WO2011073481A1 - Sistema y procedimiento multianalítico basado en mediciones impedimétricas - Google Patents
Sistema y procedimiento multianalítico basado en mediciones impedimétricas Download PDFInfo
- Publication number
- WO2011073481A1 WO2011073481A1 PCT/ES2010/070824 ES2010070824W WO2011073481A1 WO 2011073481 A1 WO2011073481 A1 WO 2011073481A1 ES 2010070824 W ES2010070824 W ES 2010070824W WO 2011073481 A1 WO2011073481 A1 WO 2011073481A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microelectrodes
- analyte
- electrode chip
- impedimetric
- sample
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims description 24
- 238000004458 analytical method Methods 0.000 title description 3
- 239000012491 analyte Substances 0.000 claims abstract description 47
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 238000011002 quantification Methods 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 14
- 230000004888 barrier function Effects 0.000 claims description 7
- 230000005284 excitation Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 description 37
- 239000000427 antigen Substances 0.000 description 12
- 102000036639 antigens Human genes 0.000 description 11
- 108091007433 antigens Proteins 0.000 description 11
- 239000000203 mixture Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000002847 impedance measurement Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- HSQFVBWFPBKHEB-UHFFFAOYSA-N 2,3,4-trichlorophenol Chemical compound OC1=CC=C(Cl)C(Cl)=C1Cl HSQFVBWFPBKHEB-UHFFFAOYSA-N 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 3
- FOANIXZHAMJWOI-UHFFFAOYSA-N bromopropylate Chemical compound C=1C=C(Br)C=CC=1C(O)(C(=O)OC(C)C)C1=CC=C(Br)C=C1 FOANIXZHAMJWOI-UHFFFAOYSA-N 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- -1 azimphos (AZM) Chemical compound 0.000 description 1
- CJJOSEISRRTUQB-UHFFFAOYSA-N azinphos-methyl Chemical compound C1=CC=C2C(=O)N(CSP(=S)(OC)OC)N=NC2=C1 CJJOSEISRRTUQB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- HFNQLYDPNAZRCH-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O.OC(O)=O HFNQLYDPNAZRCH-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011169 microbiological contamination Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000447 pesticide residue Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000000273 veterinary drug Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
- G01N27/07—Construction of measuring vessels; Electrodes therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
- G01N33/537—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
- G01N33/538—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody by sorbent column, particles or resin strip, i.e. sorbent materials
Definitions
- the main object of the invention is a system and method for the simultaneous detection and / or quantification of several analytes in a single sample or for the simultaneous detection and / or quantification of a single analyte in several samples.
- the objective of the present invention is an analysis system capable of simultaneously detecting the presence of a single analyte in several samples, or of simultaneously detecting the presence of several analytes in a single sample.
- a high sensitivity multi-analyte or multi-sample biosensor system based on an array of interdigitated electrodes with barriers is described, a flow system that combines two types of sample chambers (one multicell and one single cell) and a multi-analyte mixed immunoassay of specific antibodies.
- analyte as understood in the present invention is the component that is intended to be detected and / or quantified in a sample.
- the analyte can be an element, a compound or an ion, that is, a chemical species that can be detected and / or quantified.
- a compound is a substance formed by the union of 2 or more elements of the periodic table, in a fixed ratio.
- a compound is formed by molecules or ions with stable bonds.
- the analyte / s of interest in a sample can be inorganic, organic or biochemical in nature.
- the analyte can have a biological nature and therefore, could comprise any molecule of biological origin or any type of cell, cellular organelle or any part thereof.
- the term "molecule of biological origin" includes, but is not limited to, bioelements (chemical elements that appear in living things), nucleic acids, peptides, proteins, enzymes, carbohydrates, lipids, vitamins, antibodies or hormones.
- the analyte of the present invention can be detected or quantified indirectly through the detection or quantification of an antibody capable of recognizing the analyte specifically. This would be in the case that the sample comes from an organism whose immune system can generate specific antibodies that recognize said antigen.
- the analyte of the present invention may be present:
- a first aspect of the invention describes a multiple impedimetric analytical system comprising a multielectrode chip, a single duct cell and a second multi duct cell. Each of these elements is described below.
- the amount of analyte present in the sample can be calculated.
- distal end refers to the end on which the microelectrodes are located, and which is inserted into the slot of the corresponding cell, while the " Proximal end "of the multi-electrode chip is the opposite end, which is outside the slot.
- the microelectrodes of the distal end of the multi-electrode chip are electrically connected, by conductive tracks, with connectors located at the proximal end.
- Both the microelectrodes and the conductive tracks are manufactured using a high conductivity material, preferably TaS ⁇ 2.
- dielectric barriers between the microelectrodes ensure they avoid short circuits between them, while the tracks, in turn, are covered by a protective dielectric material.
- both Dielectric barriers such as the coating of the tracks are made of Si0 2 .
- the multi-electrode chip is connected, via the connectors located at its proximal end, to an excitation and processing device.
- the first function of said excitation and processing device is to cause an intensity to pass through the microelectrodes, normally applying a voltage difference between its terminals.
- the intensity that passes through it will be a function of its impedance, which, in turn, is dependent on the amount of analyte present in the sample and that has caused the chemical modification of the microelectrode .
- the second function of the excitation and processing means is to process the intensity signal obtained to determine the impedance of each electrode, deducting from the change of said value the amount of analyte present in the sample according to the procedure that will be described more later in this document.
- the inlet and outlet holes of the circulation duct are located on the upper face of the single duct cell.
- this cell passes the sample through all the electrodes of the multi-electrode chip.
- slot has been used to describe the hole through which the multi-electrode chip of the invention is inserted because, in a particular embodiment, the multi-electrode chip has a flat and elongated shape.
- the present invention is not intended to be limiting in relation to the shape of the multi-electrode chip, and therefore also not in relation to the shape of the slot, which could thus have any shape as long as it was adapted to receive the multi-electrode chip. c) Multiple duct cell
- This cell comprises a slot suitable for housing the multi-electrode chip and several conduits through which a fluid sample can circulate independently through each microelectrode of the multi-electrode chip.
- the inlet and outlet holes of the ducts are preferably located on the upper face of said multi duct cell.
- each of the above cells is fixed between two support sheets, forming a "sandwich" structure where the sheets and the cell are connected by screws or by any other system that prevents fluid leakage out of the cameras and their uncontrolled mix.
- a method for the simultaneous detection and / or quantification of several analytes in a single sample is also described, using the analytical system Multiple impedimetric described, comprising the following operations:
- the difference in impedance of each microelectrode is used before and after the passage of the sample to calculate the analyte concentration.
- a wash solution is passed through the conduit of the single conduit cell and, Next, a second measurement of the conductivity of the microelectrodes is made. The difference in conductivity detected is processed in the excitation and processing device to determine the concentration of each analyte in the sample.
- changing the impedance of each electrode before and after passing the samples is used to Calculate the concentration of analyte in each of the samples.
- a washing solution is passed through each of the ducts of said multi-duct cell and then a second measurement of the impedance of the microelectrodes.
- the impedance difference detected is processed to determine the change in analyte concentration in each sample.
- Fig. 1. Shows a plan view of a multi-electrode chip according to the present invention.
- Figs 2a and 2b.- It shows both plan and elevation views of the multi-electrode chip of the invention inserted in the slot of a single duct cell.
- Figs 3a and 3b.- Shows both plan and elevation views of the multi-electrode chip (specifically the four electrode model) of the invention inserted into the groove of a multi-duct cell.
- Fig 4.- Shows the equivalent circuit used to adjust the experimental impedance values.
- Fig. 5. Shows the calibration curves performed with the immunoreactive agents corresponding to each analyte and with the "cocktail" solution containing all the antibodies of each of the analytes used in the example of the present invention.
- Fig. 1 shows a tetraelectrode chip (10), at whose distal end (D) four microelectrodes (1 1a, 1 1 b, 11 c, 1 1 d) have been represented which are electrically connected, by means of four conductive tracks (12a, 12b, 12c, 12d), with metal connectors (13a, 13b, 13c, 13d, 13e) located at the proximal end (P).
- the microelectrodes (1 1 a, 11 b, 1 1 c, 11 d) are made of tantalum silicide (TaS ⁇ 2), and dielectric barriers (not shown in the figures) have been manufactured between them to minimize the risk of short circuits.
- microelectrodes (1 1a, 1 1 b, 1 1c, 1 1 d) have a common terminal (12e) attached to the connector (13e), which serves as reference when applying the necessary voltage to measure the impedance of each of them.
- the tetraelectrode chip (10) inserted in the slot (21) of the single duct cell (20) can be seen.
- the conduit (22) has an inlet hole located on the upper face of the cell (20), extending vertically down to the first of the microelectrodes (1 1 a) and then sequentially passing in the direction which indicate the arrows, by the microelectrode (1 1 b), by the microelectrode (1 1 c) and by the microelectrode (1 1 d).
- the conduit (22) extends vertically upwards to the outlet opening.
- the same fluid can be circulated through the four microelectrodes (1 1 a, 11 b, 1 1 c, 11 c).
- Fig. 3a and 3b show the tetraelectrode chip (10) inserted in the slot (31) of the second multi-duct cell (30).
- four different fluids can be circulated simultaneously, each by one of the microelectrodes (1 1 a, 11 b, 1 1c, 1 1 d).
- the second cell (30) is also fixed between two support plates (33, 34) by screws (35) and nuts (36).
- simultaneous detection and / or quantification of several analytes in a single sample using the system of the invention is desired.
- ATRZ pesticides atrazine
- AZM azimphos
- TCP trichlorophenol
- BP bromopropylate
- the tetraelectrode chip (10) was introduced (step 1) into the slot (31) of a multi-duct cell (30) and passed through each conduit (32a, 32b, 32c, 32d) a solution for washing and activating the surface of the electrodes.
- the immobilization of compounds on the surface of a support as one of the microelectrodes (11a, 11b, 11c, 11d) of this invention is directed by surface chemistry. There are many factors that can modify the immobilization capacity of the compounds.
- the time and temperature of incubation are very important. Generally at a higher temperature less incubation time is necessary but it is preferable to use a temperature between 3 and 6 ° C for a time between 10 and 20 hours to immobilize the compounds to the surface of the solid support.
- the immobilization step of an antigen includes a final step of blocking the spaces of the support that have not been occupied by the antigens since the binding to it is not selective and if the blockage is not carried out other non-specific molecules could be bound .
- the blockade led to carried out by proteins or detergents, preferably non-ionic detergents. More preferably PBST is used.
- the PBS is 10 mM phosphate buffer, with 0.8% saline solution, and if not indicated otherwise the pH is 7.5.
- the PBST is PBS with 0.05% Tween 20.
- the upholstery buffer is 0.05 M carbonate bicarbonate, pH 9.6.
- a PBST wash solution is passed through each conduit (32a, 32b, 32c, 32d) to remove those antigens that had not been fixed to the microelectrode (11a, 11b, 11c, 11d).
- the multi-electrode chip (10) was removed from the slot (31) of the multi-duct cell (30).
- This activated and functionalized electrode can be stored cold and in an inert atmosphere for later use. It can be considered that this is the phase of construction and preparation of the sensor.
- the corresponding activated and functionalized chip was inserted into the slot (21) of the single duct cell (20) (step 3).
- the sample mixture was flowed with the anti-antigen antibodies (Ac1, Ac2, Ac3 and Ac4) for the four analytes to be detected, pre-incubated for a certain time, through the conduit (22) of the conduit cell (20) unique (step 4).
- the fraction of antibodies that has not reacted with the analyte present in the sample will be fixed in the microelectrode functionalized with the corresponding antigen (11a, 11b, 11c, 11d).
- Preincubation consisted of mixing the antigen sample and antibodies for a certain time, preferably less than 30 minutes, at a temperature between 15 and 30 ° C.
- the pre-incubated mixture is it passed through the antigens immobilized in the microelectrodes (11a, 11b, 11c, 11d) and was incubated under the same conditions as the pre-incubation for a time of between 5 and 15 minutes. In this way, the binding of free antibodies that may remain in the sample to the antigens immobilized on the support was achieved.
- the next step was the washing of the microelectrodes (11a, 11b, 11c, 11d) to remove all those substances that have not specifically bound the immobilized antigens in the manner described.
- a measurement solution was passed through each conduit (32a, 32b, 32c, 32d) so that the microelectrodes (11a, 11b, 11c, 11d) are submerged.
- the measurement solution is a solution of KCI 1 10 "6 M, with a conductivity of 1.6 ⁇ " 1 .
- the impedance measurements were taken in the frequency range between 100 KHz and 10 Hz.
- the impedance data obtained were adjusted by the commercial program: Zplot / Zview (Scribner Associates Inc), to the equivalent circuit presented in Fig. 4.
- the impedance measurements were compared with the control impedance measurements to determine the analyte concentration of the sample.
- the control is a group of solutions containing the analyte, which it is desired to detect and / or quantify in the present invention, at known concentrations, so that the impedance values and concentration values maintain a known relationship in a given range allowing create a calibration or linear regression curve ( Figures 5a, 5b, 5c and 5d).
- the concentrations of the compound present in the sample are quantified interpolating the values obtained in the measurement preferably in the linear zone of the calibration curve or regression line. linear.
- a first measurement of the conductivity of the microelectrodes (11a, 1 1 b, 11c, 11 d) was made prior to the passage of the samples through said microelectrodes (11a, 11 b, 11c, 11 d) using only the buffer of detection. This measurement is the reference measurement that will be subtracted from the measurements obtained in the second measurement to determine the actual measurement of the impedance variation due solely to the presence of the analyte.
- the second measurement of the conductivity of the microelectrodes (11a, 11b, 11c, 11d) was carried out after the samples passed through said microelectrodes (11a, 11b, 11c, 11d) and a subsequent washing step as described above.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- General Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800638671A CN102753966A (zh) | 2009-12-15 | 2010-12-14 | 基于阻抗测量的多分析系统和方法 |
MX2012007008A MX2012007008A (es) | 2009-12-15 | 2010-12-14 | Sistema y procedimiento multianalitico basado en mediciones impedimetricas. |
JP2012543850A JP5766714B2 (ja) | 2009-12-15 | 2010-12-14 | インピーダンス測定に基づく多重インピーダンス解析システムを使用する方法 |
US13/516,186 US9170227B2 (en) | 2009-12-15 | 2010-12-14 | Multi-analyte system and method based on impedimetric measurements |
CA2784790A CA2784790A1 (en) | 2009-12-15 | 2010-12-14 | Multi-analytical method and system based on impedimetric measurements |
EP10837082A EP2515103A1 (en) | 2009-12-15 | 2010-12-14 | Multi-analytical method and system based on impedimetric measurements |
AU2010332701A AU2010332701A1 (en) | 2009-12-15 | 2010-12-14 | Multi-analytical method and system based on impedimetric measurements |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP200931164 | 2009-12-15 | ||
ES200931164A ES2367615B1 (es) | 2009-12-15 | 2009-12-15 | Sistema y procedimiento multianalítico basado en mediciones impedimétricas. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011073481A1 true WO2011073481A1 (es) | 2011-06-23 |
Family
ID=44166784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2010/070824 WO2011073481A1 (es) | 2009-12-15 | 2010-12-14 | Sistema y procedimiento multianalítico basado en mediciones impedimétricas |
Country Status (9)
Country | Link |
---|---|
US (1) | US9170227B2 (es) |
EP (1) | EP2515103A1 (es) |
JP (1) | JP5766714B2 (es) |
CN (1) | CN102753966A (es) |
AU (1) | AU2010332701A1 (es) |
CA (1) | CA2784790A1 (es) |
ES (1) | ES2367615B1 (es) |
MX (1) | MX2012007008A (es) |
WO (1) | WO2011073481A1 (es) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013164676A1 (en) | 2012-05-04 | 2013-11-07 | Universita' Degli Studi Di Udine | Method to analyze the cluster formation process in a biological fluid and corresponding analysis apparatus |
WO2014162285A1 (en) | 2013-04-03 | 2014-10-09 | Universita' Degli Studi Di Udine | Apparatus for analyzing the process of formation of aggregates in a biological fluid and corresponding method of analysis |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6362256B2 (ja) * | 2014-05-26 | 2018-07-25 | 国立大学法人 岡山大学 | イオンセンサ |
CN105319260B (zh) * | 2015-11-05 | 2017-10-31 | 北京农业信息技术研究中心 | 基于微电极生物传感技术的植物在线葡萄糖检测方法及装置 |
CN106291333B (zh) * | 2016-10-10 | 2019-06-14 | 京东方科技集团股份有限公司 | 一种电路板检测系统 |
KR101924415B1 (ko) * | 2017-05-02 | 2019-02-20 | 한국과학기술원 | 복합 임피던스 측정 장치 및 측정 방법 |
EP3951374A1 (en) * | 2020-08-03 | 2022-02-09 | Consejo Superior de Investigaciones Científicas (CSIC) | Biosensor system for multiplexed detection of biomarkers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020028441A1 (en) * | 1996-03-14 | 2002-03-07 | Rainer Hintsche | Detection of molecules and molecule complexes |
WO2004044570A1 (ja) | 2002-11-14 | 2004-05-27 | Toyama Prefecture | ハイブリダイゼーションの検出方法 |
ES2307430A1 (es) | 2007-05-09 | 2008-11-16 | Consejo Superior De Investigaciones Cientificas | Biosensor y sus aplicaciones. |
US20080297169A1 (en) * | 2007-05-31 | 2008-12-04 | Greenquist Alfred C | Particle Fraction Determination of A Sample |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6627446B1 (en) * | 1998-07-02 | 2003-09-30 | Amersham Biosciences (Sv) Corp | Robotic microchannel bioanalytical instrument |
US20020177135A1 (en) * | 1999-07-27 | 2002-11-28 | Doung Hau H. | Devices and methods for biochip multiplexing |
CN2447791Y (zh) * | 2000-10-16 | 2001-09-12 | 莫志宏 | 原位生物芯片 |
JP4173725B2 (ja) * | 2001-12-25 | 2008-10-29 | 富士フイルム株式会社 | エバネッセント波を利用したセンサー |
EP1324019B1 (en) | 2001-12-25 | 2006-07-12 | Fuji Photo Film Co., Ltd. | Sensor utilizing evanescent wave |
US7442342B2 (en) * | 2002-06-26 | 2008-10-28 | Ge Healthcare Bio-Sciences Ab | Biochip holder and method of collecting fluid |
US20030134410A1 (en) * | 2002-11-14 | 2003-07-17 | Silva Robin M. | Compositions and methods for performing biological reactions |
JP2005090961A (ja) * | 2003-09-11 | 2005-04-07 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | 被検体液特性検知センサ及び被検体液特性検出装置、被検体液特性の検出方法 |
EP1671125A1 (en) * | 2003-09-29 | 2006-06-21 | Koninklijke Philips Electronics N.V. | Label-free detection of biomolecules |
US20080063566A1 (en) * | 2004-09-03 | 2008-03-13 | Mitsubishi Chemical Corporation | Sensor Unit and Reaction Field Cell Unit and Analyzer |
JP2006105658A (ja) * | 2004-10-01 | 2006-04-20 | Fuji Photo Film Co Ltd | 固定装置及び固定方法 |
US7695954B2 (en) * | 2004-10-04 | 2010-04-13 | The Regents Of The University Of California | Micropatterned plate with micro-pallets for addressable biochemical analysis |
US20060194215A1 (en) * | 2005-02-28 | 2006-08-31 | Kronick Mel N | Methods, reagents and kits for reusing arrays |
GB0607205D0 (en) * | 2006-04-10 | 2006-05-17 | Diagnoswiss Sa | Miniaturised biosensor with optimized anperimetric detection |
US9186677B2 (en) * | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
KR100885074B1 (ko) * | 2007-07-26 | 2009-02-25 | 주식회사 아이센스 | 미세유로형 센서 복합 구조물 |
TW201109653A (en) * | 2009-07-06 | 2011-03-16 | Sony Corp | Microfluidic device |
-
2009
- 2009-12-15 ES ES200931164A patent/ES2367615B1/es not_active Expired - Fee Related
-
2010
- 2010-12-14 WO PCT/ES2010/070824 patent/WO2011073481A1/es active Application Filing
- 2010-12-14 US US13/516,186 patent/US9170227B2/en not_active Expired - Fee Related
- 2010-12-14 MX MX2012007008A patent/MX2012007008A/es active IP Right Grant
- 2010-12-14 EP EP10837082A patent/EP2515103A1/en not_active Withdrawn
- 2010-12-14 JP JP2012543850A patent/JP5766714B2/ja not_active Expired - Fee Related
- 2010-12-14 CA CA2784790A patent/CA2784790A1/en not_active Abandoned
- 2010-12-14 AU AU2010332701A patent/AU2010332701A1/en not_active Abandoned
- 2010-12-14 CN CN2010800638671A patent/CN102753966A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020028441A1 (en) * | 1996-03-14 | 2002-03-07 | Rainer Hintsche | Detection of molecules and molecule complexes |
WO2004044570A1 (ja) | 2002-11-14 | 2004-05-27 | Toyama Prefecture | ハイブリダイゼーションの検出方法 |
ES2307430A1 (es) | 2007-05-09 | 2008-11-16 | Consejo Superior De Investigaciones Cientificas | Biosensor y sus aplicaciones. |
US20080297169A1 (en) * | 2007-05-31 | 2008-12-04 | Greenquist Alfred C | Particle Fraction Determination of A Sample |
Non-Patent Citations (3)
Title |
---|
ADRIAN J. ET AL., ANAL AND BIOANAL CHEM, vol. 391, 2008, pages 1703 |
BATAILLARD, P. ET AL., ANAL. CHEM, vol. 60, 1988, pages 2374 |
P. VAN GERWEN ET AL., SENS. ACTUA. B, vol. 49, 1998, pages 73 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013164676A1 (en) | 2012-05-04 | 2013-11-07 | Universita' Degli Studi Di Udine | Method to analyze the cluster formation process in a biological fluid and corresponding analysis apparatus |
WO2014162285A1 (en) | 2013-04-03 | 2014-10-09 | Universita' Degli Studi Di Udine | Apparatus for analyzing the process of formation of aggregates in a biological fluid and corresponding method of analysis |
Also Published As
Publication number | Publication date |
---|---|
JP5766714B2 (ja) | 2015-08-19 |
JP2013513811A (ja) | 2013-04-22 |
EP2515103A1 (en) | 2012-10-24 |
MX2012007008A (es) | 2012-11-23 |
US9170227B2 (en) | 2015-10-27 |
CN102753966A (zh) | 2012-10-24 |
ES2367615B1 (es) | 2013-01-22 |
ES2367615A1 (es) | 2011-11-07 |
US20120309108A1 (en) | 2012-12-06 |
CA2784790A1 (en) | 2011-06-23 |
AU2010332701A1 (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2367615B1 (es) | Sistema y procedimiento multianalítico basado en mediciones impedimétricas. | |
JP5043186B2 (ja) | 微細流路型センサー複合構造物 | |
JP6309516B2 (ja) | 生体分子の相互作用を調節するために電極表面近傍でpH/イオン濃度勾配を発生させる方法 | |
EP1901065B1 (en) | Device and method for measuring properties of a sample | |
ES2241911T3 (es) | Dispositivo y procedimiento de ensayo para lipoproteinas de alta densidad. | |
BRPI0511686B1 (pt) | dispositivo para manipulação de amostras líquidas | |
WO1998009167A1 (en) | Device and method for preventing assay interference | |
JP4328203B2 (ja) | 多数−スポット検出ゾーンでの多数−分析物アッセイデバイス | |
US20150024415A1 (en) | Detection and quantification of analytes based on signal induced by alkaline phosphate | |
TWI672486B (zh) | 用於分析液體的盒體及分析器 | |
CA2486043A1 (en) | Method for determining an analyte by means of an extraction layer | |
WO2005095262A1 (en) | Microchip and method for detecting molecules and molecular interactions | |
TWI726409B (zh) | 生物場效電晶體感測器的差動式感測 | |
KR101104400B1 (ko) | 생체물질을 측정하는 바이오센서 | |
JP5522515B2 (ja) | 電気化学分析チップ | |
US7214531B2 (en) | Pressure transduced chemical assay and method | |
ES2572879T3 (es) | Módulos de ensayo que tienen reactivos de ensayo y métodos para preparar y usar los mismos | |
Dias et al. | One-step trapping of droplets and surface functionalization of sensors using gold-patterned structures for multiplexing in biochips | |
WO2002099430A1 (en) | Pressure transduced chemical assay and method | |
WO2013164853A2 (en) | Analyte sensor chips | |
KR20120102394A (ko) | 엠보싱된 모세관 채널을 포함하는 바이오센서 | |
WO2019043277A1 (es) | Método y dispositivo para el análisis de ácidos nucleicos | |
BR112015006430B1 (pt) | Biochip linear do tipo paralelo para multi-diagnóstico e método de diagnóstico utilizando dito biochip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080063867.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837082 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2784790 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010332701 Country of ref document: AU Ref document number: 2012543850 Country of ref document: JP Ref document number: MX/A/2012/007008 Country of ref document: MX |
|
REEP | Request for entry into the european phase |
Ref document number: 2010837082 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010837082 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010332701 Country of ref document: AU Date of ref document: 20101214 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13516186 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012014403 Country of ref document: BR |
|
ENPW | Started to enter national phase and was withdrawn or failed for other reasons |
Ref document number: 112012014403 Country of ref document: BR |