温度と、外気の温度との差が小さい。このため、結露が発生し難い傾向は顕著である。従って、結露が発生し難いため、冷媒配管が無い部位における断熱箱体21の断熱壁を厚くする必要が無い。つまり、貯蔵室の容量を大きくすることができる。 Since the upper side of the front refrigerant pipe 53 is opened, there is no need to arrange a refrigerant pipe passing through the upper surface of the refrigerator main body 20. For this reason, invasion of heat into the storage chamber is reduced. Generally, cold air flows downward in the upper part of the front opening 21a. For this reason, condensation is unlikely to occur in the upper part of the front opening 21a. In particular, in the present embodiment, the storage room located at the top is the refrigerator compartment 29. That is, the difference between the temperature inside the storage room and the temperature of the outside air is small. For this reason, the tendency that condensation does not occur easily is remarkable. Therefore, since it is difficult for dew condensation to occur, it is not necessary to increase the thickness of the heat insulating wall of the heat insulating box 21 in a portion where there is no refrigerant pipe. That is, the capacity of the storage room can be increased.
 一方、前面開口部21aの下部は、設置面との距離が近い。このため、空気の対流が発生し難い。この結果、前面開口部21aの下部においては、結露が発生し易い。本実施の形態においては、側部冷媒配管52および前部冷媒配管53が断熱箱体21の底面を通る。このため、前面開口部21aの下部における、結露の発生が防止される。 On the other hand, the lower part of the front opening 21a is close to the installation surface. For this reason, air convection hardly occurs. As a result, condensation is likely to occur in the lower portion of the front opening 21a. In the present embodiment, the side refrigerant pipe 52 and the front refrigerant pipe 53 pass through the bottom surface of the heat insulating box 21. For this reason, generation | occurrence | production of dew condensation in the lower part of the front surface opening part 21a is prevented.
 なお、電子制御式の冷蔵庫の場合、上面部材62に制御基板を配設することにより、制御基板からの発熱を利用することができる。これにより、さらに確実に結露が防止される。 In the case of an electronically controlled refrigerator, the heat generated from the control board can be used by disposing the control board on the upper surface member 62. This more reliably prevents condensation.
 また、前面開口部21aの冷蔵室29の両側部は、結露の発生が顕著ではない。従って、冷蔵室29の両側部においては、前部冷媒配管53は、前面フランジ23aから離して配設される。具体的には、主部材60の断熱材24の側であって、前面から奥側へ90mmの位置に、前部冷媒配管53が配設される。前部冷媒配管53は、上部が下部よりも断熱箱体21の前面から遠い。このため、貯蔵室への熱の侵入が抑制されつつ、前面開口部21aの結露が防止される。外箱23を厚さ0.5mmの鋼板で作成した場合、前面開口部21aから奥側へ100mmの位置に設置した前部冷媒配管53から、前面開口部21aの結露の防止に充分な熱が伝わることを、発明者らは確認した。従って、本実施の形態においては、冷媒配管は、前面開口部21aから奥側へ100mm以内の位置である、90mmの位置に設置される。 Moreover, the occurrence of condensation is not significant on both sides of the refrigerator compartment 29 of the front opening 21a. Accordingly, the front refrigerant pipe 53 is disposed away from the front flange 23a on both sides of the refrigerator compartment 29. Specifically, the front refrigerant pipe 53 is disposed on the heat insulating material 24 side of the main member 60 and at a position of 90 mm from the front surface to the back side. The front refrigerant pipe 53 has an upper part farther from the front surface of the heat insulating box 21 than a lower part. For this reason, the penetration | invasion of the heat | fever to a storage chamber is suppressed, and the dew condensation of the front surface opening part 21a is prevented. When the outer box 23 is made of a steel plate having a thickness of 0.5 mm, the front refrigerant pipe 53 installed at a position of 100 mm from the front opening 21a to the back side has sufficient heat to prevent condensation on the front opening 21a. The inventors confirmed that it was transmitted. Therefore, in this Embodiment, refrigerant | coolant piping is installed in the 90-mm position which is a position within 100 mm from the front opening part 21a to the back | inner side.
 なお、側部冷媒配管52が、前面開口部21aから奥側に100mmの位置に配設された場合は、前部冷媒配管53の上部を廃止することができる。つまり、冷媒配管の全長がさらに短くなる。 In addition, when the side part refrigerant | coolant piping 52 is arrange | positioned in the position of 100 mm in the back | inner side from the front opening part 21a, the upper part of the front refrigerant | coolant piping 53 can be abolished. That is, the total length of the refrigerant pipe is further shortened.
 冷蔵室29の両側部における結露が発生し難い場合は、前部冷媒配管53の上部を廃止することができる。冷蔵室29の上面は、底面部60aと対向する。この上面以外の箇所に、一体で形成された発熱体を備えることにより、エネルギー消費量を削減することができる。この場合、仕切壁25において折り返された前部冷媒配管53を、側部冷媒配管52と一本で形成することにより、エネルギー消費量がさらに削減される。 When it is difficult for condensation on both sides of the refrigerator compartment 29 to occur, the upper part of the front refrigerant pipe 53 can be eliminated. The upper surface of the refrigerator compartment 29 faces the bottom surface portion 60a. Energy consumption can be reduced by providing an integrally formed heating element at a location other than the top surface. In this case, energy consumption is further reduced by forming the front refrigerant | coolant piping 53 folded in the partition wall 25 with the side refrigerant | coolant piping 52 in one.
 上記の場合、側部冷媒配管52および前部冷媒配管53が短くなるため、放熱量が減少する。断熱箱体21の外側に凝縮器を配設することにより、減少した放熱量を補うことができる。断熱箱体21の外側に凝縮器を配設することにより、貯蔵室への熱の侵入を増加させること無く、必要な放熱量を確保することができる。 In the above case, since the side refrigerant pipe 52 and the front refrigerant pipe 53 are shortened, the heat radiation amount is reduced. By disposing the condenser outside the heat insulating box 21, the reduced heat dissipation can be compensated. By disposing the condenser outside the heat insulating box 21, a necessary heat radiation amount can be ensured without increasing the heat intrusion into the storage chamber.
 なお、前部冷媒配管53の上部を廃止する構成としては、前部冷媒配管53を、内箱22の前面開口部21aの周縁に備える構成がある。しかしながら、この構成では、貯蔵室と冷媒配管との距離が極めて近い。つまり、貯蔵室への熱の侵入が増加する。 In addition, as a structure which abolishes the upper part of the front refrigerant | coolant piping 53, there exists a structure which equips the peripheral edge of the front opening part 21a of the inner box 22 with the front refrigerant | coolant piping 53. However, in this configuration, the distance between the storage chamber and the refrigerant pipe is very close. That is, heat penetration into the storage chamber increases.
 前部冷媒配管53は、前面フランジ23aの内フランジ23cの断熱材24の側に配設される。これにより、前部冷媒配管53が前面フランジ23aに接触するため、結露が防止される。この構成においては、冷媒配管から貯蔵室までの距離が遠いため、貯蔵室への熱の侵入が低減される。 The front refrigerant pipe 53 is disposed on the heat insulating material 24 side of the inner flange 23c of the front flange 23a. Thereby, since the front refrigerant | coolant piping 53 contacts the front flange 23a, dew condensation is prevented. In this configuration, since the distance from the refrigerant pipe to the storage chamber is long, intrusion of heat into the storage chamber is reduced.
 前部冷媒配管53は、前面フランジ23aに接触されながら配設された後に、前面開口部21aから離れて配設される。つまり、前部冷媒配管53は、経路の途中で、前面フランジ23aから離れる。上記の構成においては、前部冷媒配管53が前面フランジ23aから離れるに際し、内フランジ23cに切り欠きを設ける必要が無い。切り欠きが無いため、断熱材24を発泡させて充填する際に、断熱材24が漏れる可能性が低減される。また、前部冷媒配管53が切り欠きに接触することによる、前部冷媒配管53の損傷が防止される。 The front refrigerant pipe 53 is disposed while being in contact with the front flange 23a, and is then disposed away from the front opening 21a. That is, the front refrigerant pipe 53 is separated from the front flange 23a in the middle of the path. In the above configuration, when the front refrigerant pipe 53 is separated from the front flange 23a, it is not necessary to provide a notch in the inner flange 23c. Since there is no notch, when the heat insulating material 24 is foamed and filled, the possibility that the heat insulating material 24 leaks is reduced. Further, the front refrigerant pipe 53 is prevented from being damaged by the front refrigerant pipe 53 coming into contact with the notch.
 前部冷媒配管53は、上側が開放端として形成される。主部材60は、断熱箱体21の上側を開放端として、底面部60aと左右の側面部60bとが一体で形成される。前部冷媒配管53と主部材60とが、共に上側が開放端として形成されることにより、冷蔵庫本体20の組み立てが容易となる。 The upper part of the front refrigerant pipe 53 is formed with an open end. The main member 60 is formed integrally with a bottom surface portion 60a and left and right side surface portions 60b with the upper side of the heat insulating box 21 being an open end. Since the front refrigerant pipe 53 and the main member 60 are both formed with the open ends on the upper side, the refrigerator main body 20 can be easily assembled.
 以上のように、本実施の形態においては、前部冷媒配管53は、外箱23の側面部60bの少なくとも一部と、底面部60aとに一体で形成される。これにより、前面開口部21aの上部に発熱体を設ける必要が無い。さらに、貯蔵室への熱の侵入が低減されるため、消費電力量が低減される。また、発熱体として冷媒配管を利用することにより、ヒータなどの発熱体を設ける必要が無い。つまり、ヒータへの電力供給が不要であり、さらに消費電力量が低減される。 As described above, in the present embodiment, the front refrigerant pipe 53 is formed integrally with at least a part of the side surface portion 60b of the outer box 23 and the bottom surface portion 60a. This eliminates the need to provide a heating element above the front opening 21a. Furthermore, since heat intrusion into the storage room is reduced, the amount of power consumption is reduced. Moreover, it is not necessary to provide a heating element such as a heater by using the refrigerant pipe as the heating element. That is, it is not necessary to supply power to the heater, and the power consumption is further reduced.
 断熱箱体21において、最も上に位置する貯蔵室は、冷蔵室29である。冷蔵室29の冷却温度は、冷蔵温度帯である。従って、断熱箱体21の上面に発熱体を設けない場合であっても、結露は防止される。つまり、消費電力量が低減される。 In the heat insulation box 21, the storage room located at the top is a refrigerator room 29. The cooling temperature of the refrigerator compartment 29 is a refrigerator temperature zone. Therefore, even if the heating element is not provided on the upper surface of the heat insulating box 21, condensation is prevented. That is, power consumption is reduced.
 前部冷媒配管53は、前面フランジ23aの内フランジ23cの断熱材24の側に配設される。前部冷媒配管53が前面フランジ23aに接触することにより、結露が防止されると共に、冷媒配管から貯蔵室までの距離が遠くなる。これにより、貯蔵室への熱の侵入が低減される。つまり、結露が防止され、かつ、消費電力量が低減される。 The front refrigerant pipe 53 is disposed on the heat insulating material 24 side of the inner flange 23c of the front flange 23a. By contacting the front refrigerant pipe 53 with the front flange 23a, condensation is prevented and the distance from the refrigerant pipe to the storage chamber is increased. Thereby, the penetration | invasion of the heat to a store room is reduced. That is, dew condensation is prevented and power consumption is reduced.
 前部冷媒配管53の上部は、前面開口部21aから奥側に、100mm以内の位置である90mmの位置に配設される。これにより、前面フランジ23aに接触する前部冷媒配管53の長さが短くなる。一方、前面フランジ23aに接触する前部冷媒配管53からは、貯蔵室への熱の侵入が大きい。従って、貯蔵室への熱の侵入が低減され、消費電力量が低減される。 The upper part of the front refrigerant pipe 53 is disposed on the back side from the front opening 21a at a position of 90 mm, which is a position within 100 mm. Thereby, the length of the front refrigerant | coolant piping 53 which contacts the front flange 23a becomes short. On the other hand, a large amount of heat enters the storage chamber from the front refrigerant pipe 53 that contacts the front flange 23a. Therefore, the heat intrusion into the storage room is reduced, and the power consumption is reduced.
 (実施の形態2)
 図6は、本発明の実施の形態2における冷蔵庫の断面図である。図6は、冷蔵庫を右側方から見た断面図である。図7は、本実施の形態の冷蔵庫の断熱箱体の分解斜視図である。本実施の形態において、実施の形態1と同じ構成に関しては、同じ符号を用いる。
(Embodiment 2)
FIG. 6 is a cross-sectional view of the refrigerator in the second embodiment of the present invention. FIG. 6 is a cross-sectional view of the refrigerator as viewed from the right side. FIG. 7 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment. In the present embodiment, the same reference numerals are used for the same configurations as those in the first embodiment.
 図6および図7に示すように、冷蔵庫本体200の断熱箱体201は、樹脂製の内箱202と、金属磁性体製の外箱203と、それらの間に充填された断熱材24とから構成される。内箱202と、外箱203と、断熱材24とにより、断熱壁が形成される。断熱箱体201は、前面に、前面開口部201aを有する。断熱箱体201は、奥側上部に、断熱箱体凹部である天面収納部201bを有する。 As shown in FIGS. 6 and 7, the heat insulating box 201 of the refrigerator main body 200 includes a resin inner box 202, a metal magnetic outer box 203, and a heat insulating material 24 filled therebetween. Composed. A heat insulating wall is formed by the inner box 202, the outer box 203, and the heat insulating material 24. The heat insulation box 201 has a front opening 201a on the front surface. The heat insulation box 201 has a top surface storage portion 201b which is a heat insulation box recess in the upper part on the back side.
 外箱203は、主部材260と上面前側部材262と上面奥側部材213と背面部材261とから構成される。主部材260は、底面部260aと左右の側面部260bとの一体化により形成される。上面前側部材262は、外箱203の上面の前側を形成する。上面奥側部材213は、樹脂製であり、断熱箱体凹部である天面収納部201bを形成する。背面部材261は、外箱203の奥、つまり、冷蔵庫本体200の背面を形成する。 The outer box 203 includes a main member 260, a top front member 262, a top back member 213, and a back member 261. The main member 260 is formed by integrating the bottom surface portion 260a and the left and right side surface portions 260b. The upper surface front side member 262 forms the front side of the upper surface of the outer box 203. The upper surface back side member 213 is made of resin and forms a top surface storage portion 201b which is a heat insulating box recess. The back member 261 forms the back of the outer box 203, that is, the back surface of the refrigerator main body 200.
 冷凍サイクルを構成する圧縮機220は、上面奥側部材213に支持される。つまり、圧縮機220は、断熱箱体凹部である天面収納部201bに収容される。 The compressor 220 constituting the refrigeration cycle is supported by the upper surface back side member 213. That is, the compressor 220 is accommodated in the top surface accommodating part 201b which is a heat insulation box recessed part.
 上面奥側部材213は、上面および背面が開放された、箱形状を有する。上面奥側部材213は、内箱202の奥側上部に設けられた上凹部202aと対向するように形成される。上面奥側部材213の前面および底面と、内箱202との間には、断熱材24が充填される。さらに、上面奥側部材213の左右の側面と、主部材260の左右の側面部260bとの間には、断熱材24が充填される。 The upper surface back side member 213 has a box shape with the upper surface and the back surface opened. The upper surface rear side member 213 is formed so as to face the upper concave portion 202 a provided at the upper side of the inner box 202. A space between the front surface and the bottom surface of the upper surface back side member 213 and the inner box 202 is filled with a heat insulating material 24. Furthermore, the heat insulating material 24 is filled between the left and right side surfaces of the upper surface back side member 213 and the left and right side surface portions 260 b of the main member 260.
 除霜水処理部230は、断熱箱体201の奥側下部に設けられる。具体的には、背面部材261の下部に形成された孔に、樹脂製の収納部231が装着される。収納部231は、背面側が開放されており、冷凍サイクル関連機器の中で外気に曝される外部機器を収納する。内部に外部機器である除霜水処理ユニット232が設けられる。収納部231、除霜水処理ユニット232により、除霜水処理部230が構成される。 The defrost water treatment unit 230 is provided in the lower part on the back side of the heat insulation box 201. Specifically, a resin storage portion 231 is mounted in a hole formed in the lower portion of the back member 261. The storage unit 231 is open on the back side and stores external devices that are exposed to the outside air among the refrigeration cycle-related devices. A defrost water treatment unit 232 that is an external device is provided inside. The storage unit 231 and the defrost water treatment unit 232 constitute a defrost water treatment unit 230.
 野菜室33の奥側下部、つまり、内箱202の奥側下部には、下凹部202bが形成される。下凹部202bは、除霜水処理部230の外郭である収納部231の形状に対応して形成される。下凹部202bと収納部231との間には、断熱材24が充填される。また、収納部231の左右の両側面および底面と、主部材260との間にも断熱材24が充填される。この様にして、収納部231の周囲の断熱壁が形成される。収納部231の周囲の断熱壁は、野菜室33の左右の両側面および底面の断熱壁と、ほぼ同じ厚さを有する。収納部231の下部の断熱壁は、野菜室33の底面の断熱壁と略水平(水平を含む)である。収納部231の周囲の断熱壁は、断熱箱体201の断熱壁と連続して一体に形成される。 A lower recess 202b is formed in the lower part of the back side of the vegetable chamber 33, that is, the lower part of the inner side of the inner box 202. The lower recessed part 202b is formed corresponding to the shape of the storage part 231 that is an outline of the defrosting water treatment part 230. A space between the lower recess 202b and the storage portion 231 is filled with the heat insulating material 24. The heat insulating material 24 is also filled between the left and right side surfaces and the bottom surface of the storage portion 231 and the main member 260. In this way, a heat insulating wall around the storage portion 231 is formed. The heat insulation walls around the storage portion 231 have substantially the same thickness as the heat insulation walls on the left and right side surfaces and the bottom surface of the vegetable room 33. The heat insulation wall at the bottom of the storage portion 231 is substantially horizontal (including horizontal) with the heat insulation wall on the bottom surface of the vegetable compartment 33. The heat insulation wall around the storage portion 231 is formed continuously and integrally with the heat insulation wall of the heat insulation box 201.
 断熱材24として発泡断熱材を用いる場合は、内箱202と外箱203との間に断熱材24を充填すると同時に、収納部231の周囲に断熱材24を充填する。こうすることにより、断熱箱体201の剛性が増す。 When a foam heat insulating material is used as the heat insulating material 24, the heat insulating material 24 is filled between the inner box 202 and the outer box 203, and at the same time, the heat insulating material 24 is filled around the storage portion 231. By doing so, the rigidity of the heat insulating box 201 is increased.
 以上のように構成された冷蔵庫について、動作、作用を説明する。実施の形態1で説明したとおり、断熱箱体201の歪みは、底面部260aの剛性が影響する。断熱箱体201は、圧縮機220を配設するための断熱箱体凹部である天面収納部201bを、底面部260aではなく断熱箱体201の最上部の貯蔵室の奥側上部に有する。従って、圧縮機220を奥側下部の収納部231に収納する場合と比較して、奥側下部の収納部231の空間容積は小さくなる。さらに、振動源である圧縮機220を収納しないことにより、断熱箱体201の剛性の低下は生じ難い。 The operation and action of the refrigerator configured as described above will be described. As described in Embodiment 1, the rigidity of the heat insulating box 201 is affected by the rigidity of the bottom surface portion 260a. The heat insulation box 201 has a top surface storage portion 201b which is a heat insulation box recess for disposing the compressor 220, not on the bottom surface portion 260a but on the upper back side of the uppermost storage chamber of the heat insulation box 201. Therefore, as compared with the case where the compressor 220 is stored in the storage unit 231 at the bottom on the back side, the space volume of the storage unit 231 at the bottom on the back side is small. Furthermore, since the compressor 220 that is a vibration source is not housed, the rigidity of the heat insulating box 201 is hardly lowered.
 圧縮機220と、側部冷媒配管52および前部冷媒配管53の開放端とは、ともに断熱箱体201の上方に位置する。この構成により、圧縮機が下方に配設された場合に比べて、冷媒配管を往復させるための経路の無駄が低減される。つまり、側部冷媒配管52および前部冷媒配管53を短くすることができる。このため、貯蔵室への熱の侵入が低減される。 The compressor 220 and the open ends of the side refrigerant pipe 52 and the front refrigerant pipe 53 are both positioned above the heat insulating box 201. With this configuration, waste of a route for reciprocating the refrigerant pipe is reduced as compared with the case where the compressor is disposed below. That is, the side refrigerant pipe 52 and the front refrigerant pipe 53 can be shortened. For this reason, invasion of heat into the storage chamber is reduced.
 圧縮機220と除霜水処理部230とは、断熱箱体201の上方と下方とに別々に配設される。実施の形態1においては、圧縮機50と除霜水処理部100とは、共に収納部101に配設される。従って、本実施の形態における下凹部202bおよび収納部231は、実施の形態1における下凹部22bおよび収納部101よりも小さくすることができる。 The compressor 220 and the defrost water treatment unit 230 are separately disposed above and below the heat insulation box 201. In Embodiment 1, the compressor 50 and the defrost water treatment unit 100 are both disposed in the storage unit 101. Accordingly, the lower recess 202b and the storage portion 231 in the present embodiment can be made smaller than the lower recess 22b and the storage portion 101 in the first embodiment.
 以上のように、圧縮機220は、冷蔵庫本体200の奥側上部の天面収納部201bに配設される。これにより、断熱箱体201の奥側下部の下凹部202bおよび収納部231を小さくすることができる。この結果、断熱箱体201の剛性が増す。 As described above, the compressor 220 is disposed in the top surface storage portion 201b at the upper rear side of the refrigerator body 200. Thereby, the lower recessed part 202b and the accommodating part 231 of the back | inner side lower part of the heat insulation box 201 can be made small. As a result, the rigidity of the heat insulating box 201 is increased.
 圧縮機220が冷蔵庫本体200の奥側上部に配設されるため、圧縮機220の廃熱を冷蔵庫本体200の上面に循環させることができる。これにより、冷蔵庫本体200の上面の結露が防止される。上面の結露を防止するための発熱体を別途配設する必要が無い。従って、断熱箱体201の上面の断熱壁を薄くすることができ、貯蔵室の容積を大きくすることができる。 Since the compressor 220 is disposed on the upper back side of the refrigerator main body 200, the waste heat of the compressor 220 can be circulated to the upper surface of the refrigerator main body 200. Thereby, dew condensation on the upper surface of the refrigerator body 200 is prevented. There is no need to separately provide a heating element for preventing condensation on the upper surface. Therefore, the heat insulation wall on the upper surface of the heat insulation box 201 can be thinned, and the volume of the storage chamber can be increased.
 側部冷媒配管52および前部冷媒配管53は、断熱箱体201の上側に開放端を有する。従って、配管を伸ばすことなく、配管の溶接箇所を断熱箱体凹部である天面収納部201bに集約することができる。このため、製造時の作業性が向上する。 The side refrigerant pipe 52 and the front refrigerant pipe 53 have an open end on the upper side of the heat insulation box 201. Therefore, it is possible to consolidate the welded portions of the piping into the top surface storage portion 201b which is a heat insulating box recess without extending the piping. For this reason, workability at the time of manufacture improves.
 (実施の形態3)
 図8は、本発明の実施の形態3における冷蔵庫の断面図である。図9は、本実施の形態の冷蔵庫の別な構成を示す断面図である。図8および図9は、冷蔵庫を右側方から見た断面図である。本実施の形態において、実施の形態1と同じ構成に関しては、同じ符号を用いる。また、上記実施の形態1と2とを組み合わせて適用することに支障がない構成や技術思想は、組み合わせて適用することが可能である。
(Embodiment 3)
FIG. 8 is a cross-sectional view of the refrigerator in the third embodiment of the present invention. FIG. 9 is a cross-sectional view showing another configuration of the refrigerator according to the present embodiment. 8 and 9 are cross-sectional views of the refrigerator as viewed from the right side. In the present embodiment, the same reference numerals are used for the same configurations as those in the first embodiment. In addition, configurations and technical ideas that do not hinder the application of the first and second embodiments in combination can be applied in combination.
 図8および図9に示すように、冷蔵庫本体300の断熱箱体301は、樹脂製の内箱302と、金属磁性体製の外箱303と、それらの間に充填された断熱材24とから構成される。内箱302と、外箱303と、断熱材24とにより、断熱壁が形成される。断熱箱体301は、前面に、前面開口部301aを有する。 As shown in FIGS. 8 and 9, the heat insulating box body 301 of the refrigerator main body 300 includes a resin inner box 302, a metal magnetic outer box 303, and a heat insulating material 24 filled therebetween. Composed. A heat insulating wall is formed by the inner box 302, the outer box 303, and the heat insulating material 24. The heat insulation box 301 has a front opening 301a on the front surface.
 外箱303は、主部材360と上面前側部材362と背面部材361とから構成される。主部材360は、底面部360aと左右の側面部との一体化により形成される。 The outer box 303 includes a main member 360, a top front member 362, and a back member 361. The main member 360 is formed by integrating the bottom surface portion 360a and the left and right side surface portions.
 断熱箱体301は、圧縮機220を配設するための断熱箱体凹部である天面収納部301bを有する。なお、天面収納部301bは、断熱箱体301の底面部360aではなく、断熱箱体301の最上部の貯蔵室の奥側上部に配設される。 The heat insulation box 301 has a top surface storage portion 301b that is a heat insulation box recess for disposing the compressor 220. The top surface storage portion 301b is disposed not on the bottom surface portion 360a of the heat insulating box body 301 but on the upper back side of the uppermost storage chamber of the heat insulating box body 301.
 断熱箱体301は、断熱箱体301の背面を形成する背面部材361と、断熱箱体301の上面を形成する上面前側部材362と、天面収納部301bの奥側と下面側を形成する上面奥側部材313とを有する。 The heat insulation box 301 includes a back member 361 that forms the back surface of the heat insulation box 301, a top front member 362 that forms the top surface of the heat insulation box 301, and a top surface that forms the back and bottom surfaces of the top surface storage portion 301b. A rear member 313.
 制御基板358は、圧縮機220よりも低い位置に配設される。制御基板358の収納部は、上面奥側部材313により形成される。上面奥側部材313は、金属板によって形成される。 The control board 358 is disposed at a position lower than the compressor 220. The storage portion of the control board 358 is formed by the upper surface back side member 313. The upper surface back side member 313 is formed of a metal plate.
 上面奥側部材313は、上面と背面とが開口した箱形状を有する。上面奥側部材313は、内箱302の奥側上部に設けられた天面収納部301bと対向して形成される。上面奥側部材313は、背面部材361と、上面前側部材362とを一体により形成される。断熱箱体301は、内箱302と外箱303との間に、断熱材24が充填されて構成される。 The upper surface back side member 313 has a box shape with an upper surface and a back surface opened. The upper surface rear side member 313 is formed to face the top surface storage portion 301 b provided at the upper side of the inner box 302. The upper surface back side member 313 is formed by integrating a back surface member 361 and an upper surface front side member 362. The heat insulating box 301 is configured by filling the heat insulating material 24 between the inner box 302 and the outer box 303.
 図8に示すように、上面奥側部材313には、圧縮機支持部313aに支持された圧縮機220に加え、冷凍サイクル関連機器の中で外気に曝される外部機器である制御基板358が収納される。この様な場合であっても、断熱箱体301は、底面部に加え、奥側上部の剛性が高くなる。 As shown in FIG. 8, in addition to the compressor 220 supported by the compressor support portion 313a, a control board 358, which is an external device exposed to the outside air among the refrigeration cycle related devices, is provided on the upper surface rear side member 313. Stored. Even in such a case, the heat insulating box 301 has higher rigidity on the upper side in addition to the bottom surface.
 また、上面奥側部材313が金属板により形成されたことにより、更に断熱箱体301の剛性が高くなる。これにより、冷蔵庫本体300の耐久性が向上する。 Further, since the upper surface back side member 313 is formed of a metal plate, the rigidity of the heat insulating box 301 is further increased. Thereby, durability of the refrigerator main body 300 improves.
 図8の構成では、重量が大きい圧縮機220が上方に配設される。これにより、冷蔵庫本体300の重心は奥側になる。上面奥側部材313は、樹脂よりも比重の大きい金属板により形成される。これにより、冷蔵庫本体300の重心が奥側であっても、冷蔵庫本体300が前側に転倒することが抑制される。つまり、冷蔵庫の安全性が向上する。 In the configuration of FIG. 8, the compressor 220 having a large weight is disposed above. Thereby, the center of gravity of the refrigerator main body 300 is on the back side. The upper surface back side member 313 is formed of a metal plate having a specific gravity greater than that of the resin. Thereby, even if the center of gravity of the refrigerator main body 300 is on the back side, the refrigerator main body 300 is prevented from falling to the front side. That is, the safety of the refrigerator is improved.
 圧縮機支持部313aの下面に、断熱箱体301と連続した断熱材24を充填したことにより、圧縮機支持部313aの下面の剛性と共に、断熱箱体301の剛性が高くなる。これにより、冷蔵庫本体300の耐久性が向上する。本実施の形態においては、天面収納部301bには、段差が設けられる。この段差に、圧縮機220に加え、制御基板358が収納される。この様な構成であっても、天面収納部301bの剛性が高くなる。 By filling the lower surface of the compressor support part 313a with the heat insulating material 24 continuous with the heat insulation box body 301, the rigidity of the heat insulation box body 301 is increased together with the rigidity of the lower surface of the compressor support part 313a. Thereby, durability of the refrigerator main body 300 improves. In the present embodiment, a step is provided in the top surface storage portion 301b. In addition to the compressor 220, a control board 358 is accommodated in this step. Even with such a configuration, the rigidity of the top surface storage portion 301b is increased.
 一方、図9は、本実施の形態の冷蔵庫の別な構成として、圧縮機220と制御基板358とが、下方に配置された構成である。また、この構成では、収納部331には段差が設けられる。 On the other hand, FIG. 9 shows a configuration in which a compressor 220 and a control board 358 are arranged below as another configuration of the refrigerator of the present embodiment. In this configuration, the storage portion 331 is provided with a step.
 収納部331の内部には、除霜水処理部330と圧縮機220とが配設される。また、除霜水処理部330および圧縮機220の上方に段差が設けられ、制御基板358が配設される。断熱箱体301は、断熱箱体301の背面を形成する背面部材361と、断熱箱体301の上面を形成する上面前側部材362と、収納部331の奥側下部の機械室を形成する下面奥側部材323とを有する。 Inside the storage unit 331, a defrost water treatment unit 330 and a compressor 220 are disposed. Further, a step is provided above the defrosting water treatment unit 330 and the compressor 220, and a control board 358 is disposed. The heat insulation box 301 includes a back member 361 that forms the back surface of the heat insulation box 301, a top front member 362 that forms the top surface of the heat insulation box 301, and a bottom surface that forms a machine room at the bottom on the back side of the storage unit 331. Side member 323.
 制御基板358は、圧縮機220よりも高い位置に配設される。制御基板358の収納部は、下面奥側部材323により形成される。下面奥側部材323は、金属板により、段差状に形成される。 The control board 358 is disposed at a position higher than the compressor 220. The storage portion of the control board 358 is formed by the lower surface back side member 323. The lower surface back side member 323 is formed in a step shape by a metal plate.
 下面奥側部材323は、背面が開口した箱形状を有する。下面奥側部材323は、背面部材361と上面前側部材362とを、一体により形成される。断熱箱体301は、内箱302と外箱303との間に、断熱材24が充填されて構成される。このように、収納部331に段差を設け、圧縮機220に加え、制御基板358を収納する構成であっても、収納部331の剛性が高くなる。 The lower back member 323 has a box shape with an open rear surface. The lower surface back side member 323 is formed by integrating the back surface member 361 and the upper surface front side member 362. The heat insulating box 301 is configured by filling the heat insulating material 24 between the inner box 302 and the outer box 303. As described above, even when the storage portion 331 is provided with a step and the control board 358 is stored in addition to the compressor 220, the rigidity of the storage portion 331 is increased.
 (実施の形態4)
 図10は、本発明の実施の形態4における冷蔵庫の断面図である。図10は、冷蔵庫を右側方から見た断面図である。図11は、本実施の形態の冷蔵庫の断熱箱体の分解斜視図である。本実施の形態において、実施の形態1~3と同じ構成に関しては、同じ符号を用いる。また、実施の形態1~3と同様の構成に関しては、同様の作用効果を奏するため、説明は省略する。本実施の形態は、制御基板458が、圧縮機220よりも低い位置に配設された点で、実施の形態2と異なる。
(Embodiment 4)
FIG. 10 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention. FIG. 10 is a cross-sectional view of the refrigerator as viewed from the right side. FIG. 11 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment. In the present embodiment, the same reference numerals are used for the same configurations as in the first to third embodiments. Further, regarding the same configuration as in the first to third embodiments, the same operational effects are obtained, and thus the description thereof is omitted. The present embodiment is different from the second embodiment in that the control board 458 is disposed at a position lower than the compressor 220.
 図10および図11に示すように、冷蔵庫本体400の断熱箱体401は、実施の形態2と同様に、内箱202と、外箱403と、それらの間に充填された断熱材24とから構成される。断熱箱体401は、奥側上部に、断熱箱体凹部である天面収納部401bを有する。つまり、断熱箱体401は剛性が高い。 As shown in FIGS. 10 and 11, the heat insulating box 401 of the refrigerator main body 400 includes an inner box 202, an outer box 403, and a heat insulating material 24 filled between them, as in the second embodiment. Composed. The heat insulation box 401 has a top surface storage portion 401b which is a heat insulation box recess in the upper part on the back side. That is, the heat insulation box 401 has high rigidity.
 外箱403は、主部材260と上面前側部材262と上面奥側部材413と背面部材461とから構成される。上面奥側部材413は、樹脂製であり、上面と背面とが開放された形状を有する。上面奥側部材413は、内箱202の奥側の上部に形成された上凹部202aと対向するように形成される。上面奥側部材413と内箱202と主部材260との間に断熱材24が充填される。この様にして、天面収納部401bが形成される。 The outer box 403 includes a main member 260, an upper surface front side member 262, an upper surface back side member 413, and a back surface member 461. The upper surface back side member 413 is made of resin and has a shape in which the upper surface and the back surface are open. The upper surface rear side member 413 is formed so as to face the upper concave portion 202 a formed in the upper portion on the inner side of the inner box 202. The heat insulating material 24 is filled between the upper surface back side member 413, the inner box 202, and the main member 260. In this way, the top surface storage portion 401b is formed.
 上面奥側部材413は、圧縮機支持部413aと、圧縮機支持部413aから下方に延びるフランジ部413bとを有する。フランジ部413bの左右方向の中央には、制御基板収容部413cが形成される。圧縮機220は、圧縮機支持部413aに支持される。冷蔵庫本体400の動作を制御するための制御基板458は、制御基板収容部413cに収容される。 The upper surface back side member 413 has a compressor support part 413a and a flange part 413b extending downward from the compressor support part 413a. A control board housing portion 413c is formed at the center in the left-right direction of the flange portion 413b. The compressor 220 is supported by the compressor support portion 413a. A control board 458 for controlling the operation of the refrigerator main body 400 is housed in the control board housing portion 413c.
 側部冷媒配管52の、少なくとも製氷室30、第1の冷凍室31、第2の冷凍室32と対向する部分には、真空断熱材70が設けられる。真空断熱材70は、主部材260の断熱材24の側に、側部冷媒配管52を挟んで固着され。本実施の形態における真空断熱材70は、断熱材24よりも比重が大きく、かつ、熱伝導率が小さい。 A vacuum heat insulating material 70 is provided in a portion of the side refrigerant pipe 52 facing at least the ice making chamber 30, the first freezing chamber 31, and the second freezing chamber 32. The vacuum heat insulating material 70 is fixed to the heat insulating material 24 side of the main member 260 with the side refrigerant pipe 52 interposed therebetween. The vacuum heat insulating material 70 in the present embodiment has a specific gravity larger than that of the heat insulating material 24 and has a low thermal conductivity.
 真空断熱材70は、断熱箱体401の上下方向の中心より、下方における面積または厚みが、上方における面積または厚みより大きい。断熱箱体401の上下方向の中心とは、冷蔵室29の下端面29b、もしくは、図10の一点鎖線25aに示すとおりの、仕切壁25の上下方向の中心である。 The vacuum heat insulating material 70 has a lower area or thickness greater than the upper area or thickness from the center of the heat insulating box 401 in the vertical direction. The center in the vertical direction of the heat insulating box 401 is the vertical center of the partition wall 25 as indicated by the lower end surface 29b of the refrigerator compartment 29 or the one-dot chain line 25a in FIG.
 圧縮機カバー423は、上面奥側部材413の上面および背面を覆う。圧縮機カバー423は、上面奥側部材413の制御基板収容部413cの左右方向の外側に対応する位置に、排気口423aを有する。 The compressor cover 423 covers the upper surface and the back surface of the upper surface back side member 413. The compressor cover 423 has an exhaust port 423a at a position corresponding to the outer side in the left-right direction of the control board housing portion 413c of the upper surface back side member 413.
 従来の冷蔵庫における圧縮機支持台は、長期間、圧縮機を支持する。従って、従来の圧縮機支持台は、充分な剛性を得るために、外箱よりも厚い鋼板を用いて形成される。このため、従来の冷蔵庫は重量が大きい。本実施の形態においては、冷蔵庫本体400の上面奥側は、上面奥側部材413と内箱202との間に断熱材24を充填して構成される。この構成により、充分な剛性が得られ、重量の大きい鋼板製の圧縮機支持台が不要である。また、制御基板収容部413cが一体的に成形されるため、制御基板を収容するための、別な構成が不要である。さらに、上面奥側部材413は樹脂製である。従って、冷蔵庫の部品点数および重量が低減される。これにより、冷蔵庫を組み立てる際の、作業性が向上する。特に、冷蔵庫の上部における重量が低減されるため、転倒し難い構成となる。 The compressor support in the conventional refrigerator supports the compressor for a long time. Therefore, the conventional compressor support base is formed using a steel plate thicker than the outer box in order to obtain sufficient rigidity. For this reason, the conventional refrigerator is heavy. In the present embodiment, the upper surface back side of the refrigerator main body 400 is configured by filling the heat insulating material 24 between the upper surface back side member 413 and the inner box 202. With this configuration, sufficient rigidity can be obtained, and a heavy steel plate compressor support is unnecessary. Moreover, since the control board accommodating part 413c is integrally molded, a separate configuration for accommodating the control board is not necessary. Furthermore, the upper surface back side member 413 is made of resin. Therefore, the number of parts and the weight of the refrigerator are reduced. Thereby, workability | operativity at the time of assembling a refrigerator improves. In particular, since the weight in the upper part of the refrigerator is reduced, it is difficult to overturn.
 圧縮機220は、圧縮機支持部413aに支持される。制御基板458は、圧縮機支持部413aより下方に位置する制御基板収容部413cに収容される。つまり、制御基板458は、圧縮機220より低い位置に配設される。温かい空気は上昇するため、圧縮機220からの排熱によって制御基板458が温められることが無い。つまり、制御基板458の温度上昇が抑制される。 The compressor 220 is supported by the compressor support portion 413a. The control board 458 is accommodated in a control board accommodation part 413c located below the compressor support part 413a. That is, the control board 458 is disposed at a position lower than the compressor 220. Since warm air rises, the control board 458 is not warmed by exhaust heat from the compressor 220. That is, the temperature rise of the control board 458 is suppressed.
 本実施の形態においては、冷媒としてイソブタンが用いられる。イソブタンは可燃性であり、かつ、空気より比重が大きい。圧縮機カバー423は、制御基板458の左右方向の外側に、排気口423aを有する。つまり、制御基板458の直上には、排気口423aは無い。このため、仮に、可燃性である冷媒が漏洩した場合であっても、冷媒は、制御基板458の横を通って下へ流れる。このため、制御基板458への冷媒の接触が抑制される。 In this embodiment, isobutane is used as the refrigerant. Isobutane is flammable and has a higher specific gravity than air. The compressor cover 423 has an exhaust port 423 a outside the control board 458 in the left-right direction. That is, there is no exhaust port 423a immediately above the control board 458. For this reason, even if the flammable refrigerant leaks, the refrigerant flows down through the side of the control board 458. For this reason, the contact of the refrigerant with the control board 458 is suppressed.
 本実施の形態の形態においては、制御基板458は、断熱箱体401の左右方向の中央に配設され、かつ、排気口423aは、制御基板458の両側に形成される。一方、制御基板458は、断熱箱体401の片側に寄せて配設することもできる。この場合、排気口423aは、制御基板458に対して、片側に形成することができる。さらに、圧縮機220の隣にファンなどの通風機構を設けることにより、制御基板458の側から排気口423aの側へ風を流すことができる。この構成により、制御基板458への冷媒の接触がさらに抑制されると共に、圧縮機220の温度上昇が抑制される。 In the present embodiment, the control board 458 is disposed at the center in the left-right direction of the heat insulation box 401, and the exhaust ports 423a are formed on both sides of the control board 458. On the other hand, the control board 458 can be disposed close to one side of the heat insulating box 401. In this case, the exhaust port 423a can be formed on one side with respect to the control board 458. Further, by providing a ventilation mechanism such as a fan next to the compressor 220, it is possible to flow air from the control board 458 side to the exhaust port 423a side. With this configuration, the contact of the refrigerant with the control board 458 is further suppressed, and the temperature rise of the compressor 220 is suppressed.
 真空断熱材70は、側部冷媒配管52と貯蔵室との間に配設される。これにより、側部冷媒配管52から放熱された熱が貯蔵室に侵入することが大幅に低減される。 The vacuum heat insulating material 70 is disposed between the side refrigerant pipe 52 and the storage chamber. This greatly reduces the heat radiated from the side refrigerant pipe 52 from entering the storage chamber.
 天面収納部401bは、断熱箱体401の上部に位置する。圧縮機220、凝縮器、配管などが、天面収納部401bに配設されることにより、冷蔵庫本体400の重心位置が高くなる。特に、圧縮機220は、冷蔵庫本体400を構成する部品の中で、重量が大きい。このため、冷蔵庫本体400は、転倒し易くなる。本実施の形態においては、真空断熱材70は、断熱箱体401の上下方向の中心より、下方における面積または厚みが、上方における面積または厚みより大きい。従って、冷蔵庫本体400の重心が下方へ移動するため、冷蔵庫本体400の転倒が防止される。 The top surface storage unit 401 b is located at the top of the heat insulation box 401. By arranging the compressor 220, the condenser, the piping, and the like in the top surface storage unit 401b, the position of the center of gravity of the refrigerator main body 400 is increased. In particular, the compressor 220 has a large weight among the components constituting the refrigerator main body 400. For this reason, the refrigerator main body 400 easily falls. In the present embodiment, the vacuum heat insulating material 70 has a lower area or thickness than the upper area or thickness from the center of the heat insulating box 401 in the vertical direction. Therefore, since the center of gravity of the refrigerator body 400 moves downward, the refrigerator body 400 is prevented from falling.
 真空断熱材70は、無機材料により構成される。真空断熱材70の密度は、200~250kg/mである。断熱材24は、ウレタン等の発泡断熱材により構成される。断熱材24の密度は、20~50kg/mである。従って、真空断熱材70は、断熱材24の4倍以上の密度を有する。 The vacuum heat insulating material 70 is made of an inorganic material. The density of the vacuum heat insulating material 70 is 200 to 250 kg / m 3 . The heat insulating material 24 is configured by a foam heat insulating material such as urethane. The density of the heat insulating material 24 is 20 to 50 kg / m 3 . Therefore, the vacuum heat insulating material 70 has a density four times or more that of the heat insulating material 24.
 冷蔵室ドア29aは回転扉式であり、また、製氷室ドア30a、第1の冷凍室ドア31a、第2の冷凍室ドア32a、野菜室ドア33aは引き出し式であると説明した。一方、製氷室ドア30a、第1の冷凍室ドア31a、第2の冷凍室ドア32a、野菜室ドア33aが回転扉式である場合は、引き出し式である場合に比べて、ドアの開閉に伴う、冷蔵庫本体400の重心位置の変化が少ない。つまり、ドアを回転扉式にすることにより、冷蔵庫本体400の転倒が、さらに防止される。 It has been described that the refrigerator compartment door 29a is a rotary door type, and the ice making room door 30a, the first freezer compartment door 31a, the second freezer compartment door 32a, and the vegetable compartment door 33a are a drawer type. On the other hand, when the ice making door 30a, the first freezer compartment door 31a, the second freezer compartment door 32a, and the vegetable compartment door 33a are of the revolving door type, they are accompanied by opening and closing of the door as compared with the case of the drawer type. The change in the center of gravity position of the refrigerator main body 400 is small. That is, the refrigerator body 400 is further prevented from falling by making the door a revolving door type.
 圧縮機220は、断熱箱体401の奥側に配設される。つまり、冷蔵庫本体400の前側よりも、奥側の重量が増加する。これにより、冷蔵庫本体400は、前側、つまり、使用者の方向へ転倒する可能性が低減される。 The compressor 220 is disposed on the back side of the heat insulating box 401. That is, the weight on the back side is increased as compared with the front side of the refrigerator main body 400. Thereby, possibility that the refrigerator main body 400 will fall to the front side, ie, a user's direction, is reduced.
 圧縮機220は、断熱箱体401の奥側上部に形成された天面収納部401bに配設される。これにより、冷蔵庫本体400の高さを高くすること無く、従来と同等の冷蔵室29の間口高さが確保される。つまり、使い勝手が損なわれない。冷蔵室29の奥側上部は、使用者の手の届き難い場所である。従って、内箱202の上凹部202aが、冷蔵室29の内側に突き出した形状であっても、使い勝手は損なわれない。 The compressor 220 is disposed in a top surface storage portion 401 b formed at the upper back of the heat insulating box 401. Thereby, the opening height of the refrigerator compartment 29 equivalent to the past is ensured without increasing the height of the refrigerator main body 400. In other words, usability is not impaired. The upper part on the back side of the refrigerator compartment 29 is a place that is difficult for the user to reach. Therefore, even if the upper recessed portion 202a of the inner box 202 protrudes to the inside of the refrigerator compartment 29, the usability is not impaired.
 以上、本実施の形態においては、圧縮機支持部413aと制御基板収容部413cとを一体化により形成して、上面奥側部材413が構成される。これにより、冷蔵庫本体400の部品点数が削減される。また、冷蔵庫本体400の組み立てが容易となる。 As described above, in the present embodiment, the compressor support portion 413a and the control board housing portion 413c are integrally formed to constitute the upper surface back side member 413. Thereby, the number of parts of the refrigerator main body 400 is reduced. Moreover, the refrigerator main body 400 can be easily assembled.
 制御基板458は、圧縮機220よりも低い位置に配設される。これにより、圧縮機220の排熱による、制御基板458の温度上昇が防止される。つまり、冷蔵庫本体400の信頼性が向上する。 The control board 458 is disposed at a position lower than the compressor 220. Thereby, the temperature rise of the control board 458 due to the exhaust heat of the compressor 220 is prevented. That is, the reliability of the refrigerator main body 400 is improved.
 断熱箱体401は、上面奥側部材413と、外箱403と、内箱202と、これらの間に充填された断熱材24から構成される。この構成により、圧縮機220が支持される。また、上面奥側部材413は樹脂材料により構成される。つまり、圧縮機220を支持する強度が確保されると共に、冷蔵庫本体400の上方が軽量化される。これにより、冷蔵庫本体400の転倒が防止され、安全性が向上する。 The heat insulation box 401 includes an upper surface back side member 413, an outer box 403, an inner box 202, and a heat insulating material 24 filled therebetween. With this configuration, the compressor 220 is supported. Moreover, the upper surface back side member 413 is comprised with the resin material. That is, the strength for supporting the compressor 220 is ensured, and the upper portion of the refrigerator main body 400 is reduced in weight. Thereby, the fall of the refrigerator main body 400 is prevented, and safety is improved.
 断熱材24よりも比重が大きい真空断熱材70が、断熱箱体401の上下方向の中心よりも下方に多く配設される。これにより、冷蔵庫本体400の重心が下方へ移動するため、冷蔵庫本体400の転倒が防止される。 The vacuum heat insulating material 70 whose specific gravity is larger than that of the heat insulating material 24 is arranged more below the center of the heat insulating box 401 in the vertical direction. Thereby, since the center of gravity of the refrigerator main body 400 moves downward, the refrigerator main body 400 is prevented from falling.
 圧縮機カバー423の排気口423aは、制御基板収容部413cの左右方向の外側に形成される。これにより、可燃性の冷媒であるイソブタンが漏洩した場合であっても、イソブタンは空気よりも比重の大きいため、イソブタンが、制御基板収容部413cに流れることが抑制される。つまり、冷蔵庫本体400の安全性が確保される。 The exhaust port 423a of the compressor cover 423 is formed on the outer side in the left-right direction of the control board housing portion 413c. As a result, even if isobutane, which is a flammable refrigerant, leaks, isobutane has a greater specific gravity than air, so that isobutane is prevented from flowing into the control board housing portion 413c. That is, the safety of the refrigerator main body 400 is ensured.
 圧縮機220は、断熱箱体401の奥側上部に形成された天面収納部401bに配設される。これにより、冷蔵庫本体400の高さを高くすること無く、従来と同等の前面開口部201aの面積が確保される。つまり、使い勝手が損なわれることが無い。 The compressor 220 is disposed in a top surface storage portion 401 b formed at the upper back of the heat insulating box 401. Thereby, the area of the front opening 201a equivalent to the conventional one is ensured without increasing the height of the refrigerator main body 400. That is, usability is not impaired.
 (実施の形態5)
 図12は、本発明の実施の形態5における冷蔵庫の断面図である。図12は、冷蔵庫を右側方から見た断面図である。図13は、本実施の形態の冷蔵庫の断熱箱体の分解斜視図である。本実施の形態において、実施の形態1~4と同じ構成に関しては、同じ符号を用いる。また、実施の形態1~4と同様の構成に関しては、同様の作用効果を奏するため、説明は省略する。本実施の形態は、制御基板458が、圧縮機220よりも高い位置に配設された点で、実施の形態4と異なる。
(Embodiment 5)
FIG. 12 is a cross-sectional view of the refrigerator in the fifth embodiment of the present invention. FIG. 12 is a cross-sectional view of the refrigerator as viewed from the right side. FIG. 13 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment. In the present embodiment, the same reference numerals are used for the same configurations as in the first to fourth embodiments. Further, regarding the same configuration as in the first to fourth embodiments, since the same function and effect are obtained, the description thereof is omitted. The present embodiment is different from the fourth embodiment in that the control board 458 is disposed at a position higher than the compressor 220.
 外箱503は、主部材260と上面前側部材262と上面奥側部材513と背面部材561とから構成される。上面奥側部材513は、樹脂製であり、上面と背面とが開放された形状を有する。上面奥側部材513は、内箱202の奥側の上部に形成された上凹部202aと対向するように形成される。上面奥側部材513と内箱202と主部材260との間に断熱材24が充填される。この様にして、断熱箱体凹部である天面収納部501bが形成される。 The outer box 503 includes a main member 260, an upper surface front side member 262, an upper surface back side member 513, and a back surface member 561. The upper surface back side member 513 is made of resin and has a shape in which the upper surface and the back surface are open. The upper surface back side member 513 is formed so as to face the upper concave portion 202 a formed in the upper part on the back side of the inner box 202. The heat insulating material 24 is filled between the upper surface back side member 513, the inner box 202, and the main member 260. In this way, the top surface storage portion 501b which is a heat insulating box recess is formed.
 上面奥側部材513は、二重底の構造を有する。上面奥側部材513は、下側の底面に、圧縮機支持部513aを有する。上面奥側部材513は、上側の底面に、制御基板収容部513cを有する。圧縮機220は、圧縮機支持部513aに支持される。制御基板458は、制御基板収容部513cに配設される。この様にして、圧縮機220および制御基板458は、天面収納部501bに配設される。 The upper back member 513 has a double bottom structure. The upper surface back side member 513 has a compressor support portion 513a on the lower bottom surface. The upper surface back side member 513 has a control board housing portion 513c on the upper bottom surface. The compressor 220 is supported by the compressor support portion 513a. The control board 458 is disposed in the control board housing part 513c. Thus, the compressor 220 and the control board 458 are arrange | positioned at the top | upper surface accommodating part 501b.
 圧縮機カバー523は、上面奥側部材513の上面および背面を覆う。圧縮機カバー523は、冷蔵庫本体500の奥側となる位置に、排気口523aを有する。 The compressor cover 523 covers the upper surface and the back surface of the upper surface back side member 513. The compressor cover 523 has an exhaust port 523 a at a position on the back side of the refrigerator main body 500.
 冷媒としては、イソブタンが用いられる。イソブタンは、引火性ガスである。イソブタンは、空気中での爆発限界が1.8~8.4vol%である。イソブタンは、発火温度が460℃である。このため、イソブタンが漏洩し、制御基板458に流れ込んだ場合、制御基板458で発生した火花に、イソブタンが接触する可能性がある。 As the refrigerant, isobutane is used. Isobutane is a flammable gas. Isobutane has an explosion limit in the air of 1.8 to 8.4 vol%. Isobutane has an ignition temperature of 460 ° C. For this reason, when isobutane leaks and flows into the control board 458, the isobutane may come into contact with the spark generated on the control board 458.
 一方、イソブタンは、空気よりも比重が大きい。制御基板収容部513cは、上面奥側部材513の上側の底面に位置する。つまり、制御基板458は、圧縮機220よりも上に位置する。従って、イソブタンが漏洩した場合であっても、イソブタンは、制御基板458に流れ込み難い。つまり、冷蔵庫本体500の安全性が確保される。 On the other hand, isobutane has a higher specific gravity than air. The control board housing portion 513c is located on the upper bottom surface of the upper surface back side member 513. That is, the control board 458 is located above the compressor 220. Therefore, even if isobutane leaks, it is difficult for isobutane to flow into the control board 458. That is, the safety of the refrigerator main body 500 is ensured.
 圧縮機220は、制御基板収容部513cの下に位置する。ここで、制御基板収容部513cにシート状の断熱材を設けることにより、圧縮機220の排熱が制御基板収容部513cに伝わることが低減される。つまり、制御基板458の温度上昇が抑制される。また、断熱材24を上面奥側部材513の上側の底面の内部に充填することにより、部品点数を増やすことなく、さらに断熱効果が得られる。 The compressor 220 is located under the control board housing part 513c. Here, by providing the control board housing part 513c with a sheet-like heat insulating material, it is reduced that the exhaust heat of the compressor 220 is transmitted to the control board housing part 513c. That is, the temperature rise of the control board 458 is suppressed. Further, by filling the heat insulating material 24 inside the upper bottom surface of the upper surface back side member 513, a heat insulating effect can be further obtained without increasing the number of parts.
 制御基板458を、圧縮機220の真上ではなく、左右方向に外れた位置に配設した場合、制御基板458と圧縮機220との距離が大きくなる。これにより、圧縮機220から制御基板458への熱の伝導が低減される。さらに、天面収納部501bの上下方向のスペースが有効利用されるため、上凹部202aを小さくすることにより、貯蔵室の容積を大きくすることができる。 When the control board 458 is disposed at a position deviated in the left-right direction instead of directly above the compressor 220, the distance between the control board 458 and the compressor 220 is increased. As a result, heat conduction from the compressor 220 to the control board 458 is reduced. Furthermore, since the space in the vertical direction of the top surface storage unit 501b is effectively used, the volume of the storage chamber can be increased by reducing the upper recess 202a.
 制御基板458のカバーは、圧縮機カバー523と一体で形成される。このため、冷蔵庫本体500の部品点数が削減される。また、冷蔵庫本体500の組み立てが容易となる。 The cover of the control board 458 is formed integrally with the compressor cover 523. For this reason, the number of parts of the refrigerator main body 500 is reduced. Further, the refrigerator main body 500 can be easily assembled.
 圧縮機カバー523は、冷蔵庫本体500の背面に対して、上からの差込み式に構成することができる。この場合、圧縮機カバー523は、断熱箱体501に差し込まれた後に、上からネジにより固定される。つまり、上からの作業のみにより、圧縮機カバー523が着脱される。冷蔵庫本体500は、後方の壁に近接して設置される場合が多い。この構成により、制御基板458が故障した場合において、冷蔵庫本体500を前方に動かすこと無く、メンテナンスを行うことができる。 The compressor cover 523 can be configured to be a plug-in type from above with respect to the back surface of the refrigerator main body 500. In this case, the compressor cover 523 is fixed by screws from above after being inserted into the heat insulating box 501. That is, the compressor cover 523 is attached and detached only from the top. The refrigerator main body 500 is often installed close to the rear wall. With this configuration, when the control board 458 fails, maintenance can be performed without moving the refrigerator main body 500 forward.
 冷媒として用いられるイソブタンは、可燃性で、かつ、空気より比重が大きい。圧縮機220または、その周辺の溶接箇所から冷媒が漏洩した場合、冷媒は、排気口523aから冷蔵庫本体500の後方へ排出される。このため、冷媒が制御基板収容部513cへ流れ込むことが抑制される。つまり、冷蔵庫本体500の安全性が向上する。 Isobutane used as a refrigerant is flammable and has a higher specific gravity than air. When the refrigerant leaks from the compressor 220 or the welded portion around the compressor 220, the refrigerant is discharged from the exhaust port 523a to the rear of the refrigerator main body 500. For this reason, it is suppressed that a refrigerant | coolant flows into the control board accommodating part 513c. That is, the safety of the refrigerator main body 500 is improved.
 (実施の形態6)
 図14は、本発明の実施の形態6における冷蔵庫の断面図である。図14は、冷蔵庫を右側方から見た断面図である。図15は、本実施の形態の冷蔵庫の断熱箱体の分解斜視図である。本実施の形態において、実施の形態1~5と同じ構成に関しては、同じ符号を用いる。また、実施の形態1~5と同様の構成に関しては、同様の作用効果を奏するため、説明は省略する。本実施の形態は、断熱箱体601の上部の構成が、実施の形態2~5と異なる。
(Embodiment 6)
FIG. 14 is a cross-sectional view of the refrigerator in the sixth embodiment of the present invention. FIG. 14 is a cross-sectional view of the refrigerator as viewed from the right side. FIG. 15 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment. In the present embodiment, the same reference numerals are used for the same configurations as in the first to fifth embodiments. Further, regarding the same configuration as in the first to fifth embodiments, since the same function and effect are obtained, the description thereof is omitted. In the present embodiment, the configuration of the upper portion of the heat insulating box 601 is different from those of the second to fifth embodiments.
 外箱603は、主部材260と上面部材662と背面部材661とから構成される。上面部材662の構成については、後に詳細に説明する。外箱603と内箱602との間に断熱材24が充填される。この様にして、断熱箱体601が構成される。 The outer box 603 includes a main member 260, an upper surface member 662, and a back member 661. The configuration of the upper surface member 662 will be described in detail later. The heat insulating material 24 is filled between the outer box 603 and the inner box 602. Thus, the heat insulation box 601 is comprised.
 図15に示すように、上面部材662は、樹脂製であり、上および左右が開放された形状を有する。図15の一点鎖線に示すように、上面部材662は、上面部材662の上端の高さ方向の位置と、主部材260の上端の高さ方向の位置とが一致するように、外箱603の左右の側面部260bの間に配設される。 As shown in FIG. 15, the upper surface member 662 is made of resin and has a shape in which the upper and left and right sides are opened. As shown by the alternate long and short dash line in FIG. 15, the upper surface member 662 is arranged so that the position in the height direction of the upper end of the upper surface member 662 matches the position in the height direction of the upper end of the main member 260. It is disposed between the left and right side portions 260b.
 上面部材662は、奥側の底面に、圧縮機支持部613aを有する。圧縮機支持部613aに、圧縮機220が支持される。上面部材662は、前側に制御基板収容部613cを有する。制御基板収容部613cに、制御基板458が配設される。上面部材662は、圧縮機支持部613aと制御基板収容部613cとの間に、仕切板662cを有する。仕切板662cの高さは、少なくとも圧縮機220の溶接位置より高い。上面部材662には、仕切板662cより圧縮機220の側に、凝縮器669が配設される。この様にして、上面部材662の内部は、機械室604を構成する。 The upper surface member 662 has a compressor support portion 613a on the bottom surface on the back side. The compressor 220 is supported by the compressor support portion 613a. The upper surface member 662 has a control board housing portion 613c on the front side. A control board 458 is disposed in the control board housing portion 613c. The upper surface member 662 includes a partition plate 662c between the compressor support portion 613a and the control board housing portion 613c. The height of the partition plate 662c is at least higher than the welding position of the compressor 220. A condenser 669 is disposed on the upper surface member 662 closer to the compressor 220 than the partition plate 662c. In this way, the inside of the upper surface member 662 constitutes the machine room 604.
 仕切板662cには、ファン611が配設される。ファン611は、上面部材662の内部の空気、つまり機械室604の空気を、前方から後方へ流す。 A fan 611 is disposed on the partition plate 662c. The fan 611 flows the air inside the upper surface member 662, that is, the air in the machine room 604 from the front to the rear.
 冷蔵庫本体600は、使用者が温度設定などを行うための操作部(図示せず)を有する。操作部は、上面部材662の前面に設けられた前面凹部662dの内に配設される。操作部は、制御基板458に接続される。 The refrigerator main body 600 has an operation unit (not shown) for the user to perform temperature setting and the like. The operation portion is disposed in a front recess 662d provided on the front surface of the upper surface member 662. The operation unit is connected to the control board 458.
 上面部材662の前面には、前面凹部662dの左右の外側に、吸気口662eが形成される。上面部材662の背面には、排気口662fが形成される。 The air inlet 662e is formed on the front surface of the upper surface member 662 on the left and right outer sides of the front recess 662d. An exhaust port 662 f is formed on the back surface of the upper surface member 662.
 上面部材662は、前面部材612を介して、内箱602と接合される。前面部材612は、鋼板などの金属磁性体からなる。この構成により、前面開口部201aは、全周にわたり、ガスケット38が密着する。従って、各貯蔵室が密閉される。 The upper surface member 662 is joined to the inner box 602 through the front member 612. The front member 612 is made of a metal magnetic material such as a steel plate. With this configuration, the gasket 38 is in close contact with the front opening 201a over the entire circumference. Therefore, each storage chamber is sealed.
 本実施の形態においては、上面部材662は樹脂製とした。一方、上面部材662は、前面部材612と共に、鋼板などの金属磁性体により、一体で構成することができる。この場合、冷蔵庫本体600の部品点数が削減されると共に、組み立てが容易となる。 In the present embodiment, the upper surface member 662 is made of resin. On the other hand, the upper surface member 662 can be integrally formed of a metal magnetic body such as a steel plate together with the front surface member 612. In this case, the number of parts of the refrigerator main body 600 is reduced and the assembly is facilitated.
 冷蔵庫本体600は、板状の機械室カバー623を有する。機械室カバー623により、機械室604の上面が覆われる。機械室カバー623には、必要に応じて、通気口623aが形成される。 The refrigerator main body 600 has a plate-shaped machine room cover 623. The machine room cover 623 covers the upper surface of the machine room 604. A vent 623a is formed in the machine room cover 623 as necessary.
 以上のように構成された冷蔵庫について、動作、作用を説明する。 The operation and action of the refrigerator configured as described above will be described.
 制御基板458は、冷蔵庫本体600の前側上方に配設される。これにより、制御基板458の交換などを行う場合、冷蔵庫本体600の前面側から作業を行うことができる。つまり、メンテナンスが容易となる。また、制御基板458は、操作部と直接接続される。このため、冷蔵庫本体600の部品点数が削減されると共に、組み立てが容易となる。 The control board 458 is disposed above the front side of the refrigerator main body 600. Thereby, when exchanging control board 458 etc., work can be performed from the front side of refrigerator body 600. That is, maintenance becomes easy. The control board 458 is directly connected to the operation unit. For this reason, the number of parts of the refrigerator main body 600 is reduced and the assembly is facilitated.
 本実施の形態においては、操作部は、上面部材662の前面凹部662dの内部に配設される。一方、操作部は、冷蔵室ドア29aの前面や、冷蔵室29の内部の壁面に配設することができる。この場合、操作部は、使用者の使い勝手を考慮した位置に配設される。具体的には、仕切壁25の中心線25aより高い位置で、かつ、冷蔵庫本体600の前面または、前面開口部201aに近い位置に、操作部が配設される。上記いずれの位置であっても、断熱箱体601の前側上部に配設された制御基板458からの距離は小さい。つまり、配線や構成を簡素にすることができる。 In the present embodiment, the operation unit is disposed inside the front recess 662d of the upper surface member 662. On the other hand, the operation unit can be disposed on the front surface of the refrigerator compartment door 29 a or on the wall surface inside the refrigerator compartment 29. In this case, the operation unit is disposed at a position considering user's usability. Specifically, the operation unit is disposed at a position higher than the center line 25a of the partition wall 25 and at a position close to the front surface of the refrigerator main body 600 or the front opening 201a. In any of the above positions, the distance from the control board 458 disposed on the upper front side of the heat insulating box 601 is small. That is, the wiring and configuration can be simplified.
 圧縮機220は、冷蔵庫本体600の最も奥に、配設される。制御基板458は、冷蔵庫本体600の最も前に、配設される。この構成により、圧縮機220と制御基板458との距離が大きい。従って、制御基板458が受ける圧縮機220からの排熱の影響は小さい。つまり、制御基板458の温度上昇が抑制される。このため、制御基板458の信頼性が向上する。 The compressor 220 is disposed at the back of the refrigerator main body 600. The control board 458 is disposed in front of the refrigerator main body 600. With this configuration, the distance between the compressor 220 and the control board 458 is large. Therefore, the influence of the exhaust heat from the compressor 220 received by the control board 458 is small. That is, the temperature rise of the control board 458 is suppressed. For this reason, the reliability of the control board 458 is improved.
 上面部材662の内部が機械室604となるため、断熱箱体601の上部全面が機械室604となる。従って、側部冷媒配管52および前部冷媒配管53などが、断熱箱体601のどの位置に配設された場合であっても、配管を真上に伸ばすことにより、機械室604に導入することができる。つまり、配管などの形状を簡素にすることができる。さらに、配管の接続などの組み立てが容易となる。 Since the inside of the upper surface member 662 becomes the machine room 604, the entire upper surface of the heat insulating box 601 becomes the machine room 604. Therefore, regardless of the position of the heat insulating box 601 where the side refrigerant pipe 52 and the front refrigerant pipe 53 are arranged, the pipe is extended straight up and introduced into the machine room 604. Can do. That is, the shape of the piping or the like can be simplified. Furthermore, assembly such as pipe connection is facilitated.
 本実施の形態においては、上面部材662は、上および左右が開放された形状を有する。つまり、機械室604は、底面と前面と背面とが一体で形成される。一方、平面形状の上面部材662の上に、箱形状の機械室604を載置して構成することができる。この構成により、圧縮機220、制御基板458、凝縮器669、ファン611等の内装部品を、予め機械室604の内部に配設することができる。予め内装部品が配設された機械室604を用いることにより、冷蔵庫本体600の組み立てが容易となる。この構成において、側部冷媒配管52や前部冷媒配管53とは異なる結露防止装置を断熱箱体601に設け、かつ、冷凍サイクルを構成する凝縮器を凝縮器669のみとした場合、断熱箱体601と機械室604との間の溶接作業が不要となる。これにより、さらに、冷蔵庫本体600の組み立てが容易となる。 In the present embodiment, the upper surface member 662 has a shape in which the upper and left and right sides are open. That is, in the machine room 604, the bottom surface, the front surface, and the back surface are integrally formed. On the other hand, a box-shaped machine room 604 can be mounted on the planar upper surface member 662. With this configuration, interior components such as the compressor 220, the control board 458, the condenser 669, and the fan 611 can be disposed in the machine chamber 604 in advance. By using the machine room 604 in which the interior parts are arranged in advance, the refrigerator main body 600 can be easily assembled. In this configuration, when a dew condensation prevention device different from the side refrigerant pipe 52 and the front refrigerant pipe 53 is provided in the heat insulation box body 601, and the condenser constituting the refrigeration cycle is only the condenser 669, the heat insulation box body The welding work between 601 and the machine room 604 becomes unnecessary. This further facilitates assembly of the refrigerator main body 600.
 上面部材662は、断熱箱体601の上部全面を形成する。前面部材612は、上面部材662とは異なる部材として構成される。このため、実施の形態4における上面前側部材262を用いた構成に比べ、前面部材612を小さくすることができる。一般的に、前面部材612は、見た目の美観が重視される。このため、前面部材612には、塗装などの加工が施される。つまり、前面部材612は、背面部材661などの使用者から見えない部材に比べて、材料費が高い。従って、前面部材612の面積が小さいため、製造コストが低減される。 The upper surface member 662 forms the entire upper surface of the heat insulating box 601. The front member 612 is configured as a member different from the top member 662. For this reason, the front member 612 can be made smaller than the configuration using the upper surface front member 262 in the fourth embodiment. In general, the appearance of the front member 612 is important. For this reason, the front member 612 is subjected to processing such as painting. That is, the front member 612 has a higher material cost than a member such as the back member 661 that is not visible to the user. Accordingly, the manufacturing cost is reduced because the area of the front member 612 is small.
 冷媒としては、イソブタンが用いられる。イソブタンは、可燃性で、かつ、空気より比重が大きい。仕切板662cの高さは、圧縮機220の溶接位置より高い。従って、冷媒が漏洩した場合であっても、冷媒が制御基板収容部613cへ流れ込むことが防止される。つまり、冷蔵庫本体600の安全性が確保される。 As the refrigerant, isobutane is used. Isobutane is flammable and has a higher specific gravity than air. The height of the partition plate 662 c is higher than the welding position of the compressor 220. Therefore, even if the refrigerant leaks, the refrigerant is prevented from flowing into the control board housing portion 613c. That is, the safety of the refrigerator main body 600 is ensured.
 仕切板662cに配設されたファン611により、制御基板収容部613cから圧縮機支持部613aへ風を流す。これにより、冷媒が制御基板収容部613cへ流れ込むことが、さらに防止される。また、この風により、圧縮機220の温度上昇が抑制される。つまり、圧縮機220の信頼性が向上する。 The fan 611 disposed on the partition plate 662c causes air to flow from the control board housing portion 613c to the compressor support portion 613a. Thereby, it is further prevented that the refrigerant flows into the control board housing portion 613c. Moreover, the temperature rise of the compressor 220 is suppressed by this wind. That is, the reliability of the compressor 220 is improved.
 以上のように、制御基板458が、圧縮機220の前方に配設されるため、冷蔵庫本体600のメンテナンス性が向上すると共に、組み立てが容易となる。機械室604は、断熱箱体601の上部全面に配設される。これにより、機械室604に出入りする部品の形状を簡素にすることができる。従って、冷蔵庫本体600の組み立てが容易となる。 As described above, since the control board 458 is disposed in front of the compressor 220, the maintainability of the refrigerator main body 600 is improved and the assembly is facilitated. The machine room 604 is disposed on the entire upper surface of the heat insulating box 601. Thereby, the shape of the component which goes in and out of the machine room 604 can be simplified. Therefore, the refrigerator main body 600 can be easily assembled.
 (実施の形態7)
 図16は、本発明の実施の形態7における冷蔵庫の断面図である。図16は、冷蔵庫を右側方から見た断面図である。図17は、本実施の形態の冷蔵庫の断熱箱体の分解斜視図である。本実施の形態において、実施の形態1~6と同じ構成に関しては、同じ符号を用いる。また、実施の形態1~6と同様の構成に関しては、同様の作用効果を奏するため、説明は省略する。本実施の形態は、上面部材762の奥側の底面が、前側の底面よりも低く構成される点で、実施の形態6と異なる。
(Embodiment 7)
FIG. 16 is a cross-sectional view of the refrigerator in the seventh embodiment of the present invention. FIG. 16 is a cross-sectional view of the refrigerator as viewed from the right side. FIG. 17 is an exploded perspective view of the heat insulating box of the refrigerator according to the present embodiment. In the present embodiment, the same reference numerals are used for the same configurations as in the first to sixth embodiments. Further, regarding the same configuration as in the first to sixth embodiments, since the same function and effect are obtained, the description thereof is omitted. The present embodiment is different from the sixth embodiment in that the bottom surface on the back side of the upper surface member 762 is configured to be lower than the bottom surface on the front side.
 外箱703は、主部材260と上面部材762と背面部材661とから構成される。上面部材762の構成については、後に詳細に説明する。外箱703と内箱702との間に断熱材24が充填される。この様にして、断熱箱体701が構成される。 The outer box 703 includes a main member 260, an upper surface member 762, and a back member 661. The configuration of the upper surface member 762 will be described in detail later. The heat insulating material 24 is filled between the outer box 703 and the inner box 702. Thus, the heat insulation box 701 is comprised.
 図17に示すように、上面部材762は、樹脂製であり、上および左右が開放された形状を有する。図17の一点鎖線に示すように、上面部材762は、上面部材762の上端の高さ方向の位置と、主部材260の上端の高さ方向の位置とが一致するように、外箱703に配設される。 As shown in FIG. 17, the upper surface member 762 is made of resin and has a shape in which the upper and left and right sides are opened. As shown by the alternate long and short dash line in FIG. 17, the upper surface member 762 is placed in the outer box 703 so that the position in the height direction of the upper end of the upper surface member 762 matches the position in the height direction of the upper end of the main member 260. Arranged.
 上面部材762は、奥側の底面に、圧縮機支持部713aを有する。圧縮機支持部713aに、圧縮機220が支持される。上面部材762は、前側に制御基板収容部713cを有する。制御基板収容部713cに、制御基板458が配設される。また、上面部材762は、奥側の底面と前側の底面とを比較した場合、奥側の底面が低く構成される。つまり、圧縮機220は、制御基板458よりも低い位置に配設される。この様にして、上面部材762の内部は、機械室704を構成する。 The upper surface member 762 has a compressor support portion 713a on the bottom surface on the back side. The compressor 220 is supported by the compressor support portion 713a. The upper surface member 762 includes a control board housing portion 713c on the front side. A control board 458 is disposed in the control board housing portion 713c. Further, when the upper surface member 762 compares the bottom surface on the back side with the bottom surface on the front side, the bottom surface on the back side is configured to be low. That is, the compressor 220 is disposed at a position lower than the control board 458. In this way, the inside of the upper surface member 762 constitutes the machine room 704.
 上面部材762の前面には、前面凹部762dの左右の外側に、吸気口762eが形成される。上面部材762の背面には、排気口762fが形成される。冷蔵庫本体700は、実施の形態6と同様に、板状の機械室カバー623を有する。機械室カバー623により、機械室704の上面が覆われる。機械室カバー623には、必要に応じて、通気口623aが形成される。冷媒としては、イソブタンが用いられる。イソブタンは、可燃性で、かつ、空気より比重が大きい。 The air inlet 762e is formed on the front surface of the upper surface member 762 on the left and right outer sides of the front surface recess 762d. An exhaust port 762 f is formed on the back surface of the upper surface member 762. The refrigerator main body 700 has a plate-like machine room cover 623 as in the sixth embodiment. The machine room cover 623 covers the upper surface of the machine room 704. A vent 623a is formed in the machine room cover 623 as necessary. Isobutane is used as the refrigerant. Isobutane is flammable and has a higher specific gravity than air.
 以上の構成により、圧縮機220は、制御基板458よりも低い位置に配設される。従って、冷媒が漏洩した場合であっても、冷媒が制御基板458へ流れ込むことが防止される。つまり、冷蔵庫本体700の安全性が確保される。 With the above configuration, the compressor 220 is disposed at a position lower than the control board 458. Therefore, even if the refrigerant leaks, the refrigerant is prevented from flowing into the control board 458. That is, the safety of the refrigerator main body 700 is ensured.
 さらに、制御基板458と圧縮機220との間にファンなどの通風機構を設けた場合、制御基板収容部713cから圧縮機支持部713aへ風を流すことができる。これにより、漏洩した冷媒の制御基板収容部713cへの流れ込みが、さらに防止される。また、この風により、圧縮機220の温度上昇が抑制される。つまり、圧縮機220の信頼性が向上する。 Furthermore, when a ventilation mechanism such as a fan is provided between the control board 458 and the compressor 220, the air can flow from the control board housing part 713c to the compressor support part 713a. This further prevents the leaked refrigerant from flowing into the control board housing portion 713c. Moreover, the temperature rise of the compressor 220 is suppressed by this wind. That is, the reliability of the compressor 220 is improved.
 以上のように、本発明は、重量を増加させることなく、断熱箱体の剛性が高い冷蔵庫を提供することができる。従って本発明は、断熱箱体を用いる他の貯蔵庫、例えば保温庫に利用可能である。 As described above, the present invention can provide a refrigerator having high heat insulation box rigidity without increasing the weight. Therefore, this invention can be utilized for the other store | warehouse | chamber which uses a heat insulation box, for example, a heat retention box.
 20,200,300,400,500,600,700  冷蔵庫本体
 21,201,301,401,501,601,701  断熱箱体
 21a,201a,301a  前面開口部
 21b  面取り部
 22,202,302,602,702  内箱
 22b,202b  下凹部
 23,203,303,403,503,603,703  外箱
 23a  前面フランジ
 23b  外フランジ
 23c  内フランジ
 24  断熱材(断熱壁)
 25,26,27,28  仕切壁
 29  冷蔵室(貯蔵室)
 29a  冷蔵室ドア
 30  製氷室(貯蔵室)
 30a  製氷室ドア
 31  第1の冷凍室(貯蔵室)
 31a  第1の冷凍室ドア
 32  第2の冷凍室(貯蔵室)
 32a  第2の冷凍室ドア
 33  野菜室(貯蔵室)
 33a  野菜室ドア
 34  上部ヒンジ
 35  下部ヒンジ
 36  レール部材
 37  空間
 38  ガスケット
 50,220  圧縮機(冷凍サイクル)
 51  蒸発器(冷凍サイクル)
 52  側部冷媒配管(発熱体、凝縮器)
 53  前部冷媒配管(発熱体、凝縮器)
 60,260,360  主部材
 60a,260a,360a  底面部
 60b,260b  側面部
 61,261,361,461,561,661  背面部材
 61a  孔
 62,662,762  上面部材
 70  真空断熱材
 80  前側支持脚(支持脚)
 81  前側先端部
 90  奥側支持脚(支持脚)
 91  奥側先端部
 100,230,330  除霜水処理部
 101,231,331  収納部
 102,232  除霜水処理ユニット
 104,604,704  機械室
 201b,401b,501b  天面収納部
 202a  上凹部
 213,313,413,513  上面奥側部材
 262,362  上面前側部材
 301b  天面収納部
 313a,413a,513a,613a,713a  圧縮機支持部
 358,458  制御基板
 413b  フランジ部
 413c,513c,613c,713c  制御基板収容部
 423,523  圧縮機カバー
 423a,523a,662f,762f  排気口
 604,704  機械室
 611  ファン
 612  前面部材
 623  機械室カバー
 623a  通気口
 662c  仕切板
 662d,762d  前面凹部
 662e,762e  吸気口
20, 200, 300, 400, 500, 600, 700 Refrigerator main body 21, 201, 301, 401, 501, 601, 701 Heat insulation box 21a, 201a, 301a Front opening 21b Chamfer 22, 202, 302, 602 702 Inner box 22b, 202b Lower recess 23, 203, 303, 403, 503, 603, 703 Outer box 23a Front flange 23b Outer flange 23c Inner flange 24 Insulating material (insulating wall)
25, 26, 27, 28 Partition wall 29 Refrigerated room (storage room)
29a Refrigeration room door 30 Ice making room (storage room)
30a Ice making room door 31 First freezer room (storage room)
31a First freezer compartment door 32 Second freezer compartment (storage room)
32a Second freezer compartment door 33 Vegetable room (storage room)
33a Vegetable room door 34 Upper hinge 35 Lower hinge 36 Rail member 37 Space 38 Gasket 50, 220 Compressor (refrigeration cycle)
51 Evaporator (refrigeration cycle)
52 Side refrigerant piping (heating element, condenser)
53 Front refrigerant piping (heating element, condenser)
60, 260, 360 Main member 60a, 260a, 360a Bottom surface portion 60b, 260b Side surface portion 61, 261, 361, 461, 561, 661 Back surface member 61a Hole 62, 662, 762 Top surface member 70 Vacuum heat insulating material 80 Front support leg ( Support legs)
81 Front tip 90 Back support leg (support leg)
91 Back side tip portion 100, 230, 330 Defrost water treatment unit 101, 231, 331 Storage unit 102, 232 Defrost water treatment unit 104, 604, 704 Machine room 201b, 401b, 501b Top surface storage unit 202a Upper recess 213 , 313, 413, 513 Upper surface rear side member 262, 362 Upper surface front side member 301b Top surface storage part 313a, 413a, 513a, 613a, 713a Compressor support part 358, 458 Control board 413b Flange part 413c, 513c, 613c, 713c Control Substrate accommodating portion 423, 523 Compressor cover 423a, 523a, 662f, 762f Exhaust port 604, 704 Machine room 611 Fan 612 Front member 623 Machine room cover 623a Vent 662c Partition plate 662d, 762d Front recess 662 , 762e intake port

Claims (16)

  1. 内部に貯蔵室が形成された断熱箱体を有する冷蔵庫本体を備えた冷蔵庫であって、
    前記断熱箱体は、外箱と、内箱と、前記外箱と前記内箱との間に充填された断熱材により形成された断熱壁と、を有し、
    冷凍サイクルを構成する機器を含む冷凍サイクル関連機器の中で、外気に曝される外部機器を収納する収納部が、前記断熱箱体の最下部の前記貯蔵室の、奥側下部に配置され、
    前記最下部の前記貯蔵室の底面部と前記収納部の底面部とが一体により形成された断熱壁を備えた冷蔵庫。
    A refrigerator including a refrigerator body having a heat insulation box with a storage chamber formed therein,
    The heat insulating box has an outer box, an inner box, and a heat insulating wall formed by a heat insulating material filled between the outer box and the inner box,
    Among the refrigeration cycle-related devices including the devices constituting the refrigeration cycle, a storage unit that stores external devices exposed to the outside air is disposed at the lower back of the storage chamber at the bottom of the heat insulation box,
    The refrigerator provided with the heat insulation wall by which the bottom face part of the said lowermost store room and the bottom face part of the said storage part were formed integrally.
  2. 前記外部機器は、前記冷凍サイクルの運転により発生した霜が融けて発生した水を蒸発させるための除霜水処理部であり、
    前記除霜水処理部の下部には、前記断熱箱体の底面と連続した断熱壁が形成された請求項1に記載の冷蔵庫。
    The external device is a defrost water treatment unit for evaporating water generated by melting frost generated by operation of the refrigeration cycle,
    The refrigerator according to claim 1, wherein a heat insulating wall continuous with a bottom surface of the heat insulating box is formed at a lower portion of the defrost water treatment unit.
  3. 前記外部機器は圧縮機であり、
    前記除霜水処理部の下部には、前記断熱箱体の底面と連続した断熱壁が形成された請求項1に記載の冷蔵庫。
    The external device is a compressor;
    The refrigerator according to claim 1, wherein a heat insulating wall continuous with a bottom surface of the heat insulating box is formed at a lower portion of the defrost water treatment unit.
  4. 前記外箱は、前記断熱箱体の左右の両側面を構成する側面部と、前記断熱箱体の下面の少なくとも一部を構成する底面部と、を有する主部材を備え、
    前記主部材は、前記側面部と前記底面部とが一体により形成された請求項1に記載の冷蔵庫。
    The outer box is provided with a main member having a side part that constitutes both left and right side surfaces of the heat insulation box, and a bottom part that constitutes at least a part of the lower surface of the heat insulation box,
    The refrigerator according to claim 1, wherein the main member is formed integrally with the side surface portion and the bottom surface portion.
  5. 前記収納部の左右の両側部は、前記断熱箱体の左右の両側部と連続した断熱壁を有する請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein left and right side portions of the storage portion have heat insulating walls continuous with left and right side portions of the heat insulating box.
  6. 前記断熱箱体の底面の断熱壁と、前記収納部の下部の断熱壁とは、水平、かつ、同じ厚さを有する請求項1に記載の冷蔵庫。 2. The refrigerator according to claim 1, wherein the heat insulating wall on the bottom surface of the heat insulating box and the heat insulating wall at the lower part of the storage portion are horizontal and have the same thickness.
  7. 前記断熱箱体は、奥側の左右のコーナに面取り部を有し、
    前記面取り部の面と、前記冷蔵庫本体の側面の延長面と、前記冷蔵庫本体の背面の延長面とで囲まれた面取り領域に、前記冷蔵庫本体の支持脚を備えた請求項1に記載の冷蔵庫。
    The heat insulation box has a chamfered portion at the left and right corners on the back side,
    The refrigerator according to claim 1, further comprising a support leg of the refrigerator main body in a chamfered region surrounded by a surface of the chamfered portion, an extended surface of the side surface of the refrigerator main body, and an extended surface of the rear surface of the refrigerator main body. .
  8. 前記底面部と対向する、前記断熱箱体の上面を除く箇所に、一体化により形成された発熱体を備えた請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, further comprising a heating element formed by integration at a location other than the top surface of the heat insulating box that faces the bottom surface.
  9. 前記上面を含む貯蔵室の冷却温度は、冷蔵温度帯である請求項8に記載の冷蔵庫。 The refrigerator according to claim 8, wherein a cooling temperature of the storage room including the upper surface is a refrigeration temperature zone.
  10. 前記発熱体は、前記外箱の、前記断熱材の側に配設された請求項8に記載の冷蔵庫。 The refrigerator according to claim 8, wherein the heating element is disposed on the heat insulating material side of the outer box.
  11. 前記発熱体は、前記断熱箱体の前面開口部から奥側に100mmの位置より、前記前面開口部の側に配設された請求項8に記載の冷蔵庫。 The refrigerator according to claim 8, wherein the heating element is disposed closer to the front opening than a position of 100 mm from the front opening of the heat insulating box to the back side.
  12. 前記発熱体は、冷凍サイクルを形成する凝縮器の一部である請求項8に記載の冷蔵庫。 The refrigerator according to claim 8, wherein the heating element is a part of a condenser forming a refrigeration cycle.
  13. 前記断熱箱体の最下部の前記貯蔵室の奥側下部に備えた前記収納部に加え、前記断熱箱体の最上部の前記貯蔵室の奥側上部に備えた天面収納部をさらに備え、
    前記断熱箱体の背面を形成する背面部材と、前記断熱箱体の上面を形成する上面部材と、前記天面収納部の奥側および下面を形成する天面奥側部材と、を備え、
    前記上面部材と前記天面奥側部材と前記背面部材とが一体により形成された請求項1に記載の冷蔵庫。
    In addition to the storage part provided at the lower back side of the storage chamber at the bottom of the heat insulation box, further comprising a top surface storage part provided at the upper part of the storage chamber at the top of the heat insulation box,
    A back member that forms the back surface of the heat insulation box, an upper surface member that forms an upper surface of the heat insulation box, and a top surface back side member that forms a back side and a bottom surface of the top surface storage unit,
    The refrigerator according to claim 1, wherein the upper surface member, the top surface rear side member, and the back surface member are integrally formed.
  14. 前記上面部材の前記圧縮機支持部の下面と前記内箱との間に、前記断熱材が充填された請求項13に記載の冷蔵庫。 The refrigerator according to claim 13, wherein the heat insulating material is filled between a lower surface of the compressor support portion of the upper surface member and the inner box.
  15. 前記冷凍サイクルを制御する制御基板を有し、
    前記断熱箱体の前記天面収納部に、前記圧縮機を収納し、
    前記圧縮機を支持する圧縮機支持部と、前記制御基板を収容する制御基板収容部と、が一体により形成された請求項13に記載の冷蔵庫。
    A control board for controlling the refrigeration cycle;
    The compressor is stored in the top surface storage part of the heat insulation box,
    The refrigerator according to claim 13, wherein a compressor support portion that supports the compressor and a control board housing portion that houses the control board are integrally formed.
  16. 前記冷凍サイクルを形成する圧縮機が、前記冷蔵庫本体の奥側上部に配設された請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein a compressor forming the refrigeration cycle is disposed at an upper part on the back side of the refrigerator body.
PCT/JP2010/007210 2009-12-16 2010-12-13 Refrigerator WO2011074226A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080057241.XA CN102656413B (en) 2009-12-16 2010-12-13 Cold storage
BR112012014435A BR112012014435B8 (en) 2009-12-16 2010-12-13 cooler
JP2011545949A JP5671705B2 (en) 2009-12-16 2010-12-13 refrigerator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-284705 2009-12-16
JP2009284705 2009-12-16
JP2010-006618 2010-01-15
JP2010006618 2010-01-15
JP2010-069655 2010-03-25
JP2010069654 2010-03-25
JP2010-069654 2010-03-25
JP2010069655 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011074226A1 true WO2011074226A1 (en) 2011-06-23

Family

ID=44166998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007210 WO2011074226A1 (en) 2009-12-16 2010-12-13 Refrigerator

Country Status (4)

Country Link
JP (1) JP5671705B2 (en)
CN (1) CN102656413B (en)
BR (1) BR112012014435B8 (en)
WO (1) WO2011074226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703331A (en) * 2011-07-22 2014-04-02 松下电器产业株式会社 Cold storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373653B2 (en) * 2013-06-25 2018-08-15 東芝ライフスタイル株式会社 refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955391U (en) * 1982-10-06 1984-04-11 株式会社日立製作所 Refrigerator box structure
JPS6086888U (en) * 1983-11-17 1985-06-14 株式会社東芝 insulation box body
JPS6438580A (en) * 1987-08-03 1989-02-08 Mitsubishi Electric Corp Manufacture of outer box for refrigerator
JP2005016879A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Refrigerator
JP2005351507A (en) * 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd Refrigerator
JP2006194573A (en) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd Refrigerator
JP2006284172A (en) * 2006-04-28 2006-10-19 Matsushita Electric Ind Co Ltd Refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004A (en) * 1845-04-16 Wooden bbidge
KR100606847B1 (en) * 2004-10-14 2006-08-01 엘지전자 주식회사 Condenser installation structure in the direct-cooling refrigerator machine room

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955391U (en) * 1982-10-06 1984-04-11 株式会社日立製作所 Refrigerator box structure
JPS6086888U (en) * 1983-11-17 1985-06-14 株式会社東芝 insulation box body
JPS6438580A (en) * 1987-08-03 1989-02-08 Mitsubishi Electric Corp Manufacture of outer box for refrigerator
JP2005016879A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Refrigerator
JP2005351507A (en) * 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd Refrigerator
JP2006194573A (en) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd Refrigerator
JP2006284172A (en) * 2006-04-28 2006-10-19 Matsushita Electric Ind Co Ltd Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703331A (en) * 2011-07-22 2014-04-02 松下电器产业株式会社 Cold storage

Also Published As

Publication number Publication date
JP5671705B2 (en) 2015-02-18
JPWO2011074226A1 (en) 2013-04-25
BR112012014435B1 (en) 2020-12-08
BR112012014435A2 (en) 2017-04-04
CN102656413B (en) 2015-03-04
CN102656413A (en) 2012-09-05
BR112012014435B8 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
EP3385641B1 (en) Refrigerator
US20100147001A1 (en) Refrigerator having heat conduction sheet
WO2013080477A1 (en) Refrigerator
JP5671705B2 (en) refrigerator
JP2002364978A (en) Refrigerator
CN103635765B (en) Cold storage
JP2001012841A (en) Refrigerator
JP4270030B2 (en) refrigerator
JP5407956B2 (en) refrigerator
JP4200334B2 (en) refrigerator
WO2018189808A1 (en) Refrigerator
JP5985942B2 (en) Refrigerator
JP5401866B2 (en) refrigerator
JP2005180720A (en) Refrigerator
JP2013142512A (en) refrigerator
JP4244862B2 (en) refrigerator
JP2012002483A (en) Refrigerator-freezer
JP2008215745A (en) Refrigerator
JP2010054092A (en) Refrigerator
JP2007147100A (en) Refrigerator
JP2007064598A (en) Refrigerator
JP3904023B2 (en) refrigerator
JP2007064553A (en) Refrigerator
JP2007057193A (en) Refrigerator
JP2024046158A (en) refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057241.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837260

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545949

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 5217/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201002877

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014435

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10837260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012014435

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120614