[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011068026A1 - 導電性高分子およびそれを固体電解質として用いた固体電解コンデンサ - Google Patents

導電性高分子およびそれを固体電解質として用いた固体電解コンデンサ Download PDF

Info

Publication number
WO2011068026A1
WO2011068026A1 PCT/JP2010/070325 JP2010070325W WO2011068026A1 WO 2011068026 A1 WO2011068026 A1 WO 2011068026A1 JP 2010070325 W JP2010070325 W JP 2010070325W WO 2011068026 A1 WO2011068026 A1 WO 2011068026A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
ethylenedioxythiophene
solid
thieno
examples
Prior art date
Application number
PCT/JP2010/070325
Other languages
English (en)
French (fr)
Inventor
良介 杉原
一都 藤原
貴志 大野
Original Assignee
テイカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイカ株式会社 filed Critical テイカ株式会社
Priority to KR1020117016367A priority Critical patent/KR101297946B1/ko
Priority to CN201080007114.9A priority patent/CN102307927B/zh
Priority to US13/259,701 priority patent/US8710177B2/en
Priority to EP10834478.9A priority patent/EP2508547B1/en
Priority to JP2011544230A priority patent/JP5093915B2/ja
Publication of WO2011068026A1 publication Critical patent/WO2011068026A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a conductive polymer and a solid electrolytic capacitor using the same as a solid electrolyte.
  • the conductive polymer is used as a solid electrolyte of a solid electrolytic capacitor such as a tantalum solid electrolytic capacitor, an aluminum solid electrolytic capacitor, or a niobium solid electrolytic capacitor because of its high conductivity.
  • a solid electrolytic capacitor such as a tantalum solid electrolytic capacitor, an aluminum solid electrolytic capacitor, or a niobium solid electrolytic capacitor because of its high conductivity.
  • conductive polymer in this application for example, those obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of thiophene or a derivative thereof are used.
  • organic sulfonic acid is mainly used as a dopant when performing chemical oxidative polymerization of the above thiophene or a derivative thereof.
  • aromatic sulfonic acid is said to be suitable, and transition metal is a transition metal.
  • ferric iron is said to be suitable, and usually a ferric salt of aromatic sulfonic acid is used as an oxidizing agent and a dopant in chemical oxidative polymerization of thiophene or a derivative thereof.
  • Patent Documents 1 and 2 As the thiophene or derivatives thereof, 3,4-ethylenedioxythiophene has been widely used so far because the conductivity and heat resistance of the resulting conductive polymer are balanced and highly useful.
  • Patent Document 3 3,4-alkylenedioxythiophene obtained by modifying 3,4-ethylenedioxythiophene with an alkyl group in order to increase the conductivity.
  • Patent Document 3 3,4-alkylenedioxythiophene is used, the heat resistance is greatly reduced, and when used as a solid electrolyte of a solid electrolytic capacitor, the reliability of the obtained solid electrolytic capacitor under high temperature conditions is reduced.
  • ESR equivalent series resistance
  • the present invention provides a conductive polymer having high conductivity and excellent heat resistance, and using it as a solid electrolyte, having low ESR and low capacitance.
  • An object of the present invention is to provide a large solid electrolytic capacitor having high reliability under high temperature conditions.
  • the present invention relates to 2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2,3-Dihydro-thieno [3,4-b] [1,4] dioxine), 2- With alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2-Alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxine)
  • a conductive polymer obtained by polymerizing a mixed monomer having a molar ratio of 0.05: 1 to 1: 0.1 in the presence of an organic sulfonic acid and containing the organic sulfonic acid as a dopant has high conductivity. And by using it as a solid electrolyte, it has been found that a solid electrolytic capacitor having low ESR, large capacitance, and high reliability under high temperature conditions can be obtained. It has been completed on the basis of.
  • the conductive polymer of the present invention has high conductivity and excellent heat resistance.
  • a solid electrolytic capacitor using the conductive polymer as a solid electrolyte has low ESR, large capacitance, and high reliability when used under high temperature conditions.
  • the monomer mixture used as a raw material thereof is 2,3-dihydro-thieno [3,4-b] [1,4] dioxin and 2-alkyl-2,3- Dihydro-thieno [3,4-b] [1,4] dioxin mixed in a molar ratio of 0.05: 1 to 1: 0.1, and each monomer in this monomer mixture Corresponds to a compound represented by the following general formula (1).
  • R is hydrogen or an alkyl group
  • R in the general formula (1) is hydrogen
  • UPC name as described above, as “2,3-dihydro-thieno [3,4-b] [1,4] dioxin”.
  • this compound is often represented by the generic name “ethylenedioxythiophene” rather than represented by the IUPAC name, in this document, this “2,3-dihydro-thieno [3] , 4-b] [1,4] dioxin ”is expressed as“ ethylenedioxythiophene ”.
  • the “ethylenedioxythiophene” is the same as the “3,4-ethylenedioxythiophene” described above.
  • R in the general formula (1) is an alkyl group
  • the alkyl group is preferably one having 1 to 4 carbon atoms, that is, a methyl group, an ethyl group, a propyl group, or a butyl group.
  • a compound in which R in the general formula (1) is a methyl group is represented by the name IUPAC “2-methyl-2,3-dihydro-thieno [3,4-b] [1,4 Dioxin (2-Methyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxine) ”, which will be simplified and represented as“ methylated ethylenedioxythiophene ”hereinafter. To do.
  • a compound in which R in the general formula (1) is an ethyl group is represented by IUPAC name, “2-ethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2-Ethyl). -2,3-dihydro-thieno [3,4-b] [1,4] dioxine) ”, this will be simplified and represented as“ ethylated ethylenedioxythiophene ”.
  • a compound in which R in the general formula (1) is a propyl group is represented by the name IUPAC, “2-propyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2-Propyl).
  • R in the general formula (1) is a butyl group
  • R in the general formula (1) is a butyl group
  • IUPAC name “2-butyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin
  • 2,Butyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxine) which will be simplified and represented as“ butylated ethylenedioxythiophene ”.
  • alkylated ethylenedioxythiophene 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin
  • alkylated ethylenedioxythiophene methylated ethylenedioxythiophene, ethylated ethylenedioxythiophene, propylated ethylenedioxythiophene, and butylated ethylenedioxythiophene are preferable, and in particular ethylated ethylenedioxythiophene. Propylated ethylenedioxythiophene is preferred.
  • ethylenedioxythiophene ie, 2,3-dihydro-thieno [3,4-b] [1,4] dioxin
  • alkylated ethylenedioxythiophene ie, 2-alkyl-2, 3-dihydro-thieno [3,4-b] [1,4] dioxin
  • the conductivity of the resulting conductive polymer is made higher than that of a conductive polymer synthesized using only ethylenedioxythiophene as a monomer, and the heat resistance of the resulting conductive polymer is alkylated as a monomer.
  • the mixing ratio of ethylenedioxythiophene and alkylated ethylenedioxythiophene derivative in this monomer mixture is preferably 0.1: 1 to 1: 0.1 in terms of molar ratio, and 0.2: 1 ⁇ 1: 0.2 is more preferred, and 0.3: 1 to 1: 0.3 is even more preferred.
  • the conductivity of the resulting conductive polymer is reduced to ethylated ethylenedioxythiophene. It is possible to improve the high conductivity almost equivalent to the high conductivity derived from oxythiophene or propylated ethylenedioxythiophene, and the heat resistance of the obtained conductive polymer is ethylated ethylenedioxythiophene or propyleneated ethylene.
  • the low heat resistance derived from dioxythiophene can be greatly improved to bring it close to the excellent heat resistance derived from ethylenedioxythiophene, which makes it possible to achieve a high level of balance between conductivity and heat resistance.
  • An excellent conductive polymer can be obtained. That is, the conductive polymer obtained by polymerizing a monomer mixture mixed with ethylenedioxythiophene using ethylated ethylenedioxythiophene or propylated ethylenedioxythiophene as the alkylated ethylenedioxythiophene is described in the following implementation.
  • the organic sulfonic acid serving as the dopant of the conductive polymer of the present invention is not particularly limited, and examples thereof include benzene sulfonic acid or a derivative thereof, naphthalene sulfonic acid or a derivative thereof, anthraquinone sulfonic acid or Aromatic sulfonic acids such as derivatives thereof, and polymeric sulfonic acids such as polystyrene sulfonic acid, sulfonated polyester, and phenol sulfonic acid novolak resin are preferably used.
  • Examples of the benzenesulfonic acid derivative in the benzenesulfonic acid or derivative thereof include toluenesulfonic acid, ethylbenzenesulfonic acid, propylbenzenesulfonic acid, butylbenzenesulfonic acid, dodecylbenzenesulfonic acid, methoxybenzenesulfonic acid, ethoxybenzenesulfonic acid, Examples thereof include propoxybenzene sulfonic acid, butoxybenzene sulfonic acid, phenol sulfonic acid, cresol sulfonic acid, and benzene disulfonic acid.
  • naphthalene sulfonic acid derivatives in naphthalene sulfonic acid or its derivatives include naphthalene disulfonic acid and naphthalene trisulfonic acid. , Methyl naphthalene sulfonic acid, ethyl naphthalene sulfonic acid, propyl naphthalene sulfonic acid, butyl naphthalene sulfonic acid, etc.
  • anthraquinone sulfonic acid derivative in the anthraquinone sulfonic acid or its derivative examples include anthraquinone disulfonic acid, anthraquinone trisulfonic acid, and the like.
  • aromatic sulfonic acids in particular, toluene sulfonic acid, methoxy Benzenesulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid and naphthalenetrisulfonic acid are preferred.
  • the oxidative polymerization for synthesizing the conductive polymer, either chemical oxidative polymerization or electrolytic oxidative polymerization can be employed.
  • the oxidative polymerization is an aqueous liquid composed of water or a mixture of water and a water-miscible solvent. In an alcohol solvent.
  • the monomer since the monomer is liquid, the monomer may be used as it is, and the monomer may be used, for example, methanol, You may dilute with organic solvents, such as ethanol, propanol, butanol, acetone, acetonitrile, and you may use as an organic solvent solution.
  • the oxidizing agent / dopant is preferably used in a liquid state with the organic solvent.
  • a case where a conductive polymer is usually synthesized will be mainly described, and a case where a conductive polymer is synthesized when producing a solid electrolytic capacitor will be described as needed.
  • water miscible solvent constituting the aqueous liquid for example, methanol, ethanol, propanol, acetone, acetonitrile and the like are used.
  • the mixing ratio of these water miscible solvents with water is 50 in the entire aqueous liquid. The mass% or less is preferable.
  • Oxidative polymerization in water or in an aqueous liquid as described above is suitable when an organic sulfonic acid serving as a dopant is used as an organic salt such as an imidazole salt or when persulfuric acid such as ammonium persulfate is used as an oxidizing agent.
  • an organic sulfonic acid serving as a dopant is used as an organic salt such as an imidazole salt or when persulfuric acid such as ammonium persulfate is used as an oxidizing agent.
  • the oxidative polymerization is suitably performed in an alcohol solvent.
  • the alcohol solvent as described above include methanol, ethanol, propanol, butanol and the like, and those obtained by adding acetone, acetonitrile and the like to these alcohols.
  • transition metals and persulfates are used, and as the transition metals, iron, copper, cerium, chromium, manganese, ruthenium, zinc and the like are used.
  • iron is preferable
  • persulfate for example, ammonium persulfate, sodium persulfate, potassium persulfate, calcium persulfate, barium persulfate and the like are used, and ammonium persulfate is particularly preferable.
  • the molar ratio of the aromatic sulfonic acid to iron is preferably 2.00: 1 to 2.95: 1.
  • the stability of the aromatic iron sulfonate in the solution is deteriorated, and when the molar ratio of the aromatic sulfonic acid to the iron is higher than the above, the reaction rate is high. It may become too much and the electroconductivity of the conductive polymer obtained may deteriorate.
  • the aromatic iron sulfonate is preferably in a liquid form with water, an aqueous liquid or an organic solvent because it is easy to use, and the concentration of the aromatic iron sulfonate in such a liquid Is preferably 30 to 70% by mass. That is, when the concentration of the aromatic iron sulfonate is lower than 30% by mass, the amount of the conductive polymer adhering to the solid electrolytic capacitor may be reduced, and the concentration of the aromatic iron sulfonate is 70% by mass. If it is higher, the viscosity becomes high and the handling property may be deteriorated.
  • a persulfate may be phenol sulfonic acid, cresol sulfonic acid, naphthalene sulfonic acid, naphthalene disulfonic acid, It can also be used in combination with aromatic sulfonic acids such as naphthalene trisulfonic acid and anthraquinone sulfonic acid.
  • the chemical oxidative polymerization for synthesizing conductive polymers can be applied to both the case of normally synthesizing conductive polymers and the case of synthesizing conductive polymers during the production of solid electrolytic capacitors.
  • the temperature during chemical oxidative polymerization is preferably 5 to 95 ° C.
  • the polymerization time is preferably 1 to 72 hours.
  • a conductive polymer is synthesized by chemical oxidative polymerization at the time of producing a solid electrolytic capacitor, a wide range of temperatures and polymerization times are employed depending on various conditions. Generally, the temperature is 0 to 300 ° C., and the time is 1 Chemical oxidative polymerization takes place in minutes to 72 hours.
  • Electrolytic oxidation polymerization is be carried out even at a constant voltage at a constant current, for example, when performing electrolytic oxidation polymerization at a constant current, preferably 0.05mA / cm 2 ⁇ 10mA / cm 2 as the current value in the above range 0 0.2 mA / cm 2 or more is more preferable, and when performing electrolytic oxidation polymerization at a constant voltage, the voltage is preferably 0.5 V to 10 V, and more preferably 1.5 V or more within the above range.
  • the temperature during the electrolytic oxidation polymerization is preferably 5 to 95 ° C, more preferably 10 ° C or higher, and more preferably 30 ° C or lower.
  • the polymerization time is preferably 1 hour to 72 hours, more preferably 8 hours or more, and more preferably 24 hours or less.
  • ferrous sulfate or ferric sulfate may be added as a catalyst.
  • the conductive polymer obtained as described above is obtained immediately after polymerization in a state of being dispersed in water or an aqueous liquid, and contains an iron sulfate salt used as an oxidizing agent or a catalyst or a decomposition product thereof. Therefore, it is preferable to remove the metal component with a cation exchange resin after dispersing the impurities in an aqueous dispersion of the conductive polymer containing the impurities using a disperser such as an ultrasonic homogenizer or a planetary ball mill.
  • the particle size of the conductive polymer at this time is preferably 100 ⁇ m or less, and particularly preferably 10 ⁇ m or less. Thereafter, it is preferable to remove as much as possible the sulfuric acid produced by the decomposition of the oxidizing agent and the catalyst by an ethanol precipitation method, an ultrafiltration method, an anion exchange resin, or the like.
  • the conductive polymer of the present invention has high conductivity and excellent heat resistance, it is particularly suitable as a solid electrolyte for solid electrolytic capacitors such as tantalum solid electrolytic capacitors, niobium solid electrolytic capacitors, and aluminum solid electrolytic capacitors. It is possible to provide a solid electrolytic capacitor that is used, has a low ESR, a large capacitance, and high reliability under high temperature conditions.
  • the conductive polymer of the present invention is synthesized, In a dispersion with water, an aqueous liquid or an organic solvent, and the dispersion of the conductive polymer may be used for the production of the solid electrolytic capacitor, and as mentioned before, When producing a solid electrolytic capacitor, the conductive polymer of the present invention may be synthesized and used as a solid electrolyte.
  • the conductive polymer of the present invention when used in the form of a dispersion, first, the conductive polymer of the present invention is used as a solid electrolyte such as a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, or a laminated aluminum solid electrolytic capacitor.
  • a solid electrolyte such as a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, or a laminated aluminum solid electrolytic capacitor.
  • the capacitor element having an anode made of a porous body of a valve metal such as tantalum, niobium, and aluminum and a dielectric layer made of an oxide film of the valve metal is used for the conductive polymer of the present invention.
  • solid electrolytic capacitor made of the conductive polymer of the present invention by repeating the steps of immersing in the dispersion, taking out, and drying, applying the carbon paste and silver paste, drying, and then packaging
  • tantalum solid electrolytic capacitor, niobium solid electrolytic capacitor, laminated aluminum solid electrolytic capacitor It can be manufactured solid electrolytic capacitor, such as.
  • the capacitor element is immersed in a liquid containing the specific monomer mixture, taken out, and then the dopant.
  • the solid electrolyte layer made of the conductive polymer of the present invention is repeatedly immersed in a liquid containing an organic sulfonic acid and an oxidizing agent, taken out, polymerized, then immersed in water, taken out and dried.
  • a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, a laminated aluminum solid electrolytic capacitor, etc. can be produced by covering the capacitor element having the solid electrolyte layer with a carbon paste or a silver paste and then covering the capacitor element. it can.
  • the conductive polymer of the present invention when used as the solid electrolyte of a wound aluminum solid electrolytic capacitor, the conductive polymer of the present invention is used as a dispersion and used for the production of a wound aluminum solid electrolytic capacitor.
  • the conductive polymer of the present invention may be synthesized and used as a solid electrolyte when the wound aluminum solid electrolytic capacitor is manufactured.
  • a lead terminal is attached to the anode on which the dielectric layer is formed by performing a chemical conversion treatment
  • a lead terminal is attached to a cathode made of aluminum foil
  • a capacitor element is produced by winding the anode and cathode with the lead terminal through a separator, and the capacitor element is dispersed in the conductive polymer dispersion of the present invention.
  • it is immersed in pure water, taken out, dried, and then dried.
  • the capacitor element is immersed in a liquid containing the monomer mixture, and then taken out.
  • the solid comprising the conductive polymer of the present invention is repeatedly immersed in a liquid containing an organic sulfonic acid and an oxidant as a dopant, taken out, polymerized, then immersed in water, taken out and dried.
  • a wound aluminum solid electrolytic capacitor can be produced by forming an electrolyte layer and packaging a capacitor element having the solid electrolyte layer with an exterior material.
  • the solid electrolyte is composed of the conductive polymer of the present invention
  • the solid electrolyte is further composed of another conductive polymer on the solid electrolyte. May be produced.
  • alkylated ethylenedioxythiophene used in the examples and the like that is, propylated ethylenedioxythiophene, ethylated ethylenedioxythiophene, methylated ethylenedioxythiophene and butylated ethylenedioxy
  • Synthesis examples of thiophene are shown in Synthesis Examples 1 to 4, and preparation examples of monomer mixtures are shown as Preparation Examples 1 to 10.
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • a mixture of water and methanol in a mass ratio of 1: 2 was added to the reaction vessel and stirred.
  • the black solid obtained as described above was added dropwise and stirred to precipitate a white solid. It was collected by filtration.
  • the white solid was washed with a small amount of methanol and then dried to obtain 3.77 kg of pentane-1,2-diyl-bis (4-methylbenzenesulfonate) as a product.
  • the yield in terms of solid content was 60%.
  • reaction-terminated liquid was concentrated, 5 kg of 5% aqueous sodium bicarbonate (NaHCO 3 ) was added to the remaining brown solid, and the mixture was stirred at room temperature for 15 minutes, and the brown solid was collected by filtration.
  • NaHCO 3 aqueous sodium bicarbonate
  • Dimethylformamide was concentrated, 700 g of ethylene glycol was added, and the mixture was distilled at an internal pressure of 20 hpa while gradually raising the temperature to distill water and the first fraction, and 900 g of a main fraction containing ethylene glycol was distilled. .
  • the solution separated into two layers was separated, and 180 g of the lower yellow transparent liquid was obtained as the target product, propylated ethylenedioxythiophene.
  • the yield was 24%.
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • 1.25 kg of methanol was added to the reaction vessel and stirred, and the black-red oily matter obtained as described above was added dropwise to the reaction vessel and stirred, and the precipitated white solid was collected by filtration.
  • the white solid was washed with a small amount of methanol and dried to obtain 12.05 kg of butane-1,2-diyl-bis (4-methylbenzenesulfonate) as a product.
  • the yield in terms of solid content was 82%.
  • reaction-terminated liquid was concentrated, and 1.8 kg of 5% aqueous sodium hydrogen carbonate solution was added to the remaining brown solid, stirred at room temperature for 15 minutes, and the brown solid was collected by filtration.
  • the container was cooled to room temperature, and 455 g of 98% sulfuric acid was carefully added dropwise to the reaction-terminated liquid while keeping the temperature in the container not exceeding 30 ° C., followed by stirring for 2 hours while maintaining the temperature in the container at 80 ° C. .
  • the reaction finished solution was cooled to room temperature, 4 kg of water was added and stirred, and then allowed to stand.
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • the reaction-terminated liquid was concentrated, 3.7 kg of 5% aqueous sodium hydrogen carbonate solution was added to the remaining brown solid, stirred for 15 minutes at room temperature, and the brown solid was collected by filtration. A brown solid collected by filtration and 2.47 kg of a 7% aqueous sodium hydroxide solution were added to the reaction vessel, and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C.
  • the vessel was cooled to room temperature, 759 g of 98% sulfuric acid was carefully added dropwise to the reaction-finished solution while keeping the temperature in the vessel not exceeding 30 ° C., and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C. .
  • the reaction completed liquid was cooled to room temperature, 3 kg of water was added and stirred, and then allowed to stand.
  • the reaction-terminated liquid was divided into two layers, an aqueous phase and an organic phase, and the organic layer was concentrated to obtain a black-red oily product.
  • the reaction-terminated liquid was concentrated, 5 kg of 5% aqueous sodium hydrogen carbonate solution was added to the remaining brown solid, stirred at room temperature for 15 minutes, and the brown solid was collected by filtration. A brown solid collected by filtration and 5.32 kg of a 7% aqueous sodium hydroxide solution were added to the reaction vessel, and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C.
  • the vessel was cooled to room temperature, 759 g of 98% sulfuric acid was carefully added dropwise to the reaction-finished solution while keeping the temperature in the vessel not exceeding 30 ° C., and the mixture was stirred for 2 hours while maintaining the temperature in the vessel at 80 ° C. .
  • the above dimethylformamide is concentrated, 700 g of ethylene glycol is added, and the reaction mixture is distilled while gradually increasing the temperature at an internal pressure of 20 hpa to distill water and the first fraction, and 900 g of the main fraction containing ethylene glycol. Was distilled.
  • a 10% aqueous sodium hydroxide solution was added to the obtained main distillate, and the mixture was stirred for 2 hours while keeping the temperature in the container at 100 ° C., and then allowed to stand.
  • Preparation Example 2 A monomer mixture was prepared by mixing the propylene ethylenedioxythiophene obtained in Synthesis Example 1 and ethylenedioxythiophene in a molar ratio of 1: 1.
  • Preparation Example 3 A monomer mixture was prepared by mixing the propylene ethylenedioxythiophene obtained in Synthesis Example 1 and ethylenedioxythiophene in a molar ratio of 1: 0.3.
  • Preparation Example 4 The ethylated ethylenedioxythiophene obtained in Synthesis Example 2 (that is, 2-ethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin) and ethylenedioxythiophene in a molar ratio of 0 A monomer mixture was prepared by mixing 3: 1.
  • Preparation Example 5 The monomer mixture was prepared by mixing the ethylated ethylenedioxythiophene obtained in Synthesis Example 2 and ethylenedioxythiophene in a molar ratio of 1: 1.
  • Preparation Example 6 A monomer mixture was prepared by mixing the ethylated ethylenedioxythiophene obtained in Synthesis Example 2 and ethylenedioxythiophene at a molar ratio of 1: 0.3.
  • Preparation Example 7 The monomer mixture was prepared by mixing the propylated ethylenedioxythiophene obtained in Synthesis Example 1 with the ethylated ethylenedioxythiophene obtained in Synthesis Example 2 and ethylenedioxythiophene in a molar ratio of 0.5: 0.5: 1. Prepared.
  • Preparation Example 8 The methylated ethylenedioxythiophene and ethylenedioxythiophene obtained in Synthesis Example 3 were mixed at a molar ratio of 0.3: 1 to prepare a monomer mixture.
  • Preparation Example 10 A monomer mixture was prepared by mixing methylated ethylenedioxythiophene and ethylenedioxythiophene obtained in Synthesis Example 3 at a molar ratio of 1: 0.3.
  • Preparation Example 12 A monomer mixture was prepared by mixing butylated ethylenedioxythiophene obtained in Synthesis Example 4 and ethylenedioxythiophene at a molar ratio of 0.1: 1.
  • Preparation Example 13 The butylated ethylenedioxythiophene obtained in Synthesis Example 4 and the propylated ethylenedioxythiophene obtained in Synthesis Example 1 and ethylenedioxythiophene were mixed at a molar ratio of 0.05: 0.05: 1 to obtain a monomer mixture. Prepared.
  • Preparation Example 14 A monomer mixture was prepared by mixing the ethylated ethylenedioxythiophene obtained in Synthesis Example 2 and ethylenedioxythiophene in a molar ratio of 1: 0.1.
  • Examples 1 to 10 and Comparative Examples 1 to 4 In Examples 1 to 10 and Comparative Examples 1 to 4, conductive polymers are synthesized (manufactured) and their characteristics are evaluated.
  • a paratoluenesulfonic acid iron n-butanol solution having a concentration of 40% manufactured by Teika Co., Ltd., the molar ratio of paratoluenesulfonic acid to iron in the iron paratoluenesulfonic acid is 2.8: 1
  • the alkylated ethylenedioxythiophene obtained in Synthesis Examples 1 to 3 that is, Synthesis Example 1 is a propylene-ethylenedioxythiophene).
  • the conductive polymer sheet on the ceramic plate is left to stand for 5 minutes while applying a load of 1.5 tons to equalize the pressure applied to the sheet, and then the conductivity of the conductive polymer is searched for four times. Measurement was performed with a needle type measuring instrument (MCP-T600 manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1.
  • the conductive polymer sheets of Examples 1 to 10 and Comparative Examples 1 to 4 after the above conductivity measurement were stored in a static temperature bath at 150 ° C., and the conductivity after 48 hours was measured. The conductivity retention was determined. The results are also shown in Table 1.
  • Table 1 also shows the monomers used in the synthesis of the conductive polymer. In order to indicate the type of the monomer, it is simplified due to space limitations, and in Examples 1 to 10, the preparation example number is used. In Comparative Examples 2 to 4, they are indicated by synthesis example numbers. However, since ethylenedioxythiophene used as a monomer in Comparative Example 1 has no preparation example number or synthesis example number, it is simply shown as “EDOT”.
  • the retention rate of electrical conductivity is obtained by dividing the electrical conductivity after aging by the initial electrical conductivity (the electrical conductivity measured before storage in a thermostatic bath at 150 ° C.) and expressed in percent (%). This can be expressed as follows. The higher the retention rate, the lower the conductivity with respect to heat, and the better the heat resistance.
  • the conductive polymers of Examples 1 to 10 have higher conductivity and higher conductivity than the conductive polymer of Comparative Example 1, and Comparative Examples 2 to 4 Compared with the conductive polymer, the conductivity retention was high and the heat resistance was excellent. That is, the alkylated ethylenedioxythiophene (that is, 2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin) prepared in Preparation Examples 1 to 10 as a monomer and ethylenedioxy
  • the conductive polymers of Examples 1-10 synthesized using a mixture with thiophene ie 2,3-dihydro-thieno [3,4-b] [1,4] dioxin
  • EDOT EDOT
  • the monomer mixtures of Preparation Examples 1 to 7 as monomers that is, mixtures of propylated ethylenedioxythiophene and ethylenedioxythiophene as monomers (Preparation Examples 1 to 3), ethylated ethylenedioxythiophene and ethylenedioxythiophene Of Examples 1 to 7 synthesized using a mixture of the above (Preparation Examples 4 to 6) and a mixture of three kinds of propylated ethylenedioxythiophene, ethylated ethylenedioxythiophene and ethylenedioxythiophene (Preparation Example 7)
  • the conductive polymer is a conductive polymer of Comparative Example 2 synthesized using propylated ethylenedioxythiophene alone as a monomer, and a conductive polymer of Comparative Example 3 synthesized using ethylated ethylenedioxythiophene alone as a monomer.
  • Examples 11 to 20 and Comparative Examples 5 to 8 In Examples 11 to 20 and Comparative Examples 5 to 8, a tantalum solid electrolytic capacitor was produced, and the characteristics were evaluated using the tantalum solid electrolytic capacitor.
  • a chemical conversion treatment is performed by applying a voltage of 20 V to the tantalum sintered body, and a dielectric layer is formed on the surface of the tantalum sintered body.
  • the capacitor mixture was formed into an oxide film, and then the monomer mixture prepared in Preparation Examples 1 to 10, ethylenedioxythiophene, and alkylated ethylenedioxythiophene obtained in Synthesis Examples 1 to 3 were each ethanol.
  • the capacitor element was immersed in each solution diluted to a concentration of 25 v / v%, taken out after 1 minute, and left for 5 minutes.
  • a paratoluenesulfonic acid iron ethanol solution having a concentration of 40% prepared in advance (the paratoluenesulfonic acid is an oxidizing agent / dopant, and the molar ratio of paratoluenesulfonic acid and iron in the iron paratoluenesulfonate) (The ratio is 2.8: 1) and was taken out after 30 seconds and allowed to stand at room temperature for 80 minutes for polymerization.
  • the capacitor element having the conductive polymer layer formed as described above was immersed in pure water, allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. After repeating this operation 15 times, a solid electrolyte layer made of a conductive polymer was covered with a carbon paste and a silver paste, and was covered with an exterior material to produce a tantalum solid electrolytic capacitor.
  • the ESR and capacitance of the tantalum solid electrolytic capacitors of Examples 10 to 20 and Comparative Examples 5 to 8 manufactured as described above were measured. The results are shown in Table 2.
  • the measuring method of ESR and an electrostatic capacitance is as showing below.
  • ESR ESR
  • HEWREWTT PACKARD LCR meter 4284A
  • ESR was measured at 25 ° C. and 100 kHz
  • electrostatic capacity HEWLEWTT PACKARD LCR meter (4284A) was used, and 25 ° C.
  • the electrostatic capacity was measured at 120 Hz.
  • tantalum solid electrolytic capacitors of Examples 11 to 20 and Comparative Examples 5 to 8 after the above characteristic measurement (hereinafter referred to as “Tantalum solid electrolytic capacitors” of Examples 11 to 20 and Comparative Examples 5 to 8 are simplified.
  • the capacitor ” was stored in a static bath at 150 ° C., and after 100 hours, ESR and capacitance were measured in the same manner as described above. The results are shown in Table 3.
  • the capacitors of Examples 11 to 20 had lower ESR and superior capacitor characteristics as compared with the capacitor of Comparative Example 5. That is, the capacitors of Examples 11 to 20 in which the conductive polymer synthesized using the mixture of alkylated ethylenedioxythiophene and ethylenedioxythiophene prepared in Preparation Examples 1 to 10 as monomers is used as the monomer As compared with the capacitor of Comparative Example 5 in which a conductive polymer synthesized by using ethylenedioxythiophene alone as a solid electrolyte was used, the ESR was low and the characteristics as a capacitor were excellent. This is because the conductive polymer used as the solid electrolyte of the capacitors of Examples 11 to 20 has higher conductivity than the conductive polymer used as the solid electrolyte of the capacitor of Comparative Example 5. It is thought that it is based on.
  • the conductive polymer used as the solid electrolyte of the capacitors of Comparative Examples 6 to 8 was synthesized using each of the alkylated ethylenedioxythiophenes obtained in Synthesis Examples 1 to 3 alone as a monomer.
  • the capacitors of Comparative Examples 6 to 8 have the same conductivity as shown in Table 1, although the conductivity is high.
  • ESR was larger than that of the capacitor of Comparative Example 5.
  • a plurality of conductive polymers are laminated to form a solid electrolyte layer in the production of a capacitor.
  • the capacitors of Comparative Examples 6 to 8 have a solid electrolyte layer compared to the capacitor of Comparative Example 5. This is considered to be based on the high contact resistance between the conductive polymer layers at the time of forming.
  • the capacitors of Examples 11 to 20 were synthesized by including the alkylated ethylenedioxythiophene as the monomer as the conductive polymer constituting the solid electrolyte layer, similar to the capacitors of Comparative Examples 6 to 8. Nevertheless, the ESR is smaller than the capacitors of Comparative Examples 6 to 8, in the case of the capacitors of Examples 11 to 20, the conductive polymer constituting the solid electrolyte layer contains ethylenedioxythiophene as a monomer. Since it was synthesized, the portion based on ethylenedioxythiophene is considered to be due to a decrease in contact resistance when a conductive polymer layer is laminated to form a solid electrolyte layer.
  • the capacitors of Examples 11 to 20 had less increase in ESR due to storage at high temperature and excellent heat resistance than the capacitors of Comparative Examples 6 to 8.
  • Examples 21 to 34 and Comparative Examples 9 to 13 In Examples 21 to 34 and Comparative Examples 9 to 13, a wound aluminum solid electrolytic capacitor was produced, and the characteristics were evaluated using the wound aluminum solid electrolytic capacitor.
  • a lead terminal is attached to the anode on which the dielectric layer is formed by performing a chemical conversion treatment, and the lead terminal is attached to the cathode made of aluminum foil.
  • Leak current After applying a rated voltage of 16 V to a wound aluminum solid electrolytic capacitor at 25 ° C. for 60 seconds, leakage current was measured with a digital oscilloscope. Occurrence of leakage current failure: The leakage current was measured in the same manner as in the case of the leakage current, and it was determined that a leakage current failure occurred when the leakage current was 100 ⁇ A or more.
  • the measurement is performed for each sample by 20 pieces, and the numerical values shown in Table 4 regarding ESR and capacitance are obtained by calculating the average value of the 20 pieces and rounding off the decimals.
  • Table 4 on the result of examining the presence or absence of occurrence of this leakage current failure, an aspect is shown in which the total number of capacitors subjected to the test is shown in the denominator and the number of capacitors where leakage current failure has occurred is shown in the numerator. Is displayed as “Number of leakage current defects”.
  • wound aluminum solid electrolytic capacitors of Examples 21 to 34 and Comparative Examples 9 to 13 after the above characteristic measurement were stored in a stationary state in a thermostatic bath at 150 ° C., and after 100 hours, as described above, ESR and capacitance measurements were made. The results are shown in Table 5.
  • the wound aluminum solid electrolytic capacitors of Examples 21 to 34 are compared with the capacitor of Comparative Example 9.
  • the ESR was low (small)
  • the capacitance was large
  • the characteristics as a capacitor were excellent.
  • the capacitors of Examples 21 to 34 in which the conductive polymer synthesized using the mixture of alkylated ethylenedioxythiophene and ethylenedioxythiophene prepared in Preparation Examples 1 to 14 as monomers is used as the solid electrolyte, As compared with the capacitor of Comparative Example 9 in which a conductive polymer synthesized by using ethylenedioxythiophene alone as a solid electrolyte was used, the ESR was low, the capacitance was large, and the characteristics as a capacitor were excellent.
  • the capacitors of Examples 21 to 34 had lower ESR than the capacitor of Comparative Example 9, because the conductive polymer used as the solid electrolyte of the capacitors of Examples 21 to 34 was that of Comparative Example 9. It is considered that the conductivity is higher than that of the conductive polymer used as the solid electrolyte of the capacitor.
  • the capacitors of Examples 21 to 34 had a larger capacitance than the capacitor of Comparative Example 9 because the conductive polymer used as the solid electrolyte of the capacitors of Examples 21 to 34 was an alkylated ethylene diester.
  • the capacitors of Examples 21 to 34 showed less increase in ESR due to storage at high temperature and excellent heat resistance than the capacitors of Comparative Examples 10 to 13.
  • the capacitors of Examples 21 to 34 are those of Comparative Examples 10 to 13 in which the conductive polymer synthesized by using each of the alkylated ethylenedioxythiophenes obtained in Synthesis Examples 1 to 4 alone as a monomer is a solid electrolyte. Compared with the capacitor, the increase in ESR due to storage at high temperature was small, and the heat resistance was excellent.
  • Example 21 to 34 and Comparative Examples 9 to 13 the capacitors of Example 22, Example 24, Example 27, Example 29, Example 31, Example 34, and Comparative Example 9 are as follows.
  • Table 6 shows the results of the breakdown voltage test. In the breakdown voltage test, a voltage was applied to each capacitor at a speed of 1 V / second, and a numerical value where the current exceeded 0.5 A was read and used as a breakdown voltage. The test results shown in Table 6 are obtained by testing five capacitors for each capacitor, obtaining an average value of the five capacitors, and rounding off the decimals.
  • the capacitors of Examples 22, 24, 27, 29, 31, and 34 had a higher breakdown voltage than the capacitor of Comparative Example 9, and were able to withstand high voltages.
  • tantalum solid electrolytic capacitors were prepared using aromatic iron sulfonate-based iron paratoluene sulfonate as an oxidizing agent and dopant, and the characteristics thereof were evaluated.
  • a tantalum solid electrolytic capacitor is manufactured using persulfate ammonium persulfate as an oxidizing agent, and its characteristics are evaluated.
  • a chemical conversion treatment is performed by applying a voltage of 20 V to the tantalum sintered body, and a dielectric layer is formed on the surface of the tantalum sintered body.
  • An oxide film was formed to obtain a capacitor element.
  • the capacitor element was immersed in a solution obtained by diluting the monomer mixture prepared in Preparation Example 1 with ethanol to a concentration of 35 v / v%, taken out after 1 minute, and allowed to stand for 5 minutes.
  • a mass of 200: 200: 1 was prepared by preparing a phenolsulfonic acid 2-methylimidazole aqueous solution (pH 5) having a concentration of 60%, an ammonium persulfate aqueous solution having a concentration of 40%, and a dodecylamine oxide aqueous solution having a concentration of 20%. Soaked in an oxidizing agent / dopant solution (dopant is phenolsulfonic acid) containing an emulsifier (dodecylamine oxide) composed of a mixture mixed in a ratio, taken out after 30 seconds, left at room temperature for 10 minutes, and then at 70 ° C. Polymerization was carried out by heating for 10 minutes.
  • the capacitor element having the conductive polymer layer formed as described above was immersed in pure water, allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. This operation was repeated 12 times and then dried at 150 ° C. for 1 hour. Then, a solid electrolyte layer made of a conductive polymer was covered with a carbon paste and a silver paste and packaged with an exterior material to produce a tantalum solid electrolytic capacitor.
  • Example 36 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 35 except that the monomer mixture prepared in Preparation Example 5 was used instead of the monomer mixture in Preparation Example 1.
  • Example 37 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 35 except that the monomer mixture prepared in Preparation Example 7 was used instead of the monomer mixture in Preparation Example 1.
  • Example 38 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 35 except that the monomer mixture prepared in Preparation Example 9 was used in place of the monomer mixture in Preparation Example 1.
  • Example 39 All except that 60% concentration 1,3-6-naphthalene trisulfonic acid 2-methylimidazole aqueous solution (pH 5) was used in place of 60% phenolsulfonic acid 2-methylimidazole aqueous solution (pH 5). The same operation as in Example 35 was performed to produce a tantalum solid electrolytic capacitor.
  • Comparative Example 14 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 35 except that ethylenedioxythiophene was used as a monomer instead of the monomer mixture in Preparation Example 1.
  • Comparative Example 15 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 35, except that the propylene ethylenedioxythiophene obtained in Synthesis Example 1 was used as a monomer instead of the monomer mixture in Preparation Example 1.
  • Comparative Example 16 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 35 except that ethylated ethylenedioxythiophene obtained in Synthesis Example 2 was used as a monomer instead of the monomer mixture in Preparation Example 1.
  • Comparative Example 17 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 35 except that methylated ethylenedioxythiophene obtained in Synthesis Example 3 was used as a monomer instead of the monomer mixture in Preparation Example 1.
  • Comparative Example 18 All comparisons were made except that 60% 1,2-6-imidazole trimethyl sulfonate solution (pH 5) was used instead of 60% phenol sulfonate 2-methyl imidazole solution (pH 5). The same operation as in Example 14 was performed to produce a tantalum solid electrolytic capacitor.
  • Comparative Example 19 All except that a 60% strength aqueous solution of 2-methylimidazole of phenolsulfonic acid (pH 5) was used instead of a 60% strength aqueous solution of 1,3,6-naphthalenetrisulfonic acid 2-methylimidazole (pH 5). The same operation as in Comparative Example 16 was performed to produce a tantalum solid electrolytic capacitor.
  • a conductive polymer synthesized using a mixture of alkylated ethylenedioxythiophene and ethylenedioxythiophene prepared in Preparation Examples 1, 5, 7 and 9 as a monomer was used as a solid electrolyte.
  • the tantalum solid electrolytic capacitors of Examples 35 to 39 (hereinafter simply referred to as “capacitors” with respect to “tantalum solid electrolytic capacitors”) are made of a conductive polymer synthesized using ethylenedioxythiophene alone as a monomer as a solid electrolyte. Compared with the capacitors of Comparative Examples 14 and 18, the ESR was low and the characteristics as a capacitor were excellent.
  • the conductive polymer used as the solid electrolyte of the capacitors of Examples 35 to 39 is more conductive than the conductive polymer used as the solid electrolyte of the capacitors of Comparative Examples 14 and 18. This is thought to be based on the high rate.
  • the capacitors of Examples 35 to 39 were obtained by using conductive polymers synthesized using the alkylated ethylenedioxythiophenes obtained in Synthesis Examples 1 to 3 alone as monomers as solid electrolytes and solid electrolytes. Compared to the capacitors of Comparative Examples 15 to 17 and Comparative Example 19, the increase in ESR due to storage at high temperature was small, and the heat resistance was excellent.
  • Example 40 In Examples 11 to 39 so far, a solid electrolytic capacitor was produced using only the conductive polymer of the present invention as a solid electrolyte. However, in Example 40 and the following Examples 41 to 43, the present invention is not limited. A solid electrolyte layer made of another conductive polymer is further formed on the solid electrolyte layer made of a conductive polymer to produce a tantalum solid electrolytic capacitor, and its characteristics are evaluated.
  • a dispersion containing a conductive polymer for preparing a solid electrolyte made of another conductive polymer in Example 40 and the following Examples 41 to 43 was prepared as follows.
  • Polyethylene styrene sulfonic acid and sulfonated polyester were used as the polymer sulfonic acid serving as a dopant.
  • the mixture was stirred with a stainless steel stirring blade, an anode was attached to the container, a cathode was attached to the base of the stirring blade, and electrolytic oxidation polymerization was performed at a constant current of 1 mA / cm 2 for 18 hours.
  • electrolytic oxidation polymerization it was diluted 4 times with water, and then subjected to a dispersion treatment with an ultrasonic homogenizer [manufactured by Nippon Seiki Co., Ltd., US-T300 (trade name)] for 30 minutes. Thereafter, 100 g of Cation Exchange Resin Amberlite 120B (trade name) manufactured by Organo Corporation was added and stirred with a stirrer for 1 hour. Subsequently, filter paper No. manufactured by Toyo Filter Paper Co., Ltd. The mixture was filtered through 131, and the treatment with the cation exchange resin and subsequent filtration were repeated three times to remove all cation components such as iron ions in the liquid.
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name), molecular weight fraction 50,000, manufactured by Sartorius Co., Ltd.). Ingredients were removed.
  • the liquid after this treatment is diluted with water to adjust the concentration to 3%, 4 g of dimethyl sulfoxide as a high boiling point solvent is added to 40 g of the 3% liquid, and a conductive polymer using polystyrene sulfonic acid as a dopant. A dispersion A containing was obtained.
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • the mixture was diluted 4 times with water, and then subjected to a dispersion treatment for 30 minutes with an ultrasonic homogenizer [manufactured by Nippon Seiki Co., Ltd., US-T300 (trade name)]. Thereafter, 100 g of Organo cation exchange resin Amberlite 120B (trade name) was added and stirred with a stirrer for 1 hour. The mixture was filtered through 131, and the treatment with this cation exchange resin and filtration were repeated three times to remove all cation components in the liquid.
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name), molecular weight fraction 50,000, manufactured by Sartorius Co., Ltd.). Ingredients were removed.
  • the liquid after this treatment is diluted with water to adjust the concentration to 3%, and 4 g of dimethyl sulfoxide as a high boiling point solvent is added to 40 g of the 3% liquid, and stirred to conduct using the sulfonated polyester as a dopant.
  • Dispersion B containing a functional polymer was obtained.
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • the dispersion A and the dispersion B were mixed at a mass ratio of 1: 1 to obtain a dispersion containing a conductive polymer.
  • a tantalum solid electrolytic capacitor preparation of a tantalum solid electrolytic capacitor will be specifically shown.
  • a chemical conversion treatment is performed by applying a voltage of 20 V to the tantalum sintered body, and a dielectric is applied to the surface of the tantalum sintered body.
  • An oxide film serving as a body layer was formed to obtain a capacitor element.
  • the capacitor element was immersed in a solution obtained by diluting the monomer mixture prepared in Preparation Example 1 with ethanol to a concentration of 35 v / v%, taken out after 1 minute, and allowed to stand for 5 minutes.
  • an aqueous solution of 2-methylimidazole naphthalene trisulfonate (pH 5) having a concentration of 60% prepared in advance, an aqueous solution of ammonium persulfate having a concentration of 40%, and an aqueous solution of dodecylamine oxide having a concentration of 20% were prepared in a ratio of 200: 200: 1.
  • an oxidizing agent / dopant solution dopant is naphthalenesulfonic acid
  • an emulsifier dodecylamine oxide
  • the capacitor element having the conductive polymer layer formed as described above was immersed in pure water, allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. This operation was repeated 6 times and then dried at 150 ° C. for 1 hour to form a solid electrolyte layer made of the conductive polymer of the present invention.
  • the capacitor element having the solid electrolyte layer made of the conductive polymer of the present invention as described above is immersed in a dispersion containing the conductive polymer having the polymer sulfonic acid as a dopant as described above.
  • the operation of leaving for 1 minute, taking out, and drying at 50 ° C. for 10 minutes and 150 ° C. for 10 minutes was repeated twice to obtain another conductive polymer (that is, a conductive material different from the conductive polymer of the present invention).
  • the solid electrolyte layer was covered with a carbon paste and a silver paste, and packaged with an exterior material to produce a tantalum solid electrolytic capacitor.
  • Example 41 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 40 except that the monomer mixture prepared in Preparation Example 5 was used instead of the monomer mixture in Preparation Example 1.
  • Example 42 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 40 except that the monomer mixture prepared in Preparation Example 7 was used in place of the monomer mixture in Preparation Example 1.
  • Example 43 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 40 except that the monomer mixture prepared in Preparation Example 9 was used instead of the monomer mixture in Preparation Example 1.
  • Comparative Example 20 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 40 except that ethylenedioxythiophene was used as a monomer instead of the monomer mixture of Preparation Example 1.
  • Comparative Example 21 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 40 except that the monomer mixture of Preparation Example 1 was used and the propylene ethylenedioxythiophene obtained in Synthesis Example 1 was used as a monomer.
  • Comparative Example 22 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 40 except that ethylated ethylenedioxythiophene obtained in Synthesis Example 2 was used as a monomer instead of the monomer mixture in Preparation Example 1.
  • Comparative Example 23 A tantalum solid electrolytic capacitor was produced in the same manner as in Example 40 except that methylated ethylenedioxythiophene obtained in Synthesis Example 3 was used as the monomer instead of the monomer mixture in Preparation Example 1.
  • ESR and capacitance were measured in the same manner as in Example 11. The results are shown in Table 9. In addition, the measurement is performed for each sample 20 pieces, and the numerical values shown in Table 9 regarding ESR and capacitance are obtained by calculating an average value of the 20 pieces and rounding off the decimals.
  • the tantalum solid electrolytic capacitors of Examples 40 to 43 have lower ESR than the capacitor of Comparative Example 20,
  • the effect of configuring a solid electrolyte with a conductive polymer synthesized using a mixture of an alkylated ethylenedioxythiophene and ethylenedioxythiophene as a monomer of the present invention is the same as that of a solid electrolyte composed of another conductive polymer. Even in the capacitor having the same, it was expressed without being damaged.
  • the capacitors of Examples 40 to 43 have less increase in ESR due to storage at high temperature and superior heat resistance compared to the capacitor elements of Comparative Examples 21 to 23.
  • the effect of the present invention was exhibited without being impaired.
  • a conductive polymer having high conductivity and excellent heat resistance can be provided.
  • a solid electrolytic capacitor using such a conductive polymer having high conductivity and excellent heat resistance as a solid electrolyte and having low ESR, large capacitance, and high reliability under high temperature conditions. can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

【課題】 導電性が高く、かつ耐熱性が優れた導電性高分子を提供し、また、それを固体電解質として用いてESRが低く、かつ静電容量が大きく、しかも高温条件下における信頼性が高い固体電解コンデンサを提供する。 【解決手段】 2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとのモル比が0.05:1~1:0.1のモノマー混合物を、有機スルホン酸の存在下で重合して、上記有機スルホン酸をドーパントとして含む導電性高分子を提供し、それを固体電解質として用いて固体電解コンデンサを構成する。上記2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとしては、そのアルキル部分がメチル、エチル、プロピル、ブチルのものが好ましい。

Description

導電性高分子およびそれを固体電解質として用いた固体電解コンデンサ
 本発明は、導電性高分子およびそれを固体電解質として用いた固体電解コンデンサに関する。
 導電性高分子は、その高い導電性により、例えば、タンタル固体電解コンデンサ、アルミニウム固体電解コンデンサ、ニオブ固体電解コンデンサなどの固体電解コンデンサの固体電解質として用いられている。
 この用途における導電性高分子としては、例えば、チオフェンまたはその誘導体などを化学酸化重合または電解酸化重合することによって得られたものが用いられている。
 上記チオフェンまたはその誘導体などの化学酸化重合を行う際のドーパントとしては、主として有機スルホン酸が用いられ、その中でも、芳香族スルホン酸が適しているといわれており、酸化剤としては、遷移金属が用いられ、その中でも第二鉄が適しているといわれていて、通常、芳香族スルホン酸の第二鉄塩がチオフェンまたはその誘導体などの化学酸化重合にあたって酸化剤兼ドーパントとして用いられている。
 上記チオフェンまたはその誘導体としては、これまで、得られる導電性高分子の導電性および耐熱性のバランスがとれていて有用性が高いという理由から、3,4-エチレンジオキシチオフェンが多用されてきた(特許文献1~2)。
 しかしながら、導電性高分子を固体電解質として用いる固体電解コンデンサの技術革新は日進月歩であり、さらなる特性の向上が望まれていることから、導電性高分子に対しても、さらなる特性の向上が要望されている。
 そこで、導電性を高めるべく、3,4-エチレンジオキシチオフェンをアルキル基で修飾した3,4-アルキレンジオキシチオフェンを用いることが提案されている(特許文献3)。しかしながら、3,4-アルキレンジオキシチオフェンを用いた場合には、耐熱性の低下が大きく、固体電解コンデンサの固体電解質として用いたときに、得られる固体電解コンデンサの高温条件下における信頼性が低下する上に、ESR(等価直列抵抗)も高(悪)くなり、実用性を欠くという問題があった。
特開2003-160647号公報 特開2004-265927号公報 特表2004-525946号公報
 本発明は、上記のような事情に鑑み、導電性が高く、かつ耐熱性が優れた導電性高分子を提供し、また、それを固体電解質として用いて、ESRが低く、かつ静電容量が大きく、しかも高温条件下における信頼性が高い固体電解コンデンサを提供することを目的とする。
 本発明は、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2,3-Dihydro-thieno〔3,4-b〕〔1,4〕dioxine)と、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Alkyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)とのモル比が0.05:1~1:0.1の混合モノマーを、有機スルホン酸の存在下で、重合してなり、上記有機スルホン酸をドーパントとして含む導電性高分子が、導電性が高く、かつ耐熱性が優れ、また、それを固体電解質として用いることによって、ESRが低く、かつ静電容量が大きく、しかも高温条件下における信頼性が高い固体電解コンデンサが得られることを見出し、それに基づいて完成したものである。
 本発明の導電性高分子は、導電性が高く、かつ耐熱性が優れている。そして、その導電性高分子を固体電解質として用いた固体電解コンデンサは、ESRが低く、かつ静電容量が大きく、しかも高温条件下の使用での信頼性が高い。
 本発明の導電性高分子を構成するにあたって、その原料となるモノマー混合物は、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとをモル比で0.05:1~1:0.1の混合比率で混合したものであるが、このモノマー混合物におけるそれぞれのモノマーは、下記の一般式(1)で表される化合物に該当する。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素またはアルキル基である)
 そして、上記一般式(1)中のRが水素の化合物は、IUPAC名称で表示すると、上記のように「2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン」であるが、この化合物は、IUPAC名称で表示されるよりも、一般名称の「エチレンジオキシチオフェン」で表示されることが多いので、本書では、以下、この「2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン」を「エチレンジオキシチオフェン」と表示する。なお、この「エチレンジオキシチオフェン」は前出の「3,4-エチレンジオキシチオフェン」と同じものである。そして、上記一般式(1)中のRがアルキル基の場合、該アルキル基としては、炭素数が1~4のもの、つまり、メチル基、エチル基、プロピル基、ブチル基が好ましく、それらを具体的に例示すると、一般式(1)中のRがメチル基の化合物は、IUPAC名称で表示すると、「2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Methyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「メチル化エチレンジオキシチオフェン」と表示する。一般式(1)中のRがエチル基の化合物は、IUPAC名称で表示すると、「2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Ethyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「エチル化エチレンジオキシチオフェン」と表示する。一般式(1)中のRがプロピル基の化合物は、IUPAC名称で表示すると、「2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Propyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「プロピル化エチレンジオキシチオフェン」と表示する。そして、一般式(1)中のRがブチル基の化合物は、IUPAC名称で表示すると、「2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン(2-Butyl-2,3-dihydro-thieno〔3,4-b〕〔1,4〕dioxine)」であるが、以下、これを簡略化して「ブチル化エチレンジオキシチオフェン」と表示する。また、「2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン」を、以下、簡略化して「アルキル化エチレンジオキシチオフェン」で表わす。そして、これらのアルキル化エチレンジオキシチオフェンの中でも、メチル化エチレンジオキシチオフェン、エチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェン、ブチル化エチレンジオキシチオフェンが好ましく、特にエチル化エチレンジオキシチオフェン、プロピル化エチレンジオキシチオフェンが好ましい。
 そして、上記モノマー混合物におけるエチレンジオキシチオフェン(すなわち、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)とアルキル化エチレンジオキシチオフェン(すなわち、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)との混合比率を上記のようにモル比で0.05:1~1:0.1にするのは、そうすることによって、得られる導電性高分子の導電性をモノマーとしてエチレンジオキシチオフェンのみを用いて合成した導電性高分子の導電性より高め、かつ得られる導電性高分子の耐熱性をモノマーとしてアルキル化エチレンジオキシチオフェンのみを用いて合成した導電性高分子の耐熱性より優れたものにすることができるからであり、モノマー混合物におけるエチレンジオキシチオフェンの比率が上記より少なくなると、耐熱性が悪くなり、エチレンジオキシチオフェンの比率が上記より多くなると、所望とする高導電性が得られなくなる。
 本発明において、このモノマー混合物におけるエチレンジオキシチオフェンと、アルキル化エチレンジオキシチオフェン誘導体との混合比率としては、モル比で0.1:1~1:0.1が好ましく、0.2:1~1:0.2がより好ましく、0.3:1~1:0.3がさらに好ましい。
 特にエチレンジオキシチオフェンと混合して用いるアルキル化エチレンジオキシチオフェンとして、エチル化エチレンジオキシチオフェンやプロピル化エチレンジオキシチオフェンを用いるときは、得られる導電性高分子の導電性をエチル化エチレンジオキシチオフェンやプロピル化エチレンジオキシチオフェン由来の高い導電性とほぼ同等の高い導電性に向上させることができ、かつ、得られる導電性高分子の耐熱性をエチル化エチレンジオキシチオフェンやプロピル化エチレンジオキシチオフェン由来の低い耐熱性から大幅に向上させてエチレンジオキシチオフェン由来の優れた耐熱性にほぼ近付けさせることができ、それによって、導電性、耐熱性がハイレベルでバランスのとれた特性の優れた導電性高分子が得られるようになる。つまり、アルキル化エチレンジオキシチオフェンとしてエチル化エチレンジオキシチオフェンやプロピル化エチレンジオキシチオフェンを用いて、エチレンジオキシチオフェンと混合したモノマー混合物を重合させて得られる導電性高分子は、後記の実施例1~7で示すように、モノマーとしてエチル化エチレンジオキシチオフェンやプロピル化エチレンジオキシチオフェンをそれぞれ単独で重合させて得られた導電性高分子とほぼ同等の高い導電性を有し、かつ、モノマーとしてエチレンジオキシチオフェン単独で重合させて得られた導電性高分子とほぼ同等の優れた耐熱性を有している。
 本発明の導電性高分子のドーパントとなる有機スルホン酸としては、特に特定のものに限定されることはないが、例えば、ベンゼンスルホン酸またはその誘導体、ナフタレンスルホン酸またはその誘導体、アントラキノンスルホン酸またはその誘導体などの芳香族系スルホン酸や、ポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂などの高分子スルホン酸が好適に用いられる。
 上記ベンゼンスルホン酸またはその誘導体におけるベンゼンスルホン酸誘導体としては、例えば、トルエンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、メトキシベンゼンスルホン酸、エトキシベンゼンスルホン酸、プロポキシベンゼンスルホン酸、ブトキシベンゼンスルホン酸、フェノールスルホン酸、クレゾールスルホン酸、ベンゼンジスルホン酸などが挙げられ、ナフタレンスルホン酸またはその誘導体におけるナフタレンスルホン酸誘導体としては、例えば、ナフタレンジスルホン酸、ナフタレントリスルホン酸、メチルナフタレンスルホン酸、エチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などが挙げられ、アントラキノンスルホン酸またはその誘導体におけるアントラキノンスルホン酸誘導体としては、例えば、アントラキノンジスルホン酸、アントラキノントリスルホン酸などが挙げられるが、これらの芳香族系スルホン酸としては、特に、トルエンスルホン酸、メトキシベンゼンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸、ナフタレントリスルホン酸が好ましい。
 導電性高分子を合成するにあたっての酸化重合は、化学酸化重合、電解酸化重合のいずれも採用することができ、それらの酸化重合は、水中または水と水混和性溶剤との混合物からなる水性液中で、あるいはアルコール系溶剤中で行われる。導電性高分子の合成を固体電解コンデンサの作製時に行う場合、モノマーは液状なので、モノマーをそのまま用いてもよいし、また、重合反応をよりスムーズに進行させるために、モノマーを、例えば、メタノール、エタノール、プロパノール、ブタノール、アセトン、アセトニトリルなどの有機溶剤で希釈して有機溶剤溶液として用いてもよい。また、その際には、酸化剤兼ドーパントは、上記有機溶剤で液状にして用いることが好ましい。なお、以下の説明においては、主として、通常に導電性高分子を合成する場合について説明し、必要に応じ、固体電解コンデンサの作製時に導電性高分子を合成する場合について説明する。
 上記水性液を構成する水混和性溶剤としては、例えば、メタノール、エタノール、プロパノール、アセトン、アセトニトリルなどが用いられ、これらの水混和性溶剤の水との混合割合としては、水性液全体中の50質量%以下が好ましい。
 上記のような水中または水性液中での酸化重合は、ドーパントとなる有機スルホン酸をイミダゾール塩などの有機塩にして用いる場合や酸化剤として過硫酸アンモニウムなどの過硫酸を用いる場合に適しているが、酸化剤として鉄などの遷移金属を用い、有機スルホン酸を金属塩として用いる場合には、酸化重合はアルコール系溶剤中で行うのが適している。上記のようなアルコール系溶剤としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどや、それらのアルコールにアセトン、アセトニトリルなどを添加したものなどが用いられる。
 化学酸化重合を行うにあたっての酸化剤としては、例えば、遷移金属や過硫酸塩などが用いられ、その遷移金属としては、鉄、銅、セリウム、クロム、マンガン、ルテニウム、亜鉛などが用いられるが、特に鉄が好ましく、過硫酸塩としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過硫酸カルシウム、過硫酸バリウムなどが用いられるが、特に過硫酸アンモニウムが好ましい。
 ドーパントとして、芳香族系スルホン酸を用いる場合、酸化剤として鉄を用い、酸化剤兼ドーパントとして芳香族系スルホン酸鉄を用いると、重合反応が速やかに進行するので、生産性が高く、かつ、コスト的にも安価であることから、特に好ましい。
 上記酸化剤兼ドーパントとして用いる芳香族系スルホン酸鉄において、その芳香族系スルホン酸と鉄とのモル比は、2.00:1~2.95:1が好ましく、芳香族系スルホン酸の鉄に対するモル比が上記より少ない場合は、溶液中での芳香族系スルホン酸鉄の安定性が悪くなり、また、芳香族系スルホン酸の鉄に対するモル比が上記より多い場合は、反応速度が速くなりすぎて、得られる導電性高分子の導電性が悪くなるおそれがある。
 また、上記芳香族系スルホン酸鉄は、水、水性液または有機溶剤で液状にしておくことが、使用しやすいことから好ましく、また、そのような液中において、芳香族系スルホン酸鉄の濃度は30~70質量%が好ましい。つまり、芳香族系スルホン酸鉄の濃度が30質量%より低い場合は、固体電解コンデンサに付着する導電性高分子量が少なくなるおそれがあり、また、芳香族系スルホン酸鉄の濃度が70質量%より高い場合は、粘度が高くなって、取扱性が悪くなるおそれがある。
 ドーパントとして、高分子スルホン酸を用いる場合は、酸化剤として過硫酸塩を用いることが適しているが、過硫酸塩は、例えば、フェノールスルホン酸、クレゾールスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、ナフタレントリスルホン酸、アントラキノンスルホン酸などの芳香族系スルホン酸と組み合せて用いることもできる。
 導電性高分子を合成するにあたっての化学酸化重合は、通常に導電性高分子を合成する場合と、固体電解コンデンサの作製時に導電性高分子を合成する場合のいずれにも適用でき、通常に導電性高分子を合成する場合の化学酸化重合時の温度は、5~95℃が好ましく、重合時間は、1時間~72時間が好ましい。そして、固体電解コンデンサの作製時に化学酸化重合により導電性高分子を合成する場合は、種々の条件によって、幅広い温度、重合時間が採用されていて、一般に、温度は0~300℃、時間は1分~72時間で化学酸化重合が行われる。
 電解酸化重合は、定電流でも定電圧でも行い得るが、例えば、定電流で電解酸化重合を行う場合、電流値としては0.05mA/cm~10mA/cmが好ましく、上記範囲内で0.2mA/cm以上がより好ましく、定電圧で電解酸化重合を行う場合は、電圧としては0.5V~10Vが好ましく、上記範囲内で、1.5V以上がより好ましい。電解酸化重合時の温度としては、5~95℃が好ましく、10℃以上がより好ましく、30℃以下がより好ましい。また、重合時間としては、1時間~72時間が好ましく、8時間以上がより好ましく、24時間以下がより好ましい。なお、電解酸化重合にあたっては、触媒として硫酸第一鉄または硫酸第二鉄を添加してもよい。
 上記のようにして得られる導電性高分子は、重合直後、水中または水性液中に分散した状態で得られ、酸化剤や触媒として用いた硫酸鉄塩やその分解物などを含んでいる。そこで、その不純物を含んでいる導電性高分子の水分散液を超音波ホモジナイザーや遊星ボールミルなどの分散機にかけて不純物を分散させた後、カチオン交換樹脂で金属成分を除去することが好ましい。このときの導電性高分子の粒径としては、100μm以下が好ましく、特に10μm以下が好ましい。その後、エタノール沈殿法、限外濾過法、陰イオン交換樹脂などにより、酸化剤や触媒の分解により生成した硫酸などをできるかぎり除去することが好ましい。
 本発明の導電性高分子は、導電性が高く、かつ耐熱性が優れていることから、特にタンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム固体電解コンデンサなどの固体電解コンデンサの固体電解質として好適に用いられ、ESRが低く、かつ静電容量が大きく、しかも高温条件下における信頼性が高い固体電解コンデンサを提供することができる。
 本発明の導電性高分子を固体電解質として上記タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム固体電解コンデンサを作製する場合、まず、上記のように、本発明の導電性高分子を合成し、それを水、水性液または有機溶剤で分散液の状態にし、その導電性高分子の分散液を上記固体電解コンデンサの作製に供してもよいし、また、これまでにも少し触れてきたように、固体電解コンデンサの作製時に、本発明の導電性高分子を合成して、それを固体電解質としてもよい。
 例えば、本発明の導電性高分子を分散液の状態で使用に供する場合、まず、本発明の導電性高分子をタンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、積層型アルミニウム固体電解コンデンサなどの固体電解質として用いる場合について説明すると、タンタル、ニオブ、アルミニウムなどの弁金属の多孔体からなる陽極と、それらの弁金属の酸化皮膜からなる誘電体層を有するコンデンサ素子を、本発明の導電性高分子の分散液に浸漬し、取り出した後、乾燥する工程を繰り返すことによって、本発明の導電性高分子からなる固体電解質層を形成した後、カーボンペースト、銀ペーストを付け、乾燥した後、外装することによって、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、積層型アルミニウム固体電解コンデンサなどの固体電解コンデンサを作製することができる。
 そして、固体電解コンデンサの作製時に本発明の導電性高分子を合成して、それを固体電解質とする場合、前記特定のモノマー混合物を含む液中に上記コンデンサ素子を浸漬し、取り出し、その後、ドーパントとなる有機スルホン酸と酸化剤を含む液に浸漬し、取り出し、重合を行い、その後、水に浸漬し、取り出して、乾燥する工程を繰り返して、本発明の導電性高分子からなる固体電解質層を形成し、その固体電解質層を有するコンデンサ素子をカーボンペースト、銀ペーストで覆った後、外装することによって、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、積層型アルミニウム固体電解コンデンサなどを作製することもできる。
 また、本発明の導電性高分子を巻回型アルミニウム固体電解コンデンサの固体電解質として用いる場合も、本発明の導電性高分子を分散液にし、それを巻回型アルミニウム固体電解コンデンサの作製に供してもよいし、また、巻回型アルミニウム固体電解コンデンサの作製時に、本発明の導電性高分子を合成して、それを固体電解質としてもよい。
 例えば、本発明の導電性高分子を分散液の状態で使用に供する場合、まず、アルミニウム箔の表面をエッチング処理した後、化成処理を行って誘電体層を形成した陽極にリード端子を取り付け、また、アルミニウム箔からなる陰極にリード端子を取り付け、それらのリード端子付き陽極と陰極とをセパレータを介して巻回してコンデンサ素子を作製し、そのコンデンサ素子を本発明の導電性高分子の分散液に浸漬し、取り出して、乾燥した後、アルミニウム箔のエッチングにより形成された細孔に入っていない導電性高分子を取り除くため、純水に浸漬し、取り出した後、乾燥し、これらの操作を繰り返して、本発明の導電性高分子からなる固体電解質層を形成したのち、外装材で外装して、巻回型アルミニウム固体電解コンデンサを作製することができる。
 そして、巻回型アルミニウム固体電解コンデンサの作製時に本発明の導電性高分子を合成して、それを固体電解質とする場合、前記モノマー混合物を含む液中に前記コンデンサ素子を浸漬し、取り出し、その後、ドーパントとなる有機スルホン酸と酸化剤を含む液に浸漬し、取り出し、重合を行い、その後、水に浸漬し、取り出して、乾燥する工程を繰り返して、本発明の導電性高分子からなる固体電解質層を形成し、その固体電解質層を有するコンデンサ素子を外装材で外装して、巻回型アルミニウム固体電解コンデンサを作製することができる。
 また、それらの固体電解コンデンサの作製時において、本発明の導電性高分子で固体電解質を構成した後、さらにその固体電解質の上に他の導電性高分子で固体電解質を構成して固体電解コンデンサを作製してもよい。
 次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例に例示のもののみに限定されることはない。なお、溶液や分散液などの濃度を示す%や純度を示す%は、特にその基準を付記しない限り質量基準による%である。また、実施例の説明に先立って、実施例などで用いるアルキル化エチレンジオキシチオフェン、つまり、プロピル化エチレンジオキシチオフェン、エチル化エチレンジオキシチオフェン、メチル化エチレンジオキシチオフェンおよびブチル化エチレンジオキシチオフェンの合成例を合成例1~4で示し、モノマー混合物の調製例を調製例1~10として示す。
合成例1 プロピル化エチレンジオキシチオフェン(すなわち、2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の1-(1)~1-(3)の工程を経てプロピル化エチレンジオキシチオフェンを合成した。
1-(1) ペンタン-1,2-ジイル-ビス(4-メチルベルゼンスルホネート)〔Pentane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷化、反応容器にトシルクロリド5.89kg(30モル)と1,2-ジクロロエタン7.30kgを入れ、容器内の温度が10℃になるまで撹拌し、その中にトリエチルアミン3.83kg(37.5モル)を滴下した。
 上記の混合物を撹拌しながら、容器内の温度が40℃を超えないようにしつつ、1、2-ペンタンジオール1.56kg(15モル)を60分かけて注意深く滴下した。容器内の温度を40℃に保ちながら混合物を6時間撹拌した。反応終了液を室温まで冷却し、水3kgを加えて撹拌し、その後、静置した。
 反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。氷冷下、反応容器に水とメタノールとの質量比1:2の混合物550gを入れて撹拌し、上記のようにして得た黒赤色オイル状物を滴下しながら撹拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄し、ついで乾燥して、生成物としてペンタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を3.77kg得た。固形分換算での収率は60%であった。
1-(2) 2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Propyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic acid〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート〔Disodium-2,5-bis(alkoxycarbonyl)thiophene-3,4-diolate〕1.18kg(3.88モル)と、上記1-(1)のようにして得たペンタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)2.80kg(6.79モル)と、炭酸カリウム107g(0.77モル)と、ジメチルホルムアミド5kgとを入れ、容器内の温度を120℃に保ちながら混合物を4時間撹拌した。
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム(NaHCO)水溶液5kgを入れ、室温で15分間撹拌して茶色固体を濾取した。
 反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液5.32kgを入れて、容器内の温度を80℃に保ちながら2時間撹拌した。
 容器内が室温になるまで冷却し、容器内の温度が30℃を超えないようにしながら、反応終了液に98%硫酸1.94kgを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥して、生成物として2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを727g得た。固形分換算での収率は68%であった。
1-(3) プロピル化エチレンジオキシチオフェンの合成
 上記1-(2)のようにして得た2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド1.12kg(4.1モル)を反応容器内でジメチルホルムアミド1.2kgに溶解し、その中に酸化銅227gを加え、容器内の温度を125℃に保ちながら混合物を5.5時間攪拌した。
 ジメチルホルムアミドを濃縮し、エチレングリコール700gを入れて、混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、エチレングリコールを含有する本留900gを留出させた。
 得られた本留に10%水酸化ナトリウム水溶液1kgを加え、容器内の温度を100℃に保ちながら2時間攪拌した後、静置した。
 2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を目的物のプロピル化エチレンジオキシチオフェンとして180g得た。収率は24%であった。
合成例2 エチル化エチレンジオキシチオフェン(すなわち、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の2-(1)~2-(3)の工程を経てエチル化エチレンジオキシチオフェンを合成した。
2-(1) ブタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)〔Butane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷下、反応容器にトシルクロリド14.25kg(73.28モル)と1,2-ジクロロエタン16kgを入れ、容器内の温度が10℃になるまで攪拌し、その中にトリエチルアミン9.36kg(91.6モル)を滴下した。
 上記の混合物を攪拌しながら、その混合物に容器内の温度が40℃を超えないようにしつつ1,2-ブタンジオール3.36kg(36.64モル)を60分間かけて注意深く滴下し、容器内の温度を40℃に保ちながら混合物を6時間攪拌した。反応終了液を室温まで冷却し、水5kgを加えて攪拌し、その後、静置した。
 反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。氷冷下、反応容器にメタノール1.25kgを入れて攪拌し、そこに上記のようにして得た黒赤色オイル状物を滴下しながら攪拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄した後、乾燥し、生成物としてブタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を12.05kg得た。固形分換算での収率は82%であった。
2-(2) 2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Ethyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic acid〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート250g(0.9モル)と、上記2-(1)のようにして得たブタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)725g(1.82モル)と、炭酸カリウム29g(0.27モル)と、ジメチルアセトアミド1kgとを入れ、容器内の温度を125℃に保ちながら混合物を4時間攪拌した、
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム水溶液1.8kgを入れ、室温で15分攪拌して茶色固体を濾取した。
 反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液1.25kgを入れて、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで冷却し、容器内の温度が30℃を超えないようにしつつ反応終了液に98%硫酸455gを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥し、生成物として2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを128g得た。固形分換算での収率は54%であった。
2-(3) エチル化エチレンジオキシチオフェンの合成
 上記2-(2)のようにして得た2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド500g(1.94モル)を反応容器内でジメチルホルムアミド1kgに溶解し、そこへ酸化銅102gを加え、容器内の温度を125℃に保ちながら混合物を5.5時間攪拌した。
 ジメチルホルムアミドを濃縮し、エチレングリコール1.7kgを入れて、混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、エチレングリコールを含有する本留1.82kgを留出させた。
 得られた本留に10%水酸化ナトリウム水溶液1kgを加え、容器内の温度を100℃に保ちながら2時間攪拌し、その後、静置した。2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を目的物のエチル化エチレンジオキシチオフェンとして130g得た。収率は39%であった。
合成例3 メチル化エチレンジオキシチオフェン(すなわち、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の3-(1)~3-(3)の工程を経てメチル化エチレンジオキシチオフェンを合成した。
3-(1) プロパン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)〔Propane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷下、反応容器にトシルクロリド7.86kg(40モル)と1,2-ジクロロエタン7kgを入れ、容器内の温度が10℃になるまで攪拌し、その中にトリエチルアミン5.11kg(50モル)を滴下した。
 上記の混合物を攪拌しながら、その混合物に容器内の温度が40℃を超えないようにしつつ1,2-プロパンジオール1.55kg(20モル)を60分かけて注意深く滴下し、容器内の温度を40℃に保ちながら混合物を6時間攪拌した。
 反応終了液を室温まで冷却し、水4kgを加えて攪拌し、その後、静置した。反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。
 氷冷下、反応容器にメタノール500gを入れて攪拌し、そこに上記のようにして得た黒赤色オイル状物を滴下しながら攪拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄した後、乾燥して、生成物としてプロパン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を3.87kg得た。固形分換算での収率は50%であった。
3-(2) 2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Methyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic aced〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート508g(1.67モル)と、上記3-(1)のようにして得たプロパン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)960g(2.5モル)と、炭酸カリウム46g(0.33モル)と、ジメチルホルムアミド2.5kgとを入れ、容器内の温度を120℃に保ちながら混合物を4時間攪拌した。
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム水溶液3.7kgを入れ、室温で15分間攪拌して茶色固体を濾取した。反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液2.47kgを入れて、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで冷却し、容器内の温度が30℃を超えないようにしつつ反応終了液に98%硫酸759gを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥して、生成物として2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを310g得た。固形分換算での収率は76%であった。
3-(3) メチル化エチレンジオキシチオフェン(2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 上記3-(2)のようにして得た2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド880g(3.6モル)を反応容器内で3kgのポリエチレングリコール300(林純薬工業社製)に溶解し、酸化銅176gを加え、混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、ポリエチレングリコール300を含有する本留に水400gを加えて攪拌し、静置した。
 2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を生成物のメチル化エチレンジオキシチオフェンとして343g得た。収率は60%であった。
合成例4 ブチル化エチレンジオキシチオフェン(すなわち、2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)の合成
 次の4-(1)~4-(3)の工程を経てブチル化エチレンジオキシチオフェンを合成した。
4-(1) ペンタン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)〔Pentane-1,2-diyl-bis(4-methylbenzen sulfonate)〕の合成
 氷冷下、反応容器にトシルクロリド5.89kg(30モル)と1,2-ジクロロエタン7.3kgを入れ、容器内の温度が10℃になるまで攪拌し、その中にトリエチルアミン3.83kg(37.5モル)を滴下した。
 上記の混合物を攪拌しながら、その混合物に容器内の温度が40℃を超えないようにしつつ1,2-ヘキサンジオール1.77kg(15モル)を60分かけて注意深く滴下し、容器内の温度を40℃に保ちながら混合物を6時間攪拌した。
 反応終了液を室温まで冷却し、水3kgを加えて攪拌し、その後、静置した。反応終了液を水相と有機相の2層に分け、有機層を濃縮して、黒赤色オイル状物を得た。
 氷冷下、反応容器に水とメタノールとの質量比1:2の混合液550gを入れて攪拌し、そこに上記のようにして得た黒赤色オイル状物を滴下しながら攪拌し、沈殿する白色固体を濾取した。その白色固体を少量のメタノールで洗浄した後、乾燥して、生成物としてヘキサン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)を3.52kg得た。固形分換算での収率は55%であった。
4-(2) 2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド〔2-Butyl-2,3-dihydrothieno〔3,4-b〕〔1,4〕dioxine-5,7-dicarboxylic acid〕の合成
 反応容器にジソジウム-2,5-ビス(アルコキシカルボニル)チオフェン-3,4-ジオレート1.18kg(3.88モル)と、上記4-(1)のようにして得たヘキサン-1,2-ジイル-ビス(4-メチルベンゼンスルホネート)2.9kg(6.79モル)と、炭酸カリウム107g(0.77モル)と、ジメチルホルムアミド5kgとを入れ、容器内の温度を120℃に保ちながら混合物を4時間攪拌した。
 反応終了液を濃縮し、残留した茶色固体に5%炭酸水素ナトリウム水溶液5kgを入れ、室温で15分間攪拌して茶色固体を濾取した。反応容器に濾取した茶色固体と7%水酸化ナトリウム水溶液5.32kgを入れて、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで冷却し、容器内の温度が30℃を超えないようにしつつ反応終了液に98%硫酸759gを注意深く滴下し、容器内の温度を80℃に保ちながら2時間攪拌した。
 容器内が室温になるまで攪拌しながら冷却し、沈殿する灰色固体を濾取した。さらに、反応終了液を冷却して灰色固体を濾取した。それらの灰色固体を少量の水で洗浄した後、乾燥して、生成物として2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッドを689g得た。固形分換算での収率は62%であった。
4-(3) ブチル化エチレンジオキシチオフェンの合成
 上記4-(2)のようにして得た2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン-5,7-ジカルボキシリックアシッド1.18kg(4.11モル)を反応容器内で1.2kgのジメチルホルムアミドに溶解し、酸化銅227gを加え、容器内の温度を125℃に保ちながら、混合物を5.5時間攪拌した。
 次に、上記ジメチルホルムアミドを濃縮し、エチレングリコール700gを入れて、反応混合物を内圧20hpaで、徐々に温度を上げながら蒸留し、水と初留を留出させ、エチレングリコールを含有する本留900gを留出させた。
 得られた本留に10%水酸化ナトリウム水溶液を加え、容器内の温度を100℃に保ちながら2時間攪拌し、その後、静置した。
 2層に分れた溶液を分液し、そのうちの下層の黄色透明液体を生成物のブチル化エチレンジオキシチオフェンとして130g得た。収率は16%であった。
調製例1
 合成例1で得たプロピル化エチレンジオキシチオフェン(つまり、2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)とエチレンジオキシチオフェン(つまり、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)とをモル比0.3:1で混合してモノマー混合物を調製した。
調製例2
 合成例1で得たプロピル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比1:1で混合してモノマー混合物を調製した、
調製例3
 合成例1で得たプロピル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比1:0.3で混合してモノマー混合物を調製した。
調製例4
 合成例2で得たエチル化エチレンジオキシチオフェン(つまり、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)とエチレンジオキシチオフェンとをモル比0.3:1で混合してモノマー混合物を調製した。
調製例5
 合成例2で得たエチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比1:1で混合してモノマー混合物を調製した。
調製例6
 合成例2で得たエチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比1:0.3で混合してモノマー混合物を調製した。
調製例7
 合成例1で得たプロピル化エチレンジオキシチオフェンと合成例2で得たエチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比0.5:0.5:1で混合してモノマー混合物を調製した。
調製例8
 合成例3で得たメチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比0.3:1で混合してモノマー混合物を調製した。
調製例9
 合成例3で得たメチル化エチレンジオキシチオフェン(つまり、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)とエチレンジオキシチオフェンとをモル比1:1で混合してモノマー混合物を調製した。
調製例10
 合成例3で得たメチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比1:0.3で混合してモノマー混合物を調製した。
調製例11
 合成例4で得たブチル化エチレンジオキシチオフェン(つまり、2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)とエチレンジオキシチオフェンとをモル比1:1で混合してモノマー混合物を調製した、
調製例12
 合成例4で得たブチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比0.1:1で混合してモノマー混合物を調製した。
調製例13
 合成例4で得たブチル化エチレンジオキシチオフェンと合成例1で得たプロピル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比0.05:0.05:1で混合してモノマー混合物を調製した。
調製例14
 合成例2で得たエチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとをモル比1:0.1で混合してモノマー混合物を調製した。
実施例1~10および比較例1~4
 この実施例1~10および比較例1~4では、導電性高分子を合成(製造)して、その特性を評価する。
 酸化剤兼ドーパントとして、濃度が40%のパラトルエンスルホン酸鉄n-ブタノール溶液(テイカ社製、上記パラトルエンスルホン酸鉄におけるパラトルエンスルホン酸と鉄とのモル比は2.8:1である)を用い、上記のように調製した調製例1~10のモノマー混合物、エチレンジオキシチオフェンおよび合成例1~3で得たアルキル化エチレンジオキシチオフェン(すなわち、合成例1はプロピル化エチレンジオキシチオフェン、合成例2はエチル化エチレンジオキシチオフェン、合成例3はメチル化エチレンジオキシチオフェン)のそれぞれ60μlに、上記40%パラトルエンスルホン酸鉄n-ブタノール溶液をそれぞれ500μlずつ添加し、充分かき混ぜることにより、モノマーの化学酸化重合を開始させ、それらを直ちに、3cm×5cmのセラミックプレート上に180μl滴下した、そして、相対湿度60%、温度25℃で3時間重合させた後、上記セラミックプレートを水中に浸漬して洗浄し、150℃で24時間乾燥してセラミックプレート上にドーパントとしてパラトルエンスルホン酸を含む導電性高分子をシート状に形成した。
 次に上記セラミックプレート上の導電性高分子シートに1.5トンの荷重をかけたまま5分間静置してシートにかかる圧力を均等にした後、該導電性高分子の導電率を4探針方式の測定器(三菱化学社製MCP-T600)により測定した。その結果を表1に示す。
 また、上記導電率測定後の実施例1~10および比較例1~4の導電性高分子シートを150℃の恒温槽中に静置状態で貯蔵し、48時間経過後の導電率を測定し、導電率の保持率を求めた。その結果も表1に示す。なお、表1には、導電性高分子の合成にあたって用いたモノマーも示しているが、その種類を示すにあたっては、スペース上の関係で、簡略化して、実施例1~10では調製例番号で示し、比較例2~4では合成例番号で示している。ただし、比較例1でモノマーとして用いたエチレンジオキシチオフェンについては、調製例番号や合成例番号がないので、「EDOT」と簡略化して示している。
 なお、導電率の保持率は、経時後の導電率を初期導電率(150℃の恒温槽中での貯蔵前に測定した導電率)で割り、パーセント(%)で表示したものである。これを式で表すと、次のようになる。保持率の高い方が、熱に対する導電率の低下が起こりにくいことになり、耐熱性が優れていることを示す。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1~10の導電性高分子は、比較例1の導電性高分子に比べて、高い導電率を有し、導電性が高く、また、比較例2~4の導電性高分子に比べて、導電率の保持率が高く、耐熱性が優れていた。すなわち、モノマーとして調製例1~10で調製したアルキル化エチレンジオキシチオフェン(つまり、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)とエチレンジオキシチオフェン(つまり、2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)との混合物を用いて合成した実施例1~10の導電性高分子は、モノマーとしてEDOT、つまり、モノマーとしてエチレンジオキシチオフェンを単独で用いて合成した比較例1の導電性高分子に比べて、高い導電率を有し、導電性が高く、また、モノマーとして合成例1~3で得たアルキル化エチレンジオキシチオフェンをそれぞれ単独で用いて合成した比較例2~4の導電性高分子に比べて、導電率の保持率が高く、耐熱性が優れていた。
 特にモノマーとして調製例1~7のモノマー混合物、すなわち、モノマーとしてプロピル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとの混合物(調製例1~3)、エチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとの混合物(調製例4~6)およびプロピル化エチレンジオキシチオフェンとエチル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとの3種混合物(調製例7)を用いて合成した実施例1~7の導電性高分子は、モノマーとしてプロピル化エチレンジオキシチオフェンを単独で用いて合成した比較例2の導電性高分子やモノマーとしてエチル化エチレンジオキシチオフェンを単独で用いて合成した比較例3の導電性高分子とほぼ同等の高い導電率を有し、また、モノマーとしてエチレンジオキシチオフェンを単独で用いて合成した比較例1の導電性高分子とほぼ同等の優れた導電率の保持率を有していて、プロピル化エチレンジオキシチオフェンやエチル化エチレンジオキシチオフェン由来の高い導電率をほぼ維持し、また、エチレンジオキシチオフェン由来の優れた耐熱性をほぼ維持していた。
実施例11~20および比較例5~8
 この実施例11~20および比較例5~8では、タンタル固体電解コンデンサを作製し、そのタンタル固体電解コンデンサで特性を評価する。
 タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、該タンタル焼結体に20Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面に誘電体層となる酸化被膜を形成してコンデンサ素子とした、次に上記調製例1~10で調製したモノマー混合物、エチレンジオキシチオフェンおよび合成例1~3で得たアルキル化エチレンジオキシチオフェンをそれぞれエタノールで希釈して、濃度を25v/v%に調整したそれぞれの溶液に上記コンデンサ素子を浸漬し、1分後に取り出し、5分間放置した。
 その後、あらかじめ用意しておいた濃度が40%のパラトルエンスルホン酸鉄エタノール溶液(上記パラトルエンスルホン酸は酸化剤兼ドーパントであって、上記パラトルエンスルホン酸鉄におけるパラトルエンスルホン酸と鉄のモル比は2.8:1である)に浸漬し、30秒後に取り出し、室温で80分間放置して重合を行った。その後、純水中に上記のように形成した導電性高分子層を有するコンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作を15回繰り返した後、カーボンペースト、銀ペーストで導電性高分子からなる固体電解質層を覆い、外装材で外装してタンタル固体電解コンデンサを作製した。
 上記のように作製した実施例10~20および比較例5~8のタンタル固体電解コンデンサについて、そのESRおよび静電容量を測定した。その結果を表2に示す。なお、ESRおよび静電容量の測定方法は以下に示す通りである。ESRの測定にはHEWLEWTT PACKARD社製のLCRメーター(4284A)を用い、25℃、100kHzでESRを測定し、静電容量の測定にはHEWLEWTT PACKARD社製のLCRメーター(4284A)を用い、25℃、120Hzで静電容量を測定した。それらの測定は、各試料とも、10個ずつについて行い、表2に示すESR値および静電容量値は、それら10個の平均値を求め、小数点以下を四捨五入して示したものである。
Figure JPOXMLDOC01-appb-T000004
 また、上記特性測定後の実施例11~20および比較例5~8のタンタル固体電解コンデンサ(以下、これら実施例11~20および比較例5~8の「タンタル固体電解コンデンサ」に関して簡略化して「コンデンサ」という)を150℃の恒温槽中に静置状態で貯蔵し、100時間後に、前記と同様に、ESRおよび静電容量の測定を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、実施例11~20のコンデンサは、比較例5のコンデンサに比べて、ESRが低く、コンデンサとしての特性が優れていた。すなわち、モノマーとして調製例1~10で調製したアルキル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとの混合物を用いて合成した導電性高分子を固体電解質とする実施例11~20のコンデンサは、モノマーとしてエチレンジオキシチオフェンを単独で用いて合成した導電性高分子を固体電解質とする比較例5のコンデンサに比べて、ESRが低く、コンデンサとしての特性が優れていた。これは、実施例11~20のコンデンサの固体電解質として用いられている導電性高分子が、比較例5のコンデンサの固体電解質として用いられている導電性高分子に比べて、導電率が高いことに基づくものと考えられる。
 なお、比較例6~8のコンデンサの固体電解質として用いられている導電性高分子は、モノマーとして合成例1~3で得たアルキル化エチレンジオキシチオフェンをそれぞれ単独で用いて合成されたものであって、比較例5のコンデンサの固体電解質として用いられている導電性高分子に比べて、前記表1で示すように導電率が高いにもかかわらず、比較例6~8のコンデンサは、表2に示すように、比較例5のコンデンサより、ESRが大きくなっていた。これはコンデンサの作製にあたって、導電性高分子を何層も積層して固体電解質層を形成していくが、比較例6~8のコンデンサは、比較例5のコンデンサに比べて、その固体電解質層の形成時の導電性高分子層間の接触抵抗が高かったことに基づくものと考えられる。
 また、実施例11~20のコンデンサが、比較例6~8のコンデンサと同様に、固体電解質層を構成する導電性高分子がモノマーとしてアルキル化エチレンジオキシチオフェンを含んで合成されたものであるにもかかわらず、比較例6~8のコンデンサよりESRが小さいのは、実施例11~20のコンデンサの場合は、固体電解質層を構成する導電性高分子がモノマーとしてエチレンジオキシチオフェンを含んで合成されたものであるため、そのエチレンジオキシチオフェンに基づく部分が導電性高分子層を積層して固体電解質層を形成する際の接触抵抗を低下させたことによるものと考えられる。
 また、表3に示すように、実施例11~20のコンデンサは、比較例6~8のコンデンサに比べて、高温での貯蔵によるESRの増加が少なく、耐熱性が優れていた。
実施例21~34および比較例9~13
 この実施例21~34および比較例9~13では、巻回型アルミニウム固体電解コンデンサを作製し、その巻回型アルミニウム固体電解コンデンサで特性を評価する。
 アルミニウム箔の表面をエッチング処理した後、化成処理を行って誘電体層を形成した陽極にリード端子を取り付け、また、アルミニウム箔からなる陰極にリード端子を取り付け、それらのリード端子付き陽極と陰極とをセパレータを介して巻回して、コンデンサ素子を作製した。
 次に調製例1~14のモノマー混合物、エチレンジオキシチオフェンおよび合成例1~4のアルキル化エチレンジオキシチオフェンをそれぞれエタノールで希釈し、濃度を30v/v%に調整したそれぞれの溶液に上記コンデンサ素子を浸漬し、取り出した後、濃度が63%のパラトルエンスルホン酸鉄エタノール溶液(上記パラトルエンスルホン酸鉄のパラトルエンスルホン酸と鉄のモル比は2.8:1である)に、上記コンデンサ素子をそれぞれ別々に浸漬し、取り出した後、60℃で2時間加熱した後、150℃で2時間加熱し、最後に180℃で1時間加熱することによって、モノマーを重合させて導電性高分子からなる固体電解質層を形成した。これを外装材で外装して、巻回型アルミニウム固体電解コンデンサを作製した。
 上記のようにして作製した実施例21~34および比較例9~13の巻回型アルミニウム固体電解コンデンサについて、前記実施例11と同様に、ESRおよび静電容量を測定し、かつ、漏れ電流を測定し、漏れ電流不良の発生を調べた。その結果を表4に示す。なお、漏れ電流の測定方法および漏れ電流不良発生の評価方法は次の通りである。
漏れ電流:
 巻回型アルミニウム固体電解コンデンサに、25℃で16Vの定格電圧を60秒間印加した後、デジタルオシロスコープにて漏れ電流を測定した。
漏れ電流不良の発生:
 上記漏れ電流の場合と同様に漏れ電流を測定し、漏れ電流が100μA以上のものは漏れ電流不良が発生していると判断した。
 なお、測定は、各試料とも、20個ずつについて行い、ESRおよび静電容量に関して表4に示す数値は、その20個の平均値を求め、小数点以下を四捨五入して示したものである。また、この漏れ電流不良の発生の有無を調べた結果の表4への表示にあたっては、試験に供した全コンデンサ個数を分母に示し、漏れ電流不良の発生があったコンデンサ個数を分子に示す態様で「漏れ電流不良発生個数」として表示する。
 また、上記特性測定後の実施例21~34および比較例9~13の巻回型アルミニウム固体電解コンデンサを150℃の恒温槽中に静置状態で貯蔵し、100時間後に、前記と同様に、ESRおよび静電容量の測定を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、実施例21~34の巻回型アルミニウム固体電解コンデンサ(以下、「巻回型アルミニウム固体電解コンデンサ」に関して簡略化して「コンデンサ」という)は、比較例9のコンデンサに比べて、ESRが低く(小さく)、かつ静電容量が大きく、コンデンサとしての特性が優れていた。すなわち、モノマーとして調製例1~14で調製したアルキル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとの混合物を用いて合成した導電性高分子を固体電解質とする実施例21~34のコンデンサは、モノマーとしてエチレンジオキシチオフェンを単独で用いて合成した導電性高分子を固体電解質とする比較例9のコンデンサに比べて、ESRが低く、かつ静電容量が大きく、コンデンサとしての特性が優れていた。このように、実施例21~34のコンデンサが比較例9のコンデンサよりESRが低かったのは、実施例21~34のコンデンサの固体電解質として用いられている導電性高分子が、比較例9のコンデンサの固体電解質として用いられている導電性高分子に比べて、導電率が高いことに基づくものと考えられる。また、実施例21~34のコンデンサが比較例9のコンデンサより静電容量が大きかったのは、実施例21~34のコンデンサの固体電解質として用いられている導電性高分子が、アルキル化エチレンジオキシチオフェンを含んだモノマー混合物を用いて合成されたものであって、その重合時にアルキル化エチレンジオキシチオフェンが重合速度を遅くさせ、アルミニウム箔のエッチング孔の内部にまで充分に染み込んだことによるものと考えられる。また、モノマーとしてエチレンジオキシチオフェンを単独で用いて合成した導電性高分子を固体電解質とする比較例9のコンデンサでは、漏れ電流不良が発生したが、実施例21~34のコンデンサには、そのような漏れ電流不良の発生がなかった。
 そして、表5に示すように、実施例21~34のコンデンサは、比較例10~13のコンデンサに比べて、高温での貯蔵によるESRの増加が少なく、耐熱性が優れていた。つまり、実施例21~34のコンデンサは、モノマーとして合成例1~4で得たアルキル化エチレンジオキシチオフェンをそれぞれ単独で用いて合成した導電性高分子を固体電解質とする比較例10~13のコンデンサに比べて、高温での貯蔵によるESRの増加が少なく、耐熱性が優れていた。
 また、上記実施例21~34および比較例9~13のコンデンサのうち、実施例22、実施例24、実施例27、実施例29、実施例31、実施例34および比較例9のコンデンサについて、破壊電圧試験を行った結果を表6に示す。なお、上記破壊電圧試験は、それぞれのコンデンサに対し、1V/秒の速度で電圧をかけていき、電流が0.5Aを超えたところの数値を読み取って、それを破壊電圧とした。表6に示す試験結果は、それぞれのコンデンサについて5個ずつ試験を行い、その5個の平均値を求め、小数点以下を四捨五入して示したものである。
Figure JPOXMLDOC01-appb-T000008
 表6に示すように、実施例22、24、27、29、31、34のコンデンサは、比較例9のコンデンサより、破壊電圧が高く、高電圧に耐え得ることを示していた。
実施例35
 前記の実施例11~20では、酸化剤兼ドーパントとして芳香族系スルホン酸鉄系のパラトルエンスルホン酸鉄を用いて、タンタル固体電解コンデンサを作製し、その特性を評価したが、この実施例35やそれに続く実施例36~39では、酸化剤として過硫酸塩系の過硫酸アンモニウムを用いて、タンタル固体電解コンデンサを作製し、その特性を評価する。
 タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、該タンタル焼結体に20Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面に誘電体層となる酸化被膜を形成してコンデンサ素子とした。次に、調製例1で調製したモノマー混合物をエタノールで濃度が35v/v%になるように希釈した溶液に上記コンデンサ素子を浸漬し、1分後に取り出し、5分間放置した。
 その後、あらかじめ用意したおいた濃度が60%のフェノールスルホン酸2-メチルイミダゾール水溶液(pH5)と濃度が40%の過硫酸アンモニウム水溶液と濃度が20%のドデシルアミンオキサイド水溶液を200:200:1の質量比で混合した混合物からなる乳化剤(ドデシルアミンオキサイド)入りの酸化剤兼ドーパント溶液(ドーパントはフェノールスルホン酸である)中に浸漬し、30秒間後に取り出し、室温で10分放置した後、70℃で10分間加熱して、重合を行った。その後、純水中に上記のように形成した導電性高分子層を有するコンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作を12回繰り返した後、150℃で1時間乾燥した。そして、カーボンペースト、銀ペーストで導電性高分子からなる固体電解質層を覆い、外装材で外装してタンタル固体電解コンデンサを作製した。
実施例36
 調製例1のモノマー混合物に代えて、調製例5で調製したモノマー混合物を用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例37
 調製例1のモノマー混合物に代えて、調製例7で調製したモノマー混合物を用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例38
 調製例1のモノマー混合物に代えて、調製例9で調製したモノマー混合物を用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例39
 濃度が60%のフェノールスルホン酸2-メチルイミダゾール水溶液(pH5)に代えて、濃度が60%の1,3,6-ナフタレントリスルホン酸2-メチルイミダゾール水溶液(pH5)を用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例14
 調製例1のモノマー混合物に代えて、エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例15
 調製例1のモノマー混合物に代えて、合成例1で得たプロピル化エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例16
 調製例1のモノマー混合物に代えて、合成例2で得たエチル化エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例17
 調製例1のモノマー混合物に代えて、合成例3で得たメチル化エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例35と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例18
 濃度が60%のフェノールスルホン酸2-メチルイミダゾール水溶液(pH5)に代えて、濃度が60%1,3,6-ナフタレントリスルホン酸2-メチルイミダゾール水溶液(pH5)を用いた以外は、すべて比較例14と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例19
 濃度が60%のフェノールスルホン酸2-メチルイミダゾール水溶液(pH5)に代えて、濃度が60の%1,3,6-ナフタレントリスルホン酸2-メチルイミダゾール水溶液(pH5)を用いた以外は、すべて比較例16と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 上記のようにして作製した実施例35~39および比較例14~19のタンタル固体電解コンデンサについて、前記実施例11と同様に、ESRおよび静電容量を測定した。その結果を表7に示す。なお、測定は、各試料とも、20個ずつについて行い、ESRおよび静電容量に関して表7に示す数値は、その20個の平均値を求め、小数点以下を四捨五入して示したものである。
 また、上記ESRおよび静電容量測定後の実施例35~39および比較例14~19のタンタル固体電解コンデンサを150℃の恒温槽中に静置状態で貯蔵し、100時間後に、前記と同様に、ESRおよび静電容量の測定を行った。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表7に示すように、モノマーとして調製例1、5、7および9で調製したアルキル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとの混合物を用いて合成した導電性高分子を固体電解質とする実施例35~39のタンタル固体電解コンデンサ(以下、「タンタル固体電解コンデンサ」に関して簡略化して「コンデンサ」という)は、モノマーとしてエチレンジオキシチオフェンを単独で用いて合成した導電性高分子を固体電解質とする比較例14および比較例18のコンデンサに比べて、ESRが低く、コンデンサとしての特性が優れていた。これは、実施例35~39のコンデンサの固体電解質として用いられている導電性高分子が、比較例14や比較例18のコンデンサの固体電解質として用いられている導電性高分子に比べて、導電率が高いことに基づくものと考えられる。
 そして、表8に示すように、実施例35~39のコンデンサは、モノマーとして合成例1~3で得たアルキル化エチレンジオキシチオフェンをそれぞれ単独で用いて合成した導電性高分子を固体電解質とする比較例15~17および比較例19のコンデンサに比べて、高温での貯蔵によるESRの増加が少なく、耐熱性が優れていた。
実施例40
 これまでの実施例11~39では、本発明の導電性高分子のみを固体電解質に用いて固体電解コンデンサを作製してきたが、この実施例40やそれに続く実施例41~43では、本発明の導電性高分子からなる固体電解質層上にさらに他の導電性高分子からなる固体電解質層を形成して、タンタル固体電解コンデンサを作製し、その特性を評価する。
 まず、この実施例40やそれに続く実施例41~43で他の導電性高分子からなる固体電解質を作製するための導電性高分子を含む分散液を次に示すようにして調製した。
 ドーパントとなる高分子スルホン酸としては、ポリエチレンスチレンスルホン酸とスルホン化ポリエステルを用いた。
 以下、導電性高分子を含む分散液の調製を具体的に示すと、まず、ポリスチレンスルホン酸(テイカ社製、重量平均分子量100,000)の4%水溶液600gを内容積1Lのステンレス鋼製容器に入れ、硫酸第一鉄・7水和物を0.3g添加して溶解し、その中にエチレンジオキシチオフェン4mLをゆっくり滴下した。ステンレス鋼製の攪拌翼で攪拌し、容器に陽極を取り付け、攪拌翼の付け根に陰極を取り付け、1mA/cmの定電流で18時間電解酸化重合を行った。上記電解酸化重合後、水で4倍に希釈した後、超音波ホモジナイザー〔日本精機社製、US-T300(商品名)〕で30分間分散処理を行った。その後、オルガノ社製のカチオン交換樹脂アンバーライト120B(商品名)を100g添加し、1時間攪拌機で攪拌した。次いで、東洋濾紙社製の濾紙No.131で濾過し、このカチオン交換樹脂による処理およびそれに続く濾過を3回繰り返して、液中の鉄イオンなどのカチオン成分をすべて除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてのジメチルスルホキシドを4g添加し、ポリスチレンスルホン酸をドーパントとする導電性高分子を含む分散液Aを得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 上記とは別に、スルホン化ポリエステル〔互応化学工業社製プラスコートZ-561(商品名)、重量平均分子量27,000〕の3%水溶液200gを内容積1Lの容器に入れ、酸化剤として過硫酸アンモニウムを2g添加した後、攪拌機で攪拌して溶解した。次いで、硫酸第二鉄の40%水溶液を0.4g添加し、攪拌しながら、その中にエチレンジオキシチオフェン3mLをゆっくり滴下し、24時間かけて、エチレンジオキシチオフェンの重合を行った。
 上記重合後、水で4倍に希釈した後、超音波ホモジナイザー〔日本精機社製、US-T300(商品名)〕で30分間分散処理を行った。その後、オルガノ社のカチオン交換樹脂アンバーライト120B(商品名)を100g添加して、1時間攪拌機で攪拌し、次いで、東洋濾紙社製の濾紙No.131で濾過し、このカチオン交換樹脂による処理と濾過を3回繰り返して、液中のカチオン成分をすべて除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてジメチルスルホキシドを4g添加し、攪拌して、スルホン化ポリエステルをドーパントとする導電性高分子を含む分散液Bを得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 そして、上記分散液Aと分散液Bとを質量比1:1の比率で混合して、導電性高分子を含む分散液を得た。
 次にタンタル固体電解コンデンサの作製を具体的に示す。まず、タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、該タンタル焼結体に20Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面に誘電体層となる酸化被膜を形成してコンデンサ素子とした。次に、調製例1で調製したモノマー混合物をエタノールで濃度が35v/v%になるように希釈した溶液に上記コンデンサ素子を浸漬し、1分後に取り出し、5分間放置した。
 その後、あらかじめ用意したおいた濃度が60%のナフタレントリスルホン酸2-メチルイミダゾール水溶液(pH5)と濃度が40%の過硫酸アンモニウム水溶液と濃度が20%のドデシルアミンオキサイド水溶液を200:200:1の質量比で混合した混合物からなる乳化剤(ドデシルアミンオキサイド)入りの酸化剤兼ドーパント溶液(ドーパントはナフタレンスルホン酸である)中に浸漬し、30秒間後に取り出し、室温で10分放置した後、70℃で10分間加熱して、重合を行った。その後、純水中に上記のように形成した導電性高分子層を有するコンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作を6回繰り返した後、150℃で1時間乾燥して、本発明の導電性高分子からなる固体電解質層を形成した。
 つぎに、上記のようにして本発明の導電性高分子からなる固体電解質層を形成したコンデンサ素子を、前記のように高分子スルホン酸をドーパントとする導電性高分子を含む分散液に浸漬し、1分放置した後、取り出し、50℃で10分、150℃で10分乾燥する操作を2回繰り返して、他の導電性高分子(すなわち、本発明の導電性高分子とは異なる導電性高分子)からなる固体電解質層を形成した後、カーボンペースト、銀ペーストで上記固体電解質層を覆い、外装材で外装してタンタル固体電解コンデンサを作製した。
実施例41
 調製例1のモノマー混合物に代えて、調製例5で調製したモノマー混合物を用いた以外は、すべて実施例40と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例42
 調製例1のモノマー混合物に代えて、調製例7で調製したモノマー混合物を用いた以外は、すべて実施例40と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例43
 調製例1のモノマー混合物に代えて、調製例9で調製したモノマー混合物を用いた以外は、すべて実施例40と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例20
 調製例1のモノマー混合物に代えて、エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例40と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例21
 調製例1のモノマー混合物に代えて、合成例1で得たプロピル化エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例40と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例22
 調製例1のモノマー混合物に代えて、合成例2で得たエチル化エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例40と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例23
 調製例1のモノマー混合物に代えて、合成例3で得たメチル化エチレンジオキシチオフェンをモノマーとして用いた以外は、すべて実施例40と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 上記のようにして作製した実施例40~43および比較例20~23のタンタル固体電解コンデンサについて、前記実施例11と同様に、ESRおよび静電容量を測定した。その結果を表9に示す。なお、測定は、各試料とも、20個ずつについて行い、ESRおよび静電容量に関して表9に示す数値は、その20個の平均値を求め、小数点以下を四捨五入して示したものである。
 また、上記ESRおよび静電容量測定後の実施例40~43および比較例20~23のタンタル固体電解コンデンサを150℃の恒温槽中に静置状態で貯蔵し、100時間後に、前記と同様に、ESRおよび静電容量の測定を行った。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表9に示すように、実施例40~43のタンタル固体電解コンデンサ(以下、「タンタル固体電解コンデンサ」に関して簡略化して「コンデンサ」という)は、比較例20のコンデンサに比べて、ESRが低く、本発明のアルキル化エチレンジオキシチオフェンとエチレンジオキシチオフェンとの混合物をモノマーとして用いて合成した導電性高分子で固体電解質を構成した効果は、他の導電性高分子で構成した固体電解質を併有するコンデンサにおいても、損なわれることなく、発現していた。
 また、表10に示すように、実施例40~43のコンデンサは、比較例21~23のコンデンサ素子に比べて、高温での貯蔵によるESRの増加が少なく、耐熱性が優れていて、この面でも、本発明の効果は、損なわれることなく、発現していた。
 本発明によれば、導電性が高く、かつ耐熱性が優れた導電性高分子を提供することができる。また、そのような導電性が高く、かつ耐熱性が優れた導電性高分子を固体電解質として用いてESRが低く、かつ静電容量が大きく、しかも高温条件下における信頼性が高い固体電解コンデンサを提供することができる。

Claims (10)

  1.  2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンと、2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンとのモル比が0.05:1~1:0.1のモノマー混合物を、有機スルホン酸の存在下で重合してなり、上記有機スルホン酸をドーパントとして含むことを特徴とする導電性高分子。
  2.  2-アルキル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンが、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン、2-プロピル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンおよび2-ブチル-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシンよりなる群から選ばれる少なくとも1種であることを特徴とする請求項1記載の導電性高分子。
  3.  重合が、化学酸化重合であることを特徴とする請求項1または2記載の導電性高分子。
  4.  有機スルホン酸が、芳香族系スルホン酸であって、化学酸化重合に用いる酸化剤兼ドーパントが、芳香族系スルホン酸鉄であることを特徴とする請求項3記載の導電性高分子。
  5.  芳香族系スルホン酸鉄の芳香族系スルホン酸と鉄とのモル比が、2.00:1~2.95:1であることを特徴とする請求項4記載の導電性高分子。
  6.  芳香族系スルホン酸鉄が、パラトルエンスルホン酸鉄およびメトキシベンゼンスルホン酸鉄よりなる群から選ばれる少なくとも1種であることを特徴とする請求項4または5記載の導電性高分子。
  7.  芳香族系スルホン酸鉄が水または水と水混和性溶剤との混合物からなる水性液または有機溶剤で液状にされていて、その液中における芳香族系スルホン酸鉄の濃度が、30~70質量であることを特徴とする請求項4~6のいずれかに記載の導電性高分子。
  8.  請求項1~7のいずれかに記載の導電性高分子を固体電解質として用いたことを特徴とする固体電解コンデンサ。
  9.  請求項1~7のいずれかに記載の導電性高分子からなる固体電解質と、その上に積層された他の導電性高分子からなる固体電解質を有することを特徴とする固体電解コンデンサ。
  10.  他の導電性高分子が、該導電性高分子を含む分散液を乾燥して得られたものであることを特徴とする請求項9記載の固体電解コンデンサ。
PCT/JP2010/070325 2009-12-04 2010-11-16 導電性高分子およびそれを固体電解質として用いた固体電解コンデンサ WO2011068026A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117016367A KR101297946B1 (ko) 2009-12-04 2010-11-16 도전성 고분자와 이를 고체 전해질로서 사용한 고체 전해 콘덴서
CN201080007114.9A CN102307927B (zh) 2009-12-04 2010-11-16 导电性高分子以及使用其作为固体电解质的固体电解电容器
US13/259,701 US8710177B2 (en) 2009-12-04 2010-11-16 Conductive polymer and a solid electrolytic capacitor using the same as a solid electrolyte
EP10834478.9A EP2508547B1 (en) 2009-12-04 2010-11-16 Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
JP2011544230A JP5093915B2 (ja) 2009-12-04 2010-11-16 固体電解コンデンサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009275979 2009-12-04
JP2009-275979 2009-12-04
JP2009283621 2009-12-15
JP2009-283621 2009-12-15

Publications (1)

Publication Number Publication Date
WO2011068026A1 true WO2011068026A1 (ja) 2011-06-09

Family

ID=44114879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070325 WO2011068026A1 (ja) 2009-12-04 2010-11-16 導電性高分子およびそれを固体電解質として用いた固体電解コンデンサ

Country Status (7)

Country Link
US (1) US8710177B2 (ja)
EP (1) EP2508547B1 (ja)
JP (3) JP5093915B2 (ja)
KR (1) KR101297946B1 (ja)
CN (1) CN102307927B (ja)
TW (1) TWI454501B (ja)
WO (1) WO2011068026A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054921A (ja) * 2011-09-05 2013-03-21 Konica Minolta Business Technologies Inc 色素増感型太陽電池及び製造方法
JP5476618B1 (ja) * 2013-03-29 2014-04-23 パナソニック株式会社 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法
JP2014198827A (ja) * 2014-01-31 2014-10-23 パナソニック株式会社 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法
WO2015037481A1 (ja) * 2013-09-11 2015-03-19 テイカ株式会社 導電性高分子製造用モノマー液およびそれを用いる電解コンデンサの製造方法
CN104662628A (zh) * 2012-09-27 2015-05-27 赫劳斯贵金属有限两和公司 自掺杂和外掺杂导电聚合物的混合物在电容器中的用途
JPWO2015107894A1 (ja) * 2014-01-16 2017-03-23 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
WO2021193212A1 (ja) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 コンデンサ素子および電解コンデンサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714844B2 (ja) * 2000-03-22 2005-11-09 鬼怒川ゴム工業株式会社 ウェザーストリップ
US8971019B2 (en) * 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
KR101453646B1 (ko) * 2012-10-10 2014-10-22 포항공과대학교 산학협력단 이온성 액체를 포함하는 고전도성 고분자 전해질 막
WO2016099109A1 (ko) * 2014-12-16 2016-06-23 주식회사 동진쎄미켐 3,4-에틸렌디옥시티오펜 공중합체, 이를 포함하는 고체 전해질, 이를 포함하는 고체 전해 캐패시터 및 그 제조 방법
JP6990831B2 (ja) * 2016-03-24 2022-01-12 パナソニックIpマネジメント株式会社 電解コンデンサ
JP7357487B2 (ja) * 2019-08-29 2023-10-06 テイカ株式会社 電解コンデンサおよびその製造方法
CN114521278A (zh) * 2019-09-18 2022-05-20 京瓷Avx元器件公司 用于高电压下使用的固体电解电容器
US11773212B2 (en) * 2020-03-03 2023-10-03 Lg Energy Solution, Ltd. Preparation method of polymer
CN117480196A (zh) * 2021-06-08 2024-01-30 爱克发-格法特公司 新型聚噻吩/聚阴离子组合物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160647A (ja) 2001-11-27 2003-06-03 Tayca Corp 導電性高分子およびそれを用いた固体電解コンデンサ
JP2003261573A (ja) * 2001-12-27 2003-09-19 Bayer Ag 中性ポリチオフェンの製造方法、そのような化合物、中性コポリマー、および中性化合物およびコポリマーの使用
JP2004525946A (ja) 2001-03-29 2004-08-26 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ チオフェン類およびそれらから誘導される重合体
JP2004265927A (ja) 2003-02-13 2004-09-24 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
JP2005039276A (ja) * 2003-07-14 2005-02-10 Hc Starck Gmbh 電解コンデンサ中のアルキレンオキシチアチオフェン単位を有するポリチオフェン
JP2005513219A (ja) * 2001-12-20 2005-05-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ 3,4−アルキレンジオキシチオフェンコポリマー
JP2008063585A (ja) * 2007-11-06 2008-03-21 Tayca Corp 導電性高分子製造用酸化剤およびその製造方法
JP2010278360A (ja) * 2009-05-29 2010-12-09 Elna Co Ltd 固体電解コンデンサおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814730A1 (de) * 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
US7094865B2 (en) * 2001-03-29 2006-08-22 Agfa Gevaert Thiophenes and polymers derived therefrom
US7105620B2 (en) 2001-12-20 2006-09-12 Agfa Gevaert 3,4-alkylenedioxy-thiophene copolymers
US6995223B2 (en) 2001-12-20 2006-02-07 Agfa-Gevaert 3,4-alkylenedioxy-thiophene copolymers
WO2011074380A1 (ja) * 2009-12-18 2011-06-23 テイカ株式会社 固体電解コンデンサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525946A (ja) 2001-03-29 2004-08-26 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ チオフェン類およびそれらから誘導される重合体
JP2003160647A (ja) 2001-11-27 2003-06-03 Tayca Corp 導電性高分子およびそれを用いた固体電解コンデンサ
JP2005513219A (ja) * 2001-12-20 2005-05-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ 3,4−アルキレンジオキシチオフェンコポリマー
JP2003261573A (ja) * 2001-12-27 2003-09-19 Bayer Ag 中性ポリチオフェンの製造方法、そのような化合物、中性コポリマー、および中性化合物およびコポリマーの使用
JP2004265927A (ja) 2003-02-13 2004-09-24 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
JP2005039276A (ja) * 2003-07-14 2005-02-10 Hc Starck Gmbh 電解コンデンサ中のアルキレンオキシチアチオフェン単位を有するポリチオフェン
JP2008063585A (ja) * 2007-11-06 2008-03-21 Tayca Corp 導電性高分子製造用酸化剤およびその製造方法
JP2010278360A (ja) * 2009-05-29 2010-12-09 Elna Co Ltd 固体電解コンデンサおよびその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054921A (ja) * 2011-09-05 2013-03-21 Konica Minolta Business Technologies Inc 色素増感型太陽電池及び製造方法
CN104662628A (zh) * 2012-09-27 2015-05-27 赫劳斯贵金属有限两和公司 自掺杂和外掺杂导电聚合物的混合物在电容器中的用途
US9530568B2 (en) 2013-03-29 2016-12-27 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion
CN104254568A (zh) * 2013-03-29 2014-12-31 松下知识产权经营株式会社 导电性高分子微粒分散体的制造方法及使用了该导电性高分子微粒分散体的电解电容器的制造方法
WO2014155422A1 (ja) * 2013-03-29 2014-10-02 パナソニック株式会社 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法
CN104254568B (zh) * 2013-03-29 2015-11-18 松下知识产权经营株式会社 导电性高分子微粒分散体的制造方法及使用了该导电性高分子微粒分散体的电解电容器的制造方法
JP5476618B1 (ja) * 2013-03-29 2014-04-23 パナソニック株式会社 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法
WO2015037481A1 (ja) * 2013-09-11 2015-03-19 テイカ株式会社 導電性高分子製造用モノマー液およびそれを用いる電解コンデンサの製造方法
JP5725637B1 (ja) * 2013-09-11 2015-05-27 テイカ株式会社 導電性高分子製造用モノマー液およびそれを用いる電解コンデンサの製造方法
US10049822B2 (en) 2013-09-11 2018-08-14 Tayca Corporation Monomer liquid for of conductive polymer production and a manufacturing method of an electrolyte capacitor using the same
JPWO2015107894A1 (ja) * 2014-01-16 2017-03-23 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP2014198827A (ja) * 2014-01-31 2014-10-23 パナソニック株式会社 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法
WO2021193212A1 (ja) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 コンデンサ素子および電解コンデンサ

Also Published As

Publication number Publication date
US20120018662A1 (en) 2012-01-26
US8710177B2 (en) 2014-04-29
KR101297946B1 (ko) 2013-08-19
JP2012169681A (ja) 2012-09-06
JP2012169682A (ja) 2012-09-06
KR20110104044A (ko) 2011-09-21
EP2508547A1 (en) 2012-10-10
CN102307927B (zh) 2014-03-19
JPWO2011068026A1 (ja) 2013-04-18
JP5058389B2 (ja) 2012-10-24
JP5093915B2 (ja) 2012-12-12
EP2508547A4 (en) 2014-11-05
EP2508547B1 (en) 2015-04-08
TWI454501B (zh) 2014-10-01
TW201144354A (en) 2011-12-16
CN102307927A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
JP5093915B2 (ja) 固体電解コンデンサ
JP4803850B2 (ja) 固体電解コンデンサ
KR101647876B1 (ko) 고체 전해 컨덴서의 제조방법
US9953767B2 (en) Conductive polymer dispersion liquid, a conductive polymer, and use thereof
JP5807997B2 (ja) 固体電解コンデンサの製造方法
EP2154197B1 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP4454041B2 (ja) 導電性組成物の分散液、導電性組成物およびその用途
TWI607033B (zh) Monomer liquid for manufacturing conductive polymer and method for manufacturing electrolytic capacitor using the same
JP5745881B2 (ja) 固体電解コンデンサ
JP5892535B2 (ja) 導電性高分子製造用酸化剤兼ドーパント、導電性高分子製造用酸化剤兼ドーパント溶液、導電性高分子および固体電解コンデンサ
JP2010132873A (ja) 導電性高分子の分散液の製造方法、導電性高分子の分散液、導電性高分子およびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007114.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117016367

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13259701

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010834478

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011544230

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE