[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011068003A1 - 電源装置の起動方法 - Google Patents

電源装置の起動方法 Download PDF

Info

Publication number
WO2011068003A1
WO2011068003A1 PCT/JP2010/069423 JP2010069423W WO2011068003A1 WO 2011068003 A1 WO2011068003 A1 WO 2011068003A1 JP 2010069423 W JP2010069423 W JP 2010069423W WO 2011068003 A1 WO2011068003 A1 WO 2011068003A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
power supply
switching element
current
reactor
Prior art date
Application number
PCT/JP2010/069423
Other languages
English (en)
French (fr)
Inventor
尚亨 三松
利浩 曽根
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP10834456.5A priority Critical patent/EP2508387B1/en
Priority to US13/512,792 priority patent/US8492922B2/en
Priority to CN201080054188.8A priority patent/CN102648108B/zh
Priority to JP2011544223A priority patent/JP5380550B2/ja
Publication of WO2011068003A1 publication Critical patent/WO2011068003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for DC mains or DC distribution networks
    • H02J1/10Parallel operation of DC sources
    • H02J1/102Parallel operation of DC sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a method for starting a power supply device.
  • a first DC-DC converter connected to a fuel cell and a second DC-DC converter connected to a power storage device are provided, and a load such as a vehicle driving motor is provided from the two first and second DC-DC converters.
  • a power supply system that supplies power is known (see, for example, Patent Document 1).
  • the cost required for the configuration of the power supply system increases due to the provision of the DC-DC converter for each of the plurality of power supplies (that is, the fuel cell and the power storage device). Increase in size. Therefore, cost reduction and size reduction are desired. Also, when starting a power supply system composed of a plurality of power supplies (that is, a fuel cell and a power storage device), particularly when a DC-DC converter is started, an unintended excessive current is prevented from flowing in the circuit system. It is hoped to do.
  • the aspect which concerns on this invention aims at providing the starting method of the power supply device which can reduce the cost which a structure requires, can reduce size, and can prevent that an excessive electric current flows at the time of starting. To do.
  • the power supply device includes a first line, a second line, and a third line, the potentials of which are sequentially decreasing, a fuel cell stack, and a power storage device connected in series.
  • a DC-DC converter comprising a battery circuit, a switching circuit in which a first switching element and a second switching element each having a freewheeling diode are connected in series, and a reactor, and both ends of the battery circuit are Connected to the first line and the third line, a connection point between the fuel cell stack of the battery circuit and the power storage device is connected to the second line, and is on the first switching element side of the switching circuit.
  • An end is connected to the first line, and an end on the second switching element side of the switching circuit is the third line.
  • one end of the reactor is connected to a connection point between the first and second switching elements, the other end is connected to the second line, and when the power supply device is activated, the first switching element Executing the one-side switching mode in which only the second switching element is switched between ON and OFF while the ON state is prohibited while changing the ON time of the second switching element in an increasing tendency; Executing an alternate switching mode for alternately switching on the switching element and turning on the second switching element.
  • the one-side switching mode An activation method for switching from execution to execution of the alternate switching mode can be additionally employed.
  • the first switching element is turned off and the second switching element is turned on by executing the one-side switching mode before executing the alternate switching mode.
  • the reactor is DC excited.
  • the start-up method when current continues to flow to the reactor continuously within the switching period of the one-side switching mode, it is possible to prevent an unintended excessive current from flowing in the circuit system.
  • the switching from the one-side switching mode to the alternate switching mode can be performed stably.
  • the current flowing through the reactor increases monotonously during the period in which the first switching element is OFF and the second switching element is ON and the reactor is DC-excited,
  • the first switching element and the second switching element are turned off and the magnetic energy accumulated in the reactor is consumed, the current flowing through the reactor monotonously decreases, so that the current flowing through the reactor becomes a triangular wave.
  • the end of the triangular wave current coincides with the end of the switching cycle, it is possible to prevent an unintentional excessive current from flowing in the circuit system, and from the one-side switching mode to the alternate switching mode. Can be stably switched.
  • the second switching element in the state where the first switching element is maintained in the OFF state, the second switching element is switched between ON and OFF every half period of the switching cycle.
  • the flowing current has an isosceles triangular waveform
  • the current flowing through the reactor is detected only for half the switching period, and the current flows through the reactor continuously within the switching period based on the detection result. It can be determined whether or not. As a result, it is possible to quickly determine whether or not switching from the one-side switching mode to the alternate switching mode is possible.
  • the power supply device 10 in the present embodiment includes a fuel cell stack (fuel cell, FC) 11 that forms a first power source, a battery (power storage device) 12 that forms a second power source, and a DC-DC.
  • a converter 13, an air pump inverter (API) 14, and a converter ECU (electronic control device) 16 and an integrated ECU (electronic control device) 17 connected to a power plant CAN 15 including a CAN (Controller Area Network) communication line are provided.
  • the fuel cell stack 11 and the battery 12 are connected in series to form a battery circuit 18.
  • the power supply device 10 is provided in a power supply system 20 of a fuel cell vehicle, for example.
  • the power supply system 20 of the fuel cell vehicle includes, for example, a power supply device 10, a PDU (power drive unit) 21, a motor 22 for driving the vehicle, and an air pump. (AP) 23.
  • PDU power drive unit
  • AP air pump.
  • the fuel cell stack 11 includes a solid polymer electrolyte membrane composed of a cation exchange membrane or the like, with a fuel electrode (anode) composed of an anode catalyst and a gas diffusion layer, and an oxygen electrode (cathode) composed of a cathode catalyst and a gas diffusion layer.
  • the electrolyte electrode structure is sandwiched between a pair of separators, and a large number of fuel cell units are stacked to form a stack.
  • a stack of fuel cells is sandwiched between a pair of end plates from both sides in the stacking direction.
  • Air that is an oxidant gas (reactive gas) containing oxygen is supplied from the air pump 23 to the cathode of the fuel cell stack 11, and a fuel gas (reactive gas) containing hydrogen is supplied to the anode, for example, a high-pressure hydrogen tank (not shown). ).
  • a fuel gas (reactive gas) containing hydrogen is supplied to the anode, for example, a high-pressure hydrogen tank (not shown).
  • the hydrogen ionized by the catalytic reaction on the anode catalyst of the anode moves to the cathode through the solid polymer electrolyte membrane appropriately humidified. Electrons generated with this movement are taken out to an external circuit and used as direct current electric energy.
  • hydrogen ions, electrons and oxygen react to produce water.
  • the air pump 23 takes in air from the outside of the vehicle, for example, compresses it, and supplies this air as a reaction gas to the cathode of the fuel cell stack 11.
  • the number of rotations of a pump driving motor (not shown) for driving the air pump 23 is controlled by an air pump inverter 14 including, for example, a PWM inverter by pulse width modulation (PWM) based on a control command output from the integrated ECU 17. .
  • PWM pulse width modulation
  • the power supply device 10 may include, for example, an electric double layer capacitor or a capacitor made of an electrolytic capacitor as a power storage device instead of the battery 12.
  • the DC-DC converter 13 is, for example, a chopper type DC-DC converter, and first and second switching elements (for example, IGBT: Insulated Gate Gate Bipolar Mode Transistor) 31 and 32 each having freewheeling diodes 31 a and 31 b are connected in series. , A switching circuit 33 connected to, a reactor 34 formed of a choke coil, and a smoothing capacitor 35.
  • first and second switching elements for example, IGBT: Insulated Gate Gate Bipolar Mode Transistor
  • Switching circuit 33 is driven by a pulse width modulated (PWM) signal (PWM signal) output from converter ECU 16 and input to the gates of switching elements 31 and 32.
  • PWM pulse width modulated
  • the state where the first switching element 31 forming the high side arm is turned off and the second switching element 32 forming the low side arm is turned on is alternately switched.
  • the first switching element 31 that forms the high-side arm (upper arm) of the DC-DC converter 13 is maintained in the OFF state, and the second switching that forms the low-side arm (lower arm).
  • the element 32 is alternately switched between the on state and the off state.
  • the three lines L1, L2, and L3 have different potentials in a decreasing tendency.
  • the potential of L1 is the highest
  • the potential of L3 is the lowest
  • the potential of L2 is between them.
  • the end of the switching circuit 33 on the first switching element 31 side is connected to the first line L1
  • the end of the switching circuit 33 on the second switching element 32 side is connected to the third line L3.
  • the smoothing capacitor 35 is connected to the first line L1 and the third line L3.
  • one end of the reactor 34 is connected to a connection point (for example, between the collector and the emitter) of the first and second switching elements 31 and 32, and the other end is connected to the second line L2.
  • the first switching element 31 of the high side arm is turned off and the second switching element 32 of the low side arm is first turned off. Is turned on.
  • the reactor 34 is DC-excited by the current input from the primary side, and magnetic energy is accumulated.
  • an electromotive voltage inductive voltage
  • the induced voltage due to the magnetic energy accumulated in the reactor 34 is added to the input voltage on the primary side.
  • a boosted voltage higher than the input voltage on the secondary side is applied to the secondary side.
  • the voltage fluctuation generated by this switching operation is smoothed by the smoothing capacitor 35, and the boosted voltage is output from the secondary side.
  • the first switching element 31 of the high side arm is turned off and the second switching element 32 of the low side arm is turned on.
  • the reactor 34 is DC-excited by a current input from the secondary side, and magnetic energy is accumulated.
  • the first switching element 31 of the high side arm is turned on and the second switching element 32 of the low side arm is turned off, the current flowing through the reactor 34 is interrupted.
  • an electromotive voltage inductive voltage
  • the induced voltage due to the magnetic energy accumulated in the reactor 34 becomes a step-down voltage obtained by stepping down the input voltage on the secondary side according to the ON / OFF ratio of the first switching element 31 of the high-side arm, and the step-down voltage is 1 Applied to the secondary side.
  • the DC-DC converter 13 is driven by a pulse width modulated (PWM) signal (PWM signal) output from the converter ECU 16 and input to the gates of the switching elements 31 and 32.
  • PWM pulse width modulated
  • the first switching element 31 of the high side arm and the second switching element of the low side arm according to the switching duty (DUTY) defined as the ON ratio of the first switching element 31 of the high side arm in one cycle of the PWM signal. ON / OFF with 32 is switched.
  • first switching element 31 of the high-side arm and the second switching element 32 of the low-side arm are prohibited from being turned on simultaneously when switching on / off.
  • an appropriate dead time is provided in which the first switching element 31 and the second switching element 32 are simultaneously turned off.
  • the fuel cell stack 11 is disposed on the positive electrode side and the negative electrode side, and is connected to the second line L2 and the third line via the contactors 11a and 11b and the capacitor 11c, which are switched on / off by the integrated ECU 17.
  • the battery 12 is arranged on the positive electrode side and the negative electrode side, and is connected to each contactor 12a, 12b that is switched on / off by the integrated ECU 17, and the current limiting circuit 12c that is arranged on the positive electrode side and whose operation is controlled by the integrated ECU 17. Are connected to the first line L1 and the second line L2.
  • the fuel cell stack 11 and the battery 12 are connected in series at the connection point 18a between the first line L1 and the third line L3 to form a battery circuit 18. Further, the first line L1 and the third line L3 are connected to the PDU 21 so that electric power is output from the first line L1 and the third line L3 to the motor 22 that is a load.
  • An air pump inverter 14 that is a drive circuit of the air pump 23 is connected to the first line L1 and the second line L2.
  • the PDU 21 forming the drive circuit of the three-phase motor 22 includes, for example, a PWM inverter by pulse width modulation (PWM), and a three-phase structure in which a plurality of switching elements (for example, IGBT: Insulated Gate Bipolar Mode Transistor) are bridge-connected.
  • PWM pulse width modulation
  • a bridge circuit is provided. In the bridge circuit, for example, a plurality of high-side and low-side switching elements connected in series in pairs for each phase are bridge-connected.
  • the PDU 21 is driven by, for example, a pulse width modulated (PWM) signal (PWM signal) output from a motor ECU (not shown) and input to the gate of each switching element of the bridge circuit.
  • PWM pulse width modulated
  • the motor 22 when the motor 22 is driven, the on (conducting) / off (shut off) state of each switching element paired for each phase is switched. Thereby, the DC power output from the power supply apparatus 10 is converted into three-phase AC power.
  • AC U-phase current Iu, V-phase current Iv, and W-phase current Iw are energized to the stator windings of each phase.
  • the three-phase AC power output from the motor 22 is converted into DC power and supplied to the DC-DC converter 13 to charge the battery 12 and the load connected to the DC-DC converter 13. Supply power to.
  • the motor ECU includes, for example, a phase current sensor (not shown) that detects currents of three phases between the PDU 21 and the motor 22, and a rotation angle of the rotor of the motor 22 (that is, a predetermined reference rotation position). Detection signals outputted from the respective sensors with an angle sensor (not shown) for detecting the rotation angle of the magnetic poles of the rotor and the rotation position of the rotation shaft of the motor 22.
  • the motor 22 is a permanent magnet type three-phase AC synchronous motor that uses a permanent magnet as a field, for example.
  • the motor 22 When driving is controlled by the three-phase AC power supplied from the PDU 21 and driving force is transmitted from the driving wheel side to the motor 22 side during deceleration of the vehicle, the motor 22 functions as a generator, so-called regenerative control. Power is generated and the kinetic energy of the vehicle body is recovered as electrical energy.
  • Converter ECU 16 controls the operation of DC-DC converter 13 in cooperation with integrated ECU 17.
  • the integrated ECU 17 includes detections output from sensors such as a current sensor 41 that detects a current (reactor current IL) flowing through the reactor 34 and an output current sensor 43 that detects an output current Ifc of the fuel cell stack 11. A signal is being input.
  • the converter ECU 16 executes a one-side switching mode in which only the second switching element 32 is alternately switched on and off while the first switching element 31 is prohibited from being turned on (upper arm ON) when the power supply device 10 is activated. To do.
  • this one-side switching mode for example, as shown in FIG. 2, the ON time T2on (lower arm ON time) of the second switching element 32 is changed from zero to an increasing tendency every predetermined switching period T.
  • the converter ECU 16 changes the ON time T2on of the second switching element 32 by changing the switching duty (DUTY), for example, and the switching duty (DUTY) is changed to the ON time T2on (lower arm ON time). Gradually change from 100% corresponding to zero to a decreasing tendency.
  • the reactor current IL is a period in which the first switching element 31 is off (upper arm is prohibited) and the second switching element 32 is on (lower arm is on) and the reactor 34 is DC-excited. Increases monotonically. Then, the reactor current IL monotonously decreases in a period in which the first switching element 31 and the second switching element 32 are turned off and the magnetic energy accumulated in the reactor 34 is consumed. As a result, the reactor current IL has a triangular waveform (for example, an isosceles triangular waveform (the period in which the reactor 34 is DC-excited is equal to the period in which the magnetic energy of the reactor 34 is consumed)).
  • the integrated ECU 17 acquires a detection result of the reactor current IL detected by the current sensor 41 at a predetermined cycle from the current sensor 41 when the one-side switching mode is executed, and transmits the detection result of the reactor current IL to the converter ECU 16. For example, as shown in FIG. 3, converter ECU 16 performs buffer processing and filter processing on reactor current IL received from integrated ECU 17.
  • the converter ECU 16 stores the time series data of the reactor current IL sequentially received from the integrated ECU 17 within the switching period T, for example, every predetermined switching period T as buffer processing, and stores the data in a ring buffer or the like independently for each data.
  • the reactors sequentially received from the integrated ECU 17 at arbitrary times tn0,..., TnM for each predetermined period ⁇ t within the n-th switching period T (n) by arbitrary natural numbers n and M.
  • Currents ILn0,..., ILnM are stored in ring buffer RB independently of each other.
  • Converter ECU 16 performs a predetermined filter process independently for each data stored in the storage unit. For example, in the filtering process shown in FIG. 3, the filtering process is executed independently for each reactor current ILn0,..., ILnM, and the reactor currents ILn0 ′,. Stored in the ring buffer RB.
  • Converter ECU 16 determines whether or not reactor current IL continuously flows within switching period T based on time-series data of reactor current IL obtained by executing the filtering process.
  • “1” is set to the flag value of the continuous determination flag f_jdg.
  • this determination process for example, in one switching cycle T, when the end of the triangular-wave reactor current IL coincides with the end of the switching cycle T, in other words, the on / off timing of the second switching element 32
  • the rising / falling timing of the reactor current IL is synchronized with the switching period T, and the reactor current IL monotonously increases while the second switching element 32 is on in the half period (T / 2) of the switching period T.
  • the converter ECU 16 permits the first switching element 31 to be turned on (upper arm ON), that is, permits the start of the alternate switching mode, and executes the one-side switching mode. Is stopped and execution of the alternating switching mode is started. Further, based on the detection result of the reactor current IL output from the current sensor 41, the integrated ECU 17 executes a current feedback process so that the reactor current IL converges to zero.
  • the switching duty (DUTY) decreases after the time ta when the execution of the one-side switching mode is started (that is, the on-time T2on (lower arm ON time) of the second switching element 32).
  • the reactor current IL changes in an increasing trend with the increase in the current. Then, after time tb when execution of the one-side switching mode is stopped and execution of the alternating switching mode is started, the effective value of the reactor current IL converges to zero according to the current feedback processing.
  • the integrated ECU 17 calculates the total power consumption of the load to which power is supplied from the power supply device 10 as the normal operation of the power supply device 10 when the alternating switching mode is executed. For example, when the motor 22 is driven, based on the state of the fuel cell stack 11 (for example, the rate of change of the state change of the fuel cell stack 11 according to the power generation command), the remaining capacity SOC of the battery 12, and the like, The power distribution between the fuel cell stack 11 and the battery 12 forming the battery circuit 18 of the power supply device 10, that is, the total power consumption at the load is the power output from the fuel cell stack 11 and the power output from the battery 12. A distribution target value (target power distribution) for setting the value obtained by addition is set.
  • target power distribution target power distribution
  • the power distribution during driving of the motor 22 has a value corresponding to the switching duty of the DC-DC converter 13 (that is, the ON ratio of the switching element of the high-side arm in one cycle of the PWM signal), and the switching duty (DUTY) Is described by, for example, the inter-terminal voltage VFC (V1) of the fuel cell stack 11 and the inter-terminal voltage VB (V2) of the battery 12, as shown in the following formula (1).
  • the ratio between the terminal voltage VFC (V1) of the fuel cell stack 11 and the terminal voltage VB (V2) of the battery 12 is described by the switching duty (DUTY). .
  • the inter-terminal voltage VFC (V1) of the fuel cell stack 11 and the inter-terminal voltage VB (V2) of the battery 12 are, for example, as shown in FIGS. 5A and 5B, the current of the fuel cell stack 11 (output current Ifc) and The power has a predetermined correspondence with the current (Ib) of the battery 12 and the power.
  • the ratio between the operating point (for example, voltage or current or power) of the fuel cell stack 11 and the operating point (for example, voltage or current or power) of the battery 12 is described by the switching duty (DUTY).
  • the integrated ECU 17 determines the state of the fuel cell stack 11 (for example, the rate of change of the state change of the fuel cell stack 11 according to the power generation command) and the remaining capacity SOC of the battery 12. Based on the regenerative power of the motor 22, the power distribution on the power supply side between the fuel cell stack 11 and the PDU 21 and the power distribution on the power reception side between the battery 12 and the load are set.
  • the integrated ECU 17 refers to a predetermined map indicating the correspondence relationship between the operating point of the fuel cell stack 11, the operating point of the battery 12, the switching duty (DUTY) of the DC-DC converter 13, and the total power consumption of the load.
  • a target current for the output current Ifc of the stack 11 is acquired.
  • the integrated ECU 17 outputs a zero or positive value as a target current of the current (output current Ifc) of the fuel cell stack 11 according to each power distribution.
  • the integrated ECU 17 outputs the fuel cell stack 11 output from, for example, the output current sensor 43 so that the actual power distribution (actual power distribution) between the fuel cell stack 11 and the battery 12 matches the target power distribution.
  • a feedback process including a PID (proportional integral derivative) operation is performed so that the detected value of the current Ifc matches the target current of the output current Ifc.
  • the signal of the calculation result of this feedback process is transmitted to converter ECU16.
  • the converter ECU 16 controls the switching duty of the DC-DC converter 13 in accordance with the signal received from the integrated ECU 17 to turn on / off the switching elements 31 and 32 of the DC-DC converter 13 (that is, the gate signal (that is, , PWM signal). Then, the DC-DC converter 13 performs synchronous switching by the gate signal.
  • the operation mode of the power supply apparatus 10 is continuously controlled.
  • the operation mode of the power supply device 10 with the maximum switching duty is, for example, as shown in the period from time t1 to time t2. Only the output of 12 is in the EV mode supplied to the PDU 21 and the air pump inverter (API) 14. As the switching duty changes from the EV mode to the decreasing tendency, the operation mode of the power supply apparatus 10 is sequentially changed to the first to third (FC + battery) modes, for example, as shown in the period from time t2 to time t5. Transition to.
  • the output of the battery 12 is supplied to the PDU 21 and the API 14 and the output of the fuel cell stack 11 is supplied to the PDU 21 so that the current (Ib) of the battery 12 is the current of the fuel cell stack 11 ( Output current Ifc).
  • the output of the battery 12 is supplied to the PDU 21 and the API 14 and the output of the fuel cell stack 11 is supplied to the PDU 21 so that the current (Ib) of the battery 12 is the current of the fuel cell stack 11 ( The output current Ifc) is equal to the sum of the current (IAP) energized to the API 14.
  • the outputs of the battery 12 and the fuel cell stack 11 are supplied to the PDU 21 and the API 14, and the current (Ib) of the battery 12 is smaller than the current (output current Ifc) of the fuel cell stack 11. .
  • the current (Ib) of the battery 12 changes to a decreasing trend, and the current (output current Ifc) and the target current (Ifc command) of the fuel cell stack 11 change to an increasing trend.
  • the primary side input voltage (VPIN) of the PDU 21 is maintained substantially constant, the voltage (VB) of the battery 12 changes to increase, and the voltage (VFC) of the fuel cell stack 11 changes to decrease.
  • the operation mode of the power supply device 10 is sequentially changed to the first, second, and the like, for example, as shown after time t5. Transition to FC mode.
  • first FC mode only the output of the fuel cell stack 11 is supplied to the PDU 21 and the API 14.
  • second FC mode only the output of the fuel cell stack 11 is supplied to the PDU 21, the API 14, and the battery 12 to charge the battery 12.
  • the current (Ib) of the battery 12 changes from zero to a negative value, and the current (output current Ifc) and the target current (Ifc command) of the fuel cell stack 11 change to increase. Then, while the primary side input voltage (VPIN) of the PDU 21 is maintained substantially constant, the voltage (VB) of the battery 12 changes to increase, and the voltage (VFC) of the fuel cell stack 11 changes to decrease. .
  • the integrated ECU 17 performs feedback control so that the detected value of the current (output current Ifc) of the fuel cell stack 11 matches the target current (zero or positive value).
  • the switching duty of the DC-DC converter 13 is controlled by performing feedback control of the regenerative voltage.
  • the operation mode of the power supply device 10 in which the target current of the current (output current Ifc) of the fuel cell stack 11 is zero is a regeneration mode in which the battery 12 is charged by the regenerative power of the PDU 21.
  • the regenerative power of the PDU 21 and the output of the fuel cell stack 11 are supplied to the API 14 and the battery 12.
  • the battery 12 is charged (regenerative + FC battery charging) mode.
  • the integrated ECU 17 for example, the operating state of the fuel cell vehicle, the concentration of hydrogen contained in the reaction gas supplied to the anode of the fuel cell stack 11, and the hydrogen contained in the exhaust gas discharged from the anode of the fuel cell stack 11.
  • the power generation state of the fuel cell stack 11 for example, the voltage across the terminals of each of the plurality of fuel cells, the voltage VFC of the fuel cell stack 11, the output current Ifc of the fuel cell stack 11, and the internal temperature of the fuel cell stack 11 Based on this, a command value for the pressure and flow rate of the reaction gas supplied to the fuel cell stack 11 is output as a power generation command for the fuel cell stack 11 to control the power generation state of the fuel cell stack 11.
  • the integrated ECU 17 switches on / off of the contactors 11a and 11b according to the power generation state of the fuel cell stack 11 and controls the connection between the fuel cell stack 11 and the second line L2 and the third line L3. Further, the integrated ECU 17 switches on / off of the contactors 12a, 12b and the current limiting circuit 12c according to the remaining capacity SOC of the battery 12, and controls the connection between the battery 12 and the first line L1 and the second line L2. To do.
  • the power supply device 10 has the above-described configuration. Next, an operation of the power supply device 10, particularly a method for starting the power supply device 10 will be described.
  • step S01 shown in FIG. 7 the smoothing capacitor 35 is energized with the current limiting circuit 12c of the battery 12 in a connected state as a precharge operation.
  • initialization of each sensor such as the current sensor 41 that detects the current flowing through the reactor 34 (reactor current IL) and the output current sensor 43 that detects the output current Ifc of the fuel cell stack 11 is performed. It is determined whether or not “1” is set in the flag value of the sensor initialization completion flag indicating completion. If the determination result is “NO”, the initialization determination process in step S01 is repeatedly executed. On the other hand, if this determination is “YES”, the flow proceeds to step S 02.
  • step S02 the flag value of the contactor ON completion flag indicating that the contactors 11a and 11b of the fuel cell stack 11, the contactors 12a and 12b of the battery 12 and the current limiting circuit 12c are connected. It is determined whether or not “1” is set. If the determination result is “NO”, the determination process of step S02 is repeatedly executed. On the other hand, if the determination is “YES”, the flow proceeds to step S03.
  • step S03 the first switching is performed according to a predetermined initial value with respect to the switching duty (DUTY) (for example, 100% corresponding to zero of the ON time T2on (lower arm ON time) of the second switching element 32). Execution of the one-side switching mode in which only the second switching element 32 is alternately switched on and off while the element 31 is turned on (upper arm ON) is prohibited.
  • DUTY switching duty
  • step S04 the current (reactor current IL) flowing through the reactor 34 is detected by the current sensor 41, and buffer processing and filter processing are executed on this detection result.
  • step S05 a waveform determination process to be described later is executed based on each reactor current IL (for example, each reactor current ILn0 ′,..., ILnM ′) obtained by the buffer process and the filter process.
  • step S06 an upper arm ON permission determination process described later is executed.
  • step S07 a gate output process to be described later is executed.
  • step S08 it is determined whether or not the first switching element 31 is turned on (upper arm ON), that is, whether or not the start of the alternate switching mode is permitted. If this determination is “NO”, the flow returns to step S 04 described above. On the other hand, if this determination is “YES”, the flow proceeds to step S 09.
  • step S09 execution of the one-side switching mode is stopped and execution of the alternating switching mode is started.
  • step S10 current feedback processing is executed so that the reactor current IL converges to zero based on the detection result of the reactor current IL output from the current sensor 41 when the alternate switching mode is executed, and the process proceeds to the end.
  • step S21 the number M of detections of the reactor current IL by the current sensor 41 within a predetermined switching period T (that is, the reactor current IL of each switching period T is changed).
  • the number of detections of the reactor current IL by the current sensor 41 in the half of the switching period T is calculated from the number of time-series data).
  • step S22 an arbitrary natural number parameter i is set to “1” and the parameter i is initialized.
  • step S23 in the time-series data of the reactor current IL, “0” is set to the data number ct_int in which the reactor current IL continuously changes with time, and the data The number ct_int is initialized.
  • step S24 it is determined whether or not the parameter i is equal to or less than the detection count M. If this determination is “YES”, the flow proceeds to step S25. On the other hand, if this determination is “NO”, the flow proceeds to step S 29 described later.
  • step S25 in the time-series data of the reactor current IL, the (i ⁇ 1) th reactor current ILn ′ (i ⁇ 1) is equal to or less than the (i) th reactor current ILn ′ (i). It is determined whether or not there is. If the determination result is “YES”, the process proceeds to step S25, and in this step S25, the number of data ct_int is incremented. On the other hand, if this determination is “NO”, the flow proceeds to step S 26, where the data count ct_int is set to zero. In step S28, the parameter i is incremented.
  • step S29 it is determined whether the number of data ct_int is not less than (m ⁇ 1) and not more than (m + 1).
  • the flag value of the continuous determination flag f_jdg is set to “0” and the process proceeds to return.
  • the determination result is “YES”
  • the continuous determination flag is determined.
  • the flag value of f_jdg is set to “1” and the process proceeds to return.
  • step S41 shown in FIG. 9 it is determined whether or not “1” is set in the flag value of the continuous determination flag f_jdg. If this determination is “NO”, the flow proceeds to step S 42, and in this step S 42, the continuous determination number ct_jdg is set to zero. If this determination result is "YES”, the process proceeds to step S43, and in this step S43, the continuous determination number ct_jdg is incremented.
  • step S44 it is determined whether or not the continuous determination number ct_jdg has reached a predetermined determination threshold value CT_JDG_TH. If this determination is “NO”, the flow proceeds to return. On the other hand, if this determination result is "YES”, the process proceeds to step S45, and in this step S45, the flag value of the gate output permission flag f_prm is set to "1", and the process proceeds to return.
  • step S51 the ON time T2on (lower arm ON time) of the second switching element 32 is calculated from the switching duty (DUTY).
  • step S52 it is determined whether or not “1” is set in the flag value of the gate output permission flag f_prm. If this determination is “NO”, the flow proceeds to step S 53, where the switching duty (DUTY) is decreased by a predetermined value, thereby increasing the lower arm ON time by a predetermined time and returning to the return. move on. On the other hand, if this determination is “YES”, the flow proceeds to step S54, where the first switching element 31 is permitted to be turned on (upper arm ON), and the flow proceeds to return.
  • the first switching element 31 is turned off and the first switching element 31 is executed by executing the one-side switching mode before executing the alternating switching mode. 2
  • the switching element 32 is turned on and the reactor 34 is DC excited. Thereby, even if the first switching element 31 is turned on and the second switching element 32 is turned off in the alternating switching mode, it is possible to prevent an excessive current from flowing from the fuel cell stack 11 or the battery 12. . Further, it is possible to prevent the switching elements 31, 32 and the like from being damaged by an excessive current. For example, as shown in FIG.
  • the second switching element 32 and the reactor with respect to the currents IL, Ic1, Ic2, Imot, Ifc, Ib flowing through the respective portions of the power supply device 10 at the normal time when the motor 22 is driven. It is possible to prevent the first switching element 31 from being damaged by an excessive current that causes the current to flow back through 34. Moreover, when the power supply device 10 is started, the voltage sensor for detecting the inter-terminal voltage VFC (V1) of the fuel cell stack 11 and the inter-terminal voltage VB (V2) of the battery 12 is not required, and the device configuration is simplified. Can do.
  • the reactor current IL continues to flow within the switching cycle T in the one-side switching mode, that is, when there is no period during which the reactor current IL is zero within the switching cycle T, the first switching element 31 is turned on. Even when the second switching element 32 is turned off, the output voltage of the battery circuit 18 and the voltage on the secondary side of the DC-DC converter 13 are balanced. As a result, it is possible to prevent an unintended excessive current from flowing in the circuit system, and to stably switch from the one-side switching mode to the alternate switching mode.
  • the end of the triangular wave reactor current IL coincides with the end of the switching cycle T when the one-side switching mode is executed, it can be determined that the reactor current IL continues to flow continuously within the switching cycle T. Therefore, it is possible to prevent an unintended excessive current from flowing in the circuit system, and to stably switch from the one-side switching mode to the alternate switching mode.
  • the second switching element 32 is switched on and off every half period (T / 2) of the switching cycle T, whereby the reactor current IL is reduced.
  • the detection of the reactor current IL is performed only for a half period (T / 2) of the switching period T, and the reactor current is continuously detected within the switching period T based on the detection result. It can be determined whether or not IL flows. As a result, it is possible to quickly determine whether or not switching from the one-side switching mode to the alternate switching mode is possible.
  • a plurality of operation modes can be switched only by providing a single DC-DC converter 13 for a battery circuit 18 in which the fuel cell stack 11 and the battery 12 are connected in series.
  • the fuel cell stack 11 Compared with the case where each battery 12 is provided with a DC-DC converter individually, the cost required for the configuration can be reduced and the size can be reduced.
  • the battery 12 is connected to the first line L1 and the second line L2, and the fuel cell stack 11 is connected to the second line L2 and the third line L3. It is not limited to this.
  • the fuel cell stack 11 may be connected to the first line L1 and the second line L2, and the battery 12 may be connected to the second line L2 and the third line L3.
  • the integrated ECU 17 sets the current (output current Ifc) of the fuel cell stack 11 so that the actual power distribution between the fuel cell stack 11 and the battery 12 matches the target power distribution.
  • the switching duty of the DC-DC converter 13 is controlled by performing feedback control so that the detected value matches the target current
  • the present invention is not limited to this.
  • feedback control may be performed so that the current (Ib) of the battery 12 matches the target value instead of the current (output current Ifc) of the fuel cell stack 11.
  • feedback control may be performed so that the detected value of the voltage (VFC) of the fuel cell stack 11 or the voltage (VB) of the battery 12 matches the target value.
  • the switching duty may be feedback controlled so that the output ratio with the battery 12 matches the target value. For example, during regeneration of the motor 22, feedback control may be performed so that the output of the fuel cell stack 11 matches the target value instead of the current (output current Ifc) of the fuel cell stack 11.
  • the switching circuit 33 of the DC-DC converter 13 is configured by the first and second switching elements 31 and 32 connected in series, but is not limited thereto.
  • a three-phase bridge circuit (that is, a circuit in which a plurality of high-side and low-side switching elements connected in series in pairs for each phase is bridge-connected) may be used.
  • the reactor is not limited to a single reactor 34.
  • a reactor may be provided for each of the three phases.
  • 10 power supply device 11 fuel cell stack (fuel cell, first power supply), 12 battery (power storage device, second power supply), 13 DC-DC converter, 16 converter ECU, 17 integrated ECU, 18 battery circuit, 21 PDU, 31 1st switching element, 32 2nd switching element, 33 switching circuit, 34 reactor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dc-Dc Converters (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 第1電源(11)と第2電源(12)とが直列に接続された電池回路(18)の両端は第1,第3ライン(L1,L3)に接続され、第1電源(11)と第2電源(12)の接続点(18a)は第2ライン(L2)に接続され、スイッチング回路(33)の両端は第1,第3ライン(L1,L3)に接続され、リアクトル(34)の一端は第1,第2スイッチング素子(31,32)の接続点に接続され、他端は第2ライン(L2)に接続されている。電源装置(10)は、起動時に、第1スイッチング素子(31)のONを禁止した状態で第2スイッチング素子(32)のみをONとOFFとに交互に切り替える動作を、ON時間を増長傾向に変化させつつ、実行した後に、各スイッチング素子(31,32)のONを交互に切り替える動作を実行する。

Description

電源装置の起動方法
 本発明は、電源装置の起動方法に関する。
 本願は、2009年12月1日に、日本に出願された特願2009-273332号に基づき優先権を主張し、その内容をここに援用する。
 従来、例えば燃料電池に接続された第1DC-DCコンバータと、蓄電装置に接続された第2DC-DCコンバータとを備え、2つの第1および第2DC-DCコンバータから車両駆動用電動機などの負荷に電力を供給する電源システムが知られている(例えば、特許文献1参照)。
日本国特開2007-318938号公報
 上記従来技術に係る電源システムにおいては、複数の電源(つまり、燃料電池および蓄電装置)毎にDC-DCコンバータを備えることに起因して、電源システムの構成に要する費用が嵩むとともに、電源システムのサイズが増大する。そのため、費用の削減およびサイズの小型化が望まれている。
 また、複数の電源(つまり、燃料電池および蓄電装置)からなる電源システムの始動時において、特にDC-DCコンバータを始動させたときに、回路系において意図しない過大な電流が流れてしまうことを防止することが望まれている。
 本発明に係る態様は、構成に要する費用を削減すると共にサイズを小型化すること、および始動時に過大な電流が流れることを防止することが可能な電源装置の起動方法を提供することを目的とする。
 本発明に係る一態様による電源装置の起動方法において、前記電源装置は、電位が順次低下傾向に異なる第1ラインおよび第2ラインおよび第3ラインと、燃料電池スタックと蓄電装置とが直列に接続されてなる電池回路と、各還流ダイオードを具備する第1スイッチング素子および第2スイッチング素子が直列に接続されたスイッチング回路と、リアクトルとからなるDC-DCコンバータとを備え、前記電池回路の両端は前記第1ラインと前記第3ラインとに接続され、前記電池回路の前記燃料電池スタックと前記蓄電装置との接続点は前記第2ラインに接続され、前記スイッチング回路の前記第1スイッチング素子側の端部は前記第1ラインに接続され、前記スイッチング回路の前記第2スイッチング素子側の端部は前記第3ラインに接続され、前記リアクトルの一端は前記第1および前記第2スイッチング素子の互いの接続点に接続され、他端は前記第2ラインに接続され、前記電源装置の起動時に、前記第1スイッチング素子のONを禁止した状態で前記第2スイッチング素子のみをONとOFFとに交互に切り替える片側スイッチングモードを、前記第2スイッチング素子のON時間を増長傾向に変化させつつ、実行する工程と、前記第1スイッチング素子のONと前記第2スイッチング素子のONとを交互に切り替える交互スイッチングモードを実行する工程と、を含む。
 上記態様において、前記片側スイッチングモードの実行時に前記第2スイッチング素子のスイッチング周期内で連続して前記リアクトルに電流が流れる場合に、前記片側スイッチングモードの実行から前記交互スイッチングモードの実行へと切り替える起動方法を追加的に採用できる。
 上記態様において、前記片側スイッチングモードの実行時に前記第2スイッチング素子の1つのスイッチング周期において、前記リアクトルに流れる三角波状の電流の終端が前記スイッチング周期の末端に一致した場合に、前記片側スイッチングモードの実行から前記交互スイッチングモードの実行へと切り替える起動方法を追加的に採用できる。
 上記態様において、前記片側スイッチングモードの実行時に前記第2スイッチング素子のスイッチング周期の半分の期間において前記リアクトルに流れる電流が単調増加している場合に、前記スイッチング周期内で連続して前記リアクトルに電流が流れるとみなす起動方法を追加的に採用できる。
 本発明に係る態様における電源装置の起動方法によれば、交互スイッチングモードを実行するより前において、片側スイッチングモードを実行することにより、第1スイッチング素子がOFFかつ第2スイッチング素子がONとされてリアクトルが直流励磁される。これにより、交互スイッチングモードで第1スイッチング素子がONかつ第2スイッチング素子がOFFとされたとしても、燃料電池スタックまたは蓄電装置から過大な電流が流れてしまうことを防止することができる。また、過大な電流によって各スイッチング素子などに損傷が生じることを防止することができる。
 しかも、燃料電池スタックと蓄電装置とが直列に接続されてなる電池回路に対して単一のDC-DCコンバータを備えるだけで複数の動作モードを切り換えることができ、例えば燃料電池スタックと蓄電装置毎に個別にDC-DCコンバータを備える場合に比べて、構成に要する費用を削減すると共にサイズを小型化することができる。
 追加的な態様に係る起動方法によれば、片側スイッチングモードのスイッチング周期内で連続してリアクトルに電流が流れ続ける場合には、回路系において意図しない過大な電流が流れてしまうことを防止することができ、片側スイッチングモードから交互スイッチングモードへの切り替え移行を安定的に行なうことができる。
 追加的な態様に係る起動方法によれば、例えば、第1スイッチング素子がOFFかつ第2スイッチング素子がONとされてリアクトルが直流励磁される期間でリアクトルに流れる電流が単調に増加し、次に、第1スイッチング素子および第2スイッチング素子がOFFとされてリアクトルに蓄積された磁気エネルギーが消費される期間でリアクトルに流れる電流が単調に減少することで、リアクトルに流れる電流は三角波状となる。この状態で、三角波状の電流の終端がスイッチング周期の末端に一致した場合には、回路系において意図しない過大な電流が流れてしまうことを防止することができ、片側スイッチングモードから交互スイッチングモードへの切り替え移行を安定的に行なうことができる。
 追加的な態様に係る起動方法によれば、第1スイッチング素子がOFFに維持された状態で、スイッチング周期の半分の期間毎に第2スイッチング素子がONとOFFとに切り替えられることで、リアクトルに流れる電流が二等辺三角波状となる場合には、リアクトルに流れる電流の検出をスイッチング周期の半分の期間に亘って行なうだけで、この検出結果に基づきスイッチング周期内で連続してリアクトルに電流が流れるか否かを判定することができる。これにより、片側スイッチングモードから交互スイッチングモードへの切り替え移行の可否を迅速に判定することができる。
電源装置を備える燃料電池車両の電源システムの構成図である。 電源装置の起動時の片側スイッチングモードの実行時における上アームON時間と下アームON時間とリアクトル電流ILとスイッチングデューティー(DUTY)とゲート出力許可フラグf_prmとの一例を示す図である。 電源装置の起動時の片側スイッチングモードの実行時における各スイッチング周期T内でのリアクトル電流ILの時系列のデータの一例を示す図である。 電源装置の起動時の片側スイッチングモードの実行時と交互スイッチングモードの実行時とにおけるリアクトル電流ILの変化の一例を示す図である。 燃料電池スタックの動作点の一例を示す図である。 バッテリの動作点の一例を示す図である。 駆動モータの駆動時におけるDC-DCコンバータのスイッチングデューティーの変化に応じた電源装置の動作モードの変化と燃料電池スタックおよびバッテリの電流および電圧の変化の一例とを示す図である。 電源装置の起動方法を示すフローチャートである。 図7に示す波形判定処理のフローチャートである。 図7に示す上アームON許可判定処理のフローチャートである。 図7に示すゲート出力処理のフローチャートである。
 以下、本発明に係る実施形態における電源装置について添付図面を参照しながら説明する。
 本実施形態における電源装置10は、例えば図1に示すように、第1電源をなす燃料電池スタック(燃料電池、FC)11と、第2電源をなすバッテリ(蓄電装置)12と、DC-DCコンバータ13と、エアポンプインバータ(API)14と、CAN(Controller Area Network)通信ラインからなるパワープラントCAN15に接続されるコンバータECU(電子制御装置)16および統合ECU(電子制御装置)17とを備える。そして、燃料電池スタック11とバッテリ12とが直列に接続されて電池回路18が構成されている。
 電源装置10は、例えば燃料電池車両の電源システム20に具備され、燃料電池車両の電源システム20は、例えば、電源装置10と、PDU(パワードライブユニット)21と、車両駆動用のモータ22と、エアポンプ(AP)23とを備える。
 燃料電池スタック11は、陽イオン交換膜等からなる固体高分子電解質膜を、アノード触媒およびガス拡散層からなる燃料極(アノード)と、カソード触媒およびガス拡散層からなる酸素極(カソード)とで挟持してなる電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セルを多数組積層して構成される。燃料電池セルの積層体は、一対のエンドプレートによって積層方向の両側から挟み込まれている。
 燃料電池スタック11のカソードには酸素を含む酸化剤ガス(反応ガス)である空気がエアポンプ23から供給され、アノードには水素を含む燃料ガス(反応ガス)が、例えば高圧の水素タンク(図示略)から供給されている。
 アノードのアノード触媒上で触媒反応によりイオン化された水素は、適度に加湿された固体高分子電解質膜を介してカソードへと移動する。この移動に伴って発生する電子が外部回路に取り出され、直流の電気エネルギーとして利用される。このときカソードにおいては、水素イオン、電子及び酸素が反応して水が生成される。
 なお、エアポンプ23は、例えば車両の外部から空気を取り込んで圧縮し、この空気を反応ガスとして燃料電池スタック11のカソードに供給する。エアポンプ23を駆動するポンプ駆動用モータ(図示略)の回転数は、統合ECU17から出力される制御指令に基づき、例えばパルス幅変調(PWM)によるPWMインバータなどからなるエアポンプインバータ14により制御されている。
 なお、電源装置10ではバッテリ12の代わりに蓄電装置として、例えば電気二重層コンデンサ又は、電解コンデンサなどからなるキャパシタを備えてもよい。
 DC-DCコンバータ13は、例えばチョッパ型のDC-DCコンバータであって各還流ダイオード31a,31bを具備する第1および第2スイッチング素子(例えば、IGBT:Insulated Gate Bipolar mode Transistor)31,32が直列に接続されてなるスイッチング回路33と、チョークコイルからなるリアクトル34と、平滑コンデンサ35とを備える。
 スイッチング回路33は、コンバータECU16から出力されて各スイッチング素子31,32のゲートに入力されるパルス幅変調(PWM)された信号(PWM信号)によって駆動される。
 例えば、交互スイッチングモードでは、DC-DCコンバータ13のハイサイドアーム(上アーム)をなす第1スイッチング素子31がオンかつローサイドアーム(下アーム)をなす第2スイッチング素子32がオフとなる状態と、ハイサイドアームをなす第1スイッチング素子31がオフかつローサイドアームをなす第2スイッチング素子32がオンとなる状態とが、交互に切り替えられる。
 また、例えば、片側スイッチングモードでは、DC-DCコンバータ13のハイサイドアーム(上アーム)をなす第1スイッチング素子31がオフとなる状態に維持されて、ローサイドアーム(下アーム)をなす第2スイッチング素子32がオンとなる状態とオフとなる状態とに交互に切り替えられる。
 3つのラインL1,L2,L3は、順次低下傾向に異なる電位を有する。例えば、L1の電位が最も高く、L3の電位が最も低く、L2の電位がそれらの中間である。スイッチング回路33の第1スイッチング素子31側の端部は第1ラインL1に接続され、スイッチング回路33の第2スイッチング素子32側の端部は第3ラインL3に接続されている。
 また、平滑コンデンサ35は、第1ラインL1と第3ラインL3とに接続されている。
 また、リアクトル34の一端は第1および第2スイッチング素子31,32の互いの接続点(例えば、コレクタ-エミッタ間)に接続され、他端は第2ラインL2に接続されている。
 DC-DCコンバータ13において、例えばモータ22の駆動時などにおける1次側から2次側への昇圧動作時には、先ず、ハイサイドアームの第1スイッチング素子31がオフかつローサイドアームの第2スイッチング素子32がオンとされる。1次側から入力される電流によってリアクトル34が直流励磁されて磁気エネルギーが蓄積される。
 ハイサイドアームの第1スイッチング素子31がオンかつローサイドアームの第2スイッチング素子32がオフとされると、リアクトル34に流れる電流が遮断される。その結果、磁束の変化を妨げるようにしてリアクトル34の両端間に起電圧(誘導電圧)が発生し、リアクトル34に蓄積された磁気エネルギーによる誘導電圧が1次側の入力電圧に上積みされて1次側の入力電圧よりも高い昇圧電圧が2次側に印加される。この切換動作に伴って発生する電圧変動は平滑コンデンサ35により平滑化され、昇圧電圧が2次側から出力される。
 一方、例えばモータ22の回生時などにおける2次側から1次側への回生動作時には、先ず、ハイサイドアームの第1スイッチング素子31がオフかつローサイドアームの第2スイッチング素子32がオンとされる。2次側から入力される電流によってリアクトル34が直流励磁されて磁気エネルギーが蓄積される。
 ハイサイドアームの第1スイッチング素子31がオンかつローサイドアームの第2スイッチング素子32がオフとされると、リアクトル34に流れる電流が遮断される。その結果、磁束の変化を妨げるようにしてリアクトル34の両端間に起電圧(誘導電圧)が発生する。このリアクトル34に蓄積された磁気エネルギーによる誘導電圧は、ハイサイドアームの第1スイッチング素子31のオン/オフの比率に応じて2次側の入力電圧が降圧された降圧電圧となり、降圧電圧が1次側に印加される。
 DC-DCコンバータ13は、コンバータECU16から出力されて各スイッチング素子31,32のゲートに入力されるパルス幅変調(PWM)された信号(PWM信号)によって駆動される。例えばPWM信号の1周期におけるハイサイドアームの第1スイッチング素子31のオンの比率として定義されるスイッチングデューティー(DUTY)に応じて、ハイサイドアームの第1スイッチング素子31とローサイドアームの第2スイッチング素子32とのオン/オフが切り換わる。
 なお、スイッチングデューティー(DUTY)は、例えば、第1スイッチング素子31のオン時間T1onと第2スイッチング素子32のオン時間T2onとにより、DUTY=T1on/(T1on+T2on)とされる。
 なお、ハイサイドアームの第1スイッチング素子31と、ローサイドアームの第2スイッチング素子32とは、オン/オフの切り換え時に、同時にオンとなることが禁止されている。また、第1スイッチング素子31及び第2スイッチング素子32が、同時にオフとなる適宜のデッドタイムが設けられている。
 燃料電池スタック11は、正極側および負極側に配置されて統合ECU17により断接(オン/オフ)が切り換えられる各コンタクタ11a,11bと、コンデンサ11cとを介して、第2ラインL2と第3ラインL3とに接続されている。
 バッテリ12は、正極側および負極側に配置されて統合ECU17により断接(オン/オフ)が切り換えられる各コンタクタ12a,12bおよび正極側に配置されて統合ECU17により動作が制御される電流制限回路12cを介して、第1ラインL1と第2ラインL2とに接続されている。
 これにより、第1ラインL1と第3ラインL3との間で燃料電池スタック11とバッテリ12とは接続点18aで直列に接続されて電池回路18が形成されている。
 また、第1ラインL1および第3ラインL3から負荷であるモータ22に電力が出力されるようにして第1ラインL1と第3ラインL3とはPDU21に接続されている。
 また、エアポンプ23の駆動回路であるエアポンプインバータ14は第1ラインL1と第2ラインL2とに接続されている。
 3相のモータ22の駆動回路をなすPDU21は、例えばパルス幅変調(PWM)によるPWMインバータを備え、複数のスイッチング素子(例えば、IGBT:Insulated Gate Bipolar mode Transistor)がブリッジ接続されてなる3相のブリッジ回路を備える。
 ブリッジ回路は、例えば各相毎に対をなして直列に接続される複数のハイ側およびロー側スイッチング素子がブリッジ接続される。
 このPDU21は、例えばモータECU(図示略)から出力されてブリッジ回路の各スイッチング素子のゲートに入力されるパルス幅変調(PWM)された信号(PWM信号)によって駆動される。例えばモータ22の駆動時には、各相毎に対をなす各スイッチング素子のオン(導通)/オフ(遮断)状態を切り替える。これにより、電源装置10から出力される直流電力が3相交流電力に変換される。モータ22の3相のステータ巻線(図示略)への通電が順次転流することで、各相のステータ巻線に交流のU相電流IuおよびV相電流IvおよびW相電流Iwが通電する。一方、例えばモータ22の回生時には、モータ22から出力される3相交流電力を直流電力に変換してDC-DCコンバータ13に供給し、バッテリ12の充電およびDC-DCコンバータ13に接続された負荷に対する給電などを行なう。
 なお、モータECUには、例えばPDU21とモータ22との間において3相の各相電流を検出する相電流センサ(図示略)と、モータ22の回転子の回転角(つまり、所定の基準回転位置からの回転子の磁極の回転角度であって、モータ22の回転軸の回転位置)を検出する角度センサ(図示略)との各センサから出力される検出信号が入力されている。
 なお、モータ22は、例えば界磁として永久磁石を利用する永久磁石式の3相交流同期モータである。PDU21から供給される3相交流電力により駆動制御されると共に、車両の減速時において駆動輪側からモータ22側に駆動力が伝達されると、モータ22は発電機として機能して、いわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして回収する。
 コンバータECU16は、統合ECU17と協調しつつDC-DCコンバータ13の動作を制御する。
 なお、統合ECU17には、例えば、リアクトル34に流れる電流(リアクトル電流IL)を検出する電流センサ41、燃料電池スタック11の出力電流Ifcを検出する出力電流センサ43などの各センサから出力される検出信号が入力されている。
 コンバータECU16は、先ず、電源装置10の起動時に、第1スイッチング素子31のオン(上アームON)を禁止した状態で第2スイッチング素子32のみをオンとオフとに交互に切り替える片側スイッチングモードを実行する。この片側スイッチングモードでは、例えば図2に示すように、所定のスイッチング周期T毎に第2スイッチング素子32のオン時間T2on(下アームON時間)をゼロから増長傾向に変化させる。
 なお、コンバータECU16は、例えば、スイッチングデューティー(DUTY)を変更することによって、第2スイッチング素子32のオン時間T2onを変化させており、スイッチングデューティー(DUTY)を、オン時間T2on(下アームON時間)のゼロに相当する100%から低減傾向に徐々に変化させる。
 この片側スイッチングモードでは、第1スイッチング素子31がオフ(上アームONの禁止)かつ第2スイッチング素子32がオン(下アームONの実行)とされてリアクトル34が直流励磁される期間でリアクトル電流ILが単調に増加する。そして、第1スイッチング素子31および第2スイッチング素子32がオフとされてリアクトル34に蓄積された磁気エネルギーが消費される期間でリアクトル電流ILが単調に減少する。これらにより、リアクトル電流ILは三角波状(例えば、二等辺三角波状(リアクトル34が直流励磁される期間とリアクトル34の磁気エネルギーが消費される期間が等しい))となる。
 順次繰り返されるスイッチング周期T毎に第2スイッチング素子32のオン時間T2on(下アームON時間)が長くなることから、三角波状のリアクトル電流ILの最大値(三角波の頂点の電流値)が増大傾向に変化する。
 統合ECU17は、片側スイッチングモードの実行時において、所定周期で電流センサ41により検出されるリアクトル電流ILの検出結果を電流センサ41から取得し、このリアクトル電流ILの検出結果をコンバータECU16に送信する。
 コンバータECU16は、統合ECU17から受信したリアクトル電流ILに対して、例えば図3に示すように、バッファ処理およびフィルタ処理を実行する。
 コンバータECU16は、バッファ処理として、例えば所定のスイッチング周期T毎において、スイッチング周期T内で統合ECU17から順次受信されるリアクトル電流ILの時系列のデータを、各データ毎に独立にリングバッファなどの記憶部に格納する。
 例えば図3に示すバッファ処理では、任意の自然数n,Mにより、n番目のスイッチング周期T(n)内で所定周期Δt毎の各時刻tn0,…,tnMにおいて、統合ECU17から順次受信されるリアクトル電流ILn0,…,ILnMが、互いに独立にリングバッファRBに格納される。
 そして、コンバータECU16は、記憶部に格納した各データ毎に独立に所定のフィルタ処理を実行する。
 例えば図3に示すフィルタ処理では、各リアクトル電流ILn0,…,ILnM毎に独立にフィルタ処理が実行されて、各フィルタ処理により得られる各リアクトル電流ILn0´,…,ILnM´が、新たに互いに独立にリングバッファRBに格納される。
 コンバータECU16は、フィルタ処理を実行して得られるリアクトル電流ILの時系列のデータに基づき、スイッチング周期T内で連続してリアクトル電流ILが流れるか否かを判定する。この判定結果が「YES」の場合には、連続判定フラグf_jdgのフラグ値に「1」を設定する。なお、この判定処理では、例えば、1つのスイッチング周期Tにおいて、三角波状のリアクトル電流ILの終端がスイッチング周期Tの末端に一致した場合、言い換えれば、第2スイッチング素子32のオン/オフのタイミングと、リアクトル電流ILの立上り/立下りのタイミングとが、スイッチング周期Tで同期し、第2スイッチング素子32がスイッチング周期Tの半分の期間(T/2)でオンの間、リアクトル電流ILが単調増加している場合、スイッチング周期T内で連続してリアクトル電流ILが流れると判定する。
 連続する所定回数のスイッチング周期Tにおいて連続判定フラグf_jdgのフラグ値に「1」が設定された場合には、第1スイッチング素子31のオンを指示するゲート信号の出力を許可することを示すゲート出力許可フラグf_prmのフラグ値に「1」を設定する。
 ゲート出力許可フラグf_prmのフラグ値が「1」になると、コンバータECU16は、第1スイッチング素子31のオン(上アームON)の許可、つまり交互スイッチングモードの実行開始を許可し、片側スイッチングモードの実行を停止して交互スイッチングモードの実行を開始する。また、統合ECU17は、電流センサ41から出力されるリアクトル電流ILの検出結果に基づき、リアクトル電流ILがゼロに収束するように電流のフィードバック処理を実行する。
 これにより、例えば図4に示すように、片側スイッチングモードの実行が開始された時刻ta以降において、スイッチングデューティー(DUTY)の低下(つまり、第2スイッチング素子32のオン時間T2on(下アームON時間)の増長)に伴い、リアクトル電流ILが増大傾向に変化する。そして、片側スイッチングモードの実行が停止されて交互スイッチングモードの実行が開始される時刻tb以降において、電流のフィードバック処理に応じてリアクトル電流ILの実効値がゼロに収束する。
 統合ECU17は、交互スイッチングモードの実行時において、電源装置10の通常時の動作として、電源装置10から電力が供給される負荷の総消費電力を算出する。そして、例えばモータ22の駆動時においては、燃料電池スタック11の状態(例えば、発電指令に応じた燃料電池スタック11の状態変化の変化率など)と、バッテリ12の残容量SOCとなどに基づき、電源装置10の電池回路18を形成する燃料電池スタック11とバッテリ12との電力配分、つまり負荷での消総消費電力を燃料電池スタック11から出力される電力とバッテリ12から出力される電力とを加算して得た値とする際の配分の目標値(目標電力配分)を設定する。
 例えばモータ22の駆動時における電力配分は、DC-DCコンバータ13のスイッチングデューティー(つまり、PWM信号の1周期におけるハイサイドアームのスイッチング素子のオンの比率)に応じた値となり、スイッチングデューティー(DUTY)は、例えば下記数式(1)に示すように、燃料電池スタック11の端子間電圧VFC(V1)と、バッテリ12の端子間電圧VB(V2)とによりに記述される。
Figure JPOXMLDOC01-appb-M000001
 これにより、例えば下記数式(2)に示すように、スイッチングデューティー(DUTY)によって燃料電池スタック11の端子間電圧VFC(V1)とバッテリ12の端子間電圧VB(V2)との比が記述される。
Figure JPOXMLDOC01-appb-M000002
 燃料電池スタック11の端子間電圧VFC(V1)とバッテリ12の端子間電圧VB(V2)とは、例えば図5A及び図5Bに示すように、それぞれ燃料電池スタック11の電流(出力電流Ifc)および電力とバッテリ12の電流(Ib)および電力と所定の対応関係を有する。これにより、スイッチングデューティー(DUTY)により、燃料電池スタック11の動作点(例えば、電圧または電流または電力)とバッテリ12の動作点(例えば、電圧または電流または電力)との比が記述される。
 また、統合ECU17は、例えばモータ22の回生時においては、燃料電池スタック11の状態(例えば、発電指令に応じた燃料電池スタック11の状態変化の変化率など)と、バッテリ12の残容量SOCと、モータ22の回生電力となどに基づき、燃料電池スタック11とPDU21との電力供給側の電力配分、および、バッテリ12と負荷との電力受給側の電力配分を設定する。
 例えばモータ22の駆動時においては、スイッチングデューティー(DUTY)により、燃料電池スタック11の動作点(例えば、電圧または電流または電力)とバッテリ12の動作点(例えば、電圧または電流または電力)との比が記述される。統合ECU17は、燃料電池スタック11の動作点とバッテリ12の動作点とDC-DCコンバータ13のスイッチングデューティー(DUTY)と負荷の総消費電力との対応関係を示す所定マップを参照して、燃料電池スタック11の出力電流Ifcに対する目標電流を取得する。
 また、統合ECU17は、例えばモータ22の回生時においては、各電力配分に応じて、燃料電池スタック11の電流(出力電流Ifc)の目標電流として零あるいは正の値を出力する。
 また、統合ECU17は、燃料電池スタック11とバッテリ12との実際の電力配分(実電力配分)が目標電力配分に一致するようにして、例えば出力電流センサ43から出力される燃料電池スタック11の出力電流Ifcの検出値が、出力電流Ifcの目標電流に一致するようにして、例えばPID(比例積分微分)動作などを含むフィードバック処理を行なう。そして、このフィードバック処理の演算結果の信号をコンバータECU16に送信する。
 コンバータECU16は、統合ECU17から受信した信号に応じてDC-DCコンバータ13のスイッチングデューティーを制御するようにして、DC-DCコンバータ13の各スイッチング素子31,32をオン/オフ駆動させるゲート信号(つまり、PWM信号)を生成する。そして、ゲート信号によってDC-DCコンバータ13で同期スイッチングを行なう。
 これにより、例えば図6に示すように、電源装置10の動作モードは連続的に制御される。
 例えば第1DC-DCコンバータ13の昇圧比が2~3程度の値となる状態で、スイッチングデューティーが最大となる電源装置10の動作モードは、例えば時刻t1~時刻t2の期間に示すように、バッテリ12の出力のみがPDU21およびエアポンプインバータ(API)14に供給されるEVモードとなる。
 EVモードからスイッチングデューティーが低下傾向に変化することに伴い、電源装置10の動作モードは、例えば時刻t2~時刻t5の期間に示すように、順次、第1~第3の(FC+バッテリ)モードに推移する。
 第1の(FC+バッテリ)モードでは、バッテリ12の出力がPDU21およびAPI14に供給されると共に燃料電池スタック11の出力がPDU21に供給されてバッテリ12の電流(Ib)が燃料電池スタック11の電流(出力電流Ifc)よりも大きくなる。
 第2の(FC+バッテリ)モードでは、バッテリ12の出力がPDU21およびAPI14に供給されると共に燃料電池スタック11の出力がPDU21に供給されてバッテリ12の電流(Ib)が燃料電池スタック11の電流(出力電流Ifc)とAPI14に通電される電流(IAP)との和に等しくなる。
 第3の(FC+バッテリ)モードでは、バッテリ12および燃料電池スタック11の出力がPDU21およびAPI14に供給されてバッテリ12の電流(Ib)が燃料電池スタック11の電流(出力電流Ifc)よりも小さくなる。
 これに伴い、バッテリ12の電流(Ib)が減少傾向に変化し、燃料電池スタック11の電流(出力電流Ifc)及び目標電流(Ifcコマンド)は増大傾向に変化する。そして、PDU21の1次側の入力電圧(VPIN)はほぼ一定に維持されつつ、バッテリ12の電圧(VB)は増大傾向に変化し、燃料電池スタック11の電圧(VFC)は減少傾向に変化する。
 また、第3の(FC+バッテリ)モードからスイッチングデューティーが最小まで低下傾向に変化することに伴い、電源装置10の動作モードは、例えば時刻t5以降に示すように、順次、第1,第2のFCモードに推移する。
 第1のFCモードでは、燃料電池スタック11の出力のみがPDU21およびAPI14に供給される。
 第2のFCモードでは、燃料電池スタック11の出力のみがPDU21およびAPI14およびバッテリ12に供給されてバッテリ12が充電される。
 これに伴い、バッテリ12の電流(Ib)が零から負の値へと減少傾向に変化し、燃料電池スタック11の電流(出力電流Ifc)及び目標電流(Ifcコマンド)は増大傾向に変化する。そして、PDU21の1次側の入力電圧(VPIN)はほぼ一定に維持されつつ、バッテリ12の電圧(VB)は増大傾向に変化し、燃料電池スタック11の電圧(VFC)は減少傾向に変化する。
 また、統合ECU17は、例えばモータ22の回生時においては、燃料電池スタック11の電流(出力電流Ifc)の検出値が目標電流(零あるいは正の値)と一致するようにしてフィードバック制御をおこなうとともに、回生電圧のフィードバック制御をおこなうことによって、DC-DCコンバータ13のスイッチングデューティーを制御する。
 例えば燃料電池スタック11の電流(出力電流Ifc)の目標電流が零とされる電源装置10の動作モードは、PDU21の回生電力によりバッテリ12が充電される回生モードとなる。
 また、例えば燃料電池スタック11の電流(出力電流Ifc)の目標電流が正の値とされる電源装置10の動作モードは、PDU21の回生電力および燃料電池スタック11の出力がAPI14およびバッテリ12に供給されてバッテリ12が充電される(回生+FCによるバッテリ充電)モードとなる。
 なお、統合ECU17は、例えば、燃料電池車両の運転状態、燃料電池スタック11のアノードに供給される反応ガスに含まれる水素の濃度及び燃料電池スタック11のアノードから排出される排出ガスに含まれる水素の濃度、燃料電池スタック11の発電状態、例えば各複数の燃料電池セルの端子間電圧、燃料電池スタック11の電圧VFC、燃料電池スタック11の出力電流Ifc及び燃料電池スタック11の内部温度など、に基づき、燃料電池スタック11に対する発電指令として、燃料電池スタック11へ供給される反応ガスの圧力および流量に対する指令値を出力し、燃料電池スタック11の発電状態を制御する。
 また、統合ECU17は、燃料電池スタック11の発電状態などに応じて各コンタクタ11a,11bのオン/オフを切り換え、燃料電池スタック11と第2ラインL2および第3ラインL3との接続を制御する。
 また、統合ECU17は、バッテリ12の残容量SOCなどに応じて各コンタクタ12a,12bおよび電流制限回路12cのオン/オフを切り換え、バッテリ12と第1ラインL1および第2ラインL2との接続を制御する。
 本実施の形態による電源装置10は上記構成を備えており、次に、この電源装置10の動作、特に、電源装置10の起動方法について説明する。
 先ず、例えば図7に示すステップS01においては、プリチャージの動作として、バッテリ12の電流制限回路12cを接続状態にして平滑コンデンサ35に通電を行なう。
 そして、初期化判定処理として、リアクトル34に流れる電流(リアクトル電流IL)を検出する電流センサ41と、燃料電池スタック11の出力電流Ifcを検出する出力電流センサ43となどの各センサの初期化が完了したことを示すセンサ初期化完了フラグのフラグ値に「1」が設定されているか否かを判定する。
 この判定結果が「NO」の場合には、ステップS01の初期化判定処理を繰り返し実行する。
 一方、この判定結果が「YES」の場合には、ステップS02に進む。
 次に、ステップS02においては、燃料電池スタック11の各コンタクタ11a,11bと、バッテリ12の各コンタクタ12a,12bおよび電流制限回路12cとが接続状態になったことを示すコンタクタON完了フラグのフラグ値に「1」が設定されているか否かを判定する。
 この判定結果が「NO」の場合には、ステップS02の判定処理を繰り返し実行する。
 一方、この判定結果が「YES」の場合には、ステップS03に進む。
 次に、ステップS03においては、スイッチングデューティー(DUTY)に対する所定の初期値(例えば、第2スイッチング素子32のオン時間T2on(下アームON時間)のゼロに相当する100%など)によって、第1スイッチング素子31のオン(上アームON)を禁止した状態で第2スイッチング素子32のみをオンとオフとに交互に切り替える片側スイッチングモードの実行を開始する。
 次に、ステップS04においては、電流センサ41によりリアクトル34に流れる電流(リアクトル電流IL)を検出し、この検出結果に対してバッファ処理およびフィルタ処理を実行する。
 次に、ステップS05においては、バッファ処理およびフィルタ処理により得られる各リアクトル電流IL(例えば、各リアクトル電流ILn0´,…,ILnM´)に基づき、後述する波形判定処理を実行する。
 次に、ステップS06においては、後述する上アームON許可判定処理を実行する。
 次に、ステップS07においては、後述するゲート出力処理を実行する。
 次に、ステップS08においては、第1スイッチング素子31のオン(上アームON)が許可、つまり交互スイッチングモードの実行開始が許可されているか否かを判定する。
 この判定結果が「NO」の場合には、上述したステップS04に戻る。
 一方、この判定結果が「YES」の場合には、ステップS09に進む。
 ステップS09においては、片側スイッチングモードの実行を停止して交互スイッチングモードの実行を開始する。
 ステップS10においては、交互スイッチングモードの実行時に、電流センサ41から出力されるリアクトル電流ILの検出結果に基づき、リアクトル電流ILがゼロに収束するように電流のフィードバック処理を実行し、エンドに進む。
 以下に、上述したステップS05での波形判定処理について説明する。
 先ず、例えば図8に示す初期化処理として、ステップS21においては、所定のスイッチング周期T内での電流センサ41によるリアクトル電流ILの検出回数M(つまり、各スイッチング周期T毎でのリアクトル電流ILの時系列のデータ数)により、スイッチング周期Tの半分の周期での電流センサ41によるリアクトル電流ILの検出回数m=M/2を算出する。
 次に、ステップS22においては、任意の自然数のパラメータiに「1」を設定して、パラメータiの初期化を行なう。
 次に、ステップS23においては、リアクトル電流ILの時系列のデータにおいて、時間経過に伴ってリアクトル電流ILが連続して増大傾向に変化しているデータ数ct_intに「0」を設定して、データ数ct_intの初期化を行なう。
 次に、波形分析処理として、ステップS24においては、パラメータiは検出回数M以下であるか否かを判定する。
 この判定結果が「YES」の場合には、ステップS25に進む。
 一方、この判定結果が「NO」の場合には、後述するステップS29に進む。
 次に、ステップS25においては、リアクトル電流ILの時系列のデータにおいて、(i-1)番目のリアクトル電流ILn´(i-1)は、(i)番目のリアクトル電流ILn´(i)以下であるか否かを判定する。
 この判定結果が「YES」の場合には、ステップS25に進み、このステップS25においては、データ数ct_intのインクリメントを行なう。
 一方、この判定結果が「NO」の場合には、ステップS26に進み、このステップS26においては、データ数ct_intにゼロを設定する。
 ステップS28においては、パラメータiのインクリメントを行なう。
 次に、判定処理として、ステップS29においては、データ数ct_intが(m-1)以上かつ(m+1)以下であるか否かを判定する。
 この判定結果が「NO」の場合には、連続判定フラグf_jdgのフラグ値に「0」を設定して、リターンに進む。
 一方、この判定結果が「YES」の場合には、スイッチング周期Tの半分の周期に亘ってリアクトル電流ILが単調増加したと判断して、ステップS31に進み、このステップS31においては、連続判定フラグf_jdgのフラグ値に「1」を設定して、リターンに進む。
 以下に、上述したステップS06での上アームON許可判定処理について説明する。
 先ず、例えば図9に示すステップS41においては、連続判定フラグf_jdgのフラグ値に「1」が設定されているか否かを判定する。
 この判定結果が「NO」の場合には、ステップS42に進み、このステップS42においては、連続判定数ct_jdgにゼロを設定する。
 この判定結果が「YES」の場合には、ステップS43に進み、このステップS43においては、連続判定数ct_jdgのインクリメントを行なう。
 ステップS44においては、連続判定数ct_jdgが所定の判定閾値CT_JDG_THに到達したか否かを判定する。
 この判定結果が「NO」の場合には、リターンに進む。
 一方、この判定結果が「YES」の場合には、ステップS45に進み、このステップS45においては、ゲート出力許可フラグf_prmのフラグ値に「1」を設定し、リターンに進む。
 以下に、上述したステップS07でのゲート出力処理について説明する。
 先ず、例えば図10に示すステップS51においては、スイッチングデューティー(DUTY)から第2スイッチング素子32のオン時間T2on(下アームON時間)を算出する。
 次に、ステップS52においては、ゲート出力許可フラグf_prmのフラグ値に「1」が設定されているか否かを判定する。
 この判定結果が「NO」の場合には、ステップS53に進み、このステップS53においては、スイッチングデューティー(DUTY)を所定値だけ低減することで、下アームON時間を所定時間だけ増大させ、リターンに進む。
 一方、この判定結果が「YES」の場合には、ステップS54に進み、このステップS54においては、第1スイッチング素子31のオン(上アームON)を許可し、リターンに進む。
 上述したように、本発明に係る実施形態による電源装置10の起動方法によれば、交互スイッチングモードを実行するより前において、片側スイッチングモードを実行することにより、第1スイッチング素子31がオフかつ第2スイッチング素子32がオンとされてリアクトル34が直流励磁される。これにより、交互スイッチングモードで第1スイッチング素子31がオンかつ第2スイッチング素子32がオフとされたとしても、燃料電池スタック11またはバッテリ12から過大な電流が流れてしまうことを防止することができる。そして、過大な電流によって各スイッチング素子31,32などに損傷が生じることを防止することができる。
 例えば図1に示すようにモータ22の駆動時での通常時において電源装置10の各箇所を流れる各電流IL,Ic1,Ic2,Imot,Ifc,Ibに対して、例えば第2スイッチング素子32およびリアクトル34を逆流するような過大な電流によって第1スイッチング素子31に損傷が生じることを防止することができる。
 しかも、電源装置10の起動時に、燃料電池スタック11の端子間電圧VFC(V1)およびバッテリ12の端子間電圧VB(V2)を検出する各電圧センサを必要とせず、装置構成を簡略化することができる。
 さらに、片側スイッチングモードのスイッチング周期T内で連続してリアクトル電流ILが流れ続ける場合、つまりスイッチング周期T内でリアクトル電流ILがゼロとなる期間が存在しない場合には、第1スイッチング素子31がオンかつ第2スイッチング素子32がオフとされても、電池回路18の出力電圧とDC-DCコンバータ13の2次側の電圧とが平衡する。これにより、回路系において意図しない過大な電流が流れてしまうことを防止することができ、片側スイッチングモードから交互スイッチングモードへの切り替え移行を安定的に行なうことができる。
 さらに、片側スイッチングモードの実行時に、三角波状のリアクトル電流ILの終端がスイッチング周期Tの末端に一致した場合には、スイッチング周期T内で連続してリアクトル電流ILが流れ続けると判断することができ、回路系において意図しない過大な電流が流れてしまうことを防止することができ、片側スイッチングモードから交互スイッチングモードへの切り替え移行を安定的に行なうことができる。
 さらに、第1スイッチング素子31がオフに維持された状態で、スイッチング周期Tの半分の期間(T/2)毎に第2スイッチング素子32がオンとオフとに切り替えられることで、リアクトル電流ILが二等辺三角波状となる場合には、リアクトル電流ILの検出をスイッチング周期Tの半分の期間(T/2)に亘って行なうだけで、この検出結果に基づきスイッチング周期T内で連続してリアクトル電流ILが流れるか否かを判定することができる。これにより、片側スイッチングモードから交互スイッチングモードへの切り替え移行の可否を迅速に判定することができる。
 しかも、燃料電池スタック11とバッテリ12とが直列に接続されてなる電池回路18に対して単一のDC-DCコンバータ13を備えるだけで複数の動作モードを切り換えることができ、例えば燃料電池スタック11とバッテリ12毎に個別にDC-DCコンバータを備える場合に比べて、構成に要する費用を削減すると共にサイズを小型化することができる。
 なお、上述した実施の形態においては、バッテリ12は第1ラインL1と第2ラインL2とに接続され、燃料電池スタック11は第2ラインL2と第3ラインL3とに接続されるとしたが、これに限定されない。燃料電池スタック11は第1ラインL1と第2ラインL2とに接続され、バッテリ12は第2ラインL2と第3ラインL3とに接続されてもよい。
 なお、上述した実施の形態においては、統合ECU17は、燃料電池スタック11とバッテリ12との実電力配分が目標電力配分に一致するようにして、例えば燃料電池スタック11の電流(出力電流Ifc)の検出値が目標電流に一致するようにしてフィードバック制御をおこなうことによって、DC-DCコンバータ13のスイッチングデューティーを制御するとしたが、これに限定されない。例えば燃料電池スタック11の電流(出力電流Ifc)の代わりに、バッテリ12の電流(Ib)が目標値に一致するようにしてフィードバック制御をおこなってもよい。また、電流の代わりに、燃料電池スタック11の電圧(VFC)またはバッテリ12の電圧(VB)の検出値が目標値に一致するようにしてフィードバック制御をおこなってもよいし、燃料電池スタック11とバッテリ12との出力比が目標値に一致するようにしてスイッチングデューティーをフィードバック制御してもよい。 
 また、例えばモータ22の回生時においては、燃料電池スタック11の電流(出力電流Ifc)の代わりに、燃料電池スタック11の出力が目標値に一致するようにしてフィードバック制御をおこなってもよい。
 なお、上述した実施の形態においては、DC-DCコンバータ13のスイッチング回路33を、直列に接続された第1および第2スイッチング素子31,32により構成したが、これに限定されない。3相のブリッジ回路(つまり、各相毎に対をなして直列に接続される複数のハイ側およびロー側スイッチング素子がブリッジ接続された回路)により構成してもよい。この場合には、単一のリアクトル34に限定されず、例えば3相の各相毎にリアクトルを備えてもよい。
10 電源装置、11 燃料電池スタック(燃料電池、第1電源)、12 バッテリ(蓄電装置、第2電源)、13 DC-DCコンバータ、16 コンバータECU、17 統合ECU、18 電池回路、21 PDU、31 第1スイッチング素子、32 第2スイッチング素子、33 スイッチング回路、34 リアクトル

Claims (6)

  1. 電源装置の起動方法であって、
    前記電源装置は、
     電位が順次低下傾向に異なる第1ラインおよび第2ラインおよび第3ラインと、
     第1電源と第2電源とが直列に接続されてなる電池回路と、
     各還流ダイオードを具備する第1スイッチング素子および第2スイッチング素子が直列に接続されたスイッチング回路と、リアクトルとからなるDC-DCコンバータとを備え、
     前記電池回路の両端は前記第1ラインと前記第3ラインとに接続され、
     前記電池回路の前記第1電源と前記第2電源との接続点は前記第2ラインに接続され、
     前記スイッチング回路の前記第1スイッチング素子側の端部は前記第1ラインに接続され、前記スイッチング回路の前記第2スイッチング素子側の端部は前記第3ラインに接続され、
     前記リアクトルの一端は前記第1および前記第2スイッチング素子の互いの接続点に接続され、他端は前記第2ラインに接続され、
     前記電源装置の起動時に、前記第1スイッチング素子のONを禁止した状態で前記第2スイッチング素子のみをONとOFFとに交互に切り替える片側スイッチングモードを、前記第2スイッチング素子のON時間を増長傾向に変化させつつ、実行する工程と、
     前記第1スイッチング素子のONと前記第2スイッチング素子のONとを交互に切り替える交互スイッチングモードを実行する工程と、
    を含むことを特徴とする電源装置の起動方法。
  2.  前記第1電源は燃料電池であり、前記第2電源は蓄電装置であることを特徴とする請求項1に記載の電源装置の起動方法。
  3.  前記片側スイッチングモードの実行時に前記第2スイッチング素子のスイッチング周期内で連続して前記リアクトルに電流が流れる場合に、前記片側スイッチングモードの実行から前記交互スイッチングモードの実行へと切り替えることを特徴とする請求項1に記載の電源装置の起動方法。
  4.  前記片側スイッチングモードの実行時に前記第2スイッチング素子の1つのスイッチング周期において、前記リアクトルに流れる三角波状の電流の終端が前記スイッチング周期の末端に一致した場合に、前記片側スイッチングモードの実行から前記交互スイッチングモードの実行へと切り替えることを特徴とする請求項3に記載の電源装置の起動方法。
  5.  前記片側スイッチングモードの実行時に前記第2スイッチング素子のスイッチング周期の半分の期間において前記リアクトルに流れる電流が単調増加している場合に、前記スイッチング周期内で連続して前記リアクトルに電流が流れるとみなすことを特徴とする請求項3に記載の電源装置の起動方法。
  6.  電源装置と、前記電源装置を請求項1から5いずれかに記載の電源装置の起動方法によって起動するシステムと、を備える車両。
PCT/JP2010/069423 2009-12-01 2010-11-01 電源装置の起動方法 WO2011068003A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10834456.5A EP2508387B1 (en) 2009-12-01 2010-11-01 Power supply apparatus activating method
US13/512,792 US8492922B2 (en) 2009-12-01 2010-11-01 Power supply apparatus activating method
CN201080054188.8A CN102648108B (zh) 2009-12-01 2010-11-01 电源装置的启动方法
JP2011544223A JP5380550B2 (ja) 2009-12-01 2010-11-01 電源装置の起動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009273332 2009-12-01
JP2009-273332 2009-12-01

Publications (1)

Publication Number Publication Date
WO2011068003A1 true WO2011068003A1 (ja) 2011-06-09

Family

ID=44114861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069423 WO2011068003A1 (ja) 2009-12-01 2010-11-01 電源装置の起動方法

Country Status (5)

Country Link
US (1) US8492922B2 (ja)
EP (1) EP2508387B1 (ja)
JP (1) JP5380550B2 (ja)
CN (1) CN102648108B (ja)
WO (1) WO2011068003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131783A1 (de) * 2012-03-06 2013-09-12 Continental Automotive Gmbh Bordnetz für ein fahrzeug

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104863734B (zh) * 2015-05-15 2018-05-04 隆鑫通用动力股份有限公司 不停机式发动机双燃料转换控制电路
CN104863733B (zh) * 2015-05-15 2018-06-05 隆鑫通用动力股份有限公司 不停机式内燃机的燃料转换控制电路
CN105539179B (zh) * 2015-12-28 2017-08-11 青岛大学 一种田字型电动汽车混合电源装置
US10214111B2 (en) * 2016-08-16 2019-02-26 Ford Global Technologies, Llc Electrified vehicle power conversion for low voltage bus
DE102017214440A1 (de) 2017-08-18 2019-02-21 Audi Ag Verfahren zum Betreiben einer Brennstoffzellenanordnung sowie entsprechende Brennstoffzellenanordnung
DE102017214445B4 (de) 2017-08-18 2025-03-20 Audi Ag Verfahren zum Betreiben einer Brennstoffzellenanordnung sowie entsprechende Brennstoffzellenanordnung
EP3648276B1 (en) * 2018-10-29 2023-03-15 ABB Schweiz AG Control of dc voltage distribution system
DE102019218042A1 (de) * 2019-11-22 2021-05-27 Robert Bosch Gmbh Verfahren zur Steuerung und/oder Regelung einer fluiddurchströmten Komponente, fluiddurchströmte Komponente und Brennstoffzellensystem
KR102727990B1 (ko) * 2020-04-14 2024-11-07 현대자동차주식회사 차량용 충전시스템 및 이의 배터리 충전 중지 방법
EP4140026A4 (en) * 2020-04-21 2024-02-28 Go Electric, Inc. ADAPTABLE PRELOAD
EP4481971A3 (en) * 2023-06-19 2025-06-18 Rolls-Royce plc Electrical system
EP4481972A3 (en) * 2023-06-19 2025-06-18 Rolls-Royce plc Electrical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112859A (ja) * 2002-09-13 2004-04-08 Nippon Yusoki Co Ltd バッテリ式機関車の過充電保護装置
WO2004055963A1 (ja) * 2002-12-16 2004-07-01 Mitsubishi Denki Kabushiki Kaisha 自動車用電力装置
JP2007318938A (ja) 2006-05-26 2007-12-06 Honda Motor Co Ltd 燃料電池車両の電源システム
JP2009273332A (ja) 2008-05-12 2009-11-19 Naofumi Takemoto 電力システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178755B2 (ja) * 2001-01-16 2008-11-12 三菱電機株式会社 自動車のバッテリー用電力回路
JP3977841B2 (ja) * 2003-01-24 2007-09-19 三菱電機株式会社 バッテリ用電力回路
TWI429335B (zh) * 2005-03-29 2014-03-01 Rohm Co Ltd 放電裝置及特定用途積體電路裝置
JP2006311729A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 直流−直流電圧変換器
JP4337848B2 (ja) 2006-07-10 2009-09-30 トヨタ自動車株式会社 電源システムおよびそれを備える車両、ならびに温度管理方法
JP4886487B2 (ja) * 2006-12-01 2012-02-29 本田技研工業株式会社 多入出力電力変換器及び燃料電池車
KR101366683B1 (ko) * 2007-08-28 2014-02-25 삼성전자주식회사 전력 변환기, 이를 포함하는 전력관리 회로 및 전력 변환방법
JP4536128B2 (ja) * 2008-05-19 2010-09-01 本田技研工業株式会社 Dc/dcコンバータ装置及びこのdc/dcコンバータ装置が搭載された燃料電池車両、並びにdc/dcコンバータの制御方法
US8866331B2 (en) * 2008-10-24 2014-10-21 Honda Motor Co., Ltd. Power supply device and power supply system for fuel cell vehicle
JP4725641B2 (ja) * 2008-12-17 2011-07-13 日本テキサス・インスツルメンツ株式会社 昇降圧型スイッチングレギュレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112859A (ja) * 2002-09-13 2004-04-08 Nippon Yusoki Co Ltd バッテリ式機関車の過充電保護装置
WO2004055963A1 (ja) * 2002-12-16 2004-07-01 Mitsubishi Denki Kabushiki Kaisha 自動車用電力装置
JP2007318938A (ja) 2006-05-26 2007-12-06 Honda Motor Co Ltd 燃料電池車両の電源システム
JP2009273332A (ja) 2008-05-12 2009-11-19 Naofumi Takemoto 電力システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131783A1 (de) * 2012-03-06 2013-09-12 Continental Automotive Gmbh Bordnetz für ein fahrzeug
CN104349931A (zh) * 2012-03-06 2015-02-11 大陆汽车有限公司 用于汽车的车载电网
JP2015511107A (ja) * 2012-03-06 2015-04-13 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH 車両用車載電源
US9855849B2 (en) 2012-03-06 2018-01-02 Continental Automotive Gmbh On-board power system for a vehicle

Also Published As

Publication number Publication date
JPWO2011068003A1 (ja) 2013-04-18
US20130038120A1 (en) 2013-02-14
JP5380550B2 (ja) 2014-01-08
US8492922B2 (en) 2013-07-23
CN102648108B (zh) 2015-09-09
EP2508387A1 (en) 2012-10-10
EP2508387B1 (en) 2017-10-11
EP2508387A4 (en) 2013-07-03
CN102648108A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5380550B2 (ja) 電源装置の起動方法
JP4163222B2 (ja) 燃料電池車両の電源システム
CA2576783C (en) Control method for fuel cell vehicle, and fuel cell vehicle
US8587249B2 (en) Power unit for electric vehicle
US8866331B2 (en) Power supply device and power supply system for fuel cell vehicle
JP5352182B2 (ja) 電源装置および燃料電池車両の電源システム
JP5887077B2 (ja) 電源システム及び燃料電池車両
JP5188367B2 (ja) Dc/dcコンバータ装置及びその制御方法
JP4982576B2 (ja) 燃料電池車両
JP2011019338A (ja) コンバータ制御装置
JP5352185B2 (ja) 燃料電池車両の電源システム
JP5286025B2 (ja) 電源装置および燃料電池車両の電源システム
JP5352186B2 (ja) 電源装置および燃料電池車両の電源システム
JP2010104168A (ja) 電源装置および燃料電池車両の電源システム
JP5352183B2 (ja) 電源装置および燃料電池車両の電源システム
JP5002639B2 (ja) 電源装置
JP5322683B2 (ja) 電動車両の電源システム
JP5352184B2 (ja) 電源装置および燃料電池車両の電源システム
JP2010187450A (ja) 電動車両の電源システム
JP2004187332A (ja) 燃料電池車両の制御装置
JP2010187449A (ja) 電動車両の電源システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054188.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834456

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011544223

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010834456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010834456

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13512792

Country of ref document: US