WO2011070735A1 - Electronic device - Google Patents
Electronic device Download PDFInfo
- Publication number
- WO2011070735A1 WO2011070735A1 PCT/JP2010/006879 JP2010006879W WO2011070735A1 WO 2011070735 A1 WO2011070735 A1 WO 2011070735A1 JP 2010006879 W JP2010006879 W JP 2010006879W WO 2011070735 A1 WO2011070735 A1 WO 2011070735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat sink
- electronic device
- conductor
- ebg structure
- island
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/0236—Electromagnetic band-gap structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/01—Tools for processing; Objects used during processing
- H05K2203/0191—Using tape or non-metallic foil in a process, e.g. during filling of a hole with conductive paste
Definitions
- the present invention relates to an electronic device. More specifically, the present invention relates to an electronic device that includes an electronic component such as an IC and includes a heat radiating plate that radiates heat generated by the electronic component.
- a heat sink may be provided on the electronic component.
- the heat radiating plate is made of, for example, a metal structure. When heat generated in the electronic component is transmitted to the heat radiating plate, the heat radiating plate radiates the heat into the air.
- noise such as harmonic components of a clock signal generated by electronic components (hereinafter simply referred to as “noise”) is radiated into the air through the heat sink. Can occur.
- noise transmitted to the heat sink and the heat sink are in a resonance state, extremely strong noise is radiated. Therefore, a means for suppressing noise from being radiated from the heat sink is desired.
- Patent Document 1 describes an electromagnetic wave absorbing and heat radiating electronic component intended to solve the problem of noise emission.
- the electronic component and the heat radiating plate are bonded with an electromagnetic wave absorbing adhesive in which an organic binder and a Sendust soft magnetic powder containing a coupling agent are mixed. According to this configuration, it is described that the noise generated by the electronic component can be prevented from being transmitted to the heat sink by absorbing the noise by the electromagnetic wave absorbing adhesive.
- Patent Document 1 has the following problems. In order to efficiently dissipate heat generated from the electronic component by the heat radiating plate, it is necessary to provide a sufficiently small thermal resistance between the electronic component and the heat radiating plate.
- an electromagnetic wave absorbing adhesive for absorbing electromagnetic waves is provided between the electronic component and the heat sink. In order to sufficiently absorb electromagnetic waves with this electromagnetic wave absorbing adhesive, it is necessary to make the electromagnetic wave absorbing adhesive thick to some extent, but in such a case, the thermal resistance due to the electromagnetic wave absorbing adhesive increases. As a result, heat dissipation from the heat sink is not sufficiently realized, and there is a possibility that the allowable temperature of the electronic component is exceeded.
- the present invention provides an electronic device provided with a heat sink on an electronic component mounted on a substrate, and provided with means for effectively suppressing noise from being emitted from the heat sink. Let it be an issue.
- a substrate an electronic component mounted on the substrate, and a heat sink provided on the electronic component directly or via a spacer, and the electronic component of the heat sink
- the first surface on the opposite side has a dielectric layer and a second surface that is the surface opposite to the first surface of the dielectric layer on or inside the dielectric layer.
- at least one type of structure including a first conductor having a repetitive structure in at least a partial region, the heat sink on the second surface of the dielectric layer.
- An electronic device is provided so as to be in contact with the first surface.
- a substrate an electronic component mounted on the substrate, and a heat radiating plate provided directly or via a spacer on the electronic component, and the electrons of the heat radiating plate
- the first surface on the side facing the component has a dielectric layer and a first surface that is opposite to the first surface of the dielectric layer on or inside the dielectric layer.
- a second conductor formed on the second surface of the dielectric layer, at least in part, and having a repetitive structure in at least a partial region.
- the second conductor is positioned closer to the first surface of the heat sink than the first conductor, and the second conductor is electrically connected to the first surface of the heat sink.
- the present invention it is possible to suppress the noise generated in the electronic component from being radiated from the heat sink provided on the electronic component.
- FIG. 3 is a cross-sectional view schematically illustrating an example of the electronic apparatus of the first embodiment.
- 4 is a plan view schematically showing an example of the electronic apparatus of Embodiment 1.
- FIG. It is a top view which shows typically an example of the structure of an electronic device of Embodiment 1, and a heat sink.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- 6 is a cross-sectional view illustrating an example of a manufacturing process of the electronic device of Embodiment 1.
- FIG. It is a perspective view which shows typically an example of the EBG structure comprised by the structure of Embodiment 1, and a heat sink.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- 6 is a cross-sectional view illustrating an example of a manufacturing process of the electronic device of Embodiment 1.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- FIG. 3 is a plan view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- 6 is a cross-sectional view illustrating an example of a manufacturing process of the electronic device of Embodiment 1.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- FIG. 3 is a plan view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- 6 is a cross-sectional view illustrating an example of a manufacturing process of the electronic device of Embodiment 1.
- FIG. It is an equivalent circuit diagram of an example of the EBG structure comprised by the structure of Embodiment 1, and a heat sink.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- 3 is a perspective view schematically showing an example of an island-shaped conductor of the structure of the electronic device of Embodiment 1.
- FIG. It is a perspective view which shows typically an example of the EBG structure comprised by the structure of Embodiment 1, and a heat sink.
- FIG. 3 is a cross-sectional view schematically illustrating an example of a structure of the electronic device according to the first embodiment.
- FIG. 6 is a plan view schematically showing an example of a second conductor of a structure of an electronic apparatus according to Embodiment 2.
- FIG. 6 is a plan view schematically showing an example of a second conductor of a structure of an electronic apparatus according to Embodiment 2.
- FIG. 6 is a plan view schematically showing an example of a second conductor of a structure of an electronic apparatus according to Embodiment 2.
- FIG. 7 is an equivalent circuit diagram of the EBG structure shown in FIG. 6. It is a formula for calculating a frequency band of noise for suppressing propagation by the EBG structure. It is a top view which shows typically an example of the structure of the electronic device of Embodiment 4, and a heat sink.
- FIG. 1 is a cross-sectional view schematically showing an example of an electronic apparatus according to this embodiment.
- the electronic device of the present embodiment includes a substrate 10, an electronic component 20, and a heat sink 30.
- the heat radiating plate 30 is provided with a structure 40.
- FIG. 2 is a plan view of the electronic device of FIG. 1 as viewed from the top to the bottom in the drawing.
- the electronic component 20 is mounted on the substrate 10.
- the electronic component 20 is schematically shown as a quadrangle.
- the electronic component 20 is a circuit in which elements are integrated, and corresponds to, for example, an LSI. Note that the position and number on the substrate 10 on which the electronic component 20 is mounted are design matters, and are not limited to those illustrated.
- the heat sink 30 is provided on the electronic component 20 via the spacer 50.
- the heat sink 30 is made of a material having a good thermal conductivity, for example, a metal.
- the shape is not particularly limited in the present embodiment.
- the planar shape may be a rectangle with a certain thickness, or the planar shape may be a square, other polygons, a circle, or other shapes.
- the shape may have a certain thickness.
- the spacer 50 is made of a material having good thermal conductivity, for example, a material containing a magnetic body.
- At least one type of structure 40 is provided on the first surface (the lower surface in the drawing) of the heat radiating plate 30 facing the electronic component 20.
- the structure 40 is preferably provided in the vicinity of a region in contact with the spacer 50 (or the electronic component 20) on the first surface (the lower surface in the drawing) of the heat radiating plate 30.
- FIG. 3 shows a plan view of the structure excluding the substrate 10, the electronic component 20, and the spacer 50 of the electronic device shown in FIG.
- the structure 40 may be provided on substantially the entire surface of the first surface 32 of the heat dissipation plate 30 excluding the region 31 in contact with the spacer 50 (or the electronic component 20).
- the structure 40 has an effect of suppressing noise propagation on the first surface 32 of the heat sink 30 as described below. If such a structure 40 is provided around the region 31 in contact with the spacer 50 (or the electronic component 20) on the first surface 32 of the heat radiating plate 30, the heat is generated in the electronic component 20 and radiated through the region 31. It is possible to suppress the noise transmitted to the plate 30 from spreading from there to the periphery. As a result, it is possible to suppress noise from being radiated from the heat sink 30.
- the structure 40 may be provided on a second surface (the upper surface in FIG. 1) that is the surface opposite to the first surface 32 of the heat sink 30. Furthermore, it may be provided on the side surface of the heat sink 30.
- the structure 40 of the present embodiment includes a dielectric layer and a first conductor, and the second surface of the dielectric layer is a first surface of the heat sink 30 (the lower surface in FIG. 1). It is provided to touch.
- the structure 40 configured as described above constitutes an EBG structure having at least one kind of EBG structure together with the first surface (the lower surface in FIG. 1) of the heat radiating plate 30. And by this EBG structure, the propagation of noise on the first surface (the lower surface in FIG. 1) of the heat sink 30 is suppressed.
- EBG structure the propagation of noise on the first surface (the lower surface in FIG. 1) of the heat sink 30 is suppressed.
- the structure 40 of this embodiment is not limited to the specific example demonstrated below.
- FIG. 4A schematically shows an example of the structure 40 of the present embodiment.
- FIG. 4A is a cross-sectional view showing a state where the structure 40 is attached to the heat sink 30.
- the structure 40 includes a dielectric layer 45 and a first conductor formed on the first surface 46 of the dielectric layer 45 and having a repetitive structure, for example, a periodic structure, at least in a partial region. .
- the first conductor having a repetitive structure is composed of, for example, a plurality of island-shaped conductors 41 separated from each other.
- the first conductor is provided so as to face the second surface 47 that is the surface opposite to the first surface 46 of the dielectric layer 45.
- the structure 40 is provided on the second surface 47 of the dielectric layer 45 so as to be in contact with the first surface 32 of the heat sink 30.
- the structure 40 may be configured as a sheet, for example, and at least a part of the dielectric layer 45 may be configured with an adhesive layer 45 ⁇ / b> B that adheres to the first surface 32 of the heat sink 30.
- This adhesive layer 45 ⁇ / b> B constitutes the second surface 47 of the dielectric layer 45.
- a connecting member 43 that penetrates through the second surface 47 of the dielectric layer 45 and is electrically connected to the first surface 32 of the heat sink 30 is provided inside the dielectric layer 45.
- the dielectric layer 45 includes an adhesive layer 45B made of a dielectric and a layer 45A made of a dielectric.
- the layer 45A may be a flexible substrate, for example. More specifically, for example, a glass epoxy substrate or a fluororesin substrate may be used.
- the layer 45A may be a single layer or a multilayer.
- the adhesive layer 45B can be made of, for example, an adhesive.
- the raw material for the adhesive is not particularly limited, and for example, natural rubber, acrylic resin, silicone, or the like can be used.
- the thicknesses of the layer 45A and the adhesive layer 45B are design matters.
- the first conductor having a repetitive structure for example, a periodic structure in at least a partial region has a plurality of island-like conductors 41 separated from each other as a repetitive structure.
- the plurality of island-like conductors 41 separated from each other are desirably provided periodically.
- “repetition” in the island-shaped conductor 41 includes a case where the island-shaped conductor 41 is partially missing. Further, “periodic” includes a case where some of the island-shaped conductors 41 themselves are misaligned. That is, even when the periodicity in the strict sense is broken, when the island-shaped conductor 41 is repeatedly arranged, the characteristics as the metamaterial of the EBG structure in which the island-shaped conductor 41 is a part of the constituent elements. Since it can be obtained, a certain degree of defect is allowed for “periodicity”. “At least in a partial region” means that the entire surface of the structure 40 may have a repeating structure, or a part thereof may have a repeating structure. That is, the plurality of island-shaped conductors 41 separated from each other may be provided on the entire planar surface of the structure 40 or may be provided on a part thereof.
- the raw material of the island-shaped conductor 41 is not particularly limited, and for example, copper or the like can be selected.
- the shape of the island is not particularly limited, and any shape such as a triangle, a quadrangle, a pentagon, a polygon having more vertices, and a circle can be selected.
- Two or more types of island-shaped conductors 41 having different sizes and / or shapes can be repeatedly arranged. In such a case, it is desirable that two or more types of island-shaped conductors 41 are periodically arranged.
- the size of the island-shaped conductor 41, the mutual interval, and the like are design matters determined according to the frequency of noise that suppresses propagation.
- the connecting member 43 can be made of a metal such as copper, aluminum, stainless steel or the like.
- the connection member 43 may not only conduct with the first surface 32 of the heat radiating plate 30 but may conduct with some or all of the island-like conductors 41. In FIG. 4A, all the connection members 43 are electrically connected to the island-shaped conductor 41.
- the connection member 43 may be provided periodically or may not be provided periodically.
- the connection member 43 is provided periodically, the EBG structure constituted by the structure 40 and the first surface 32 having the conductivity of the heat sink 30 causes Bragg reflection, and the band gap band is widened. It is desirable to be periodic.
- “periodic” includes a case where the arrangement of some of the connecting members 43 themselves is deviated.
- FIG. 4B is a cross-sectional view showing an example of the manufacturing process of the structure 40 of the present embodiment.
- a copper foil 41 is formed on a first surface (upper surface in the figure) of a substrate (layer 45A) such as a glass epoxy substrate or a fluororesin substrate.
- a substrate layer 45A
- a pattern a plurality of island-like conductors 41 separated from each other
- a hole penetrating the island-shaped conductor 41 and the layer 45A is formed by a drill.
- a through pin (connecting member 43) made of a metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (3).
- an adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A.
- the adhesive layer 45B is formed so that the connection member 43 penetrates the adhesive layer 45B.
- the specific means for forming in this way is not particularly limited, but may be the following means.
- the length of the connecting member 43 inserted in (4) is configured such that one end protrudes from the second surface (lower surface in the drawing) of the layer 45A in the inserted state.
- the adhesive layer 45B is composed of a sheet-like adhesive and the sheet-like adhesive (adhesive layer 45B) is formed on the second surface of the layer 45A, the sheet-like adhesive (adhesive layer 45B) is strongly pushed in.
- connection member 43 is protruded from the surface of the sheet-like adhesive (adhesive layer 45B).
- the adhesive layer 45B is made of a fluid adhesive, and the adhesive is applied to the second surface (the lower surface in the drawing) of the layer 45A, and then connected using a squeegee.
- the connecting member 43 may be protruded from the surface of the adhesive layer 45B by removing the adhesive applied to the surface of the member 43.
- a non-conductive surface layer (not shown) is provided to cover the first surfaces of the plurality of island-like conductors 41 and the layer 45A separated from each other.
- the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45 ⁇ / b> B is in contact with the first surface 32 of the heat sink 30.
- the connecting member 43 is pasted so as to be in contact with the first surface 32 of the heat sink 30.
- FIGS. 5 and 6 schematically show an example of the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30.
- FIG. 5 is a perspective view schematically showing the configuration of the EBG structure
- FIG. 6 is a cross-sectional view of the EBG structure of FIG.
- a kind of EBG structure is periodically arranged. Note that the EBG structure shown in FIG. 6 is upside down of the EBG structure constituted by the structure 40 shown in FIG. 4A and the first surface 32 of the heat sink 30.
- the EBG structure shown in FIGS. 5 and 6 includes a sheet-like conductor 2, a plurality of island-like conductors 1 separated from each other, and a plurality of connecting members 3.
- the sheet-like conductor 2 corresponds to the first surface 32 of the heat sink 30 (see FIG. 4A)
- the island-like conductor 1 corresponds to the island-like conductor 41 of the structure 40
- the connection member 3 is the connection member of the structure 40. 43.
- the plurality of island-like conductors 1 are regions that overlap the sheet-like conductor 2 in plan view, and are disposed at positions away from the sheet-like conductor 2 with a dielectric layer (not shown) interposed therebetween.
- the plurality of island-shaped conductors 1 are periodically arranged.
- the connecting member 3 connects each of the plurality of island-like conductors 1 to the sheet-like conductor 2.
- This EBG structure includes one island-shaped conductor 1, a connecting member 3 provided corresponding to the island-shaped conductor 1, and a region facing the island-shaped conductor 1 in the sheet-shaped conductor 2.
- a unit cell A is configured.
- This unit cell A is repeatedly arrange
- This structure functions as a metamaterial, for example, EBG (Electromagnetic Band Gap).
- EBG structure has an EBG structure having a so-called mushroom structure, and the distance between the plurality of island-like conductors 1 and the sheet-like conductor 2, the thickness of the connecting member 3, the mutual distance between the plurality of island-like conductors 1 and the like. By adjusting the frequency band, the frequency band that becomes the band gap can be adjusted.
- “repetition” of the unit cell A includes a case where a part of the configuration is missing in any unit cell A.
- “repetition” includes a case where the unit cell A is partially missing.
- “periodicity” a part of the constituent elements (the island-like conductor 1 and the connecting member 3) are shifted in some unit cells A, or the arrangement of some unit cells A itself is shifted. Cases are also included. In other words, even when the periodicity in the strict sense collapses, if the unit cell A is repeatedly arranged, the characteristics as a metamaterial can be obtained, so that “periodicity” has some defect. Permissible.
- FIG. 7 is an equivalent circuit diagram of the unit cell A shown in FIG. As shown in FIG. 7, the unit cell A includes a capacitance C generated between adjacent island-shaped conductors 1 and an inductance L created by the connecting member 3.
- the EBG structure noise propagation on the surface of the sheet-like conductor 2 can be suppressed. That is, the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 4A) can be suppressed. Further, since the adjacent island-shaped conductors 1 (41) constitute the capacitance C, the propagation of noise in the vicinity of the EBG structure can be suppressed. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the structure 40 of the present embodiment has a relatively simple configuration compared to the structure 40 for configuring an EBG structure other than the EBG structure shown in FIGS. For this reason, the manufacturing process can be reduced and the manufacturing cost is excellent.
- FIG. 41 is a cross-sectional view showing a state where the sheet 400 provided with the EBG structure is attached to the surface 302 of the heat sink 300.
- a sheet 400 shown in FIG. 41 includes the same EBG structure as the EBG structure shown in FIGS. That is, this EBG structure has a sheet-like conductor 402, a plurality of island-like conductors 401 separated from each other, and a plurality of connection members 403.
- the sheet 400 is usually provided with a layer 404 of an insulating adhesive in order to ensure adhesion with the heat sink 300.
- this adhesive layer 404 is located between the sheet-like conductor 402 and the surface 302 of the heat sink 300 in a state where the sheet 400 having the EBG structure is attached to the heat sink 300.
- the sheet-like conductor 402 constituting the EBG structure and the surface 302 of the heat sink 300 are electrically separated from each other.
- the propagation of noise on the surface 302 of the heat sink 300 cannot be suppressed.
- the noise transmitted to the heat radiating plate 300 propagates through the surface 302 and spreads to the surroundings, and is radiated into the air.
- the electronic device of this embodiment solves the above-described problems.
- the first surface 32 of the heat sink 30 constitutes a part of the EBG structure.
- the first surface 32 of the heat radiating plate 30 and the EBG structure are not electrically separated. That is, according to the electronic apparatus of the present embodiment, the propagation of noise on the surface of the first surface 32 of the heat sink 30 can be suppressed by the EBG structure configured using the first surface 32 of the heat sink 30. . Further, noise propagation near the EBG structure, that is, near the first surface 32 of the heat sink 30 can be suppressed. Note that all the electronic devices according to the first embodiment described below solve the above-described problems by the same means as described above. ⁇ Embodiment 1-2 >>
- the electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
- FIG. 8A is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment.
- This structure 40 is based on the structure 40 (see FIG. 4A) of Embodiment 1-1, and the shape of the connection member 43 (43A, 43B, 43C) is different.
- Other configurations are the same as those of the structure 40 according to Embodiment 1-1, and thus the description thereof is omitted here.
- the connection member 43 of this embodiment includes a conductive first connection member 43A, a conductive second connection member 43B, and a conductive third connection member 43C.
- One end of the first connection member 43A penetrates the second surface 47 of the dielectric layer 45 and is exposed from the second surface 47, and is electrically connected to the second connection member 43B via the other end side.
- the other end of the first connection member 43 ⁇ / b> A may penetrate the first surface 46 of the dielectric layer 45.
- the first connecting member 43A passes through a hole provided in the island-shaped conductor 41 in a state of non-contact with the island-shaped conductor 41.
- the second connecting member 43 ⁇ / b> B is provided so as to be electrically connected to the first connecting portion 43 ⁇ / b> A and to face the island-shaped conductor 41.
- the planar shape of the second connection member 43B may be a straight line, a curved line, a spiral shape, or other shapes.
- the third connection member 43C is electrically connected to the second connection member 43B via one end side, and is electrically connected to the island-like conductor 41 via the other end side extending in the direction of the second surface 47 of the dielectric layer 45. .
- the other end may penetrate the first surface 46 of the dielectric layer 45.
- FIG. 8C and 8D an example at the time of making the 2nd connection member 43B into a spiral shape is shown to FIG. 8C and 8D.
- FIG. 8C is a cross-sectional view taken along the line II ′ of FIG. 8D
- FIG. 8D is a plan view of FIG. 8C viewed from the bottom to the top in the drawing. 8C and 8D, in order to make the configuration clearer, the hatching attached to each component is set to a mode different from the other drawings. Moreover, in FIG. 8C, only the structure 40 is shown.
- the EBG structure constituted by the structure 40 shown in FIGS. 8A and 8C and the first surface 32 of the heat sink 30 shown in FIG. 8A has a short microstrip line formed including the connection member 43B. It has a short stub type EBG structure that functions as a stub.
- the connection member 43A forms an inductance.
- the connecting member 43B is electrically coupled to the opposing island-shaped conductor 41 to form a microstrip line having the island-shaped conductor 41 as a return path.
- One end of the microstrip line is a short end by the third connection member 43C, and is configured to function as a short stub.
- FIG. 8B is a cross-sectional view showing an example of the manufacturing process of the structure 40 of the present embodiment.
- a copper foil 43B is formed on the first surface (the upper surface in the figure) of a substrate (layer 45A (1)) such as a glass epoxy substrate or a fluororesin substrate, and the second The copper foil 41 is formed on the surface (the lower surface in the figure).
- a pattern (a plurality of island-like conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching.
- a pattern (second connection member 43B) is formed by selectively etching a part of the copper foil 43B by photolithography and etching.
- the island-shaped conductor 41 is formed in a pattern provided with holes for allowing the first connection member 43A to pass therethrough. This hole is provided larger than the diameter of the first connecting member 43A.
- a hole penetrating the second connecting member 43B, the layer 45A (1), and the island-like conductor 41 is formed by a drill, and a through pin (first pin) made of a metal such as copper, aluminum, or stainless steel is formed in the hole.
- the state shown in (3) is obtained by inserting the 3 connecting members 43C).
- a dielectric layer 45A (2) is further formed on the second surface (the lower surface in the drawing) of the layer 45A (1).
- a new flexible substrate such as a glass epoxy substrate or a fluororesin substrate is prepared, and the first surface (upper surface in the figure) of this substrate (layer 45A (2)) ) May be attached to the second surface (the lower surface in the drawing) of the layer 45A (1).
- the island-shaped conductor 41 (first conductor) is provided inside the dielectric layer composed of the layers 45A (1) and 45A (2).
- a hole penetrating the second connecting member 43B, the layers 45A (1), 45A (2), and the island-shaped conductor 41 is formed using a drill.
- This hole is formed by penetrating a drill so as to pass through this hole in a state where the diameter is smaller than the hole provided in the island-shaped conductor 41 in (2) and is not in contact with the island-shaped conductor 41. Is done.
- a through pin (first connecting member 43A) made of metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (5).
- the adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A (2).
- the adhesive layer 45B is formed so that the connection member 43A penetrates the adhesive layer 45B.
- a non-conductive surface layer (not shown) is provided to cover the first surfaces of the plurality of island-shaped conductors 41 and the layer 45A (1) separated from each other.
- the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45 ⁇ / b> B contacts the first surface 32 of the heat sink 30.
- the first connecting member 43 ⁇ / b> A of the connecting member 43 is attached so as to be in contact with the first surface 32 of the heat sink 30.
- the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30 is composed of the structure 40 of the embodiment 1-1 and the first surface 32 of the heat sink 30. Different from the constructed EBG structure.
- the EBG structure shown in FIGS. 8A and 8C includes one island-shaped conductor 41, a connection member 43 (43 ⁇ / b> A, 43 ⁇ / b> B, 43 ⁇ / b> C) provided corresponding to the island-shaped conductor 41, and the first heat sink 30.
- a unit cell A is configured including the region facing the island-shaped conductor 41 in the surface 32.
- FIG. 9 is an equivalent circuit diagram of the unit cell A shown in FIGS. 8A and 8C.
- the unit cell A includes an impedance unit 23 and an admittance unit 24.
- the impedance unit 23 includes a capacitance C generated between adjacent island-shaped conductors 41 and an inductance L created by the island-shaped conductors 41.
- the admittance part 24 includes a capacitance C formed by the first surface 32 of the heat sink 30 and the island-shaped conductor 41, an inductance L formed by the first connecting member 43A, and a second connecting member 43B (transmission line) and the first And a short stub including three connecting members 43C.
- the EBG structure generates an electromagnetic band gap in a frequency region in which the impedance portion 23 is capacitive and the admittance portion 24 is inductive.
- the frequency band in which the admittance portion 24 becomes inductive can be lowered by increasing the stub length of the short stub. For this reason, it is possible to lower the frequency of the band gap band.
- the short stub type EBG structure requires a stub length to reduce the frequency of the bandgap band, but does not necessarily require an area, so that the unit cell can be miniaturized.
- the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed.
- noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the EBG structure (see FIG. 8A) constituted by the structure 40 of the present embodiment has various inductances as shown in FIG. 9 due to the structure of the characteristic connection member 43 (43A, 43B, 43C).
- L and capacitance C can be formed.
- the inductance L and the capacitance C required for suppressing the propagation of noise in a desired frequency band are made larger than necessary for the size of the island-shaped conductor 41 and the connecting member 43 (43A, 43B, 43C). It becomes possible to obtain without. That is, the size of the unit cell A can be made relatively small. In such a case, the number of unit cells A per unit area in the plane of the structure 40 can be increased, and noise propagation can be more effectively suppressed.
- Embodiment 1-3 >>
- the electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
- FIG. 10A is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment.
- This structure 40 is based on the structure 40 (see FIG. 4A) of Embodiment 1-1, and the shape of the connection member 43 (43A, 43B) is different.
- Other configurations are the same as those of the structure 40 according to Embodiment 1-1, and thus the description thereof is omitted here.
- the connection member 43 of the present embodiment includes a conductive first connection member 43A and a conductive second connection member 43B.
- One end of the first connection member 43A penetrates the second surface 47 of the dielectric layer 45 and is exposed from the second surface 47, and is electrically connected to the second connection member 43B via the other end side.
- the other end of the first connection member 43 ⁇ / b> A may penetrate the first surface 46 of the dielectric layer 45.
- the first connecting member 43A passes through a hole provided in the island-shaped conductor 41 in a state of non-contact with the island-shaped conductor 41.
- the second connecting member 43 ⁇ / b> B is provided so as to be electrically connected to the first connecting portion 43 ⁇ / b> A and to face the island-shaped conductor 41.
- the planar shape of the second connection member 43B may be a straight line, a curved line, a spiral shape, or other shapes.
- the other end of the second connection member 43B is an open end.
- FIGS. 10C and 10D an example of the case where the second connecting member 43B is formed in a spiral shape is shown in FIGS. 10C and 10D.
- 10C is a cross-sectional view of the roll of FIG. 10D
- FIG. 10D is a plan view of FIG. 10C viewed from the bottom to the top in the drawing.
- the hatching applied to each component is set to a mode different from the other drawings.
- FIG. 10C only the structure 40 is shown.
- the EBG structure constituted by the structure 40 shown in FIGS. 10A and 10C and the first surface 32 of the heat sink 30 shown in FIG. 10A has an open microstrip line including the connecting member 43B. It has an open stub type EBG structure that functions as a stub.
- the connection member 43A forms an inductance.
- the connecting member 43B is electrically coupled to the opposing island-shaped conductor 41 to form a microstrip line having the island-shaped conductor 41 as a return path.
- One end of the microstrip line is an open end, and is configured to function as an open stub.
- FIG. 10B is a cross-sectional view showing an example of the manufacturing process of the structure 40 of the present embodiment.
- a copper foil 43B is formed on the first surface (the upper surface in the figure) of a substrate (layer 45A (1)) such as a glass epoxy substrate or a fluororesin substrate, and the second The copper foil 41 is formed on the surface (the lower surface in the figure).
- a pattern (a plurality of island-like conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching.
- a pattern (second connection member 43B) is formed by selectively etching a part of the copper foil 43B by photolithography and etching.
- the island-shaped conductor 41 is formed in a pattern provided with holes for allowing the first connection member 43A to pass therethrough. This hole is provided larger than the diameter of the first connecting member 43A.
- a dielectric layer 45A (2) is further formed on the second surface (the lower surface in the drawing) of the layer 45A (1).
- a new flexible substrate such as a glass epoxy substrate or a fluororesin substrate is prepared, and the first surface (upper surface in the figure) of this substrate (layer 45A (2)) ) May be attached to the second surface (the lower surface in the drawing) of the layer 45A (1).
- the island-shaped conductor 41 (first conductor) is provided inside the dielectric layer composed of the layers 45A (1) and 45A (2).
- a hole penetrating the second connecting member 43B, the layers 45A (1) and 45A (2), and the island conductor 41 is formed using a drill.
- This hole is formed by penetrating a drill so as to pass through this hole in a state where the diameter is smaller than the hole provided in the island-shaped conductor 41 in (2) and is not in contact with the island-shaped conductor 41. Is done.
- a through pin (first connecting member 43A) made of a metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (4).
- an adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A (2).
- the adhesive layer 45B is formed so that the connection member 43A penetrates the adhesive layer 45B.
- a non-conductive surface layer (not shown) is provided to cover the first surfaces of the plurality of island-shaped conductors 41 and the layer 45A (1) separated from each other.
- the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45B is in contact with the first surface 32 of the heat sink 30.
- the first connecting member 43 ⁇ / b> A of the connecting member 43 is attached so as to be in contact with the first surface 32 of the heat sink 30.
- the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30 includes the structure 40 of the embodiments 1-1 and 1-2 and the first of the heat sink 30. Different from the EBG structure constituted by the surface 32.
- the EBG structure shown in FIGS. 10A and 10C includes one island-shaped conductor 41, a connection member 43 (43 ⁇ / b> A, 43 ⁇ / b> B) provided corresponding to the island-shaped conductor 41, and the first surface 32 of the heat sink 30.
- the unit cell A is configured to include a region facing the island-shaped conductor 41 in the.
- FIG. 11 is an equivalent circuit diagram of the unit cell A shown in FIGS. 10A and 10C.
- the unit cell A includes an impedance unit 23 and an admittance unit 24.
- the impedance unit 23 includes a capacitance C generated between adjacent island-shaped conductors 41 and an inductance L created by the island-shaped conductors 41.
- the admittance part 24 includes a capacitance C formed by the first surface 32 of the heat sink 30 and the island-shaped conductor 41, an inductance L formed by the first connection member 43A, and a second connection member 43B (transmission line).
- Open stub consisting of
- the EBG structure generates an electromagnetic band gap in a frequency region in which the impedance portion 23 is capacitive and the admittance portion 24 is inductive.
- the frequency band in which the admittance portion 24 becomes inductive can be lowered by increasing the stub length of the open stub. For this reason, it is possible to lower the frequency of the band gap band.
- the open stub type EBG structure requires a stub length to reduce the frequency of the bandgap band, but does not necessarily require an area. Therefore, the unit cell can be miniaturized.
- the EBG structure noise propagation on the surface of the first surface 32 of the heat sink 30 (see FIG. 10A) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the EBG structure (see FIG. 10A) configured by the structure 40 of the present embodiment has various inductances L and L as shown in FIG. 11 due to the configuration of the characteristic connection member 43 (43A, 43B). Capacitance C can be formed. As a result, the inductance L and the capacitance C required for suppressing the propagation of noise in a desired frequency band can be achieved without increasing the size of the island-shaped conductor 41 and the connecting member 43 (43A, 43B) more than necessary. Can be obtained. That is, the size of the unit cell A can be made relatively small. In such a case, the number of unit cells A per unit area in the plane of the structure 40 can be increased, and noise propagation can be more effectively suppressed. ⁇ Embodiment 1-4 >>
- the electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
- FIG. 12A is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment.
- This structure 40 is based on the structure 40 (see FIG. 4A) of Embodiment 1-1, and the shape of the connection member 43 (43A, 43B) is different.
- Other configurations are the same as those of the structure 40 according to Embodiment 1-1, and thus the description thereof is omitted here.
- the connection member 43 of the present embodiment includes a conductive first connection member 43A and a conductive second connection member 43B.
- One end of the first connection member 43A penetrates the second surface 47 of the dielectric layer 45 and is exposed from the second surface 47, and is electrically connected to the second connection member 43B via the other end side.
- the first connecting member 43A does not contact the island-shaped conductor 41.
- the second connecting member 43 ⁇ / b> B is provided so as to be electrically connected to the first connecting portion 43 ⁇ / b> A and to face the island-shaped conductor 41.
- the planar shape of the second connection member 43B may be a straight line, a curved line, a spiral shape, or other shapes.
- the other end of the second connection member 43B is an open end.
- the EBG structure constituted by the structure 40 shown in FIG. 12A and the first surface 32 of the heat sink 30 is an open stub type in which a microstrip line formed including a connection member 43B functions as an open stub. It has an EBG structure of Specifically, the connection member 43A forms an inductance. Further, the connecting member 43B is electrically coupled to the opposing island-shaped conductor 41 to form a microstrip line having the island-shaped conductor 41 as a return path. One end of the microstrip line is an open end, and is configured to function as an open stub.
- FIG. 12B is a cross-sectional view illustrating an example of the manufacturing process of the structure 40 of the present embodiment.
- a copper foil 43B is formed on a first surface (upper surface in the drawing) of a substrate (layer 45A (1)) such as a glass epoxy substrate or a fluororesin substrate. Further, the copper foil 41 is formed on the first surface (upper surface in the drawing) of another flexible substrate (layer 45A (2)) such as a glass epoxy substrate or a fluororesin substrate.
- a pattern (second connecting member 43B) is formed by selectively etching part of the copper foil 43B by photolithography and etching. Further, a pattern (a plurality of island-shaped conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching.
- a hole penetrating the second connecting member 43B and the layer 45A (1) is formed by a drill.
- a penetration pin (connecting member 43A) made of a metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (3).
- the second surface (lower surface in the drawing) of the layer 45A (2) is formed on the first surface (upper surface in the drawing) of the layer 45A (1).
- the adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A (1).
- the adhesive layer 45B is formed so that the connection member 43A penetrates the adhesive layer 45B.
- a non-conductive surface layer (not shown) is provided to cover the plurality of island-like conductors 41 and the first surface of the layer 45A (2) separated from each other.
- the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45 ⁇ / b> B contacts the first surface 32 of the heat sink 30.
- the first connecting member 43 ⁇ / b> A of the connecting member 43 is attached so as to be in contact with the first surface 32 of the heat sink 30.
- the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30 includes the structure 40 of the embodiments 1-1 to 1-3 and the first of the heat sink 30. Different from the EBG structure constituted by the surface 32.
- the EBG structure shown in FIG. 12A includes one island-shaped conductor 41, a connection member 43 (43 ⁇ / b> A, 43 ⁇ / b> B) provided corresponding to the island-shaped conductor 41, and the first surface 32 of the heat sink 30.
- the unit cell A is configured to include a region facing the island-shaped conductor 41.
- FIG. 13 is an equivalent circuit diagram of the unit cell A shown in FIG. 12A. This equivalent circuit diagram is the same as the equivalent circuit diagram of FIG. 11 described in the embodiment 1-3. Therefore, the description here is omitted.
- the EBG structure noise propagation on the surface of the first surface 32 of the heat sink 30 (see FIG. 12A) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the EBG structure (see FIG. 12A) configured by the structure 40 of the present embodiment has various inductances L and L as shown in FIG. 13 due to the configuration of the characteristic connection member 43 (43A, 43B). Capacitance C can be formed. As a result, the inductance L and the capacitance C required for suppressing the propagation of noise in a desired frequency band can be achieved without increasing the size of the island-shaped conductor 41 and the connecting member 43 (43A, 43B) more than necessary. Can be obtained. That is, the size of the unit cell A can be made relatively small. In such a case, the number of unit cells A per unit area in the plane of the structure 40 can be increased, and noise propagation can be more effectively suppressed. ⁇ Embodiment 1-5 >>
- the electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
- FIG. 14 is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment.
- the structure 40 of the present embodiment is formed on the dielectric layer 45 and the first surface 46 of the dielectric layer 45, and is a first conductor having a repetitive structure, for example, a periodic structure, at least in a partial region. And comprising.
- the first conductor having a repetitive structure is composed of, for example, a plurality of island-shaped conductors 41 separated from each other.
- the first conductor is provided so as to face the second surface 47 that is the surface opposite to the first surface 46 of the dielectric layer 45.
- the structural body 40 is attached to the heat sink 30 such that the second surface 47 of the dielectric layer 45 is in contact with the first surface 32 of the heat sink 30.
- a part of the dielectric layer 45 is composed of an adhesive layer 45B that adheres to the first surface 32 of the heat sink 30, and the adhesive layer 45B constitutes a second surface 47 of the dielectric layer 45.
- the plurality of island-like conductors 41 are provided with openings 41B as shown in the enlarged perspective view of FIG.
- the openings 41B are provided in a part of the plurality of island-like conductors 41, it is desirable that the openings 41B are provided periodically.
- a wiring 41A having one end connected to the island-shaped conductor 41 is provided.
- the size of the opening 41B, the length, the thickness, and the like of the wiring 41A are design matters determined according to the frequency of noise that suppresses propagation.
- the structure 40 of the present embodiment is formed by forming a copper foil 41 on the first surface of a substrate (layer 45A) such as a glass epoxy substrate or a fluororesin substrate, and then (2 ), A pattern (a plurality of island-like conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching. By this photolithography and etching, the island-shaped conductor 41 is formed in the pattern shown in FIG. Subsequent steps can be realized according to Embodiment 1-1. Therefore, the description here is omitted.
- the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30 is the same as the structure 40 of any of the embodiments 1-1 to 1-4 and the heat sink 30. Different from the EBG structure constituted by the first surface 32.
- FIGS. 16 and 17 schematically show an example of the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30.
- 16 is a perspective view schematically showing the configuration of the EBG structure
- FIG. 17 is a side view of the EBG structure of FIG. This EBG structure is shown upside down with respect to the EBG structure constituted by the structure 40 shown in FIG. 14 and the first surface 32 of the heat sink 30.
- the EBG structure shown in FIGS. 16 and 17 includes a sheet-like conductor 2, a plurality of island-like conductors 1 separated from each other, an opening 1B provided in the island-like conductor 1, and a wiring 1A provided in the opening 1B. And composed of The plurality of island-like conductors 1 are regions that overlap the sheet-like conductor 2 in plan view, and are disposed at positions away from the sheet-like conductor 2 with a dielectric layer (not shown) interposed therebetween. The plurality of island-shaped conductors 1 are periodically arranged.
- the plurality of island-shaped conductors 1 are provided with openings 1 ⁇ / b> B, and wiring 1 ⁇ / b> A having one end connected to the island-shaped conductor 1 is provided in the openings 1 ⁇ / b> B.
- the wiring 1A functions as an open stub, and the portion of the sheet-like conductor 2 facing the wiring 1A and the wiring 1A form a transmission line, for example, a microstrip line.
- This EBG structure includes a unit cell including one island-shaped conductor 1, wiring 1 ⁇ / b> A provided in the opening 1 ⁇ / b> B of the island-shaped conductor 1, and a region of the sheet-shaped conductor 2 facing these. A is configured. By periodically disposing the unit cells A, the structure functions as a metamaterial, for example, an EBG (Electromagnetic Band Gap). 16 and 17, the unit cell A has a two-dimensional array in plan view.
- EBG Electromagnetic Band Gap
- the plurality of unit cells A have the same EBG structure and are arranged in the same direction.
- the island-like conductor 1 and the opening 1B are square and are arranged so that their centers overlap each other.
- the wiring 1A extends from the approximate center of one side of the opening 1B substantially perpendicularly to this side.
- FIG. 18 is an equivalent circuit diagram of the unit cell A shown in FIGS. As shown in FIG. 18, a capacitance C is formed between the sheet-like conductor 2 and the island-like conductor 1. A capacitance C is also formed between the adjacent island conductors 1. An inductance L is formed in the island-shaped conductor 1 having the opening 1B.
- the wiring 1A functions as an open stub, and the portion of the sheet conductor 2 facing the wiring 1A and the wiring 1A form a transmission line 4, for example, a microstrip line.
- the other end of the transmission line is an open end.
- noise propagation on the surface of the sheet-like conductor 2 can be suppressed. That is, the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 14) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 1 (41) form a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the structure 40 of the present embodiment does not have the connection member 43, so the connection member 43 and the first surface of the heat sink 30 are the same. It is not necessary to provide a means for ensuring conduction with 32. As a result, quality stability is enhanced. ⁇ Embodiment 1-6 >>
- the electronic device of the present embodiment is based on the electronic device of Embodiment 1-5, and the structure 40 is partially different. Specifically, the configuration in the opening 41B of the island-shaped conductor 41 is different. Other configurations are the same as those of the electronic device of the embodiment 1-5, and thus description thereof is omitted here.
- FIG. 19 shows an enlarged perspective view of the island-shaped conductor 11 of the structure 40 of the present embodiment.
- an opening 41B as shown in FIG. 19 is provided in a part or all of the plurality of island-like conductors 41, and the second or part of the openings 41B includes a second The island-shaped conductor 41C and the wiring 41A that connects the island-shaped conductor 41 and the second island-shaped conductor 41C are provided.
- the manufacturing method of the electronic device of the present embodiment can be realized according to the manufacturing method of the electronic device described in Embodiment 1-5, and thus the description thereof is omitted here.
- the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30 includes the structure 40 of any of the embodiments 1-1 to 1-5 and the heat sink 30. Different from the EBG structure constituted by the first surface 32.
- FIG. 20 schematically shows an example of the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30.
- FIG. 20 is a perspective view schematically showing the configuration of the EBG structure.
- the side view of the EBG structure is the same as the side view (see FIG. 17) of the EBG structure described in Embodiment 1-5.
- This EBG structure is shown upside down with respect to the EBG structure constituted by the structure 40 shown in FIG. 14 and the first surface 32 of the heat sink 30.
- the EBG structure shown in FIG. 20 includes a sheet-like conductor 2, a plurality of island-like conductors 1 separated from each other, an opening 1B provided in the island-like conductor 1, wiring 1A provided in the opening 1B, and the first 2 island-shaped conductors 1C.
- the plurality of island-like conductors 1 are regions that overlap the sheet-like conductor 2 in plan view, and are disposed at positions away from the sheet-like conductor 2 with a dielectric layer (not shown) interposed therebetween.
- the plurality of island-shaped conductors 1 are periodically arranged.
- the plurality of island-shaped conductors 1 are provided with openings 1 ⁇ / b> B, and wiring 1 ⁇ / b> A having one end connected to the island-shaped conductor 1 is provided in the openings 1 ⁇ / b> B. Further, in the opening 1B, a second island-shaped conductor 1C connected to the other end of the wiring 1A is provided.
- This EBG structure has one island-like conductor 1, wiring 1 ⁇ / b> A and second island-like conductor 1 ⁇ / b> C provided in the opening 1 ⁇ / b> B of this island-like conductor 1, and these in the sheet-like conductor 2.
- the unit cell A is configured to include a region to be operated. By periodically disposing the unit cells A, the structure functions as a metamaterial, for example, an EBG (Electromagnetic Band Gap). In the example shown in FIG. 20, the unit cell A has a two-dimensional array in plan view.
- the plurality of unit cells A have the same EBG structure and are arranged in the same direction.
- the island-shaped conductor 1, the opening 1 ⁇ / b> B, and the second island-shaped conductor 1 ⁇ / b> C are square and are arranged so that their centers overlap each other.
- the wiring 1A extends from the approximate center of one side of the opening 1B substantially perpendicularly to this side. Then, the wiring 1A connects the center of the first side of the second island-shaped conductor 1C and the center of the side of the opening 1B facing the first side of the second island-shaped conductor 1C. Yes.
- FIG. 21 is an equivalent circuit diagram of the unit cell A shown in FIG. As shown in FIG. 21, a capacitance C is formed between the island-like conductor 1 and the sheet-like conductor 2. A capacitance C is also formed between the adjacent island conductors 1. Further, a capacitance C is also formed between the second island-like conductor 1C and the sheet-like conductor 2. An inductance L is formed in the island-shaped conductor 1 having the opening 1B. The wiring 1A connecting the island-shaped conductor 1 and the second island-shaped conductor 1C has an inductance L.
- noise propagation on the surface of the sheet-like conductor 2 can be suppressed. That is, the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 14) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 1 (41) form a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the structure 40 of the present embodiment does not have the connection member 43, so the connection member 43 and the first surface of the heat sink 30 are the same. It is not necessary to provide a means for ensuring conduction with 32. As a result, quality stability is enhanced.
- Embodiment 1-7 >>
- the electronic device of the present embodiment is based on the electronic device of any one of Embodiments 1-1 to 1-6, and the structure 40 is different. Specifically, the structure of the dielectric layer 45 of the structure 40 is different. The other configuration is the same as that of any one of the electronic devices of Embodiments 1-1 to 1-6, and thus the description thereof is omitted here.
- FIG. 22 is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment.
- the dielectric layer 45 of the structure 40 of the present embodiment is different from the structure 40 of any of Embodiments 1-1 to 1-6 in that it does not have the adhesive layer 45B.
- the other configuration is the same as that of any one of the structures 40 of Embodiment 1-1 to Embodiment 1-6, and thus the description thereof is omitted here.
- the structure 40 of the present embodiment that does not have the adhesive layer 45 ⁇ / b> B uses the tape 60 provided with adhesive means (adhesive or the like) to form the second dielectric layer 45. It attaches to the heat sink 30 so that the surface 47 may contact the first surface 32 of the heat sink 30. In addition, using a member such as glue or a push pin, the second surface 47 of the dielectric layer 45 may be attached to the heat sink 30 so as to be in contact with the first surface 32 of the heat sink 30.
- the structure 40 according to any of Embodiments 1-1 to 1-4 is used as a basis, for example, when the structure 40 according to Embodiment 1-1 is used as a basis as shown in FIG. It is necessary to attach the structure 40 to the heat sink 30 so that the connection member 43 provided on the structure 40 is electrically connected to the first surface 32 of the heat sink 30.
- noise propagation on the surface of the first surface 32 of the heat sink 30 can be suppressed.
- the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed.
- noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the electronic device of the present embodiment is based on the electronic device of the first embodiment, and the structure 40 is different. Since the configuration other than the structure 40 is the same as that of the first embodiment, the description thereof is omitted here. In the following description, the differences between the structures 40 will be mainly described, and description of common points will be omitted.
- the structure 40 of the present embodiment is opposed to a dielectric layer and a second surface that is the surface opposite to the first surface of the dielectric layer inside or on the first surface of the dielectric layer.
- the structure 40 according to the present embodiment includes an EBG structure having at least one type of EBG structure in which the first conductor and the second conductor are part or all of the components.
- EBG structure having at least one type of EBG structure in which the first conductor and the second conductor are part or all of the components.
- the noise suppression tape of this embodiment is attached so that a 2nd conductor and the 1st surface of a heat sink may be conducted. That is, it attaches so that the 1st surface of a heat sink and the EBG structure with which the structure 40 is provided are electrically connected.
- the electronic apparatus solves the problem described with reference to FIG. As a result, it is possible to suppress the propagation of noise on the first surface of the heat radiating plate, and to suppress the emission of noise from the heat radiating plate.
- FIG. 23 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment.
- the structure 40 of the present embodiment includes a dielectric layer 45 and a second surface which is the surface opposite to the first surface 46 of the dielectric layer 45 on the inside of the dielectric layer 45 or on the first surface 46. It has a first conductor provided so as to face the surface 47 and having a repetitive structure in at least a partial region, and a second conductor 42 formed on the second surface 47 of the dielectric layer 45.
- the first conductor having a repetitive structure is composed of, for example, a plurality of island-shaped conductors 41 separated from each other.
- the structure 40 includes the heat sink 30 such that the second conductor 42 is positioned closer to the first face 32 of the heat sink 30 than the first conductor formed on the first face 46 of the dielectric layer 45. Attached to. In this attached state, the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected.
- the second conductor 42 is a sheet-like conductor extending on the second surface of the dielectric layer 45 so as to face the plurality of island-like conductors 41 in plan view.
- the structure 40 of this embodiment is configured as a sheet, for example, and may include an adhesive layer 44.
- the adhesive layer 44 is provided on the opposite side of the dielectric layer 45 via the second conductor 42 and adheres to the first surface 32 of the heat sink 30.
- the structure 40 of the present embodiment includes a conductive member. This conducting member is provided in the adhesive layer 44 and conducts the second conductor 42 and the first surface 32 of the heat sink 30.
- the conductive member of the present embodiment is a plurality of conductive fillers 44 ⁇ / b> A mixed in the adhesive layer 44.
- connection member 43 that conducts at least the second conductor 42 may be provided.
- the connecting member 43 may be electrically connected to some or all of the island-shaped conductors 41 as shown in FIG.
- the connection member 43 shown in FIG. 23 is electrically connected to all the island-like conductors 41.
- connection member 43 is not limited to that shown in FIG. 23, and for example, it can be configured as shown in FIGS. 8A, 8C, 10A, 10C, and 12A. Since the connection member 43 shown in these drawings has been described in the first embodiment, the description thereof is omitted here.
- some or all of the plurality of island-like conductors 41 are provided with an opening 41B as shown in the enlarged perspective view of FIG.
- a wiring 41 ⁇ / b> A connected to the island-shaped conductor 41 may be provided.
- some or all of the plurality of island-shaped conductors 41 are provided with openings 41B, as shown in the enlarged perspective view of FIG. 19, and the second island-like shape is formed in some or all of the openings 41B.
- the conductor 41C and the wiring 41A that connects the island-shaped conductor 41 and the second island-shaped conductor 41C may be provided.
- the electronic device of the present embodiment can be manufactured according to the method of manufacturing the electronic device described in the first embodiment. Therefore, detailed description of the manufacturing method here is omitted.
- the structure 40 of the present embodiment includes an EBG structure having at least one type of EBG structure in which the first conductor and the second conductor 42 are part or all of the components. And in the state attached to the 1st surface 32 of the heat sink 30, the adhesive layer in which the some conductive filler 44A located between the 2nd conductor 42 and the 1st surface 32 of the heat sink 30 was mixed. Due to 44, the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected. That is, the first surface 32 of the heat sink 30 and the EBG structure included in the structure 40 are electrically connected.
- the electronic apparatus of the present embodiment it is possible to suppress the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 23). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected by the plurality of conductive fillers 44A mixed in the adhesive layer 44 of the structure 40.
- a relatively stable conduction can be ensured.
- FIG. 24 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment.
- the electronic device of the present embodiment is based on the electronic device of Embodiment 2-1 (see FIG. 23), and the configuration of the conductive member provided in the adhesive layer 44 is different.
- Other configurations are the same as those of the electronic device of Embodiment 2-1, and thus description thereof is omitted here.
- the conductive member provided in the adhesive layer 44 of the present embodiment is a via 44B provided in the adhesive layer 44 as shown in FIG.
- the via 44 ⁇ / b> B may be integrated with the connection member 43.
- the via 44 ⁇ / b> B can be made of metal such as copper, aluminum, and stainless steel, and penetrates the adhesive layer 44. For this reason, the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected by the via 44B. That is, the first surface 32 of the heat sink 30 and the EBG structure provided in the structure 40 are electrically connected.
- the manufacturing method of the electronic device of the present embodiment is based on the manufacturing method of the electronic device described in the first embodiment, and further, the manufacturing process of the via 44B described below in the manufacturing process of the structure 40. It can be realized by giving.
- a hole penetrating the island-like conductor 41, the dielectric layer 45, and the second conductor 42 is formed by a drill.
- the penetration pin comprised with metals, such as copper, aluminum, and stainless steel used as the connection member 43 and the via
- the vias 44B (convex shape) were formed on the surface of the second conductor 42 by photolithography and etching. Form a pattern.
- the electronic device of this embodiment it is possible to suppress the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 24). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices. ⁇ Embodiment 2-3 >>
- the electronic device of the present embodiment is different from the electronic device of Embodiment 2-1 or 2-2 (see FIGS. 23 and 24) in that the structure 40 does not have the adhesive layer 44.
- Other configurations are the same as those of the electronic device of the embodiment 2-1 or 2-2, and thus the description thereof is omitted here.
- the structure 40 of the present embodiment that does not have the adhesive layer 44 includes, for example, a member such as a tape, glue, or push pin provided with an adhesive means (adhesive or the like), and the second conductor 42 is the heat sink 30. It attaches to the heat sink 30 so that the 1st surface 32 may be touched. According to this configuration, the second conductor 42 of the structure 40 and the first surface 32 of the heat sink 30 are electrically connected. That is, the first surface 32 of the heat sink 30 and the EBG structure provided in the structure 40 are electrically connected.
- noise propagation on the surface of the first surface 32 of the heat sink 30 can be suppressed.
- the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed.
- noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- Embodiment 2-4 >>
- FIG. 25 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment.
- the electronic device of the present embodiment is based on the electronic device of Embodiment 2-1 (see FIG. 23), and the second conductor 42 is different in that it is an adhesive layer 44 mixed with a plurality of conductive fillers 44A.
- Other configurations are the same as those of the electronic device of Embodiment 2-1, and thus description thereof is omitted here.
- the second conductor 42 and the first surface 32 of the heat radiating plate 30 are electrically connected in a state where the structure 40 is attached to the first surface 32 of the heat radiating plate 30. That is, the first surface 32 of the heat sink 30 and the EBG structure provided in the structure 40 are electrically connected.
- the electronic device of the present embodiment can be manufactured according to the method for manufacturing the electronic device described in the first embodiment. Therefore, detailed description here is omitted.
- the electronic device of this embodiment it is possible to suppress the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 25). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- FIG. 26 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment.
- the electronic device of the present embodiment is based on the electronic device of Embodiment 2-2 (see FIG. 24), and differs in the following points. That is, “the electronic device structure 40 of the embodiment 2-2 may or may not be provided with the connection member 43, but the electronic device structure 40 of the embodiment 2-5 is provided with the connection member 43. No difference ”and“ the configuration of the via 44B provided in the adhesive layer 44 and the shape of the second conductor 42 are different ”.
- FIG. 27 schematically shows an example of the planar shape of the second conductor 42.
- the second conductor 42 has an opening 42B.
- the opening 42B is provided at a position facing each of the plurality of island-shaped conductors 41 arranged with periodicity. Further, in the opening 42B, a wiring 42A having one end connected to the second conductor 42 is provided.
- FIG. 28 schematically shows another example of the planar shape of the second conductor 42.
- the second conductor 42 has an opening 42B.
- the opening 42 ⁇ / b> B is provided at a position facing the island-shaped conductor 41.
- the opening 42B is provided with a second island-shaped conductor 42C and a wiring 42A that connects the second conductor 42 and the second island-shaped conductor 42C.
- the manufacturing method of the electronic device of the embodiment 2-5 is based on the manufacturing method of the electronic device described in the first embodiment, and further, the manufacturing process of the via 44B and the manufacturing process of the second conductor 42 described below. It can be realized by giving. For example, a conductor film to be the second conductor 42 is formed on one surface of the dielectric layer 45 (see FIG. 26) to be thicker than a desired thickness, and then the surface of the conductor film is formed by photolithography and etching. The pattern in which the via 44B is formed is formed. Thereafter, with the via 44B covered with a mask, a pattern (second conductor 42) as shown in FIG. 27 or FIG. 28 is formed by photolithography and etching.
- FIGS. 29 and 30 perspective views schematically showing an EBG structure composed of the second conductor 42 and the plurality of island-shaped conductors 41 as described above are shown in FIGS.
- the equivalent circuit diagram of the EBG structure included in the EBG structure in FIG. 29 is the same as the equivalent circuit diagram of the EBG structure included in the EBG structure in FIG. 16 (see FIG. 18). It has been changed to. Further, the equivalent circuit diagram of the EBG structure in FIG. 30 is obtained by changing the positions of the capacitance C and the inductance L to appropriate positions in the equivalent circuit diagram of the EBG structure in FIG. 20 (see FIG. 21). Therefore, detailed description of the EBG structure shown in FIGS. 29 and 30 is omitted.
- the shape of the second conductor 42 has the opening 42B as described above, and has the wiring 42A or the wiring 42A and the second island-shaped conductor 42C in the opening 42B.
- the adhesive layer 44 is composed of an adhesive having no electrical conductivity.
- the position of the via 44 ⁇ / b> B provided in the adhesive layer 44 is preferably a position in contact with only the second conductor 42.
- the electronic apparatus of this embodiment it is possible to suppress the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 26). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices. ⁇ Embodiment 3>
- the electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
- FIG. 31 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the drawing.
- the first surface 32 of the heat dissipation plate 30 of the present embodiment is a rectangle composed of a side having a length p and a side having a length q (p ⁇ q). Further, at least a partial region of the first surface 32 of the heat sink 30 intersects with a straight line extending in a direction parallel to the side of the length p from the region 31 in contact with the spacer (or the electronic component). Is provided. That is, an EBG structure is provided.
- the EBG structure included in the EBG structure includes an electromagnetic wave having a wavelength of 2p in the band gap band.
- the noise transmitted from the electronic component to the heat sink 30 via the region 31 can be suppressed by the EBG structure from propagating in the longitudinal direction of the rectangular heat sink 30. Become.
- noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the electronic device of the present embodiment is configured to suppress propagation of noise (electromagnetic wave having a wavelength of 2p) that can be in a resonance state by the EBG structure.
- the position of the structure 40 shown in FIG. 31, that is, the position where the EBG structure is provided is merely an example. If the above condition is satisfied, for example, the first surface 32 of the heat sink 30 as shown in FIG. You may provide in the edge part.
- an example of means for forming an EBG structure including an electromagnetic wave having a wavelength of 2p in the band gap band will be described.
- the EBG structure constituted by can be shown by an equivalent circuit diagram shown in FIG. 33A.
- the band gap band f of the EBG structure shown in such an equivalent circuit diagram can be calculated by the equation shown in FIG. 33B.
- a desired f value can be set by appropriately adjusting the capacitance C and / or the inductance L constituting the EBG structure according to this equation.
- the capacitance C and / or the inductance L can be appropriately adjusted based on the formula for calculating the band gap band f determined by each EBG structure. , A desired f value can be set.
- the electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
- FIG. 34 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the drawing.
- the first surface 32 of the heat dissipation plate 30 of the present embodiment is a rectangle composed of a side having a length p and a side having a length q (p ⁇ q). Further, at least a partial region of the first surface 32 of the heat sink 30 intersects with a straight line extending in a direction parallel to the side of the length q from the region 31 in contact with the spacer (or electronic component). Is provided. That is, an EBG structure is provided.
- the EBG structure included in this EBG structure includes an electromagnetic wave having a wavelength of 2q in the band gap band.
- the electronic device of the present embodiment is configured to suppress propagation of noise (electromagnetic wave having a wavelength of 2q) that can be in a resonance state by the EBG structure.
- the electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
- FIG. 35 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the drawing.
- the first surface 32 of the heat sink 30 of the present embodiment is a rectangle composed of a side with a length a and a side with a length b (a> b).
- at least a partial region of the first surface 32 of the heat sink 30 intersects with a straight line extending in a direction parallel to the side of the length a from the region 31 in contact with the spacer (or electronic component).
- a structure 40A is provided. That is, a first EBG structure is provided.
- the EBG structure included in the first EBG structure includes an electromagnetic wave having a wavelength of 2a in the band gap band. Further, at least a partial region of the first surface 32 of the heat sink 30 has a second line so as to intersect with a straight line extending in a direction parallel to the side of the length b from the region 31 in contact with the spacer (or the electronic component).
- a structure 40B is provided. That is, a second EBG structure is provided.
- the EBG structure included in the second EBG structure includes an electromagnetic wave having a wavelength of 2b in the band gap band.
- the noise transmitted from the electronic component to the heat sink 30 via the region 31 can be suppressed by the EBG structure from propagating in the side direction of the rectangular heat sink 30. Become.
- noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the electronic device of the present embodiment is configured to suppress propagation of noise (electromagnetic wave having a wavelength of 2a and electromagnetic wave having a wavelength of 2b) that can be in a resonance state by the EBG structure.
- the means for constructing the EBG structure including the electromagnetic wave of wavelength 2a in the band gap band and the EBG structure including the electromagnetic wave of wavelength 2b in the band gap band can be realized according to the means described in the third embodiment. The description in is omitted. ⁇ Embodiment 6>
- the electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
- FIG. 36 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the figure.
- the first surface 32 of the heat sink 30 of the present embodiment is a rectangle composed of a side with a length a and a side with a length b (a> b).
- at least a partial region of the first surface 32 of the heat sink 30 includes a straight line extending in a direction parallel to the side of the length a or the side of the length b from the region 31 in contact with the spacer (or electronic component).
- a structure 40 is provided so as to intersect. That is, an EBG structure is provided.
- This EBG structure has at least two types of EBG structures. Different types of EBG structures mean EBG structures with different equivalent circuits and / or different band gap bands. And the unit cells of various EBG structures are arranged periodically. For example, as shown in FIG. 37, a checkerboard pattern may be formed by alternately arranging unit cells having a first EBG structure and unit cells having a second EBG structure. Alternatively, as shown in FIG. 38, a region in which unit cells of the first EBG structure are periodically arranged and a region in which unit cells of the second EBG structure are periodically arranged are arranged in parallel. Also good. In such a case, as shown in FIG. 38, regions in which unit cells of the third EBG structure are periodically arranged may be arranged in parallel.
- the region where the unit cells of the fourth EBG structure are periodically arranged may be arranged in parallel (not shown).
- the first EBG structure includes an electromagnetic wave having a wavelength of 2a in the band gap band.
- the second EBG structure includes an electromagnetic wave having a wavelength of 2b in the band gap.
- the third EBG structure and the fourth EBG structure may include an electromagnetic wave having an integral multiple of the wavelength 2a or an integral multiple of the wavelength 2b in the band gap.
- the noise transmitted from the electronic component to the heat sink 30 via the region 31 can be suppressed by the EBG structure from propagating in the side direction of the rectangular heat sink 30. Become.
- noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
- the means for configuring the EBG structure including the electromagnetic wave of wavelength 2a in the band gap band and the EBG structure including the electromagnetic wave of wavelength 2b in the band gap band can be realized according to the means described in the third embodiment. The description in is omitted.
- FIG. 39 shows the sample used for the simulation.
- FIG. 39 is a transmission diagram.
- Sample 1 (Fig. 39 (a))
- Sample 2 (Fig. 39 (b)) A structure in which the heat sink 30 is provided on the signal pattern (electronic component 20) via the spacer 50 based on the structure of the sample 1.
- the size of the heat sink 30 is 150 mm ⁇ 30 mm.
- sample 3 (Fig. 39 (c))
- the structure 40 has the structure shown in FIG. 23, and unit cells (indicated by a rectangular parallelepiped in the figure) are arranged in 4 rows ⁇ 8 columns ⁇ 2 regions.
- the island-shaped conductors 41 (see FIG. 23) are 6 mm square, and are periodically arranged at a pitch of 2 mm.
- the electric field strength at a position 3 m away from the position of each sample was determined.
- the position 3 m away is the distance specified by the EMI standard limit value in a typical residential environment. ⁇ Result >>
- FIG. 40 is a graph in which the horizontal axis represents frequency (MHz) and the vertical axis represents electric field strength deviation (dB).
- the electric field strength deviation (dB) was calculated by setting the electric field strength of Sample 1 to 0 dB.
- Sample 3 has a lower electric field strength in a wider frequency band than Sample 2. That is, it can be seen that the sample 3 provided with the structure 40 on the surface of the heat dissipation plate 30 facing the electronic component 20 is suppressed from radiating electromagnetic waves to the periphery as compared with the sample 2 not including the structure 40. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Disclosed is an electronic device that has a substrate (10), an electronic component (20) mounted on the substrate (10), and a heatsink (30) provided on top of the electronic component (20) either directly or with a spacer (50) interposed therebetween. At least one type of structure (40) is provided on a first surface of the heatsink (30), said first surface being on the side of the heatsink that faces the electronic component (20). The structure (40) is provided with a dielectric layer and a first conductor. Said first conductor, at least part of which has a repeating structure, is provided inside or on a first surface of the dielectric layer so as to be opposite a second surface of the dielectric layer, said second surface being the surface on the side of the dielectric layer opposite the first surface thereof. The structure (40) is provided such that the second surface of the dielectric layer, which is the surface on the side of the dielectric layer opposite the first surface thereof, is in contact with the first surface of the heatsink (30).
Description
本発明は、電子機器に関する。より詳細には、IC等の電子部品を搭載するとともに、この電子部品が発する熱を放熱する放熱板を備えた電子機器に関する。
The present invention relates to an electronic device. More specifically, the present invention relates to an electronic device that includes an electronic component such as an IC and includes a heat radiating plate that radiates heat generated by the electronic component.
基板上に搭載されるIC等の電子部品は、高速化・高機能化を実現するため高集積化されており、このため大電流を消費する。この大電流による発熱により電子部品が許容温度を超えないようにするため、電子部品上に放熱板が設けられる場合がある。この放熱板は、例えば金属構造体で構成され、電子部品で発生した熱が放熱板に伝わると、放熱板はこの熱を空気中に放熱する。
Electronic components such as ICs mounted on a substrate are highly integrated in order to achieve high speed and high functionality, and thus consume a large current. In order to prevent the electronic component from exceeding the allowable temperature due to heat generated by the large current, a heat sink may be provided on the electronic component. The heat radiating plate is made of, for example, a metal structure. When heat generated in the electronic component is transmitted to the heat radiating plate, the heat radiating plate radiates the heat into the air.
このような放熱板を備えた場合、電子部品で発生したクロック信号の高調波成分等のノイズ(以下、単に「ノイズ」という)が、放熱板を介して空気中に放射されてしまうという問題が発生しうる。特に、放熱板に伝わったノイズと放熱板とが共振状態となる場合、極めて強いノイズが放射されてしまう。そこで、放熱板からノイズが放射されるのを抑制する手段が望まれている。
When such a heat sink is provided, there is a problem that noise such as harmonic components of a clock signal generated by electronic components (hereinafter simply referred to as “noise”) is radiated into the air through the heat sink. Can occur. In particular, when the noise transmitted to the heat sink and the heat sink are in a resonance state, extremely strong noise is radiated. Therefore, a means for suppressing noise from being radiated from the heat sink is desired.
ここで、特許文献1には、上記ノイズ放射の問題を解決することを目的とした電磁波吸収放熱型電子部品が記載されている。この電磁波吸収放熱型電子部品は、電子部品と放熱板とを、有機結合剤とカップリング剤を含むセンダスト軟磁性粉末とを混合した電磁波吸収接着剤で結合している。この構成によれば、電磁波吸収接着剤がノイズを吸収することで、電子部品で発生したノイズが放熱板に伝わるのを抑制することができると記載されている。
Here, Patent Document 1 describes an electromagnetic wave absorbing and heat radiating electronic component intended to solve the problem of noise emission. In this electromagnetic wave absorbing and heat radiating electronic component, the electronic component and the heat radiating plate are bonded with an electromagnetic wave absorbing adhesive in which an organic binder and a Sendust soft magnetic powder containing a coupling agent are mixed. According to this configuration, it is described that the noise generated by the electronic component can be prevented from being transmitted to the heat sink by absorbing the noise by the electromagnetic wave absorbing adhesive.
しかし、特許文献1に記載の技術の場合、次のような問題がある。電子部品からの発熱を効率よく放熱板により放熱させるためには、電子部品と放熱板との間は十分小さな熱抵抗とする必要がある。しかし、特許文献1に記載の技術の場合、電子部品と放熱板との間に、電磁波を吸収するための電磁波吸収接着剤を備えている。この電磁波吸収接着剤により電磁波を十分に吸収するためには、電磁波吸収接着剤をある程度の厚さにする必要があるが、かかる場合、電磁波吸収接着剤による熱抵抗が大きくなってしまう。その結果、放熱板からの放熱が十分に実現されず、電子部品の許容温度を超えてしまう可能性がある。
However, the technique described in Patent Document 1 has the following problems. In order to efficiently dissipate heat generated from the electronic component by the heat radiating plate, it is necessary to provide a sufficiently small thermal resistance between the electronic component and the heat radiating plate. However, in the case of the technique described in Patent Document 1, an electromagnetic wave absorbing adhesive for absorbing electromagnetic waves is provided between the electronic component and the heat sink. In order to sufficiently absorb electromagnetic waves with this electromagnetic wave absorbing adhesive, it is necessary to make the electromagnetic wave absorbing adhesive thick to some extent, but in such a case, the thermal resistance due to the electromagnetic wave absorbing adhesive increases. As a result, heat dissipation from the heat sink is not sufficiently realized, and there is a possibility that the allowable temperature of the electronic component is exceeded.
ところで、近年、電子部品に利用される周波数が高くなるに伴い、発生するノイズの帯域は高周波方向にシフトし、数GHzに達する。そこで、このような高周波のノイズが放熱板から放射されるのを抑制する技術が望まれている。
By the way, in recent years, as the frequency used for electronic components increases, the band of generated noise shifts in the high frequency direction and reaches several GHz. Therefore, a technique for suppressing such high-frequency noise from being radiated from the heat sink is desired.
本発明では、基板に搭載された電子部品上に放熱板を備えた電子機器であって、放熱板からノイズが放射されるのを効果的に抑制する手段を備えた電子機器を提供することを課題とする。
The present invention provides an electronic device provided with a heat sink on an electronic component mounted on a substrate, and provided with means for effectively suppressing noise from being emitted from the heat sink. Let it be an issue.
本発明によれば、基板と、前記基板上に搭載される電子部品と、前記電子部品上に直接またはスペーサを介して設けられた放熱板と、を有し、前記放熱板の前記電子部品と対向する側の第1の面には、誘電体層と、前記誘電体層の内部または第1の面上に、前記誘電体層の前記第1の面と反対側の面である第2の面と対向するように設けられ、少なくとも一部領域に繰り返し構造を有している第1導体と、を備える少なくとも一種類の構造体が、前記誘電体層の前記第2の面において前記放熱板の前記第1の面と接するように設けられている電子機器が提供される。
According to the present invention, there is provided a substrate, an electronic component mounted on the substrate, and a heat sink provided on the electronic component directly or via a spacer, and the electronic component of the heat sink The first surface on the opposite side has a dielectric layer and a second surface that is the surface opposite to the first surface of the dielectric layer on or inside the dielectric layer. And at least one type of structure including a first conductor having a repetitive structure in at least a partial region, the heat sink on the second surface of the dielectric layer. An electronic device is provided so as to be in contact with the first surface.
また、本発明によれば、基板と、前記基板上に搭載された電子部品と、前記電子部品上に直接またはスペーサを介して設けられた放熱板と、を有し、前記放熱板の前記電子部品と対向する側の第1の面には、誘電体層と、前記誘電体層の内部または第1の面上に、前記誘電体層の前記第1の面と反対側の面である第2の面と対向するように設けられ、少なくとも一部領域に繰り返し構造を有している第1導体と、前記誘電体層の前記第2の面に形成された第2導体と、を備える少なくとも一種類の構造体が、前記第2導体が前記第1導体より前記放熱板の前記第1の面の近くに位置し、かつ、前記第2導体が前記放熱板の前記第1の面と導通するように設けられている電子機器が提供される。
According to the invention, there is provided a substrate, an electronic component mounted on the substrate, and a heat radiating plate provided directly or via a spacer on the electronic component, and the electrons of the heat radiating plate The first surface on the side facing the component has a dielectric layer and a first surface that is opposite to the first surface of the dielectric layer on or inside the dielectric layer. And a second conductor formed on the second surface of the dielectric layer, at least in part, and having a repetitive structure in at least a partial region. In one type of structure, the second conductor is positioned closer to the first surface of the heat sink than the first conductor, and the second conductor is electrically connected to the first surface of the heat sink. An electronic device is provided that is provided.
本発明によれば、電子部品で発生したノイズが、電子部品上に設けられた放熱板から放射されるのを抑制することが可能となる。
According to the present invention, it is possible to suppress the noise generated in the electronic component from being radiated from the heat sink provided on the electronic component.
以下、本発明の実施の形態について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
<実施形態1>
<<実施形態1-1>> Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
<Embodiment 1>
<< Embodiment 1-1 >>
<実施形態1>
<<実施形態1-1>> Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
<
<< Embodiment 1-1 >>
図1は、本実施形態の電子機器の一例を模式的に示した断面図である。図1に示すように、本実施形態の電子機器は、基板10と、電子部品20と、放熱板30と、を有する。そして、放熱板30には、構造体40が設けられている。図2は、図1の電子機器を図中上から下に向かって見た平面図である。
FIG. 1 is a cross-sectional view schematically showing an example of an electronic apparatus according to this embodiment. As shown in FIG. 1, the electronic device of the present embodiment includes a substrate 10, an electronic component 20, and a heat sink 30. The heat radiating plate 30 is provided with a structure 40. FIG. 2 is a plan view of the electronic device of FIG. 1 as viewed from the top to the bottom in the drawing.
電子部品20は、基板10上に搭載される。図1中では、電子部品20を模式的に四角形で示してある。電子部品20は、素子を集積した回路であり、例えばLSIなどが該当する。なお、電子部品20が搭載される基板10上の位置、数は設計的事項であり、図示するものに限定されない。
The electronic component 20 is mounted on the substrate 10. In FIG. 1, the electronic component 20 is schematically shown as a quadrangle. The electronic component 20 is a circuit in which elements are integrated, and corresponds to, for example, an LSI. Note that the position and number on the substrate 10 on which the electronic component 20 is mounted are design matters, and are not limited to those illustrated.
放熱板30は、電子部品20上にスペーサ50を介して設けられる。放熱板30は、熱伝導率の良い材料、例えば金属で構成される。その形状は、本実施形態においては特段制限されない。例えば、図1、2に示すように平面形状が長方形で一定の厚さを持った形状であってもよいし、または、平面形状が正方形、それ以外の多角形、円形、その他の形状であって、一定の厚さを持った形状であってもよい。スペーサ50は、熱伝導率のよい材料、例えば磁性体を含む材料等で構成される。なお、図示するようにスペーサ50を介するのでなく、電子部品20上に直接放熱板30を設けてもよい。
The heat sink 30 is provided on the electronic component 20 via the spacer 50. The heat sink 30 is made of a material having a good thermal conductivity, for example, a metal. The shape is not particularly limited in the present embodiment. For example, as shown in FIGS. 1 and 2, the planar shape may be a rectangle with a certain thickness, or the planar shape may be a square, other polygons, a circle, or other shapes. The shape may have a certain thickness. The spacer 50 is made of a material having good thermal conductivity, for example, a material containing a magnetic body. In addition, you may provide the heat sink 30 directly on the electronic component 20 instead of interposing the spacer 50 so that it may show in figure.
放熱板30の電子部品20と対向する側の第1の面(図中、下側の面)には、少なくとも一種類の構造体40が設けられている。構造体40は、放熱板30の第1の面(図中、下側の面)におけるスペーサ50(または電子部品20)と接する領域の周辺に設けられるのが望ましい。ここで、図3に、図1の電子機器の基板10と電子部品20とスペーサ50とを除いた構造を、図中下から上に向かって見た平面図を示す。図に示すように、構造体40は、放熱板30の第1の面32におけるスペーサ50(または電子部品20)と接する領域31を除いた略全面に設けられてもよい。構造体40は、以下で説明するように、放熱板30の第1の面32におけるノイズの伝播を抑制する効果を有する。このような構造体40を、放熱板30の第1の面32におけるスペーサ50(または電子部品20)と接する領域31の周辺に設ければ、電子部品20で発生し、領域31を介して放熱板30に伝わったノイズが、そこから周辺に広がっていくのを抑制することが可能となる。その結果、ノイズが放熱板30から放射されるのを抑制することが実現される。なお、構造体40は、放熱板30の第1の面32と反対側の面である第2の面(図1中、上側の面)に設けられてもよい。さらに、放熱板30の側面に設けられてもよい。
At least one type of structure 40 is provided on the first surface (the lower surface in the drawing) of the heat radiating plate 30 facing the electronic component 20. The structure 40 is preferably provided in the vicinity of a region in contact with the spacer 50 (or the electronic component 20) on the first surface (the lower surface in the drawing) of the heat radiating plate 30. Here, FIG. 3 shows a plan view of the structure excluding the substrate 10, the electronic component 20, and the spacer 50 of the electronic device shown in FIG. As shown in the figure, the structure 40 may be provided on substantially the entire surface of the first surface 32 of the heat dissipation plate 30 excluding the region 31 in contact with the spacer 50 (or the electronic component 20). The structure 40 has an effect of suppressing noise propagation on the first surface 32 of the heat sink 30 as described below. If such a structure 40 is provided around the region 31 in contact with the spacer 50 (or the electronic component 20) on the first surface 32 of the heat radiating plate 30, the heat is generated in the electronic component 20 and radiated through the region 31. It is possible to suppress the noise transmitted to the plate 30 from spreading from there to the periphery. As a result, it is possible to suppress noise from being radiated from the heat sink 30. The structure 40 may be provided on a second surface (the upper surface in FIG. 1) that is the surface opposite to the first surface 32 of the heat sink 30. Furthermore, it may be provided on the side surface of the heat sink 30.
ここで、構造体40について詳細に説明する。本実施形態の構造体40は、誘電体層と、第1導体と、を備え、誘電体層の第2の面が放熱板30の第1の面(図1中、下側の面)と接するように設けられる。このように構成された構造体40は、放熱板30の第1の面(図1中、下側の面)とともに、少なくとも1種類以上のEBG構造を有するEBG構造体を構成する。そして、このEBG構造により、放熱板30の第1の面(図1中、下側の面)におけるノイズの伝播を抑制する。以下本実施形態の構造体40の具体化例についてより詳細に説明する。なお、本実施形態の構造体40は、以下で説明する具体化例に限定されない。
Here, the structure 40 will be described in detail. The structure 40 of the present embodiment includes a dielectric layer and a first conductor, and the second surface of the dielectric layer is a first surface of the heat sink 30 (the lower surface in FIG. 1). It is provided to touch. The structure 40 configured as described above constitutes an EBG structure having at least one kind of EBG structure together with the first surface (the lower surface in FIG. 1) of the heat radiating plate 30. And by this EBG structure, the propagation of noise on the first surface (the lower surface in FIG. 1) of the heat sink 30 is suppressed. Hereinafter, a specific example of the structure 40 of the present embodiment will be described in more detail. In addition, the structure 40 of this embodiment is not limited to the specific example demonstrated below.
図4Aに、本実施形態の構造体40の一例を模式的に示す。図4Aは、構造体40を放熱板30に取り付けた状態を示す断面図である。
FIG. 4A schematically shows an example of the structure 40 of the present embodiment. FIG. 4A is a cross-sectional view showing a state where the structure 40 is attached to the heat sink 30.
構造体40は、誘電体層45と、誘電体層45の第1の面46に形成され、少なくとも一部領域に繰り返し構造、例えば周期的な構造を有している第1導体と、を備える。繰り返し構造を有する第1導体は、例えば、互いに分離した複数の島状導体41で構成される。第1導体は、誘電体層45の第1の面46と反対側の面である第2の面47と対向するように設けられる。構造体40は、誘電体層45の第2の面47において放熱板30の第1の面32と接するように設けられる。
The structure 40 includes a dielectric layer 45 and a first conductor formed on the first surface 46 of the dielectric layer 45 and having a repetitive structure, for example, a periodic structure, at least in a partial region. . The first conductor having a repetitive structure is composed of, for example, a plurality of island-shaped conductors 41 separated from each other. The first conductor is provided so as to face the second surface 47 that is the surface opposite to the first surface 46 of the dielectric layer 45. The structure 40 is provided on the second surface 47 of the dielectric layer 45 so as to be in contact with the first surface 32 of the heat sink 30.
構造体40は例えばシートとして構成され、誘電体層45の少なくとも一部は、放熱板30の第1の面32に接着する接着層45Bで構成されてもよい。この接着層45Bは誘電体層45の第2の面47を構成する。また、誘電体層45の内部には、誘電体層45の第2の面47を貫通し、放熱板30の第1の面32と導通する接続部材43が設けられる。以下、各構成について、より詳細に説明する。
The structure 40 may be configured as a sheet, for example, and at least a part of the dielectric layer 45 may be configured with an adhesive layer 45 </ b> B that adheres to the first surface 32 of the heat sink 30. This adhesive layer 45 </ b> B constitutes the second surface 47 of the dielectric layer 45. In addition, a connecting member 43 that penetrates through the second surface 47 of the dielectric layer 45 and is electrically connected to the first surface 32 of the heat sink 30 is provided inside the dielectric layer 45. Hereinafter, each configuration will be described in more detail.
誘電体層45は、誘電体で構成される接着層45Bと、誘電体で構成される層45Aにより構成されている。層45Aは、例えばフレキシブル性を有する基板であってもよい。さらに具体的には、例えばガラスエポキシ基板、フッ素樹脂基板等であってもよい。層45Aは、単層であってもよいし、複層であってもよい。次に、接着層45Bは、例えば接着剤で構成することができる。接着剤の原料としては特段制限されず、例えば天然ゴム、アクリル樹脂、シリコーン等を用いることができる。なお、層45A、接着層45Bの厚さは、設計的事項である。
The dielectric layer 45 includes an adhesive layer 45B made of a dielectric and a layer 45A made of a dielectric. The layer 45A may be a flexible substrate, for example. More specifically, for example, a glass epoxy substrate or a fluororesin substrate may be used. The layer 45A may be a single layer or a multilayer. Next, the adhesive layer 45B can be made of, for example, an adhesive. The raw material for the adhesive is not particularly limited, and for example, natural rubber, acrylic resin, silicone, or the like can be used. The thicknesses of the layer 45A and the adhesive layer 45B are design matters.
少なくとも一部領域に繰り返し構造、例えば周期的な構造を有している第1導体は、繰り返し構造として、互いに分離した複数の島状導体41を有する。この互いに分離した複数の島状導体41は、周期的に設けられるのが望ましい。
The first conductor having a repetitive structure, for example, a periodic structure in at least a partial region has a plurality of island-like conductors 41 separated from each other as a repetitive structure. The plurality of island-like conductors 41 separated from each other are desirably provided periodically.
なお、島状導体41における「繰り返し」には、島状導体41が部分的に欠落している場合も含まれる。また「周期的」には、一部の島状導体41そのものの配置がずれている場合も含まれる。すなわち厳密な意味での周期性が崩れた場合においても、島状導体41が繰り返し配置されている場合には、島状導体41を構成要素の一部とするEBG構造のメタマテリアルとしての特性を得ることができるため、「周期性」にはある程度の欠陥が許容される。「少なくとも一部領域に」とは、構造体40の平面全面に繰り返し構造を有してもよいし、一部に繰り返し構造を有してもよいことを意味する。すなわち、互いに分離した複数の島状導体41は、構造体40の平面全面に設けられてもよいし、一部に設けられてもよい。
Note that “repetition” in the island-shaped conductor 41 includes a case where the island-shaped conductor 41 is partially missing. Further, “periodic” includes a case where some of the island-shaped conductors 41 themselves are misaligned. That is, even when the periodicity in the strict sense is broken, when the island-shaped conductor 41 is repeatedly arranged, the characteristics as the metamaterial of the EBG structure in which the island-shaped conductor 41 is a part of the constituent elements. Since it can be obtained, a certain degree of defect is allowed for “periodicity”. “At least in a partial region” means that the entire surface of the structure 40 may have a repeating structure, or a part thereof may have a repeating structure. That is, the plurality of island-shaped conductors 41 separated from each other may be provided on the entire planar surface of the structure 40 or may be provided on a part thereof.
島状導体41の原料は特段制限されず、例えば銅等を選択できる。島状の形状についても特段制限されず、三角形、四角形、五角形、それ以上の頂点を有する多角形、円形等、あらゆる形状を選択できる。なお、大きさおよび/または形状が異なる2種類以上の島状導体41を繰り返し配置することもできる。かかる場合、2種類以上の島状導体41は、各種それぞれ周期的に配列されるのが望ましい。島状導体41の大きさ、相互間隔等は、伝播を抑制するノイズの周波数に応じて定められる設計的事項である。
The raw material of the island-shaped conductor 41 is not particularly limited, and for example, copper or the like can be selected. The shape of the island is not particularly limited, and any shape such as a triangle, a quadrangle, a pentagon, a polygon having more vertices, and a circle can be selected. Two or more types of island-shaped conductors 41 having different sizes and / or shapes can be repeatedly arranged. In such a case, it is desirable that two or more types of island-shaped conductors 41 are periodically arranged. The size of the island-shaped conductor 41, the mutual interval, and the like are design matters determined according to the frequency of noise that suppresses propagation.
接続部材43は、例えば銅、アルミニウム、ステンレス等の金属で構成することができる。この接続部材43は、放熱板30の第1の面32と導通するのみならず、一部または全部の島状導体41と導通してもよい。図4Aでは、接続部材43すべてが島状導体41と導通している。一部の島状導体41と導通するよう接続部材43が設けられる場合、この接続部材43は、周期的に設けられてもよいし、周期的に設けられなくてもよい。しかし、接続部材43を周期的に設けた場合、構造体40と放熱板30の導電性を有する第1の面32とで構成されるEBG構造体はBragg反射を起こし、バンドギャップ帯域が広がるため、周期的であるのが望ましい。ここでの「周期的」には、一部の接続部材43そのものの配置がずれている場合も含まれる。
The connecting member 43 can be made of a metal such as copper, aluminum, stainless steel or the like. The connection member 43 may not only conduct with the first surface 32 of the heat radiating plate 30 but may conduct with some or all of the island-like conductors 41. In FIG. 4A, all the connection members 43 are electrically connected to the island-shaped conductor 41. When the connection member 43 is provided so as to be electrically connected to some of the island-like conductors 41, the connection member 43 may be provided periodically or may not be provided periodically. However, when the connection member 43 is provided periodically, the EBG structure constituted by the structure 40 and the first surface 32 having the conductivity of the heat sink 30 causes Bragg reflection, and the band gap band is widened. It is desirable to be periodic. Here, “periodic” includes a case where the arrangement of some of the connecting members 43 themselves is deviated.
次に、本実施形態の電子機器の製造方法の一例について、図4Bを用いて説明する。図4Bは、本実施形態の構造体40の製造工程の一例を示す断面図である。
Next, an example of a method for manufacturing the electronic device according to the present embodiment will be described with reference to FIG. 4B. FIG. 4B is a cross-sectional view showing an example of the manufacturing process of the structure 40 of the present embodiment.
まず、(1)に示すように、ガラスエポキシ基板、フッ素樹脂基板等の基板(層45A)の第1の面(図中、上側の面)に、銅箔41を形成する。次に、(2)に示すように、フォトリソグラフィとエッチングにより、銅箔41の一部を選択的にエッチングすることでパターン(互いに分離した複数の島状導体41)を形成する。その後、(3)に示すように、ドリルにより、島状導体41と層45Aを貫通する穴を形成する。
First, as shown in (1), a copper foil 41 is formed on a first surface (upper surface in the figure) of a substrate (layer 45A) such as a glass epoxy substrate or a fluororesin substrate. Next, as shown in (2), a pattern (a plurality of island-like conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching. Thereafter, as shown in (3), a hole penetrating the island-shaped conductor 41 and the layer 45A is formed by a drill.
次に、(4)に示すように、(3)で形成した穴に、銅、アルミニウム、ステンレス等の金属で構成された貫通ピン(接続部材43)を挿入する。
Next, as shown in (4), a through pin (connecting member 43) made of a metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (3).
その後、(5)に示すように、層45Aの第2の面(図中、下側の面)に接着層45Bを形成する。この接着層45Bは、接続部材43が接着層45Bを貫通するように形成される。このように形成する具体的手段としては特段制限されないが、以下のような手段であってもよい。例えば、(4)で挿入する接続部材43の長さを、挿入した状態で層45Aの第2の面(図中、下側の面)から一端が突出する程度に構成する。そして、接着層45Bをシート状接着剤で構成し、シート状接着剤(接着層45B)を層45Aの第2の面に形成する際に、シート状接着剤(接着層45B)を強く押し込むことで、接続部材43の一端をシート状接着剤(接着層45B)の表面から突出させる。または、接着層45Bを、流動性を有する接着剤で構成するようにし、層45Aの第2の面(図中、下側の面)にこの接着剤を塗布した後、スキージを用いて、接続部材43の表面に塗布された接着剤を取り除くことで、接続部材43を接着層45Bの表面から突出させてもよい。次に、必要に応じて、互いに分離した複数の島状導体41および層45Aの第1の面を覆う、非導電性の表面層(図示せず)を設ける。
Thereafter, as shown in (5), an adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A. The adhesive layer 45B is formed so that the connection member 43 penetrates the adhesive layer 45B. The specific means for forming in this way is not particularly limited, but may be the following means. For example, the length of the connecting member 43 inserted in (4) is configured such that one end protrudes from the second surface (lower surface in the drawing) of the layer 45A in the inserted state. Then, when the adhesive layer 45B is composed of a sheet-like adhesive and the sheet-like adhesive (adhesive layer 45B) is formed on the second surface of the layer 45A, the sheet-like adhesive (adhesive layer 45B) is strongly pushed in. Then, one end of the connection member 43 is protruded from the surface of the sheet-like adhesive (adhesive layer 45B). Alternatively, the adhesive layer 45B is made of a fluid adhesive, and the adhesive is applied to the second surface (the lower surface in the drawing) of the layer 45A, and then connected using a squeegee. The connecting member 43 may be protruded from the surface of the adhesive layer 45B by removing the adhesive applied to the surface of the member 43. Next, if necessary, a non-conductive surface layer (not shown) is provided to cover the first surfaces of the plurality of island-like conductors 41 and the layer 45A separated from each other.
その後、図4Aに示すように、放熱板30の第1の面32の所望の位置に、接着層45Bが放熱板30の第1の面32に接するように構造体40を貼り付ける。この時、接続部材43が放熱板30の第1の面32と接するように貼り付ける。
Thereafter, as shown in FIG. 4A, the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45 </ b> B is in contact with the first surface 32 of the heat sink 30. At this time, the connecting member 43 is pasted so as to be in contact with the first surface 32 of the heat sink 30.
次に、本実施形態の作用効果について説明する。
本実施形態においては、上述の構造体40と(図4A参照)、放熱板30の第1の面32とにより、EBG構造を構成する。図5、6に、本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の一例を模式的に示す。図5は、EBG構造体の構成を模式的に示す斜視図であり、図6は、図5のEBG構造体の断面図である。図5、6に示すEBG構造体は、一種のEBG構造が周期的に配列されている。なお、図6に示すEBG構造体は、図4Aに示す構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の上下が逆になっている。 Next, the effect of this embodiment is demonstrated.
In the present embodiment, thestructure 40 described above (see FIG. 4A) and the first surface 32 of the heat sink 30 constitute an EBG structure. FIGS. 5 and 6 schematically show an example of the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30. FIG. 5 is a perspective view schematically showing the configuration of the EBG structure, and FIG. 6 is a cross-sectional view of the EBG structure of FIG. In the EBG structure shown in FIGS. 5 and 6, a kind of EBG structure is periodically arranged. Note that the EBG structure shown in FIG. 6 is upside down of the EBG structure constituted by the structure 40 shown in FIG. 4A and the first surface 32 of the heat sink 30.
本実施形態においては、上述の構造体40と(図4A参照)、放熱板30の第1の面32とにより、EBG構造を構成する。図5、6に、本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の一例を模式的に示す。図5は、EBG構造体の構成を模式的に示す斜視図であり、図6は、図5のEBG構造体の断面図である。図5、6に示すEBG構造体は、一種のEBG構造が周期的に配列されている。なお、図6に示すEBG構造体は、図4Aに示す構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の上下が逆になっている。 Next, the effect of this embodiment is demonstrated.
In the present embodiment, the
図5、6に示すEBG構造体は、シート状導体2と、互いに分離した複数の島状導体1と、複数の接続部材3と、を有する。シート状導体2は放熱板30の第1の面32に対応し(図4A参照)、島状導体1は構造体40の島状導体41に対応し、接続部材3は構造体40の接続部材43に対応する。
The EBG structure shown in FIGS. 5 and 6 includes a sheet-like conductor 2, a plurality of island-like conductors 1 separated from each other, and a plurality of connecting members 3. The sheet-like conductor 2 corresponds to the first surface 32 of the heat sink 30 (see FIG. 4A), the island-like conductor 1 corresponds to the island-like conductor 41 of the structure 40, and the connection member 3 is the connection member of the structure 40. 43.
複数の島状導体1は、平面視でシート状導体2と重なる領域であって、シート状導体2から離れた位置に、誘電体層(図示せず)を挟んで配置されている。また、複数の島状導体1は、周期的に配列されている。接続部材3は、複数の島状導体1のそれぞれを、シート状導体2に接続している。このEBG構造体は、1つの島状導体1と、当該島状導体1に対応して設けられた接続部材3と、シート状導体2の中の当該島状導体1に対向する領域とを含んで単位セルAが構成されている。そして、この単位セルAが繰り返し、例えば周期的に配置されることにより、この構造体はメタマテリアル、例えばEBG(Electromagnetic Band Gap)として機能する。このEBG構造体は、いわゆるマッシュルーム構造を有するEBG構造を有し、複数の島状導体1とシート状導体2との間隔、接続部材3の太さ、複数の島状導体1の相互間隔等を調節することで、バンドギャップとなる周波数帯を調節することができる。
The plurality of island-like conductors 1 are regions that overlap the sheet-like conductor 2 in plan view, and are disposed at positions away from the sheet-like conductor 2 with a dielectric layer (not shown) interposed therebetween. The plurality of island-shaped conductors 1 are periodically arranged. The connecting member 3 connects each of the plurality of island-like conductors 1 to the sheet-like conductor 2. This EBG structure includes one island-shaped conductor 1, a connecting member 3 provided corresponding to the island-shaped conductor 1, and a region facing the island-shaped conductor 1 in the sheet-shaped conductor 2. A unit cell A is configured. And this unit cell A is repeatedly arrange | positioned, for example periodically, This structure functions as a metamaterial, for example, EBG (Electromagnetic Band Gap). This EBG structure has an EBG structure having a so-called mushroom structure, and the distance between the plurality of island-like conductors 1 and the sheet-like conductor 2, the thickness of the connecting member 3, the mutual distance between the plurality of island-like conductors 1 and the like. By adjusting the frequency band, the frequency band that becomes the band gap can be adjusted.
ここで、単位セルAの「繰り返し」には、いずれかの単位セルAにおいて構成の一部が欠落している場合も含まれる。また単位セルAが2次元配列を有している場合には、「繰り返し」には単位セルAが部分的に欠落している場合も含まれる。また「周期性」には、一部の単位セルAにおいて構成要素(島状導体1、接続部材3)の一部がずれている場合や、一部の単位セルAそのものの配置がずれている場合も含まれる。すなわち厳密な意味での周期性が崩れた場合においても、単位セルAが繰り返し配置されている場合には、メタマテリアルとしての特性を得ることができるため、「周期性」にはある程度の欠陥が許容される。なお、これらの欠陥が生じる要因としては、単位セルAの間に配線やビアを通す場合、既存の配線レイアウトにメタマテリアル構造を追加する場合において既存のビアやパターンによって単位セルAが配置できない場合、製造誤差、及び既存のビアやパターンを単位セルの一部として用いる場合などが考えられる。上述の前提は、以下のすべての実施形態において同様である。
Here, “repetition” of the unit cell A includes a case where a part of the configuration is missing in any unit cell A. When the unit cell A has a two-dimensional array, “repetition” includes a case where the unit cell A is partially missing. In addition, in “periodicity”, a part of the constituent elements (the island-like conductor 1 and the connecting member 3) are shifted in some unit cells A, or the arrangement of some unit cells A itself is shifted. Cases are also included. In other words, even when the periodicity in the strict sense collapses, if the unit cell A is repeatedly arranged, the characteristics as a metamaterial can be obtained, so that “periodicity” has some defect. Permissible. The cause of these defects is that when wiring or vias are passed between unit cells A, when adding a metamaterial structure to an existing wiring layout, unit cells A cannot be arranged due to existing vias or patterns. Manufacturing errors, and existing vias or patterns may be used as part of the unit cell. The above-mentioned premise is the same in all the following embodiments.
図7は、図6に示した単位セルAの等価回路図である。図7に示すように、この単位セルAは、隣り合う島状導体1間に生じるキャパシタンスC、および、接続部材3がつくるインダクタンスL、からなる。
FIG. 7 is an equivalent circuit diagram of the unit cell A shown in FIG. As shown in FIG. 7, the unit cell A includes a capacitance C generated between adjacent island-shaped conductors 1 and an inductance L created by the connecting member 3.
このEBG構造体によれば、シート状導体2の表面におけるノイズの伝播を抑制できる。すなわち、放熱板30(図4A参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体1(41)どうしがキャパシタンスCを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to this EBG structure, noise propagation on the surface of the sheet-like conductor 2 can be suppressed. That is, the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 4A) can be suppressed. Further, since the adjacent island-shaped conductors 1 (41) constitute the capacitance C, the propagation of noise in the vicinity of the EBG structure can be suppressed. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、本実施形態の構造体40は、図5、6に示すEBG構造体以外のEBG構造体を構成するための構造体40よりも構成が比較的シンプルである。このため、製造工程を少なくすることができるほか、製造コストの面でも優れている。
In addition, the structure 40 of the present embodiment has a relatively simple configuration compared to the structure 40 for configuring an EBG structure other than the EBG structure shown in FIGS. For this reason, the manufacturing process can be reduced and the manufacturing cost is excellent.
ここで、図5、6に示すようなEBG構造体を備えたシートを単に放熱板30の第1の面32に取り付けただけでは、上述の効果を実現することはできない。以下、図41を用い、この理由を説明する。
Here, the above-described effects cannot be realized by simply attaching a sheet having an EBG structure as shown in FIGS. 5 and 6 to the first surface 32 of the heat sink 30. Hereinafter, this reason will be described with reference to FIG.
図41は、EBG構造体を備えたシート400を、放熱板300の面302に取り付けた状態を示す断面図である。図41に示すシート400は、図5、6に示すEBG構造体と同じEBG構造体を備えている。すなわち、このEBG構造体は、シート状導体402と、互いに分離した複数の島状導体401と、複数の接続部材403と、を有している。
FIG. 41 is a cross-sectional view showing a state where the sheet 400 provided with the EBG structure is attached to the surface 302 of the heat sink 300. A sheet 400 shown in FIG. 41 includes the same EBG structure as the EBG structure shown in FIGS. That is, this EBG structure has a sheet-like conductor 402, a plurality of island-like conductors 401 separated from each other, and a plurality of connection members 403.
図41に示すように、通常、シート400は、放熱板300との接着性を確保するため、絶縁性の接着剤による層404を備える。この接着剤による層404は、図41に示すように、EBG構造体を備えたシート400を放熱板300に取り付けた状態において、シート状導体402と放熱板300の面302との間に位置し、EBG構造体を構成するシート状導体402と放熱板300の面302とを、電気的に分離した状態とする。このように、放熱板300の面302とEBG構造体とが電気的に分離された状態においては、放熱板300の面302におけるノイズの伝播を抑制することはできない。かかる場合、放熱板300に伝わったノイズは、面302の表面を伝播して周囲に広がり、そして、空気中に放射されてしまう。
As shown in FIG. 41, the sheet 400 is usually provided with a layer 404 of an insulating adhesive in order to ensure adhesion with the heat sink 300. As shown in FIG. 41, this adhesive layer 404 is located between the sheet-like conductor 402 and the surface 302 of the heat sink 300 in a state where the sheet 400 having the EBG structure is attached to the heat sink 300. The sheet-like conductor 402 constituting the EBG structure and the surface 302 of the heat sink 300 are electrically separated from each other. Thus, in the state where the surface 302 of the heat sink 300 and the EBG structure are electrically separated, the propagation of noise on the surface 302 of the heat sink 300 cannot be suppressed. In such a case, the noise transmitted to the heat radiating plate 300 propagates through the surface 302 and spreads to the surroundings, and is radiated into the air.
本実施形態の電子機器は、上述の課題を解決している。具体的には、本実施形態の電子機器は、図4Aに示すように、放熱板30の第1の面32がEBG構造体の一部を構成する。かかる場合、上述のように、放熱板30の第1の面32とEBG構造体とが電気的に分離した状態となることはない。すなわち、本実施形態の電子機器によれば、放熱板30の第1の面32を利用して構成したEBG構造体により、放熱板30の第1の面32の表面におけるノイズの伝播を抑制できる。また、EBG構造体付近、すなわち放熱板30の第1の面32付近におけるノイズの伝播を抑制できる。なお、以下で説明するすべての実施形態1の電子機器は、上述の課題を、上述と同様の解決手段により解決している。
<<実施形態1-2>> The electronic device of this embodiment solves the above-described problems. Specifically, as shown in FIG. 4A, in the electronic device of the present embodiment, thefirst surface 32 of the heat sink 30 constitutes a part of the EBG structure. In such a case, as described above, the first surface 32 of the heat radiating plate 30 and the EBG structure are not electrically separated. That is, according to the electronic apparatus of the present embodiment, the propagation of noise on the surface of the first surface 32 of the heat sink 30 can be suppressed by the EBG structure configured using the first surface 32 of the heat sink 30. . Further, noise propagation near the EBG structure, that is, near the first surface 32 of the heat sink 30 can be suppressed. Note that all the electronic devices according to the first embodiment described below solve the above-described problems by the same means as described above.
<< Embodiment 1-2 >>
<<実施形態1-2>> The electronic device of this embodiment solves the above-described problems. Specifically, as shown in FIG. 4A, in the electronic device of the present embodiment, the
<< Embodiment 1-2 >>
本実施形態の電子機器は、実施形態1-1の電子機器を基本とし、構造体40の構成が一部異なる。他の構成については、実施形態1-1の電子機器と同様であるので、ここでの説明は省略する。
The electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
図8Aは、本実施形態の電子機器の一例を模式的に示した断面図である。この構造体40は、実施形態1-1の構造体40(図4A参照)を基本とし、接続部材43(43A、43B、43C)の形状が異なる。他の構成については、実施形態1-1の構造体40と同様であるので、ここでの説明は省略する。
FIG. 8A is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment. This structure 40 is based on the structure 40 (see FIG. 4A) of Embodiment 1-1, and the shape of the connection member 43 (43A, 43B, 43C) is different. Other configurations are the same as those of the structure 40 according to Embodiment 1-1, and thus the description thereof is omitted here.
本実施形態の接続部材43は、導電性の第1接続部材43Aと、導電性の第2接続部材43Bと、導電性の第3接続部材43Cと、からなる。第1接続部材43Aは、一端が誘電体層45の第2の面47を貫通し第2の面47から露出するとともに、他端側を介して第2接続部材43Bと導通する。第1接続部材43Aの他端は、誘電体層45の第1の面46を貫通してもよい。この第1接続部材43Aは、島状導体41に設けられた穴を島状導体41と非接触な状態で通過している。第2接続部材43Bは、第1接続部43Aと導通し、島状導体41と対向するように設けられる。この第2接続部材43Bの平面形状は、直線であってもよいし、曲線であってもよいし、スパイラル形状であってもよいし、その他の形状であってもよい。第3接続部材43Cは、一端側を介して第2接続部材43Bと導通し、誘電体層45の第2の面47方向に伸びた他端側を介して島状導体41と導通している。他端は、誘電体層45の第1の面46を貫通してもよい。ここで、第2接続部材43Bをスパイラル形状にした場合の一例を、図8C、8Dに示す。図8Cは、図8Dのイ-イ´の断面図であり、図8Dは、図8Cを図中下から上に見た平面図である。なお、図8C、8Dにおいては、構成をより明確にするため、各構成要素に付すハッチングを、他の図とは異なった態様にしている。また、図8Cにおいては、構造体40のみを示している。
The connection member 43 of this embodiment includes a conductive first connection member 43A, a conductive second connection member 43B, and a conductive third connection member 43C. One end of the first connection member 43A penetrates the second surface 47 of the dielectric layer 45 and is exposed from the second surface 47, and is electrically connected to the second connection member 43B via the other end side. The other end of the first connection member 43 </ b> A may penetrate the first surface 46 of the dielectric layer 45. The first connecting member 43A passes through a hole provided in the island-shaped conductor 41 in a state of non-contact with the island-shaped conductor 41. The second connecting member 43 </ b> B is provided so as to be electrically connected to the first connecting portion 43 </ b> A and to face the island-shaped conductor 41. The planar shape of the second connection member 43B may be a straight line, a curved line, a spiral shape, or other shapes. The third connection member 43C is electrically connected to the second connection member 43B via one end side, and is electrically connected to the island-like conductor 41 via the other end side extending in the direction of the second surface 47 of the dielectric layer 45. . The other end may penetrate the first surface 46 of the dielectric layer 45. Here, an example at the time of making the 2nd connection member 43B into a spiral shape is shown to FIG. 8C and 8D. 8C is a cross-sectional view taken along the line II ′ of FIG. 8D, and FIG. 8D is a plan view of FIG. 8C viewed from the bottom to the top in the drawing. 8C and 8D, in order to make the configuration clearer, the hatching attached to each component is set to a mode different from the other drawings. Moreover, in FIG. 8C, only the structure 40 is shown.
図8A、8Cに示した構造体40と、図8Aに示した放熱板30の第1の面32とで構成されるEBG構造体は、接続部材43Bを含んで形成されるマイクロストリップ線路がショートスタブとして機能するショートスタブ型のEBG構造を有する。詳細には、接続部材43Aはインダクタンスを形成している。また、接続部材43Bは、対向する島状導体41と電気的に結合することで島状導体41をリターンパスとするマイクロストリップ線路を形成している。マイクロストリップ線路の一端は第3接続部材43Cによってショート端となっており、ショートスタブとして機能するように構成されている。
The EBG structure constituted by the structure 40 shown in FIGS. 8A and 8C and the first surface 32 of the heat sink 30 shown in FIG. 8A has a short microstrip line formed including the connection member 43B. It has a short stub type EBG structure that functions as a stub. Specifically, the connection member 43A forms an inductance. Further, the connecting member 43B is electrically coupled to the opposing island-shaped conductor 41 to form a microstrip line having the island-shaped conductor 41 as a return path. One end of the microstrip line is a short end by the third connection member 43C, and is configured to function as a short stub.
次に、本実施形態の電子機器の製造方法の一例について、図8Bを用いて説明する。図8Bは、本実施形態の構造体40の製造工程の一例を示す断面図である。
Next, an example of a method for manufacturing the electronic device according to the present embodiment will be described with reference to FIG. 8B. FIG. 8B is a cross-sectional view showing an example of the manufacturing process of the structure 40 of the present embodiment.
まず、(1)に示すように、ガラスエポキシ基板、フッ素樹脂基板等の基板(層45A(1))の第1の面(図中、上側の面)に銅箔43Bを形成し、第2の面(図中、下側の面)に銅箔41を形成する。次に、(2)に示すように、フォトリソグラフィとエッチングにより、銅箔41の一部を選択的にエッチングすることでパターン(互いに分離した複数の島状導体41)を形成する。また、フォトリソグラフィとエッチングにより、銅箔43Bの一部を選択的にエッチングすることでパターン(第2接続部材43B)を形成する。なお、島状導体41は、第1接続部材43Aを通過させるための穴を設けたパターンに形成される。この穴は、第1接続部材43Aの径より大きく設けられる。
First, as shown in (1), a copper foil 43B is formed on the first surface (the upper surface in the figure) of a substrate (layer 45A (1)) such as a glass epoxy substrate or a fluororesin substrate, and the second The copper foil 41 is formed on the surface (the lower surface in the figure). Next, as shown in (2), a pattern (a plurality of island-like conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching. Further, a pattern (second connection member 43B) is formed by selectively etching a part of the copper foil 43B by photolithography and etching. The island-shaped conductor 41 is formed in a pattern provided with holes for allowing the first connection member 43A to pass therethrough. This hole is provided larger than the diameter of the first connecting member 43A.
その後、ドリルにより、第2接続部材43Bと層45A(1)と島状導体41とを貫通する穴を形成し、この穴に、銅、アルミニウム、ステンレス等の金属で構成された貫通ピン(第3接続部材43C)を挿入することで、(3)に示す状態を得る。
Thereafter, a hole penetrating the second connecting member 43B, the layer 45A (1), and the island-like conductor 41 is formed by a drill, and a through pin (first pin) made of a metal such as copper, aluminum, or stainless steel is formed in the hole. The state shown in (3) is obtained by inserting the 3 connecting members 43C).
次に、(4)に示すように、層45A(1)の第2の面(図中、下側の面)の上に、さらに誘電体層45A(2)を形成する。例えば、ガラスエポキシ基板、フッ素樹脂基板等のフレキシブル性を有する新たな基板(層45A(2))を用意し、この基板(層45A(2))の第1の面(図中、上側の面)を、層45A(1)の第2の面(図中、下側の面)に貼り付けることで実現してもよい。このように、本実施形態では、島状導体41(第1導体)は、層45A(1)、45A(2)で構成される誘電体層の内部に設けられる。
Next, as shown in (4), a dielectric layer 45A (2) is further formed on the second surface (the lower surface in the drawing) of the layer 45A (1). For example, a new flexible substrate (layer 45A (2)) such as a glass epoxy substrate or a fluororesin substrate is prepared, and the first surface (upper surface in the figure) of this substrate (layer 45A (2)) ) May be attached to the second surface (the lower surface in the drawing) of the layer 45A (1). Thus, in this embodiment, the island-shaped conductor 41 (first conductor) is provided inside the dielectric layer composed of the layers 45A (1) and 45A (2).
その後、(5)に示すように、ドリルを用いて、第2接続部材43Bと層45A(1)、45A(2)と島状導体41とを貫通する穴を形成する。この穴は、(2)で島状導体41に設けられた穴よりも径が小さく、かつ、島状導体41に非接触な状態で、この穴を通過するようにドリルを貫通させることで形成される。その後、(6)に示すように、(5)で形成した穴に、銅、アルミニウム、ステンレス等の金属で構成された貫通ピン(第1接続部材43A)を挿入する。
Thereafter, as shown in (5), a hole penetrating the second connecting member 43B, the layers 45A (1), 45A (2), and the island-shaped conductor 41 is formed using a drill. This hole is formed by penetrating a drill so as to pass through this hole in a state where the diameter is smaller than the hole provided in the island-shaped conductor 41 in (2) and is not in contact with the island-shaped conductor 41. Is done. Thereafter, as shown in (6), a through pin (first connecting member 43A) made of metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (5).
その後、(7)に示すように、層45A(2)の第2の面(図中、下側の面)に接着層45Bを形成する。この接着層45Bは、接続部材43Aが接着層45Bを貫通するように形成される。このように形成する具体的手段は、実施形態1-1で説明した手段と同様の手段を用いることができる。次に、必要に応じて、互いに分離した複数の島状導体41および層45A(1)の第1の面を覆う、非導電性の表面層(図示せず)を設ける。
Thereafter, as shown in (7), the adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A (2). The adhesive layer 45B is formed so that the connection member 43A penetrates the adhesive layer 45B. As specific means for forming in this way, the same means as described in Embodiment 1-1 can be used. Next, if necessary, a non-conductive surface layer (not shown) is provided to cover the first surfaces of the plurality of island-shaped conductors 41 and the layer 45A (1) separated from each other.
その後、図8Aに示すように、放熱板30の第1の面32の所望の位置に、接着層45Bが放熱板30の第1の面32に接するように構造体40を貼り付ける。この時、接続部材43の第1接続部材43Aが放熱板30の第1の面32と接するように貼り付ける。
Thereafter, as shown in FIG. 8A, the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45 </ b> B contacts the first surface 32 of the heat sink 30. At this time, the first connecting member 43 </ b> A of the connecting member 43 is attached so as to be in contact with the first surface 32 of the heat sink 30.
次に、本実施形態の作用効果について説明する。
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by thestructure 40 of the present embodiment and the first surface 32 of the heat sink 30 is composed of the structure 40 of the embodiment 1-1 and the first surface 32 of the heat sink 30. Different from the constructed EBG structure.
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by the
図8A、8Cに示すEBG構造体は、1つの島状導体41と、当該島状導体41に対応して設けられた接続部材43(43A、43B、43C)と、放熱板30の第1の面32の中の当該島状導体41に対向する領域とを含んで単位セルAが構成されている。
The EBG structure shown in FIGS. 8A and 8C includes one island-shaped conductor 41, a connection member 43 (43 </ b> A, 43 </ b> B, 43 </ b> C) provided corresponding to the island-shaped conductor 41, and the first heat sink 30. A unit cell A is configured including the region facing the island-shaped conductor 41 in the surface 32.
図9は、図8A、8Cに示した単位セルAの等価回路図である。図9に示すように、この単位セルAは、インピーダンス部23とアドミタンス部24とで構成される。インピーダンス部23は、隣り合う島状導体41間に生じるキャパシタンスC、および、島状導体41がつくるインダクタンスL、からなる。アドミタンス部24は、放熱板30の第1の面32と島状導体41とがつくるキャパシタンスC、および、第1接続部材43AがつくるインダクタンスL、および、第2接続部材43B(伝送線路)と第3接続部材43Cとを含んでなるショートスタブ、からなる。
FIG. 9 is an equivalent circuit diagram of the unit cell A shown in FIGS. 8A and 8C. As shown in FIG. 9, the unit cell A includes an impedance unit 23 and an admittance unit 24. The impedance unit 23 includes a capacitance C generated between adjacent island-shaped conductors 41 and an inductance L created by the island-shaped conductors 41. The admittance part 24 includes a capacitance C formed by the first surface 32 of the heat sink 30 and the island-shaped conductor 41, an inductance L formed by the first connecting member 43A, and a second connecting member 43B (transmission line) and the first And a short stub including three connecting members 43C.
一般に、EBG構造は、インピーダンス部23がキャパシタンス性でありかつ、アドミタンス部24がインダクタンス性となる周波数領域で電磁バンドギャップを生じることが知られている。図8A、8C、9のショートスタブ型EBG構造では、ショートスタブのスタブ長を長くすることによって、アドミタンス部24がインダクタンス性となる周波数帯域を低周波化することができる。このため、バンドギャップ帯域を低周波化することが可能である。ショートスタブ型EBG構造はバンドギャップ帯域の低周波化にスタブ長が必要であるが必ずしも面積を必要としないため、単位セルの小型化を図ることができる。
Generally, it is known that the EBG structure generates an electromagnetic band gap in a frequency region in which the impedance portion 23 is capacitive and the admittance portion 24 is inductive. In the short stub type EBG structure of FIGS. 8A, 8C, and 9, the frequency band in which the admittance portion 24 becomes inductive can be lowered by increasing the stub length of the short stub. For this reason, it is possible to lower the frequency of the band gap band. The short stub type EBG structure requires a stub length to reduce the frequency of the bandgap band, but does not necessarily require an area, so that the unit cell can be miniaturized.
このEBG構造体によれば、放熱板30(図8A参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to this EBG structure, noise propagation on the surface of the first surface 32 of the heat sink 30 (see FIG. 8A) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、本実施形態の構造体40により構成されるEBG構造体(図8A参照)は、特徴的な接続部材43(43A、43B、43C)の構成により、図9に示したように多様なインダクタンスLおよびキャパシタンスCを形成することができる。その結果、所望の周波数帯のノイズの伝播を抑制するために要求されるインダクタンスLおよびキャパシタンスCを、島状導体41や接続部材43(43A、43B、43C)の大きさを必要以上に大きくすることなく得ることが可能となる。すなわち、単位セルAの大きさを比較的小さくすることが可能となる。かかる場合、構造体40の平面における単位面積あたりの単位セルAの数を増やすことが可能となり、より効果的にノイズの伝播を抑制することが可能となる。
<<実施形態1-3>> Further, the EBG structure (see FIG. 8A) constituted by thestructure 40 of the present embodiment has various inductances as shown in FIG. 9 due to the structure of the characteristic connection member 43 (43A, 43B, 43C). L and capacitance C can be formed. As a result, the inductance L and the capacitance C required for suppressing the propagation of noise in a desired frequency band are made larger than necessary for the size of the island-shaped conductor 41 and the connecting member 43 (43A, 43B, 43C). It becomes possible to obtain without. That is, the size of the unit cell A can be made relatively small. In such a case, the number of unit cells A per unit area in the plane of the structure 40 can be increased, and noise propagation can be more effectively suppressed.
<< Embodiment 1-3 >>
<<実施形態1-3>> Further, the EBG structure (see FIG. 8A) constituted by the
<< Embodiment 1-3 >>
本実施形態の電子機器は、実施形態1-1の電子機器を基本とし、構造体40の構成が一部異なる。他の構成については、実施形態1-1の電子機器と同様であるので、ここでの説明は省略する。
The electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
図10Aは、本実施形態の電子機器の一例を模式的に示した断面図である。この構造体40は、実施形態1-1の構造体40(図4A参照)を基本とし、接続部材43(43A、43B)の形状が異なる。他の構成については、実施形態1-1の構造体40と同様であるので、ここでの説明は省略する。
FIG. 10A is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment. This structure 40 is based on the structure 40 (see FIG. 4A) of Embodiment 1-1, and the shape of the connection member 43 (43A, 43B) is different. Other configurations are the same as those of the structure 40 according to Embodiment 1-1, and thus the description thereof is omitted here.
本実施形態の接続部材43は、導電性の第1接続部材43Aと、導電性の第2接続部材43Bと、からなる。第1接続部材43Aは、一端が誘電体層45の第2の面47を貫通し第2の面47から露出するとともに、他端側を介して第2接続部材43Bと導通する。第1接続部材43Aの他端は、誘電体層45の第1の面46を貫通してもよい。この第1接続部材43Aは、島状導体41に設けられた穴を島状導体41と非接触な状態で通過している。第2接続部材43Bは、第1接続部43Aと導通し、島状導体41と対向するように設けられる。この第2接続部材43Bの平面形状は、直線であってもよいし、曲線であってもよいし、スパイラル形状であってもよいし、その他の形状であってもよい。第2接続部材43Bの他端は開放端となっている。ここで、第2接続部材43Bをスパイラル形状にした場合の一例を、図10C、10Dに示す。図10Cは、図10Dのロ-ロ´の断面図であり、図10Dは、図10Cを図中下から上に見た平面図である。なお、図10C、10Dにおいては、構成をより明確にするため、各構成要素に付すハッチングを、他の図とは異なった態様にしている。また、図10Cにおいては、構造体40のみを示している。
The connection member 43 of the present embodiment includes a conductive first connection member 43A and a conductive second connection member 43B. One end of the first connection member 43A penetrates the second surface 47 of the dielectric layer 45 and is exposed from the second surface 47, and is electrically connected to the second connection member 43B via the other end side. The other end of the first connection member 43 </ b> A may penetrate the first surface 46 of the dielectric layer 45. The first connecting member 43A passes through a hole provided in the island-shaped conductor 41 in a state of non-contact with the island-shaped conductor 41. The second connecting member 43 </ b> B is provided so as to be electrically connected to the first connecting portion 43 </ b> A and to face the island-shaped conductor 41. The planar shape of the second connection member 43B may be a straight line, a curved line, a spiral shape, or other shapes. The other end of the second connection member 43B is an open end. Here, an example of the case where the second connecting member 43B is formed in a spiral shape is shown in FIGS. 10C and 10D. 10C is a cross-sectional view of the roll of FIG. 10D, and FIG. 10D is a plan view of FIG. 10C viewed from the bottom to the top in the drawing. In FIGS. 10C and 10D, in order to make the configuration clearer, the hatching applied to each component is set to a mode different from the other drawings. Moreover, in FIG. 10C, only the structure 40 is shown.
図10A、10Cに示した構造体40と、図10Aに示した放熱板30の第1の面32とで構成されるEBG構造体は、接続部材43Bを含んで形成されるマイクロストリップ線路がオープンスタブとして機能するオープンスタブ型のEBG構造を有する。詳細には、接続部材43Aはインダクタンスを形成している。また、接続部材43Bは、対向する島状導体41と電気的に結合することで島状導体41をリターンパスとするマイクロストリップ線路を形成している。マイクロストリップ線路の一端はオープン端となっており、オープンスタブとして機能するように構成されている。
The EBG structure constituted by the structure 40 shown in FIGS. 10A and 10C and the first surface 32 of the heat sink 30 shown in FIG. 10A has an open microstrip line including the connecting member 43B. It has an open stub type EBG structure that functions as a stub. Specifically, the connection member 43A forms an inductance. Further, the connecting member 43B is electrically coupled to the opposing island-shaped conductor 41 to form a microstrip line having the island-shaped conductor 41 as a return path. One end of the microstrip line is an open end, and is configured to function as an open stub.
次に、本実施形態の電子機器の製造方法の一例について、図10Bを用いて説明する。図10Bは、本実施形態の構造体40の製造工程の一例を示す断面図である。
Next, an example of a method for manufacturing the electronic device according to the present embodiment will be described with reference to FIG. 10B. FIG. 10B is a cross-sectional view showing an example of the manufacturing process of the structure 40 of the present embodiment.
まず、(1)に示すように、ガラスエポキシ基板、フッ素樹脂基板等の基板(層45A(1))の第1の面(図中、上側の面)に銅箔43Bを形成し、第2の面(図中、下側の面)に銅箔41を形成する。次に、(2)に示すように、フォトリソグラフィとエッチングにより、銅箔41の一部を選択的にエッチングすることでパターン(互いに分離した複数の島状導体41)を形成する。また、フォトリソグラフィとエッチングにより、銅箔43Bの一部を選択的にエッチングすることでパターン(第2接続部材43B)を形成する。なお、島状導体41は、第1接続部材43Aを通過させるための穴を設けたパターンに形成される。この穴は、第1接続部材43Aの径より大きく設けられる。
First, as shown in (1), a copper foil 43B is formed on the first surface (the upper surface in the figure) of a substrate (layer 45A (1)) such as a glass epoxy substrate or a fluororesin substrate, and the second The copper foil 41 is formed on the surface (the lower surface in the figure). Next, as shown in (2), a pattern (a plurality of island-like conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching. Further, a pattern (second connection member 43B) is formed by selectively etching a part of the copper foil 43B by photolithography and etching. The island-shaped conductor 41 is formed in a pattern provided with holes for allowing the first connection member 43A to pass therethrough. This hole is provided larger than the diameter of the first connecting member 43A.
次に、(3)に示すように、層45A(1)の第2の面(図中、下側の面)の上に、さらに誘電体層45A(2)を形成する。例えば、ガラスエポキシ基板、フッ素樹脂基板等のフレキシブル性を有する新たな基板(層45A(2))を用意し、この基板(層45A(2))の第1の面(図中、上側の面)を、層45A(1)の第2の面(図中、下側の面)に貼り付けることで実現してもよい。このように、本実施形態では、島状導体41(第1導体)は、層45A(1)、45A(2)で構成される誘電体層の内部に設けられる。
Next, as shown in (3), a dielectric layer 45A (2) is further formed on the second surface (the lower surface in the drawing) of the layer 45A (1). For example, a new flexible substrate (layer 45A (2)) such as a glass epoxy substrate or a fluororesin substrate is prepared, and the first surface (upper surface in the figure) of this substrate (layer 45A (2)) ) May be attached to the second surface (the lower surface in the drawing) of the layer 45A (1). Thus, in this embodiment, the island-shaped conductor 41 (first conductor) is provided inside the dielectric layer composed of the layers 45A (1) and 45A (2).
その後、(4)に示すように、ドリルを用いて、第2接続部材43Bと層45A(1)、45A(2)と島状導体41とを貫通する穴を形成する。この穴は、(2)で島状導体41に設けられた穴よりも径が小さく、かつ、島状導体41に非接触な状態で、この穴を通過するようにドリルを貫通させることで形成される。その後、(5)に示すように、(4)で形成した穴に、銅、アルミニウム、ステンレス等の金属で構成された貫通ピン(第1接続部材43A)を挿入する。
Then, as shown in (4), a hole penetrating the second connecting member 43B, the layers 45A (1) and 45A (2), and the island conductor 41 is formed using a drill. This hole is formed by penetrating a drill so as to pass through this hole in a state where the diameter is smaller than the hole provided in the island-shaped conductor 41 in (2) and is not in contact with the island-shaped conductor 41. Is done. Thereafter, as shown in (5), a through pin (first connecting member 43A) made of a metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (4).
その後、(6)に示すように、層45A(2)の第2の面(図中、下側の面)に接着層45Bを形成する。この接着層45Bは、接続部材43Aが接着層45Bを貫通するように形成される。このように形成する具体的手段は、実施形態1-1で説明した手段と同様の手段を用いることができる。次に、必要に応じて、互いに分離した複数の島状導体41および層45A(1)の第1の面を覆う、非導電性の表面層(図示せず)を設ける。
Thereafter, as shown in (6), an adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A (2). The adhesive layer 45B is formed so that the connection member 43A penetrates the adhesive layer 45B. As specific means for forming in this way, the same means as described in Embodiment 1-1 can be used. Next, if necessary, a non-conductive surface layer (not shown) is provided to cover the first surfaces of the plurality of island-shaped conductors 41 and the layer 45A (1) separated from each other.
その後、図10Aに示すように、放熱板30の第1の面32の所望の位置に、接着層45Bが放熱板30の第1の面32に接するように構造体40を貼り付ける。この時、接続部材43の第1接続部材43Aが放熱板30の第1の面32と接するように貼り付ける。
Thereafter, as shown in FIG. 10A, the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45B is in contact with the first surface 32 of the heat sink 30. At this time, the first connecting member 43 </ b> A of the connecting member 43 is attached so as to be in contact with the first surface 32 of the heat sink 30.
次に、本実施形態の作用効果について説明する。
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1および1-2の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by thestructure 40 of the present embodiment and the first surface 32 of the heat sink 30 includes the structure 40 of the embodiments 1-1 and 1-2 and the first of the heat sink 30. Different from the EBG structure constituted by the surface 32.
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1および1-2の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by the
図10A、10Cに示すEBG構造体は、1つの島状導体41と、当該島状導体41に対応して設けられた接続部材43(43A、43B)と、放熱板30の第1の面32の中の当該島状導体41に対向する領域とを含んで単位セルAが構成されている。
The EBG structure shown in FIGS. 10A and 10C includes one island-shaped conductor 41, a connection member 43 (43 </ b> A, 43 </ b> B) provided corresponding to the island-shaped conductor 41, and the first surface 32 of the heat sink 30. The unit cell A is configured to include a region facing the island-shaped conductor 41 in the.
図11は、図10A、10Cに示した単位セルAの等価回路図である。図11に示すように、この単位セルAは、インピーダンス部23とアドミタンス部24とで構成される。インピーダンス部23は、隣り合う島状導体41間に生じるキャパシタンスC、および、島状導体41がつくるインダクタンスL、からなる。アドミタンス部24は、放熱板30の第1の面32と島状導体41とがつくるキャパシタンスC、および、第1接続部材43AがつくるインダクタンスL、および、第2接続部材43B(伝送線路)を含んでなるオープンスタブ、からなる。
FIG. 11 is an equivalent circuit diagram of the unit cell A shown in FIGS. 10A and 10C. As shown in FIG. 11, the unit cell A includes an impedance unit 23 and an admittance unit 24. The impedance unit 23 includes a capacitance C generated between adjacent island-shaped conductors 41 and an inductance L created by the island-shaped conductors 41. The admittance part 24 includes a capacitance C formed by the first surface 32 of the heat sink 30 and the island-shaped conductor 41, an inductance L formed by the first connection member 43A, and a second connection member 43B (transmission line). Open stub, consisting of
一般に、EBG構造は、インピーダンス部23がキャパシタンス性でありかつ、アドミタンス部24がインダクタンス性となる周波数領域で電磁バンドギャップを生じることが知られている。図10A、10C、11のオープンスタブ型EBG構造では、オープンスタブのスタブ長を長くすることによって、アドミタンス部24がインダクタンス性となる周波数帯域を低周波化することができる。このため、バンドギャップ帯域を低周波化することが可能である。オープンスタブ型EBG構造はバンドギャップ帯域の低周波化にスタブ長が必要であるが必ずしも面積を必要としないため、単位セルの小型化を図ることができる。
Generally, it is known that the EBG structure generates an electromagnetic band gap in a frequency region in which the impedance portion 23 is capacitive and the admittance portion 24 is inductive. In the open stub type EBG structure of FIGS. 10A, 10C, and 11, the frequency band in which the admittance portion 24 becomes inductive can be lowered by increasing the stub length of the open stub. For this reason, it is possible to lower the frequency of the band gap band. The open stub type EBG structure requires a stub length to reduce the frequency of the bandgap band, but does not necessarily require an area. Therefore, the unit cell can be miniaturized.
このEBG構造体によれば、放熱板30(図10A参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to the EBG structure, noise propagation on the surface of the first surface 32 of the heat sink 30 (see FIG. 10A) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、本実施形態の構造体40により構成されるEBG構造体(図10A参照)は、特徴的な接続部材43(43A、43B)の構成により、図11に示したように多様なインダクタンスLおよびキャパシタンスCを形成することができる。その結果、所望の周波数帯のノイズの伝播を抑制するために要求されるインダクタンスLおよびキャパシタンスCを、島状導体41や接続部材43(43A、43B)の大きさを必要以上に大きくすることなく得ることが可能となる。すなわち、単位セルAの大きさを比較的小さくすることが可能となる。かかる場合、構造体40の平面における単位面積あたりの単位セルAの数を増やすことが可能となり、より効果的にノイズの伝播を抑制することが可能となる。
<<実施形態1-4>> Further, the EBG structure (see FIG. 10A) configured by thestructure 40 of the present embodiment has various inductances L and L as shown in FIG. 11 due to the configuration of the characteristic connection member 43 (43A, 43B). Capacitance C can be formed. As a result, the inductance L and the capacitance C required for suppressing the propagation of noise in a desired frequency band can be achieved without increasing the size of the island-shaped conductor 41 and the connecting member 43 (43A, 43B) more than necessary. Can be obtained. That is, the size of the unit cell A can be made relatively small. In such a case, the number of unit cells A per unit area in the plane of the structure 40 can be increased, and noise propagation can be more effectively suppressed.
<< Embodiment 1-4 >>
<<実施形態1-4>> Further, the EBG structure (see FIG. 10A) configured by the
<< Embodiment 1-4 >>
本実施形態の電子機器は、実施形態1-1の電子機器を基本とし、構造体40の構成が一部異なる。他の構成については、実施形態1-1の電子機器と同様であるので、ここでの説明は省略する。
The electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
図12Aは、本実施形態の電子機器の一例を模式的に示した断面図である。この構造体40は、実施形態1-1の構造体40(図4A参照)を基本とし、接続部材43(43A、43B)の形状が異なる。他の構成については、実施形態1-1の構造体40と同様であるので、ここでの説明は省略する。
FIG. 12A is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment. This structure 40 is based on the structure 40 (see FIG. 4A) of Embodiment 1-1, and the shape of the connection member 43 (43A, 43B) is different. Other configurations are the same as those of the structure 40 according to Embodiment 1-1, and thus the description thereof is omitted here.
本実施形態の接続部材43は、導電性の第1接続部材43Aと、導電性の第2接続部材43Bと、からなる。第1接続部材43Aは、一端が誘電体層45の第2の面47を貫通し第2の面47から露出するとともに、他端側を介して第2接続部材43Bと導通する。第1接続部材43Aは、島状導体41とは接触しない。第2接続部材43Bは、第1接続部43Aと導通し、島状導体41と対向するように設けられる。この第2接続部材43Bの平面形状は、直線であってもよいし、曲線であってもよいし、スパイラル形状であってもよいし、その他の形状であってもよい。第2接続部材43Bの他端は開放端となっている。
The connection member 43 of the present embodiment includes a conductive first connection member 43A and a conductive second connection member 43B. One end of the first connection member 43A penetrates the second surface 47 of the dielectric layer 45 and is exposed from the second surface 47, and is electrically connected to the second connection member 43B via the other end side. The first connecting member 43A does not contact the island-shaped conductor 41. The second connecting member 43 </ b> B is provided so as to be electrically connected to the first connecting portion 43 </ b> A and to face the island-shaped conductor 41. The planar shape of the second connection member 43B may be a straight line, a curved line, a spiral shape, or other shapes. The other end of the second connection member 43B is an open end.
図12Aに示した構造体40と、放熱板30の第1の面32とで構成されるEBG構造体は、接続部材43Bを含んで形成されるマイクロストリップ線路がオープンスタブとして機能するオープンスタブ型のEBG構造を有する。詳細には、接続部材43Aはインダクタンスを形成している。また、接続部材43Bは、対向する島状導体41と電気的に結合することで島状導体41をリターンパスとするマイクロストリップ線路を形成している。マイクロストリップ線路の一端はオープン端となっており、オープンスタブとして機能するように構成されている。
The EBG structure constituted by the structure 40 shown in FIG. 12A and the first surface 32 of the heat sink 30 is an open stub type in which a microstrip line formed including a connection member 43B functions as an open stub. It has an EBG structure of Specifically, the connection member 43A forms an inductance. Further, the connecting member 43B is electrically coupled to the opposing island-shaped conductor 41 to form a microstrip line having the island-shaped conductor 41 as a return path. One end of the microstrip line is an open end, and is configured to function as an open stub.
次に、本実施形態の電子機器の製造方法の一例について、図12Bを用いて説明する。図12Bは、本実施形態の構造体40の製造工程の一例を示す断面図である。
Next, an example of a method for manufacturing the electronic device according to the present embodiment will be described with reference to FIG. 12B. FIG. 12B is a cross-sectional view illustrating an example of the manufacturing process of the structure 40 of the present embodiment.
まず、(1)に示すように、ガラスエポキシ基板、フッ素樹脂基板等の基板(層45A(1))の第1の面(図中、上側の面)に銅箔43Bを形成する。また、ガラスエポキシ基板、フッ素樹脂基板等のフレキシブル性を有する他の基板(層45A(2))の第1の面(図中、上側の面)に銅箔41を形成する。次に、(2)に示すように、フォトリソグラフィとエッチングにより、銅箔43Bの一部を選択的にエッチングすることでパターン(第2接続部材43B)を形成する。また、フォトリソグラフィとエッチングにより、銅箔41の一部を選択的にエッチングすることでパターン(互いに分離した複数の島状導体41)を形成する。
First, as shown in (1), a copper foil 43B is formed on a first surface (upper surface in the drawing) of a substrate (layer 45A (1)) such as a glass epoxy substrate or a fluororesin substrate. Further, the copper foil 41 is formed on the first surface (upper surface in the drawing) of another flexible substrate (layer 45A (2)) such as a glass epoxy substrate or a fluororesin substrate. Next, as shown in (2), a pattern (second connecting member 43B) is formed by selectively etching part of the copper foil 43B by photolithography and etching. Further, a pattern (a plurality of island-shaped conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching.
その後、(3)に示すように、ドリルにより、第2接続部材43Bと層45A(1)を貫通する穴を形成する。次に、(4)に示すように、(3)で形成した穴に、銅、アルミニウム、ステンレス等の金属で構成された貫通ピン(接続部材43A)を挿入する。
Thereafter, as shown in (3), a hole penetrating the second connecting member 43B and the layer 45A (1) is formed by a drill. Next, as shown in (4), a penetration pin (connecting member 43A) made of a metal such as copper, aluminum, or stainless steel is inserted into the hole formed in (3).
その後、(5)に示すように、層45A(1)の第1の面(図中、上側の面)に、層45A(2)の第2の面(図中、下側の面)が接するように貼り付ける。次に、(6)に示すように、層45A(1)の第2の面(図中、下側の面)に接着層45Bを形成する。この接着層45Bは、接続部材43Aが接着層45Bを貫通するように形成される。このように形成する具体的手段は、実施形態1-1で説明した手段と同様の手段を用いることができる。次に、必要に応じて、互いに分離した複数の島状導体41および層45A(2)の第1の面を覆う、非導電性の表面層(図示せず)を設ける。
Thereafter, as shown in (5), the second surface (lower surface in the drawing) of the layer 45A (2) is formed on the first surface (upper surface in the drawing) of the layer 45A (1). Paste to touch. Next, as shown in (6), the adhesive layer 45B is formed on the second surface (the lower surface in the drawing) of the layer 45A (1). The adhesive layer 45B is formed so that the connection member 43A penetrates the adhesive layer 45B. As specific means for forming in this way, the same means as described in Embodiment 1-1 can be used. Next, if necessary, a non-conductive surface layer (not shown) is provided to cover the plurality of island-like conductors 41 and the first surface of the layer 45A (2) separated from each other.
その後、図12Aに示すように、放熱板30の第1の面32の所望の位置に、接着層45Bが放熱板30の第1の面32に接するように構造体40を貼り付ける。この時、接続部材43の第1接続部材43Aが放熱板30の第1の面32と接するように貼り付ける。
Thereafter, as shown in FIG. 12A, the structure 40 is pasted at a desired position on the first surface 32 of the heat sink 30 so that the adhesive layer 45 </ b> B contacts the first surface 32 of the heat sink 30. At this time, the first connecting member 43 </ b> A of the connecting member 43 is attached so as to be in contact with the first surface 32 of the heat sink 30.
次に、本実施形態の作用効果について説明する。
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1乃至1-3の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by thestructure 40 of the present embodiment and the first surface 32 of the heat sink 30 includes the structure 40 of the embodiments 1-1 to 1-3 and the first of the heat sink 30. Different from the EBG structure constituted by the surface 32.
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1乃至1-3の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by the
図12Aに示すEBG構造体は、1つの島状導体41と、当該島状導体41に対応して設けられた接続部材43(43A、43B)と、放熱板30の第1の面32の中の当該島状導体41に対向する領域とを含んで単位セルAが構成されている。
The EBG structure shown in FIG. 12A includes one island-shaped conductor 41, a connection member 43 (43 </ b> A, 43 </ b> B) provided corresponding to the island-shaped conductor 41, and the first surface 32 of the heat sink 30. The unit cell A is configured to include a region facing the island-shaped conductor 41.
図13は、図12Aに示した単位セルAの等価回路図である。この等価回路図は、実施形態1-3において説明した図11の等価回路図と同じである。よって、ここでの説明は省略する。
FIG. 13 is an equivalent circuit diagram of the unit cell A shown in FIG. 12A. This equivalent circuit diagram is the same as the equivalent circuit diagram of FIG. 11 described in the embodiment 1-3. Therefore, the description here is omitted.
このEBG構造体によれば、放熱板30(図12A参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to the EBG structure, noise propagation on the surface of the first surface 32 of the heat sink 30 (see FIG. 12A) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、本実施形態の構造体40により構成されるEBG構造体(図12A参照)は、特徴的な接続部材43(43A、43B)の構成により、図13に示したように多様なインダクタンスLおよびキャパシタンスCを形成することができる。その結果、所望の周波数帯のノイズの伝播を抑制するために要求されるインダクタンスLおよびキャパシタンスCを、島状導体41や接続部材43(43A、43B)の大きさを必要以上に大きくすることなく得ることが可能となる。すなわち、単位セルAの大きさを比較的小さくすることが可能となる。かかる場合、構造体40の平面における単位面積あたりの単位セルAの数を増やすことが可能となり、より効果的にノイズの伝播を抑制することが可能となる。
<<実施形態1-5>> Further, the EBG structure (see FIG. 12A) configured by thestructure 40 of the present embodiment has various inductances L and L as shown in FIG. 13 due to the configuration of the characteristic connection member 43 (43A, 43B). Capacitance C can be formed. As a result, the inductance L and the capacitance C required for suppressing the propagation of noise in a desired frequency band can be achieved without increasing the size of the island-shaped conductor 41 and the connecting member 43 (43A, 43B) more than necessary. Can be obtained. That is, the size of the unit cell A can be made relatively small. In such a case, the number of unit cells A per unit area in the plane of the structure 40 can be increased, and noise propagation can be more effectively suppressed.
<< Embodiment 1-5 >>
<<実施形態1-5>> Further, the EBG structure (see FIG. 12A) configured by the
<< Embodiment 1-5 >>
本実施形態の電子機器は、実施形態1-1の電子機器を基本とし、構造体40の構成が一部異なる。他の構成については、実施形態1-1の電子機器と同様であるので、ここでの説明は省略する。
The electronic device of the present embodiment is based on the electronic device of Embodiment 1-1, and the structure 40 is partially different. Other configurations are the same as those of the electronic device according to Embodiment 1-1, and thus description thereof is omitted here.
図14は、本実施形態の電子機器の一例を模式的に示した断面図である。本実施形態の構造体40は、誘電体層45と、誘電体層45の第1の面46に形成され、少なくとも一部領域に繰り返し構造、例えば周期的な構造を有している第1導体と、を備える。繰り返し構造を有する第1導体は、例えば、互いに分離した複数の島状導体41で構成される。第1導体は、誘電体層45の第1の面46と反対側の面である第2の面47と対向するように設けられる。構造体40は、誘電体層45の第2の面47が放熱板30の第1の面32と接するように、放熱板30に取り付けられる。
FIG. 14 is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment. The structure 40 of the present embodiment is formed on the dielectric layer 45 and the first surface 46 of the dielectric layer 45, and is a first conductor having a repetitive structure, for example, a periodic structure, at least in a partial region. And comprising. The first conductor having a repetitive structure is composed of, for example, a plurality of island-shaped conductors 41 separated from each other. The first conductor is provided so as to face the second surface 47 that is the surface opposite to the first surface 46 of the dielectric layer 45. The structural body 40 is attached to the heat sink 30 such that the second surface 47 of the dielectric layer 45 is in contact with the first surface 32 of the heat sink 30.
誘電体層45の一部は放熱板30の第1の面32に接着する接着層45Bで構成され、接着層45Bは誘電体層45の第2の面47を構成する。
A part of the dielectric layer 45 is composed of an adhesive layer 45B that adheres to the first surface 32 of the heat sink 30, and the adhesive layer 45B constitutes a second surface 47 of the dielectric layer 45.
そして、複数の島状導体41の一部または全部には、図15の拡大斜視図に示すように、開口41Bが設けられる。複数の島状導体41の一部に開口41Bが設けられる場合、開口41Bは、周期的に設けられるのが望ましい。この開口41Bの中には、一端が島状導体41に接続している配線41Aが設けられる。開口41Bの大きさ、配線41Aの長さ、太さなどは、伝播を抑制するノイズの周波数に応じて定められる設計的事項である。
And some or all of the plurality of island-like conductors 41 are provided with openings 41B as shown in the enlarged perspective view of FIG. When the openings 41B are provided in a part of the plurality of island-like conductors 41, it is desirable that the openings 41B are provided periodically. In the opening 41B, a wiring 41A having one end connected to the island-shaped conductor 41 is provided. The size of the opening 41B, the length, the thickness, and the like of the wiring 41A are design matters determined according to the frequency of noise that suppresses propagation.
次に、本実施形態の電子機器の製造方法の一例について説明する。本実施形態の構造体40は、図4Bの(1)に示すように、ガラスエポキシ基板、フッ素樹脂基板等の基板(層45A)の第1の面に、銅箔41を形成後、(2)に示すように、フォトリソグラフィとエッチングにより、銅箔41の一部を選択的にエッチングすることでパターン(互いに分離した複数の島状導体41)を形成する。このフォトリソグラフィおよびエッチングにより、島状導体41は、図15に示すパターンに形成される。その後の工程は、実施形態1-1に準じて実現できる。よって、ここでの説明は省略する。
Next, an example of an electronic device manufacturing method according to this embodiment will be described. As shown in FIG. 4B (1), the structure 40 of the present embodiment is formed by forming a copper foil 41 on the first surface of a substrate (layer 45A) such as a glass epoxy substrate or a fluororesin substrate, and then (2 ), A pattern (a plurality of island-like conductors 41 separated from each other) is formed by selectively etching a part of the copper foil 41 by photolithography and etching. By this photolithography and etching, the island-shaped conductor 41 is formed in the pattern shown in FIG. Subsequent steps can be realized according to Embodiment 1-1. Therefore, the description here is omitted.
次に、本実施形態の作用効果について説明する。
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1乃至1-4のいずれかの構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by thestructure 40 of the present embodiment and the first surface 32 of the heat sink 30 is the same as the structure 40 of any of the embodiments 1-1 to 1-4 and the heat sink 30. Different from the EBG structure constituted by the first surface 32.
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1乃至1-4のいずれかの構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by the
図16、17に、本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の一例を模式的に示す。図16は、EBG構造体の構成を模式的に示す斜視図であり、図17は、図16のEBG構造体の側面図である。なお、このEBG構造体は、図14に示す構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の上下を逆にして示してある。
FIGS. 16 and 17 schematically show an example of the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30. 16 is a perspective view schematically showing the configuration of the EBG structure, and FIG. 17 is a side view of the EBG structure of FIG. This EBG structure is shown upside down with respect to the EBG structure constituted by the structure 40 shown in FIG. 14 and the first surface 32 of the heat sink 30.
図16、17に示すEBG構造体は、シート状導体2と、互いに分離した複数の島状導体1と、島状導体1に設けられた開口1Bと、開口1Bの中に設けられた配線1Aと、により構成される。複数の島状導体1は、平面視でシート状導体2と重なる領域であって、シート状導体2から離れた位置に、誘電体層(図示せず)を挟んで配置されている。また、複数の島状導体1は、周期的に配列されている。複数の島状導体1には開口1Bが設けられ、開口1Bの中には、一端が島状導体1に接続している配線1Aが設けられている。配線1Aはオープンスタブとして機能しており、シート状導体2のうち配線1Aに対向する部分及び配線1Aが、伝送線路、例えばマイクロストリップ線路を形成している。
The EBG structure shown in FIGS. 16 and 17 includes a sheet-like conductor 2, a plurality of island-like conductors 1 separated from each other, an opening 1B provided in the island-like conductor 1, and a wiring 1A provided in the opening 1B. And composed of The plurality of island-like conductors 1 are regions that overlap the sheet-like conductor 2 in plan view, and are disposed at positions away from the sheet-like conductor 2 with a dielectric layer (not shown) interposed therebetween. The plurality of island-shaped conductors 1 are periodically arranged. The plurality of island-shaped conductors 1 are provided with openings 1 </ b> B, and wiring 1 </ b> A having one end connected to the island-shaped conductor 1 is provided in the openings 1 </ b> B. The wiring 1A functions as an open stub, and the portion of the sheet-like conductor 2 facing the wiring 1A and the wiring 1A form a transmission line, for example, a microstrip line.
このEBG構造体は、1つの島状導体1と、この島状導体1の開口1Bの中に設けられた配線1Aと、シート状導体2の中のこれらに対向する領域とを含んで単位セルAが構成されている。この単位セルAが周期的に配置されることにより、この構造体はメタマテリアル、例えばEBG(Electromagnetic Band Gap)として機能する。図16、17に示す例では、単位セルAは平面視において2次元配列を有している。
This EBG structure includes a unit cell including one island-shaped conductor 1, wiring 1 </ b> A provided in the opening 1 </ b> B of the island-shaped conductor 1, and a region of the sheet-shaped conductor 2 facing these. A is configured. By periodically disposing the unit cells A, the structure functions as a metamaterial, for example, an EBG (Electromagnetic Band Gap). 16 and 17, the unit cell A has a two-dimensional array in plan view.
複数の単位セルAは互いに同一のEBG構造を有しており、同一の向きに配置されている。島状導体1および開口1Bは正方形で、中心が互いに重なるように配置されている。配線1Aは開口1Bの一辺の略中央からこの辺に対して略垂直に延伸している。
The plurality of unit cells A have the same EBG structure and are arranged in the same direction. The island-like conductor 1 and the opening 1B are square and are arranged so that their centers overlap each other. The wiring 1A extends from the approximate center of one side of the opening 1B substantially perpendicularly to this side.
図18は、図16、17に示した単位セルAの等価回路図である。図18に示すように、シート状導体2と島状導体1との間にはキャパシタンスCが形成される。また、隣り合う島状導体1の相互間にもキャパシタンスCが形成される。そして、開口1Bを有する島状導体1にはインダクタンスLが形成される。
FIG. 18 is an equivalent circuit diagram of the unit cell A shown in FIGS. As shown in FIG. 18, a capacitance C is formed between the sheet-like conductor 2 and the island-like conductor 1. A capacitance C is also formed between the adjacent island conductors 1. An inductance L is formed in the island-shaped conductor 1 having the opening 1B.
また、上記したように配線1Aはオープンスタブとして機能しており、シート状導体2のうち配線1Aに対向する部分と配線1Aとが、伝送線路4、例えばマイクロストリップ線路を形成している。伝送線路の他端は開放端になっている。
Further, as described above, the wiring 1A functions as an open stub, and the portion of the sheet conductor 2 facing the wiring 1A and the wiring 1A form a transmission line 4, for example, a microstrip line. The other end of the transmission line is an open end.
このEBG構造体によれば、シート状導体2の表面におけるノイズの伝播を抑制できる。すなわち、放熱板30(図14参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体1(41)どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to this EBG structure, noise propagation on the surface of the sheet-like conductor 2 can be suppressed. That is, the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 14) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 1 (41) form a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、本実施形態の構造体40は、実施形態1-1乃至実施形態1-4の構造体40と違い、接続部材43を有さないので、接続部材43と放熱板30の第1の面32との導通を確保する手段を備える必要がない。その結果、品質安定性が高くなる。
<<実施形態1-6>> Further, unlike thestructure 40 of the embodiments 1-1 to 1-4, the structure 40 of the present embodiment does not have the connection member 43, so the connection member 43 and the first surface of the heat sink 30 are the same. It is not necessary to provide a means for ensuring conduction with 32. As a result, quality stability is enhanced.
<< Embodiment 1-6 >>
<<実施形態1-6>> Further, unlike the
<< Embodiment 1-6 >>
本実施形態の電子機器は、実施形態1-5の電子機器を基本とし、構造体40の構成が一部異なる。具体的には、島状導体41の開口41Bの中の構成が異なる。他の構成については、実施形態1-5の電子機器と同様であるので、ここでの説明は省略する。
The electronic device of the present embodiment is based on the electronic device of Embodiment 1-5, and the structure 40 is partially different. Specifically, the configuration in the opening 41B of the island-shaped conductor 41 is different. Other configurations are the same as those of the electronic device of the embodiment 1-5, and thus description thereof is omitted here.
本実施形態の電子機器の一例を模式的に示した断面図は、実施形態1-5(図14参照)と同様である。次に、図19に本実施形態の構造体40の島状導体11の拡大斜視図を示す。本実施形態の構造体40は、複数の島状導体41の一部または全部に、図19に示すような、開口41Bが設けられ、一部または全部の開口41Bの中には、第2の島状導体41Cおよび島状導体41と第2の島状導体41Cを接続する配線41Aが設けられている。
A cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment is the same as that of Embodiment 1-5 (see FIG. 14). Next, FIG. 19 shows an enlarged perspective view of the island-shaped conductor 11 of the structure 40 of the present embodiment. In the structure 40 of the present embodiment, an opening 41B as shown in FIG. 19 is provided in a part or all of the plurality of island-like conductors 41, and the second or part of the openings 41B includes a second The island-shaped conductor 41C and the wiring 41A that connects the island-shaped conductor 41 and the second island-shaped conductor 41C are provided.
本実施形態の電子機器の製造方法は、実施形態1-5で説明した電子機器の製造方法に準じて実現できるので、ここでの説明は省略する。
The manufacturing method of the electronic device of the present embodiment can be realized according to the manufacturing method of the electronic device described in Embodiment 1-5, and thus the description thereof is omitted here.
次に、本実施形態の作用効果について説明する。
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1乃至1-5のいずれかの構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by thestructure 40 of the present embodiment and the first surface 32 of the heat sink 30 includes the structure 40 of any of the embodiments 1-1 to 1-5 and the heat sink 30. Different from the EBG structure constituted by the first surface 32.
本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体は、実施形態1-1乃至1-5のいずれかの構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体と異なる。 Next, the effect of this embodiment is demonstrated.
The EBG structure constituted by the
図20に、本実施形態の構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の一例を模式的に示す。図20は、EBG構造体の構成を模式的に示す斜視図である。このEBG構造体の側面図は、実施形態1-5で説明したEBG構造体の側面図(図17参照)と同様である。なお、このEBG構造体は、図14に示す構造体40と、放熱板30の第1の面32とにより構成されるEBG構造体の上下を逆にして示してある。
FIG. 20 schematically shows an example of the EBG structure constituted by the structure 40 of the present embodiment and the first surface 32 of the heat sink 30. FIG. 20 is a perspective view schematically showing the configuration of the EBG structure. The side view of the EBG structure is the same as the side view (see FIG. 17) of the EBG structure described in Embodiment 1-5. This EBG structure is shown upside down with respect to the EBG structure constituted by the structure 40 shown in FIG. 14 and the first surface 32 of the heat sink 30.
図20に示すEBG構造体は、シート状導体2と、互いに分離した複数の島状導体1と、島状導体1に設けられた開口1Bと、開口1Bの中に設けられた配線1Aおよび第2の島状導体1Cと、により構成される。複数の島状導体1は、平面視でシート状導体2と重なる領域であって、シート状導体2から離れた位置に、誘電体層(図示せず)を挟んで配置されている。また、複数の島状導体1は、周期的に配列されている。複数の島状導体1には開口1Bが設けられ、開口1Bの中には、一端が島状導体1に接続している配線1Aが設けられている。さらに、開口1Bの中には、配線1Aの他端と接続している第2の島状導体1Cが設けられている。
The EBG structure shown in FIG. 20 includes a sheet-like conductor 2, a plurality of island-like conductors 1 separated from each other, an opening 1B provided in the island-like conductor 1, wiring 1A provided in the opening 1B, and the first 2 island-shaped conductors 1C. The plurality of island-like conductors 1 are regions that overlap the sheet-like conductor 2 in plan view, and are disposed at positions away from the sheet-like conductor 2 with a dielectric layer (not shown) interposed therebetween. The plurality of island-shaped conductors 1 are periodically arranged. The plurality of island-shaped conductors 1 are provided with openings 1 </ b> B, and wiring 1 </ b> A having one end connected to the island-shaped conductor 1 is provided in the openings 1 </ b> B. Further, in the opening 1B, a second island-shaped conductor 1C connected to the other end of the wiring 1A is provided.
このEBG構造体は、1つの島状導体1と、この島状導体1の開口1Bの中に設けられた配線1Aおよび第2の島状導体1Cと、シート状導体2の中のこれらに対向する領域とを含んで単位セルAが構成されている。この単位セルAが周期的に配置されることにより、この構造体はメタマテリアル、例えばEBG(Electromagnetic Band Gap)として機能する。図20に示す例では、単位セルAは平面視において2次元配列を有している。
This EBG structure has one island-like conductor 1, wiring 1 </ b> A and second island-like conductor 1 </ b> C provided in the opening 1 </ b> B of this island-like conductor 1, and these in the sheet-like conductor 2. The unit cell A is configured to include a region to be operated. By periodically disposing the unit cells A, the structure functions as a metamaterial, for example, an EBG (Electromagnetic Band Gap). In the example shown in FIG. 20, the unit cell A has a two-dimensional array in plan view.
複数の単位セルAは互いに同一のEBG構造を有しており、同一の向きに配置されている。島状導体1および開口1Bおよび第2の島状導体1Cは正方形で、中心が互いに重なるように配置されている。配線1Aは開口1Bの一辺の略中央からこの辺に対して略垂直に延伸している。そして、配線1Aは、第2の島状導体1Cの第1の辺の中央と、開口1Bのうち第2の島状導体1Cの第1の辺に対向する辺の中央と、を接続している。
The plurality of unit cells A have the same EBG structure and are arranged in the same direction. The island-shaped conductor 1, the opening 1 </ b> B, and the second island-shaped conductor 1 </ b> C are square and are arranged so that their centers overlap each other. The wiring 1A extends from the approximate center of one side of the opening 1B substantially perpendicularly to this side. Then, the wiring 1A connects the center of the first side of the second island-shaped conductor 1C and the center of the side of the opening 1B facing the first side of the second island-shaped conductor 1C. Yes.
図21は、図20に示した単位セルAの等価回路図である。図21に示すように、島状導体1とシート状導体2との間には、キャパシタンスCが形成される。また、隣り合う島状導体1の相互間にもキャパシタンスCが形成される。さらに、第2の島状導体1Cとシート状導体2との間にもキャパシタンスCが形成される。そして、開口1Bを有する島状導体1にはインダクタンスLが形成される。また、島状導体1と第2の島状導体1Cとを接続する配線1Aは、インダクタンスLを有する。
FIG. 21 is an equivalent circuit diagram of the unit cell A shown in FIG. As shown in FIG. 21, a capacitance C is formed between the island-like conductor 1 and the sheet-like conductor 2. A capacitance C is also formed between the adjacent island conductors 1. Further, a capacitance C is also formed between the second island-like conductor 1C and the sheet-like conductor 2. An inductance L is formed in the island-shaped conductor 1 having the opening 1B. The wiring 1A connecting the island-shaped conductor 1 and the second island-shaped conductor 1C has an inductance L.
このEBG構造体によれば、シート状導体2の表面におけるノイズの伝播を抑制できる。すなわち、放熱板30(図14参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体1(41)どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to this EBG structure, noise propagation on the surface of the sheet-like conductor 2 can be suppressed. That is, the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 14) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 1 (41) form a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、本実施形態の構造体40は、実施形態1-1乃至実施形態1-4の構造体40と違い、接続部材43を有さないので、接続部材43と放熱板30の第1の面32との導通を確保する手段を備える必要がない。その結果、品質安定性が高くなる。
<<実施形態1-7>> Further, unlike thestructure 40 of the embodiments 1-1 to 1-4, the structure 40 of the present embodiment does not have the connection member 43, so the connection member 43 and the first surface of the heat sink 30 are the same. It is not necessary to provide a means for ensuring conduction with 32. As a result, quality stability is enhanced.
<< Embodiment 1-7 >>
<<実施形態1-7>> Further, unlike the
<< Embodiment 1-7 >>
本実施形態の電子機器は、実施形態1-1乃至1-6のいずれかの電子機器を基本とし、構造体40の構成が異なる。具体的には、構造体40の誘電体層45の構成が異なる。他の構成については、実施形態1-1乃至1-6のいずれかの電子機器と同様であるので、ここでの説明は省略する。
The electronic device of the present embodiment is based on the electronic device of any one of Embodiments 1-1 to 1-6, and the structure 40 is different. Specifically, the structure of the dielectric layer 45 of the structure 40 is different. The other configuration is the same as that of any one of the electronic devices of Embodiments 1-1 to 1-6, and thus the description thereof is omitted here.
図22は、本実施形態の電子機器の一例を模式的に示した断面図である。本実施形態の構造体40の誘電体層45は接着層45Bを有さない点で、実施形態1-1乃至実施形態1-6のいずれかの構造体40と異なる。他の構成については、実施形態1-1乃至実施形態1-6のいずれかの構造体40と同様であるので、ここでの説明は省略する。
FIG. 22 is a cross-sectional view schematically showing an example of the electronic apparatus of the present embodiment. The dielectric layer 45 of the structure 40 of the present embodiment is different from the structure 40 of any of Embodiments 1-1 to 1-6 in that it does not have the adhesive layer 45B. The other configuration is the same as that of any one of the structures 40 of Embodiment 1-1 to Embodiment 1-6, and thus the description thereof is omitted here.
接着層45Bを有さない本実施形態の構造体40は、例えば図22の例に示すように、接着手段(接着剤など)を備えたテープ60を用いて、誘電体層45の第2の面47が放熱板30の第1の面32と接するように、放熱板30に取り付けられる。その他、糊、押しピン等の部材を用いて、誘電体層45の第2の面47が放熱板30の第1の面32と接するように、放熱板30に取り付けられてもよい。
As shown in the example of FIG. 22, for example, the structure 40 of the present embodiment that does not have the adhesive layer 45 </ b> B uses the tape 60 provided with adhesive means (adhesive or the like) to form the second dielectric layer 45. It attaches to the heat sink 30 so that the surface 47 may contact the first surface 32 of the heat sink 30. In addition, using a member such as glue or a push pin, the second surface 47 of the dielectric layer 45 may be attached to the heat sink 30 so as to be in contact with the first surface 32 of the heat sink 30.
なお、実施形態1-1乃至実施形態1-4のいずれかの構造体40を基本とする場合、例えば図22に示すように実施形態1-1の構造体40を基本とする場合には、構造体40に設けられた接続部材43が放熱板30の第1の面32と導通するように、構造体40を放熱板30に取り付ける必要がある。
When the structure 40 according to any of Embodiments 1-1 to 1-4 is used as a basis, for example, when the structure 40 according to Embodiment 1-1 is used as a basis as shown in FIG. It is necessary to attach the structure 40 to the heat sink 30 so that the connection member 43 provided on the structure 40 is electrically connected to the first surface 32 of the heat sink 30.
本実施形態の電子機器によれば、放熱板30(図22参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
<実施形態2> According to the electronic device of the present embodiment, noise propagation on the surface of thefirst surface 32 of the heat sink 30 (see FIG. 22) can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
<Embodiment 2>
<実施形態2> According to the electronic device of the present embodiment, noise propagation on the surface of the
<
本実施形態の電子機器は、実施形態1の電子機器を基本とし、構造体40の構成が異なる。構造体40以外の他の構成については、実施形態1と同様であるので、ここでの説明は省略する。また、以下では構造体40の相違する点を中心に説明し、共通する点の説明は省略する。
The electronic device of the present embodiment is based on the electronic device of the first embodiment, and the structure 40 is different. Since the configuration other than the structure 40 is the same as that of the first embodiment, the description thereof is omitted here. In the following description, the differences between the structures 40 will be mainly described, and description of common points will be omitted.
本実施形態の構造体40は、誘電体層と、当該誘電体層の内部または第1の面上に、誘電体層の第1の面と反対側の面である第2の面と対向するように設けられ、少なくとも一部領域に繰り返し構造を有している第1導体と、当該誘電体層の第2の面に形成された第2導体と、を備える。そして、第2導体が第1導体より放熱板の第1の面の近くに位置し、かつ、第2導体が放熱板の第1の面と導通するように設けられる。
The structure 40 of the present embodiment is opposed to a dielectric layer and a second surface that is the surface opposite to the first surface of the dielectric layer inside or on the first surface of the dielectric layer. A first conductor having a repetitive structure in at least a partial region, and a second conductor formed on the second surface of the dielectric layer. The second conductor is disposed closer to the first surface of the heat sink than the first conductor, and the second conductor is electrically connected to the first surface of the heat sink.
本実施形態の構造体40は、第1導体と第2導体を構成の一部または全部とする少なくとも1種類以上のEBG構造を有するEBG構造体を備える。例えば第1導体と第2導体のみでEBG構造を構成した、図16または図20に示すようなEBG構造体を備えてもよい。または、第1導体と第2導体に、さらに接続部材を加えてEBG構造を構成した、例えば図6に示すようなEBG構造体を備えてもよい。そして、本実施形態のノイズ抑制テープは、第2導体と放熱板の第1の面とが導通するように取り付けられる。すなわち、放熱板の第1の面と構造体40が備えるEBG構造体とが電気的に繋がるように取り付けられる。
The structure 40 according to the present embodiment includes an EBG structure having at least one type of EBG structure in which the first conductor and the second conductor are part or all of the components. For example, you may provide the EBG structure as shown in FIG. 16 or FIG. 20 which comprised the EBG structure only with the 1st conductor and the 2nd conductor. Or you may provide the EBG structure as shown, for example in FIG. 6 which added the connection member to the 1st conductor and the 2nd conductor, and comprised EBG structure. And the noise suppression tape of this embodiment is attached so that a 2nd conductor and the 1st surface of a heat sink may be conducted. That is, it attaches so that the 1st surface of a heat sink and the EBG structure with which the structure 40 is provided are electrically connected.
本実施形態の電子機器は、上記構成により、実施形態1において図41を用いて説明した課題を解決している。その結果、放熱板の第1の面におけるノイズの伝播を抑制し、放熱板からノイズが放射されるのを抑制することが可能となる。
The electronic apparatus according to the present embodiment solves the problem described with reference to FIG. As a result, it is possible to suppress the propagation of noise on the first surface of the heat radiating plate, and to suppress the emission of noise from the heat radiating plate.
次に、本実施形態の構造体40の具体化例についてより詳細に説明する。なお、本実施形態の構造体40は、以下で説明する具体化例に限定されない。
<<実施形態2-1>> Next, a specific example of thestructure 40 of the present embodiment will be described in more detail. In addition, the structure 40 of this embodiment is not limited to the specific example demonstrated below.
<< Embodiment 2-1 >>
<<実施形態2-1>> Next, a specific example of the
<< Embodiment 2-1 >>
図23は、本実施形態の電子機器を模式的に示した断面図である。本実施形態の構造体40は、誘電体層45と、誘電体層45の内部または第1の面46上に、誘電体層45の第1の面46と反対側の面である第2の面47と対向するように設けられ、少なくとも一部領域に繰り返し構造を有している第1導体と、誘電体層45の第2の面47に形成された第2導体42と、を有する。繰り返し構造を有する第1導体は、例えば、互いに分離した複数の島状導体41で構成される。この構造体40は、第2導体42が、誘電体層45の第1の面46に形成された第1導体より放熱板30の第1の面32の近くに位置するように、放熱板30に取り付けられる。そして、この取り付けられた状態において、第2導体42と放熱板30の第1の面32とが導通する。第2導体42は、平面視で複数の島状導体41と対向するように誘電体層45の第2の面に延伸したシート状導体である。
FIG. 23 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment. The structure 40 of the present embodiment includes a dielectric layer 45 and a second surface which is the surface opposite to the first surface 46 of the dielectric layer 45 on the inside of the dielectric layer 45 or on the first surface 46. It has a first conductor provided so as to face the surface 47 and having a repetitive structure in at least a partial region, and a second conductor 42 formed on the second surface 47 of the dielectric layer 45. The first conductor having a repetitive structure is composed of, for example, a plurality of island-shaped conductors 41 separated from each other. The structure 40 includes the heat sink 30 such that the second conductor 42 is positioned closer to the first face 32 of the heat sink 30 than the first conductor formed on the first face 46 of the dielectric layer 45. Attached to. In this attached state, the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected. The second conductor 42 is a sheet-like conductor extending on the second surface of the dielectric layer 45 so as to face the plurality of island-like conductors 41 in plan view.
本実施形態の構造体40は例えばシートとして構成され、接着層44を備えてもよい。この接着層44は、第2導体42を介して誘電体層45とは逆側に設けられ、放熱板30の第1の面32に接着する。また、本実施形態の構造体40は、導通部材を備える。この導通部材は、接着層44内に設けられ、第2導体42と放熱板30の第1の面32とを導通させる。本実施形態の導通部材は、接着層44に混入された複数の導電性フィラー44Aである。
The structure 40 of this embodiment is configured as a sheet, for example, and may include an adhesive layer 44. The adhesive layer 44 is provided on the opposite side of the dielectric layer 45 via the second conductor 42 and adheres to the first surface 32 of the heat sink 30. Moreover, the structure 40 of the present embodiment includes a conductive member. This conducting member is provided in the adhesive layer 44 and conducts the second conductor 42 and the first surface 32 of the heat sink 30. The conductive member of the present embodiment is a plurality of conductive fillers 44 </ b> A mixed in the adhesive layer 44.
誘電体層45の内部には、少なくとも第2導体42と導通する接続部材43が設けられてもよい。この接続部材43は、図23に示すように一部または全部の島状導体41と導通してもよい。図23に示す接続部材43は、全部の島状導体41と導通している。
In the dielectric layer 45, a connection member 43 that conducts at least the second conductor 42 may be provided. The connecting member 43 may be electrically connected to some or all of the island-shaped conductors 41 as shown in FIG. The connection member 43 shown in FIG. 23 is electrically connected to all the island-like conductors 41.
なお、接続部材43の構成は図23に示すものに限定されず、例えば、図8A、8C、10A、10C、12Aに示すような構成にすることができる。これらの図に示す接続部材43については、実施形態1において説明したので、ここでの説明は省略する。
Note that the configuration of the connection member 43 is not limited to that shown in FIG. 23, and for example, it can be configured as shown in FIGS. 8A, 8C, 10A, 10C, and 12A. Since the connection member 43 shown in these drawings has been described in the first embodiment, the description thereof is omitted here.
また、接続部材43を設けるかわりに、複数の島状導体41の一部または全部には、図15の拡大斜視図に示すように、開口41Bが設けられ、開口41Bの中には、一端が島状導体41に接続している配線41Aが設けられてもよい。または、複数の島状導体41の一部または全部には、図19の拡大斜視図に示すように、開口41Bが設けられ、一部または全部の開口41Bの中には、第2の島状導体41C、および、島状導体41と第2の島状導体41Cを接続する配線41Aが設けられていてもよい。
Further, instead of providing the connection member 43, some or all of the plurality of island-like conductors 41 are provided with an opening 41B as shown in the enlarged perspective view of FIG. A wiring 41 </ b> A connected to the island-shaped conductor 41 may be provided. Alternatively, some or all of the plurality of island-shaped conductors 41 are provided with openings 41B, as shown in the enlarged perspective view of FIG. 19, and the second island-like shape is formed in some or all of the openings 41B. The conductor 41C and the wiring 41A that connects the island-shaped conductor 41 and the second island-shaped conductor 41C may be provided.
ここで、本実施形態の電子機器は、実施形態1で説明した電子機器の製造方法に準じて製造することができる。よって、ここでの製造方法の詳細な説明は省略する。
Here, the electronic device of the present embodiment can be manufactured according to the method of manufacturing the electronic device described in the first embodiment. Therefore, detailed description of the manufacturing method here is omitted.
次に、本実施形態の作用効果について説明する。
本実施形態の構造体40は、第1導体と第2導体42とを構成の一部または全部とする少なくとも1種のEBG構造を有するEBG構造体を備える。そして、放熱板30の第1の面32に取り付けられた状態において、第2導体42と放熱板30の第1の面32との間に位置する複数の導電性フィラー44Aを混入された接着層44により、第2導体42と放熱板30の第1の面32とが導通する。すなわち、放熱板30の第1の面32と、構造体40が備えるEBG構造体とが導通する。 Next, the effect of this embodiment is demonstrated.
Thestructure 40 of the present embodiment includes an EBG structure having at least one type of EBG structure in which the first conductor and the second conductor 42 are part or all of the components. And in the state attached to the 1st surface 32 of the heat sink 30, the adhesive layer in which the some conductive filler 44A located between the 2nd conductor 42 and the 1st surface 32 of the heat sink 30 was mixed. Due to 44, the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected. That is, the first surface 32 of the heat sink 30 and the EBG structure included in the structure 40 are electrically connected.
本実施形態の構造体40は、第1導体と第2導体42とを構成の一部または全部とする少なくとも1種のEBG構造を有するEBG構造体を備える。そして、放熱板30の第1の面32に取り付けられた状態において、第2導体42と放熱板30の第1の面32との間に位置する複数の導電性フィラー44Aを混入された接着層44により、第2導体42と放熱板30の第1の面32とが導通する。すなわち、放熱板30の第1の面32と、構造体40が備えるEBG構造体とが導通する。 Next, the effect of this embodiment is demonstrated.
The
本実施形態の電子機器によれば、放熱板30(図23参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to the electronic apparatus of the present embodiment, it is possible to suppress the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 23). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、本実施形態の電子機器は、構造体40の接着層44に混入された複数の導電性フィラー44Aにより、第2導体42と放熱板30の第1の面32との導通をとるので、比較的安定した導通の確保を実現することができる。
<<実施形態2-2>> In the electronic device of the present embodiment, thesecond conductor 42 and the first surface 32 of the heat sink 30 are electrically connected by the plurality of conductive fillers 44A mixed in the adhesive layer 44 of the structure 40. A relatively stable conduction can be ensured.
<< Embodiment 2-2 >>
<<実施形態2-2>> In the electronic device of the present embodiment, the
<< Embodiment 2-2 >>
図24は、本実施形態の電子機器を模式的に示した断面図である。本実施形態の電子機器は、実施形態2-1の電子機器(図23参照)を基本とし、接着層44に設けられる導通部材の構成が異なる。他の構成については、実施形態2-1の電子機器と同様であるので、ここでの説明は省略する。
FIG. 24 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment. The electronic device of the present embodiment is based on the electronic device of Embodiment 2-1 (see FIG. 23), and the configuration of the conductive member provided in the adhesive layer 44 is different. Other configurations are the same as those of the electronic device of Embodiment 2-1, and thus description thereof is omitted here.
本実施形態の接着層44に設けられる導通部材は、図24に示すように、接着層44内に設けられたビア44Bである。ビア44Bは、接続部材43と一体となっていてもよい。ビア44Bは、例えば銅、アルミニウム、ステンレス等の金属で構成することができ、接着層44を貫通している。このため、ビア44Bにより、第2導体42と放熱板30の第1の面32とが導通する。すなわち、放熱板30の第1の面32と、構造体40に備えられたEBG構造体とが導通する。
The conductive member provided in the adhesive layer 44 of the present embodiment is a via 44B provided in the adhesive layer 44 as shown in FIG. The via 44 </ b> B may be integrated with the connection member 43. The via 44 </ b> B can be made of metal such as copper, aluminum, and stainless steel, and penetrates the adhesive layer 44. For this reason, the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected by the via 44B. That is, the first surface 32 of the heat sink 30 and the EBG structure provided in the structure 40 are electrically connected.
ここで、本実施形態の電子機器の製造方法は、実施形態1で説明した電子機器の製造方法を基本とし、さらに、構造体40の製造工程の中に、以下で説明するビア44Bの製造工程を付与することで実現することができる。
Here, the manufacturing method of the electronic device of the present embodiment is based on the manufacturing method of the electronic device described in the first embodiment, and further, the manufacturing process of the via 44B described below in the manufacturing process of the structure 40. It can be realized by giving.
実施形態1-1乃至1-4の構造体40を基本とする実施形態2-2の構造体40の場合は、例えば、図24に示す島状導体41及び誘電体層45及び第2導体42を積層した構造体を形成後、島状導体41及び誘電体層45及び第2導体42を貫通する穴をドリルにより形成する。そして、この穴に、接続部材43およびビア44Bとなる、銅、アルミニウム、ステンレス等の金属で構成された貫通ピンを挿入する。
In the case of the structure 40 of the embodiment 2-2 based on the structure 40 of the embodiments 1-1 to 1-4, for example, the island-shaped conductor 41, the dielectric layer 45, and the second conductor 42 shown in FIG. After forming the structure in which the layers are stacked, a hole penetrating the island-like conductor 41, the dielectric layer 45, and the second conductor 42 is formed by a drill. And the penetration pin comprised with metals, such as copper, aluminum, and stainless steel used as the connection member 43 and the via | veer 44B, is inserted in this hole.
実施形態1-5および1-6の構造体40、すなわち接続部材43を有さない構造体40を基本とする実施形態2-2の構造体40の場合は、例えば、誘電体層45(図24参照)の一つの面に、第2導体42を所望の厚さよりも厚めに形成し、その後、第2導体42の表面に、フォトリソグラフィおよびエッチングにより、ビア44B(凸形状)が構成されたパターンを形成する。
In the case of the structure 40 of the embodiment 2-2 based on the structure 40 of the embodiments 1-5 and 1-6, that is, the structure 40 having no connection member 43, for example, the dielectric layer 45 (see FIG. 24)), the vias 44B (convex shape) were formed on the surface of the second conductor 42 by photolithography and etching. Form a pattern.
本実施形態の電子機器によれば、放熱板30(図24参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
<<実施形態2-3>> According to the electronic device of this embodiment, it is possible to suppress the propagation of noise on the surface of thefirst surface 32 of the heat sink 30 (see FIG. 24). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
<< Embodiment 2-3 >>
<<実施形態2-3>> According to the electronic device of this embodiment, it is possible to suppress the propagation of noise on the surface of the
<< Embodiment 2-3 >>
本実施形態の電子機器は、実施形態2-1または2-2の電子機器(図23、24参照)を基本とし、構造体40が接着層44を有さない点で異なる。他の構成については、実施形態2-1または2-2の電子機器と同様であるので、ここでの説明は省略する。
The electronic device of the present embodiment is different from the electronic device of Embodiment 2-1 or 2-2 (see FIGS. 23 and 24) in that the structure 40 does not have the adhesive layer 44. Other configurations are the same as those of the electronic device of the embodiment 2-1 or 2-2, and thus the description thereof is omitted here.
接着層44を有さない本実施形態の構造体40は、例えば、接着手段(接着剤など)を備えたテープ、糊、押しピン等の部材を用いて、第2導体42が放熱板30の第1の面32に接するように、放熱板30に取り付けられる。この構成によれば、構造体40の第2導体42と放熱板30の第1の面32とが導通する。すなわち、放熱板30の第1の面32と、構造体40に備えられたEBG構造体とが導通する。
The structure 40 of the present embodiment that does not have the adhesive layer 44 includes, for example, a member such as a tape, glue, or push pin provided with an adhesive means (adhesive or the like), and the second conductor 42 is the heat sink 30. It attaches to the heat sink 30 so that the 1st surface 32 may be touched. According to this configuration, the second conductor 42 of the structure 40 and the first surface 32 of the heat sink 30 are electrically connected. That is, the first surface 32 of the heat sink 30 and the EBG structure provided in the structure 40 are electrically connected.
本実施形態の電子機器によれば、放熱板30の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
<<実施形態2-4>> According to the electronic device of the present embodiment, noise propagation on the surface of thefirst surface 32 of the heat sink 30 can be suppressed. Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
<< Embodiment 2-4 >>
<<実施形態2-4>> According to the electronic device of the present embodiment, noise propagation on the surface of the
<< Embodiment 2-4 >>
図25は、本実施形態の電子機器を模式的に示した断面図である。本実施形態の電子機器は、実施形態2-1の電子機器(図23参照)を基本とし、第2導体42は、複数の導電性フィラー44Aを混入された接着層44である点で異なる。他の構成については、実施形態2-1の電子機器と同様であるので、ここでの説明は省略する。
FIG. 25 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment. The electronic device of the present embodiment is based on the electronic device of Embodiment 2-1 (see FIG. 23), and the second conductor 42 is different in that it is an adhesive layer 44 mixed with a plurality of conductive fillers 44A. Other configurations are the same as those of the electronic device of Embodiment 2-1, and thus description thereof is omitted here.
この構成によれば、構造体40が放熱板30の第1の面32に取り付けられた状態において、第2導体42と放熱板30の第1の面32とが導通する。すなわち、放熱板30の第1の面32と、構造体40に備えられたEBG構造体とが導通する。
According to this configuration, the second conductor 42 and the first surface 32 of the heat radiating plate 30 are electrically connected in a state where the structure 40 is attached to the first surface 32 of the heat radiating plate 30. That is, the first surface 32 of the heat sink 30 and the EBG structure provided in the structure 40 are electrically connected.
本実施形態の電子機器は、実施形態1で説明した電子機器の製造方法に準じて製造することができる。よって、ここでの詳細な説明は省略する。
The electronic device of the present embodiment can be manufactured according to the method for manufacturing the electronic device described in the first embodiment. Therefore, detailed description here is omitted.
本実施形態の電子機器によれば、放熱板30(図25参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to the electronic device of this embodiment, it is possible to suppress the propagation of noise on the surface of the first surface 32 of the heat sink 30 (see FIG. 25). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、複数の導電性フィラーを混入された接着層44が第2導体42を構成しているので、製造工程を減らすことができるほか、原料コストを抑えることが可能となる。
<<実施形態2-5>> In addition, since theadhesive layer 44 mixed with a plurality of conductive fillers constitutes the second conductor 42, the manufacturing process can be reduced and the raw material cost can be reduced.
<< Embodiment 2-5 >>
<<実施形態2-5>> In addition, since the
<< Embodiment 2-5 >>
図26は、本実施形態の電子機器を模式的に示した断面図である。本実施形態の電子機器は、実施形態2-2の電子機器(図24参照)を基本とし、以下の点で異なる。すなわち、「実施形態2-2の電子機器の構造体40は接続部材43を設けてもよいし設けなくてもよいが、実施形態2-5の電子機器の構造体40は接続部材43を設けない点」、および、「接着層44に設けられるビア44Bの構成、および、第2導体42の形状が異なる点」で相違する。
FIG. 26 is a cross-sectional view schematically showing the electronic apparatus of the present embodiment. The electronic device of the present embodiment is based on the electronic device of Embodiment 2-2 (see FIG. 24), and differs in the following points. That is, “the electronic device structure 40 of the embodiment 2-2 may or may not be provided with the connection member 43, but the electronic device structure 40 of the embodiment 2-5 is provided with the connection member 43. No difference ”and“ the configuration of the via 44B provided in the adhesive layer 44 and the shape of the second conductor 42 are different ”.
図27に、第2導体42の平面形状の一例を模式的に示す。第2導体42は開口42Bを有する。この開口42Bは、周期性をもって配列されている複数の島状導体41のそれぞれと対向する位置に設けられる。また、この開口42Bの中には、一端が第2導体42と接続している配線42Aが設けられる。
FIG. 27 schematically shows an example of the planar shape of the second conductor 42. The second conductor 42 has an opening 42B. The opening 42B is provided at a position facing each of the plurality of island-shaped conductors 41 arranged with periodicity. Further, in the opening 42B, a wiring 42A having one end connected to the second conductor 42 is provided.
図28に、第2導体42の平面形状の他の一例を模式的に示す。第2導体42は開口42Bを有する。この開口42Bは、島状導体41と対向する位置に設けられる。また、この開口42Bの中には、第2の島状導体42C、および、第2導体42と第2の島状導体42Cとを接続する配線42Aが設けられる。
FIG. 28 schematically shows another example of the planar shape of the second conductor 42. The second conductor 42 has an opening 42B. The opening 42 </ b> B is provided at a position facing the island-shaped conductor 41. The opening 42B is provided with a second island-shaped conductor 42C and a wiring 42A that connects the second conductor 42 and the second island-shaped conductor 42C.
ここで、実施形態2-5の電子機器の製造方法は、実施形態1で説明した電子機器の製造方法を基本とし、さらに、以下で説明するビア44Bの製造工程および第2導体42の製造工程を付与することで実現することができる。例えば、誘電体層45(図26参照)の一つの面に、第2導体42となる導体膜を所望の厚さよりも厚めに形成し、その後、この導体膜の表面に、フォトリソグラフィおよびエッチングにより、ビア44Bが構成されたパターンを形成する。その後、ビア44Bをマスクで覆った状態で、フォトリソグラフィおよびエッチングにより、図27または図28に示すようなパターン(第2導体42)を形成する。
Here, the manufacturing method of the electronic device of the embodiment 2-5 is based on the manufacturing method of the electronic device described in the first embodiment, and further, the manufacturing process of the via 44B and the manufacturing process of the second conductor 42 described below. It can be realized by giving. For example, a conductor film to be the second conductor 42 is formed on one surface of the dielectric layer 45 (see FIG. 26) to be thicker than a desired thickness, and then the surface of the conductor film is formed by photolithography and etching. The pattern in which the via 44B is formed is formed. Thereafter, with the via 44B covered with a mask, a pattern (second conductor 42) as shown in FIG. 27 or FIG. 28 is formed by photolithography and etching.
次に、上述のような第2導体42と複数の島状導体41とからなるEBG構造体を模式的に示した斜視図を図29、30に示す。なお、図29のEBG構造体が有するEBG構造の等価回路図は、図16のEBG構造体が有するEBG構造の等価回路図(図18参照)において、キャパシタンスC、インダクタンスLの位置を適当な位置に変更したものである。また、図30のEBG構造の等価回路図は、図20のEBG構造の等価回路図(図21参照)において、キャパシタンスC、インダクタンスLの位置を適当な位置に変更したものである。よって、図29、30に示すEBG構造体についての詳細な説明は省略する。
Next, perspective views schematically showing an EBG structure composed of the second conductor 42 and the plurality of island-shaped conductors 41 as described above are shown in FIGS. The equivalent circuit diagram of the EBG structure included in the EBG structure in FIG. 29 is the same as the equivalent circuit diagram of the EBG structure included in the EBG structure in FIG. 16 (see FIG. 18). It has been changed to. Further, the equivalent circuit diagram of the EBG structure in FIG. 30 is obtained by changing the positions of the capacitance C and the inductance L to appropriate positions in the equivalent circuit diagram of the EBG structure in FIG. 20 (see FIG. 21). Therefore, detailed description of the EBG structure shown in FIGS. 29 and 30 is omitted.
次に、ビア44Bの構成について説明する。本実施形態において、第2導体42の形状は、上述のように、開口42Bを有し、また、開口42Bの中に、配線42A、または、配線42Aおよび第2の島状導体42Cを有する。これらの電気的関係を維持するため、接着層44は導電性を有さない接着剤で構成される。そして、この接着層44の中に設けられるビア44Bの位置は、第2導体42のみと接する位置にするのが望ましい。
Next, the configuration of the via 44B will be described. In the present embodiment, the shape of the second conductor 42 has the opening 42B as described above, and has the wiring 42A or the wiring 42A and the second island-shaped conductor 42C in the opening 42B. In order to maintain these electrical relationships, the adhesive layer 44 is composed of an adhesive having no electrical conductivity. The position of the via 44 </ b> B provided in the adhesive layer 44 is preferably a position in contact with only the second conductor 42.
本実施形態の電子機器は、接着層44を貫通しているビア44Bにより、第2導体42と放熱板30の第1の面32とが導通する。すなわち、放熱板30の第1の面32と、構造体40に備えられたEBG構造体とが導通する。
In the electronic device of this embodiment, the second conductor 42 and the first surface 32 of the heat sink 30 are electrically connected by the via 44 </ b> B penetrating the adhesive layer 44. That is, the first surface 32 of the heat sink 30 and the EBG structure provided in the structure 40 are electrically connected.
本実施形態の電子機器によれば、放熱板30(図26参照)の第1の面32の表面におけるノイズの伝播を抑制できる。また、隣り合う島状導体41どうしがキャパシタンスを構成することで、EBG構造体付近におけるノイズの伝播を抑制できる。すなわち、図1に示す基板10と放熱板30とに挟まれる空間内の、構造体40付近におけるノイズの伝播を抑制できる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
<実施形態3> According to the electronic apparatus of this embodiment, it is possible to suppress the propagation of noise on the surface of thefirst surface 32 of the heat sink 30 (see FIG. 26). Moreover, the propagation of noise in the vicinity of the EBG structure can be suppressed because adjacent island-shaped conductors 41 constitute a capacitance. That is, the propagation of noise in the vicinity of the structure 40 in the space between the substrate 10 and the heat sink 30 shown in FIG. 1 can be suppressed. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
<Embodiment 3>
<実施形態3> According to the electronic apparatus of this embodiment, it is possible to suppress the propagation of noise on the surface of the
<
本実施形態の電子機器は、実施形態1または2を基本とし、以下の点で相違する。
The electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
図31に、本実施形態の電子機器の基板と電子部品とスペーサとを除いた構造を、図中下から上に向かって見た平面図の一例を示す。図31に示すように、本実施形態の放熱板30の第1の面32は、長さpの辺と長さqの辺(p≧q)とで構成される矩形である。また、放熱板30の第1の面32の少なくとも一部領域には、スペーサ(または電子部品)と接する領域31内から長さpの辺と平行な方向に伸びる直線と交わるように構造体40が設けられている。すなわち、EBG構造体が設けられている。そして、このEBG構造体が備えるEBG構造は、波長2pの電磁波をバンドギャップ帯域に含んでいる。
FIG. 31 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the drawing. As shown in FIG. 31, the first surface 32 of the heat dissipation plate 30 of the present embodiment is a rectangle composed of a side having a length p and a side having a length q (p ≧ q). Further, at least a partial region of the first surface 32 of the heat sink 30 intersects with a straight line extending in a direction parallel to the side of the length p from the region 31 in contact with the spacer (or the electronic component). Is provided. That is, an EBG structure is provided. The EBG structure included in the EBG structure includes an electromagnetic wave having a wavelength of 2p in the band gap band.
このような電子機器によれば、電子部品から領域31を介して放熱板30に伝わったノイズが、矩形の放熱板30の長手方向に伝播するのを、EBG構造体により抑制することが可能となる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to such an electronic device, the noise transmitted from the electronic component to the heat sink 30 via the region 31 can be suppressed by the EBG structure from propagating in the longitudinal direction of the rectangular heat sink 30. Become. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
ここで、ノイズの半波長およびその整数倍と、放熱板30の一辺の長さと、が略同一になると、ノイズと放熱板30とが共振状態となり、極めて強いノイズが放射されることが知られている。これに対し、本実施形態の電子機器は、EBG構造体により、共振状態となりうるノイズ(波長2pの電磁波)の伝播を抑制するよう構成されている。
Here, it is known that when the half-wavelength of noise and its integral multiple and the length of one side of the heat radiating plate 30 are substantially the same, the noise and the heat radiating plate 30 are in a resonance state, and extremely strong noise is emitted. ing. On the other hand, the electronic device of the present embodiment is configured to suppress propagation of noise (electromagnetic wave having a wavelength of 2p) that can be in a resonance state by the EBG structure.
その結果、ノイズと放熱板30とが共振状態となった場合であっても、放熱板30から極めて強いノイズが放射されるのを抑制することが可能となる。
As a result, even when the noise and the heat sink 30 are in a resonance state, it is possible to suppress the emission of extremely strong noise from the heat sink 30.
なお、図31に示した構造体40の位置、すなわちEBG構造体を設ける位置はあくまで一例であり、上記条件を満たせば、その他、例えば図32に示すような放熱板30の第1の面32の端部に設けてもよい。
Note that the position of the structure 40 shown in FIG. 31, that is, the position where the EBG structure is provided is merely an example. If the above condition is satisfied, for example, the first surface 32 of the heat sink 30 as shown in FIG. You may provide in the edge part.
ここで、波長2pの電磁波をバンドギャップ帯域に含むEBG構造体を構成する手段の例を説明する。例えば、図6に示すEBG構造体の場合、隣り合う二つの島状導体1と、各島状導体1それぞれに接続した二つの接続部材3と、この島状導体1と対向するシート状導体2とで構成されるEBG構造は、図33Aに示す等価回路図で示すことができる。このような等価回路図で示されるEBG構造のバンドギャップ帯域fは図33Bに示す式により算出することができる。この式に従い、EBG構造を構成するキャパシタンスCおよび/またはインダクタンスLを適当に調節することで、所望のf値を設定することができる。さらに具体的には、例えば隣り合う島状導体1間の距離を変更したり、島状導体1の大きさを変更したり、接続部材3の長さを変更したりすることで、キャパシタンスCおよび/またはインダクタンスLを適当に調節し、所望のf値を設定することができる。なお、その他のEBG構造を有するEBG構造体の場合も同様に、それぞれのEBG構造により定まるバンドギャップ帯域fを算出するための式に基づき、キャパシタンスCおよび/またはインダクタンスLを適当に調節することで、所望のf値を設定することができる。
<実施形態4> Here, an example of means for forming an EBG structure including an electromagnetic wave having a wavelength of 2p in the band gap band will be described. For example, in the case of the EBG structure shown in FIG. 6, two adjacent island-shapedconductors 1, two connecting members 3 connected to each of the island-shaped conductors 1, and a sheet-shaped conductor 2 facing the island-shaped conductor 1. The EBG structure constituted by can be shown by an equivalent circuit diagram shown in FIG. 33A. The band gap band f of the EBG structure shown in such an equivalent circuit diagram can be calculated by the equation shown in FIG. 33B. A desired f value can be set by appropriately adjusting the capacitance C and / or the inductance L constituting the EBG structure according to this equation. More specifically, for example, by changing the distance between the adjacent island-shaped conductors 1, changing the size of the island-shaped conductor 1, or changing the length of the connection member 3, the capacitance C and It is possible to set the desired f value by adjusting the inductance L appropriately. Similarly, in the case of an EBG structure having another EBG structure, the capacitance C and / or the inductance L can be appropriately adjusted based on the formula for calculating the band gap band f determined by each EBG structure. , A desired f value can be set.
<Embodiment 4>
<実施形態4> Here, an example of means for forming an EBG structure including an electromagnetic wave having a wavelength of 2p in the band gap band will be described. For example, in the case of the EBG structure shown in FIG. 6, two adjacent island-shaped
<
本実施形態の電子機器は、実施形態1または2を基本とし、以下の点で相違する。
The electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
図34に、本実施形態の電子機器の基板と電子部品とスペーサとを除いた構造を、図中下から上に向かって見た平面図の一例を示す。図34に示すように、本実施形態の放熱板30の第1の面32は、長さpの辺と長さqの辺(p≧q)とで構成される矩形である。また、放熱板30の第1の面32の少なくとも一部領域には、スペーサ(または電子部品)と接する領域31内から長さqの辺と平行な方向に伸びる直線と交わるように構造体40が設けられている。すなわち、EBG構造体が設けられている。そして、このEBG構造体が備えるEBG構造は、波長2qの電磁波をバンドギャップ帯域に含んでいる。
FIG. 34 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the drawing. As shown in FIG. 34, the first surface 32 of the heat dissipation plate 30 of the present embodiment is a rectangle composed of a side having a length p and a side having a length q (p ≧ q). Further, at least a partial region of the first surface 32 of the heat sink 30 intersects with a straight line extending in a direction parallel to the side of the length q from the region 31 in contact with the spacer (or electronic component). Is provided. That is, an EBG structure is provided. The EBG structure included in this EBG structure includes an electromagnetic wave having a wavelength of 2q in the band gap band.
このような電子機器によれば、電子部品から領域31を介して放熱板30に伝わったノイズが、矩形の放熱板30の短手方向に伝播するのを、EBG構造体により抑制することが可能となる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to such an electronic device, it is possible to suppress the noise transmitted from the electronic component to the heat sink 30 via the region 31 from being propagated in the short direction of the rectangular heat sink 30 by the EBG structure. It becomes. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、ノイズの半波長およびその整数倍と、放熱板30の一辺の長さと、が略同一になると、ノイズと放熱板30とが共振状態となり、極めて強いノイズが放射されることが知られているが、本実施形態の電子機器は、EBG構造体により、共振状態となりうるノイズ(波長2qの電磁波)の伝播を抑制するよう構成されている。
Further, it is known that when the half-wavelength of noise and its integral multiple and the length of one side of the heat sink 30 are substantially the same, the noise and the heat sink 30 are in a resonance state, and extremely strong noise is emitted. However, the electronic device of the present embodiment is configured to suppress propagation of noise (electromagnetic wave having a wavelength of 2q) that can be in a resonance state by the EBG structure.
その結果、ノイズと放熱板30とが共振状態となった場合であっても、放熱板30から極めて強いノイズが放射されるのを抑制することが可能となる。
As a result, even when the noise and the heat sink 30 are in a resonance state, it is possible to suppress the emission of extremely strong noise from the heat sink 30.
なお、波長2qの電磁波をバンドギャップ帯域に含むEBG構造体を構成する手段は、実施形態3で説明した手段に準じて実現できるので、ここでの説明は省略する。
<実施形態5> In addition, since the means which comprises the EBG structure which contains the electromagnetic wave of wavelength 2q in a band gap band is realizable according to the means demonstrated inEmbodiment 3, description here is abbreviate | omitted.
<Embodiment 5>
<実施形態5> In addition, since the means which comprises the EBG structure which contains the electromagnetic wave of wavelength 2q in a band gap band is realizable according to the means demonstrated in
<
本実施形態の電子機器は、実施形態1または2を基本とし、以下の点で相違する。
The electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
図35に、本実施形態の電子機器の基板と電子部品とスペーサとを除いた構造を、図中下から上に向かって見た平面図の一例を示す。図35に示すように、本実施形態の放熱板30の第1の面32は、長さaの辺と長さbの辺(a>b)とで構成される矩形である。また、放熱板30の第1の面32の少なくとも一部領域には、スペーサ(または電子部品)と接する領域31内から長さaの辺と平行な方向に伸びる直線と交わるように第1の構造体40Aが設けられている。すなわち、第1のEBG構造体が設けられている。この第1のEBG構造体が備えるEBG構造は、波長2aの電磁波をバンドギャップ帯域に含んでいる。さらに、放熱板30の第1の面32の少なくとも一部領域には、スペーサ(または電子部品)と接する領域31内から長さbの辺と平行な方向に伸びる直線と交わるように第2の構造体40Bが設けられている。すなわち、第2のEBG構造体が設けられている。この第2のEBG構造体が備えるEBG構造は、波長2bの電磁波をバンドギャップ帯域に含んでいる。
FIG. 35 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the drawing. As shown in FIG. 35, the first surface 32 of the heat sink 30 of the present embodiment is a rectangle composed of a side with a length a and a side with a length b (a> b). In addition, at least a partial region of the first surface 32 of the heat sink 30 intersects with a straight line extending in a direction parallel to the side of the length a from the region 31 in contact with the spacer (or electronic component). A structure 40A is provided. That is, a first EBG structure is provided. The EBG structure included in the first EBG structure includes an electromagnetic wave having a wavelength of 2a in the band gap band. Further, at least a partial region of the first surface 32 of the heat sink 30 has a second line so as to intersect with a straight line extending in a direction parallel to the side of the length b from the region 31 in contact with the spacer (or the electronic component). A structure 40B is provided. That is, a second EBG structure is provided. The EBG structure included in the second EBG structure includes an electromagnetic wave having a wavelength of 2b in the band gap band.
このような電子機器によれば、電子部品から領域31を介して放熱板30に伝わったノイズが、矩形の放熱板30の辺方向に伝播するのを、EBG構造体により抑制することが可能となる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to such an electronic device, the noise transmitted from the electronic component to the heat sink 30 via the region 31 can be suppressed by the EBG structure from propagating in the side direction of the rectangular heat sink 30. Become. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、ノイズの半波長およびその整数倍と、放熱板30の一辺の長さと、が略同一になると、ノイズと放熱板30とが共振状態となり、極めて強いノイズが放射されることが知られているが、本実施形態の電子機器は、EBG構造体により、共振状態となりうるノイズ(波長2aの電磁波および波長2bの電磁波)の伝播を抑制するよう構成されている。
Further, it is known that when the half-wavelength of noise and its integral multiple and the length of one side of the heat sink 30 are substantially the same, the noise and the heat sink 30 are in a resonance state, and extremely strong noise is emitted. However, the electronic device of the present embodiment is configured to suppress propagation of noise (electromagnetic wave having a wavelength of 2a and electromagnetic wave having a wavelength of 2b) that can be in a resonance state by the EBG structure.
その結果、ノイズと放熱板30とが共振状態となった場合であっても、放熱板30から極めて強いノイズが放射されるのを抑制することが可能となる。
As a result, even when the noise and the heat sink 30 are in a resonance state, it is possible to suppress the emission of extremely strong noise from the heat sink 30.
なお、波長2aの電磁波をバンドギャップ帯域に含むEBG構造、および、波長2bの電磁波をバンドギャップ帯域に含むEBG構造を構成する手段は、実施形態3で説明した手段に準じて実現できるので、ここでの説明は省略する。
<実施形態6> The means for constructing the EBG structure including the electromagnetic wave of wavelength 2a in the band gap band and the EBG structure including the electromagnetic wave of wavelength 2b in the band gap band can be realized according to the means described in the third embodiment. The description in is omitted.
<Embodiment 6>
<実施形態6> The means for constructing the EBG structure including the electromagnetic wave of wavelength 2a in the band gap band and the EBG structure including the electromagnetic wave of wavelength 2b in the band gap band can be realized according to the means described in the third embodiment. The description in is omitted.
<
本実施形態の電子機器は、実施形態1または2を基本とし、以下の点で相違する。
The electronic device of the present embodiment is based on the first or second embodiment and differs in the following points.
図36に、本実施形態の電子機器の基板と電子部品とスペーサとを除いた構造を、図中下から上に向かって見た平面図の一例を示す。図36に示すように、本実施形態の放熱板30の第1の面32は、長さaの辺と長さbの辺(a>b)とで構成される矩形である。また、放熱板30の第1の面32の少なくとも一部領域には、スペーサ(または電子部品)と接する領域31内から長さaの辺または長さbの辺と平行な方向に伸びる直線と交わるように構造体40が設けられている。すなわち、EBG構造体が設けられている。
FIG. 36 shows an example of a plan view of the structure of the electronic device according to the present embodiment excluding the substrate, the electronic component, and the spacer as viewed from the bottom to the top in the figure. As shown in FIG. 36, the first surface 32 of the heat sink 30 of the present embodiment is a rectangle composed of a side with a length a and a side with a length b (a> b). Further, at least a partial region of the first surface 32 of the heat sink 30 includes a straight line extending in a direction parallel to the side of the length a or the side of the length b from the region 31 in contact with the spacer (or electronic component). A structure 40 is provided so as to intersect. That is, an EBG structure is provided.
このEBG構造体は、少なくとも2種類のEBG構造を備える。種類が異なるEBG構造とは、等価回路および/またはバンドギャップ帯が異なるEBG構造を意味する。そして、各種EBG構造の単位セルは周期的に配列されている。例えば、図37に示すように、第1のEBG構造の単位セルと第2のEBG構造の単位セルとが交互に配列されることで、市松模様を構成してもよい。または、図38に示すように、第1のEBG構造の単位セルが周期的に配列した領域と、第2のEBG構造の単位セルが周期的に配列した領域と、が並列的に配列されてもよい。かかる場合、図38に示すように、さらに、第3のEBG構造の単位セルが周期的に配列した領域が、並列的に配列していてもよい。また、さらに、第4のEBG構造の単位セルが周期的に配列した領域が、並列的に配列していてもよい(図示せず)。この第1のEBG構造は、波長2aの電磁波をバンドギャップ帯域に含んでいる。第2のEBG構造は、波長2bの電磁波をバンドギャップに含んでいる。第3のEBG構造および第4のEBG構造は、波長2aの整数倍または波長2bの整数倍の電磁波をバンドギャップに含んでもよい。
This EBG structure has at least two types of EBG structures. Different types of EBG structures mean EBG structures with different equivalent circuits and / or different band gap bands. And the unit cells of various EBG structures are arranged periodically. For example, as shown in FIG. 37, a checkerboard pattern may be formed by alternately arranging unit cells having a first EBG structure and unit cells having a second EBG structure. Alternatively, as shown in FIG. 38, a region in which unit cells of the first EBG structure are periodically arranged and a region in which unit cells of the second EBG structure are periodically arranged are arranged in parallel. Also good. In such a case, as shown in FIG. 38, regions in which unit cells of the third EBG structure are periodically arranged may be arranged in parallel. Furthermore, the region where the unit cells of the fourth EBG structure are periodically arranged may be arranged in parallel (not shown). The first EBG structure includes an electromagnetic wave having a wavelength of 2a in the band gap band. The second EBG structure includes an electromagnetic wave having a wavelength of 2b in the band gap. The third EBG structure and the fourth EBG structure may include an electromagnetic wave having an integral multiple of the wavelength 2a or an integral multiple of the wavelength 2b in the band gap.
このような電子機器によれば、電子部品から領域31を介して放熱板30に伝わったノイズが、矩形の放熱板30の辺方向に伝播するのを、EBG構造体により抑制することが可能となる。その結果、放熱板30に伝わったノイズが周辺に放射され、例えば周辺電子機器の正常な動作の妨げになる等の悪影響が引き起こされるのを回避できる。
According to such an electronic device, the noise transmitted from the electronic component to the heat sink 30 via the region 31 can be suppressed by the EBG structure from propagating in the side direction of the rectangular heat sink 30. Become. As a result, noise transmitted to the heat radiating plate 30 is radiated to the periphery, and it is possible to avoid adverse effects such as hindering normal operation of peripheral electronic devices.
また、ノイズの半波長およびその整数倍と、放熱板30の一辺の長さと、が略同一になると、ノイズと放熱板30とが共振状態となり、極めて強いノイズが放射されることが知られているが、本実施形態の電子機器は、EBG構造体により、共振状態となりうるノイズ(波長2aの電磁波、および、波長2bの電磁波、および、波長が2a、2bの整数倍である電磁波)の伝播を抑制するよう構成されている。
Further, it is known that when the half-wavelength of noise and its integral multiple and the length of one side of the heat sink 30 are substantially the same, the noise and the heat sink 30 are in a resonance state, and extremely strong noise is emitted. However, in the electronic device of this embodiment, propagation of noise (electromagnetic wave having a wavelength of 2a, electromagnetic wave having a wavelength of 2b, and electromagnetic wave having a wavelength that is an integral multiple of 2a and 2b) is caused by the EBG structure. It is comprised so that it may suppress.
その結果、ノイズと放熱板30とが共振状態となった場合であっても、放熱板30から極めて強いノイズが放射されるのを抑制することが可能となる。
As a result, even when the noise and the heat sink 30 are in a resonance state, it is possible to suppress the emission of extremely strong noise from the heat sink 30.
さらに、本実施形態によれば、一種類の構造体40を用意するだけで、矩形の放熱板30の長手方向および短手方向の両方向のノイズの伝播、および共振状態となるノイズの伝播を抑制することができる。かかる場合、構造体40の在庫管理が容易になったり、製造工程の簡略化などの効果を実現することができる。
Furthermore, according to the present embodiment, it is possible to suppress the propagation of noise in both the longitudinal direction and the transverse direction of the rectangular heat radiating plate 30 and the propagation of noise that becomes a resonance state only by preparing one type of structure 40. can do. In such a case, inventory management of the structures 40 can be facilitated, and effects such as simplification of the manufacturing process can be realized.
なお、波長2aの電磁波をバンドギャップ帯域に含むEBG構造、および、波長2bの電磁波をバンドギャップ帯域に含むEBG構造を構成する手段は、実施形態3で説明した手段に準じて実現できるので、ここでの説明は省略する。
<実施例> The means for configuring the EBG structure including the electromagnetic wave of wavelength 2a in the band gap band and the EBG structure including the electromagnetic wave of wavelength 2b in the band gap band can be realized according to the means described in the third embodiment. The description in is omitted.
<Example>
<実施例> The means for configuring the EBG structure including the electromagnetic wave of wavelength 2a in the band gap band and the EBG structure including the electromagnetic wave of wavelength 2b in the band gap band can be realized according to the means described in the third embodiment. The description in is omitted.
<Example>
以下、本実施形態の電子機器のシミュレーション結果を示す。
<<サンプル>> Hereinafter, simulation results of the electronic apparatus of the present embodiment are shown.
<< Sample >>
<<サンプル>> Hereinafter, simulation results of the electronic apparatus of the present embodiment are shown.
<< Sample >>
図39にシミュレーションに用いたサンプルを示す。図39は、透過図となっている。
Fig. 39 shows the sample used for the simulation. FIG. 39 is a transmission diagram.
「サンプル1(図39(a))」
基板10の略中央にノイズ源となる信号パターン(電子部品20)を設けた2層基板構造。 "Sample 1 (Fig. 39 (a))"
A two-layer substrate structure in which a signal pattern (electronic component 20) serving as a noise source is provided in the approximate center of thesubstrate 10.
基板10の略中央にノイズ源となる信号パターン(電子部品20)を設けた2層基板構造。 "Sample 1 (Fig. 39 (a))"
A two-layer substrate structure in which a signal pattern (electronic component 20) serving as a noise source is provided in the approximate center of the
「サンプル2(図39(b))」
サンプル1の構造を基本とし、さらに、信号パターン(電子部品20)の上にスペーサ50を介して放熱板30を設けた構造。放熱板30の寸法は、150mm×30mm。 "Sample 2 (Fig. 39 (b))"
A structure in which theheat sink 30 is provided on the signal pattern (electronic component 20) via the spacer 50 based on the structure of the sample 1. The size of the heat sink 30 is 150 mm × 30 mm.
サンプル1の構造を基本とし、さらに、信号パターン(電子部品20)の上にスペーサ50を介して放熱板30を設けた構造。放熱板30の寸法は、150mm×30mm。 "Sample 2 (Fig. 39 (b))"
A structure in which the
「サンプル3(図39(c))」
サンプル2の構造を基本とし、放熱板30の電子部品20と対向する面に構造体40、すなわちEBG構造体を設けた構造。構造体40は、図23に示す構造で、単位セル(図中、直方体で示す)を4行×8列×2領域で配列。島状導体41(図23参照)は6mm角であり、2mmピッチで周期的に配列。このEBG構造体は、伝播を抑制する周波数帯域fが「1GHz」付近に設定(C=0.053pF、L=54.2nH)。この周波数は、放熱板30の長手方向の長さ(150mm)が半波長となる電磁波の周波数、すなわち波長300mmの電磁波の周波数に相当。 "Sample 3 (Fig. 39 (c))"
A structure in which thestructure 40, that is, an EBG structure is provided on the surface of the heat sink 30 facing the electronic component 20 based on the structure of the sample 2. The structure 40 has the structure shown in FIG. 23, and unit cells (indicated by a rectangular parallelepiped in the figure) are arranged in 4 rows × 8 columns × 2 regions. The island-shaped conductors 41 (see FIG. 23) are 6 mm square, and are periodically arranged at a pitch of 2 mm. In this EBG structure, the frequency band f for suppressing propagation is set near “1 GHz” (C = 0.053 pF, L = 54.2 nH). This frequency corresponds to the frequency of an electromagnetic wave in which the length (150 mm) in the longitudinal direction of the heat sink 30 is a half wavelength, that is, the frequency of an electromagnetic wave having a wavelength of 300 mm.
サンプル2の構造を基本とし、放熱板30の電子部品20と対向する面に構造体40、すなわちEBG構造体を設けた構造。構造体40は、図23に示す構造で、単位セル(図中、直方体で示す)を4行×8列×2領域で配列。島状導体41(図23参照)は6mm角であり、2mmピッチで周期的に配列。このEBG構造体は、伝播を抑制する周波数帯域fが「1GHz」付近に設定(C=0.053pF、L=54.2nH)。この周波数は、放熱板30の長手方向の長さ(150mm)が半波長となる電磁波の周波数、すなわち波長300mmの電磁波の周波数に相当。 "Sample 3 (Fig. 39 (c))"
A structure in which the
<<シミュレーション内容>>
<< Simulation contents >>
各サンプルの位置から3m離れた位置における電界強度を求めた。3m離れた位置は、典型的な住宅環境でのEMI規格限度値に規定された距離である。
<<結果>> The electric field strength at a position 3 m away from the position of each sample was determined. The position 3 m away is the distance specified by the EMI standard limit value in a typical residential environment.
<< Result >>
<<結果>> The electric field strength at a position 3 m away from the position of each sample was determined. The position 3 m away is the distance specified by the EMI standard limit value in a typical residential environment.
<< Result >>
シミュレーション結果を図40に示す。図40は、横軸に周波数(MHz)、縦軸に電界強度偏差(dB)をとったグラフである。電界強度偏差(dB)は、サンプル1の電界強度を0dBとして算出した。
The simulation results are shown in FIG. FIG. 40 is a graph in which the horizontal axis represents frequency (MHz) and the vertical axis represents electric field strength deviation (dB). The electric field strength deviation (dB) was calculated by setting the electric field strength of Sample 1 to 0 dB.
サンプル1乃至3を比較すると、サンプル1に比べて、サンプル2、3の電界が変動していることがわかる。これは、放熱板30を介して電磁波が放射されているためと考えられる。すなわち、放熱板30を設けると、電子機器周辺の電界が変動することがわかる。
When comparing Samples 1 to 3, it can be seen that the electric fields of Samples 2 and 3 are fluctuating compared to Sample 1. This is considered because electromagnetic waves are radiated through the heat sink 30. That is, when the heat sink 30 is provided, it can be seen that the electric field around the electronic device varies.
また、サンプル2と3を比較すると、サンプル3はサンプル2に比べて、広い周波数帯域において、周辺の電界強度が低減していることがわかる。すなわち、構造体40を放熱板30の電子部品20と対向する面に設けたサンプル3は、構造体40を備えないサンプル2に比べて、周辺への電磁波の放射を抑制されていることがわかる。
Also, comparing Samples 2 and 3, it can be seen that Sample 3 has a lower electric field strength in a wider frequency band than Sample 2. That is, it can be seen that the sample 3 provided with the structure 40 on the surface of the heat dissipation plate 30 facing the electronic component 20 is suppressed from radiating electromagnetic waves to the periphery as compared with the sample 2 not including the structure 40. .
さらに、1GHz付近(1GHz~1.2GHz付近)のサンプル2と3を比較すると、サンプル3はサンプル2に比べて、電界強度が大きく低減していることがわかる。具体的には、1.1GHzにおいて、電界強度が約18dB低減している。すなわち、サンプル2は、ノイズの半波長と、放熱板30の一辺の長さとが略同一になることで、ノイズと放熱板30とが共振状態となり、極めて強いノイズを放射している。これに対し、構造体40を放熱板30の電子部品20と対向する面に設けたサンプル3は、ノイズと放熱板30とが共振状態となっても、強いノイズの放射を抑制されていることがわかる。
Furthermore, comparing Samples 2 and 3 near 1 GHz (around 1 GHz to 1.2 GHz), it can be seen that the electric field strength of Sample 3 is greatly reduced compared to Sample 2. Specifically, the electric field strength is reduced by about 18 dB at 1.1 GHz. That is, in sample 2, the noise and the heat radiating plate 30 are in resonance because the half-wavelength of noise and the length of one side of the heat radiating plate 30 are substantially the same, and extremely strong noise is radiated. On the other hand, in the sample 3 in which the structure 40 is provided on the surface of the heat sink 30 facing the electronic component 20, strong noise emission is suppressed even when the noise and the heat sink 30 are in a resonance state. I understand.
この出願は、2009年12月8日に出願された日本特許出願特願2009-278872号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2009-278872 filed on Dec. 8, 2009, the entire disclosure of which is incorporated herein.
Claims (13)
- 基板と、
前記基板上に搭載される電子部品と、
前記電子部品上に直接またはスペーサを介して設けられた放熱板と、
を有し、
前記放熱板の前記電子部品と対向する側の第1の面には、
誘電体層と、
前記誘電体層の内部または第1の面上に、前記誘電体層の前記第1の面と反対側の面である第2の面と対向するように設けられ、少なくとも一部領域に繰り返し構造を有している第1導体と、
を備える少なくとも一種類の構造体が、前記誘電体層の前記第2の面において前記放熱板の前記第1の面と接するように設けられている電子機器。 A substrate,
Electronic components mounted on the substrate;
A heat sink provided directly or via a spacer on the electronic component;
Have
On the first surface of the heat radiating plate facing the electronic component,
A dielectric layer;
Provided inside or on the first surface of the dielectric layer so as to face the second surface, which is the surface opposite to the first surface of the dielectric layer, and has a repetitive structure in at least a partial region A first conductor having
At least one type of structural body is provided on the second surface of the dielectric layer so as to be in contact with the first surface of the heat sink. - 請求項1に記載の電子機器において、
前記構造体はシートとして構成され、
前記誘電体層の少なくとも一部は、前記放熱板の前記第1の面に接着する接着層で構成され、
前記接着層は、前記誘電体層の前記第2の面を構成している電子機器。 The electronic device according to claim 1,
The structure is configured as a sheet,
At least a part of the dielectric layer is composed of an adhesive layer that adheres to the first surface of the heat sink,
The adhesive layer is an electronic apparatus that constitutes the second surface of the dielectric layer. - 基板と、
前記基板上に搭載された電子部品と、
前記電子部品上に直接またはスペーサを介して設けられた放熱板と、
を有し、
前記放熱板の前記電子部品と対向する側の第1の面には、
誘電体層と、
前記誘電体層の内部または第1の面上に、前記誘電体層の前記第1の面と反対側の面である第2の面と対向するように設けられ、少なくとも一部領域に繰り返し構造を有している第1導体と、
前記誘電体層の前記第2の面に形成された第2導体と、
を備える少なくとも一種類の構造体が、前記第2導体が前記第1導体より前記放熱板の前記第1の面の近くに位置し、かつ、前記第2導体が前記放熱板の前記第1の面と導通するように設けられている電子機器。 A substrate,
Electronic components mounted on the substrate;
A heat sink provided directly or via a spacer on the electronic component;
Have
On the first surface of the heat radiating plate facing the electronic component,
A dielectric layer;
Provided inside or on the first surface of the dielectric layer so as to face the second surface, which is the surface opposite to the first surface of the dielectric layer, and has a repetitive structure in at least a partial region A first conductor having
A second conductor formed on the second surface of the dielectric layer;
At least one type of structure including: the second conductor is positioned closer to the first surface of the heat sink than the first conductor, and the second conductor is the first conductor of the heat sink. An electronic device that is connected to a surface. - 請求項3に記載の電子機器において、
前記構造体はシートとして構成され、
前記第2導体を介して前記誘電体層とは逆側に設けられており、前記放熱板の導電性を有する面に接着する接着層と、
前記接着層内に設けられ、前記第2導体と前記導電性を有する面とを導通させる導通部材と、
を備える電子機器。 The electronic device according to claim 3,
The structure is configured as a sheet,
An adhesive layer that is provided on the opposite side of the dielectric layer via the second conductor and adheres to the conductive surface of the heat sink;
A conductive member provided in the adhesive layer and electrically connecting the second conductor and the conductive surface;
Electronic equipment comprising. - 請求項4に記載の電子機器において、
前記導通部材は、前記接着層内に設けられたビアである電子機器。 The electronic device according to claim 4,
The electronic device, wherein the conducting member is a via provided in the adhesive layer. - 請求項4に記載の電子機器において、
前記導通部材は、前記接着層に混入された複数の導電性フィラーである電子機器。 The electronic device according to claim 4,
The electronic device, wherein the conductive member is a plurality of conductive fillers mixed in the adhesive layer. - 請求項1または2に記載の電子機器において、
第1の前記構造体と前記放熱板の前記第1の面とにより、少なくとも1種類以上のEBG構造を備えた第1のEBG構造体が構成されている電子機器。 The electronic device according to claim 1 or 2,
An electronic apparatus in which a first EBG structure including at least one type of EBG structure is configured by the first structure and the first surface of the heat dissipation plate. - 請求項3から6のいずれか一に記載の電子機器において、
第1の前記構造体は、少なくとも1種類以上のEBG構造を備えた第1のEBG構造体を構成している電子機器。 The electronic device according to any one of claims 3 to 6,
The first structure is an electronic device constituting the first EBG structure including at least one type of EBG structure. - 請求項7または8に記載の電子機器において、
前記放熱板の前記第1の面は、長さpの第1の辺と長さqの第2の辺(p≧q)とで構成される矩形であり、
第1の前記EBG構造体は、波長2pの電磁波をバンドギャップ帯域に含むEBG構造を備え、
前記放熱板の前記第1の面の少なくとも一部領域には、前記電子部品または前記スペーサと接する領域内から前記第1の辺と平行な方向に伸びる直線と交わるように、前記第1のEBG構造体が設けられている電子機器。 The electronic device according to claim 7 or 8,
The first surface of the heat radiating plate is a rectangle composed of a first side having a length p and a second side having a length q (p ≧ q),
The first EBG structure includes an EBG structure including an electromagnetic wave having a wavelength of 2p in a band gap band,
At least a partial region of the first surface of the heat sink has the first EBG so as to intersect a straight line extending in a direction parallel to the first side from a region in contact with the electronic component or the spacer. An electronic device provided with a structure. - 請求項7から9のいずれか一に記載の電子機器において、
前記放熱板の前記第1の面は、長さpの第1の辺と長さqの第2の辺(p≧q)とで構成される矩形であり、
第2の前記EBG構造体は、波長2qの電磁波をバンドギャップ帯域に含むEBG構造を備え、
前記放熱板の前記第1の面の少なくとも一部領域には、前記電子部品または前記スペーサから前記第2の辺と平行な方向に伸びる直線と交わるように、前記第2のEBG構造体が設けられている電子機器。 The electronic device according to any one of claims 7 to 9,
The first surface of the heat radiating plate is a rectangle composed of a first side having a length p and a second side having a length q (p ≧ q),
The second EBG structure includes an EBG structure including an electromagnetic wave having a wavelength of 2q in a band gap band,
The second EBG structure is provided in at least a partial region of the first surface of the heat sink so as to intersect with a straight line extending in a direction parallel to the second side from the electronic component or the spacer. Electronic equipment. - 請求項7または8に記載の電子機器において、
前記放熱板の前記第1の面は、長さaの第1の辺と長さbの第2の辺(a>b)とで構成される矩形であり、
第3の前記EBG構造体は、波長2aの電磁波をバンドギャップ帯域に含む第1のEBG構造と、波長2bの電磁波をバンドギャップ帯域に含む第2のEBG構造と、を備え、
前記放熱板の前記第1の面の少なくとも一部領域には、前記電子部品または前記スペーサから前記第1の辺と平行な方向に伸びる直線、および、前記電子部品または前記スペーサから前記第2の辺と平行な方向に伸びる直線と交わるように、前記第3のEBG構造体が設けられている電子機器。 The electronic device according to claim 7 or 8,
The first surface of the heat radiating plate is a rectangle composed of a first side having a length a and a second side having a length b (a> b),
The third EBG structure includes a first EBG structure including an electromagnetic wave having a wavelength of 2a in a bandgap band, and a second EBG structure including an electromagnetic wave having a wavelength of 2b in a bandgap band,
At least a partial region of the first surface of the heat sink has a straight line extending from the electronic component or the spacer in a direction parallel to the first side, and the second from the electronic component or the spacer. An electronic device in which the third EBG structure is provided so as to intersect with a straight line extending in a direction parallel to the side. - 請求項11に記載の電子機器において、
前記第1のEBG構造と前記第2のEBG構造は、交互に配列されている電子機器。 The electronic device according to claim 11,
The electronic device in which the first EBG structure and the second EBG structure are alternately arranged. - 請求項7または8に記載の電子機器において、
前記放熱板の前記第1の面は矩形であり、
前記放熱板の前記第1の面の少なくとも一部領域には、前記電子部品または前記スペーサと接する領域内から前記矩形の辺と平行な方向に伸びる直線と交わるように、前記EBG構造体が設けられている電子機器。 The electronic device according to claim 7 or 8,
The first surface of the heat sink is rectangular;
The EBG structure is provided in at least a partial region of the first surface of the heat sink so as to intersect a straight line extending in a direction parallel to the rectangular side from a region in contact with the electronic component or the spacer. Electronic equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011545064A JP5673552B2 (en) | 2009-12-08 | 2010-11-25 | Electronics |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-278872 | 2009-12-08 | ||
JP2009278872 | 2009-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011070735A1 true WO2011070735A1 (en) | 2011-06-16 |
Family
ID=44145300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/006879 WO2011070735A1 (en) | 2009-12-08 | 2010-11-25 | Electronic device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5673552B2 (en) |
WO (1) | WO2011070735A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015097273A (en) * | 2014-12-12 | 2015-05-21 | 株式会社東芝 | Circuit board and semiconductor component |
KR101623054B1 (en) * | 2014-05-16 | 2016-05-24 | 한국전기연구원 | Electromagnetic band-gap structure and electrical component using the same |
US9406622B2 (en) | 2012-07-27 | 2016-08-02 | Kabushiki Kaisha Toshiba | Electronic circuit and semiconductor component |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002510886A (en) * | 1998-03-30 | 2002-04-09 | ザ リージェンツ オブ ザ ユニバーシテイ オブ カリフォルニア | Circuit and method for removing metal surface current |
JP2007005614A (en) * | 2005-06-24 | 2007-01-11 | Mitsubishi Electric Corp | Radio wave shielding equipment |
WO2008099856A1 (en) * | 2007-02-15 | 2008-08-21 | Nec Corporation | Elecric device-installed apparatus and its noise reduction method |
WO2008104501A1 (en) * | 2007-02-28 | 2008-09-04 | International Business Machines Corporation | Improved noise isolation in high-speed digital systems on packages and printed circuit boards (pcbs) |
WO2009082003A1 (en) * | 2007-12-26 | 2009-07-02 | Nec Corporation | Electromagnetic band gap element, and antenna and filter using the same |
JP2009231793A (en) * | 2008-03-19 | 2009-10-08 | Samsung Electro Mech Co Ltd | Electromagnetic band gap structure and printed-circuit board |
-
2010
- 2010-11-25 JP JP2011545064A patent/JP5673552B2/en active Active
- 2010-11-25 WO PCT/JP2010/006879 patent/WO2011070735A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002510886A (en) * | 1998-03-30 | 2002-04-09 | ザ リージェンツ オブ ザ ユニバーシテイ オブ カリフォルニア | Circuit and method for removing metal surface current |
JP2007005614A (en) * | 2005-06-24 | 2007-01-11 | Mitsubishi Electric Corp | Radio wave shielding equipment |
WO2008099856A1 (en) * | 2007-02-15 | 2008-08-21 | Nec Corporation | Elecric device-installed apparatus and its noise reduction method |
WO2008104501A1 (en) * | 2007-02-28 | 2008-09-04 | International Business Machines Corporation | Improved noise isolation in high-speed digital systems on packages and printed circuit boards (pcbs) |
WO2009082003A1 (en) * | 2007-12-26 | 2009-07-02 | Nec Corporation | Electromagnetic band gap element, and antenna and filter using the same |
JP2009231793A (en) * | 2008-03-19 | 2009-10-08 | Samsung Electro Mech Co Ltd | Electromagnetic band gap structure and printed-circuit board |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9406622B2 (en) | 2012-07-27 | 2016-08-02 | Kabushiki Kaisha Toshiba | Electronic circuit and semiconductor component |
KR101623054B1 (en) * | 2014-05-16 | 2016-05-24 | 한국전기연구원 | Electromagnetic band-gap structure and electrical component using the same |
JP2015097273A (en) * | 2014-12-12 | 2015-05-21 | 株式会社東芝 | Circuit board and semiconductor component |
Also Published As
Publication number | Publication date |
---|---|
JP5673552B2 (en) | 2015-02-18 |
JPWO2011070735A1 (en) | 2013-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5831450B2 (en) | Electronics | |
JP5550100B2 (en) | Electromagnetic bandgap element, antenna and filter using the same | |
JP5726856B2 (en) | Electronics | |
JP5725031B2 (en) | Structure and wiring board | |
JP5725032B2 (en) | Structure and wiring board | |
US20130003333A1 (en) | Electronic device, wiring board, and method of shielding noise | |
US9629282B2 (en) | Electronic device, structure, and heat sink | |
JP5699937B2 (en) | Noise suppression tape | |
JP5761184B2 (en) | Wiring board and electronic device | |
WO2010013610A1 (en) | Planar antenna | |
US9313877B2 (en) | Electronic device and noise suppression method | |
US11659658B2 (en) | Multilayer board | |
JP5673552B2 (en) | Electronics | |
JP2004187281A (en) | Transmission line connection apparatus | |
JP6146801B2 (en) | Wiring board and electronic device | |
US8921711B2 (en) | Wiring substrate and electronic device | |
JP2011124503A (en) | Electronic device, and noise suppression method | |
WO2013001692A1 (en) | Electronic device and noise suppression method | |
WO2013018257A1 (en) | Wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10835664 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011545064 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10835664 Country of ref document: EP Kind code of ref document: A1 |