WO2011065569A1 - Air compressor, power generator using the same and drive device for power generator - Google Patents
Air compressor, power generator using the same and drive device for power generator Download PDFInfo
- Publication number
- WO2011065569A1 WO2011065569A1 PCT/JP2010/071376 JP2010071376W WO2011065569A1 WO 2011065569 A1 WO2011065569 A1 WO 2011065569A1 JP 2010071376 W JP2010071376 W JP 2010071376W WO 2011065569 A1 WO2011065569 A1 WO 2011065569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- air
- piston
- space
- downstream
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B25/00—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/02—Other machines or engines using hydrostatic thrust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/01—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being mechanical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Definitions
- the present invention relates to an air compressor capable of compressing air at high pressure, a power generator using the same, and a drive device for the power generator.
- Japanese Patent Laid-Open No. 2008-303865 has a plurality of buckets arranged so as to circulate in water and a compressor that discharges compressed air into the water, and stores the air released into the water by the compressor in the bucket.
- the bucket is driven underwater by the buoyancy of the air stored in the bucket, and the generator is rotated using this driving force.
- An object of the present invention is to provide an air compressor having high energy efficiency that can solve the above-mentioned problems of the prior art and meet the above-mentioned demand, and a power generator having high power generation efficiency using the air compressor. is there.
- an air compressor includes a plurality of cylinder units each having a cylinder and a piston, and each piston connected to each piston of the plurality of cylinder units. And a piston drive mechanism for simultaneously driving the two.
- Each cylinder of the plurality of cylinder units has a cylinder hole of a predetermined length, and each piston forms a first space on one side in the longitudinal direction of the cylinder hole and a second space on the other side. So as to reciprocate in the cylinder hole.
- the plurality of cylinder units are sequentially connected from the most upstream cylinder unit located at the most upstream and communicated with the atmosphere to the most downstream cylinder unit located at the most downstream and communicated with the supply unit, and the first cylinder unit located upstream. Are connected to each other so that the space of the cylinder unit communicates with the second space of the cylinder unit located on the downstream side, and the volumes of the plurality of cylinder units are set so as to gradually decrease from the most upstream cylinder unit to the most downstream cylinder unit. Has been.
- the power generator according to the present invention is configured to drive a generator using the air compressor.
- FIG. 5 is a plan view of the air compression device shown in FIG. 4. It is a one part enlarged view of the structure of the air compressor shown by FIG.
- FIG. 5 is a plan view of the air compression device shown in FIG. 4. It is a one part enlarged view of the structure of the air compressor shown by FIG.
- FIG. 5 is a front view of the electric power generating apparatus which concerns on 2nd Example of this invention.
- It is a side view of the electric power generating apparatus shown by FIG.
- FIG. is a top view of the electric power generating apparatus shown by FIG.
- It is the schematic of the air compressor which comprises the electric power generating apparatus shown by FIG.
- FIG. 1 to FIG. 3 schematically show the configuration of a first embodiment of a power generator using an air compressor according to the present invention.
- the air compression apparatus which concerns on this invention is not limited to being used for a power generator, You may apply so that arbitrary apparatuses may be driven using the compressed air.
- the power generator in the first embodiment includes a power generator 16 (see FIG. 3), a drive device 30 that drives the power generator 16, and an air compressor 20 that starts the drive device. ing.
- the drive device 30 is composed of a rotation mechanism 50 in the first embodiment.
- the rotating mechanism 50 includes a water tank 10 filled with a fluid, for example, water, a plurality of buckets 14 movably provided in the water tank, and a bucket moving mechanism 28 that supports the buckets 14. .
- the water tank 10 has, for example, a vertical shape extending in the vertical direction, and the plurality of buckets 14 can be moved in the vertical direction by a bucket moving mechanism 28.
- the bucket moving mechanism 28 spans the upper sprocket 11 disposed above the water tank 10, the lower sprocket 12 disposed below the water tank, and the upper sprocket 11 and the lower sprocket 12 to attach a plurality of buckets 14.
- a chain 13 The bucket 14 is continuously attached along the longitudinal direction of the chain 13.
- the air compressor 20 In order to drive the plurality of buckets 14 by buoyancy in the water, air is introduced into the water of the water tank 10 by the air compressor 20 (FIG. 1).
- the air compressor 20 has a discharge port 23 provided in the lower part of the water tank 10, and introduces compressed air into the water from the discharge port 23 via a valve mechanism 29.
- the air introduced into the water is accommodated in the bucket 14 and imparts buoyancy to the bucket. Due to the buoyancy of the air, as indicated by an arrow in FIG. 1, the bucket 14 moves upward, whereby the chain 13 moves upward and downward in the water, and the upper sprocket 11 and the lower part The sprocket 12 is rotated. In this manner, the bucket 14 can move underwater by buoyancy, and the upper and lower sprockets 11 and 12 can be rotated via the chain 13.
- a rotating shaft 15 rotatably attached to the water tank 10 is connected to the upper sprocket 11 via a chain 26, and the rotating shaft 15 is connected to the rotating shaft 15 via a transmission mechanism 27 as shown in FIG. It connects with the generator 16 arrange
- the transmission mechanism 27 includes a sprocket 27a attached to the rotary shaft 15 and a chain 27d spanned over the sprocket 27c attached to the rotary shaft 16a of the generator 16 via the intermediate mechanism 27b (see FIG. 3).
- the sprockets 11 and 12 are rotated as the bucket 14 and the chain 13 move in the water, whereby the generator 16 is rotated and power is generated.
- the plurality of buckets 14 are formed of, for example, a container body that is open on one side and closed on the other side.
- the opening portion faces downward, and when it moves in the downward direction as shown by reference numeral 14b, the opening portion Is formed so as to face upward. Therefore, the air discharged from the discharge port 23 provided in the lower part of the water tank 10 is accommodated in the bucket 14 with the opening portion facing downward, and the leakage of air from the bucket 14 is suppressed. . Therefore, as described above, buoyancy is generated in the bucket 14 and the chain 13 can be rotated by moving upward.
- the plurality of buckets 14 are mounted on the chain 13 so as to partially overlap. Specifically, as shown in FIG. 2, it is arranged so that the bottom side opposite to the openings of other buckets 14 arranged adjacent to each other is inserted into the opening of the bucket 14. . That is, the intervals between the buckets 14 are arranged close together. Thereby, it can suppress that the vortex which generate
- two air compression devices 20 are provided and are arranged on each side of the drive device 30, but it is sufficient that at least one air compression device is provided.
- the air compression device 20 includes a plurality of cylinder units 100 as shown in FIGS. Each of these cylinder units 100 has a cylinder 21 and a piston 22. Each piston 22 of the plurality of cylinder units 100 is connected to a piston drive mechanism 101 (FIG. 4) and is simultaneously driven by the piston drive mechanism 101.
- the piston drive mechanism 101 includes an arm 25 connected to each piston 22 and an arm drive mechanism 55 that drives the arm. One end of the arm 25 is rotatably attached to the water tank 10 or an appropriate frame, and the other end can be swung (see the arc-shaped arrow in FIG. 4 and FIG. 6). As shown in FIG.
- the arm drive mechanism 55 has a rotating plate 25 c rotated by a motor 25 a and one end rotatably attached to a position deviated from the rotation center of the rotating plate 25 c and the other end rotatable to the arm 25. And a rod 25b attached thereto.
- the motor 25a rotates
- the rotating plate 25c is rotated
- the rod 25b is reciprocated with the rotation of the rotating plate, and the arm 25 swings.
- the arm drive mechanism 55 converts the rotational force of the drive motor 25a into the reciprocating motion of the rod 25b, whereby the arm 25 is swung.
- Each cylinder 21 of the plurality of cylinder units 100 has a cylinder hole of a predetermined length, and each piston 22 forms a first space 22a on one side in the longitudinal direction of the cylinder hole and on the other side. It arrange
- the plurality of cylinder units 100 are located on the most upstream side and communicate with the atmosphere from the most upstream cylinder unit 100U located on the most downstream side and communicate with the supply unit, that is, the drive unit 30. 100D, which are sequentially connected to each other and connected to each other so that the first space 22a of the cylinder unit located on the upstream side communicates with the second space 22b of the cylinder unit located on the downstream side.
- the volume is set so as to gradually decrease from the most upstream cylinder unit 100U to the most downstream cylinder unit 100D.
- each cylinder 21 has the same inner diameter, that is, a cross-sectional area in the direction perpendicular to the longitudinal direction, but has a different length. For example, the length is gradually reduced from the upstream toward the downstream.
- each cylinder 1 is set so that the volume of the cylinder hole gradually decreases from upstream to downstream.
- the cylinder unit 100 is arrange
- FIG. 6 for the cylinder unit, the cylinders of three cylinder units from the upstream (lower end in FIG. 6) are denoted by reference numerals 21, 121, and 221 for convenience.
- Pistons 22, 122, and 222 that are partitioned into 221b and reciprocate in the cylinder holes are arranged.
- each of the pistons 22, 122, 222 is connected to the arm 25 along the longitudinal direction, all the pistons 22, 122, 222 connected to the swing end side of the arm 25 are all. At the same time, it reciprocates in each cylinder hole at the same period. That is, the pistons 22, 122, 222 move in the same direction within the cylinders 21, 121, 221. In other words, all the pistons 22, 122, 222 move simultaneously to one end side or the other end side. It will be.
- the cylinders 21 and the like described above are connected via the check valve 24 so that the first and second spaces 22a and 22b partitioned by the pistons 22 and the like of the adjacent cylinders 21 and the like communicate with each other. It is connected.
- the longest first cylinder 21 located at the lowermost end in FIG. 6 and the second cylinder 121 having the second length shorter than the first cylinder 21 are the first space 22a on one end side of the first cylinder 21.
- the second space 122b on the other end side of the second cylinder 121 communicate with each other via a check valve 24, and the second space 22b on the other end side of the first cylinder 21
- the first space 122a on one end side of the second cylinder 121 communicates with and is connected via the check valve 24.
- each check valve 24 is configured such that air flows from the first cylinder 21 to the second cylinder 121.
- the first cylinder 21 is located on the upstream side
- the second cylinder 121 is located on the downstream side.
- the other cylinders are located on the downstream side as shown in FIG. 6, and the lower the cylinder length, the more downstream the cylinder is located.
- the second cylinder 121 located on the upstream side and the third cylinder 221 located on the downstream side are the first space 122 a on one end side of the second cylinder 121 and the other end of the third cylinder 221.
- the second space 222b on the side communicates with and is connected via the check valve 24.
- the second space 122b on the other end side of the second cylinder 121 and the one end side of the third cylinder 221 are connected to each other.
- the first space 222 a communicates with and is connected via the check valve 24.
- the first space on one end side and the second space on the other end side of the cylinder 21 arranged on the most downstream side are each in communication with a discharge port 23 extending into the water tank 10. Accordingly, the compressed air flowing into the first space on one end side and the second space on the other end side of the cylinder 21 arranged on the most downstream side is moved from the discharge port 23 into the water tank 10 by the movement of the piston 22. And is accommodated in the bucket 14.
- the piston 22 of each cylinder unit 100 is simultaneously moved in the same direction by the piston drive mechanism 101, so that air flows from the upstream cylinder 21 to the downstream cylinder 21 each time.
- the air inside is sequentially compressed, and high-pressure air can be discharged from the underwater discharge port 23 toward the bucket 14 from the most downstream cylinder 21.
- the air in the left space that is, the first space 22a on the one end side with respect to the piston 22 of the first cylinder 21 is pushed out by the piston 22, and the second end on the other end side of the second cylinder 121 on the downstream side. It flows into the space 122b through the check valve 24. That is, when the pistons 22 and 122 of the cylinders 21 and 121 are simultaneously moved to one end side of the cylinders 21 and 121, the air in the first space 21a on the one end side of the upstream first cylinder 21 is It flows into the second space 122b on the other end side of the second cylinder 121 on the downstream side. At this time, since the volume of the second cylinder 121 is smaller than the volume of the first cylinder 21, the air flowing into the second cylinder 121 is further compressed.
- the piston 122 of the second cylinder 121 is pushed to one end side by the compressed air flowing into the second space 122b on the other end side in addition to the driving force of the swinging arm 25. Then, the air in the first space 122a on one end side of the second cylinder 121 flows into the second space 222b on the other end side of the third cylinder 221 located further downstream. At this time, as described above, the volume in the third cylinder 221 on the further downstream side is formed to be small, so that the air flowing into the third cylinder 221 is further compressed. In this way, the operation described above works sequentially for all the cylinders on the downstream side, and the air can be gradually compressed to a high pressure as it goes downstream.
- air can be compressed stepwise by the plurality of cylinders 21 and the like.
- the piston 22 or the like of the downstream cylinder 21 or the like into which air flows from the upstream cylinder 21 or the like is a force that moves the compressed air flowing in from the upstream side to push the air further to the downstream cylinder. Is energized.
- the force of pressing the piston by the compressed air is transmitted to the pistons installed in all the downstream cylinders. Therefore, by using the plurality of cylinders 21 and the like, the air can be compressed as it proceeds downstream, and the necessary force at that time is further urged together with the compressed air flowing in from the upstream side.
- Compressed air in the cylinder located on the uppermost stage, that is, on the most downstream side, is discharged from the air compressor 20 described above to the vicinity of the bottom surface in the water tank 10 from the discharge port 23 shown in FIG. Then, in the vicinity of the bottom surface in the water tank 10, the discharged air flows into the bucket 14 whose opening is directed downward so as to move upward, and is stored in the bucket 14. As a result, buoyancy due to the air accumulated in the bucket 14 is generated, and the chain 13 can be rotated. Due to the rotation of the chain 13, the generator 16 shown in FIG. 3 is rotated to generate power. When the bucket 14 moves upward in the vicinity of the water surface W and starts moving in the downward direction, the direction of the bucket 14 is opposite and the opening is directed upward. Thereby, the air in the bucket 14 is discharged into the atmosphere.
- power generation efficiency is also improved by generating power using the buoyancy of air compressed by an air compression device with higher energy efficiency.
- Table 1 shows the amount of work and the calculation of power in and out when each cylinder has a cylinder diameter: ⁇ 320mm and stroke (hereinafter referred to as ST): 26-22cm.
- ST stroke
- the calculation efficiency was 11.03 times, a high efficiency that could not be predicted by conventional devices.
- the differential pressure is the total difference required to suck and push the initial pressure at the start of the piston received from the previous cylinder into the next cylinder volume, and because it is sucked and pushed into the next volume, it must be equal to its ultimate pressure. Don't be.
- Total maximum ultimate force differential pressure x cylinder cross section
- total work amount maximum ultimate force x ST / 2
- total attached to the head of the term is intended to match the amount of air movement that does not require work and the amount of work that requires replenishment It is.
- Replenishment work amount total work amount ⁇ moving work (equivalent).
- the cylinder unit's sliding resistance ⁇ all horizontal installation operation is about 1/3 of the upward ratio, and the cylinder diameter is ⁇ 200mm due to the sliding speed limitation even in the smallest practical scale
- the unit pressure loss decreases as the cylinder diameter increases.
- the material of the swing arm is aluminum, the crank swing transmission method from the flywheel transmission characteristics, after shock attenuation at both ends, Considering the motor required torque at zero and the cylinder end position at the maximum load, all cylinders are equipped with cushions), an efficiency of about 70% was secured.
- buoyancy recovery method and air compressor As a method of effectively recovering all the discharge air (buoyancy) regardless of the air discharge timing, a bucket conveyor is provided in the water tank, and a reverse bucket attached continuously to each chain link is used to receive the discharge air at the lower rotating part. By doing so, buoyancy was continuously obtained and power could be recovered.
- the pitch of the reverse bucket conveyor chain is 100 mm
- the reverse bucket is simply and firmly fixed continuously for each link
- 10 reverse buckets per meter are constantly receiving buoyancy and the levitation speed. Up to about 0.7 m / s, it was considered that operation was possible, but in this specific example, all were set to 0.4 m / s.
- the entry / exit power and estimated efficiency are as shown in Table 1.
- the output was about 50 times as much as the calculated power.
- the power generation apparatus does not generate power by buoyancy and does not have a water tank.
- the rotation conversion mechanism 60 is connected to the piston of the cylinder unit 321 having the smallest volume located in the most downstream of the cylinder unit group in the air compressor 20.
- the rotation converting mechanism 60 is configured to rotate the generator 16 by converting the reciprocating motion of the piston into a rotating motion.
- the rotation converting mechanism 60 includes a slide arm 31 that is movable along the longitudinal direction of the cylinder unit 321 in conjunction with the reciprocating movement of the piston, and a sprocket / chain mechanism 33 that converts the movement of the slide arm 31 into a rotational motion.
- the transmission mechanism 61 includes a shaft 34 connected to the one-way clutch 32 and a chain 35 connected to the shaft 34.
- the compressed air in the cylinder 321 having the smallest volume located on the most downstream side is supplied to the uppermost stream.
- the discharge is made to return to the cylinder 322 having the largest volume located at the position.
- the slide arm 31 moves in conjunction with the reciprocating motion of the piston of the cylinder 321
- the chain of the sprocket / chain mechanism 33 rotates.
- the reciprocating operation of the slide arm 31 is converted into rotation in a fixed direction by the sprocket / chain mechanism 33.
- the rotational force generated by the sprocket / chain mechanism 33 is transmitted to an upwardly extending shaft 34 in the transmission mechanism.
- the shaft 34 rotates
- the chain 35 disposed above rotates in conjunction with the rotation.
- the generator 16 connected to the chain 35 rotates and can generate power.
- the most compressed air is discharged from the cylinder 321 located at the most downstream side so as to flow into the cylinder 322 located at the further upstream side.
- the piston does not require a force due to the swing drive of the arm 25 or can reciprocate with only a small force.
- since it is generating with the reciprocating movement of this piston it can be said that it is a power generator with high energy conversion efficiency.
- the principle of this embodiment is a compressed air recursive power generator.
- this device does not use a water tank, that the first cylinder sucks and returns the compressed air that has reached the final cylinder, and that the piston of the final cylinder unit is not connected to the swinging arm and is dedicated to output, with a one-way clutch That is, the generator is driven directly through the high-speed transmission system. For this reason, a constant speed is required and, for example, a cylindrical cam is generally used. However, since the generator-side flywheel has the effect of equalizing speed, the supply-side transmission can also use the flywheel.
- the weight is reduced by not using a water tank, and flywheel transmission characteristics using air compression characteristics provide extremely improved efficiency, and flywheel transmission has a buffering effect at both ends, realizing high-speed operation with a cylindrical cam transmission ratio. We were able to. At this time, smooth operation with low vibration and low noise was obtained.
- # 3 cylinder is sucked up to # 3 cylinder via # 1 cylinder suction
- # 4 cylinder has the same suction effect as connecting with swing arm.
- the # 4 cylinder not only outputs externally, but also contributes to improving efficiency by demonstrating the assist effect that exceeds the majority of the net replenishment of the # 1 cylinder.
- the calculation results are physical calculations based on the premise that there is no air leak. To compensate for these phenomena, it is possible to replenish air from outside with a filter in the lower left piping system diagram.
- the efficiency of 31.03 times is the physical calculation efficiency, which is a remarkable value, but the main reason is that air movement of the same volume does not require work. By adding a small amount of push-in to this, the total amount of air is moved to the next cylinder. Accumulation results are obtained by this repetition.
- Table 10 shows the results of studies with 2 cylinders and 1 cylinder.
- the power generation device using the air compression device in this specific example is also superior to the conventional power generation device in that “ no matter the installation location + any size device can be installed if there is a place + therefore power generation anywhere + compact + It was found that “continu intermittent stable operation selection freedom + air is the only medium ”.
- this power generation device can reduce the actual amount of power used, and can be installed anywhere in the site, and can be installed at a predetermined scale and can generate power anywhere. We can meet the demands of global advanced society while promoting promotion.
- the air compressor according to the present invention is configured as described above, so that an air compressor with high energy efficiency can be realized, and further, energy efficient rotation can be achieved by using this.
- a drive device and a power generation device with high power generation efficiency can be realized.
- the fourth cylinder is not more than the total work amount and is omitted as it is the same as the discharge position. However, for the fourth cylinder, the total work and replenishment amount match. Next, points to keep in mind are described below. 1.
- the second cylinder volume of the first cylinder is a non-working air movement, and the replenishment work amount is 27.514 kg-cm, which is 0.05, and this is repeated until the third cylinder.
- the "work" formula is followed, and the discharge pressure is reached with this slight replenishment work total.
- Supply power must be 617.509kg-cm / s because the total work amount for replenishment in the above table is 1s1 round trip. 3. Since this net supply reaching force also receives initial pressure from the previous cylinder, it starts from zero at the beginning and is directly proportional to the compression distance and reaches the maximum reaching force at the cylinder end. 4).
- Discharge position This item is omitted because it matches Table 1.
- Ultimate pressure Maximum pressure at the end point position required to push into the next cylinder volume.
- First volume (11938cc) / each next volume first ST (38cm) / next ST.
- Differential pressure This is the final position pressure difference that is pushed into the cylinder from the pressure pushed in by the previous cylinder, and is calculated by each ultimate pressure minus the previous ultimate pressure.
- Maximum load From the above, it is simply the pressure difference x cross-sectional area (Note that the following EN becomes energy if per unit time, but here is the abbreviation for work).
- Necessary EN Total required work including the gain received from the previous one to push into the next cylinder, calculated with each maximum load xST / 2.
- Gain EN The principle of “all the pressure in the gas is the same”, because the pressure applied to the previous cylinder has the same cross-section, the amount of work required for the front cylinder is always the same gain as the assist gain work through the air between the pistons. This is the theory of the present invention, which is automatically received as gain work at each ST / pre-ST ratio for EN. Clearing EN: Necessary work amount-The amount of gain received from the front cylinder, which is the amount of work that requires each net replenishment (-minutes contribute to reducing the reduction input to the swing arm). Achieving force for net supply: Each cylinder end maximum pressing force limited to the amount of work that requires the above net replenishment.
- Input / output power Based on the above results, supply from commercial motors / generators is 60 w.
- the above control is an intermittent feed of two buckets except for the first discharge because the compression mechanism of this equipment is almost continuous and equally divided into two buckets in one cylinder path.
- the stop position adjust the stop position and apply the discharged air to the edge of the bucket to distribute it to double the buoyancy.
- the suction effect of the # 1 cylinder from the # 4 cylinder begins with a pressure of 1.181818 kg / cm 2 unlike the atmospheric pressure suction, and the phenomenon of returning to 1 at the end point is correct, but the maximum and necessary places where force is unnecessary It returns to 1, and the triangular part of the ultimate pressure of 40.21kg is irrelevant to no-work air movement, but it has the effect of assisting the necessary work up to the intersection A.
- the upper part beyond this is restricted by the swing arm Since there was no increase in speed, it was a wasteful force that was not regenerated as power. The work requiring replenishment was assisted, and the area ratio after intersection A to all triangles was 0.39, which was calculated in the lower part of the above table # 1 cylinder. 5.
- the above calculation is performed by the “suction method”, and this non-working air movement effect is proved to be extremely high.
- Table 10 shows the results of the compressed air recursive generator cylinder suction method.
- the suction effect of the # 1 cylinder from the # 4 cylinder begins with a pressure of 1.181818 kg / cm 2 unlike the atmospheric pressure suction, and the phenomenon of returning to 1 at the end point is correct, but the maximum and necessary places where force is unnecessary Return to 1.
- the triangular portion of the ultimate pressure of 123.71kg is irrelevant to no-work air movement, but has the effect of assisting the necessary work up to the intersection A. Since the upper part beyond this is the swinging arm restraint, there is no increase in speed.
- the area ratio after the intersection A with respect to all triangles with the assisting 22.52 was 0.73, and this was calculated in the lower part of the # 1 cylinder in the above table. 5.
- the above calculation is performed by the “suction method”, and this non-working air movement effect is proved to be extremely high. 8.
- the case of one cylinder is also shown for reference.
- Verification experiment procedure The verification experiment is performed with two cylinders, and the second output is not connected to the swing arm, and the output varies from 0 to 2.505 kg.
- this output is measured at the output cylinder position for each rotation angle of the flywheel, it becomes 2.349 kg on the head side and 2.349 kg on the rod side (specifically, the cylinder is measured by shaking sideways with M6 bolts for rod block mounting together with FB etc.) Hang the string so that it does not hit the ball and hang the weight through the pulley).
- Verification experiment procedure The verification experiment is with two cylinders, the second one is exclusively for output and is not coupled to the swing arm, so the external output varies from 0 to 5.0346 kg as it is.
- the maximum value is 5.0346 kg on the head side and 4.7199 kg on the rod side. Hang so that the kite does not hit, and hang the weight through the pulley.
- this motor speed is set to 160 rpm, it becomes 2 w, but rotation below 100 rpm becomes unstable and experiment below this is impossible.
- the present invention is not limited to such an embodiment, and an ordinary compressor supplies air into water (explosion). It can be used as a compressor for various fields. While various preferred embodiments of the present invention have been described, it is to be understood that the present invention is not limited to these embodiments and that various modifications and changes can be made to these embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
An air compressor is provided with: a plurality of cylinder units, each having a cylinder and a piston; and a piston driving mechanism which is linked to each of the pistons of the plurality of cylinder units and drives each of the pistons simultaneously. Each cylinder of the plurality of cylinder units has a cylinder hole of a predetermined length. Each piston is disposed so as to move back and forth within a cylinder hole in such a way that a first space is formed at one side and a second space is formed at the other side in the longitudinal direction of the cylinder hole. The plurality of cylinder units are sequentially connected from the furthest-upstream cylinder unit which is positioned furthest upstream and in communication with the atmosphere, to the furthest-downstream cylinder unit which is positioned furthest downstream and in communication with a supply unit, and the plurality of cylinder units are mutually connected in such a way that the first space of a cylinder unit positioned at the upstream side is in communication with the second space of a cylinder unit positioned at the downstream side. The volume of each cylinder unit is set in such a way that the volume decreases gradually from the furthest-upstream cylinder unit to the furthest-downstream cylinder unit.
Description
本発明は、空気を高圧力で圧縮することができる空気圧縮装置、これを用いた発電装置およびこの発電装置のための駆動装置に関する。
The present invention relates to an air compressor capable of compressing air at high pressure, a power generator using the same, and a drive device for the power generator.
これまで、種々の動力を用いた発電装置が開発されてきた。例えば、特開2008-303865号公報には、水中に循環するように配置された複数のバケットと圧縮空気を水中に放出するコンプレッサーとを有し、コンプレッサーによって水中に放出された空気をバケットに溜め、このバケットに溜められた空気の浮力によってバケットを水中で駆動し、この駆動力を利用して発電機を回転させるようにしている。
So far, power generators using various powers have been developed. For example, Japanese Patent Laid-Open No. 2008-303865 has a plurality of buckets arranged so as to circulate in water and a compressor that discharges compressed air into the water, and stores the air released into the water by the compressor in the bucket. The bucket is driven underwater by the buoyancy of the air stored in the bucket, and the generator is rotated using this driving force.
このような従来の発電装置では、発電機を大きなトルクで回転するためにはバケットの強い駆動力、換言すると、バケットの大きな浮力を得るために水深の深い箇所から空気を放出する必要がある。しかし、水深の深い箇所では、水圧が高いため、空気を高い圧力で圧縮して出力しなければならない。従って、空気を水中に放出するコンプレッサーが必然的に大型化され、あるいは高いパワーを出力することが必要となる。このような状況では大きな発電を得るためには高いエネルギーを有するコンプレッサーが必要になるが、コンプレッサーのエネルギーを大きくするのには限界があるし、反面、コンプレッサーのエネルギーを適度に設定した場合には、発電効率が極めて低いという問題があった。
In such a conventional power generation apparatus, in order to rotate the generator with a large torque, it is necessary to release air from a deep part in order to obtain a strong driving force of the bucket, in other words, a large buoyancy of the bucket. However, since the water pressure is high at a deep water location, the air must be compressed and output at a high pressure. Therefore, the compressor that discharges air into the water is necessarily increased in size, or it is necessary to output high power. In this situation, a compressor with high energy is required to obtain a large amount of power, but there is a limit to increasing the energy of the compressor. On the other hand, if the compressor energy is set appropriately, There was a problem that the power generation efficiency was extremely low.
一方、発電装置の分野に限らず、種々の技術分野に応用されるように、大気を導入して高圧力の圧縮空気を排気あるいは大きな力を出力することができる空気圧縮装置が要望されている。
On the other hand, there is a demand for an air compressor capable of exhausting high pressure compressed air or outputting a large force by introducing the atmosphere so as to be applied not only to the field of power generators but also to various technical fields. . *
本発明の目的は、上述の如き従来技術の問題点を解消し且つ上記要望に応えることができる高いエネルギー効率を有する空気圧縮装置、これを用いた、発電効率が高い発電装置を提供することにある。
An object of the present invention is to provide an air compressor having high energy efficiency that can solve the above-mentioned problems of the prior art and meet the above-mentioned demand, and a power generator having high power generation efficiency using the air compressor. is there.
上記目的を達成するため、本発明の一実施例に係る空気圧縮装置は、それぞれがシリンダとピストンとを有する複数のシリンダユニットと、これら複数のシリンダユニットのそれぞれのピストンに連結され、それぞれのピストンを同時に駆動するピストン駆動機構とを備えている。
In order to achieve the above object, an air compressor according to an embodiment of the present invention includes a plurality of cylinder units each having a cylinder and a piston, and each piston connected to each piston of the plurality of cylinder units. And a piston drive mechanism for simultaneously driving the two.
複数のシリンダユニットのそれぞれのシリンダは、所定の長さのシリンダ孔を有し、それぞれのピストンは、シリンダ孔をその長手方向の一側に第一の空間を形成し他側に第二の空間を形成するようにシリンダ孔内を往復移動するように配置されている。
Each cylinder of the plurality of cylinder units has a cylinder hole of a predetermined length, and each piston forms a first space on one side in the longitudinal direction of the cylinder hole and a second space on the other side. So as to reciprocate in the cylinder hole.
複数のシリンダユニットは、最上流に位置し大気に連通する最上流シリンダユニットから、最下流に位置し供給部に連通する最下流シリンダユニットまで順次接続され且つ上流側に位置するシリンダユニットの第一の空間が下流側に位置するシリンダユニットの第二の空間に連通するように、互いに接続され、複数のシリンダユニットの容積は、最上流シリンダユニットから最下流シリンダユニットまで徐々に小さくなるように設定されている。
The plurality of cylinder units are sequentially connected from the most upstream cylinder unit located at the most upstream and communicated with the atmosphere to the most downstream cylinder unit located at the most downstream and communicated with the supply unit, and the first cylinder unit located upstream. Are connected to each other so that the space of the cylinder unit communicates with the second space of the cylinder unit located on the downstream side, and the volumes of the plurality of cylinder units are set so as to gradually decrease from the most upstream cylinder unit to the most downstream cylinder unit. Has been.
更に、本発明に係る発電装置は、上記空気圧縮装置を用いて発電機を駆動するように構成されている。
Furthermore, the power generator according to the present invention is configured to drive a generator using the air compressor.
図1乃至図3は、本発明に係る空気圧縮装置を利用した発電装置の第1実施例の構成を概略的に示す。なお、本発明に係る空気圧縮装置は、発電装置に利用されることに限定されず、圧縮した空気を利用して任意の装置を駆動させるように適用してもよい。
FIG. 1 to FIG. 3 schematically show the configuration of a first embodiment of a power generator using an air compressor according to the present invention. In addition, the air compression apparatus which concerns on this invention is not limited to being used for a power generator, You may apply so that arbitrary apparatuses may be driven using the compressed air.
図1に示すように、第1実施例における発電装置は、発電機16(図3参照)と、この発電機16を駆動する駆動装置30とこの駆動装置を起動する空気圧縮装置20とを備えている。
As shown in FIG. 1, the power generator in the first embodiment includes a power generator 16 (see FIG. 3), a drive device 30 that drives the power generator 16, and an air compressor 20 that starts the drive device. ing.
この駆動装置30は、この第1実施例では、回転機構50から成っている。この回転機構50は、流体、例えば、水が充填された水槽10と、この水槽内に移動可能に設けられた複数のバケット14と、これらバケット14を支持するバケット移動機構28とを備えている。
The drive device 30 is composed of a rotation mechanism 50 in the first embodiment. The rotating mechanism 50 includes a water tank 10 filled with a fluid, for example, water, a plurality of buckets 14 movably provided in the water tank, and a bucket moving mechanism 28 that supports the buckets 14. .
水槽10は、図1乃至図3に示すように、例えば、上下方向に延びる縦型の形態を有し、複数のバケット14は、バケット移動機構28によって上下方向に移動可能である。このバケット移動機構28は、水槽10の上方に配置された上部スプロケット11と水槽の下方に配置された下部スプロケット12とこれら上部スプロケット11および下部スプロケット12に架け渡されて複数のバケット14を取り付けたチェーン13とを備えている。バケット14は、チェーン13の長手方向に沿って連続して取り付けられている。
As shown in FIGS. 1 to 3, the water tank 10 has, for example, a vertical shape extending in the vertical direction, and the plurality of buckets 14 can be moved in the vertical direction by a bucket moving mechanism 28. The bucket moving mechanism 28 spans the upper sprocket 11 disposed above the water tank 10, the lower sprocket 12 disposed below the water tank, and the upper sprocket 11 and the lower sprocket 12 to attach a plurality of buckets 14. And a chain 13. The bucket 14 is continuously attached along the longitudinal direction of the chain 13.
複数のバケット14を、水中で浮力によって駆動するため、空気圧縮装置20(図1)によって水槽10の水中に空気が導入される。この空気圧縮装置20は、水槽10の下部に設けられた吐出口23を有し、弁機構29を介して吐出口23から水中に圧縮空気を導入する。この水中に導入された空気はバケット14内に収容されバケットに浮力を付与する。この空気の浮力によって、図1中矢印で示すように、バケット14が上方に移動し、これによってチェーン13が水中内を上方に向かう方向と下方に向かう方向とに移動し、上部スプロケット11と下部スプロケット12とを回転させる。このように、バケット14が浮力によって水中で移動しチェーン13を介して上部および下部スプロケット11、12を回転させることができる。
In order to drive the plurality of buckets 14 by buoyancy in the water, air is introduced into the water of the water tank 10 by the air compressor 20 (FIG. 1). The air compressor 20 has a discharge port 23 provided in the lower part of the water tank 10, and introduces compressed air into the water from the discharge port 23 via a valve mechanism 29. The air introduced into the water is accommodated in the bucket 14 and imparts buoyancy to the bucket. Due to the buoyancy of the air, as indicated by an arrow in FIG. 1, the bucket 14 moves upward, whereby the chain 13 moves upward and downward in the water, and the upper sprocket 11 and the lower part The sprocket 12 is rotated. In this manner, the bucket 14 can move underwater by buoyancy, and the upper and lower sprockets 11 and 12 can be rotated via the chain 13.
上部スプロケット11には、水槽10に回転可能に取り付けられた回転軸15がチェーン26を介して連結され、この回転軸15には、図3に示すように、伝達機構27を介して水槽10の外側の下方に配置された発電機16に連結されている。この伝達機構27は、概述すると、回転軸15に取り付けられたスプロケット27aと中間機構27bを介して発電機16の回転軸16aに取り付けられたスプロケット27cに架け渡されたチェーン27dとを有する(図3参照)。このように、バケット14およびチェーン13が水中で移動することに伴ってスプロケット11,12が回転され、これによって、発電機16が回転され、発電されることとなる。
A rotating shaft 15 rotatably attached to the water tank 10 is connected to the upper sprocket 11 via a chain 26, and the rotating shaft 15 is connected to the rotating shaft 15 via a transmission mechanism 27 as shown in FIG. It connects with the generator 16 arrange | positioned under the outer side. Briefly, the transmission mechanism 27 includes a sprocket 27a attached to the rotary shaft 15 and a chain 27d spanned over the sprocket 27c attached to the rotary shaft 16a of the generator 16 via the intermediate mechanism 27b (see FIG. 3). As described above, the sprockets 11 and 12 are rotated as the bucket 14 and the chain 13 move in the water, whereby the generator 16 is rotated and power is generated.
複数のバケット14は、例えば、一方が開口し、他方が閉塞している容器体から成っている。各バケット14は、図2の符号14aに示すように、上方に向かう方向に移動する際には開口部が下方に向き、符号14bに示すように下方に向かう方向に移動する際には開口部が上方に向くように形成されている。従って、水槽10の下部に設けられた吐出口23から吐出された空気は、開口部が下方を向いた状態のバケット14内に収容されることとなり、バケット14から空気が漏れることが抑制される。従って、上述の如く、バケット14には浮力が発生し、上方に移動してチェーン13を回転させることができる。一方で、バケット14が水面W付近の上方に移動して下方に向かう方向に移動し始めると、バケット14の向きが反対向きとなり、開口部が上方を向く。ここで、バケット14が最上部に位置するとき、バケットが水面から出るように、水槽10に充填された水の水面Wと上部スプロケット11の位置が設定されていることが必要である。バケットが水面から出るときバケット14内の空気は大気中に放出される。
The plurality of buckets 14 are formed of, for example, a container body that is open on one side and closed on the other side. When each bucket 14 moves in the upward direction as shown by reference numeral 14a in FIG. 2, the opening portion faces downward, and when it moves in the downward direction as shown by reference numeral 14b, the opening portion Is formed so as to face upward. Therefore, the air discharged from the discharge port 23 provided in the lower part of the water tank 10 is accommodated in the bucket 14 with the opening portion facing downward, and the leakage of air from the bucket 14 is suppressed. . Therefore, as described above, buoyancy is generated in the bucket 14 and the chain 13 can be rotated by moving upward. On the other hand, when the bucket 14 moves upward in the vicinity of the water surface W and starts moving in the downward direction, the direction of the bucket 14 is opposite and the opening is directed upward. Here, when the bucket 14 is located at the uppermost part, it is necessary that the positions of the water surface W of the water filled in the water tank 10 and the upper sprocket 11 are set so that the bucket comes out of the water surface. When the bucket leaves the water surface, the air in the bucket 14 is released into the atmosphere.
尚、この第1実施例では、複数のバケット14は、一部が重なるようにチェーン13に装備されている。具体的には、図2に示すように、バケット14の開口部内に、隣り合って配置された他のバケット14の開口部とは反対側の底部側が挿入された状態となるよう配置されている。つまり、バケット14の間隔は詰めて配置されている。これにより、チェーン13が回転することにより水中を進行するバケット14の後方に発生した渦が、後続のバケット14が進行するときの抵抗となることを抑制することができる。
In the first embodiment, the plurality of buckets 14 are mounted on the chain 13 so as to partially overlap. Specifically, as shown in FIG. 2, it is arranged so that the bottom side opposite to the openings of other buckets 14 arranged adjacent to each other is inserted into the opening of the bucket 14. . That is, the intervals between the buckets 14 are arranged close together. Thereby, it can suppress that the vortex which generate | occur | produced in the back of the bucket 14 which advances underwater by the rotation of the chain 13 becomes resistance when the subsequent bucket 14 advances.
図2に示すように、二つの空気圧縮装置20が設けられそれぞれが駆動装置30の各側に配置されているが、少なくとも一つの空気圧縮装置が設けられていればよい。
As shown in FIG. 2, two air compression devices 20 are provided and are arranged on each side of the drive device 30, but it is sufficient that at least one air compression device is provided.
この空気圧縮装置20は、図4および図6に示すように、複数のシリンダユニット100を備えている。これらシリンダユニット100のそれぞれは、シリンダ21とピストン22とを有する。これら複数のシリンダユニット100のそれぞれのピストン22は、ピストン駆動機構101(図4)に連結され、このピストン駆動機構101によって同時に駆動される。このピストン駆動機構101は、それぞれのピストン22に連結されたアーム25とこのアームを駆動するアーム駆動機構55とを有する。アーム25は、その一端が水槽10あるいは適宜のフレームに回転可能に取り付けられ他端部が遥動可能である(図4の円弧状の矢印及び図6参照)。アーム駆動機構55は、図4に示すように、モータ25aによって回転される回転板25cとこの回転板25cの回転中心から偏った位置に一端が回転可能に取り付けられ他端がアーム25に回転可能に取り付けられたロッド25bとを備えている。モータ25aが回転すると、回転板25cが回転され、この回転板の回転に伴って、ロッド25bが往復移動され、アーム25が遥動する。要するに、アーム駆動機構55は、図4に示すように、駆動モータ25aの回転力をロッド25bの往復運動に変換し、これによってアーム25が揺動されることになる。
The air compression device 20 includes a plurality of cylinder units 100 as shown in FIGS. Each of these cylinder units 100 has a cylinder 21 and a piston 22. Each piston 22 of the plurality of cylinder units 100 is connected to a piston drive mechanism 101 (FIG. 4) and is simultaneously driven by the piston drive mechanism 101. The piston drive mechanism 101 includes an arm 25 connected to each piston 22 and an arm drive mechanism 55 that drives the arm. One end of the arm 25 is rotatably attached to the water tank 10 or an appropriate frame, and the other end can be swung (see the arc-shaped arrow in FIG. 4 and FIG. 6). As shown in FIG. 4, the arm drive mechanism 55 has a rotating plate 25 c rotated by a motor 25 a and one end rotatably attached to a position deviated from the rotation center of the rotating plate 25 c and the other end rotatable to the arm 25. And a rod 25b attached thereto. When the motor 25a rotates, the rotating plate 25c is rotated, and the rod 25b is reciprocated with the rotation of the rotating plate, and the arm 25 swings. In short, as shown in FIG. 4, the arm drive mechanism 55 converts the rotational force of the drive motor 25a into the reciprocating motion of the rod 25b, whereby the arm 25 is swung.
複数のシリンダユニット100のそれぞれのシリンダ21は、所定の長さのシリンダ孔を有し、それぞれのピストン22は、シリンダ孔をその長手方向の一側に第一の空間22aを形成し他側に第二の空間22bを形成するようにシリンダ孔内を往復移動するように配置されている(図6参照)。
Each cylinder 21 of the plurality of cylinder units 100 has a cylinder hole of a predetermined length, and each piston 22 forms a first space 22a on one side in the longitudinal direction of the cylinder hole and on the other side. It arrange | positions so that the inside of a cylinder hole may reciprocate so that the 2nd space 22b may be formed (refer FIG. 6).
複数のシリンダユニット100は、図1に示すように、最上流に位置し大気に連通する最上流シリンダユニット100Uから、最下流に位置し供給部、即ち、駆動装置30に連通する最下流シリンダユニット100Dまで順次接続され且つ上流側に位置するシリンダユニットの第一の空間22aが下流側に位置するシリンダユニットの第二の空間22bに連通するように、互いに接続され、且つ複数のシリンダユニット100の容積は、最上流シリンダユニット100Uから最下流シリンダユニット100Dまで徐々に小さくなるように設定されている。
As shown in FIG. 1, the plurality of cylinder units 100 are located on the most upstream side and communicate with the atmosphere from the most upstream cylinder unit 100U located on the most downstream side and communicate with the supply unit, that is, the drive unit 30. 100D, which are sequentially connected to each other and connected to each other so that the first space 22a of the cylinder unit located on the upstream side communicates with the second space 22b of the cylinder unit located on the downstream side. The volume is set so as to gradually decrease from the most upstream cylinder unit 100U to the most downstream cylinder unit 100D.
図示の実施例における空気圧縮装置20では、図4に示すように、複数のシリンダユニット100は、相互に平行になるよう並べて配置されている。また、図示の実施例では、各シリンダ21は、内径つまり長手方向に対して垂直方向における断面積は同一であるが、長さがそれぞれ異なる。例えば、上流から下流に向かうにつれて、徐々に長さが短くなるよう配置されている。換言すると、各シリンダ1は、上流から下流に向かうにつれて、徐々にシリンダ孔の容積が小さくなるよう設定されている。尚、シリンダユニット100は、長手方向の中心が同一直線上に位置するよう配置されている。換言すると、複数のシリンダユニットを組み立てたとき、これらシリンダユニットは、それぞれの長手方向の中心線が同一線上に位置するように配置されている。
In the air compressor 20 in the illustrated embodiment, as shown in FIG. 4, the plurality of cylinder units 100 are arranged side by side so as to be parallel to each other. In the illustrated embodiment, each cylinder 21 has the same inner diameter, that is, a cross-sectional area in the direction perpendicular to the longitudinal direction, but has a different length. For example, the length is gradually reduced from the upstream toward the downstream. In other words, each cylinder 1 is set so that the volume of the cylinder hole gradually decreases from upstream to downstream. In addition, the cylinder unit 100 is arrange | positioned so that the center of a longitudinal direction may be located on the same straight line. In other words, when a plurality of cylinder units are assembled, these cylinder units are arranged such that the center lines in the longitudinal direction are located on the same line.
ここで、空気圧縮装置20を構成するシリンダユニットの配置および接続状態が、図6に拡大して示されている。尚、図6では、シリンダユニットについて、上流(図6では下端)から3つのシリンダユニットのシリンダを、便宜上、符号21,121,221で示す。図6に示すように、各シリンダ21,121,221内には、シリンダ孔内を長手方向に一端側の第一の空間22a,122a,221aと他端側の第二の空間22b,122b,221bとに仕切ると共に、シリンダ孔内を往復移動するピストン22,122,222がそれぞれ配置されている。
Here, the arrangement and connection states of the cylinder units constituting the air compressor 20 are shown in an enlarged manner in FIG. In FIG. 6, for the cylinder unit, the cylinders of three cylinder units from the upstream (lower end in FIG. 6) are denoted by reference numerals 21, 121, and 221 for convenience. As shown in FIG. 6, in each cylinder 21, 121, 221, the first space 22 a, 122 a, 221 a on one end side and the second space 22 b, 122 b on the other end side in the longitudinal direction inside the cylinder hole. Pistons 22, 122, and 222 that are partitioned into 221b and reciprocate in the cylinder holes are arranged.
また、上記各ピストン22,122,222は、アーム25に、長手方向に沿ってそれぞれ連結されているので、アーム25の揺動端側に連結された各ピストン22,122,222は、すべてが同時に、同一周期にて、各シリンダ孔内を往復移動することとなる。つまり、ピストン22,122,222は、各シリンダ21,121,221内で同一の方向に移動することとなり、換言すると、すべてのピストン22,122,222が同時に一端側あるいは他端側に移動することとなる。
Further, since each of the pistons 22, 122, 222 is connected to the arm 25 along the longitudinal direction, all the pistons 22, 122, 222 connected to the swing end side of the arm 25 are all. At the same time, it reciprocates in each cylinder hole at the same period. That is, the pistons 22, 122, 222 move in the same direction within the cylinders 21, 121, 221. In other words, all the pistons 22, 122, 222 move simultaneously to one end side or the other end side. It will be.
また、上述した各シリンダ21等は、それぞれ隣り合うシリンダ21等同士の各ピストン22等にて仕切られた第一および第二の空間22a,22b同士が連通するように、チェック弁24を介して連結されている。具体的には、図6の最下端に位置する最長の第一シリンダ21と、これより短い二番目の長さの第二シリンダ121とは、第一シリンダ21の一端側の第一の空間22aと、第二シリンダ121の他端側の第二の空間122bとが連通して、チェック弁24を介して連結されており、また、第一シリンダ21の他端側の第二の空間22bと、第二シリンダ121の一端側の第一の空間122aとが連通して、チェック弁24を介して連結されている。このとき、各チェック弁24は、第一シリンダ21から第二シリンダ121に空気が流入するよう構成されている。この場合、第一シリンダ21が上流側に位置し、第二シリンダ121が下流側に位置している。尚、他のシリンダも同様に、図6に示す上方側は下流側であり、シリンダの長さが短くなるほど、下流側に位置していることとなる。
Further, the cylinders 21 and the like described above are connected via the check valve 24 so that the first and second spaces 22a and 22b partitioned by the pistons 22 and the like of the adjacent cylinders 21 and the like communicate with each other. It is connected. Specifically, the longest first cylinder 21 located at the lowermost end in FIG. 6 and the second cylinder 121 having the second length shorter than the first cylinder 21 are the first space 22a on one end side of the first cylinder 21. And the second space 122b on the other end side of the second cylinder 121 communicate with each other via a check valve 24, and the second space 22b on the other end side of the first cylinder 21 The first space 122a on one end side of the second cylinder 121 communicates with and is connected via the check valve 24. At this time, each check valve 24 is configured such that air flows from the first cylinder 21 to the second cylinder 121. In this case, the first cylinder 21 is located on the upstream side, and the second cylinder 121 is located on the downstream side. Similarly, the other cylinders are located on the downstream side as shown in FIG. 6, and the lower the cylinder length, the more downstream the cylinder is located.
上記と同様に、上流側に位置する第二シリンダ121と、下流側に位置する第三シリンダ221とは、第二シリンダ121の一端側の第一の空間122aと、第三シリンダ221の他端側の第二の空間222bとが連通して、チェック弁24を介して連結されており、また、第二シリンダ121の他端側の第二の空間122bと、第三シリンダ221の一端側の第一の空間222aとが連通して、チェック弁24を介して連結されている。以下、他のシリンダについても同様である。
Similarly to the above, the second cylinder 121 located on the upstream side and the third cylinder 221 located on the downstream side are the first space 122 a on one end side of the second cylinder 121 and the other end of the third cylinder 221. The second space 222b on the side communicates with and is connected via the check valve 24. The second space 122b on the other end side of the second cylinder 121 and the one end side of the third cylinder 221 are connected to each other. The first space 222 a communicates with and is connected via the check valve 24. Hereinafter, the same applies to the other cylinders.
また、図示しないが、最下流側に配置されたシリンダ21の一端側の第一の空間と他端側の第二の空間とは、それぞれ水槽10内に伸びる吐出口23に連通されている。従って、最下流側に配置されたシリンダ21の一端側の第一の空間と他端側の第二の空間とに流入してきた圧縮空気は、ピストン22の移動により、吐出口23から水槽10内に吐出され、バケット14内に収容されることとなる。
Although not shown, the first space on one end side and the second space on the other end side of the cylinder 21 arranged on the most downstream side are each in communication with a discharge port 23 extending into the water tank 10. Accordingly, the compressed air flowing into the first space on one end side and the second space on the other end side of the cylinder 21 arranged on the most downstream side is moved from the discharge port 23 into the water tank 10 by the movement of the piston 22. And is accommodated in the bucket 14.
上述の構成において、各シリンダユニット100のピストン22をピストン駆動機構101によって同時に同一方向に可動することで、上流側のシリンダ21から下流側のシリンダ21に空気が流入され、その度に、シリンダ21内の空気が順次圧縮され、最下流のシリンダ21から高圧力の空気を水中の吐出口23からバケット14に向かって吐出することができる。
In the above-described configuration, the piston 22 of each cylinder unit 100 is simultaneously moved in the same direction by the piston drive mechanism 101, so that air flows from the upstream cylinder 21 to the downstream cylinder 21 each time. The air inside is sequentially compressed, and high-pressure air can be discharged from the underwater discharge port 23 toward the bucket 14 from the most downstream cylinder 21.
次に、上述した発電装置の作用を説明する。まず、図6に示すアーム25が、他端側(右側)から一端側(左側)に揺動駆動した場合には、最下段に示す第一シリンダ21内のピストン22も一端側に移動する。このとき、アーム25の揺動によって、その上方つまり下流側に位置する第二シリンダ121内のピストン122も一端側に移動し、同様に、さらに上方つまり下流側に位置する第三シリンダ221内のピストン222も一端側に移動する。このように、すべてのシリンダ21内のピストン22が、アーム25の揺動端が移動した一端側に、同時に移動することとなる。
Next, the operation of the above power generator will be described. First, when the arm 25 shown in FIG. 6 is driven to swing from the other end side (right side) to the one end side (left side), the piston 22 in the first cylinder 21 shown at the lowermost stage also moves to the one end side. At this time, the swing of the arm 25 causes the piston 122 in the second cylinder 121 located above, that is, the downstream side to move to one end side. Similarly, the piston 122 in the third cylinder 221 located further above, that is, downstream. The piston 222 also moves to one end side. In this way, the pistons 22 in all the cylinders 21 are simultaneously moved to one end side where the swing end of the arm 25 is moved.
この結果、第一シリンダ21のピストン22に対して左側の空間つまり一端側の第一の空間22a内の空気はピストン22によって押し出され、下流側の第二シリンダ121の他端側の第二の空間122b内にチェック弁24を介して流入する。つまり、各シリンダ21,121の各ピストン22,122が当該各シリンダ21,121の一端側に同時に移動したときに、上流側の第一シリンダ21の一端側の第一の空間21a内の空気が下流側の第二シリンダ121の他端側の第二の空間122b内に流入する。このとき、第二シリンダ121の容積は第一シリンダ21の容積よりも小さく形成されているため、第二シリンダ121に流入した空気は更に圧縮されることとなる。
As a result, the air in the left space, that is, the first space 22a on the one end side with respect to the piston 22 of the first cylinder 21 is pushed out by the piston 22, and the second end on the other end side of the second cylinder 121 on the downstream side. It flows into the space 122b through the check valve 24. That is, when the pistons 22 and 122 of the cylinders 21 and 121 are simultaneously moved to one end side of the cylinders 21 and 121, the air in the first space 21a on the one end side of the upstream first cylinder 21 is It flows into the second space 122b on the other end side of the second cylinder 121 on the downstream side. At this time, since the volume of the second cylinder 121 is smaller than the volume of the first cylinder 21, the air flowing into the second cylinder 121 is further compressed.
同時に、第二シリンダ121のピストン122は、揺動しているアーム25の駆動力に加え、他端側の第二の空間122b内に流入した圧縮空気にて一端側に押される。すると、第二シリンダ121の一端側の第一の空間122a内の空気は、さらに下流側に位置する第三シリンダ221の他端側の第二の空間222b内に流入する。このとき、上述と同様に、さらに下流側の第三シリンダ221内の容積は小さく形成されているため、第三シリンダ221に流入する空気はさらに圧縮されることとなる。こうして上述した動作が、順次、下流側のすべてのシリンダに対して働くこととなり、下流に進むにつれて空気を徐々に高圧力に圧縮することができる。
At the same time, the piston 122 of the second cylinder 121 is pushed to one end side by the compressed air flowing into the second space 122b on the other end side in addition to the driving force of the swinging arm 25. Then, the air in the first space 122a on one end side of the second cylinder 121 flows into the second space 222b on the other end side of the third cylinder 221 located further downstream. At this time, as described above, the volume in the third cylinder 221 on the further downstream side is formed to be small, so that the air flowing into the third cylinder 221 is further compressed. In this way, the operation described above works sequentially for all the cylinders on the downstream side, and the air can be gradually compressed to a high pressure as it goes downstream.
また、その後、上述とは反対側である各シリンダ21等の他端側にピストン22等が移動するようアーム25が揺動した際には、各シリンダ21等の上記とは逆の空間に、上流側から下流側へと順次圧縮された空気が流入することとなる。従って、常時、空気を圧縮することができる。
After that, when the arm 25 swings so that the piston 22 etc. moves to the other end side of each cylinder 21 etc. which is opposite to the above, the space of each cylinder 21 etc. opposite to the above, The compressed air will flow in sequentially from the upstream side to the downstream side. Therefore, the air can be compressed at all times.
このように、上記空気圧縮装置では、複数のシリンダ21等にて段階的に空気を圧縮することができる。このとき、上流側のシリンダ21等から空気が流入される下流側のシリンダ21等のピストン22等は、上流側から流入する圧縮空気にてさらに下流側のシリンダに空気を押し出す方向に移動する力が付勢される。こうして、この圧縮空気によるピストンを押圧する力は、すべての下流のシリンダに装備されたピストンに伝達される。従って、複数のシリンダ21等を用いることで、下流に進むにつれて空気を圧縮できると共に、そのときに必要な力が上流側から流入してくる圧縮空気と共にさらに付勢される。その結果、高い圧力に空気を圧縮する場合であっても、すべてのシリンダ21等のピストン22等に対して上流側のシリンダ21等からの圧縮空気による押圧力が付勢されているため、アーム25の駆動にてピストン22等に付勢する力が少なくても、高圧縮の空気を得ることができる。つまり、エネルギー効率の極めて高い空気圧縮装置を実現することができる。
Thus, in the air compression device, air can be compressed stepwise by the plurality of cylinders 21 and the like. At this time, the piston 22 or the like of the downstream cylinder 21 or the like into which air flows from the upstream cylinder 21 or the like is a force that moves the compressed air flowing in from the upstream side to push the air further to the downstream cylinder. Is energized. Thus, the force of pressing the piston by the compressed air is transmitted to the pistons installed in all the downstream cylinders. Therefore, by using the plurality of cylinders 21 and the like, the air can be compressed as it proceeds downstream, and the necessary force at that time is further urged together with the compressed air flowing in from the upstream side. As a result, even when the air is compressed to a high pressure, the pressing force by the compressed air from the upstream cylinder 21 or the like is urged against the pistons 22 or the like of all the cylinders 21 or the like. Even if the force urging the piston 22 and the like by driving 25 is small, highly compressed air can be obtained. That is, an air compressor with extremely high energy efficiency can be realized.
上述した空気圧縮装置20からは、最上段つまり最下流側に位置するシリンダ内の圧縮空気が、図2に示した吐出口23から水槽10内の底面付近に吐出される。すると、水槽10内の底面付近では、上方に向かう方向に移動するよう開口部が下方に向いたバケット14内に、吐出された空気が流入し、当該バケット14内に溜められる。これにより、バケット14には溜められた空気による浮力が発生し、チェーン13を回転させることができる。このチェーン13の回転によって、図3に示す発電機16が回転され、発電が行われることとなる。なお、バケット14が水面W付近の上方に移動して下方に向かう方向に移動し始めると、バケット14の向きが反対向きとなり、開口部が上方を向く。これにより、バケット14内の空気は大気中に排出される。
Compressed air in the cylinder located on the uppermost stage, that is, on the most downstream side, is discharged from the air compressor 20 described above to the vicinity of the bottom surface in the water tank 10 from the discharge port 23 shown in FIG. Then, in the vicinity of the bottom surface in the water tank 10, the discharged air flows into the bucket 14 whose opening is directed downward so as to move upward, and is stored in the bucket 14. As a result, buoyancy due to the air accumulated in the bucket 14 is generated, and the chain 13 can be rotated. Due to the rotation of the chain 13, the generator 16 shown in FIG. 3 is rotated to generate power. When the bucket 14 moves upward in the vicinity of the water surface W and starts moving in the downward direction, the direction of the bucket 14 is opposite and the opening is directed upward. Thereby, the air in the bucket 14 is discharged into the atmosphere.
以上のように、エネルギー効率のより高い空気圧縮装置にて圧縮した空気の浮力を用いて発電することで、発電効率も向上する。なお、上記構成においては、発電機を設けずに、空気の浮力を用いた回転駆動装置として利用することもでき、かかる場合にも、エネルギー効率の向上を図ることができる。
As described above, power generation efficiency is also improved by generating power using the buoyancy of air compressed by an air compression device with higher energy efficiency. In the above configuration, it is possible to use the rotary drive device using air buoyancy without providing a generator. In such a case, the energy efficiency can be improved.
次に、上記第1実施例を実施する場合の具体例を説明する。
Next, a specific example when the first embodiment is implemented will be described.
それぞれのシリンダがシリンダ径:φ320mm、ストローク(以下STと記す):26~22cmを有する、合計4本のシリンダユニットを用いた場合の仕事量及び出入り動力計算結果を表1に示した。この結果、計算効率は11.03倍と従来の装置には予測し得ない高い効率を示した。
Table 1 shows the amount of work and the calculation of power in and out when each cylinder has a cylinder diameter: φ320mm and stroke (hereinafter referred to as ST): 26-22cm. As a result, the calculation efficiency was 11.03 times, a high efficiency that could not be predicted by conventional devices.
表1における到達圧は、全て始めのシリンダ体積/次の体積=ST26/次のST(2番目の計算の時は3番目体積に吸引押込むので26/23.5)となる。差圧は前のシリンダから受取ったピストンスタート時の初圧を次のシリンダ体積に吸引して押込むのに要する合計差、次の体積に吸引押込むので自身の到達圧と同値でなくてはならない。
到達 The ultimate pressures in Table 1 are all the first cylinder volume / next volume = ST26 / next ST (26 / 23.5 because it is sucked into the third volume during the second calculation). The differential pressure is the total difference required to suck and push the initial pressure at the start of the piston received from the previous cylinder into the next cylinder volume, and because it is sucked and pushed into the next volume, it must be equal to its ultimate pressure. Don't be.
これは「圧縮空気は何処も同圧」であることが根拠である。合計最大到達力=差圧xシリンダ断面、合計仕事量=最大到達力xST/2、共に用語の頭に付けた「合計」は仕事不要の空気移動分と補給を要する仕事量分とを合せる趣旨である。
This is based on the fact that “compressed air has the same pressure everywhere”. Total maximum ultimate force = differential pressure x cylinder cross section, total work amount = maximum ultimate force x ST / 2, "total" attached to the head of the term is intended to match the amount of air movement that does not require work and the amount of work that requires replenishment It is.
体積比は次のシリンダ体積のもので、体積比=次のST/自身のSTとなり、合計仕事量に対するこの分子分は仕事不要な空気移動分となる。補給分仕事量=合計仕事量-移動仕事(相当)分から算出する。正味供給分の到達力=補給分仕事量x2/自身のSTから算出することができる。従って、この空気圧縮機構は全て「PxV=一定」および「圧縮空気は何処も同圧」が根拠となる。それ以外の定理も原理も必要ではない。
The volume ratio is that of the next cylinder volume, and the volume ratio = next ST / own ST, and this molecular component with respect to the total work amount is a work-free air movement. Replenishment work amount = total work amount−moving work (equivalent). The net supply power can be calculated from the replenishment work amount x2 / the own ST. Therefore, all the air compression mechanisms are based on “PxV = constant” and “compressed air has the same pressure everywhere”. No other theorems or principles are necessary.
シリンダユニットの摺動抵抗 (全て水平方向設置作動で上向比約1/3、実用最小規模でもシリンダ径は摺動速度制限上φ200mm)は、シリンダ径が太く成る程損失単位圧力は減少することが判った。シリンダ等の空気漏れ、逆止弁のクラッキング圧損、配管抵抗及びシリンダ間の配管にトラップする空気(共に無視可能範囲)、電動機の変換・減速効率合せ85%(減速比約1/25:許容トルクから計算、電動機自身の変換効率は99.5%)、搖慟アーム周り等の慣性抵抗(揺動アームの材質はアルミ、フライホィ―ル伝動特性からのクランク揺動伝動方式で両端の衝撃減衰の上、この最大負荷時両シリンダエンド位置では電動機所要トルクは零、シリンダは全てクッション付)等を考慮して効率約70%が確保された。
The cylinder unit's sliding resistance 設置 (all horizontal installation operation is about 1/3 of the upward ratio, and the cylinder diameter is φ200mm due to the sliding speed limitation even in the smallest practical scale), the unit pressure loss decreases as the cylinder diameter increases. I understood. Air leakage from cylinders, check valve cracking pressure loss, piping resistance and air trapped in piping between cylinders (both negligible ranges), motor conversion / deceleration efficiency combined 85% (reduction ratio approx. 1/25: allowable torque Calculated from the above, the conversion efficiency of the motor itself is 99.5%), inertia resistance around the kite arm etc. (The material of the swing arm is aluminum, the crank swing transmission method from the flywheel transmission characteristics, after shock attenuation at both ends, Considering the motor required torque at zero and the cylinder end position at the maximum load, all cylinders are equipped with cushions), an efficiency of about 70% was secured.
表1の結果は、大気圧一定量を吐出圧に圧縮する供給動力と浮力回収動力には直接関係はない。
The results in Table 1 are not directly related to the supply power that compresses a constant amount of atmospheric pressure to discharge pressure and the buoyancy recovery power.
発電機の負荷変動に対応するため、浮揚速度を計測し空気供給量の自動調整し、始動時、バケット縦1列の全てに空気充填が必要である。
浮力回収方法と空気圧縮装置について:
空気吐出タイミングと無関係に全ての吐出空気(浮力)を有効回収する方法として、水槽内にバケットコンベアを設け、チェーンリンク毎に連続に取付けた逆向きバケットを用い、下回転部で吐出空気を受取るようにすることで、連続的に浮力を得、動力回収することができた。 In order to cope with the load fluctuation of the generator, the levitation speed is measured and the air supply amount is automatically adjusted, and at the time of starting, it is necessary to fill all of the bucket vertical rows with air.
About buoyancy recovery method and air compressor:
As a method of effectively recovering all the discharge air (buoyancy) regardless of the air discharge timing, a bucket conveyor is provided in the water tank, and a reverse bucket attached continuously to each chain link is used to receive the discharge air at the lower rotating part. By doing so, buoyancy was continuously obtained and power could be recovered.
浮力回収方法と空気圧縮装置について:
空気吐出タイミングと無関係に全ての吐出空気(浮力)を有効回収する方法として、水槽内にバケットコンベアを設け、チェーンリンク毎に連続に取付けた逆向きバケットを用い、下回転部で吐出空気を受取るようにすることで、連続的に浮力を得、動力回収することができた。 In order to cope with the load fluctuation of the generator, the levitation speed is measured and the air supply amount is automatically adjusted, and at the time of starting, it is necessary to fill all of the bucket vertical rows with air.
About buoyancy recovery method and air compressor:
As a method of effectively recovering all the discharge air (buoyancy) regardless of the air discharge timing, a bucket conveyor is provided in the water tank, and a reverse bucket attached continuously to each chain link is used to receive the discharge air at the lower rotating part. By doing so, buoyancy was continuously obtained and power could be recovered.
大気中と異なり、少しでもバケット間隔が空くと前方の水を弾く抵抗と後方の渦流抵抗とが加わる、本具体例では、バケットの一部が交差する程密着させ、この2種の抵抗を理論上皆無にし、チェーン内側・上下回転部共に、必要とする水流案内板を左右の上下直進部と断面を等しくして取付け、水とバケットとの相対速度の低減を図り、最大限これら抵抗軽減を徹底的に実現することができた。
水槽の上面を拡幅し水面管理の容易化・バケット容量や形状等を調整し、最後まで浮力の有効回収に努め、騒音少なく不要になった空気を排出、空バケットに抵抗無く水が満たされることなど種々考慮した。 Unlike in the atmosphere, when the bucket spacing is even a little, resistance to repel the water in front and eddy current resistance in the rear are added. In this example, the two buckets are in close contact with each other and the two types of resistance are theoretically Eliminate the resistance by maximally reducing the relative speed between the water and the bucket by installing the necessary water flow guide plates on the inner and upper and lower rotating parts of the chain with the same cross section as the left and right straight parts. It was possible to realize it thoroughly.
Widen the upper surface of the aquarium to facilitate water surface management, adjust the bucket capacity and shape, etc., try to effectively collect buoyancy until the end, discharge less unnecessary air and fill empty buckets without resistance Various considerations were made.
水槽の上面を拡幅し水面管理の容易化・バケット容量や形状等を調整し、最後まで浮力の有効回収に努め、騒音少なく不要になった空気を排出、空バケットに抵抗無く水が満たされることなど種々考慮した。 Unlike in the atmosphere, when the bucket spacing is even a little, resistance to repel the water in front and eddy current resistance in the rear are added. In this example, the two buckets are in close contact with each other and the two types of resistance are theoretically Eliminate the resistance by maximally reducing the relative speed between the water and the bucket by installing the necessary water flow guide plates on the inner and upper and lower rotating parts of the chain with the same cross section as the left and right straight parts. It was possible to realize it thoroughly.
Widen the upper surface of the aquarium to facilitate water surface management, adjust the bucket capacity and shape, etc., try to effectively collect buoyancy until the end, discharge less unnecessary air and fill empty buckets without resistance Various considerations were made.
具体的には、ここでは逆向きバケットコンベアチェーンのピッチは100mmで、リンク毎連続に逆向きバケットがシンプル強固に固定され、1m当り10個の逆向きバケットが常時有効に浮力を受け、浮揚速度、0.7m/s程度迄は、運転可能と考えられたが、本具体例では全て0.4m/sに設定された。この出入り動力・推定効率等は表1に示す通りである。
Specifically, the pitch of the reverse bucket conveyor chain is 100 mm, the reverse bucket is simply and firmly fixed continuously for each link, and 10 reverse buckets per meter are constantly receiving buoyancy and the levitation speed. Up to about 0.7 m / s, it was considered that operation was possible, but in this specific example, all were set to 0.4 m / s. The entry / exit power and estimated efficiency are as shown in Table 1.
一般にはシリンダの組合せが同じ条件の場合、水槽を高くすると効率は低下するが、表4(ロッドレスシリンダ33本セット水深48mの仕事量及び出入り動力計算書)に示された装置の場合、水槽を高くし且つシリンダ数を増大して、押込方式の利得仕事相当の無仕事空気移動効果と僅かずつの補給仕事との繰り返しで吐出圧に達し、更に、シリンダ本数増で供給動力が軽減、効率改善することを帰納的に証明し、且つ水槽を高くすると本数増が容易になり、効率尚改善することを具体的にこの計算例をもって証明された。
In general, when the cylinder combination is the same, the efficiency decreases when the water tank is raised. However, in the case of the device shown in Table 4 (calculation of work load and power in / out of 48m water depth set of 33 rodless cylinders) Increase the number of cylinders and increase the number of cylinders, the discharge pressure is reached by repeating the effect of no-work air movement equivalent to the gain work of the push-in method and the replenishment work little by little, and the supply power is reduced and the efficiency is increased by increasing the number of cylinders It was proved by this calculation example that the improvement was inductively proved, and that the number of water tanks could be increased easily by increasing the number of tanks, and that the efficiency was still improved.
供給動力に対し、出力は、計算上では約50倍に至った。
The output was about 50 times as much as the calculated power.
この具体例における空気圧縮装置を用いる発電装置を従来の発電装置と比較して言えることを整理すると、全てに優ることは、「設置場所不問+場所あればそれなりの規模の装置を設置できる+従って何処でも発電可能+コンパクト+連続断続運転選択自由+媒体は水と空気だけ」となる。
To summarize what can be said about the power generation device using the air compression device in this specific example as compared with the conventional power generation device, it is superior to all that, “No matter where it is installed + if there is a place, a device of a certain scale can be installed + accordingly. Power generation is possible anywhere + compact + continuous intermittent operation option + medium is only water and air ”.
次に、本発明の第2実施例を、図7乃至図10を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.
この第2実施例における発電装置では、上述した第1実施例における発電装置と異なり、浮力にて発電するものではなく、水槽を設けていない。その代わりに、空気圧縮装置20におけるシリンダユニット群のうち最下流に位置する最も容積の小さいシリンダユニット321のピストンに回転変換機構60が接続されている。この回転変換機構60は、ピストンの往復運動を回転運動に変換して発電機16を回転するように構成されている。この回転変換機構60は、ピストンの往復移動に連動してシリンダユニット321の長手方向に沿って移動可能なスライドアーム31と、このスライドアーム31の移動を回転運動に変換するスプロケット・チェーン機構33と、2つのワンウェイクラッチ32と、スプロケット・チェーン機構33の回転を発電機16に伝達する伝達機構61とを備えている。この伝達機構61は、ワンウェイクラッチ32に接続されたシャフト34と、このシャフト34に接続されたチェーン35とを有する。
In the power generation apparatus according to the second embodiment, unlike the power generation apparatus according to the first embodiment described above, the power generation apparatus does not generate power by buoyancy and does not have a water tank. Instead, the rotation conversion mechanism 60 is connected to the piston of the cylinder unit 321 having the smallest volume located in the most downstream of the cylinder unit group in the air compressor 20. The rotation converting mechanism 60 is configured to rotate the generator 16 by converting the reciprocating motion of the piston into a rotating motion. The rotation converting mechanism 60 includes a slide arm 31 that is movable along the longitudinal direction of the cylinder unit 321 in conjunction with the reciprocating movement of the piston, and a sprocket / chain mechanism 33 that converts the movement of the slide arm 31 into a rotational motion. Two one-way clutches 32 and a transmission mechanism 61 for transmitting the rotation of the sprocket / chain mechanism 33 to the generator 16 are provided. The transmission mechanism 61 includes a shaft 34 connected to the one-way clutch 32 and a chain 35 connected to the shaft 34.
具体的に、この第2実施例における空気圧縮装置20では、図7から図10、特に、図10に示すように、最下流に位置する最も容積の小さいシリンダ321内の圧縮空気を、最上流に位置する最も容積の大きいシリンダ322内に戻すよう吐出している。このとき、シリンダ321のピストンの往復動作に連動してスライドアーム31が移動すると、スプロケット・チェーン機構33のチェーンが回転することとなる。なお、2つのワンウェイクラッチ32を用いることで、上記スライドアーム31の往復動作を、スプロケット・チェーン機構33が一定方向の回転に変換している。スプロケット・チェーン機構33による回転力は、伝達機構における、上方に伸びるシャフト34に伝達され、当該シャフト34が回転することで、これに連動して、上方に配置されたチェーン35が回転する。このチェーン35が回転することで、このチェーン35に連結された発電機16が回転し、発電することができる。
Specifically, in the air compressing device 20 in the second embodiment, as shown in FIGS. 7 to 10, in particular, FIG. 10, the compressed air in the cylinder 321 having the smallest volume located on the most downstream side is supplied to the uppermost stream. The discharge is made to return to the cylinder 322 having the largest volume located at the position. At this time, when the slide arm 31 moves in conjunction with the reciprocating motion of the piston of the cylinder 321, the chain of the sprocket / chain mechanism 33 rotates. By using the two one-way clutches 32, the reciprocating operation of the slide arm 31 is converted into rotation in a fixed direction by the sprocket / chain mechanism 33. The rotational force generated by the sprocket / chain mechanism 33 is transmitted to an upwardly extending shaft 34 in the transmission mechanism. When the shaft 34 rotates, the chain 35 disposed above rotates in conjunction with the rotation. As the chain 35 rotates, the generator 16 connected to the chain 35 rotates and can generate power.
ここで、上記構成の発電装置では、最下流に位置するシリンダ321内から最も圧縮された空気が再上流に位置するシリンダ322内に流入するよう排出されるため、最下流に位置するシリンダ321のピストンは、アーム25の揺動駆動による力を必要としないか、あるいは、少ない力のみで、往復可動することとなる。この第2の実施例では、このピストンの往復可動により発電しているため、エネルギー変換効率の高い発電装置であるといえる。なお、上記構成においては、発電機を設けずに、空気の浮力を用いた回転駆動装置として利用することもでき、かかる場合にも、エネルギー効率の向上を図ることができる。
Here, in the power generator configured as described above, the most compressed air is discharged from the cylinder 321 located at the most downstream side so as to flow into the cylinder 322 located at the further upstream side. The piston does not require a force due to the swing drive of the arm 25 or can reciprocate with only a small force. In this 2nd Example, since it is generating with the reciprocating movement of this piston, it can be said that it is a power generator with high energy conversion efficiency. In the above configuration, it is possible to use the rotary drive device using air buoyancy without providing a generator. In such a case, the energy efficiency can be improved.
次に、この第2の実施例を実施する場合の具体例を説明する。
Next, a specific example when the second embodiment is implemented will be described.
本実施例の原理は圧縮空気回帰式発電装置である。
The principle of this embodiment is a compressed air recursive power generator.
この基本理論と構成を説明するため、それぞれがφ125mm、ストローク(以下STと記す)75~56.5cmのシリンダを有する合計16本のシリンダユニットを用いた。
In order to explain this basic theory and configuration, a total of 16 cylinder units each having a cylinder of φ125 mm and stroke (hereinafter referred to as ST) of 75 to 56.5 cm were used.
この装置の特徴は水槽を用いないこと、最終シリンダに至った圧縮空気を最初のシリンダが吸引回帰すること、最終シリンダユニットのピストンを揺動アームに結合せず出力専用とし、一方向クラッチ・増速伝動系を介し直接発電機を駆動するようにしたことである。このため等速を要し一般的には例えば円筒カム等を用いるが、発電機側フライホィールが等速化効果を有するので、供給側伝動もフライホィールを用いることが可能になった。
The features of this device are that it does not use a water tank, that the first cylinder sucks and returns the compressed air that has reached the final cylinder, and that the piston of the final cylinder unit is not connected to the swinging arm and is dedicated to output, with a one-way clutch That is, the generator is driven directly through the high-speed transmission system. For this reason, a constant speed is required and, for example, a cylindrical cam is generally used. However, since the generator-side flywheel has the effect of equalizing speed, the supply-side transmission can also use the flywheel.
従って、水槽を用いない分軽量となり、空気圧縮特性を利用した、フライホィール伝動特性によりきわめて効率の改善をもたらすと共に、フライホィール伝動には両端に緩衝効果があり、円筒カム伝動比高速運転を実現することができた。尚、この際、低振動および低騒音の円滑な作動が得られた。
Therefore, the weight is reduced by not using a water tank, and flywheel transmission characteristics using air compression characteristics provide extremely improved efficiency, and flywheel transmission has a buffering effect at both ends, realizing high-speed operation with a cylindrical cam transmission ratio. We were able to. At this time, smooth operation with low vibration and low noise was obtained.
空気圧縮装置の具体例が表9に示されている。Specific examples of the air compressor are shown in Table 9.
配管系統・シリンダ別仕事量の計算、及びこの結果と作動現象を含め圧縮空気回帰式発電装置シリンダ別吸引方式の仕事量が示されている。
The calculation of the work by piping system and cylinder, and the result of this and the working phenomenon of the suction system by cylinder, including the operating phenomenon, are shown.
これら結果は表5(または8)にまとめられている。
These results are summarized in Table 5 (or 8).
この場合、#4シリンダロッドは等速運転を要するため、揺動アームを連結せず出力専用、従って、内部供給仕事はない上、発電機側フライホィール効果によって等速移動する。気体特性と供給側フライホィール伝動特性とを合わせた効率はきわめて高く、シリンダの両端緩衝効果が加わり、ピストンの移動は高速で滑らか且つ低振動および低騒音の運転を実現することができた。
In this case, since the # 4 cylinder rod requires constant speed operation, the swing arm is not connected, only for output, therefore there is no internal supply work, and it moves at constant speed due to the generator side flywheel effect. The combined efficiency of the gas characteristics and the supply side flywheel transmission characteristics was extremely high, and the effect of buffering both ends of the cylinder was added, and the piston was able to move at high speed, smoothly and with low vibration and low noise.
ここで重要なことは、#1シリンダの#4シリンダ吸引経由で、#3シリンダまでも吸引させ、#4シリンダを揺動アームと結合させるのと同等の吸引効果をもたらす。尚、#4シリンダは外部出力するのみならず、#1シリンダの正味補給分の過半数を超える助勢効果を発揮して、効率改善に貢献している。
«Important here is that # 3 cylinder is sucked up to # 3 cylinder via # 1 cylinder suction, and # 4 cylinder has the same suction effect as connecting with swing arm. In addition, the # 4 cylinder not only outputs externally, but also contributes to improving efficiency by demonstrating the assist effect that exceeds the majority of the net replenishment of the # 1 cylinder.
計算結果は空気漏れ等一切ないことを前提にした物理計算である。これらの現象補完のために、左下配管系統図で外部からフィルター経由空気の補充を可能としている。
The calculation results are physical calculations based on the premise that there is no air leak. To compensate for these phenomena, it is possible to replenish air from outside with a filter in the lower left piping system diagram.
ここで、効率31.03倍は物理計算効率で、これ自体驚嘆の値であるが、主たる理由は、同じ体積分の空気移動は仕事を要しないことにある。これに僅かな押込み補給を加えることで、次のシリンダに全空気量を移動させている。この繰返しで蓄積結果が得られている。
Here, the efficiency of 31.03 times is the physical calculation efficiency, which is a marvelous value, but the main reason is that air movement of the same volume does not require work. By adding a small amount of push-in to this, the total amount of air is moved to the next cylinder. Accumulation results are obtained by this repetition.
シリンダ2本・1本の場合の検討結果が表10に提示されている。
Table 10 shows the results of studies with 2 cylinders and 1 cylinder.
空気特性と伝動特性との組み合わせ
空気圧縮特性とフライホィ―ル伝動特性検討とを組み合わせる場合、シリンダ両端圧縮限(最大到達圧)位置でシリンダ方向荷重はフライホィール軸と一直線上になり、この軸が全量負担、電動機回転方向の負荷は零になり、零から反対側の圧縮をなだらかに始めることに着目される。 Combination of air characteristics and transmission characteristics When combining air compression characteristics and flywheel transmission characteristics examination, the load in the cylinder direction is in line with the flywheel axis at the cylinder end compression limit (maximum ultimate pressure) position. It is noted that the total load and the load in the direction of rotation of the motor become zero, and the compression on the opposite side from zero starts gently.
空気圧縮特性とフライホィ―ル伝動特性検討とを組み合わせる場合、シリンダ両端圧縮限(最大到達圧)位置でシリンダ方向荷重はフライホィール軸と一直線上になり、この軸が全量負担、電動機回転方向の負荷は零になり、零から反対側の圧縮をなだらかに始めることに着目される。 Combination of air characteristics and transmission characteristics When combining air compression characteristics and flywheel transmission characteristics examination, the load in the cylinder direction is in line with the flywheel axis at the cylinder end compression limit (maximum ultimate pressure) position. It is noted that the total load and the load in the direction of rotation of the motor become zero, and the compression on the opposite side from zero starts gently.
これは、夫々前のシリンダから初圧を受ける為、零出発は当然、圧縮距離に比例しシリンダエンドで最大到達力に至る空気特性と、このエンドでなだらかに減少零にて終るのはこの伝動特性にある。
This is because the initial pressure is received from the previous cylinder, so the zero start is naturally proportional to the compression distance and reaches the maximum attainment force at the cylinder end. In the characteristics.
表9では補給分仕事量合計から一般的単純に供給動力を算出しましたが、ここで重要なことは、利得又は無仕事移動分効果と同様、正味供給分の到達力の集計以外電動機に負荷が掛からない、この到達力は両端からの圧縮距離に正比例零から始まり到達力に至る、これが気体(空気)特性である。
In Table 9, the supply power is calculated simply from the total amount of replenished work, but what is important here is the load on the motor other than the sum of the net supply power as well as the gain or no-work transfer effect. This reaching force is not proportional to the compression distance from both ends and starts from a zero directly proportional to the reaching force, which is a gas (air) characteristic. *
表9の結果、計算出力が492w供給動力は15.868w、効率が31.03倍であるのに対し、この効果を合わせると、供給電力は6wと驚異的といえる改善をもたらし、推定実効率は400/6=66.67倍にもなることが判った。
As a result of Table 9, the calculated output is 492w, the supply power is 15.868w, and the efficiency is 31.03 times. When this effect is combined, the supply power is 6w, which is a remarkable improvement, and the estimated actual efficiency is 400 / It was found that 6 = 66.67 times.
この具体例における空気圧縮装置を用いる発電装置もまた従来の発電装置と比較すると、全てに優ることは、「設置場所不問+場所あればそれなりの規模装置設置出来る+従って何処でも発電可能+コンパクト+連続断続安定運転選択自由+媒体は空気だけ」となることが判った。
The power generation device using the air compression device in this specific example is also superior to the conventional power generation device in that “ no matter the installation location + any size device can be installed if there is a place + therefore power generation anywhere + compact + It was found that “ continuous intermittent stable operation selection freedom + air is the only medium ”.
原則として、本発電装置では、電力実使用量を低減することができ、且つ
「設置場所不問、場所あれば所定の規模の装置が設置可能で、何処にでも発電出来る」新たな産業を興し地域振興を計りつつ、地球規模高度社会要請に応えることができる。 As a general rule, this power generation device can reduce the actual amount of power used, and can be installed anywhere in the site, and can be installed at a predetermined scale and can generate power anywhere. We can meet the demands of global advanced society while promoting promotion.
「設置場所不問、場所あれば所定の規模の装置が設置可能で、何処にでも発電出来る」新たな産業を興し地域振興を計りつつ、地球規模高度社会要請に応えることができる。 As a general rule, this power generation device can reduce the actual amount of power used, and can be installed anywhere in the site, and can be installed at a predetermined scale and can generate power anywhere. We can meet the demands of global advanced society while promoting promotion.
上述したように、本発明に係る空気圧縮装置は、以上のように構成されることにより、エネルギー効率の高い空気圧縮装置を実現することができ、さらに、これを用いることでエネルギー効率の高い回転駆動装置及び発電効率の高い発電装置を実現することができる。
表1 シリンダ4本セット水深1.94m芯々1.6mの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略である)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26~22の4本組合せ)。 As described above, the air compressor according to the present invention is configured as described above, so that an air compressor with high energy efficiency can be realized, and further, energy efficient rotation can be achieved by using this. A drive device and a power generation device with high power generation efficiency can be realized.
Table 1 Work set and power entry / exit power of 4 cylinders set depth 1.94m core 1.6m (numbers not shown in the table indicate head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,head side 32 2 xπ / 4 = 804.25 cm 2 , rod side (32 2 -5.6 2 ) xπ / 4 = 779.62 cm 2 , ST is a combination of 26 to 22).
表1 シリンダ4本セット水深1.94m芯々1.6mの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略である)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26~22の4本組合せ)。 As described above, the air compressor according to the present invention is configured as described above, so that an air compressor with high energy efficiency can be realized, and further, energy efficient rotation can be achieved by using this. A drive device and a power generation device with high power generation efficiency can be realized.
Table 1 Work set and power entry / exit power of 4 cylinders set depth 1.94m core 1.6m (numbers not shown in the table indicate head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,
基本方針: この設計の前提は、1往復/1sの2回の吐出量を4個のバケットに分割配分する (本項計算手法は全て吸引方式を採用している)。
吐出仕事: ST22の吐出圧は水深1.94mから1.194kg/cm2、吐出体積20910.4/1.194=17512.9cc圧縮距離17512.9/804.25=21.78cm故、圧縮側から
22-21.78=0.22cmの位置で吐出開始する、必要とする仕事量は9.79737(0.22/2+21.78)=214.4644kg-cm(上表最下段計算、他は表通り)である。
計算入力: 1s1往復故、1s当り304.1009+313.4081=617.509kg-cm/s=6.1751kg-m/s=0.06054kw。推定効率0.7では0.06051/0.7=0.086486kw。
計算出力: 水槽内コンベア中央での平均体積はヘッド側(20910.4/1.194+20910.4)/2=19211.65cc、ロッド側(20270/1.194+20270)/2=18623.3cc,この1秒1往復2回吐出分合計19211.65+18623.3=37835ccを4等分、1バケット当りの平均水排斥体積37835/4=9458.7cc故、浮力平均は9..4587kg、有効バケット数18個故9.4587x18=170.26kg、浮揚速度0.4m/sにて出力は170.26x0.4=68.1029kg-m/s=0.6677kw。
推定出力効率0.6で0.6677x0.6=0.4006kw。以上から、供給動力は市販電動機から90wで400w発電は可能である、従って、推定実効率は400/90=4.44倍、物理的計算効率では0.6677/ 0.06051 =11.03倍となります。 Basic policy: The premise of this design is to divide and distribute 2 discharges of 1 reciprocation / 1 s into 4 buckets (all the calculation methods in this section adopt the suction method).
Discharge work: ST22 discharge pressure is 1.94m to 1.194kg / cm 2 , discharge volume 20910.4 / 1.194 = 17512.9cc compression distance 17512.9 / 804.25 = 21.78cm, so from the compression side
The required amount of work to start discharging at 22-21.78 = 0.22cm is 9.97737 (0.22 / 2 + 21.78) = 214.4644kg-cm (calculation at the bottom of the above table, others are as shown).
Calculation input: Because of 1s1 round trip, 304.1009 + 313.4081 = 617.509kg-cm / s = 6.1751kg-m / s = 0.06054kw per 1s. At an estimated efficiency of 0.7, 0.06051 / 0.7 = 0.086486 kW.
Calculated output: The average volume at the center of the conveyor in the water tank is the head side (20910.4 / 1.194 + 20910.4) /2=19211.65cc, the rod side (20270 / 1.194 + 20270) /2=18623.3cc, and this discharges once a round twice per second. 1921.65 + 18623.3 = 37835cc divided into four equal parts, average water drainage volume per bucket 37835/4 = 9458.7cc, so the average buoyancy is 9..4587kg, 18 active buckets, 9.4587x18 = 170.26kg, levitation speed At 0.4m / s, the output is 170.26x0.4 = 68.1029kg-m / s = 0.6677kw.
Estimated output efficiency 0.6, 0.6677x0.6 = 0.4006 kW. From the above, the supply power is 90w from a commercial motor and 400w power generation is possible. Therefore, the estimated actual efficiency is 400/90 = 4.44 times, and the physical calculation efficiency is 0.6677 / 0.06051 = 11.03 times.
吐出仕事: ST22の吐出圧は水深1.94mから1.194kg/cm2、吐出体積20910.4/1.194=17512.9cc圧縮距離17512.9/804.25=21.78cm故、圧縮側から
22-21.78=0.22cmの位置で吐出開始する、必要とする仕事量は9.79737(0.22/2+21.78)=214.4644kg-cm(上表最下段計算、他は表通り)である。
計算入力: 1s1往復故、1s当り304.1009+313.4081=617.509kg-cm/s=6.1751kg-m/s=0.06054kw。推定効率0.7では0.06051/0.7=0.086486kw。
計算出力: 水槽内コンベア中央での平均体積はヘッド側(20910.4/1.194+20910.4)/2=19211.65cc、ロッド側(20270/1.194+20270)/2=18623.3cc,この1秒1往復2回吐出分合計19211.65+18623.3=37835ccを4等分、1バケット当りの平均水排斥体積37835/4=9458.7cc故、浮力平均は9..4587kg、有効バケット数18個故9.4587x18=170.26kg、浮揚速度0.4m/sにて出力は170.26x0.4=68.1029kg-m/s=0.6677kw。
推定出力効率0.6で0.6677x0.6=0.4006kw。以上から、供給動力は市販電動機から90wで400w発電は可能である、従って、推定実効率は400/90=4.44倍、物理的計算効率では0.6677/ 0.06051 =11.03倍となります。 Basic policy: The premise of this design is to divide and distribute 2 discharges of 1 reciprocation / 1 s into 4 buckets (all the calculation methods in this section adopt the suction method).
Discharge work: ST22 discharge pressure is 1.94m to 1.194kg / cm 2 , discharge volume 20910.4 / 1.194 = 17512.9cc compression distance 17512.9 / 804.25 = 21.78cm, so from the compression side
The required amount of work to start discharging at 22-21.78 = 0.22cm is 9.97737 (0.22 / 2 + 21.78) = 214.4644kg-cm (calculation at the bottom of the above table, others are as shown).
Calculation input: Because of 1s1 round trip, 304.1009 + 313.4081 = 617.509kg-cm / s = 6.1751kg-m / s = 0.06054kw per 1s. At an estimated efficiency of 0.7, 0.06051 / 0.7 = 0.086486 kW.
Calculated output: The average volume at the center of the conveyor in the water tank is the head side (20910.4 / 1.194 + 20910.4) /2=19211.65cc, the rod side (20270 / 1.194 + 20270) /2=18623.3cc, and this discharges once a round twice per second. 1921.65 + 18623.3 = 37835cc divided into four equal parts, average water drainage volume per bucket 37835/4 = 9458.7cc, so the average buoyancy is 9..4587kg, 18 active buckets, 9.4587x18 = 170.26kg, levitation speed At 0.4m / s, the output is 170.26x0.4 = 68.1029kg-m / s = 0.6677kw.
Estimated output efficiency 0.6, 0.6677x0.6 = 0.4006 kW. From the above, the supply power is 90w from a commercial motor and 400w power generation is possible. Therefore, the estimated actual efficiency is 400/90 = 4.44 times, and the physical calculation efficiency is 0.6677 / 0.06051 = 11.03 times.
原理説明 以上の浮力は空気による水の排斥質量とPxV=一定から算出、到達圧(26/次のST-に押込むので-ST26に対す次の体積比と一致)・合計最大到達力(表通り)・合計仕事量(同)、移動分は仕事不要の移動分、補給分は次の体積に圧縮吸引押込む為に補給を要する正味供給仕事量であり、全てPxV=一定と圧縮気体は何処も同圧が根拠、正味供給分の到達力は文字通りである。
Explanation of the principle The above buoyancy is calculated from the mass of water discharged by air and PxV = constant, ultimate pressure (because it is pushed into 26 / next ST--matches the next volume ratio with respect to ST26), total maximum ultimate force (as shown) )-Total work (same as above), the movement is the movement that does not require work, and the replenishment is the net supply work that needs to be replenished to compress and suck into the next volume, where PxV = constant and where the compressed gas is However, the reach of the net supply is literally based on the same pressure.
上記計算出力は、コンベア中央部に於ける平均体積から入ったが、1秒1往復2回吐出分大気圧体積合計は、始めのシリンダヘッド・ロッド側合計と一致するので20270+20910.4=41180.4ccとなる。これを4バケットに等分するので、1バケット当り平均41180.4/4=10295.1ccとなる。これは水槽上面での空気が水を排斥する体積と同値である。「浮力は水の排斥質量」より、水槽上面での浮力は水の比重は1であるので、10295.1ccx1=10295.1g=10.2951kgとなる。
The above calculation output was entered from the average volume at the center of the conveyor, but the total atmospheric pressure volume for one discharge twice per second coincides with the initial cylinder head / rod side total, so 20270 + 20910.4 = 41180.4cc It becomes. Since this is equally divided into four buckets, the average is 41180.4 / 4 = 10295.1cc per bucket. This is equivalent to the volume of air on the top of the water tank that drains water. According to “buoyancy is the mass of water drained”, the specific gravity of water is 1 on the upper surface of the water tank, so 10295.1 cc × 1 = 10295.1 g = 10.2951 kg.
又、吐出部絶対圧は1.194kg/cm2であるため、この体積vはPxV=一定より、10295.1x1=vx1.194の関係からv=10295.1/1.194=8622.4ccとなる、従って、この浮力は同様に8.6224kgとなり、この平均浮力は(10.2951+8.6224)/2=9.4588kg、以下、出力は0.6677kwまで上記計算出力と同じ(尚、換算関係単位は1kw=102kg-m/s=10200kg-cm/s)であり、出力には吸引押込みの区別はない。
Also, since the absolute pressure of the discharge part is 1.194 kg / cm 2 , this volume v becomes P = V = 10295.1 / 1.194 = 8622.4cc from the relation of 10295.1 × 1 = vx1.194, so this buoyancy is Similarly, the average buoyancy is 8.6224 kg, the average buoyancy is (10.2951 + 8.6224) /2=9.4588 kg, and the output is the same as the above output up to 0.6677 kw (Note that the conversion unit is 1 kw = 102 kg-m / s = 10200 kg- cm / s), and there is no distinction between suction and pushing in the output.
計算手法には押込方式と吸引方式とがある。以下、吸引方式について述べる。
There are an indentation method and a suction method. Hereinafter, the suction method will be described.
先ずヘッド側だけの説明をすると、1番目のシリンダは、空気大気圧体積20910.4ccを2番目のシリンダ19865ccに吸引押込むのであるから、最終到達圧p1はPxV=一定より、20910.4x1=19865xp1故、p1=20910.4/19865=1.052625 kg/cm2、差0.052632 kg/cm2、となる。到達力はこれに面積の積で42.32929 kg、この合計仕事量=到達力xST26cm/2=550.2807kg-cmこの体積比24.7/26=0.95は移動するだけで仕事不要である。従って、補給分仕事量は550.2807x0.05=27.514 kg-cm、この補給分到達力は42.32929x0.05=2.1165kg等上表通りです。2番目シリンダは3番目体積18900cに元々大気圧20910.4ccを吸引押込むので、到達圧は同様に20910.4/18900=1.10637 kg/cm2、前との差圧は1.10637-1.052625=0.053745 kg/cm2、到達力以下同様にて省略する。4番目のシリンダについては合計仕事量以下上記吐出位置通りであるのでこれも省略する。但し、4番目のシリンダについては合計仕事と補給分とは一致する。次に、留意点を以下に述べる。
1.1番目シリンダの2番目シリンダ体積分は無仕事空気移動で、補給分仕事量はこの0.05の27.514 kg-cm で済み、以降3番目シリンダまではこれを繰返し、4番目シリンダは上記「吐出仕事」式通りとなり、この僅かな補給分仕事量集計で吐出圧に達すること。
2.供給動力は上表補給分仕事量合計で1s1往復故617.509kg-cm/sとなること。
3.この正味供給分到達力も夫々前のシリンダから初圧を受ける為、始め零から始まり圧縮距離に正比例しシリンダエンドにて最大到達力に至ること。
4.シリンダの両エンド圧縮限(最大到達力)位置ではフライホイール回転方向荷重はこの軸と、シリンダ荷重方向が一直線になることによって、負荷全量をこの軸が負担、駆動源負荷が零で終り零からスタートすること。
5.4番目シリンダの仕事量の台形を面積等しい3角計算(図4参照)には、一般的フライホィール効果で特性上問題ないこと。 Turning first to the description of the head-side only, the first cylinder, because the air atmospheric pressure volume 20910.4cc is sucked pushed to the second cylinder 19865Cc, ultimate pressure p 1 than PXV = constant, 20910.4x1 = 19865xp 1 Thus, p 1 = 20910.4 / 19865 = 1.052625 kg / cm 2, the difference 0.052632 kg / cm 2, and composed. The ultimate force is 42.32929 kg as the product of the area, and the total work amount = the ultimate force × ST26 cm / 2 = 550.2807 kg-cm. This volume ratio 24.7 / 26 = 0.95 only moves, and no work is required. Therefore, the replenishment work amount is 550.2807 x 0.05 = 27.514 kg-cm, and this replenishment reach force is 42.32929 x 0.05 = 2.1165 kg. The second cylinder originally sucks and pushes atmospheric pressure 20910.4cc into the third volume 18900c, so the ultimate pressure is 20910.4 / 18900 = 1.10637 kg / cm 2 , and the differential pressure with the previous is 1.10637-1.052625 = 0.053745 kg / cm 2 The same is true for the following reaching force. The fourth cylinder is not more than the total work amount and is omitted as it is the same as the discharge position. However, for the fourth cylinder, the total work and replenishment amount match. Next, points to keep in mind are described below.
1. The second cylinder volume of the first cylinder is a non-working air movement, and the replenishment work amount is 27.514 kg-cm, which is 0.05, and this is repeated until the third cylinder. The "work" formula is followed, and the discharge pressure is reached with this slight replenishment work total.
2. Supply power must be 617.509kg-cm / s because the total work amount for replenishment in the above table is 1s1 round trip.
3. Since this net supply reaching force also receives initial pressure from the previous cylinder, it starts from zero at the beginning and is directly proportional to the compression distance and reaches the maximum reaching force at the cylinder end.
4). At the cylinder end compression limit (maximum ultimate force) position, the load in the flywheel rotational direction is aligned with this axis, and the cylinder load direction is in a straight line. To start.
5. For the calculation of the trapezoid of the work volume of the fourth cylinder with the same area (see Fig. 4), there should be no problem in terms of characteristics due to the general flywheel effect.
1.1番目シリンダの2番目シリンダ体積分は無仕事空気移動で、補給分仕事量はこの0.05の27.514 kg-cm で済み、以降3番目シリンダまではこれを繰返し、4番目シリンダは上記「吐出仕事」式通りとなり、この僅かな補給分仕事量集計で吐出圧に達すること。
2.供給動力は上表補給分仕事量合計で1s1往復故617.509kg-cm/sとなること。
3.この正味供給分到達力も夫々前のシリンダから初圧を受ける為、始め零から始まり圧縮距離に正比例しシリンダエンドにて最大到達力に至ること。
4.シリンダの両エンド圧縮限(最大到達力)位置ではフライホイール回転方向荷重はこの軸と、シリンダ荷重方向が一直線になることによって、負荷全量をこの軸が負担、駆動源負荷が零で終り零からスタートすること。
5.4番目シリンダの仕事量の台形を面積等しい3角計算(図4参照)には、一般的フライホィール効果で特性上問題ないこと。 Turning first to the description of the head-side only, the first cylinder, because the air atmospheric pressure volume 20910.4cc is sucked pushed to the second cylinder 19865Cc, ultimate pressure p 1 than PXV = constant, 20910.4x1 = 19865xp 1 Thus, p 1 = 20910.4 / 19865 = 1.052625 kg / cm 2, the difference 0.052632 kg / cm 2, and composed. The ultimate force is 42.32929 kg as the product of the area, and the total work amount = the ultimate force × ST26 cm / 2 = 550.2807 kg-cm. This volume ratio 24.7 / 26 = 0.95 only moves, and no work is required. Therefore, the replenishment work amount is 550.2807 x 0.05 = 27.514 kg-cm, and this replenishment reach force is 42.32929 x 0.05 = 2.1165 kg. The second cylinder originally sucks and pushes atmospheric pressure 20910.4cc into the third volume 18900c, so the ultimate pressure is 20910.4 / 18900 = 1.10637 kg / cm 2 , and the differential pressure with the previous is 1.10637-1.052625 = 0.053745 kg / cm 2 The same is true for the following reaching force. The fourth cylinder is not more than the total work amount and is omitted as it is the same as the discharge position. However, for the fourth cylinder, the total work and replenishment amount match. Next, points to keep in mind are described below.
1. The second cylinder volume of the first cylinder is a non-working air movement, and the replenishment work amount is 27.514 kg-cm, which is 0.05, and this is repeated until the third cylinder. The "work" formula is followed, and the discharge pressure is reached with this slight replenishment work total.
2. Supply power must be 617.509kg-cm / s because the total work amount for replenishment in the above table is 1s1 round trip.
3. Since this net supply reaching force also receives initial pressure from the previous cylinder, it starts from zero at the beginning and is directly proportional to the compression distance and reaches the maximum reaching force at the cylinder end.
4). At the cylinder end compression limit (maximum ultimate force) position, the load in the flywheel rotational direction is aligned with this axis, and the cylinder load direction is in a straight line. To start.
5. For the calculation of the trapezoid of the work volume of the fourth cylinder with the same area (see Fig. 4), there should be no problem in terms of characteristics due to the general flywheel effect.
シリンダユニットの使用本数が4本と少ないので、合計推定実効率は0.7のままとし、浮力回収の場合、中心間の距離は1.6mと短く調整も容易であり、浮揚速度0.4m/sと低速のため、効率0.8、発電機の変換効率0.75~0.8(メーカ)より、ここでは0.8x0.75=0.6と仮定した。
注意事項: ST22の差圧は0.0122 kg/cm2(水柱12.2cm相当)のため、水槽上面拡幅水面は1.94mに対し、水柱換算+8-2 cm以内に管理する。 Since the number of cylinder units used is as small as four, the total estimated actual efficiency remains 0.7, and in the case of buoyancy recovery, the distance between the centers is as short as 1.6 m and adjustment is easy, and the levitation speed is 0.4 m / s. Therefore, it was assumed that 0.8x0.75 = 0.6, because the efficiency is 0.8 and the conversion efficiency of the generator is 0.75 to 0.8 (manufacturer).
Note: Because the differential pressure of ST22 is 0.0122 kg / cm 2 (equivalent to 12.2 cm of water column), the widened water surface on the top of the aquarium should be managed within +8-2 cm in terms of water column for 1.94 m.
注意事項: ST22の差圧は0.0122 kg/cm2(水柱12.2cm相当)のため、水槽上面拡幅水面は1.94mに対し、水柱換算+8-2 cm以内に管理する。 Since the number of cylinder units used is as small as four, the total estimated actual efficiency remains 0.7, and in the case of buoyancy recovery, the distance between the centers is as short as 1.6 m and adjustment is easy, and the levitation speed is 0.4 m / s. Therefore, it was assumed that 0.8x0.75 = 0.6, because the efficiency is 0.8 and the conversion efficiency of the generator is 0.75 to 0.8 (manufacturer).
Note: Because the differential pressure of ST22 is 0.0122 kg / cm 2 (equivalent to 12.2 cm of water column), the widened water surface on the top of the aquarium should be managed within +8-2 cm in terms of water column for 1.94 m.
表2 シリンダ2本セット水深1.94m芯々1.6mの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略である)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26・22の2本組合せ)。 Table 2 Set of 2 cylinders, water depth 1.94m, core 1.6m work load and power calculation (numbers not shown in the table indicate head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,head side 32 2 xπ / 4 = 804.25 cm 2 , rod side (32 2 -5.6 2 ) xπ / 4 = 779.62 cm 2 , ST is a combination of 26 and 22).
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26・22の2本組合せ)。 Table 2 Set of 2 cylinders, water depth 1.94m, core 1.6m work load and power calculation (numbers not shown in the table indicate head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,
吐出位置: この項は表1と一致の為省略。
計算入力: 1s1往復であるので、491.4017+506.9262=998.3279kg-cm/s=9.9833kg-m/s=0.097875kw故に、計算効率は0.6677/0.097875=6.82倍
表3 シリンダ1本セット水深1.94m芯々1.6mの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略である)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26の1本)。 Discharge position: This item is omitted because it matches Table 1.
Calculation input: Since it is 1s1 round trip, 491.4017 + 506.9262 = 998.3279kg-cm / s = 9.9833kg-m / s = 0.097875kw Therefore, the calculation efficiency is 0.6677 / 0.097875 = 6.82 times
Table 3 Cylinder set water depth 1.94m Core 1.6m work load and power calculation (The numbers in the table do not indicate the head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,head side 32 2 xπ / 4 = 804.25 cm 2 , rod side (32 2 -5.6 2 ) xπ / 4 = 779.62 cm 2 , ST is one of 26).
計算入力: 1s1往復であるので、491.4017+506.9262=998.3279kg-cm/s=9.9833kg-m/s=0.097875kw故に、計算効率は0.6677/0.097875=6.82倍
表3 シリンダ1本セット水深1.94m芯々1.6mの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略である)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26の1本)。 Discharge position: This item is omitted because it matches Table 1.
Calculation input: Since it is 1s1 round trip, 491.4017 + 506.9262 = 998.3279kg-cm / s = 9.9833kg-m / s = 0.097875kw Therefore, the calculation efficiency is 0.6677 / 0.097875 = 6.82 times
Table 3 Cylinder set water depth 1.94m Core 1.6m work load and power calculation (The numbers in the table do not indicate the head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,
吐出位置: ST22の吐出圧は水深1.94mから1.194kg/cm2、吐出体積:20910.4/1.194=17512.9cc圧縮距離17512.9/804.25=21.78cm故、圧縮側から
26-21.78=4.22cmの位置で吐出開始する、この要する仕事量は156.0245(4.22/2+21.78)=3727.4253kg-cm(上表最下段計算、他は表通り)です。計算入力 1s1往復ですので3613.2736+3727.4253=7340.6989 kg-cm/s=73.407kg-m/s=0.71968kw故に、計算効率は0.6677/0.71968=0.93倍
ここで、注目されたいことは、シリンダ本数増で無段入力軽減し効率改善するが出力に変化がないことである。この表1~3はその一例となり、これは正しく、圧縮と浮力には梃子リンク式に直接関係がないことに起因し、一般のエネルギー理論計算や仕事率計算等も通用しない、従って、本項の通り圧縮・浮力計算は別々個別にしないと結果は出ないことと、仕事率計算では効率1以上にはならないと言うことである。
表4 ロットレスシリンダ33本セット水深48mの仕事量及び出入り動力計算書(この表は、理論的説明を目的に、計算手法のみの1例を示し
シリンダ径φ100断面積102xπ/4=78.5398 cm2トロークは下記組合せ、圧縮機構は1秒1往復2回吐出を4バケット配分計算(ENは仕事量) Discharge position: ST22 discharge pressure is 1.94m to 1.194kg / cm 2 , discharge volume: 20910.4 / 1.194 = 17512.9cc compression distance 17512.9 / 804.25 = 21.78cm, so from the compression side
26-21.78 = Discharge starts at a position of 4.22cm. The required work volume is 156.0245 (4.22 / 2 + 21.78) = 3727.4253kg-cm (calculation at the bottom of the above table, others are as shown). Calculation input 1s1 round trip, so 363.12736 + 3727.4253 = 7340.6989 kg-cm / s = 73.407kg-m / s = 0.71968kw Therefore, the calculation efficiency is 0.6677 / 0.71968 = 0.93 times. The stepless input is reduced and the efficiency is improved, but the output is not changed. Tables 1 to 3 are examples of this, and this is true, because compression and buoyancy are not directly related to the insulator link formula, and general energy theory calculations and power calculations are not valid. As shown in the table, compression and buoyancy calculations must be performed separately, and results will not be obtained.
Table 4 Set of 33 lotless cylinders, 48m depth of work and entry / exit power calculation (This table shows an example of calculation method only for theoretical explanation, cylinder diameterφ100 cross section 10 2 xπ / 4 = 78.5398 The following combinations are used for the cm 2 trooke, and the compression mechanism calculates 1 bucket 2 reciprocating 2 discharges per 4 buckets (EN is the work load)
26-21.78=4.22cmの位置で吐出開始する、この要する仕事量は156.0245(4.22/2+21.78)=3727.4253kg-cm(上表最下段計算、他は表通り)です。計算入力 1s1往復ですので3613.2736+3727.4253=7340.6989 kg-cm/s=73.407kg-m/s=0.71968kw故に、計算効率は0.6677/0.71968=0.93倍
ここで、注目されたいことは、シリンダ本数増で無段入力軽減し効率改善するが出力に変化がないことである。この表1~3はその一例となり、これは正しく、圧縮と浮力には梃子リンク式に直接関係がないことに起因し、一般のエネルギー理論計算や仕事率計算等も通用しない、従って、本項の通り圧縮・浮力計算は別々個別にしないと結果は出ないことと、仕事率計算では効率1以上にはならないと言うことである。
表4 ロットレスシリンダ33本セット水深48mの仕事量及び出入り動力計算書(この表は、理論的説明を目的に、計算手法のみの1例を示し
シリンダ径φ100断面積102xπ/4=78.5398 cm2トロークは下記組合せ、圧縮機構は1秒1往復2回吐出を4バケット配分計算(ENは仕事量) Discharge position: ST22 discharge pressure is 1.94m to 1.194kg / cm 2 , discharge volume: 20910.4 / 1.194 = 17512.9cc compression distance 17512.9 / 804.25 = 21.78cm, so from the compression side
26-21.78 = Discharge starts at a position of 4.22cm. The required work volume is 156.0245 (4.22 / 2 + 21.78) = 3727.4253kg-cm (calculation at the bottom of the above table, others are as shown). Calculation input 1s1 round trip, so 363.12736 + 3727.4253 = 7340.6989 kg-cm / s = 73.407kg-m / s = 0.71968kw Therefore, the calculation efficiency is 0.6677 / 0.71968 = 0.93 times. The stepless input is reduced and the efficiency is improved, but the output is not changed. Tables 1 to 3 are examples of this, and this is true, because compression and buoyancy are not directly related to the insulator link formula, and general energy theory calculations and power calculations are not valid. As shown in the table, compression and buoyancy calculations must be performed separately, and results will not be obtained.
Table 4 Set of 33 lotless cylinders, 48m depth of work and entry / exit power calculation (This table shows an example of calculation method only for theoretical explanation, cylinder diameter
(この計算は摺動保証速度無視した理論計算説明用で、全てのシリンダを大径にし、体積同じなら、条件変わらずに摺動速度は下げられる)
吐出位置: ST26の吐出圧は水深48mから絶対圧5.8kg/cm2となり、この圧力に達すると、この圧縮空気は水槽底部から吐出開始する。その位置は、11781/5.8/78.5398=23.2cmで(78.5398はシリンダ断面)、圧縮側からピストンが26-23.2=2.8cm移動位置で吐出開始する。
最終ST26の1回吐出に要する仕事量は2.4347(2.8/2+23.2)=59.8936kg-cmで、以外は上表()内説明通りである。
計算出力: 水深吐出体積は11781/5.8=2031.2cc、平均体積は(2031.2+11781)/2=6906.1cc、バケット2個に配分1個当り平均浮力は6.9061/2=3.453kg、 有効バケット数482個の浮力総計は、3.453x482=1664.37kg、浮揚速度0.4m/sと仮定でき、出力は1664.37x0.4=665.748kg-m/s=6.527kwとなる。
供給動力: 672.306kg-cm=6.72306kg-mこの2回/1sで6.72306x2=13.4461kg-m/s=0.1318kw
計算効率: 従って、計算効率は6.527/0.1318=49.52倍と50倍に至る。 (This calculation is for explanation of theoretical calculation ignoring the sliding guarantee speed. If all cylinders are made large and the volume is the same, the sliding speed can be lowered without changing the conditions.)
Discharge position: The discharge pressure of ST26 changes from a water depth of 48 m to an absolute pressure of 5.8 kg / cm 2. When this pressure is reached, discharge of this compressed air starts from the bottom of the water tank. The position is 11781 / 5.8 / 78.5398 = 23.2cm (78.5398 is the cylinder cross section), and the piston starts to discharge from the compression side at the position of 26-23.2 = 2.8cm.
The work required for one discharge in the final ST26 is 2.4347 (2.8 / 2 + 23.2) = 59.8936 kg-cm, and the rest is as described in the above table ().
Calculation output: Water depth discharge volume is 11781 / 5.8 = 2031.2cc, average volume is (2031.2 + 11781) /2=6906.1cc, distributed to 2 buckets, average buoyancy per one is 6.9061 / 2 = 3.453kg, number of effective buckets 482 The total buoyancy can be assumed to be 3.453 x 482 = 1663.37 kg, the levitation speed is 0.4 m / s, and the output is 1663.37 x 0.4 = 665.748 kg-m / s = 6.527 kw.
Supply power: 672.306kg-cm = 6.72306kg-m 2 times / 1s 6.72306x2 = 13.4461kg-m / s = 0.1318kw
Calculation efficiency: Therefore, calculation efficiency reaches 6.527 / 0.1318 = 49.52 times and 50 times.
吐出位置: ST26の吐出圧は水深48mから絶対圧5.8kg/cm2となり、この圧力に達すると、この圧縮空気は水槽底部から吐出開始する。その位置は、11781/5.8/78.5398=23.2cmで(78.5398はシリンダ断面)、圧縮側からピストンが26-23.2=2.8cm移動位置で吐出開始する。
最終ST26の1回吐出に要する仕事量は2.4347(2.8/2+23.2)=59.8936kg-cmで、以外は上表()内説明通りである。
計算出力: 水深吐出体積は11781/5.8=2031.2cc、平均体積は(2031.2+11781)/2=6906.1cc、バケット2個に配分1個当り平均浮力は6.9061/2=3.453kg、 有効バケット数482個の浮力総計は、3.453x482=1664.37kg、浮揚速度0.4m/sと仮定でき、出力は1664.37x0.4=665.748kg-m/s=6.527kwとなる。
供給動力: 672.306kg-cm=6.72306kg-mこの2回/1sで6.72306x2=13.4461kg-m/s=0.1318kw
計算効率: 従って、計算効率は6.527/0.1318=49.52倍と50倍に至る。 (This calculation is for explanation of theoretical calculation ignoring the sliding guarantee speed. If all cylinders are made large and the volume is the same, the sliding speed can be lowered without changing the conditions.)
Discharge position: The discharge pressure of ST26 changes from a water depth of 48 m to an absolute pressure of 5.8 kg / cm 2. When this pressure is reached, discharge of this compressed air starts from the bottom of the water tank. The position is 11781 / 5.8 / 78.5398 = 23.2cm (78.5398 is the cylinder cross section), and the piston starts to discharge from the compression side at the position of 26-23.2 = 2.8cm.
The work required for one discharge in the final ST26 is 2.4347 (2.8 / 2 + 23.2) = 59.8936 kg-cm, and the rest is as described in the above table ().
Calculation output: Water depth discharge volume is 11781 / 5.8 = 2031.2cc, average volume is (2031.2 + 11781) /2=6906.1cc, distributed to 2 buckets, average buoyancy per one is 6.9061 / 2 = 3.453kg, number of effective buckets 482 The total buoyancy can be assumed to be 3.453 x 482 = 1663.37 kg, the levitation speed is 0.4 m / s, and the output is 1663.37 x 0.4 = 665.748 kg-m / s = 6.527 kw.
Supply power: 672.306kg-cm = 6.72306kg-m 2 times / 1s 6.72306x2 = 13.4461kg-m / s = 0.1318kw
Calculation efficiency: Therefore, calculation efficiency reaches 6.527 / 0.1318 = 49.52 times and 50 times.
表5 シリンダ2本セット水深0.9m芯々0.5mの仕事量及び出入り動力計算書(基礎データ検証用)
(シリンダ径φ100断面積ロッド側(102-2.52)xπ/4=73.63 cm2、102 xπ/4=78.54 cm2、STは16.6と15.6の2本組合せ、本表のENは仕事量)。 Table 5 Two cylinders set, 0.9m core depth 0.5m work load and power calculation (for basic data verification )
(Cylinder diameter φ100 cross section rod side (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , 10 2 xπ / 4 = 78.54 cm 2 , ST is a combination of 16.6 and 15.6, EN in this table is work load ).
(シリンダ径φ100断面積ロッド側(102-2.52)xπ/4=73.63 cm2、102 xπ/4=78.54 cm2、STは16.6と15.6の2本組合せ、本表のENは仕事量)。 Table 5 Two cylinders set, 0.9m core depth 0.5m work load and power calculation (for basic data verification )
(Cylinder diameter φ100 cross section rod side (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , 10 2 xπ / 4 = 78.54 cm 2 , ST is a combination of 16.6 and 15.6, EN in this table is work load ).
吐出位置:1303.76/1.09/78.54=15.23cmで吐出開始、 15.6-15.23=0.37cm、 供給NEは2.03398 x(0.37/2+15.23)=31.3538kg-cm
供給:(31.7536+33.8711)=65.6247kg-cm/s=0.656247kg-m/s=6.434w(下記出力を含め理論計算値の実検検証が本機の目的です)。
出力: 吐出体積、ロッド側1222.26/1.09=1121.34cc、平均は1171.8cc、浮力は1.1718kg、ヘッド側 1303.76/1.09=1196.1cc平均は1249.9cc
浮力は1.249.93kg、浮力平均は(1.1718+1.24993)/2平均浮力は1.2109kg、有効バケット数が6故4で割切れない為、1.2109-1.1718=
0.039最大0.039x2=0.078kgのアンバランスが生ずるが無視、合計1.1718+1.2499=2.4217kgであり、これを4バケット等分すると2.4217/4=0.6054kg、0.6054x6=3.6325kgとなり、実験検証作業は人手対応可能範囲、基礎資料の全てを整えることができ、先々の高精度設計に寄与する。速度0.4m/sでの出力は3.6325x0.4=1.453kg-m/s=14.245w、計算効率は14.245/6.434=2.21倍となる。 Discharge position: Discharge start at 1303.76 / 1.09 / 78.54 = 15.23cm, 15.6-15.23 = 0.37cm, supply NE is 2.03398 x (0.37 / 2 + 15.23) = 31.3538kg-cm
Supply: (31.7536 + 33.8711) = 65.6247kg-cm / s = 0.656247kg-m / s = 6.434w (The purpose of this machine is to verify the theoretical calculation values including the following output).
Output: Discharge volume, rod side 1222.26 / 1.09 = 1121.34cc, average 1171.8cc, buoyancy 1.1718kg, head side 1303.76 / 1.09 = 1196.1cc average 1249.9cc
The buoyancy is 1.249.93kg, the average buoyancy is (1.1718 + 1.24993) / 2, the average buoyancy is 1.2109kg, the number of effective buckets is 6 and it is not divisible by 4, 1.2109-1.1718 =
0.039 maximum 0.039 x 2 = 0.078 kg unbalance occurs, but ignored, total 1.1718 + 1.2499 = 2.4217 kg. Dividing this into 4 buckets equals 2.4217 / 4 = 0.6054 kg, 0.6054 x 6 = 3.6325 kg. It is possible to arrange all the manipulatable range and basic materials, contributing to the high precision design ahead. The output at speed 0.4m / s is 3.6325x0.4 = 1.453kg-m / s = 14.245w, and the calculation efficiency is 14.245 / 6.434 = 2.21 times.
供給:(31.7536+33.8711)=65.6247kg-cm/s=0.656247kg-m/s=6.434w(下記出力を含め理論計算値の実検検証が本機の目的です)。
出力: 吐出体積、ロッド側1222.26/1.09=1121.34cc、平均は1171.8cc、浮力は1.1718kg、ヘッド側 1303.76/1.09=1196.1cc平均は1249.9cc
浮力は1.249.93kg、浮力平均は(1.1718+1.24993)/2平均浮力は1.2109kg、有効バケット数が6故4で割切れない為、1.2109-1.1718=
0.039最大0.039x2=0.078kgのアンバランスが生ずるが無視、合計1.1718+1.2499=2.4217kgであり、これを4バケット等分すると2.4217/4=0.6054kg、0.6054x6=3.6325kgとなり、実験検証作業は人手対応可能範囲、基礎資料の全てを整えることができ、先々の高精度設計に寄与する。速度0.4m/sでの出力は3.6325x0.4=1.453kg-m/s=14.245w、計算効率は14.245/6.434=2.21倍となる。 Discharge position: Discharge start at 1303.76 / 1.09 / 78.54 = 15.23cm, 15.6-15.23 = 0.37cm, supply NE is 2.03398 x (0.37 / 2 + 15.23) = 31.3538kg-cm
Supply: (31.7536 + 33.8711) = 65.6247kg-cm / s = 0.656247kg-m / s = 6.434w (The purpose of this machine is to verify the theoretical calculation values including the following output).
Output: Discharge volume, rod side 1222.26 / 1.09 = 1121.34cc, average 1171.8cc, buoyancy 1.1718kg, head side 1303.76 / 1.09 = 1196.1cc average 1249.9cc
The buoyancy is 1.249.93kg, the average buoyancy is (1.1718 + 1.24993) / 2, the average buoyancy is 1.2109kg, the number of effective buckets is 6 and it is not divisible by 4, 1.2109-1.1718 =
0.039 maximum 0.039 x 2 = 0.078 kg unbalance occurs, but ignored, total 1.1718 + 1.2499 = 2.4217 kg. Dividing this into 4 buckets equals 2.4217 / 4 = 0.6054 kg, 0.6054 x 6 = 3.6325 kg. It is possible to arrange all the manipulatable range and basic materials, contributing to the high precision design ahead. The output at speed 0.4m / s is 3.6325x0.4 = 1.453kg-m / s = 14.245w, and the calculation efficiency is 14.245 / 6.434 = 2.21 times.
以上を1本のシリンダの場合 出力は同じで、供給動力は下表の結果となる。
In the case of one cylinder, the output is the same and the power supply is the result shown in the table below.
吐出位置 1303.76/1.09/78.54=15.23cmで吐出開始、 16.6-15.23=1.37cm、 供給NEは7.0686 x(1.37/2+15.23)=112.4968kg-cm
供給: 出力は同上の上、供給は105.464+112.4968=217.9608kg-cm/s=2.1796kg-m/s=21.3687w、効率は14.245/21.3687=0.67倍。
表7 シリンダ13本セット2組搭載、水深3.54m芯々3.2mの仕事量及び出入り動力計算書。
ヘッド側202 xπ/4=314.16 cm2 ロッド側(202-42)xπ/4=301.59 cm2下表内数値はヘッド側を示す(本表のENは仕事量を示す)。 Discharge position 1303.76 / 1.09 / 78.54 = 15.23cm, discharge starts, 16.6-15.23 = 1.37cm, supply NE is 7.0686 x (1.37 / 2 + 15.23) = 112.4968kg-cm
Supply: Same as above, output is 105.464 + 112.4968 = 217.9608kg-cm / s = 2.1796kg-m / s = 21.3687w, efficiency is 14.245 / 21.3687 = 0.67 times.
Table 7 Load of 13 sets of 13 cylinders, water depth 3.54m core 3.2m work load and power calculation .
Head side 20 2 xπ / 4 = 314.16 cm 2 Rod side (20 2 −4 2 ) xπ / 4 = 301.59 cm 2 The numerical values in the table below indicate the head side (EN in this table indicates the amount of work).
供給: 出力は同上の上、供給は105.464+112.4968=217.9608kg-cm/s=2.1796kg-m/s=21.3687w、効率は14.245/21.3687=0.67倍。
表7 シリンダ13本セット2組搭載、水深3.54m芯々3.2mの仕事量及び出入り動力計算書。
ヘッド側202 xπ/4=314.16 cm2 ロッド側(202-42)xπ/4=301.59 cm2下表内数値はヘッド側を示す(本表のENは仕事量を示す)。 Discharge position 1303.76 / 1.09 / 78.54 = 15.23cm, discharge starts, 16.6-15.23 = 1.37cm, supply NE is 7.0686 x (1.37 / 2 + 15.23) = 112.4968kg-cm
Supply: Same as above, output is 105.464 + 112.4968 = 217.9608kg-cm / s = 2.1796kg-m / s = 21.3687w, efficiency is 14.245 / 21.3687 = 0.67 times.
Table 7 Load of 13 sets of 13 cylinders, water depth 3.54m core 3.2m work load and power calculation .
到達圧: 各々次のシリンダ体積に押込むのに要する終点位置最大圧力で、最初の体積(11938cc)/各々次体積=最初のST(38cm)/次STとなる。
差圧:前のシリンダが押込んだ圧力から次にシリンダに押込む最終位置圧力差で、各々の到達圧-前の到達圧で算出される。
最大荷重:上記から単純に圧力差x断面積である(尚、以下のENは単位時間当りにすればエネルギーになるが、ここでは仕事量の略称)。
要するEN: 次のシリンダに押込むに要する1つ前から受けた利得分を含む合計必要仕事量で、各々の最大荷重xST/2で算出される。
利得EN:「気体内は全て同圧」の原理、前のシリンダに与えた押圧は、断面同じ為、常に同押力でピストン間の空気を介し助勢利得仕事分で、前シリンダの要する仕事量ENに対し、各々のST/前STの割合で利得仕事として自動的に受け取る、これが本発明の理論である。
清算EN:必要仕事量-前シリンダから受けた利得分で、各々の正味補給を要する仕事量である(-分は揺動アームに還元入力軽減に貢献する)。
正味供給分の到達力:上記正味補給を要する仕事量分に限る各々シリンダエンド最大押付力で、供給動力源仕様は別紙伝動特性を含め、これを持って決定し、清算ENx2/STで算出される。尚、最終シリンダの1.354 kg/cm2は吐出圧で、要する仕事量は下記特例計算になる。
設計基本方針:設計は1往復/1s、同じ機構を180度変位、水槽両側面に2台を単一駆動源で取付け計4回吐出分を4バケットに等配分する。
吐出位置計算:最終ST28.5の吐出開始位置は11938/1.354(吐出圧)/314.16(断面)=28.06cm、圧縮側から28.5-28.06=0.44cmの位置となる。
吐出に要す仕事量:従って、最終シリンダST28.5の要する仕事量ENは6.49274 (0.44/2+28.06)=183.6147kg-cm、以外計算は上表通りである。
平均浮力:大気圧体積ロッド側は11938x301.59/314.16(断面積比)=11460cc 故、ヘッド側合せた平均は(11938+11460)/2=11699ccから吐出部での平均体積11699/1.354=8640ccこの平均体積は(11699+8640)/2=10169.5cc、1s計4回吐出で1バケット当り平均浮力10.17kgとなる。
回収動力:有効バケット34個、浮力計10.17x34=345.78kg浮揚速度0.4m/sで出力は345.78x0.4=138.3kg-m/s=1.356kw、減速変換効率合せ0.6 0.6x1.356=0.8136kw が推定正味回収出力動力となる。
供給動力:(98.82+102.94)x2=403.52kg-cm/s=4.0352kg-m/s=0.03956kw 供給実効率0.7と推定仮定し0.03956/0.7=0.0565kwである。
入出動力:以上結果から市販電動機・発電機から供給は60w 出力は400x2=800w 従って、推定実効率は800/60=13.33倍となる。
伝動特性:この圧縮機構のフライホィ―ル伝道特性について、
連続運転時はフライホィ―ル伝道特性として、正味供給分の最大到達位置で必要トルクフラホィール軸が全量負担、原動機負荷は零になることに着目、この伝動特性検討結果にて、上記供給動力は実際、尚、軽減される。
運転準備: 水槽に必要量の水を満した後、吐出口上の縦1列全てのバケットに適性量の空気を満たす(発電機無負荷)方法として、
・ 本装置駆動源はブレーキ付きとし、バケット容量に約1/3の余裕があり、本装置規模では最下部バケット1個に浮力15kg分の空気供給可能のため始動する、始動にて水槽中継軸取付けの電磁クラッチ・バケット1個送りセンサ、及び、シリンダエンドセンサでブレーキ付き駆動源とを制動制御、浮揚速度無関係にこれを少々余分に繰返す事で、全て一定所定量にてほぼ平均化される。
・ 以上の制御は、本装置圧縮機構は殆ど連続吐出でシリンダ片道2バケットに等分の為、1回目吐出以外はバケット2箇ずつの断続送りです。
・ 但し、バケットの中心距離が大きくなり1個で始動しない場合、停止位置を調整し、バケットの縁に吐出空気を当て2分配して倍の浮力とする。
注意事項:2組の圧縮装置を搭載して各180度毎に吐出させる際、位相90度変位が一般的と思われるが、中間位置で他方が最大、結果最大は上表正味供給分の到達力の1.5倍になる、対して、180度変位は伝動特性から両端で原動機必要トルクが零となる、最大2組の圧縮装置を組合せると、ヘッド・ロッド側合計の1倍で済み、多少でも両端吐出平均化180度変位が最適となる、今後の商品化販売促進に当り、この供給は60wで正味回収動力800wを実証でき、効率は2桁倍になると考える。 Ultimate pressure: Maximum pressure at the end point position required to push into the next cylinder volume. First volume (11938cc) / each next volume = first ST (38cm) / next ST.
Differential pressure: This is the final position pressure difference that is pushed into the cylinder from the pressure pushed in by the previous cylinder, and is calculated by each ultimate pressure minus the previous ultimate pressure.
Maximum load: From the above, it is simply the pressure difference x cross-sectional area (Note that the following EN becomes energy if per unit time, but here is the abbreviation for work).
Necessary EN: Total required work including the gain received from the previous one to push into the next cylinder, calculated with each maximum load xST / 2.
Gain EN: The principle of “all the pressure in the gas is the same”, because the pressure applied to the previous cylinder has the same cross-section, the amount of work required for the front cylinder is always the same gain as the assist gain work through the air between the pistons. This is the theory of the present invention, which is automatically received as gain work at each ST / pre-ST ratio for EN.
Clearing EN: Necessary work amount-The amount of gain received from the front cylinder, which is the amount of work that requires each net replenishment (-minutes contribute to reducing the reduction input to the swing arm).
Achieving force for net supply: Each cylinder end maximum pressing force limited to the amount of work that requires the above net replenishment. Supply power source specifications, including the separate sheet transmission characteristics, are determined based on this and calculated by Clearing ENx2 / ST The Note that 1.354 kg / cm 2 of the final cylinder is the discharge pressure, and the required amount of work is the following special calculation .
Basic design policy: The design is 1 reciprocation / 1s, the same mechanism is displaced 180 degrees, 2 units are mounted on both sides of the water tank with a single drive source, and the total of 4 discharges are equally distributed to 4 buckets.
Discharge position calculation: The discharge start position of the final ST28.5 is 11938 / 1.354 (discharge pressure) /314.16 (cross section) = 28.06 cm, 28.5-28.06 = 0.44 cm from the compression side.
Work required for discharge: Therefore, the work EN required for the final cylinder ST28.5 is 6.49274 (0.44 / 2 + 28.06) = 183.6147 kg-cm, and the calculation is as shown in the above table.
Average buoyancy: 11938x301.59 / 314.16 (cross-sectional area ratio) = 11460cc on the atmospheric pressure volume rod side, so the average combined on the head side is (11938 + 11460) / 2 = 11699cc, and the average volume at the discharge part 11699 / 1.354 = 8640cc This average volume is (11699 + 8640) /2=10169.5cc, and the average buoyancy per bucket is 10.17kg with a total of 4 discharges per second.
Recovery power: 34 effective buckets, buoyancy meter 10.17x34 = 345.78kg levitation speed 0.4m / s, output 345.78x0.4 = 138.3kg-m / s = 1.356kw, deceleration conversion efficiency combined 0.6 0.6x1.356 = 0.8136 kw is the estimated net recovery output power.
Supply power: (98.82 + 102.94) x2 = 403.52kg-cm / s = 4.0352kg-m / s = 0.03956kw Assuming that the actual supply efficiency is 0.7, 0.03956 / 0.7 = 0.0565kw.
Input / output power: Based on the above results, supply from commercial motors / generators is 60 w. Output is 400 x 2 = 800 w. Therefore, the estimated actual efficiency is 800/60 = 13.33 times.
Transmission characteristics: About the flywheel transmission characteristics of this compression mechanism,
At the time of continuous operation, pay attention to the fact that the flywheel transmission characteristic is that the required torque flagwheel shaft is fully loaded and the prime mover load is zero at the maximum reached position of the net supply. In fact, it is still reduced.
Preparation for operation: After filling the tank with the required amount of water, fill the appropriate amount of air in all the vertical buckets on the outlet (no generator load).
・ The drive source of this equipment is equipped with a brake, and there is a margin of about 1/3 of the bucket capacity. At the scale of this equipment, it starts because it can supply 15 kg of buoyancy to the bottom bucket. Braking control of the attached electromagnetic clutch / bucket single feed sensor and the cylinder end sensor to brake the drive source, and repeating this a little extra regardless of the levitation speed, all are almost averaged at a fixed predetermined amount .
-The above control is an intermittent feed of two buckets except for the first discharge because the compression mechanism of this equipment is almost continuous and equally divided into two buckets in one cylinder path.
-However, if the center distance of the bucket becomes large and it does not start with only one, adjust the stop position and apply the discharged air to the edge of the bucket to distribute it to double the buoyancy.
Note: When two sets of compressors are installed and discharged every 180 degrees, a 90-degree phase displacement seems to be common, but the other is the maximum at the middle position, and the maximum result is the net supply above. The force is 1.5 times the force, whereas the 180 degree displacement is zero for the prime mover torque at both ends due to the transmission characteristics. However, in the future commercialization and sales promotion where the average 180 degree displacement at both ends is optimal, this supply can demonstrate the net recovery power of 800w at 60w, and the efficiency will be doubled.
差圧:前のシリンダが押込んだ圧力から次にシリンダに押込む最終位置圧力差で、各々の到達圧-前の到達圧で算出される。
最大荷重:上記から単純に圧力差x断面積である(尚、以下のENは単位時間当りにすればエネルギーになるが、ここでは仕事量の略称)。
要するEN: 次のシリンダに押込むに要する1つ前から受けた利得分を含む合計必要仕事量で、各々の最大荷重xST/2で算出される。
利得EN:「気体内は全て同圧」の原理、前のシリンダに与えた押圧は、断面同じ為、常に同押力でピストン間の空気を介し助勢利得仕事分で、前シリンダの要する仕事量ENに対し、各々のST/前STの割合で利得仕事として自動的に受け取る、これが本発明の理論である。
清算EN:必要仕事量-前シリンダから受けた利得分で、各々の正味補給を要する仕事量である(-分は揺動アームに還元入力軽減に貢献する)。
正味供給分の到達力:上記正味補給を要する仕事量分に限る各々シリンダエンド最大押付力で、供給動力源仕様は別紙伝動特性を含め、これを持って決定し、清算ENx2/STで算出される。尚、最終シリンダの1.354 kg/cm2は吐出圧で、要する仕事量は下記特例計算になる。
設計基本方針:設計は1往復/1s、同じ機構を180度変位、水槽両側面に2台を単一駆動源で取付け計4回吐出分を4バケットに等配分する。
吐出位置計算:最終ST28.5の吐出開始位置は11938/1.354(吐出圧)/314.16(断面)=28.06cm、圧縮側から28.5-28.06=0.44cmの位置となる。
吐出に要す仕事量:従って、最終シリンダST28.5の要する仕事量ENは6.49274 (0.44/2+28.06)=183.6147kg-cm、以外計算は上表通りである。
平均浮力:大気圧体積ロッド側は11938x301.59/314.16(断面積比)=11460cc 故、ヘッド側合せた平均は(11938+11460)/2=11699ccから吐出部での平均体積11699/1.354=8640ccこの平均体積は(11699+8640)/2=10169.5cc、1s計4回吐出で1バケット当り平均浮力10.17kgとなる。
回収動力:有効バケット34個、浮力計10.17x34=345.78kg浮揚速度0.4m/sで出力は345.78x0.4=138.3kg-m/s=1.356kw、減速変換効率合せ0.6 0.6x1.356=0.8136kw が推定正味回収出力動力となる。
供給動力:(98.82+102.94)x2=403.52kg-cm/s=4.0352kg-m/s=0.03956kw 供給実効率0.7と推定仮定し0.03956/0.7=0.0565kwである。
入出動力:以上結果から市販電動機・発電機から供給は60w 出力は400x2=800w 従って、推定実効率は800/60=13.33倍となる。
伝動特性:この圧縮機構のフライホィ―ル伝道特性について、
連続運転時はフライホィ―ル伝道特性として、正味供給分の最大到達位置で必要トルクフラホィール軸が全量負担、原動機負荷は零になることに着目、この伝動特性検討結果にて、上記供給動力は実際、尚、軽減される。
運転準備: 水槽に必要量の水を満した後、吐出口上の縦1列全てのバケットに適性量の空気を満たす(発電機無負荷)方法として、
・ 本装置駆動源はブレーキ付きとし、バケット容量に約1/3の余裕があり、本装置規模では最下部バケット1個に浮力15kg分の空気供給可能のため始動する、始動にて水槽中継軸取付けの電磁クラッチ・バケット1個送りセンサ、及び、シリンダエンドセンサでブレーキ付き駆動源とを制動制御、浮揚速度無関係にこれを少々余分に繰返す事で、全て一定所定量にてほぼ平均化される。
・ 以上の制御は、本装置圧縮機構は殆ど連続吐出でシリンダ片道2バケットに等分の為、1回目吐出以外はバケット2箇ずつの断続送りです。
・ 但し、バケットの中心距離が大きくなり1個で始動しない場合、停止位置を調整し、バケットの縁に吐出空気を当て2分配して倍の浮力とする。
注意事項:2組の圧縮装置を搭載して各180度毎に吐出させる際、位相90度変位が一般的と思われるが、中間位置で他方が最大、結果最大は上表正味供給分の到達力の1.5倍になる、対して、180度変位は伝動特性から両端で原動機必要トルクが零となる、最大2組の圧縮装置を組合せると、ヘッド・ロッド側合計の1倍で済み、多少でも両端吐出平均化180度変位が最適となる、今後の商品化販売促進に当り、この供給は60wで正味回収動力800wを実証でき、効率は2桁倍になると考える。 Ultimate pressure: Maximum pressure at the end point position required to push into the next cylinder volume. First volume (11938cc) / each next volume = first ST (38cm) / next ST.
Differential pressure: This is the final position pressure difference that is pushed into the cylinder from the pressure pushed in by the previous cylinder, and is calculated by each ultimate pressure minus the previous ultimate pressure.
Maximum load: From the above, it is simply the pressure difference x cross-sectional area (Note that the following EN becomes energy if per unit time, but here is the abbreviation for work).
Necessary EN: Total required work including the gain received from the previous one to push into the next cylinder, calculated with each maximum load xST / 2.
Gain EN: The principle of “all the pressure in the gas is the same”, because the pressure applied to the previous cylinder has the same cross-section, the amount of work required for the front cylinder is always the same gain as the assist gain work through the air between the pistons. This is the theory of the present invention, which is automatically received as gain work at each ST / pre-ST ratio for EN.
Clearing EN: Necessary work amount-The amount of gain received from the front cylinder, which is the amount of work that requires each net replenishment (-minutes contribute to reducing the reduction input to the swing arm).
Achieving force for net supply: Each cylinder end maximum pressing force limited to the amount of work that requires the above net replenishment. Supply power source specifications, including the separate sheet transmission characteristics, are determined based on this and calculated by Clearing ENx2 / ST The Note that 1.354 kg / cm 2 of the final cylinder is the discharge pressure, and the required amount of work is the following special calculation .
Basic design policy: The design is 1 reciprocation / 1s, the same mechanism is displaced 180 degrees, 2 units are mounted on both sides of the water tank with a single drive source, and the total of 4 discharges are equally distributed to 4 buckets.
Discharge position calculation: The discharge start position of the final ST28.5 is 11938 / 1.354 (discharge pressure) /314.16 (cross section) = 28.06 cm, 28.5-28.06 = 0.44 cm from the compression side.
Work required for discharge: Therefore, the work EN required for the final cylinder ST28.5 is 6.49274 (0.44 / 2 + 28.06) = 183.6147 kg-cm, and the calculation is as shown in the above table.
Average buoyancy: 11938x301.59 / 314.16 (cross-sectional area ratio) = 11460cc on the atmospheric pressure volume rod side, so the average combined on the head side is (11938 + 11460) / 2 = 11699cc, and the average volume at the discharge part 11699 / 1.354 = 8640cc This average volume is (11699 + 8640) /2=10169.5cc, and the average buoyancy per bucket is 10.17kg with a total of 4 discharges per second.
Recovery power: 34 effective buckets, buoyancy meter 10.17x34 = 345.78kg levitation speed 0.4m / s, output 345.78x0.4 = 138.3kg-m / s = 1.356kw, deceleration conversion efficiency combined 0.6 0.6x1.356 = 0.8136 kw is the estimated net recovery output power.
Supply power: (98.82 + 102.94) x2 = 403.52kg-cm / s = 4.0352kg-m / s = 0.03956kw Assuming that the actual supply efficiency is 0.7, 0.03956 / 0.7 = 0.0565kw.
Input / output power: Based on the above results, supply from commercial motors / generators is 60 w. Output is 400 x 2 = 800 w. Therefore, the estimated actual efficiency is 800/60 = 13.33 times.
Transmission characteristics: About the flywheel transmission characteristics of this compression mechanism,
At the time of continuous operation, pay attention to the fact that the flywheel transmission characteristic is that the required torque flagwheel shaft is fully loaded and the prime mover load is zero at the maximum reached position of the net supply. In fact, it is still reduced.
Preparation for operation: After filling the tank with the required amount of water, fill the appropriate amount of air in all the vertical buckets on the outlet (no generator load).
・ The drive source of this equipment is equipped with a brake, and there is a margin of about 1/3 of the bucket capacity. At the scale of this equipment, it starts because it can supply 15 kg of buoyancy to the bottom bucket. Braking control of the attached electromagnetic clutch / bucket single feed sensor and the cylinder end sensor to brake the drive source, and repeating this a little extra regardless of the levitation speed, all are almost averaged at a fixed predetermined amount .
-The above control is an intermittent feed of two buckets except for the first discharge because the compression mechanism of this equipment is almost continuous and equally divided into two buckets in one cylinder path.
-However, if the center distance of the bucket becomes large and it does not start with only one, adjust the stop position and apply the discharged air to the edge of the bucket to distribute it to double the buoyancy.
Note: When two sets of compressors are installed and discharged every 180 degrees, a 90-degree phase displacement seems to be common, but the other is the maximum at the middle position, and the maximum result is the net supply above. The force is 1.5 times the force, whereas the 180 degree displacement is zero for the prime mover torque at both ends due to the transmission characteristics. However, in the future commercialization and sales promotion where the average 180 degree displacement at both ends is optimal, this supply can demonstrate the net recovery power of 800w at 60w, and the efficiency will be doubled.
表8 シリンダ4本セット2組搭載、水深1.34m芯々1mの仕事量及び出入り動力計算書
(シリンダ径φ140断面積ロッド側(142-42)xπ/4=141.372cm2、142xπ/4=153.938 cm2、ストロークは16.6~24の下記組合せ)。 Table 8 Two sets of four cylinders mounted, water depth 1.34m, core 1m work load and power calculation (cylinder diameter φ140 cross section rod side (14 2 -4 2 ) xπ / 4 = 141.372cm 2 , 14 2 xπ / 4 = 153.938 cm 2 , stroke is 16.6 to 24 below combination).
(シリンダ径φ140断面積ロッド側(142-42)xπ/4=141.372cm2、142xπ/4=153.938 cm2、ストロークは16.6~24の下記組合せ)。 Table 8 Two sets of four cylinders mounted, water depth 1.34m, core 1m work load and power calculation (cylinder diameter φ140 cross section rod side (14 2 -4 2 ) xπ / 4 = 141.372cm 2 , 14 2 xπ / 4 = 153.938 cm 2 , stroke is 16.6 to 24 below combination).
基本方針:設計は1往復/1s、同じ圧縮機構2組を180度変位、水槽両側に駆動源共通単一で取付け計4回吐出分を4バケットに配分する。
吐出位置:ST14.8の吐出位置2555.4/1.134/153.938=14.64cm、故に圧縮側から14.8-14.64=0.16cmで吐出開始する、この値は一見少ないが、吐出圧との差1.134-1.123784=0.0102 kg/cm2で水柱差換算10.2cmに相当し、水槽上面拡幅対策にて水面管理は可能としており、最終シリンダに入らず通過吐出(図4参照)することはなく、安全確実に機能する。
吐出仕事:最終シリンダの供給ENは1.905506x(0.16/2+14.64)=28.049kg-cm(以外は表記通りの計算となる)
計算供給:33.6657+30.9146=64.58326kg-cm/s=0.65483kgm/sの2組で0.65483x2=1.30966 kgm/s=0.01284kw=12.84w
計算出力:水槽大気圧側(2555.4+2346.8)/2=2451.1cc、正確には吐出から下側バケットで受取る位置の深さは1.18mであり、この平均体積は2451.1/1.118=2192.4cc1バケット平均浮力は、(2.4511+2.1924)/2=2.322kg有効バケット数12個浮力総計2.322x12=27.86kg浮揚速度0.4m/s出力は27.86x0.4=11.144kg-m/s=0.10925kw=109.25wである。
実効率:供給は12.84/0.7=18.34w、出力109.25x0.6=65.55w、この結果から、一般的には該当市販電動機から25w、発電機は65w、実効率は、65/25=2.6倍となる。
伝動特性:圧縮限界両端において、揺動アームからの反力を、フライホィール軸がその全てを受け持ち電動機に負荷が掛からないこと等を考慮すると、電動機は6wでよく、実効率は65/6=10.83倍となる。 Basic policy: The design is 1 reciprocation / 1s, the same two compression mechanisms are displaced 180 degrees, and a single drive source is installed on both sides of the water tank.
Discharge position: Discharge position of ST14.8 2555.4 / 1.134 / 153.938 = 14.64cm, so the discharge starts at 14.8-14.64 = 0.16cm from the compression side, this value is seemingly small, but the difference from the discharge pressure 1.134-1.123784 = 0.0102 It corresponds to 10.2 cm in terms of water column difference at kg / cm 2 , and the water level can be controlled by measures to widen the upper surface of the water tank. It does not enter the final cylinder and does not pass through (see Fig. 4) and functions safely.
Discharge work: Supply EN of final cylinder is 1.905506x (0.16 / 2 + 14.64) = 28.049kg-cm (otherwise calculation is as shown)
Calculated supply: 33.6657 + 30.9146 = 64.58326kg-cm / s = 0.65483kgm / s, 0.65483x2 = 1.30966 kgm / s = 0.01284kw = 12.84w
Calculated output: Water tank atmospheric pressure side (2555.4 + 2346.8) /2=2451.1cc, precisely the depth of the position received from the lower bucket from the discharge is 1.18m, this average volume is 2451.1 / 1.118 = 2192.4cc1 bucket average Buoyancy is (2.4511 + 2.1924) /2=2.322kg Number ofeffective buckets 12 Total buoyancy 2.322x12 = 27.86kg Lifting speed 0.4m / s Output 27.86x0.4 = 11.144kg-m / s = 0.10925kw = 109.25w It is.
Actual efficiency: supply 12.84 / 0.7 = 18.34w, output 109.25x0.6 = 65.55w, from this result, generally 25w from the commercial motor, 65w generator, actual efficiency 65/25 = 2.6 times It becomes.
Transmission characteristics: Considering the reaction force from the swing arm at both ends of the compression limit and the fact that the flywheel shaft is responsible for all of it and the motor is not loaded, the motor can be 6w and the actual efficiency is 65/6 = 10.83 times.
吐出位置:ST14.8の吐出位置2555.4/1.134/153.938=14.64cm、故に圧縮側から14.8-14.64=0.16cmで吐出開始する、この値は一見少ないが、吐出圧との差1.134-1.123784=0.0102 kg/cm2で水柱差換算10.2cmに相当し、水槽上面拡幅対策にて水面管理は可能としており、最終シリンダに入らず通過吐出(図4参照)することはなく、安全確実に機能する。
吐出仕事:最終シリンダの供給ENは1.905506x(0.16/2+14.64)=28.049kg-cm(以外は表記通りの計算となる)
計算供給:33.6657+30.9146=64.58326kg-cm/s=0.65483kgm/sの2組で0.65483x2=1.30966 kgm/s=0.01284kw=12.84w
計算出力:水槽大気圧側(2555.4+2346.8)/2=2451.1cc、正確には吐出から下側バケットで受取る位置の深さは1.18mであり、この平均体積は2451.1/1.118=2192.4cc1バケット平均浮力は、(2.4511+2.1924)/2=2.322kg有効バケット数12個浮力総計2.322x12=27.86kg浮揚速度0.4m/s出力は27.86x0.4=11.144kg-m/s=0.10925kw=109.25wである。
実効率:供給は12.84/0.7=18.34w、出力109.25x0.6=65.55w、この結果から、一般的には該当市販電動機から25w、発電機は65w、実効率は、65/25=2.6倍となる。
伝動特性:圧縮限界両端において、揺動アームからの反力を、フライホィール軸がその全てを受け持ち電動機に負荷が掛からないこと等を考慮すると、電動機は6wでよく、実効率は65/6=10.83倍となる。 Basic policy: The design is 1 reciprocation / 1s, the same two compression mechanisms are displaced 180 degrees, and a single drive source is installed on both sides of the water tank.
Discharge position: Discharge position of ST14.8 2555.4 / 1.134 / 153.938 = 14.64cm, so the discharge starts at 14.8-14.64 = 0.16cm from the compression side, this value is seemingly small, but the difference from the discharge pressure 1.134-1.123784 = 0.0102 It corresponds to 10.2 cm in terms of water column difference at kg / cm 2 , and the water level can be controlled by measures to widen the upper surface of the water tank. It does not enter the final cylinder and does not pass through (see Fig. 4) and functions safely.
Discharge work: Supply EN of final cylinder is 1.905506x (0.16 / 2 + 14.64) = 28.049kg-cm (otherwise calculation is as shown)
Calculated supply: 33.6657 + 30.9146 = 64.58326kg-cm / s = 0.65483kgm / s, 0.65483x2 = 1.30966 kgm / s = 0.01284kw = 12.84w
Calculated output: Water tank atmospheric pressure side (2555.4 + 2346.8) /2=2451.1cc, precisely the depth of the position received from the lower bucket from the discharge is 1.18m, this average volume is 2451.1 / 1.118 = 2192.4cc1 bucket average Buoyancy is (2.4511 + 2.1924) /2=2.322kg Number of
Actual efficiency: supply 12.84 / 0.7 = 18.34w, output 109.25x0.6 = 65.55w, from this result, generally 25w from the commercial motor, 65w generator, actual efficiency 65/25 = 2.6 times It becomes.
Transmission characteristics: Considering the reaction force from the swing arm at both ends of the compression limit and the fact that the flywheel shaft is responsible for all of it and the motor is not loaded, the motor can be 6w and the actual efficiency is 65/6 = 10.83 times.
表9 圧縮空気回帰式発電装置シリンダ吸引方式(図11を表示整理した)
シリンダ4本セットの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略である)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26~22の4本組合せ)。 Table 9 Compressed air return type generator cylinder suction system (Figure 11 is arranged and arranged)
Work load and entry / exit power calculation for the 4-cylinder set (numbers not classified in the table indicate the head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,head side 32 2 xπ / 4 = 804.25 cm 2 , rod side (32 2 -5.6 2 ) xπ / 4 = 779.62 cm 2 , ST is a combination of 26 to 22).
シリンダ4本セットの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略である)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26~22の4本組合せ)。 Table 9 Compressed air return type generator cylinder suction system (Figure 11 is arranged and arranged)
Work load and entry / exit power calculation for the 4-cylinder set (numbers not classified in the table indicate the head side, EN stands for work load)
(Cylinder diameter φ320 cross-sectional area,
基本方針及び説明
1. この設計の前提は、水槽を用いない、1往復/1s2回切替える(本項計算手法は全て吸引方式を採用する)。
2. 最下流シリンダユニットは出力専用、揺動アームに結合しない、等速化は発電機側フライホイールで確保する。
3. この場合でも#4シリンダは#1シリンダの吸引により、#4シリンダにて#3シリンダに対する吸引は、揺動詞アーム結合と同等の吸引力が保持することができる。
4. #1シリンダの#4シリンダからの吸引効果は大気圧吸引と異なり始め1.181818 kg/cm2の圧力があり、終点で1に戻る現象は正しいが、力の不要箇所で最大、必要な所で1に戻る、そして、到達圧40.21kgの三角分は無仕事空気移動で無関係ながら、交点Aまではその必要とする仕事を助勢する効果がある、これを超える上部分は揺動アーム拘束で速度上昇もないので、動力として再生せず無駄な力となる、補給を要する仕事は助勢、三角全てに対する交点A以降の面積比は0.39、これを上記表#1シリンダの下段にて計算した。
5. この結果、#4シリンダの外部出力動力はヘッド側2549.635kg-cmで、補給分は82.1297 kg-cm、よって、計算効率は2549.635/82.1297=31.03倍である。
6. これは物理計算上1sサイクルでの出力は2549.635+2549.635x779.62/804.25(断面積割合)=5021.2kg-cm/s=50.212 kg-m/s=492w供給は79.6145+82.1297=161.744kg-cm/s=1.6174 kg-m/s=15.868wとなる。
7. 以上の計算は、「吸引方式」で行っているが、この無仕事空気移動効果は極めて高いことを証明している。 Basic policy and explanation
1. The premise of this design is to switch between 1 reciprocation / 1 s 2 times without using a water tank (all of the calculation methods in this section adopt the suction method).
2. The most downstream cylinder unit is exclusively for output, not connected to the swing arm, and constant speed is ensured by the generator flywheel.
3. Even in this case, the # 4 cylinder can be sucked by the # 1 cylinder, and the # 4 cylinder can suck the # 3 cylinder with the same suction force as the swing arm combination.
4. The suction effect of the # 1 cylinder from the # 4 cylinder begins with a pressure of 1.181818 kg / cm 2 unlike the atmospheric pressure suction, and the phenomenon of returning to 1 at the end point is correct, but the maximum and necessary places where force is unnecessary It returns to 1, and the triangular part of the ultimate pressure of 40.21kg is irrelevant to no-work air movement, but it has the effect of assisting the necessary work up to the intersection A. The upper part beyond this is restricted by the swing arm Since there was no increase in speed, it was a wasteful force that was not regenerated as power. The work requiring replenishment was assisted, and the area ratio after intersection A to all triangles was 0.39, which was calculated in the lower part of the above table # 1 cylinder.
5. As a result, the external output power of the # 4 cylinder is 2549.635 kg-cm on the head side and the replenishment is 82.1297 kg-cm, so the calculation efficiency is 2549.635 / 82.1297 = 31.03 times.
6. This is because the output in 1s cycle is 2549.635 + 2549.635 × 779.62 / 804.25 (cross-sectional area ratio) = 5021.2kg-cm / s = 50.212 kg-m / s = 492w supply is 79.6145 + 82.1297 = 161.744kg -cm / s = 1.6174 kg-m / s = 15.868w.
7. The above calculation is performed by the “suction method”, and this non-working air movement effect is proved to be extremely high.
1. この設計の前提は、水槽を用いない、1往復/1s2回切替える(本項計算手法は全て吸引方式を採用する)。
2. 最下流シリンダユニットは出力専用、揺動アームに結合しない、等速化は発電機側フライホイールで確保する。
3. この場合でも#4シリンダは#1シリンダの吸引により、#4シリンダにて#3シリンダに対する吸引は、揺動詞アーム結合と同等の吸引力が保持することができる。
4. #1シリンダの#4シリンダからの吸引効果は大気圧吸引と異なり始め1.181818 kg/cm2の圧力があり、終点で1に戻る現象は正しいが、力の不要箇所で最大、必要な所で1に戻る、そして、到達圧40.21kgの三角分は無仕事空気移動で無関係ながら、交点Aまではその必要とする仕事を助勢する効果がある、これを超える上部分は揺動アーム拘束で速度上昇もないので、動力として再生せず無駄な力となる、補給を要する仕事は助勢、三角全てに対する交点A以降の面積比は0.39、これを上記表#1シリンダの下段にて計算した。
5. この結果、#4シリンダの外部出力動力はヘッド側2549.635kg-cmで、補給分は82.1297 kg-cm、よって、計算効率は2549.635/82.1297=31.03倍である。
6. これは物理計算上1sサイクルでの出力は2549.635+2549.635x779.62/804.25(断面積割合)=5021.2kg-cm/s=50.212 kg-m/s=492w供給は79.6145+82.1297=161.744kg-cm/s=1.6174 kg-m/s=15.868wとなる。
7. 以上の計算は、「吸引方式」で行っているが、この無仕事空気移動効果は極めて高いことを証明している。 Basic policy and explanation
1. The premise of this design is to switch between 1 reciprocation / 1 s 2 times without using a water tank (all of the calculation methods in this section adopt the suction method).
2. The most downstream cylinder unit is exclusively for output, not connected to the swing arm, and constant speed is ensured by the generator flywheel.
3. Even in this case, the # 4 cylinder can be sucked by the # 1 cylinder, and the # 4 cylinder can suck the # 3 cylinder with the same suction force as the swing arm combination.
4. The suction effect of the # 1 cylinder from the # 4 cylinder begins with a pressure of 1.181818 kg / cm 2 unlike the atmospheric pressure suction, and the phenomenon of returning to 1 at the end point is correct, but the maximum and necessary places where force is unnecessary It returns to 1, and the triangular part of the ultimate pressure of 40.21kg is irrelevant to no-work air movement, but it has the effect of assisting the necessary work up to the intersection A. The upper part beyond this is restricted by the swing arm Since there was no increase in speed, it was a wasteful force that was not regenerated as power. The work requiring replenishment was assisted, and the area ratio after intersection A to all triangles was 0.39, which was calculated in the lower part of the above table # 1 cylinder.
5. As a result, the external output power of the # 4 cylinder is 2549.635 kg-cm on the head side and the replenishment is 82.1297 kg-cm, so the calculation efficiency is 2549.635 / 82.1297 = 31.03 times.
6. This is because the output in 1s cycle is 2549.635 + 2549.635 × 779.62 / 804.25 (cross-sectional area ratio) = 5021.2kg-cm / s = 50.212 kg-m / s = 492w supply is 79.6145 + 82.1297 = 161.744kg -cm / s = 1.6174 kg-m / s = 15.868w.
7. The above calculation is performed by the “suction method”, and this non-working air movement effect is proved to be extremely high.
表10は、圧縮空気回帰式発電装置シリンダ吸引方式の結果を示す。
Table 10 shows the results of the compressed air recursive generator cylinder suction method.
シリンダ2本セットの仕事量及び出入り動力計算書(表中区分ない数値はヘッド側を示し、ENは仕事量の略)
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26・22の2本組合せ)。 Calculation of work and entry / exit power of 2 cylinders set (Numerical values not shown in the table indicate head side, EN stands for work)
(Cylinder diameter φ320 cross-sectional area,head side 32 2 xπ / 4 = 804.25 cm 2 , rod side (32 2 -5.6 2 ) xπ / 4 = 779.62 cm 2 , ST is a combination of 26 and 22).
(シリンダ径φ320断面積、ヘッド側322 xπ/4=804.25 cm2、ロッド側(322-5.62)xπ/4=779.62 cm2、STは26・22の2本組合せ)。 Calculation of work and entry / exit power of 2 cylinders set (Numerical values not shown in the table indicate head side, EN stands for work)
(Cylinder diameter φ320 cross-sectional area,
基本方針及び説明
1. この設計の前提は、水槽を用いない、1往復/1s2回切替える(本項計算手法は全て図4・13吸引方式を採用している)。
2. 最下流シリンダロッドは出力専用、揺動アームに結合しない、等速化は発電機側フライホイールで確保、供給側も同機構使用可能となる。
3. この場合でも#4シリンダは#1シリンダの吸引により、#4シリンダにて#3シリンダに対する吸引は、揺動詞アーム結合と同等の吸引力が保持できる。
4. #1シリンダの#4シリンダからの吸引効果は大気圧吸引と異なり始め1.181818 kg/cm2の圧力があり、終点で1に戻る現象は正しいが、力の不要箇所で最大、必要な所で1に戻る。到達圧123.71kgの三角分は無仕事空気移動で無関係ながら、交点Aまではその必要とする仕事を助勢する効果がある、これを超える上部分は揺動アーム拘束で速度上昇もないので、動力として再生せず無駄な力となる、補給を要する仕事は助勢22.52の三角全てに対する交点A以降の面積比は0.73、これを上記表の#1シリンダの下段にて計算した。
5. この結果、#4シリンダの外部出力動力はヘッド側1608.519kg-cmで、補給分は213.71 kg-cm、よって、計算効率は1608.519/213.71=7.53倍となる。
6. これは物理計算上1sサイクルでの出力は1608.519(1+779.62/804.25(断面積割合)=3167.8kg-cm/s=31.678 kg-m/s=310.57w、供給は213.71x
(1+779.62/804.25)=420.88kg-cm/s=4.2088 kg-m/s=41.263wとなる。
・ 以上の計算は、「吸引方式」で行っており、この無仕事空気移動効果は極めて高いことを証明している。
8. シリンダ1本の場合も参考までに示している。 Basic policy and explanation
1. The premise of this design is to switch between 1 reciprocation / 1 s 2 times without using a water tank (all the calculation methods in this section adopt the suction method in Fig. 4-13).
2. The most downstream cylinder rod is for output only, not connected to the swing arm, constant speed is secured by the generator flywheel, and the same mechanism can be used on the supply side.
3. Even in this case, the # 4 cylinder can be sucked by the # 1 cylinder, and the # 4 cylinder can suck the # 3 cylinder with the same suction force as the swing arm combination.
4. The suction effect of the # 1 cylinder from the # 4 cylinder begins with a pressure of 1.181818 kg / cm 2 unlike the atmospheric pressure suction, and the phenomenon of returning to 1 at the end point is correct, but the maximum and necessary places where force is unnecessary Return to 1. The triangular portion of the ultimate pressure of 123.71kg is irrelevant to no-work air movement, but has the effect of assisting the necessary work up to the intersection A. Since the upper part beyond this is the swinging arm restraint, there is no increase in speed. As for the work requiring replenishment that would not be regenerated, the area ratio after the intersection A with respect to all triangles with the assisting 22.52 was 0.73, and this was calculated in the lower part of the # 1 cylinder in the above table.
5. As a result, the external output power of the # 4 cylinder is 1608.519 kg-cm on the head side and the replenishment is 213.71 kg-cm, so the calculation efficiency is 1608.519 / 213.71 = 7.53 times.
6. This is because the output in 1s cycle is 1608.519 (1 + 779.62 / 804.25 (cross-sectional area ratio) = 3167.8kg-cm / s = 31.678 kg-m / s = 310.57w, supply is 213.71x
(1 + 779.62 / 804.25) = 420.88kg-cm / s = 4.2088 kg-m / s = 41.263w.
・ The above calculation is performed by the “suction method”, and this non-working air movement effect is proved to be extremely high.
8. The case of one cylinder is also shown for reference.
1. この設計の前提は、水槽を用いない、1往復/1s2回切替える(本項計算手法は全て図4・13吸引方式を採用している)。
2. 最下流シリンダロッドは出力専用、揺動アームに結合しない、等速化は発電機側フライホイールで確保、供給側も同機構使用可能となる。
3. この場合でも#4シリンダは#1シリンダの吸引により、#4シリンダにて#3シリンダに対する吸引は、揺動詞アーム結合と同等の吸引力が保持できる。
4. #1シリンダの#4シリンダからの吸引効果は大気圧吸引と異なり始め1.181818 kg/cm2の圧力があり、終点で1に戻る現象は正しいが、力の不要箇所で最大、必要な所で1に戻る。到達圧123.71kgの三角分は無仕事空気移動で無関係ながら、交点Aまではその必要とする仕事を助勢する効果がある、これを超える上部分は揺動アーム拘束で速度上昇もないので、動力として再生せず無駄な力となる、補給を要する仕事は助勢22.52の三角全てに対する交点A以降の面積比は0.73、これを上記表の#1シリンダの下段にて計算した。
5. この結果、#4シリンダの外部出力動力はヘッド側1608.519kg-cmで、補給分は213.71 kg-cm、よって、計算効率は1608.519/213.71=7.53倍となる。
6. これは物理計算上1sサイクルでの出力は1608.519(1+779.62/804.25(断面積割合)=3167.8kg-cm/s=31.678 kg-m/s=310.57w、供給は213.71x
(1+779.62/804.25)=420.88kg-cm/s=4.2088 kg-m/s=41.263wとなる。
・ 以上の計算は、「吸引方式」で行っており、この無仕事空気移動効果は極めて高いことを証明している。
8. シリンダ1本の場合も参考までに示している。 Basic policy and explanation
1. The premise of this design is to switch between 1 reciprocation / 1 s 2 times without using a water tank (all the calculation methods in this section adopt the suction method in Fig. 4-13).
2. The most downstream cylinder rod is for output only, not connected to the swing arm, constant speed is secured by the generator flywheel, and the same mechanism can be used on the supply side.
3. Even in this case, the # 4 cylinder can be sucked by the # 1 cylinder, and the # 4 cylinder can suck the # 3 cylinder with the same suction force as the swing arm combination.
4. The suction effect of the # 1 cylinder from the # 4 cylinder begins with a pressure of 1.181818 kg / cm 2 unlike the atmospheric pressure suction, and the phenomenon of returning to 1 at the end point is correct, but the maximum and necessary places where force is unnecessary Return to 1. The triangular portion of the ultimate pressure of 123.71kg is irrelevant to no-work air movement, but has the effect of assisting the necessary work up to the intersection A. Since the upper part beyond this is the swinging arm restraint, there is no increase in speed. As for the work requiring replenishment that would not be regenerated, the area ratio after the intersection A with respect to all triangles with the assisting 22.52 was 0.73, and this was calculated in the lower part of the # 1 cylinder in the above table.
5. As a result, the external output power of the # 4 cylinder is 1608.519 kg-cm on the head side and the replenishment is 213.71 kg-cm, so the calculation efficiency is 1608.519 / 213.71 = 7.53 times.
6. This is because the output in 1s cycle is 1608.519 (1 + 779.62 / 804.25 (cross-sectional area ratio) = 3167.8kg-cm / s = 31.678 kg-m / s = 310.57w, supply is 213.71x
(1 + 779.62 / 804.25) = 420.88kg-cm / s = 4.2088 kg-m / s = 41.263w.
・ The above calculation is performed by the “suction method”, and this non-working air movement effect is proved to be extremely high.
8. The case of one cylinder is also shown for reference.
表11 シリンダ2本セット水深0.911m芯々0.5mの仕事量及び出入り動力計算書(基礎データ検証用)
(Wロッドシリンダ径φ100断面積(102-2.52)xπ/4=73.63 cm2、STは16.6と15.6の2本組合せ)。 Table 11 Two cylinders set depth 0.911m core 0.5m work load and power calculation (for basic data verification)
(W rod cylinder diameter φ100 cross section (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , ST is 16.6 and 15.6 in combination)
(Wロッドシリンダ径φ100断面積(102-2.52)xπ/4=73.63 cm2、STは16.6と15.6の2本組合せ)。 Table 11 Two cylinders set depth 0.911m core 0.5m work load and power calculation (for basic data verification)
(W rod cylinder diameter φ100 cross section (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , ST is 16.6 and 15.6 in combination)
吐出位置: 1222.26/1.0911/73.63=15.21cmで吐出開始、 15.6-15.21=0.39cm、供給NEは1.98782 x(0.39/2+15.21)=30.62237kg-cm
供給:32.9826x2=65.9652kg-cm/s=0.659652kg-m/s=6.467w(下記出力を含め理論計算値の実検検証が本装置の目的である)。
出力: 吐出体積部、1222.26/1.0911=1120.21cc、平均は(1222.26+1120.21)/2=1171.24cc、この吐出2回/1sを浮揚速度0.4m/sゆえ、4バケットに配分すると、1172.24x2/4=586.12cc、この平均浮力は0.5861kg、有効バケット数が6個故、合計0.586x6=3.516kgとなり、実験検証作業は人手対応可能範囲、理論以外の基礎資料の全てを整えることができ、先々の高精度設計に寄与する。速度0.4m/sでの出力は3.516x0.4=1.2606kg-m/s=12.359w、計算効率は12.359/6.467=1.91倍となる。 Discharge position: 1222.26 / 1.0911 / 73.63 = 15.21cm, discharge starts, 15.6-15.21 = 0.39cm, supply NE is 1.988782 x (0.39 / 2 + 15.21) = 30.62237kg-cm
Supply: 32.9826x2 = 65.9652kg-cm / s = 0.659652kg-m / s = 6.467w (The purpose of this device is to verify the theoretical calculation including the following output).
Output: Discharge volume, 1222.26 / 1.0911 = 1120.21cc, the average is (1222.26 + 1120.21) /2=1171.24cc, this discharge 2 times / 1s because the levitation speed is 0.4m / s, it is 1172.24x2 / 4 = 586.12cc, the average buoyancy is 0.5861kg, and the number of effective buckets is 6, so the total is 0.586x6 = 3.516kg, and the experiment verification work can arrange all the basic materials other than the theory that can be handled manually, Contributes to high precision design ahead. The output at a speed of 0.4 m / s is 3.516x0.4 = 1.2606kg-m / s = 12.359w, and the calculation efficiency is 12.359 / 6.467 = 1.91 times.
供給:32.9826x2=65.9652kg-cm/s=0.659652kg-m/s=6.467w(下記出力を含め理論計算値の実検検証が本装置の目的である)。
出力: 吐出体積部、1222.26/1.0911=1120.21cc、平均は(1222.26+1120.21)/2=1171.24cc、この吐出2回/1sを浮揚速度0.4m/sゆえ、4バケットに配分すると、1172.24x2/4=586.12cc、この平均浮力は0.5861kg、有効バケット数が6個故、合計0.586x6=3.516kgとなり、実験検証作業は人手対応可能範囲、理論以外の基礎資料の全てを整えることができ、先々の高精度設計に寄与する。速度0.4m/sでの出力は3.516x0.4=1.2606kg-m/s=12.359w、計算効率は12.359/6.467=1.91倍となる。 Discharge position: 1222.26 / 1.0911 / 73.63 = 15.21cm, discharge starts, 15.6-15.21 = 0.39cm, supply NE is 1.988782 x (0.39 / 2 + 15.21) = 30.62237kg-cm
Supply: 32.9826x2 = 65.9652kg-cm / s = 0.659652kg-m / s = 6.467w (The purpose of this device is to verify the theoretical calculation including the following output).
Output: Discharge volume, 1222.26 / 1.0911 = 1120.21cc, the average is (1222.26 + 1120.21) /2=1171.24cc, this discharge 2 times / 1s because the levitation speed is 0.4m / s, it is 1172.24x2 / 4 = 586.12cc, the average buoyancy is 0.5861kg, and the number of effective buckets is 6, so the total is 0.586x6 = 3.516kg, and the experiment verification work can arrange all the basic materials other than the theory that can be handled manually, Contributes to high precision design ahead. The output at a speed of 0.4 m / s is 3.516x0.4 = 1.2606kg-m / s = 12.359w, and the calculation efficiency is 12.359 / 6.467 = 1.91 times.
これを1本シリンダで実行の場合、出力は同じで、供給動力は下表の結果となる。
場合 If this is executed with one cylinder, the output will be the same and the power supply will be as shown in the table below.
吐出位置:1222.26/1.0911/73.63=15.21cmで吐出開始、16.6-15.21=1.39cm、 供給NEは6.70769 x(1.39/2+15.21)=106.68581kg-cm
供給出力:出力は同上の上、供給は106.6858x2=213.3716kg-cm/s=2.1337kg-m/s=20.9186w、効率は12.359/20.9186=0.59倍。 Discharge position: Discharge starts at 1222.26 / 1.0911 / 73.63 = 15.21cm, 16.6-15.21 = 1.39cm, supply NE is 6.70769 x (1.39 / 2 + 15.21) = 106.68581kg-cm
Supply output: Same as above, output is 106.6858x2 = 213.3716kg-cm / s = 2.1337kg-m / s = 20.9186w, efficiency is 12.359 / 20.9186 = 0.59 times.
供給出力:出力は同上の上、供給は106.6858x2=213.3716kg-cm/s=2.1337kg-m/s=20.9186w、効率は12.359/20.9186=0.59倍。 Discharge position: Discharge starts at 1222.26 / 1.0911 / 73.63 = 15.21cm, 16.6-15.21 = 1.39cm, supply NE is 6.70769 x (1.39 / 2 + 15.21) = 106.68581kg-cm
Supply output: Same as above, output is 106.6858x2 = 213.3716kg-cm / s = 2.1337kg-m / s = 20.9186w, efficiency is 12.359 / 20.9186 = 0.59 times.
表13 シリンダ2本セット1本駆動方式の仕事量及び出入り動力計算書(基礎データ検証用試作機)
シリンダ径φ100断面積ヘッド側78.54 cm2、ロッド側(102-2.52)xπ/4=73.63 cm2、STは16.6と15.6の2本組合せ。 Table 13 Calculation of work load and power in / out of cylinder 2 set (1 prototype)
Cylinder diameter φ100 cross section Head side 78.54 cm 2 , Rod side (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , ST is 16.6 and 15.6 in combination.
シリンダ径φ100断面積ヘッド側78.54 cm2、ロッド側(102-2.52)xπ/4=73.63 cm2、STは16.6と15.6の2本組合せ。 Table 13 Calculation of work load and power in / out of cylinder 2 set (1 prototype)
Cylinder diameter φ100 cross section Head side 78.54 cm 2 , Rod side (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , ST is 16.6 and 15.6 in combination.
出入り仕事量について1サイクル/sにて計算する。
供給合計:20.8936+19.5874=40.481kg-cm/s=0.40481kg-m/s=3.9687w(下記出力を含め理論計算値の実検検証が本装置の目的である)。
出力合計:76.085 kg-cm/s=0.76085 kg-m/s=7.4593w、計算効率は7.4593/3.9687=1.88倍となる。但し、この試作機には発電機側フライホィールがないので平均化効果はないと思われる。 Calculate the work in and out at 1 cycle / s.
Total supply: 20.8936 + 19.5874 = 40.481kg-cm / s = 0.40481kg-m / s = 3.9687w (The purpose of this device is to verify the theoretical calculation values including the following output).
Total output: 76.085 kg-cm / s = 0.60885 kg-m / s = 7.4593w, the calculation efficiency is 7.4593 / 3.9687 = 1.88 times. However, since this prototype does not have a generator-side flywheel, it does not seem to have an averaging effect .
供給合計:20.8936+19.5874=40.481kg-cm/s=0.40481kg-m/s=3.9687w(下記出力を含め理論計算値の実検検証が本装置の目的である)。
出力合計:76.085 kg-cm/s=0.76085 kg-m/s=7.4593w、計算効率は7.4593/3.9687=1.88倍となる。但し、この試作機には発電機側フライホィールがないので平均化効果はないと思われる。 Calculate the work in and out at 1 cycle / s.
Total supply: 20.8936 + 19.5874 = 40.481kg-cm / s = 0.40481kg-m / s = 3.9687w (The purpose of this device is to verify the theoretical calculation values including the following output).
Total output: 76.085 kg-cm / s = 0.60885 kg-m / s = 7.4593w, the calculation efficiency is 7.4593 / 3.9687 = 1.88 times. However, since this prototype does not have a generator-side flywheel, it does not seem to have an averaging effect .
検証実験手順
検証実験はシリンダ2本で、2本目は出力専用と揺動アームに結合しないので、出力は1本目そのまま0~2.505 kgまで変化する。
この出力をフライホィール各回転角度毎に出力シリンダ位置で計測すると、ヘッド側2.505kgロッド側2.349 kgになる(具体的計測はロッドブロック取付用M6ボルトでFBなど共締め横に振る等してシリンダに当たらないよう凧糸を掛け、滑車を介して錘を垂らす)。 Verification experiment procedure The verification experiment is performed with two cylinders, and the second output is not connected to the swing arm, and the output varies from 0 to 2.505 kg.
When this output is measured at the output cylinder position for each rotation angle of the flywheel, it becomes 2.349 kg on the head side and 2.349 kg on the rod side (specifically, the cylinder is measured by shaking sideways with M6 bolts for rod block mounting together with FB etc.) Hang the string so that it does not hit the ball and hang the weight through the pulley).
検証実験はシリンダ2本で、2本目は出力専用と揺動アームに結合しないので、出力は1本目そのまま0~2.505 kgまで変化する。
この出力をフライホィール各回転角度毎に出力シリンダ位置で計測すると、ヘッド側2.505kgロッド側2.349 kgになる(具体的計測はロッドブロック取付用M6ボルトでFBなど共締め横に振る等してシリンダに当たらないよう凧糸を掛け、滑車を介して錘を垂らす)。 Verification experiment procedure The verification experiment is performed with two cylinders, and the second output is not connected to the swing arm, and the output varies from 0 to 2.505 kg.
When this output is measured at the output cylinder position for each rotation angle of the flywheel, it becomes 2.349 kg on the head side and 2.349 kg on the rod side (specifically, the cylinder is measured by shaking sideways with M6 bolts for rod block mounting together with FB etc.) Hang the string so that it does not hit the ball and hang the weight through the pulley).
この計測は単純ですが、実効率について、ここまでの推定の域を脱すると共に、現象掌握確認できる、極めて重要な基礎固め実験である。
This measurement is simple, but it is an extremely important foundation consolidation experiment that can be used to confirm the grasp of the phenomenon while taking the actual efficiency out of the range of estimation so far.
この検証実験装置には、発電機を用いていない。従って、発電機側フライホイールも存在しないので、出力荷重平均化連続運転をすることができるが、定トルク減速モータ25w2000rpmを用い、2000x3/25=240rpm(3w)にて240/7.5=32rpmこれをスプロケット増速32x32/17(実装スプロケット歯数)=60.23rpm(実用装置は60rpmを超えない)で連続運転実験し、振動騒音・逆止弁クラッキング対策機能効果、低摺動抵抗グリス・LMガイド効果など体感計測する。
このモータ回転数を160rpmにすれば2wとなりますが、100rpm以下は回転不安定となり不可能であった。 This verification experiment apparatus does not use a generator. Therefore, since there is no generator-side flywheel, the output load averaging continuous operation can be performed. However, using a constant torque reduction motor 25w2000rpm, 240 / 7.5 = 32rpm at 2000x3 / 25 = 240rpm (3w) Sprocket acceleration 32 x 32/17 (number of mounted sprocket teeth) = 60.23 rpm (practical device does not exceed 60 rpm), continuous operation experiment, vibration noise, check valve cracking countermeasure effect, low sliding resistance grease, LM guide effect Measure bodily feelings
If this motor rotation speed is set to 160 rpm, it becomes 2 w, but rotation below 100 rpm is unstable and impossible.
このモータ回転数を160rpmにすれば2wとなりますが、100rpm以下は回転不安定となり不可能であった。 This verification experiment apparatus does not use a generator. Therefore, since there is no generator-side flywheel, the output load averaging continuous operation can be performed. However, using a constant torque reduction motor 25w2000rpm, 240 / 7.5 = 32rpm at 2000x3 / 25 = 240rpm (3w) Sprocket acceleration 32 x 32/17 (number of mounted sprocket teeth) = 60.23 rpm (practical device does not exceed 60 rpm), continuous operation experiment, vibration noise, check valve cracking countermeasure effect, low sliding resistance grease, LM guide effect Measure bodily feelings
If this motor rotation speed is set to 160 rpm, it becomes 2 w, but rotation below 100 rpm is unstable and impossible.
表14 シリンダ2本セット1本駆動方式の仕事量及び出入り動力計算書(基礎データ検証用試作機)
シリンダ径φ100断面積ヘッド側78.54 cm2、ロッド側(102-2.52)xπ/4=73.63 cm2、STは16.6と15.6の2本組合せ。 Table 14 Calculation of workload and power in and out of two cylinders, single drive system (prototype for basic data verification)
Cylinder diameter φ100 cross section Head side 78.54 cm 2 , Rod side (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , ST is 16.6 and 15.6 in combination.
シリンダ径φ100断面積ヘッド側78.54 cm2、ロッド側(102-2.52)xπ/4=73.63 cm2、STは16.6と15.6の2本組合せ。 Table 14 Calculation of workload and power in and out of two cylinders, single drive system (prototype for basic data verification)
Cylinder diameter φ100 cross section Head side 78.54 cm 2 , Rod side (10 2 -2.5 2 ) xπ / 4 = 73.63 cm 2 , ST is 16.6 and 15.6 in combination.
本件の基本は、押込方式であり、#1シリンダの押込みシリンダが複数の場合の利得相当分で#2シリンダから出力する、これを整理したものが上表で、以下これを1サイクル/sにて計算する。
供給合計: 41.7873+39.1749=80.9622kg-cm/s=0.809622kg-m/s=7.9375w(下記出力を含め理論計算値の実検検証が本装置の目的である)。
出力合計: 39.27+36.815(断面積比)=76.085 kg-cm/s=0.76085 kg-m/s=7.459w、計算効率は7.459/7.9375=0.94倍となる。 The basics of this case are the push-in method. Output from the # 2 cylinder is equivalent to the gain equivalent when there are multiple push-in cylinders of the # 1 cylinder. To calculate.
Total supply: 41.7873 + 39.1749 = 80.9622kg-cm / s = 0.809622kg-m / s = 7.9375w (The purpose of this device is to verify the theoretical calculation including the following output).
Total output: 39.27 + 36.815 (cross-sectional area ratio) = 76.085 kg-cm / s = 0.60885 kg-m / s = 7.459w, calculation efficiency is 7.594 / 7.9375 = 0.94 times.
供給合計: 41.7873+39.1749=80.9622kg-cm/s=0.809622kg-m/s=7.9375w(下記出力を含め理論計算値の実検検証が本装置の目的である)。
出力合計: 39.27+36.815(断面積比)=76.085 kg-cm/s=0.76085 kg-m/s=7.459w、計算効率は7.459/7.9375=0.94倍となる。 The basics of this case are the push-in method. Output from the # 2 cylinder is equivalent to the gain equivalent when there are multiple push-in cylinders of the # 1 cylinder. To calculate.
Total supply: 41.7873 + 39.1749 = 80.9622kg-cm / s = 0.809622kg-m / s = 7.9375w (The purpose of this device is to verify the theoretical calculation including the following output).
Total output: 39.27 + 36.815 (cross-sectional area ratio) = 76.085 kg-cm / s = 0.60885 kg-m / s = 7.459w, calculation efficiency is 7.594 / 7.9375 = 0.94 times.
検証実験手順
検証実験はシリンダ2本で、2本目は出力専用とし揺動アームに結合しないので、外部出力は1本目そのまま0~5.0346 kgまで変化する。
この出力をフライホィール各回転角度毎に出力シリンダ位置で計測すると、最大値はヘッド側5.0346kgロッド側4.7199 kgになる(具体的計測はロッドクランプ取付用M6ボルトでFBなど締め横に振りシリンダに凧糸が当たらないように掛け、滑車を介して錘を垂らす)。 Verification experiment procedure The verification experiment is with two cylinders, the second one is exclusively for output and is not coupled to the swing arm, so the external output varies from 0 to 5.0346 kg as it is.
When this output is measured at the output cylinder position for each rotation angle of the flywheel, the maximum value is 5.0346 kg on the head side and 4.7199 kg on the rod side. Hang so that the kite does not hit, and hang the weight through the pulley.
検証実験はシリンダ2本で、2本目は出力専用とし揺動アームに結合しないので、外部出力は1本目そのまま0~5.0346 kgまで変化する。
この出力をフライホィール各回転角度毎に出力シリンダ位置で計測すると、最大値はヘッド側5.0346kgロッド側4.7199 kgになる(具体的計測はロッドクランプ取付用M6ボルトでFBなど締め横に振りシリンダに凧糸が当たらないように掛け、滑車を介して錘を垂らす)。 Verification experiment procedure The verification experiment is with two cylinders, the second one is exclusively for output and is not coupled to the swing arm, so the external output varies from 0 to 5.0346 kg as it is.
When this output is measured at the output cylinder position for each rotation angle of the flywheel, the maximum value is 5.0346 kg on the head side and 4.7199 kg on the rod side. Hang so that the kite does not hit, and hang the weight through the pulley.
具体的には、これらの回転角15度毎錘重量・フライホィール外周接線力計算値に付いて示した。
この計測は単純ですが、実効率について、ここまでの推定の域を脱すると共に、現象掌握確認できる、極めて重要な基礎固め実験である。
この検証実験装置には、発電機を用いていない、従って、発電機側フライホィールも存在しないので、実動機と異なり、出力荷重平均化する連続運転は出来ませんが、構わず定トルク減速モータ25w2000rpmを用い、2000x3/25=240rpm(3w)にて240/7.5(ギヤ減速比)=32rpmこれをスプロケット増速32x32/17(実装スプロケット歯数)=60.23ppm(実用装置は60rpmを超えない)で、玉型弁は逆止弁に代えて連続運転実験し、振動騒音・逆止弁クラッキング対策機能効果、低摺動抵抗グリス・LMガイド効果など体感計測する。 Specifically, the calculated values of the weight of each spindle at 15 ° rotation angle and the flywheel outer circumference tangential force are shown.
Although this measurement is simple, it is an extremely important foundation consolidation experiment that can be used to confirm the grasp of the phenomenon while taking the actual efficiency out of the range of estimation so far.
This verification test device does not use a generator, and therefore there is no generator-side flywheel. Therefore, unlike actual motors, continuous operation that averages the output load is not possible. Using 25w2000rpm, 240 / 7.5 (gear reduction ratio) at 2000x3 / 25 = 240rpm (3w) = 32rpm This is sprocket speed increase 32x32 / 17 (number of mounted sprocket teeth) = 60.23ppm (Practical equipment does not exceed 60rpm) Thus, the ball valve valve is subjected to a continuous operation experiment instead of the check valve, and sensation measurement such as vibration noise, check valve cracking countermeasure effect, low sliding resistance grease and LM guide effect is measured.
この計測は単純ですが、実効率について、ここまでの推定の域を脱すると共に、現象掌握確認できる、極めて重要な基礎固め実験である。
この検証実験装置には、発電機を用いていない、従って、発電機側フライホィールも存在しないので、実動機と異なり、出力荷重平均化する連続運転は出来ませんが、構わず定トルク減速モータ25w2000rpmを用い、2000x3/25=240rpm(3w)にて240/7.5(ギヤ減速比)=32rpmこれをスプロケット増速32x32/17(実装スプロケット歯数)=60.23ppm(実用装置は60rpmを超えない)で、玉型弁は逆止弁に代えて連続運転実験し、振動騒音・逆止弁クラッキング対策機能効果、低摺動抵抗グリス・LMガイド効果など体感計測する。 Specifically, the calculated values of the weight of each spindle at 15 ° rotation angle and the flywheel outer circumference tangential force are shown.
Although this measurement is simple, it is an extremely important foundation consolidation experiment that can be used to confirm the grasp of the phenomenon while taking the actual efficiency out of the range of estimation so far.
This verification test device does not use a generator, and therefore there is no generator-side flywheel. Therefore, unlike actual motors, continuous operation that averages the output load is not possible. Using 25w2000rpm, 240 / 7.5 (gear reduction ratio) at 2000x3 / 25 = 240rpm (3w) = 32rpm This is sprocket speed increase 32x32 / 17 (number of mounted sprocket teeth) = 60.23ppm (Practical equipment does not exceed 60rpm) Thus, the ball valve valve is subjected to a continuous operation experiment instead of the check valve, and sensation measurement such as vibration noise, check valve cracking countermeasure effect, low sliding resistance grease and LM guide effect is measured.
このモータ回転数を160rpmにすれば2wとなるが、100rpm以下は回転不安定となりこれ以下は実験不可能である。
If this motor speed is set to 160 rpm, it becomes 2 w, but rotation below 100 rpm becomes unstable and experiment below this is impossible.
上述した実施例では、本発明に係る空気圧縮装置を、発電装置に適用した場合について述べたが、このような実施例に限定されず、通常のコンプレッサー、水中に空気を供給する(爆気)ためのコンプレッサー等としてあらゆる分野に利用することができる。
本発明の種々の好ましい実施例が述べられてきたが、本発明は、これら実施例に限定されず、種々の変形および変更がこれら実施例になされ得ることを理解されたい。
In the above-described embodiments, the case where the air compression device according to the present invention is applied to a power generation device has been described. However, the present invention is not limited to such an embodiment, and an ordinary compressor supplies air into water (explosion). It can be used as a compressor for various fields.
While various preferred embodiments of the present invention have been described, it is to be understood that the present invention is not limited to these embodiments and that various modifications and changes can be made to these embodiments.
本発明の種々の好ましい実施例が述べられてきたが、本発明は、これら実施例に限定されず、種々の変形および変更がこれら実施例になされ得ることを理解されたい。
In the above-described embodiments, the case where the air compression device according to the present invention is applied to a power generation device has been described. However, the present invention is not limited to such an embodiment, and an ordinary compressor supplies air into water (explosion). It can be used as a compressor for various fields.
While various preferred embodiments of the present invention have been described, it is to be understood that the present invention is not limited to these embodiments and that various modifications and changes can be made to these embodiments.
Claims (11)
- それぞれがシリンダとピストンとを有する複数のシリンダユニットと、
これら複数のシリンダユニットのそれぞれのピストンに連結されたピストン駆動機構とを備え、
前記複数のシリンダユニットのそれぞれのシリンダは、所定の長さのシリンダ孔を有し、それぞれのピストンは、シリンダ孔をその長手方向の一側に第一の空間を形成し他側に第二の空間を形成するように前記シリンダ孔内を往復移動するように配置され、
前記ピストン駆動機構は、それぞれのピストンをシリンダ内で同時に駆動するようにされ、
前記複数のシリンダユニットは、最上流に位置し大気に連通する最上流シリンダユニットから、最下流に位置し供給部に連通する最下流シリンダユニットまで順次接続され且つ上流側に位置するシリンダユニットの第一の空間が下流側に位置するシリンダユニットの第二の空間に連通するように、互いに接続され、
複数のシリンダユニットの容積は、最上流シリンダユニットから最下流シリンダユニットまで徐々に小さくなるように設定されている空気圧縮装置。 A plurality of cylinder units each having a cylinder and a piston;
A piston drive mechanism coupled to each piston of the plurality of cylinder units,
Each cylinder of the plurality of cylinder units has a cylinder hole of a predetermined length, and each piston forms a first space on one side in the longitudinal direction of the cylinder hole and a second on the other side. Arranged to reciprocate in the cylinder hole to form a space;
The piston drive mechanism is configured to drive each piston simultaneously in a cylinder,
The plurality of cylinder units are sequentially connected from the most upstream cylinder unit located at the most upstream and communicating with the atmosphere to the most downstream cylinder unit located at the most downstream and communicating with the supply unit, and are connected to the upstream side. Connected to each other so that one space communicates with a second space of the cylinder unit located on the downstream side,
The air compression device in which the volumes of the plurality of cylinder units are set so as to gradually decrease from the most upstream cylinder unit to the most downstream cylinder unit. - 前記複数のシリンダユニットは、シリンダの長手方向に対する垂直方向における断面積がそれぞれ同一であるが各シリンダのそれぞれ長さが異なるよう形成されており、前記シリンダが下流側に位置するほど当該シリンダの長さが短くなるように形成されている請求項1に記載の空気圧縮装置。 The plurality of cylinder units have the same cross-sectional area in the direction perpendicular to the longitudinal direction of the cylinder, but are formed such that the lengths of the cylinders are different from each other. The air compression device according to claim 1, wherein the air compression device is formed to be short.
- 前記複数のシリンダユニットは、互いに平行になるよう配置され、前記アームの長手方向に沿ってそれぞれのピストンが連結されている請求項1に記載の空気圧縮装置。 The air compression device according to claim 1, wherein the plurality of cylinder units are arranged so as to be parallel to each other, and each piston is coupled along a longitudinal direction of the arm.
- 前記ピストン駆動機構は、各シリンダユニットのピストンに連結され遥動可能に設けられたアームと該アームを揺動するアーム駆動機構とを有する請求項1記載の空気圧縮装置。 The air compression device according to claim 1, wherein the piston drive mechanism includes an arm connected to the piston of each cylinder unit and provided slidably and an arm drive mechanism that swings the arm.
- 発電機を回転する回転機構と、
該回転機構を起動する請求項1記載の空気圧縮装置とを備え、
前記回転機構は、水が充填された水槽と、
該水槽の水中内に配置され空気を収容可能な複数のバケットと、
該複数のバケットを移動可能に支持するバケット移動機構とを備え、
前記空気圧縮装置は、前記複数のバケットを浮力で駆動するように、圧縮空気を前記バケットに向けるように前記水槽内の水中に供給するようにした発電機のための駆動装置。 A rotating mechanism for rotating the generator;
The air compression device according to claim 1, wherein the rotation mechanism is activated.
The rotating mechanism includes a water tank filled with water,
A plurality of buckets arranged in the water of the aquarium and capable of containing air;
A bucket moving mechanism that movably supports the plurality of buckets,
The drive device for a generator, wherein the air compressor is configured to supply compressed air into the water in the water tank so as to direct the plurality of buckets by buoyancy. - 前記回転機構の周囲に、所定の前記バケットの開口部内に他の前記バケットの一部が位置するよう、隣り合う前記バケットが重なって配置されている請求項5記載の駆動装置。 6. The drive device according to claim 5, wherein the adjacent buckets are arranged so as to overlap each other so that a part of the other bucket is located in an opening portion of the predetermined bucket around the rotation mechanism.
- 請求項5に記載の駆動装置と、
前記駆動装置によって駆動される発電機と、を備えている発電装置。 A drive device according to claim 5;
And a generator driven by the driving device. - 発電機を回転する回転変換機構と、
該回転変換機構を起動する請求項1記載の空気圧縮装置とを備え、
前記回転変換機構は、前記空気圧縮装置の最下流のシリンダユニットのピストンに連結され、該ピストンの往復運動を回転運動に変換して前記発電機を回転するようにした発電機のための駆動装置。 A rotation conversion mechanism for rotating the generator;
The air compression device according to claim 1, wherein the rotation conversion mechanism is activated.
The rotation conversion mechanism is connected to the piston of the most downstream cylinder unit of the air compressor, and converts the reciprocating motion of the piston into a rotational motion to rotate the generator. . - 請求項8記載の駆動装置と、
前記駆動装置によって回転される発電機と、を備えている発電装置。 A drive device according to claim 8;
And a generator rotated by the driving device. - それぞれが所定の長さのシリンダと該シリンダの孔内を長手方向に一端側空間と他端側空間とに仕切ると共に当該シリンダ孔内を往復移動するピストンとを有する複数のシリンダユニットと、前記各シリンダの前記各ピストンを、同時に同一周期にて往復駆動するアームを有する駆動装置とを用意し、
前記複数のシリンダを、上流側に位置する所定の前記シリンダ内の空間が下流側に位置する他の前記シリンダ内の空間に連通するよう連結すると共に、前記下流側のシリンダ内の容積を、前記上流側のシリンダ内の容積よりも小さく形成し、
前記各シリンダの前記各ピストンが当該各シリンダの一端側に同時に移動したときに、前記上流側のシリンダの一端側空間内の空気が前記下流側のシリンダの他端側空間内に流入し、前記各シリンダの前記各ピストンが当該各シリンダの他端側に同時に移動したときに、前記上流側のシリンダの他端側空間内の空気が前記下流側のシリンダの一端側空間内に流入するようにした空気圧縮方法。 A plurality of cylinder units each having a cylinder of a predetermined length and a piston that divides the inside of the hole of the cylinder in the longitudinal direction into one end side space and the other end side space and reciprocates in the cylinder hole; A drive device having an arm that reciprocally drives the pistons of the cylinder simultaneously at the same cycle, and
The plurality of cylinders are connected so that a space in the predetermined cylinder located on the upstream side communicates with a space in the other cylinder located on the downstream side, and the volume in the cylinder on the downstream side is Formed smaller than the volume in the upstream cylinder,
When the pistons of the cylinders simultaneously move to one end side of the cylinders, the air in the one end side space of the upstream cylinder flows into the other end side space of the downstream cylinder, When the pistons of the cylinders simultaneously move to the other end side of the cylinders, the air in the other end side space of the upstream cylinder flows into the one end side space of the downstream cylinder. Air compression method. - 請求項10に記載の前記空気圧縮方法にて圧縮した空気を用いた駆動方法であって、水中内に設置され、上方に向かう方向と下方に向かう方向とに回転する回転機構と、前記回転機構の周囲に装備され、上方に向かう方向に移動する際には開口部を下方に向けると共に、下方に向かう際には開口部を上方に向けて装備された複数のバケットと、を用意し、前記空気圧縮方法にて圧縮した空気を、最下流に配置された前記シリンダの内部空間から、前記回転機構の下方位置にて前記開口部を下方に向けた前記バケット内に排出し、当該バケット内に溜められた空気の浮力により前記回転機構を回転させるようにした回転駆動方法。
A driving method using air compressed by the air compression method according to claim 10, wherein the rotating mechanism is installed in water and rotates in an upward direction and a downward direction, and the rotating mechanism. And a plurality of buckets equipped with the opening facing downward when moving in the upward direction, and with the opening facing upward when moving downward, The air compressed by the air compression method is discharged from the inner space of the cylinder arranged at the most downstream position into the bucket with the opening directed downward at the lower position of the rotating mechanism, and into the bucket. A rotation driving method in which the rotating mechanism is rotated by buoyancy of accumulated air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011543365A JP5226878B2 (en) | 2009-11-30 | 2010-11-30 | AIR COMPRESSION DEVICE, POWER GENERATION DEVICE USING SAME, AND DRIVE DEVICE FOR POWER GENERATION DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009271046 | 2009-11-30 | ||
JP2009-271046 | 2009-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011065569A1 true WO2011065569A1 (en) | 2011-06-03 |
Family
ID=44066673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071376 WO2011065569A1 (en) | 2009-11-30 | 2010-11-30 | Air compressor, power generator using the same and drive device for power generator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5226878B2 (en) |
WO (1) | WO2011065569A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6083838B1 (en) * | 2016-04-15 | 2017-02-22 | 昭雄 金井 | Equivalent reduction and reactivation mechanism of absorbing total power for damping vibration and vibration suppression of pneumatic cylinder with high speed and high frequency collision reversal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002371960A (en) * | 2001-06-14 | 2002-12-26 | Toshiba Eng Co Ltd | Gas compression equipment |
JP2006329445A (en) * | 2005-05-23 | 2006-12-07 | Kansai Electric Power Co Inc:The | Natural refrigerant heat pump system |
JP2008303865A (en) * | 2007-06-05 | 2008-12-18 | Hidetomo Hara | Continuous buoyancy generator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0914134A (en) * | 1995-07-03 | 1997-01-14 | Yoshio Moronuki | Piston type dry vacuum pump |
-
2010
- 2010-11-30 JP JP2011543365A patent/JP5226878B2/en not_active Expired - Fee Related
- 2010-11-30 WO PCT/JP2010/071376 patent/WO2011065569A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002371960A (en) * | 2001-06-14 | 2002-12-26 | Toshiba Eng Co Ltd | Gas compression equipment |
JP2006329445A (en) * | 2005-05-23 | 2006-12-07 | Kansai Electric Power Co Inc:The | Natural refrigerant heat pump system |
JP2008303865A (en) * | 2007-06-05 | 2008-12-18 | Hidetomo Hara | Continuous buoyancy generator |
Also Published As
Publication number | Publication date |
---|---|
JP5226878B2 (en) | 2013-07-03 |
JPWO2011065569A1 (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104981606B (en) | Wave energy converter | |
US8845298B2 (en) | Driving arrangement for a pump or compressor | |
WO2012127234A1 (en) | Improvements to the power capture of wave energy converters | |
CN103958902A (en) | accumulator | |
JP5934543B2 (en) | Fluid pressure drive unit | |
KR20170039142A (en) | A wave energy absorption device, a power take-off assembly and a wave energy system | |
JP6283283B2 (en) | Renewable energy power generator and method of operating the same | |
CN111263859B (en) | Pump system for treating slurry media | |
CN101592026A (en) | A new type of energy-saving hydraulic pumping unit | |
WO2011065569A1 (en) | Air compressor, power generator using the same and drive device for power generator | |
EP3115602B1 (en) | Hydraulic transmission, power generating apparatus of renewable-energy type, and method of operating the same | |
KR101967148B1 (en) | Hydraulic wind power generation device and its method | |
JP2004100810A (en) | Pressure converter | |
CN112747063B (en) | Vibration damper, energy conversion device and vehicle | |
Foss et al. | Experimental studies of a novel alternating flow (af) hydraulic pump | |
WO2002077447A1 (en) | Wave power generation machine | |
KR101724725B1 (en) | Driving system of cooling fan for vehicle | |
CN111734571B (en) | Multi-channel hydraulic cylinder compensation control device based on virtual pumping and storage | |
Vlot et al. | Pulsation-free hydraulic-driven swing tube piston pump | |
CN1806120A (en) | Gravity motor | |
CN213711449U (en) | Hydraulic buffer device and fracturing truck | |
CN221347155U (en) | Variable-frequency high-pressure pump | |
CN119041855A (en) | Drilling fluid supply equipment for steady flow conveying | |
FI112693B (en) | Equipment on the suction side of the hydraulic volume flow to compensate for | |
CN119222140A (en) | Flexible pipe diaphragm pump control system with expandable flow and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10833413 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011543365 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10833413 Country of ref document: EP Kind code of ref document: A1 |