[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011064921A1 - Solid-state image pickup device, method for driving same, and image pickup device - Google Patents

Solid-state image pickup device, method for driving same, and image pickup device Download PDF

Info

Publication number
WO2011064921A1
WO2011064921A1 PCT/JP2010/005075 JP2010005075W WO2011064921A1 WO 2011064921 A1 WO2011064921 A1 WO 2011064921A1 JP 2010005075 W JP2010005075 W JP 2010005075W WO 2011064921 A1 WO2011064921 A1 WO 2011064921A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
solid
imaging device
state imaging
voltage
Prior art date
Application number
PCT/JP2010/005075
Other languages
French (fr)
Japanese (ja)
Inventor
孝廣 室島
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011064921A1 publication Critical patent/WO2011064921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/627Detection or reduction of inverted contrast or eclipsing effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present invention relates to a solid-state imaging device, a driving method thereof, and an imaging device, and more particularly to a solid-state imaging device including a column amplification circuit.
  • MOS Metal-Oxide-Semiconductor
  • a general CCD sensor includes PD (photodiode) as a light receiving element and a CCD transfer path in pixels arranged in a matrix.
  • the PD generates and accumulates signal charges according to incident light.
  • the CCD transfer path transfers this signal charge in the vertical and horizontal directions in response to a plurality of high voltage transfer pulses.
  • the transferred charge Q is QV (charge-voltage) converted by an FDA (floating diffusion amplifier) provided at the sensor output terminal, and then output.
  • pixels arranged in a matrix form each include a PD as a light receiving element and an FDA for charge-voltage conversion.
  • the MOS sensor QV converts the signal charge generated and accumulated by the PD in accordance with the incident light for each pixel.
  • the converted signal is output through an output circuit configured with a single power source.
  • MOS sensors have become mainstream in recent years.
  • a CCD sensor reads a signal using a plurality of high-voltage transfer pulses
  • a MOS sensor reads a signal with a single power source in this way. Because it can.
  • the MOS sensor can reduce power consumption compared to the CCD sensor.
  • the MOS sensor does not require a special manufacturing process like the CCD sensor.
  • the analog circuit and the digital circuit can be arranged in the same chip, so that the video signal processing can be easily realized with one chip.
  • Patent Document 1 a technique described in Patent Document 1 is known as such a MOS sensor.
  • FIG. 10 is a block diagram showing the configuration of the solid-state imaging device described in Patent Document 1.
  • a readout circuit 400 shown in FIG. 10 is arranged in each column, reads out a reset voltage and a signal voltage output from a pixel to a vertical signal line (pixel output line 430), and each amplified by a column amplifier circuit (column amplifier 401).
  • the voltage is held in a column CDS (correlated-double-sampling) circuit composed of a switch transistor and a capacitor.
  • the pixel signal held by the readout circuit 400 is output via the differential amplifier 420.
  • the solid-state imaging device described in Patent Document 1 the voltage of the FD temporarily rises due to the parasitic capacitance between the gate and the FD (floating diffusion) during the rising period of the transfer transistor in the pixel. As a result, the voltage of the vertical signal line also rises, so that the output voltage of the column amplifier circuit also varies. Therefore, the solid-state imaging device described in Patent Document 1 has a problem that it takes time until the output voltage of the column amplifier circuit is stabilized.
  • an object of the present invention is to provide a solid-state imaging device capable of shortening the time until the output voltage of the column amplifier circuit is stabilized.
  • a solid-state imaging device is a solid-state imaging device, which is arranged in a matrix and includes a plurality of pixel circuits that output a signal voltage corresponding to the intensity of incident light.
  • a plurality of vertical signal lines for outputting the signal voltage by a plurality of pixel circuits arranged in the corresponding column, and one for each column, provided for the corresponding column A plurality of switch units connected to the vertical signal line, one for each column, connected to the vertical signal line via the switch unit provided in the corresponding column, and output to the vertical signal line
  • a plurality of column amplifiers that amplify the signal voltage, and each of the plurality of pixel circuits includes a light receiving unit that accumulates signal charges according to an intensity of incident light, a floating diffusion, the light receiving unit, and the light receiving unit.
  • the solid-state imaging device further includes: A control unit that turns off the switch unit in a transfer period in which signal charges are transferred to the floating diffusion;
  • the control unit may turn off the transfer transistor and turn on the switch unit in a first output period after the transfer period.
  • control unit turns off the transfer transistor and turns off the switch unit in a second output period that is a period immediately after the transfer period, and the first output period is the same as that of the second output period. It may be a period immediately after.
  • the switch unit may be a MOS transistor.
  • the gate aspect ratio of the MOS transistor may be equal to or less than the gate aspect ratio of the amplification transistor.
  • the solid-state imaging device further includes a plurality of voltage supply circuits that are provided for each column and supply a constant voltage to the vertical signal lines provided in the corresponding column, and the control unit includes the transfer unit. In the period, the constant voltage may be supplied to the vertical signal line by the voltage supply circuit.
  • the voltage supply circuit may include a MOS transistor in which the constant voltage is applied to one of a source terminal and a drain terminal, and the other of the source terminal and the drain terminal is connected to the vertical signal line.
  • the present invention can provide a solid-state imaging device capable of shortening the time until the output voltage of the column amplifier circuit is stabilized.
  • FIG. 1 is a block diagram showing the configuration of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing the configuration of the pixel circuit and the column amplifier according to the first embodiment of the present invention.
  • FIG. 3 is a timing chart showing the operation of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 4 is a timing chart showing the operation of the solid-state imaging device according to the comparative example of the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a configuration of a pixel circuit and a column amplification unit according to the second embodiment of the present invention.
  • FIG. 6 is a timing chart showing the operation of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing the configuration of the pixel circuit and the column amplifier according to the first embodiment of the present invention
  • FIG. 7 is a timing chart showing the operation of the solid-state imaging device according to the comparative example of the second embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a solid-state imaging device according to a modification of the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of an imaging apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a conventional solid-state imaging device.
  • the solid-state imaging device includes a switch circuit connected between a vertical signal line and a column amplifier circuit. Furthermore, the solid-state imaging device according to the first embodiment of the present invention turns off the switch circuit during the transfer period in which the signal charge is transferred from the light receiving unit to the floating diffusion. Thereby, the solid-state imaging device according to the first embodiment of the present invention does not transmit the voltage fluctuation of the vertical signal line due to the voltage fluctuation of the floating diffusion generated in the transfer period to the column amplifier circuit. Thereby, the solid-state imaging device according to the first embodiment of the present invention can prevent the output voltage of the column amplifier circuit from changing in the opposite direction to the voltage obtained by amplifying the pixel signal. Therefore, the solid-state imaging device according to one embodiment of the present invention can shorten the time until the output voltage of the column amplifier circuit is stabilized.
  • FIG. 1 is a block diagram showing a configuration of a MOS type solid-state imaging device 100 according to the first embodiment of the present invention.
  • a solid-state imaging device 100 shown in FIG. 1 includes a pixel array 101, a vertical scanning circuit 102, a plurality of vertical signal lines 103, a switch circuit 104, a column amplification circuit 105, a column CDS circuit 106, and a horizontal scanning circuit 107.
  • the pixel array 101 includes a plurality of pixel circuits (pixel cells) 111 arranged in a matrix. Each pixel circuit 111 outputs a signal voltage corresponding to the intensity of incident light. Each pixel circuit 111 outputs a reset voltage in the reset state.
  • the vertical scanning circuit 102 selects the pixel circuit 111 in units of rows.
  • Each vertical signal line 103 is provided corresponding to a column of pixel circuits 111.
  • the vertical signal line 103 is commonly connected to the pixel circuits 111 in each column, and transmits the signal voltage output by the pixel circuits 111 arranged in the corresponding column in the column direction.
  • the switch circuit 104 includes a plurality of switch transistors 114.
  • Each switch transistor 114 is an n-type MOS transistor, for example, and is provided corresponding to each column.
  • Each switch transistor 114 is connected to the vertical signal line 103 of the corresponding column.
  • the column amplifier circuit 105 includes a plurality of column amplifiers 115. Each column amplifier 115 is provided corresponding to each column. Each column amplifier 115 is connected to the vertical signal line 103 of the corresponding column via a switch transistor 114.
  • the column amplification unit 115 inverts and amplifies the signal voltage output from the plurality of pixel circuits 111 arranged in the corresponding column. Note that the column amplifier 115 may non-invert amplify the signal voltage and the reset voltage.
  • the column CDS circuit 106 includes a plurality of column CDS units 116. Each column CDS unit 116 is provided corresponding to each column. Each column CDS unit 116 is connected to a column amplification unit 115 arranged in the corresponding column. This column CDS unit 116 performs correlation double sampling processing on the signal amplified by the column amplification unit 115 and holds it. Specifically, the column CDS unit 116 holds a voltage corresponding to the difference between the reset voltage amplified by the column amplifier 115 and the signal voltage as an output signal.
  • the horizontal scanning circuit 107 sequentially reads out the output signals held in the plurality of column CDS sections 116 to the horizontal common signal line 108 using the selection signal.
  • the horizontal common signal line 108 is connected to the output amplifier circuit 109.
  • the output amplifier circuit 109 amplifies the output signal read to the horizontal common signal line 108, and outputs the amplified signal to the outside of the solid-state imaging device 100.
  • Each column current source 112 is provided corresponding to each column. Further, each column current source 112 is connected to the vertical signal line 103 arranged in the corresponding column.
  • the control unit 110 controls operations of the vertical scanning circuit 102, the switch circuit 104, the column amplification circuit 105, the column CDS circuit 106, and the horizontal scanning circuit 107.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the pixel circuit 111, the switch transistor 114, and the column amplifier 115 according to the present embodiment.
  • the pixel circuit 111 includes a photodiode PD1, a floating diffusion FD1, a transfer transistor NM1, a reset transistor NM2, and an amplification transistor NM3.
  • the photodiode PD1 is a light receiving unit that generates signal charges corresponding to the intensity of incident light and accumulates the generated signal charges.
  • the floating diffusion FD1 accumulates the signal charge transferred from the photodiode PD1. Thereby, the floating diffusion FD1 converts the signal charge into a voltage.
  • the transfer transistor NM1 transfers the signal charge accumulated in the photodiode PD1 to the floating diffusion FD1. Specifically, the transfer transistor NM1 is connected between the photodiode PD1 and the floating diffusion FD1. The gate terminal of the transfer transistor NM1 is connected to the transfer signal line TR.
  • the reset transistor NM2 resets the voltage of the floating diffusion FD1 to the voltage of the power supply signal line VPIX. Specifically, the reset transistor NM2 is connected between the floating diffusion FD1 and the power supply signal line VPIX. The gate terminal of the reset transistor NM2 is connected to the reset signal line RS.
  • the amplification transistor NM3 outputs a signal voltage or a reset voltage corresponding to the voltage of the floating diffusion FD1 to the vertical signal line 103. Specifically, the amplification transistor NM3 is connected between the vertical signal line 103 and the power supply signal line VPIX. The gate terminal of the amplification transistor NM3 is connected to the floating diffusion FD1.
  • the column current source 112 includes a current source transistor NM4.
  • the current source transistor NM4 is connected between the vertical signal line 103 and the ground potential line.
  • the gate terminal of the current source transistor NM4 is connected to the control signal line LGCELL.
  • a source follower circuit is formed together with the current source transistor NM4 and the amplification transistor NM3. This source follower circuit outputs a signal voltage corresponding to the signal charge transferred from the photodiode PD1 to the floating diffusion FD1 to the vertical signal line 103.
  • a switch transistor 114 is connected to the vertical signal line 103.
  • a column amplifier 115 is connected to the other end of the switch transistor 114.
  • the column amplifier 115 amplifies the signal input via the switch transistor 114 and outputs the amplified signal to the output terminal AMPOUT.
  • the column amplifier 115 includes an input capacitor Cin1, a feedback capacitor Cfb1, a common-source amplifier transistor NM5, a current source transistor PM1, and a clamp transistor NM6.
  • the input capacitor Cin1 has one end connected to the other end of the switch transistor 114.
  • the feedback capacitor Cfb1 has one end connected to the other end of the input capacitor Cin1 and the other end connected to the output terminal AMPOUT.
  • the source grounded amplification transistor NM5 has a gate terminal connected to the other end of the input capacitor Cin1, a source terminal connected to the ground potential line, and a drain terminal connected to the output terminal AMPOUT.
  • the current source transistor PM1 has a gate terminal connected to the voltage line VLOAD, a source terminal connected to the power supply voltage line, and a drain terminal connected to the output terminal AMPOUT.
  • the clamp transistor NM6 is, for example, an n-type MOS transistor, and is connected between the other end of the input capacitor Cin1 and the output terminal AMPOUT.
  • the clamp transistor NM6 has a gate terminal connected to the control signal line CL.
  • the solid-state imaging device 100 includes the column amplification unit 115 that amplifies the pixel signal between the vertical signal line 103 and the column CDS unit 116.
  • the solid-state imaging device 100 has an FPN (fixed pattern) for each column caused by variations in Vth (threshold voltage) of the clamp transistor used in the column CDS unit 116 and variations in the parasitic capacitance between the gate and the source for each column. Noise) can be suppressed. Therefore, the solid-state imaging device 100 can prevent the occurrence of vertical line noise due to FPN.
  • the solid-state imaging device 100 can increase the signal component with respect to the FPN generated in the column CDS unit 116 by providing the column amplification unit 115 for each column and amplifying the pixel signal. . Thereby, the solid-state imaging device 100 can realize high S / N.
  • each unit cell pixel circuit 111 has a light receiving portion, a transfer transistor, a floating diffusion, a reset transistor, and an amplification transistor.
  • the unit cell includes a plurality of light receiving units and transfer transistors, and further has a structure in which any one or all of the floating diffusion, the reset transistor, and the amplification transistor are shared in the unit cell. It may be a cell structure.
  • the structure of the solid-state imaging device 100 may use a structure in which the light receiving portion is formed on the surface of the semiconductor substrate, that is, on the same side as the gate electrode and the wiring of the transistor. Further, in the configuration of the solid-state imaging device 100, a so-called back-illuminated image sensor (back surface) in which the light receiving portion is formed on the back surface side of the semiconductor substrate (the surface opposite to the surface on which the transistor gate electrode and wiring are formed). An irradiation type solid-state imaging device) structure may be used.
  • RS, TR, CL, SH, FD, SFOUT, and AMPOUT shown in FIG. 3 are a reset signal line RS, a transfer signal line TR, a control signal line CL, a control signal line SH, a floating diffusion FD1, and a vertical signal line, respectively. 103 and the voltage of the output terminal AMPOUT. Further, the voltages of the reset signal line RS and the transfer signal line TR are controlled by the control unit 110 via the vertical scanning circuit 102. The voltages of the control signal line CL and the control signal line SH are controlled by the control unit 110.
  • the control unit 110 resets the floating diffusion FD1 in the pixel circuit 111 to the voltage of the power supply signal line VPIX by setting the reset signal line RS to a high level. Accordingly, the pixel circuit 111 outputs a reset voltage to the vertical signal line 103 in the periods t1 to t4.
  • control unit 110 turns on the clamp transistor NM6 of the column amplification unit 115 by setting the control signal line CL to a high level. As a result, the column amplifier 115 is reset. In addition, at the timing of time t3, the control unit 110 releases the reset of the clamp transistor NM6 by setting the control signal line CL to the low level.
  • the control unit 110 turns on the switch transistor 114 by setting the control signal line SH to a high level.
  • the reset voltage of the column amplifier is output to the output terminal AMPOUT during the period from time t3 to t4 after the reset is released.
  • the control unit 110 turns on the transfer transistor NM1 by setting the transfer signal line TR to the high level. Thereby, the signal charge accumulated in the photodiode PD1 is transferred to the floating diffusion FD1.
  • the voltage of the floating diffusion FD1 rises due to the parasitic capacitance between the gate and the FD of the transfer transistor NM1.
  • the control unit 110 turns off the switch transistor 114 by setting the voltage of the control signal line SH to a low level. As a result, the control unit 110 performs control so that fluctuations in the voltage of the vertical signal line 103 are not transmitted to the column amplification unit 115.
  • the control unit 110 turns off the transfer transistor NM1 by setting the transfer signal line TR to the low level. As a result, a signal voltage corresponding to the intensity of incident light is output to the vertical signal line 103.
  • the control unit 110 turns on the switch transistor 114 by setting the voltage of the control signal line SH to a high level.
  • the column amplifier 115 outputs an output voltage obtained by inverting and amplifying the signal voltage output to the vertical signal line 103 to the output terminal AMPOUT.
  • the voltage of the floating diffusion FD1 rises due to the parasitic capacitance between the gate and the FD of the transfer transistor NM1.
  • the voltage SFOUT of the vertical signal line 103 also increases. This rise in voltage SFOUT is transmitted to the column amplifier 115. As a result, the voltage at the output terminal AMPOUT decreases.
  • the switch transistor 114 when the switch transistor 114 is provided as in the present embodiment and the switch transistor 114 is turned off during the transfer period from t4 to t5, the voltage at the output terminal AMPOUT changes in the opposite direction to the actual pixel signal. Can be prevented.
  • the solid-state imaging device 100 can suppress the deterioration of the response speed of the column amplification unit 115 due to the voltage fluctuation of the vertical signal line 103. Thereby, the solid-state imaging device 100 can shorten the time until the voltage of the output terminal AMPOUT is stabilized.
  • the solid-state imaging device 100 turns off the switch transistor 114 provided between the vertical signal line 103 and the column amplifier 115 during the signal transfer period.
  • the solid-state imaging device 100 can shorten the time until the voltage of the vertical signal line 103 is stabilized, and can prevent the voltage fluctuation of the vertical signal line 103 from being transmitted to the column amplification unit 115 in the subsequent stage. Accordingly, the solid-state imaging device 100 can shorten the time until the voltage of the output terminal AMPOUT is stabilized. Thereby, the solid-state imaging device 100 can suppress vertical noise.
  • the solid-state imaging device 100 can increase the output resistance of the pixel source follower circuit by the switch transistor 114. Thereby, since the solid-state imaging device 100 can narrow the frequency band of the pixel source follower circuit, it is possible to reduce random noise. Further, in this way, in order to narrow the frequency band of the pixel source follower circuit, the gate aspect ratio (gate width W / gate length L) of the switch transistor 114 should be less than or equal to the gate aspect ratio of the amplification transistor NM3. preferable.
  • the pixel circuit 111 in this embodiment does not include a row selection transistor, but the same effect can be obtained even when the pixel circuit 111 includes a row selection transistor.
  • the column amplification unit 115 in the present embodiment is configured by a plurality of capacitors and a common source amplifier circuit.
  • the column amplification unit 115 is configured by only a common source amplifier circuit, or a plurality of capacitors and a differential circuit. The same effect can be obtained even when configured with an amplifier circuit.
  • the present invention is also effective for a circuit configuration including a circuit for pulling up the vertical signal line 103 to the power supply voltage in order to improve the characteristics of the pixel.
  • a case where the present invention is applied to a solid-state imaging device including such a pull-up circuit will be described.
  • FIG. 5 is a circuit diagram showing a detailed configuration of the pixel circuit 111, the switch transistor 114, and the column amplifier 115 according to the second embodiment of the present invention.
  • symbol is attached
  • the solid-state imaging device according to the second embodiment of the present invention further includes a voltage supply circuit 201 in addition to the configuration shown in FIG.
  • the voltage supply circuit 201 is provided for each column and is connected to the vertical signal line 103 of the corresponding column.
  • the voltage supply circuit 201 supplies the voltage of the power supply signal line VPIX to the vertical signal line 103 in the corresponding column.
  • the voltage supply circuit 201 includes a pull-up transistor PM12.
  • the pull-up transistor PM12 is connected between the power signal line VPIX and the vertical signal line 103.
  • the control signal line FDUP is connected to the gate terminal of the pull-up transistor PM12.
  • FDUP shown in FIG. 6 indicates the voltage of the control signal line FDUP. Further, the voltage of the control signal line FDUP is controlled by the control unit 110.
  • control unit 110 turns on the pull-up transistor PM12 by setting the control signal line FDUP to a low level during the transfer period from t4 to t5. As a result, the voltage of the vertical signal line 103 is pulled up to the voltage of the power supply signal line VPIX.
  • FIG. 7 is a diagram for comparison, and is a timing chart showing operations of the pixel circuit 111 and the column amplifier 115 when the switch transistor 114 is not provided.
  • the solid-state imaging device As shown in FIGS. 6 and 7, similarly to the first embodiment described above, the solid-state imaging device according to the second embodiment has a response speed of the column amplification unit 115 caused by voltage fluctuations of the vertical signal line 103. Can be prevented.
  • the switch transistor 114 as in the present embodiment and turning off the switch transistor 114 in the period t4 to t5, the voltage at the output terminal AMPOUT changes in the opposite direction to the actual pixel signal. Can be prevented. Further, by turning off the switch transistor 114 in the period t5 to t6, the influence of the input capacitor Cin1 can be reduced. Accordingly, the solid-state imaging device 100 can shorten the time until the voltage of the output terminal AMPOUT is stabilized.
  • the pixel circuit 111 in this embodiment does not include a row selection transistor, but the same effect can be obtained even when the pixel circuit 111 includes a row selection transistor.
  • the column amplification unit 115 in the present embodiment is configured by a plurality of capacitors and a common source amplifier circuit.
  • the column amplification unit 115 is configured by only a common source amplifier circuit, or a plurality of capacitors and a differential circuit. The same effect can be obtained even when configured with an amplifier circuit.
  • the voltage supply circuit 201 in the present embodiment is configured to pull up the vertical signal line 103 to the power supply voltage, but the vertical signal line 103 is set to the ground (ground potential) or the bias voltage (arbitrary constant voltage). The same effect can be obtained with the reset configuration.
  • some recent MOS sensors include a column ADC circuit (analog-digital converter) instead of the column CDS circuit.
  • a column ADC circuit analog-digital converter
  • the MOS sensor including the column ADC circuit can convert the read pixel signal into a digital signal immediately after reading the pixel signal, noise generated in an output circuit such as a column CDS circuit and an output amplifier circuit can be suppressed.
  • a MOS sensor including a column ADC circuit has an advantage that digital signal processing can be performed in a chip.
  • the present invention can obtain the same effect even if it is mounted on a chip having a built-in column ADC.
  • FIG. 8 is a block diagram illustrating a configuration of a solid-state imaging device 100A in which the present invention is applied to a solid-state imaging device including a column ADC.
  • symbol is attached
  • a column ADC circuit 211, a digital memory 213, and a shift register 214 are provided.
  • the column ADC circuit 211 includes a plurality of column ADCs 212 provided for each column.
  • the column ADC 212 converts the signal amplified by the column amplifier 115 provided in the corresponding column into a digital signal.
  • the digital memory 213 holds digital signals converted by the plurality of column ADCs 212.
  • the shift register 214 transfers the digital signal held in the digital memory 213 in the horizontal direction and serially outputs it outside the solid-state imaging device 100A.
  • an imaging apparatus (camera system) including the solid-state imaging apparatus 100 described above will be described.
  • FIG. 9 is a diagram illustrating a configuration of an imaging apparatus 120 according to the third embodiment of the present invention.
  • An imaging device 120 shown in FIG. 9 includes an optical member (lens) 121 that collects external light, the MOS solid-state imaging device 100 according to the first or second embodiment of the present invention, and the interior of the solid-state imaging device 100.
  • a timing control unit 123 that controls the operation timing of the circuit, and an image signal processing unit 124.
  • the solid-state imaging device 100 converts the light incident through the optical member 121 into an image signal and outputs the image signal.
  • the image signal processing unit 124 processes the image signal output from the solid-state imaging device 100 and outputs the processed image signal to an external device such as a display device.
  • the solid-state imaging device 100 and the image signal processing unit 124 are formed on the same semiconductor chip.
  • the solid-state imaging device 100 and the image signal processing unit 124 may be formed on different semiconductor chips.
  • the solid-state imaging device 100 includes the pixel array 101 that converts incident light into a voltage signal, the signal processing unit 132 that processes the signal output from the pixel array 101, and the signal processing unit 132 that outputs the signal. And an output circuit 133 that outputs the signal as an image signal.
  • the signal processing unit 132 corresponds to the switch circuit 104, the column amplifier circuit 105, and the column CDS circuit 106 described above.
  • the output circuit 133 corresponds to the output amplifier circuit 109 described above.
  • the image signal processing unit 124 includes a correlated double sampling circuit (CDS circuit 134) that receives an image signal from the output circuit 133, an AGC (Auto Gain Control) 135, an ADC (Analog Digital Converter) 136, and a DSP (Digital Signal). Processor) 137.
  • CDS circuit 134 correlated double sampling circuit
  • the imaging device 120 of the present embodiment can realize a high-speed imaging device by including the solid-state imaging device 100 that can suppress deterioration in response speed.
  • the present invention can provide an imaging device that can shorten the time until the output voltage of the column amplifier circuit is stabilized. Further, the imaging device 120 shortens the time until the voltage of the vertical signal line is stabilized by turning off the switch transistor provided in the vertical signal line during the signal transfer period, and the voltage fluctuation of the vertical signal line. Can not be transmitted to the column amplifier circuit in the subsequent stage. Thereby, the imaging device 120 can suppress deterioration of the response speed of the circuit, and can suppress vertical line noise.
  • the imaging device 120 can increase the output resistance of the pixel source follower circuit by the switch transistor, the frequency band of the pixel source follower circuit can be narrowed and random noise can be reduced. .
  • the solid-state imaging devices according to the first to third embodiments of the present invention are arranged in a matrix and output a signal voltage corresponding to the intensity of incident light, and one for each column.
  • a plurality of switch sections (switch transistors 114), one for each column, connected to the vertical signal line via the switch section provided in the corresponding column, and the signal voltage output to the vertical signal line
  • Each of the plurality of pixel circuits includes a light receiving unit (PD1) that accumulates signal charges corresponding to the intensity of incident light, a floating diffusion (FD1), a light receiving unit, and a floating unit.
  • PD1 light receiving unit
  • FD1 floating diffusion
  • NM3 amplification transistor
  • a control unit 110 is provided to turn off the switch unit during a transfer period (t4 to t5) in which signal charges are transferred to the floating diffusion.
  • the solid-state imaging device does not transmit the voltage variation of the vertical signal line due to the voltage variation of the floating diffusion generated in the transfer period to the column amplification unit.
  • control unit turns off the transfer transistor and turns on the switch unit in the first output period (t6 and after) after the transfer period. Accordingly, the solid-state imaging device according to an aspect of the present invention can shorten the time until the column amplification unit stably outputs the output voltage obtained by amplifying the signal voltage in the first output period.
  • the control unit turns off the transfer transistor and turns off the switch unit in the second output period (t5 to t6), which is a period immediately after the transfer period, and the first output period is immediately after the second output period. Is the period.
  • the solid-state imaging device can reduce the load capacity of the vertical signal line in the second output period by turning off the switch unit in the second output period. Accordingly, the solid-state imaging device according to an aspect of the present invention can shorten the time until the voltage of the vertical signal line is stabilized, and as a result, the period until the output voltage of the column amplifier is stabilized can be shortened.
  • the switch unit is a MOS transistor, and the gate aspect ratio of the MOS transistor is equal to or less than the gate aspect ratio of the amplification transistor. Accordingly, the solid-state imaging device according to one embodiment of the present invention can increase the output resistance of the pixel source follower circuit. Therefore, the solid-state imaging device according to one embodiment of the present invention can narrow the frequency band of the pixel source follower circuit, and thus can reduce the occurrence of random noise.
  • the solid-state imaging device further includes a plurality of voltage supply circuits 201 that are provided for each column and supply a constant voltage to the vertical signal lines provided in the corresponding column,
  • the unit causes the voltage supply circuit to supply a constant voltage to the vertical signal line in the transfer period.
  • the solid-state imaging device can improve the output voltage of the column amplifier circuit even when it includes a voltage supply circuit (for example, a pull-up circuit) in order to improve pixel characteristics. You can save time.
  • the voltage supply circuit includes a MOS transistor (PM12) in which a constant voltage is applied to one of the source terminal and the drain terminal, and the other of the source terminal and the drain terminal is connected to the vertical signal line.
  • PM12 MOS transistor
  • the present invention can be realized not only as such a solid-state imaging device, but also as a driving method or a control method of a solid-state imaging device using characteristic means included in the solid-state imaging device as a step. It can also be realized as a program that causes a computer to execute typical steps.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device, or as an imaging device (camera) including such a solid-state imaging device. Or a camera system including such a solid-state imaging device.
  • LSI semiconductor integrated circuit
  • imaging device camera
  • a camera system including such a solid-state imaging device.
  • the solid-state imaging device according to the first to third embodiments and each processing unit included in the imaging device are typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • some or all of the functions of the solid-state imaging device and the imaging device according to the first to third embodiments of the present invention may be realized by a processor such as a CPU executing a program.
  • the present invention may be the above program or a recording medium on which the above program is recorded.
  • the program can be distributed via a transmission medium such as the Internet.
  • the numbers used above are all exemplified for specifically describing the present invention, and the present invention is not limited to the illustrated numbers.
  • the logic levels represented by high / low or the switching states represented by on / off are illustrative for the purpose of illustrating the present invention, and different combinations of the illustrated logic levels or switching states. Therefore, it is possible to obtain an equivalent result.
  • the circuit configuration shown above is exemplified to specifically describe the present invention, and an equivalent input / output relationship can be realized by a circuit having a different configuration.
  • n-type and p-type transistors and the like are illustrated to specifically describe the present invention, and it is possible to obtain equivalent results by inverting them.
  • the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
  • MOS transistor an example using a MOS transistor is shown, but another transistor such as a bipolar transistor may be used.
  • the present invention can be applied to a solid-state imaging device. Further, the present invention can be applied to a digital still camera, a digital video camera, a mobile phone device, and the like provided with a solid-state imaging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Disclosed is a solid-state image pickup device (100), which is provided with: a plurality of pixel circuits (111) which are disposed in matrix; a plurality of vertical signal lines (103); a plurality of switch transistors (114); and a plurality of column amplifying units (115) which are connected to the vertical signal lines (103) via the switch transistors (114). Each of the pixel circuits (111) is provided with: a photodiode (PD1) wherein signal charges are accumulated; a floating diffusion (FD1); a transfer transistor (NM1) connected between the photodiode (PD1) and the floating diffusion (FD1); and an amplifying transistor (NM3). Furthermore, the solid-state image pickup device (100) is provided with a control unit (110), which turns off the switch transistor (114) in a transfer period wherein the signal charges are transferred from the photodiode (PD1) to the floating diffusion (FD1).

Description

固体撮像装置、その駆動方法、及び撮像装置Solid-state imaging device, driving method thereof, and imaging device
 本発明は、固体撮像装置、その駆動方法及び撮像装置に関し、特に、列増幅回路を備える固体撮像装置に関する。 The present invention relates to a solid-state imaging device, a driving method thereof, and an imaging device, and more particularly to a solid-state imaging device including a column amplification circuit.
 近年、CCD(Charge-Coupled-Device)センサに代わる固体撮像装置としてMOS(Metal-Oxide-Semiconductor)センサが主流になりつつある。 In recent years, MOS (Metal-Oxide-Semiconductor) sensors are becoming mainstream as solid-state imaging devices replacing CCD (Charge-Coupled-Device) sensors.
 一般的なCCDセンサは、行列状に配置された画素に受光素子であるPD(フォトダイオード)とCCD転送路とを備える。PDは、入射光に応じて信号電荷を生成及び蓄積する。CCD転送路はこの信号電荷を、複数の高電圧からなる転送パルスに応じて垂直及び水平方向に転送する。この転送された電荷Qは、センサ出力端に設けられたFDA(フローティングディフュージョンアンプ)でQ-V(電荷-電圧)変換されたうえで出力される。 A general CCD sensor includes PD (photodiode) as a light receiving element and a CCD transfer path in pixels arranged in a matrix. The PD generates and accumulates signal charges according to incident light. The CCD transfer path transfers this signal charge in the vertical and horizontal directions in response to a plurality of high voltage transfer pulses. The transferred charge Q is QV (charge-voltage) converted by an FDA (floating diffusion amplifier) provided at the sensor output terminal, and then output.
 これに対し一般的なMOSセンサは、行列状に配置された画素が、受光素子であるPDと、電荷-電圧変換するFDAとをそれぞれ備える。これにより、MOSセンサは、入射光に応じてPDが生成及び蓄積した信号電荷を、画素毎にQ-V変換する。また、変換された信号は、単一電源で構成された出力回路を通って出力される。 In contrast to this, in a general MOS sensor, pixels arranged in a matrix form each include a PD as a light receiving element and an FDA for charge-voltage conversion. Thereby, the MOS sensor QV converts the signal charge generated and accumulated by the PD in accordance with the incident light for each pixel. The converted signal is output through an output circuit configured with a single power source.
 ここで、近年、MOSセンサが主流になってきた理由は、CCDセンサでは複数の高電圧からなる転送パルスを用いて信号を読み出すのに対し、MOSセンサではこのように単一電源で信号を読み出すことができるためである。これにより、MOSセンサはCCDセンサに比べて、消費電力を抑えることができる。 Here, the reason why MOS sensors have become mainstream in recent years is that a CCD sensor reads a signal using a plurality of high-voltage transfer pulses, whereas a MOS sensor reads a signal with a single power source in this way. Because it can. As a result, the MOS sensor can reduce power consumption compared to the CCD sensor.
 また、MOSセンサは、CCDセンサのように特殊な製造プロセスを必要としない。これにより、MOSセンサは、アナログ回路とデジタル回路とを同一チップ内に配置できるので、映像信号の処理を1チップで容易に実現できる。 Also, the MOS sensor does not require a special manufacturing process like the CCD sensor. Thus, in the MOS sensor, the analog circuit and the digital circuit can be arranged in the same chip, so that the video signal processing can be easily realized with one chip.
 例えば、このようなMOSセンサとして特許文献1記載の技術が知られている。 For example, a technique described in Patent Document 1 is known as such a MOS sensor.
 図10は、特許文献1記載の固体撮像装置の構成を示すブロック図である。 FIG. 10 is a block diagram showing the configuration of the solid-state imaging device described in Patent Document 1.
 図10に示す読み出し回路400は、各列に配置され、画素から垂直信号線(画素出力線430)に出力されるリセット電圧及び信号電圧を読み出し、それぞれ列増幅回路(列アンプ401)で増幅した電圧を、スイッチトランジスタ及び容量からなる列CDS(Correlated-Double-Sampling:相関2重サンプリング)回路に保持する。 A readout circuit 400 shown in FIG. 10 is arranged in each column, reads out a reset voltage and a signal voltage output from a pixel to a vertical signal line (pixel output line 430), and each amplified by a column amplifier circuit (column amplifier 401). The voltage is held in a column CDS (correlated-double-sampling) circuit composed of a switch transistor and a capacitor.
 読み出し回路400で保持された画素信号は、差動アンプ420を介して、出力される。 The pixel signal held by the readout circuit 400 is output via the differential amplifier 420.
特開2008-42677号公報JP 2008-42677 A
 しかしながら、特許文献1記載の固体撮像装置では、画素内の転送トランジスタの立ち上がり期間にゲート-FD(フローティングディフュージョン)間の寄生容量によりFDの電圧が一時的に上昇する。これにより、垂直信号線の電圧も上昇することにより、列増幅回路の出力電圧も変動する。よって、特許文献1記載の固体撮像装置は、列増幅回路の出力電圧が安定するまでに時間を要するという課題を有している。 However, in the solid-state imaging device described in Patent Document 1, the voltage of the FD temporarily rises due to the parasitic capacitance between the gate and the FD (floating diffusion) during the rising period of the transfer transistor in the pixel. As a result, the voltage of the vertical signal line also rises, so that the output voltage of the column amplifier circuit also varies. Therefore, the solid-state imaging device described in Patent Document 1 has a problem that it takes time until the output voltage of the column amplifier circuit is stabilized.
 そこで、本発明は、列増幅回路の出力電圧が安定するまでの時間を短縮できる固体撮像装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a solid-state imaging device capable of shortening the time until the output voltage of the column amplifier circuit is stabilized.
 上記目的を達成するために、本発明の一形態に係る固体撮像装置は、固体撮像装置であって、行列状に配置され、入射光の強度に応じた信号電圧を出力する複数の画素回路と、列毎に1つ設けられ、対応する列に配置された複数の画素回路により前記信号電圧が出力される複数の垂直信号線と、列毎に1つ設けられ、対応する列に設けられた前記垂直信号線に接続される複数のスイッチ部と、列毎に1つ設けられ、対応する列に設けられた前記スイッチ部を介して前記垂直信号線に接続され、前記垂直信号線に出力された前記信号電圧を増幅する複数の列増幅部とを備え、前記複数の画素回路の各々は、入射光の強度に応じた信号電荷を蓄積する受光部と、フローティングディフュージョンと、前記受光部と前記フローティングディフュージョンとの間に接続された転送トランジスタと、前記フローティングディフュージョンの電圧に応じた前記信号電圧を前記垂直信号線に出力する増幅トランジスタとを備え、前記固体撮像装置は、さらに、前記受光部から前記フローティングディフュージョンに信号電荷を転送する転送期間において前記スイッチ部をオフする制御部を備える。 In order to achieve the above object, a solid-state imaging device according to an aspect of the present invention is a solid-state imaging device, which is arranged in a matrix and includes a plurality of pixel circuits that output a signal voltage corresponding to the intensity of incident light. , One for each column, a plurality of vertical signal lines for outputting the signal voltage by a plurality of pixel circuits arranged in the corresponding column, and one for each column, provided for the corresponding column A plurality of switch units connected to the vertical signal line, one for each column, connected to the vertical signal line via the switch unit provided in the corresponding column, and output to the vertical signal line A plurality of column amplifiers that amplify the signal voltage, and each of the plurality of pixel circuits includes a light receiving unit that accumulates signal charges according to an intensity of incident light, a floating diffusion, the light receiving unit, and the light receiving unit. Floating diffusion And a transfer transistor connected to the vertical diffusion line, and an amplification transistor that outputs the signal voltage corresponding to the voltage of the floating diffusion to the vertical signal line. The solid-state imaging device further includes: A control unit that turns off the switch unit in a transfer period in which signal charges are transferred to the floating diffusion;
 また、前記制御部は、前記転送期間より後の第1出力期間において、前記転送トランジスタをオフするとともに、前記スイッチ部をオンしてもよい。 The control unit may turn off the transfer transistor and turn on the switch unit in a first output period after the transfer period.
 また、前記制御部は、前記転送期間の直後の期間である第2出力期間において、前記転送トランジスタをオフするとともに、前記スイッチ部をオフし、前記第1出力期間は、前記第2出力期間の直後の期間であってもよい。 Further, the control unit turns off the transfer transistor and turns off the switch unit in a second output period that is a period immediately after the transfer period, and the first output period is the same as that of the second output period. It may be a period immediately after.
 また、前記スイッチ部はMOSトランジスタであってもよい。 The switch unit may be a MOS transistor.
 また、前記MOSトランジスタのゲートアスペクト比は、前記増幅トランジスタのゲートアスペクト比以下であってもよい。 The gate aspect ratio of the MOS transistor may be equal to or less than the gate aspect ratio of the amplification transistor.
 また、前記固体撮像装置は、さらに、列毎に1つ設けられ、対応する列に設けられた前記垂直信号線に定電圧を供給する複数の電圧供給回路を備え、前記制御部は、前記転送期間において、前記電圧供給回路に前記垂直信号線へ前記定電圧を供給させてもよい。 The solid-state imaging device further includes a plurality of voltage supply circuits that are provided for each column and supply a constant voltage to the vertical signal lines provided in the corresponding column, and the control unit includes the transfer unit. In the period, the constant voltage may be supplied to the vertical signal line by the voltage supply circuit.
 また、前記電圧供給回路は、ソース端子及びドレイン端子の一方に前記定電圧が印加され、前記ソース端子及び前記ドレイン端子の他方が前記垂直信号線に接続されるMOSトランジスタを含んでもよい。 The voltage supply circuit may include a MOS transistor in which the constant voltage is applied to one of a source terminal and a drain terminal, and the other of the source terminal and the drain terminal is connected to the vertical signal line.
 以上より、本発明は、列増幅回路の出力電圧が安定するまでの時間を短縮できる固体撮像装置を提供できる。 As described above, the present invention can provide a solid-state imaging device capable of shortening the time until the output voltage of the column amplifier circuit is stabilized.
図1は、本発明の第1の実施形態に係る固体撮像装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the solid-state imaging device according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る画素回路及び列増幅部の構成を示す回路図である。FIG. 2 is a circuit diagram showing the configuration of the pixel circuit and the column amplifier according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る固体撮像装置の動作を示すタイミングチャートである。FIG. 3 is a timing chart showing the operation of the solid-state imaging device according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態の比較例に係る固体撮像装置の動作を示すタイミングチャートである。FIG. 4 is a timing chart showing the operation of the solid-state imaging device according to the comparative example of the first embodiment of the present invention. 図5は、本発明の第2の実施形態に係る画素回路及び列増幅部の構成を示す回路図である。FIG. 5 is a circuit diagram showing a configuration of a pixel circuit and a column amplification unit according to the second embodiment of the present invention. 図6は、本発明の第2の実施形態に係る固体撮像装置の動作を示すタイミングチャートである。FIG. 6 is a timing chart showing the operation of the solid-state imaging device according to the second embodiment of the present invention. 図7は、本発明の第2の実施形態の比較例に係る固体撮像装置の動作を示すタイミングチャートである。FIG. 7 is a timing chart showing the operation of the solid-state imaging device according to the comparative example of the second embodiment of the present invention. 図8は、本発明の実施形態の変形例に係る固体撮像装置の構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a solid-state imaging device according to a modification of the embodiment of the present invention. 図9は、本発明の第3の実施形態に係る撮像装置の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of an imaging apparatus according to the third embodiment of the present invention. 図10は、従来技術の固体撮像装置を示す図である。FIG. 10 is a diagram illustrating a conventional solid-state imaging device.
 以下、本発明に係る固体撮像装置の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of a solid-state imaging device according to the present invention will be described in detail with reference to the drawings.
 (第1の実施形態)
 本発明の第1の実施形態に係る固体撮像装置は、垂直信号線と列増幅回路との間に接続されたスイッチ回路を備える。さらに、本発明の第1の実施形態に係る固体撮像装置は、受光部からフローティングディフュージョンに信号電荷を転送する転送期間において、このスイッチ回路をオフする。これにより、本発明の第1の実施形態に係る固体撮像装置は、転送期間に生じるフローティングディフュージョンの電圧変動に起因する垂直信号線の電圧変動を列増幅回路に伝達させない。これにより、本発明の第1の実施形態に係る固体撮像装置は、列増幅回路の出力電圧が、画素信号を増幅した電圧と逆方向に変化してしまうことを防止できる。よって、本発明の一形態に係る固体撮像装置は、列増幅回路の出力電圧が安定するまでの時間を短縮できる。
(First embodiment)
The solid-state imaging device according to the first embodiment of the present invention includes a switch circuit connected between a vertical signal line and a column amplifier circuit. Furthermore, the solid-state imaging device according to the first embodiment of the present invention turns off the switch circuit during the transfer period in which the signal charge is transferred from the light receiving unit to the floating diffusion. Thereby, the solid-state imaging device according to the first embodiment of the present invention does not transmit the voltage fluctuation of the vertical signal line due to the voltage fluctuation of the floating diffusion generated in the transfer period to the column amplifier circuit. Thereby, the solid-state imaging device according to the first embodiment of the present invention can prevent the output voltage of the column amplifier circuit from changing in the opposite direction to the voltage obtained by amplifying the pixel signal. Therefore, the solid-state imaging device according to one embodiment of the present invention can shorten the time until the output voltage of the column amplifier circuit is stabilized.
 まず、本発明の第1の実施形態に係る固体撮像装置の全体構成を説明する。 First, the overall configuration of the solid-state imaging device according to the first embodiment of the present invention will be described.
 図1は、本発明の第1の実施形態に係るMOS型の固体撮像装置100の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a MOS type solid-state imaging device 100 according to the first embodiment of the present invention.
 図1に示す固体撮像装置100は、画素アレイ101と、垂直走査回路102と、複数の垂直信号線103と、スイッチ回路104と、列増幅回路105と、列CDS回路106と、水平走査回路107と、水平共通信号線108と、出力アンプ回路109と、制御部110と、複数の列電流源112とを備える。 A solid-state imaging device 100 shown in FIG. 1 includes a pixel array 101, a vertical scanning circuit 102, a plurality of vertical signal lines 103, a switch circuit 104, a column amplification circuit 105, a column CDS circuit 106, and a horizontal scanning circuit 107. A horizontal common signal line 108, an output amplifier circuit 109, a control unit 110, and a plurality of column current sources 112.
 画素アレイ101は、行列状に配置された複数の画素回路(画素セル)111を備える。各画素回路111は、入射光の強度に応じた信号電圧を出力する。また、各画素回路111は、リセット状態においてリセット電圧を出力する。 The pixel array 101 includes a plurality of pixel circuits (pixel cells) 111 arranged in a matrix. Each pixel circuit 111 outputs a signal voltage corresponding to the intensity of incident light. Each pixel circuit 111 outputs a reset voltage in the reset state.
 垂直走査回路102は、行単位で画素回路111を選択する。 The vertical scanning circuit 102 selects the pixel circuit 111 in units of rows.
 各垂直信号線103は、画素回路111の列に対応して設けられる。また、垂直信号線103は、各列の画素回路111に共通に接続され、対応する列に配置された画素回路111により出力された信号電圧を列方向に伝達する。 Each vertical signal line 103 is provided corresponding to a column of pixel circuits 111. The vertical signal line 103 is commonly connected to the pixel circuits 111 in each column, and transmits the signal voltage output by the pixel circuits 111 arranged in the corresponding column in the column direction.
 スイッチ回路104は、複数のスイッチトランジスタ114を含む。各スイッチトランジスタ114は、例えばn型MOSトランジスタであり、各列に対応して設けられている。また、各スイッチトランジスタ114は、対応する列の垂直信号線103に接続されている。 The switch circuit 104 includes a plurality of switch transistors 114. Each switch transistor 114 is an n-type MOS transistor, for example, and is provided corresponding to each column. Each switch transistor 114 is connected to the vertical signal line 103 of the corresponding column.
 列増幅回路105は、複数の列増幅部115を含む。各列増幅部115は、各列に対応して設けられている。また、各列増幅部115は、対応する列の垂直信号線103にスイッチトランジスタ114を介して接続されている。この列増幅部115は、対応する列に配置された複数の画素回路111により出力された信号電圧を反転増幅する。なお、列増幅部115は、信号電圧及びリセット電圧を非反転増幅してもよい。 The column amplifier circuit 105 includes a plurality of column amplifiers 115. Each column amplifier 115 is provided corresponding to each column. Each column amplifier 115 is connected to the vertical signal line 103 of the corresponding column via a switch transistor 114. The column amplification unit 115 inverts and amplifies the signal voltage output from the plurality of pixel circuits 111 arranged in the corresponding column. Note that the column amplifier 115 may non-invert amplify the signal voltage and the reset voltage.
 列CDS回路106は、複数の列CDS部116を含む。各列CDS部116は、各列に対応して設けられている。また、各列CDS部116は、対応する列に配置された列増幅部115に接続されている。この列CDS部116は、列増幅部115により増幅された信号に相関二重サンプリング処理を行ったうえで保持する。具体的には、列CDS部116は、列増幅部115により増幅されたリセット電圧と信号電圧との差分に相当する電圧を出力信号として保持する。 The column CDS circuit 106 includes a plurality of column CDS units 116. Each column CDS unit 116 is provided corresponding to each column. Each column CDS unit 116 is connected to a column amplification unit 115 arranged in the corresponding column. This column CDS unit 116 performs correlation double sampling processing on the signal amplified by the column amplification unit 115 and holds it. Specifically, the column CDS unit 116 holds a voltage corresponding to the difference between the reset voltage amplified by the column amplifier 115 and the signal voltage as an output signal.
 水平走査回路107は、選択信号を用いて、複数の列CDS部116に保持される出力信号を水平共通信号線108に順次読み出す。 The horizontal scanning circuit 107 sequentially reads out the output signals held in the plurality of column CDS sections 116 to the horizontal common signal line 108 using the selection signal.
 水平共通信号線108は、出力アンプ回路109に接続されている。 The horizontal common signal line 108 is connected to the output amplifier circuit 109.
 出力アンプ回路109は、水平共通信号線108に読み出された出力信号を増幅し、増幅した信号を固体撮像装置100の外部へ出力する。 The output amplifier circuit 109 amplifies the output signal read to the horizontal common signal line 108, and outputs the amplified signal to the outside of the solid-state imaging device 100.
 各列電流源112は、各列に対応して設けられている。また、各列電流源112は、対応する列に配置された垂直信号線103に接続されている。 Each column current source 112 is provided corresponding to each column. Further, each column current source 112 is connected to the vertical signal line 103 arranged in the corresponding column.
 制御部110は、垂直走査回路102、スイッチ回路104、列増幅回路105、列CDS回路106及び水平走査回路107の動作を制御する。 The control unit 110 controls operations of the vertical scanning circuit 102, the switch circuit 104, the column amplification circuit 105, the column CDS circuit 106, and the horizontal scanning circuit 107.
 次に、本実施形態に係る固体撮像装置100の詳細な構成を説明する。 Next, a detailed configuration of the solid-state imaging device 100 according to the present embodiment will be described.
 なお、以下では、説明の簡略化のため、1列分の回路構成について説明する。 In the following, for simplification of description, a circuit configuration for one column will be described.
 図2は、本実施形態に係る画素回路111、スイッチトランジスタ114、及び列増幅部115の詳細な構成を示す回路図である。 FIG. 2 is a circuit diagram showing a detailed configuration of the pixel circuit 111, the switch transistor 114, and the column amplifier 115 according to the present embodiment.
 図2に示すように、画素回路111は、フォトダイオードPD1と、フローティングディフュージョンFD1と、転送トランジスタNM1と、リセットトランジスタNM2と、増幅トランジスタNM3とを備える。 As shown in FIG. 2, the pixel circuit 111 includes a photodiode PD1, a floating diffusion FD1, a transfer transistor NM1, a reset transistor NM2, and an amplification transistor NM3.
 フォトダイオードPD1は、入射光の強度に応じた信号電荷を生成し、生成した信号電荷を蓄積する受光部である。 The photodiode PD1 is a light receiving unit that generates signal charges corresponding to the intensity of incident light and accumulates the generated signal charges.
 フローティングディフュージョンFD1は、フォトダイオードPD1から転送された信号電荷を蓄積する。これにより、フローティングディフュージョンFD1は、信号電荷を電圧に変換する。 The floating diffusion FD1 accumulates the signal charge transferred from the photodiode PD1. Thereby, the floating diffusion FD1 converts the signal charge into a voltage.
 転送トランジスタNM1は、フォトダイオードPD1に蓄積された信号電荷をフローティングディフュージョンFD1に転送する。具体的には、転送トランジスタNM1は、フォトダイオードPD1とフローティングディフュージョンFD1との間に接続されている。また、転送トランジスタNM1のゲート端子は転送信号線TRに接続される。 The transfer transistor NM1 transfers the signal charge accumulated in the photodiode PD1 to the floating diffusion FD1. Specifically, the transfer transistor NM1 is connected between the photodiode PD1 and the floating diffusion FD1. The gate terminal of the transfer transistor NM1 is connected to the transfer signal line TR.
 リセットトランジスタNM2は、フローティングディフュージョンFD1の電圧を電源信号線VPIXの電圧にリセットする。具体的には、リセットトランジスタNM2は、フローティングディフュージョンFD1と電源信号線VPIXとの間に接続されている。また、リセットトランジスタNM2のゲート端子はリセット信号線RSに接続されている。 The reset transistor NM2 resets the voltage of the floating diffusion FD1 to the voltage of the power supply signal line VPIX. Specifically, the reset transistor NM2 is connected between the floating diffusion FD1 and the power supply signal line VPIX. The gate terminal of the reset transistor NM2 is connected to the reset signal line RS.
 増幅トランジスタNM3は、フローティングディフュージョンFD1の電圧に応じた信号電圧又はリセット電圧を垂直信号線103に出力する。具体的には、増幅トランジスタNM3は、垂直信号線103と電源信号線VPIXとの間に接続されている。また、増幅トランジスタNM3のゲート端子はフローティングディフュージョンFD1に接続されている。 The amplification transistor NM3 outputs a signal voltage or a reset voltage corresponding to the voltage of the floating diffusion FD1 to the vertical signal line 103. Specifically, the amplification transistor NM3 is connected between the vertical signal line 103 and the power supply signal line VPIX. The gate terminal of the amplification transistor NM3 is connected to the floating diffusion FD1.
 列電流源112は、電流源トランジスタNM4を含む。電流源トランジスタNM4は、垂直信号線103と接地電位線との間に接続される。また、電流源トランジスタNM4のゲート端子は制御信号線LGCELLに接続されている。 The column current source 112 includes a current source transistor NM4. The current source transistor NM4 is connected between the vertical signal line 103 and the ground potential line. The gate terminal of the current source transistor NM4 is connected to the control signal line LGCELL.
 この電流源トランジスタNM4と、増幅トランジスタNM3と共にソースフォロア回路を形成する。このソースフォロア回路は、フォトダイオードPD1からフローティングディフュージョンFD1に転送された信号電荷に応じた信号電圧を垂直信号線103に出力する。 A source follower circuit is formed together with the current source transistor NM4 and the amplification transistor NM3. This source follower circuit outputs a signal voltage corresponding to the signal charge transferred from the photodiode PD1 to the floating diffusion FD1 to the vertical signal line 103.
 また、垂直信号線103には、スイッチトランジスタ114の一端が接続されている。また、スイッチトランジスタ114の他端には列増幅部115が接続されている。 Further, one end of a switch transistor 114 is connected to the vertical signal line 103. A column amplifier 115 is connected to the other end of the switch transistor 114.
 列増幅部115は、スイッチトランジスタ114を介して入力された信号を増幅し、増幅した信号を出力端子AMPOUTに出力する。この列増幅部115は、入力容量Cin1と、帰還容量Cfb1と、ソース接地増幅トランジスタNM5と、電流源トランジスタPM1と、クランプトランジスタNM6とを含む。 The column amplifier 115 amplifies the signal input via the switch transistor 114 and outputs the amplified signal to the output terminal AMPOUT. The column amplifier 115 includes an input capacitor Cin1, a feedback capacitor Cfb1, a common-source amplifier transistor NM5, a current source transistor PM1, and a clamp transistor NM6.
 入力容量Cin1は、一端がスイッチトランジスタ114の他端に接続されている。 The input capacitor Cin1 has one end connected to the other end of the switch transistor 114.
 帰還容量Cfb1は、一端が入力容量Cin1の他端に接続され、他端が出力端子AMPOUTに接続されている。 The feedback capacitor Cfb1 has one end connected to the other end of the input capacitor Cin1 and the other end connected to the output terminal AMPOUT.
 ソース接地増幅トランジスタNM5は、ゲート端子が入力容量Cin1の他端に接続されており、ソース端子が接地電位線に接続されており、ドレイン端子が出力端子AMPOUTに接続されている。 The source grounded amplification transistor NM5 has a gate terminal connected to the other end of the input capacitor Cin1, a source terminal connected to the ground potential line, and a drain terminal connected to the output terminal AMPOUT.
 電流源トランジスタPM1は、ゲート端子が電圧線VLOADに接続されており、ソース端子が電源電圧線に接続されており、ドレイン端子が出力端子AMPOUTに接続されている。 The current source transistor PM1 has a gate terminal connected to the voltage line VLOAD, a source terminal connected to the power supply voltage line, and a drain terminal connected to the output terminal AMPOUT.
 クランプトランジスタNM6は、例えば、n型MOSトランジスタであり、入力容量Cin1の他端と出力端子AMPOUTとの間に接続されている。また、クランプトランジスタNM6は、ゲート端子が制御信号線CLに接続されている。 The clamp transistor NM6 is, for example, an n-type MOS transistor, and is connected between the other end of the input capacitor Cin1 and the output terminal AMPOUT. The clamp transistor NM6 has a gate terminal connected to the control signal line CL.
 このように、本実施形態に係る固体撮像装置100は、垂直信号線103と列CDS部116との間に画素信号を増幅する列増幅部115を設ける。これにより、固体撮像装置100は、列CDS部116で用いているクランプトランジスタのVth(閾値電圧)ばらつき、及びゲート-ソース間寄生容量の列毎のばらつきに起因する、列毎のFPN(固定パターンノイズ)の発生を抑制できる。よって、固体撮像装置100は、FPNに起因する縦線状のノイズの発生を防ぐことができる。 As described above, the solid-state imaging device 100 according to the present embodiment includes the column amplification unit 115 that amplifies the pixel signal between the vertical signal line 103 and the column CDS unit 116. As a result, the solid-state imaging device 100 has an FPN (fixed pattern) for each column caused by variations in Vth (threshold voltage) of the clamp transistor used in the column CDS unit 116 and variations in the parasitic capacitance between the gate and the source for each column. Noise) can be suppressed. Therefore, the solid-state imaging device 100 can prevent the occurrence of vertical line noise due to FPN.
 また、本実施形態に係る固体撮像装置100は、列毎に列増幅部115を設けて画素信号を増幅することで、列CDS部116で発生するFPNに対し、信号成分を大きくすることができる。これにより、固体撮像装置100は、高S/Nを実現することができる。 Further, the solid-state imaging device 100 according to the present embodiment can increase the signal component with respect to the FPN generated in the column CDS unit 116 by providing the column amplification unit 115 for each column and amplifying the pixel signal. . Thereby, the solid-state imaging device 100 can realize high S / N.
 なお、図1及び図2では、単位セル(画素回路111)が、受光部、転送トランジスタ、フローティングディフュージョン、リセットトランジスタ及び増幅トランジスタをそれぞれ1つ有する構造である、所謂一画素一セル構造を例に説明したが、単位セルは、複数の受光部及び転送トランジスタを含み、さらに、フローティングディフュージョン、リセットトランジスタ及び増幅トランジスタのいずれか、又は、全てを単位セル内で共有する構造である、所謂多画素一セル構造であってもよい。 1 and 2 exemplify a so-called one-pixel one-cell structure in which each unit cell (pixel circuit 111) has a light receiving portion, a transfer transistor, a floating diffusion, a reset transistor, and an amplification transistor. As described above, the unit cell includes a plurality of light receiving units and transfer transistors, and further has a structure in which any one or all of the floating diffusion, the reset transistor, and the amplification transistor are shared in the unit cell. It may be a cell structure.
 また、固体撮像装置100の構成には、受光部が半導体基板の表面、すなわち、トランジスタのゲート電極及び配線と同じ面側に形成される構造を用いることができる。さらに、固体撮像装置100の構成には、受光部が半導体基板の裏面側(トランジスタのゲート電極及び配線が形成される面と逆の面)に形成される、いわゆる、裏面照射型イメージセンサ(裏面照射型固体撮像装置)の構造を用いてもよい。 In addition, the structure of the solid-state imaging device 100 may use a structure in which the light receiving portion is formed on the surface of the semiconductor substrate, that is, on the same side as the gate electrode and the wiring of the transistor. Further, in the configuration of the solid-state imaging device 100, a so-called back-illuminated image sensor (back surface) in which the light receiving portion is formed on the back surface side of the semiconductor substrate (the surface opposite to the surface on which the transistor gate electrode and wiring are formed). An irradiation type solid-state imaging device) structure may be used.
 次に、本実施形態に係る画素回路111と列増幅部115の動作を図3のタイミングチャートを用いて説明する。なお、図3に示すRS、TR、CL、SH、FD、SFOUT及びAMPOUTは、それぞれ、リセット信号線RS、転送信号線TR、制御信号線CL、制御信号線SH、フローティングディフュージョンFD1、垂直信号線103、及び出力端子AMPOUTの電圧を示す。また、リセット信号線RS及び転送信号線TRの電圧は、垂直走査回路102を介して、制御部110により制御される。また、制御信号線CL及び制御信号線SHの電圧は、制御部110により制御される。 Next, operations of the pixel circuit 111 and the column amplifier 115 according to this embodiment will be described with reference to the timing chart of FIG. Note that RS, TR, CL, SH, FD, SFOUT, and AMPOUT shown in FIG. 3 are a reset signal line RS, a transfer signal line TR, a control signal line CL, a control signal line SH, a floating diffusion FD1, and a vertical signal line, respectively. 103 and the voltage of the output terminal AMPOUT. Further, the voltages of the reset signal line RS and the transfer signal line TR are controlled by the control unit 110 via the vertical scanning circuit 102. The voltages of the control signal line CL and the control signal line SH are controlled by the control unit 110.
 まず、期間t1~t2において、制御部110は、リセット信号線RSをハイレベルにすることにより、画素回路111内のフローティングディフュージョンFD1を電源信号線VPIXの電圧にリセットする。これにより、期間t1~t4において、画素回路111は、リセット電圧を垂直信号線103に出力する。 First, in the period t1 to t2, the control unit 110 resets the floating diffusion FD1 in the pixel circuit 111 to the voltage of the power supply signal line VPIX by setting the reset signal line RS to a high level. Accordingly, the pixel circuit 111 outputs a reset voltage to the vertical signal line 103 in the periods t1 to t4.
 また、時刻t1のタイミングで、制御部110は、制御信号線CLをハイレベルにすることにより、列増幅部115のクランプトランジスタNM6をオンする。これにより、列増幅部115をリセットする。また、時刻t3のタイミングで、制御部110は、制御信号線CLをローレベルにすることにより、クランプトランジスタNM6のリセットを解除する。 Further, at the timing of time t1, the control unit 110 turns on the clamp transistor NM6 of the column amplification unit 115 by setting the control signal line CL to a high level. As a result, the column amplifier 115 is reset. In addition, at the timing of time t3, the control unit 110 releases the reset of the clamp transistor NM6 by setting the control signal line CL to the low level.
 また、期間t1~t4において、制御部110は、制御信号線SHをハイレベルにすることにより、スイッチトランジスタ114をオンする。これにより、リセットが解除された後の時刻t3~t4の期間において、列増幅部のリセット電圧が出力端子AMPOUTに出力される。 In the period t1 to t4, the control unit 110 turns on the switch transistor 114 by setting the control signal line SH to a high level. As a result, the reset voltage of the column amplifier is output to the output terminal AMPOUT during the period from time t3 to t4 after the reset is released.
 その後、期間t4~t5において、制御部110は、転送信号線TRをハイレベルにすることにより、転送トランジスタNM1をオンする。これにより、フォトダイオードPD1に蓄積された信号電荷がフローティングディフュージョンFD1に転送される。この時刻t4のタイミングで転送トランジスタNM1のゲート-FD間寄生容量により、フローティングディフュージョンFD1の電圧が上昇する。これにより、垂直信号線103の電圧が上昇する。この時刻t4において、制御部110は、制御信号線SHの電圧をローレベルにすることにより、スイッチトランジスタ114をオフする。これにより、制御部110は、垂直信号線103の電圧の変動が列増幅部115に伝達しないように制御する。 Thereafter, in the period t4 to t5, the control unit 110 turns on the transfer transistor NM1 by setting the transfer signal line TR to the high level. Thereby, the signal charge accumulated in the photodiode PD1 is transferred to the floating diffusion FD1. At the time t4, the voltage of the floating diffusion FD1 rises due to the parasitic capacitance between the gate and the FD of the transfer transistor NM1. As a result, the voltage of the vertical signal line 103 increases. At time t4, the control unit 110 turns off the switch transistor 114 by setting the voltage of the control signal line SH to a low level. As a result, the control unit 110 performs control so that fluctuations in the voltage of the vertical signal line 103 are not transmitted to the column amplification unit 115.
 その後、時刻t5において、制御部110は、転送信号線TRをローレベルにすることにより、転送トランジスタNM1をオフする。これにより、入射光の強度に応じた信号電圧が垂直信号線103に出力される。 Thereafter, at time t5, the control unit 110 turns off the transfer transistor NM1 by setting the transfer signal line TR to the low level. As a result, a signal voltage corresponding to the intensity of incident light is output to the vertical signal line 103.
 次に、時刻t6において、制御部110は、制御信号線SHの電圧をハイレベルにすることにより、スイッチトランジスタ114をオンする。これにより、列増幅部115は、垂直信号線103に出力されている信号電圧を反転増幅した出力電圧を出力端子AMPOUTに出力する。 Next, at time t6, the control unit 110 turns on the switch transistor 114 by setting the voltage of the control signal line SH to a high level. As a result, the column amplifier 115 outputs an output voltage obtained by inverting and amplifying the signal voltage output to the vertical signal line 103 to the output terminal AMPOUT.
 ここで、比較のために、スイッチトランジスタ114がない場合のソースフォロア回路(垂直信号線103)と列増幅部115の動作を、図4のタイミングチャートを用いて説明する。 Here, for comparison, the operations of the source follower circuit (vertical signal line 103) and the column amplifier 115 when the switch transistor 114 is not provided will be described with reference to the timing chart of FIG.
 上述したように、期間t4~t5において、転送トランジスタNM1のゲート-FD間寄生容量により、フローティングディフュージョンFD1の電圧が上昇する。これにより、垂直信号線103の電圧SFOUTも上昇してしまう。この電圧SFOUTの上昇は、列増幅部115に伝達する。これにより、出力端子AMPOUTの電圧が低下する。 As described above, in the period t4 to t5, the voltage of the floating diffusion FD1 rises due to the parasitic capacitance between the gate and the FD of the transfer transistor NM1. As a result, the voltage SFOUT of the vertical signal line 103 also increases. This rise in voltage SFOUT is transmitted to the column amplifier 115. As a result, the voltage at the output terminal AMPOUT decreases.
 このように、期間t4~t5において、垂直信号線103の電圧変動が実際の画素信号と逆方向に変化してしまうため、出力端子AMPOUTの電圧も実際の画素信号と逆方向に変化してしまう。これにより、出力端子AMPOUTの電圧が実際の信号レベルに安定するまでに長い時間が必要となる。 In this way, during the period t4 to t5, the voltage fluctuation of the vertical signal line 103 changes in the opposite direction to the actual pixel signal, and thus the voltage at the output terminal AMPOUT also changes in the opposite direction to the actual pixel signal. . As a result, a long time is required until the voltage of the output terminal AMPOUT is stabilized at the actual signal level.
 一方、本実施形態のようにスイッチトランジスタ114を設け、期間t4~t5の転送期間においてスイッチトランジスタ114をオフすることにより、この出力端子AMPOUTの電圧が実際の画素信号と逆方向に変化してしまうことを防止できる。 On the other hand, when the switch transistor 114 is provided as in the present embodiment and the switch transistor 114 is turned off during the transfer period from t4 to t5, the voltage at the output terminal AMPOUT changes in the opposite direction to the actual pixel signal. Can be prevented.
 さらに、図4に示す例では、図3に示す例に比べ、時刻t5の直後において、垂直信号線103の電圧SFOUTが実際の信号レベルに安定するまでの時間が長い。これは、スイッチトランジスタ114がない場合には、列増幅部115の入力容量Cin1が垂直信号線103に接続されているため、垂直信号線103の負荷容量が大きいためである。このように、スイッチトランジスタ114がない場合、入力容量Cin1に充電した電荷を放電する時間が必要なため、電圧SFOUTが安定するまでに長い時間がかかる。 Furthermore, in the example shown in FIG. 4, compared with the example shown in FIG. 3, it takes a long time until the voltage SFOUT of the vertical signal line 103 is stabilized at the actual signal level immediately after time t5. This is because when the switch transistor 114 is not provided, the input capacitance Cin1 of the column amplifier 115 is connected to the vertical signal line 103, and thus the load capacitance of the vertical signal line 103 is large. Thus, when there is no switch transistor 114, it takes a long time to stabilize the voltage SFOUT because it takes time to discharge the charge charged in the input capacitor Cin1.
 一方、スイッチトランジスタ114を設け、期間t5~t6において、このスイッチトランジスタ114をオフすることにより、入力容量Cin1の影響を低減できる。 On the other hand, by providing the switch transistor 114 and turning off the switch transistor 114 in the period t5 to t6, the influence of the input capacitance Cin1 can be reduced.
 このように、本発明の第1の実施形態に係る固体撮像装置100は、垂直信号線103の電圧変動に起因する列増幅部115の応答速度の劣化を抑制できる。これにより、固体撮像装置100は、出力端子AMPOUTの電圧が安定するまでの時間を短縮できる。 As described above, the solid-state imaging device 100 according to the first embodiment of the present invention can suppress the deterioration of the response speed of the column amplification unit 115 due to the voltage fluctuation of the vertical signal line 103. Thereby, the solid-state imaging device 100 can shorten the time until the voltage of the output terminal AMPOUT is stabilized.
 以上より、本発明の第1の実施形態に係る固体撮像装置100は、信号転送期間に、垂直信号線103と列増幅部115との間に設けたスイッチトランジスタ114をオフする。これにより、固体撮像装置100は、垂直信号線103の電圧が安定するまでの時間を短縮するとともに、この垂直信号線103の電圧変動を後段の列増幅部115に伝達させないことが可能である。これらにより、固体撮像装置100は、出力端子AMPOUTの電圧が安定するまでの時間を短縮できる。これにより、固体撮像装置100は、縦線状のノイズを抑制することができる。 As described above, the solid-state imaging device 100 according to the first embodiment of the present invention turns off the switch transistor 114 provided between the vertical signal line 103 and the column amplifier 115 during the signal transfer period. Thus, the solid-state imaging device 100 can shorten the time until the voltage of the vertical signal line 103 is stabilized, and can prevent the voltage fluctuation of the vertical signal line 103 from being transmitted to the column amplification unit 115 in the subsequent stage. Accordingly, the solid-state imaging device 100 can shorten the time until the voltage of the output terminal AMPOUT is stabilized. Thereby, the solid-state imaging device 100 can suppress vertical noise.
 また、固体撮像装置100は、スイッチトランジスタ114により、画素ソースフォロア回路の出力抵抗を増加させることができる。これにより、固体撮像装置100は、画素ソースフォロア回路の周波数帯域を狭くすることができるので、ランダムノイズを低減することが可能である。また、このように、画素ソースフォロア回路の周波数帯域を狭くするためには、スイッチトランジスタ114のゲートアスペクト比(ゲート幅W/ゲート長L)が、増幅トランジスタNM3のゲートアスペクト比以下であることが好ましい。 Also, the solid-state imaging device 100 can increase the output resistance of the pixel source follower circuit by the switch transistor 114. Thereby, since the solid-state imaging device 100 can narrow the frequency band of the pixel source follower circuit, it is possible to reduce random noise. Further, in this way, in order to narrow the frequency band of the pixel source follower circuit, the gate aspect ratio (gate width W / gate length L) of the switch transistor 114 should be less than or equal to the gate aspect ratio of the amplification transistor NM3. preferable.
 なお、本実施形態における画素回路111は、行選択トランジスタを備えていないが、行選択トランジスタを備える場合でも、同様の効果を得ることができる。 Note that the pixel circuit 111 in this embodiment does not include a row selection transistor, but the same effect can be obtained even when the pixel circuit 111 includes a row selection transistor.
 また、本実施形態における列増幅部115は、複数の容量とソース接地増幅回路とで構成しているが、列増幅部115をソース接地増幅回路のみで構成した場合、又は複数の容量と差動増幅回路とで構成した場合でも、同様の効果を得ることができる。 In addition, the column amplification unit 115 in the present embodiment is configured by a plurality of capacitors and a common source amplifier circuit. However, when the column amplification unit 115 is configured by only a common source amplifier circuit, or a plurality of capacitors and a differential circuit. The same effect can be obtained even when configured with an amplifier circuit.
 (第2の実施形態)
 本発明は、画素の特性改善のため、垂直信号線103を電源電圧へのプルアップする回路を備える回路構成に対しても有効である。本発明の第2の実施形態では、このようなプルアップ回路を備える固体撮像装置に本発明を適用した場合について説明する。
(Second Embodiment)
The present invention is also effective for a circuit configuration including a circuit for pulling up the vertical signal line 103 to the power supply voltage in order to improve the characteristics of the pixel. In the second embodiment of the present invention, a case where the present invention is applied to a solid-state imaging device including such a pull-up circuit will be described.
 なお、以下では、上述した第1の実施形態との相違点を主に説明し、重複する説明は省略する。 In the following, differences from the above-described first embodiment will be mainly described, and redundant description will be omitted.
 図5は、本発明の第2の実施形態に係る画素回路111、スイッチトランジスタ114、及び列増幅部115の詳細な構成を示す回路図である。なお、図2と同様の要素には同一の符号を付している。 FIG. 5 is a circuit diagram showing a detailed configuration of the pixel circuit 111, the switch transistor 114, and the column amplifier 115 according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the element similar to FIG.
 図5に示すように、本発明の第2の実施形態に係る固体撮像装置は、図2に示す構成に加え、さらに、電圧供給回路201を備える。 As shown in FIG. 5, the solid-state imaging device according to the second embodiment of the present invention further includes a voltage supply circuit 201 in addition to the configuration shown in FIG.
 この電圧供給回路201は、列毎に設けられ、対応する列の垂直信号線103に接続される。また、電圧供給回路201は、対応する列の垂直信号線103に電源信号線VPIXの電圧を供給する。 The voltage supply circuit 201 is provided for each column and is connected to the vertical signal line 103 of the corresponding column. The voltage supply circuit 201 supplies the voltage of the power supply signal line VPIX to the vertical signal line 103 in the corresponding column.
 この電圧供給回路201は、プルアップトランジスタPM12を含む。 The voltage supply circuit 201 includes a pull-up transistor PM12.
 プルアップトランジスタPM12は、電源信号線VPIXと、垂直信号線103との間に接続されている。また、プルアップトランジスタPM12のゲート端子には、制御信号線FDUPが接続されている。 The pull-up transistor PM12 is connected between the power signal line VPIX and the vertical signal line 103. The control signal line FDUP is connected to the gate terminal of the pull-up transistor PM12.
 以下、本発明の第2の実施形態に係る画素回路111及び列増幅部115の動作を図6のタイミングチャートを用いて説明する。なお、図6に示すFDUPは、制御信号線FDUPの電圧を示す。また、制御信号線FDUPの電圧は、制御部110により制御される。 Hereinafter, the operations of the pixel circuit 111 and the column amplifier 115 according to the second embodiment of the present invention will be described with reference to the timing chart of FIG. Note that FDUP shown in FIG. 6 indicates the voltage of the control signal line FDUP. Further, the voltage of the control signal line FDUP is controlled by the control unit 110.
 図3に示す動作に加え、制御部110は、期間t4~t5の転送期間において、制御信号線FDUPをローレベルにすることにより、プルアップトランジスタPM12をオンする。これにより、垂直信号線103の電圧が電源信号線VPIXの電圧にプルアップされる。 In addition to the operation shown in FIG. 3, the control unit 110 turns on the pull-up transistor PM12 by setting the control signal line FDUP to a low level during the transfer period from t4 to t5. As a result, the voltage of the vertical signal line 103 is pulled up to the voltage of the power supply signal line VPIX.
 図7は、比較のための図であり、スイッチトランジスタ114がない場合の画素回路111と列増幅部115の動作を示すタイミングチャートである。 FIG. 7 is a diagram for comparison, and is a timing chart showing operations of the pixel circuit 111 and the column amplifier 115 when the switch transistor 114 is not provided.
 図6及び図7に示すように、上述した第1の実施形態と同様に、第2の実施形態に係る固体撮像装置は、垂直信号線103の電圧変動に起因する列増幅部115の応答速度の劣化を抑制することが可能である。 As shown in FIGS. 6 and 7, similarly to the first embodiment described above, the solid-state imaging device according to the second embodiment has a response speed of the column amplification unit 115 caused by voltage fluctuations of the vertical signal line 103. Can be prevented.
 さらに、図4に示す例では、図3に示す例に比べ、時刻t5の直後において、垂直信号線103の電圧SFOUTが実際の信号レベルに安定するまでの時間が長い。これは、スイッチトランジスタ114がない場合には、列増幅部115の入力容量Cin1が垂直信号線103に接続されているため、垂直信号線103の負荷容量が大きいためである。このように、スイッチトランジスタ114がない場合、プルアップ動作において入力容量Cin1に充電した電荷を放電する時間が必要なため、電圧SFOUTが安定するまでに長い時間がかかる。 Furthermore, in the example shown in FIG. 4, compared with the example shown in FIG. 3, it takes a long time until the voltage SFOUT of the vertical signal line 103 is stabilized at the actual signal level immediately after time t5. This is because when the switch transistor 114 is not provided, the input capacitance Cin1 of the column amplifier 115 is connected to the vertical signal line 103, and thus the load capacitance of the vertical signal line 103 is large. As described above, when the switch transistor 114 is not provided, it takes a long time for the voltage SFOUT to be stabilized because it is necessary to discharge the charge charged in the input capacitor Cin1 in the pull-up operation.
 一方、スイッチトランジスタ114を設け、期間t5~t6において、このスイッチトランジスタ114をオフすることにより、入力容量Cin1の影響を低減できる。 On the other hand, by providing the switch transistor 114 and turning off the switch transistor 114 in the period t5 to t6, the influence of the input capacitance Cin1 can be reduced.
 さらに、図4と図7とを比較した場合、図7ではプルアップ動作を行うことにより、期間t4~t5における垂直信号線103の電圧変動がより大きくなる。これにより、出力端子AMPOUTの電圧変動も大きくなる。また、時刻t5以降において、プルアップ動作において入力容量Cin1に充電した電荷を放電する時間が必要なため、電圧SFOUTが安定するまでにより長い時間がかかる。 Further, when FIG. 4 is compared with FIG. 7, the voltage fluctuation of the vertical signal line 103 in the period t4 to t5 becomes larger by performing the pull-up operation in FIG. As a result, the voltage fluctuation of the output terminal AMPOUT also increases. Further, after time t5, since it is necessary to discharge the charge charged in the input capacitor Cin1 in the pull-up operation, it takes a longer time for the voltage SFOUT to stabilize.
 このような場合でも、本実施形態のようにスイッチトランジスタ114を設け、期間t4~t5においてスイッチトランジスタ114をオフすることにより、出力端子AMPOUTの電圧が実際の画素信号と逆方向に変化してしまうことを防止できる。また、期間t5~t6において、スイッチトランジスタ114をオフすることにより、入力容量Cin1の影響を低減できる。これらにより、固体撮像装置100は、出力端子AMPOUTの電圧が安定するまでの時間を短縮できる。 Even in such a case, by providing the switch transistor 114 as in the present embodiment and turning off the switch transistor 114 in the period t4 to t5, the voltage at the output terminal AMPOUT changes in the opposite direction to the actual pixel signal. Can be prevented. Further, by turning off the switch transistor 114 in the period t5 to t6, the influence of the input capacitor Cin1 can be reduced. Accordingly, the solid-state imaging device 100 can shorten the time until the voltage of the output terminal AMPOUT is stabilized.
 なお、本実施形態における画素回路111は、行選択トランジスタを備えていないが、行選択トランジスタを備える場合でも、同様の効果を得ることができる。 Note that the pixel circuit 111 in this embodiment does not include a row selection transistor, but the same effect can be obtained even when the pixel circuit 111 includes a row selection transistor.
 また、本実施形態における列増幅部115は、複数の容量とソース接地増幅回路とで構成されているが、列増幅部115をソース接地増幅回路のみで構成した場合、又は複数の容量と差動増幅回路とで構成した場合でも、同様の効果を得ることができる。 In addition, the column amplification unit 115 in the present embodiment is configured by a plurality of capacitors and a common source amplifier circuit. However, when the column amplification unit 115 is configured by only a common source amplifier circuit, or a plurality of capacitors and a differential circuit. The same effect can be obtained even when configured with an amplifier circuit.
 また、本実施形態における電圧供給回路201は、垂直信号線103を電源電圧へプルアップする構成となっているが、垂直信号線103をグランド(接地電位)又はバイアス電圧(任意の定電圧)にリセットする構成でも、同様の効果を得ることができる。 Further, the voltage supply circuit 201 in the present embodiment is configured to pull up the vertical signal line 103 to the power supply voltage, but the vertical signal line 103 is set to the ground (ground potential) or the bias voltage (arbitrary constant voltage). The same effect can be obtained with the reset configuration.
 また、最近のMOSセンサでは、列CDS回路の代わりにカラムADC回路(アナログ-デジタル変換器)を内蔵するものもある。これは従来のアナログ出力の構成と比較して、AD変換の際に画素回路111及び列増幅部115で発生するFPNも除去することができるというメリットがある。また、カラムADC回路を備えるMOSセンサは、画素信号を読み出した直後に、読み出した画素信号をデジタル信号に変換できるため、列CDS回路及び出力アンプ回路などの出力回路で発生するノイズを抑制できる。また、カラムADC回路を備えるMOSセンサは、デジタル信号処理をチップ内で行うことができるというメリットがある。 Also, some recent MOS sensors include a column ADC circuit (analog-digital converter) instead of the column CDS circuit. This has an advantage that the FPN generated in the pixel circuit 111 and the column amplifier 115 during AD conversion can be removed as compared with the conventional analog output configuration. In addition, since the MOS sensor including the column ADC circuit can convert the read pixel signal into a digital signal immediately after reading the pixel signal, noise generated in an output circuit such as a column CDS circuit and an output amplifier circuit can be suppressed. In addition, a MOS sensor including a column ADC circuit has an advantage that digital signal processing can be performed in a chip.
 本発明は、このようにカラムADCを内蔵しているチップに搭載しても、同様の効果を得ることができる。 The present invention can obtain the same effect even if it is mounted on a chip having a built-in column ADC.
 図8は、本発明を、カラムADCを備える固体撮像装置に適用した固体撮像装置100Aの構成を示すブロック図である。なお、図1と同様の要素には、同一の符号を付している。 FIG. 8 is a block diagram illustrating a configuration of a solid-state imaging device 100A in which the present invention is applied to a solid-state imaging device including a column ADC. In addition, the same code | symbol is attached | subjected to the element similar to FIG.
 図8に示す固体撮像装置100Aは、図1に示す固体撮像装置100に対して、列CDS回路106と、水平走査回路107と、水平共通信号線108と、出力アンプ回路109との代わりに、カラムADC回路211と、デジタルメモリ213と、シフトレジスタ214とを備える。 8 differs from the solid-state imaging device 100 shown in FIG. 1 in place of the column CDS circuit 106, the horizontal scanning circuit 107, the horizontal common signal line 108, and the output amplifier circuit 109. A column ADC circuit 211, a digital memory 213, and a shift register 214 are provided.
 カラムADC回路211は、列毎に設けられた複数のカラムADC212を備える。 The column ADC circuit 211 includes a plurality of column ADCs 212 provided for each column.
 カラムADC212は、対応する列に設けられた列増幅部115により増幅された信号をデジタル信号に変換する。 The column ADC 212 converts the signal amplified by the column amplifier 115 provided in the corresponding column into a digital signal.
 デジタルメモリ213は、複数のカラムADC212により変換されたデジタル信号を保持する。 The digital memory 213 holds digital signals converted by the plurality of column ADCs 212.
 シフトレジスタ214は、デジタルメモリ213に保持されるデジタル信号を水平方向に転送するとともに、固体撮像装置100Aの外部にシリアル出力する。 The shift register 214 transfers the digital signal held in the digital memory 213 in the horizontal direction and serially outputs it outside the solid-state imaging device 100A.
 (第3の実施形態)
 本発明の第3の実施形態では、上述した固体撮像装置100を備える撮像装置(カメラシステム)について説明する。
(Third embodiment)
In the third embodiment of the present invention, an imaging apparatus (camera system) including the solid-state imaging apparatus 100 described above will be described.
 図9は、本発明の第3の実施形態に係る撮像装置120の構成を示す図である。 FIG. 9 is a diagram illustrating a configuration of an imaging apparatus 120 according to the third embodiment of the present invention.
 図9に示す撮像装置120は、外光を集光する光学部材(レンズ)121と、本発明の第1又は第2の実施形態に係るMOS型の固体撮像装置100と、固体撮像装置100内の回路の動作タイミングを制御するタイミング制御部123と、画像信号処理部124とを備えている。 An imaging device 120 shown in FIG. 9 includes an optical member (lens) 121 that collects external light, the MOS solid-state imaging device 100 according to the first or second embodiment of the present invention, and the interior of the solid-state imaging device 100. A timing control unit 123 that controls the operation timing of the circuit, and an image signal processing unit 124.
 固体撮像装置100は、光学部材121を通って入射した光を画像信号に変換して出力する。 The solid-state imaging device 100 converts the light incident through the optical member 121 into an image signal and outputs the image signal.
 画像信号処理部124は、固体撮像装置100から出力された画像信号を処理し、処理した画像信号を表示装置などの外部機器に出力する。 The image signal processing unit 124 processes the image signal output from the solid-state imaging device 100 and outputs the processed image signal to an external device such as a display device.
 例えば、固体撮像装置100と画像信号処理部124とは同一半導体チップ上に形成されている。なお、固体撮像装置100と画像信号処理部124とは、互いに別々の半導体チップ上に形成されてもよい。 For example, the solid-state imaging device 100 and the image signal processing unit 124 are formed on the same semiconductor chip. Note that the solid-state imaging device 100 and the image signal processing unit 124 may be formed on different semiconductor chips.
 固体撮像装置100は、上述したように、入射した光を電圧信号に変換する画素アレイ101と、画素アレイ101から出力された信号を処理する信号処理部132と、信号処理部132から出力された信号を画像信号として出力する出力回路133とを備える。なお、信号処理部132は、上述したスイッチ回路104、列増幅回路105、及び列CDS回路106に相当する。また、出力回路133は、上述した出力アンプ回路109に相当する。 As described above, the solid-state imaging device 100 includes the pixel array 101 that converts incident light into a voltage signal, the signal processing unit 132 that processes the signal output from the pixel array 101, and the signal processing unit 132 that outputs the signal. And an output circuit 133 that outputs the signal as an image signal. The signal processing unit 132 corresponds to the switch circuit 104, the column amplifier circuit 105, and the column CDS circuit 106 described above. The output circuit 133 corresponds to the output amplifier circuit 109 described above.
 画像信号処理部124は、出力回路133からの画像信号を受ける相関二重サンプリング回路(CDS回路134)と、AGC(Auto Gain Control)135と、ADC(Analog Digital Converter)136と、DSP(Digital Signal Processor)137とを備える。 The image signal processing unit 124 includes a correlated double sampling circuit (CDS circuit 134) that receives an image signal from the output circuit 133, an AGC (Auto Gain Control) 135, an ADC (Analog Digital Converter) 136, and a DSP (Digital Signal). Processor) 137.
 すなわち、本実施形態の撮像装置120は、応答速度の劣化を抑制することができる固体撮像装置100を備えることにより、高速な撮像装置を実現できる。 That is, the imaging device 120 of the present embodiment can realize a high-speed imaging device by including the solid-state imaging device 100 that can suppress deterioration in response speed.
 言い換えると、本発明は、列増幅回路の出力電圧が安定するまでの時間を短縮できる撮像装置を提供できる。また、撮像装置120は、信号転送期間に、前記垂直信号線に設けたスイッチトランジスタをオフすることで、垂直信号線の電圧が安定するまでの時間を短縮するとともに、この垂直信号線の電圧変動を後段の列増幅回路に伝達させないことが可能である。これにより、撮像装置120は、回路の応答速度の劣化を抑制することができ、縦線状のノイズを抑制することができる。 In other words, the present invention can provide an imaging device that can shorten the time until the output voltage of the column amplifier circuit is stabilized. Further, the imaging device 120 shortens the time until the voltage of the vertical signal line is stabilized by turning off the switch transistor provided in the vertical signal line during the signal transfer period, and the voltage fluctuation of the vertical signal line. Can not be transmitted to the column amplifier circuit in the subsequent stage. Thereby, the imaging device 120 can suppress deterioration of the response speed of the circuit, and can suppress vertical line noise.
 また、撮像装置120は、スイッチトランジスタにより、画素ソースフォロア回路の出力抵抗を増加させることができるため、画素ソースフォロア回路の周波数帯域を狭くすることができ、ランダムノイズを低減することが可能である。 In addition, since the imaging device 120 can increase the output resistance of the pixel source follower circuit by the switch transistor, the frequency band of the pixel source follower circuit can be narrowed and random noise can be reduced. .
 (まとめ)
 以上より、本発明の第1から第3の実施形態に係る固体撮像装置は、行列状に配置され、入射光の強度に応じた信号電圧を出力する複数の画素回路111と、列毎に1つ設けられ、対応する列に配置された複数の画素回路により信号電圧が出力される複数の垂直信号線103と、列毎に1つ設けられ、対応する列に設けられた垂直信号線に接続される複数のスイッチ部(スイッチトランジスタ114)と、列毎に1つ設けられ、対応する列に設けられたスイッチ部を介して垂直信号線に接続され、垂直信号線に出力された信号電圧を増幅する複数の列増幅部115とを備え、複数の画素回路の各々は、入射光の強度に応じた信号電荷を蓄積する受光部(PD1)と、フローティングディフュージョン(FD1)と、受光部とフローティングディフュージョンとの間に接続された転送トランジスタ(NM1)と、フローティングディフュージョンの電圧に応じた信号電圧を垂直信号線に出力する増幅トランジスタ(NM3)とを備え、固体撮像装置は、さらに、受光部からフローティングディフュージョンに信号電荷を転送する転送期間(t4~t5)においてスイッチ部をオフする制御部110を備えている。
(Summary)
As described above, the solid-state imaging devices according to the first to third embodiments of the present invention are arranged in a matrix and output a signal voltage corresponding to the intensity of incident light, and one for each column. Provided, and a plurality of vertical signal lines 103 from which signal voltages are output by a plurality of pixel circuits arranged in the corresponding column, and one vertical signal line provided for each column, connected to the corresponding vertical signal line. A plurality of switch sections (switch transistors 114), one for each column, connected to the vertical signal line via the switch section provided in the corresponding column, and the signal voltage output to the vertical signal line Each of the plurality of pixel circuits includes a light receiving unit (PD1) that accumulates signal charges corresponding to the intensity of incident light, a floating diffusion (FD1), a light receiving unit, and a floating unit. De The solid-state imaging device further includes a transfer transistor (NM1) connected to the fusion and an amplification transistor (NM3) that outputs a signal voltage corresponding to the voltage of the floating diffusion to the vertical signal line. A control unit 110 is provided to turn off the switch unit during a transfer period (t4 to t5) in which signal charges are transferred to the floating diffusion.
 これにより、本発明の一形態に係る固体撮像装置は、転送期間に生じるフローティングディフュージョンの電圧変動に起因する垂直信号線の電圧変動を列増幅部に伝達させない。これにより、本発明の一形態に係る固体撮像装置は、列増幅部の出力電圧が、画素信号を増幅した電圧と逆方向に変化してしまうことを防止できる。よって、本発明の一形態に係る固体撮像装置は、列増幅部の出力電圧が安定するまでの時間を短縮できる。 Thereby, the solid-state imaging device according to an aspect of the present invention does not transmit the voltage variation of the vertical signal line due to the voltage variation of the floating diffusion generated in the transfer period to the column amplification unit. Thereby, the solid-state imaging device according to an aspect of the present invention can prevent the output voltage of the column amplification unit from changing in the opposite direction to the voltage obtained by amplifying the pixel signal. Therefore, the solid-state imaging device according to one embodiment of the present invention can shorten the time until the output voltage of the column amplification unit is stabilized.
 さらに、制御部は、転送期間より後の第1出力期間(t6~)において、転送トランジスタをオフするとともに、スイッチ部をオンする。これにより、本発明の一形態に係る固体撮像装置は、第1出力期間に列増幅部が信号電圧を増幅した出力電圧を安定して出力するまでの時間を短縮できる。 Further, the control unit turns off the transfer transistor and turns on the switch unit in the first output period (t6 and after) after the transfer period. Accordingly, the solid-state imaging device according to an aspect of the present invention can shorten the time until the column amplification unit stably outputs the output voltage obtained by amplifying the signal voltage in the first output period.
 また、制御部は、転送期間の直後の期間である第2出力期間(t5~t6)において、転送トランジスタをオフするとともに、スイッチ部をオフし、第1出力期間は、第2出力期間の直後の期間である。このように、本発明の一形態に係る固体撮像装置は、第2出力期間にスイッチ部をオフすることにより、第2出力期間における垂直信号線の負荷容量を低減できる。これにより、本発明の一形態に係る固体撮像装置は、垂直信号線の電圧が安定するまでの時間を短縮できるので、結果として、列増幅部の出力電圧が安定するまでの期間を短縮できる。 Further, the control unit turns off the transfer transistor and turns off the switch unit in the second output period (t5 to t6), which is a period immediately after the transfer period, and the first output period is immediately after the second output period. Is the period. As described above, the solid-state imaging device according to one embodiment of the present invention can reduce the load capacity of the vertical signal line in the second output period by turning off the switch unit in the second output period. Accordingly, the solid-state imaging device according to an aspect of the present invention can shorten the time until the voltage of the vertical signal line is stabilized, and as a result, the period until the output voltage of the column amplifier is stabilized can be shortened.
 また、スイッチ部はMOSトランジスタであり、MOSトランジスタのゲートアスペクト比は、増幅トランジスタのゲートアスペクト比以下である。これにより、本発明の一形態に係る固体撮像装置は、画素ソースフォロア回路の出力抵抗を増加させることができる。よって、本発明の一形態に係る固体撮像装置は、画素ソースフォロア回路の周波数帯域を狭くすることができるので、ランダムノイズの発生を低減できる。 The switch unit is a MOS transistor, and the gate aspect ratio of the MOS transistor is equal to or less than the gate aspect ratio of the amplification transistor. Accordingly, the solid-state imaging device according to one embodiment of the present invention can increase the output resistance of the pixel source follower circuit. Therefore, the solid-state imaging device according to one embodiment of the present invention can narrow the frequency band of the pixel source follower circuit, and thus can reduce the occurrence of random noise.
 また、本発明の一形態に係る固体撮像装置は、さらに、列毎に1つ設けられ、対応する列に設けられた垂直信号線に定電圧を供給する複数の電圧供給回路201を備え、制御部は、転送期間において、電圧供給回路に垂直信号線へ定電圧を供給させる。これにより、本発明の一形態に係る固体撮像装置は、画素の特性改善のために、電圧供給回路(例えば、プルアップ回路)を備える場合においても、列増幅回路の出力電圧が安定するまでの時間を短縮できる。 The solid-state imaging device according to one embodiment of the present invention further includes a plurality of voltage supply circuits 201 that are provided for each column and supply a constant voltage to the vertical signal lines provided in the corresponding column, The unit causes the voltage supply circuit to supply a constant voltage to the vertical signal line in the transfer period. As a result, the solid-state imaging device according to one embodiment of the present invention can improve the output voltage of the column amplifier circuit even when it includes a voltage supply circuit (for example, a pull-up circuit) in order to improve pixel characteristics. You can save time.
 また、電圧供給回路は、ソース端子及びドレイン端子の一方に定電圧が印加され、ソース端子及びドレイン端子の他方が垂直信号線に接続されるMOSトランジスタ(PM12)を含む。 The voltage supply circuit includes a MOS transistor (PM12) in which a constant voltage is applied to one of the source terminal and the drain terminal, and the other of the source terminal and the drain terminal is connected to the vertical signal line.
 なお、本発明は、このような固体撮像装置として実現できるだけでなく、固体撮像装置に含まれる特徴的な手段をステップとする固体撮像装置の駆動方法又は制御方法として実現したり、そのような特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。 The present invention can be realized not only as such a solid-state imaging device, but also as a driving method or a control method of a solid-state imaging device using characteristic means included in the solid-state imaging device as a step. It can also be realized as a program that causes a computer to execute typical steps.
 さらに、本発明は、このような固体撮像装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現したり、このような固体撮像装置を備える撮像装置(カメラ)として実現したり、このような固体撮像装置を含むカメラシステムとして実現したりできる。 Furthermore, the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device, or as an imaging device (camera) including such a solid-state imaging device. Or a camera system including such a solid-state imaging device.
 また、上記第1~第3の実施形態に係る固体撮像装置及び撮像装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又はすべてを含むように1チップ化されてもよい。 Further, the solid-state imaging device according to the first to third embodiments and each processing unit included in the imaging device are typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integration of circuits is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 また、本発明の第1~第3の実施形態に係る、固体撮像装置及び撮像装置の機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。 Also, some or all of the functions of the solid-state imaging device and the imaging device according to the first to third embodiments of the present invention may be realized by a processor such as a CPU executing a program.
 さらに、本発明は上記プログラムであってもよいし、上記プログラムが記録された記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。 Furthermore, the present invention may be the above program or a recording medium on which the above program is recorded. Needless to say, the program can be distributed via a transmission medium such as the Internet.
 また、上記第1~第3の実施形態に係る、固体撮像装置、撮像装置及びこれらの変形例の機能のうち少なくとも一部を組み合わせてもよい。 In addition, at least some of the functions of the solid-state imaging device, the imaging device, and the modifications according to the first to third embodiments may be combined.
 また、上記で用いた数字は、すべて本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。さらに、ハイ/ローにより表される論理レベル又はオン/オフにより表されるスイッチング状態は、本発明を具体的に説明するために例示するものであり、例示された論理レベル又はスイッチング状態の異なる組み合わせにより、同等な結果を得ることも可能である。さらに、上で示した回路の構成は本発明を具体的に説明するために例示するものであり、異なる構成の回路により同等の入出力関係を実現することも可能である。また、トランジスタ等のn型及びp型等は、本発明を具体的に説明するために例示するものであり、これらを反転させることで、同等の結果を得ることも可能である。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。 Also, the numbers used above are all exemplified for specifically describing the present invention, and the present invention is not limited to the illustrated numbers. Furthermore, the logic levels represented by high / low or the switching states represented by on / off are illustrative for the purpose of illustrating the present invention, and different combinations of the illustrated logic levels or switching states. Therefore, it is possible to obtain an equivalent result. Further, the circuit configuration shown above is exemplified to specifically describe the present invention, and an equivalent input / output relationship can be realized by a circuit having a different configuration. In addition, n-type and p-type transistors and the like are illustrated to specifically describe the present invention, and it is possible to obtain equivalent results by inverting them. In addition, the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
 また、上記説明では、MOSトランジスタを用いた例を示したが、バイポーラトランジスタ等の他のトランジスタを用いてもよい。 In the above description, an example using a MOS transistor is shown, but another transistor such as a bipolar transistor may be used.
 更に、本発明の主旨を逸脱しない限り、本実施形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。 Furthermore, various modifications in which the present embodiment is modified within the scope conceived by those skilled in the art are also included in the present invention without departing from the gist of the present invention.
 本発明は、固体撮像装置に適用できる。また、本発明は、固体撮像装置を備えるデジタルスチルカメラ、デジタルビデオカメラ及び携帯電話機器等に適用できる。 The present invention can be applied to a solid-state imaging device. Further, the present invention can be applied to a digital still camera, a digital video camera, a mobile phone device, and the like provided with a solid-state imaging device.
 100、100A  固体撮像装置
 101  画素アレイ
 102  垂直走査回路
 103  垂直信号線
 104  スイッチ回路
 105  列増幅回路
 106  列CDS回路
 107  水平走査回路
 108  水平共通信号線
 109  出力アンプ回路
 110  制御部
 111  画素回路
 112  列電流源
 114  スイッチトランジスタ
 115  列増幅部
 116  列CDS部
 120  撮像装置
 121  光学部材
 123  タイミング制御部
 124  画像信号処理部
 132  信号処理部
 133  出力回路
 134  CDS回路
 135  AGC
 136  ADC
 137  DSP
 201  電圧供給回路
 211  カラムADC回路
 212  カラムADC
 213  デジタルメモリ
 214  シフトレジスタ
 400  読み出し回路
 401  列アンプ
 420  差動アンプ
 430  画素出力線
 AMPOUT  出力端子
 Cfb1  帰還容量
 Cin1  入力容量
 CL、FDUP、LGCELL、SH  制御信号線
 FD1  フローティングディフュージョン
 NM1  転送トランジスタ
 NM2  リセットトランジスタ
 NM3  増幅トランジスタ
 NM4、PM1  電流源トランジスタ
 NM5  ソース接地増幅トランジスタ
 NM6  クランプトランジスタ
 PD1  フォトダイオード
 PM12  プルアップトランジスタ
 RS  リセット信号線
 SFOUT  電圧
 TR  転送信号線
 VLOAD  電圧線
 VPIX  電源信号線
DESCRIPTION OF SYMBOLS 100,100A Solid-state imaging device 101 Pixel array 102 Vertical scanning circuit 103 Vertical signal line 104 Switch circuit 105 Column amplification circuit 106 Column CDS circuit 107 Horizontal scanning circuit 108 Horizontal common signal line 109 Output amplifier circuit 110 Control part 111 Pixel circuit 112 Column current Source 114 Switch transistor 115 Column amplifying unit 116 Column CDS unit 120 Imaging device 121 Optical member 123 Timing control unit 124 Image signal processing unit 132 Signal processing unit 133 Output circuit 134 CDS circuit 135 AGC
136 ADC
137 DSP
201 Voltage supply circuit 211 Column ADC circuit 212 Column ADC
213 Digital memory 214 Shift register 400 Read circuit 401 Column amplifier 420 Differential amplifier 430 Pixel output line AMPOUT Output terminal Cfb1 Feedback capacitor Cin1 Input capacitor CL, FDUP, LGCELL, SH Control signal line FD1 Floating diffusion NM1 Transfer transistor NM2 Reset transistor NM3 Amplification Transistor NM4, PM1 Current source transistor NM5 Common source amplification transistor NM6 Clamp transistor PD1 Photo diode PM12 Pull-up transistor RS Reset signal line SFOUT voltage TR Transfer signal line VLOAD Voltage line VPIX Power supply signal line

Claims (9)

  1.  固体撮像装置であって、
     行列状に配置され、入射光の強度に応じた信号電圧を出力する複数の画素回路と、
     列毎に1つ設けられ、対応する列に配置された複数の画素回路により前記信号電圧が出力される複数の垂直信号線と、
     列毎に1つ設けられ、対応する列に設けられた前記垂直信号線に接続される複数のスイッチ部と、
     列毎に1つ設けられ、対応する列に設けられた前記スイッチ部を介して前記垂直信号線に接続され、前記垂直信号線に出力された前記信号電圧を増幅する複数の列増幅部とを備え、
     前記複数の画素回路の各々は、
     入射光の強度に応じた信号電荷を蓄積する受光部と、
     フローティングディフュージョンと、
     前記受光部と前記フローティングディフュージョンとの間に接続された転送トランジスタと、
     前記フローティングディフュージョンの電圧に応じた前記信号電圧を前記垂直信号線に出力する増幅トランジスタとを備え、
     前記固体撮像装置は、さらに、
     前記受光部から前記フローティングディフュージョンに信号電荷を転送する転送期間において前記スイッチ部をオフする制御部を備える
     固体撮像装置。
    A solid-state imaging device,
    A plurality of pixel circuits arranged in a matrix and outputting a signal voltage corresponding to the intensity of incident light;
    A plurality of vertical signal lines that are provided for each column and from which the signal voltage is output by a plurality of pixel circuits arranged in the corresponding column;
    A plurality of switch units provided one for each column and connected to the vertical signal line provided in the corresponding column;
    A plurality of column amplification units provided for each column, connected to the vertical signal line via the switch units provided in the corresponding column, and amplifying the signal voltage output to the vertical signal line; Prepared,
    Each of the plurality of pixel circuits is
    A light receiving unit that accumulates signal charges according to the intensity of incident light; and
    Floating diffusion,
    A transfer transistor connected between the light receiving unit and the floating diffusion;
    An amplification transistor that outputs the signal voltage corresponding to the voltage of the floating diffusion to the vertical signal line;
    The solid-state imaging device further includes:
    A solid-state imaging device comprising: a control unit that turns off the switch unit during a transfer period in which signal charges are transferred from the light receiving unit to the floating diffusion.
  2.  前記制御部は、前記転送期間より後の第1出力期間において、前記転送トランジスタをオフするとともに、前記スイッチ部をオンする
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the control unit turns off the transfer transistor and turns on the switch unit in a first output period after the transfer period.
  3.  前記制御部は、前記転送期間の直後の期間である第2出力期間において、前記転送トランジスタをオフするとともに、前記スイッチ部をオフし、
     前記第1出力期間は、前記第2出力期間の直後の期間である
     請求項2記載の固体撮像装置。
    In the second output period that is a period immediately after the transfer period, the control unit turns off the transfer transistor and turns off the switch unit,
    The solid-state imaging device according to claim 2, wherein the first output period is a period immediately after the second output period.
  4.  前記スイッチ部はMOSトランジスタである
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the switch unit is a MOS transistor.
  5.  前記MOSトランジスタのゲートアスペクト比は、前記増幅トランジスタのゲートアスペクト比以下である
     請求項4記載の固体撮像装置。
    The solid-state imaging device according to claim 4, wherein a gate aspect ratio of the MOS transistor is equal to or less than a gate aspect ratio of the amplification transistor.
  6.  前記固体撮像装置は、さらに、
     列毎に1つ設けられ、対応する列に設けられた前記垂直信号線に定電圧を供給する複数の電圧供給回路を備え、
     前記制御部は、前記転送期間において、前記電圧供給回路に前記垂直信号線へ前記定電圧を供給させる
     請求項1記載の固体撮像装置。
    The solid-state imaging device further includes:
    A plurality of voltage supply circuits, one for each column, for supplying a constant voltage to the vertical signal line provided in the corresponding column;
    The solid-state imaging device according to claim 1, wherein the control unit causes the voltage supply circuit to supply the constant voltage to the vertical signal line in the transfer period.
  7.  前記電圧供給回路は、ソース端子及びドレイン端子の一方に前記定電圧が印加され、前記ソース端子及び前記ドレイン端子の他方が前記垂直信号線に接続されるMOSトランジスタを含む
     請求項6記載の固体撮像装置。
    The solid-state imaging according to claim 6, wherein the voltage supply circuit includes a MOS transistor in which the constant voltage is applied to one of a source terminal and a drain terminal, and the other of the source terminal and the drain terminal is connected to the vertical signal line. apparatus.
  8.  請求項1記載の固体撮像装置を備える
     撮像装置。
    An imaging device comprising the solid-state imaging device according to claim 1.
  9.  行列状に配置され、入射光の強度に応じた信号電圧を出力する複数の画素回路と、
     列毎に1つ設けられ、対応する列に配置された複数の画素回路により前記信号電圧が出力される複数の垂直信号線と、
     列毎に1つ設けられ、対応する列に設けられた前記垂直信号線に接続される複数のスイッチ部と、
     列毎に1つ設けられ、対応する列に設けられた前記スイッチ部を介して前記垂直信号線に接続され、前記垂直信号線に出力された前記信号電圧を増幅する複数の列増幅部とを備える固体撮像装置の駆動方法であって、
     前記複数の画素回路の各々は、
     入射光の強度に応じた信号電荷を蓄積する受光部と、
     フローティングディフュージョンと、
     前記受光部と前記フローティングディフュージョンとの間に接続された転送トランジスタと、
     前記フローティングディフュージョンの電圧に応じた前記信号電圧を前記垂直信号線に出力する増幅トランジスタとを備え、
     前記固体撮像装置の駆動方法は、
     前記受光部から前記フローティングディフュージョンに信号電荷を転送する転送期間において前記スイッチ部をオフする
     固体撮像装置の駆動方法。
    A plurality of pixel circuits arranged in a matrix and outputting a signal voltage corresponding to the intensity of incident light;
    A plurality of vertical signal lines that are provided for each column and from which the signal voltage is output by a plurality of pixel circuits arranged in the corresponding column;
    A plurality of switch units provided one for each column and connected to the vertical signal line provided in the corresponding column;
    A plurality of column amplification units provided for each column, connected to the vertical signal line via the switch units provided in the corresponding column, and amplifying the signal voltage output to the vertical signal line; A solid-state imaging device driving method comprising:
    Each of the plurality of pixel circuits is
    A light receiving unit that accumulates signal charges according to the intensity of incident light; and
    Floating diffusion,
    A transfer transistor connected between the light receiving unit and the floating diffusion;
    An amplification transistor that outputs the signal voltage corresponding to the voltage of the floating diffusion to the vertical signal line;
    The driving method of the solid-state imaging device is:
    A method for driving a solid-state imaging device, wherein the switch unit is turned off during a transfer period in which signal charges are transferred from the light receiving unit to the floating diffusion.
PCT/JP2010/005075 2009-11-27 2010-08-17 Solid-state image pickup device, method for driving same, and image pickup device WO2011064921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009270846A JP2011114731A (en) 2009-11-27 2009-11-27 Solid-state imaging device, method of driving the same, and imaging unit
JP2009-270846 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011064921A1 true WO2011064921A1 (en) 2011-06-03

Family

ID=44066036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005075 WO2011064921A1 (en) 2009-11-27 2010-08-17 Solid-state image pickup device, method for driving same, and image pickup device

Country Status (2)

Country Link
JP (1) JP2011114731A (en)
WO (1) WO2011064921A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250836B2 (en) 2014-12-15 2019-04-02 Sony Corporation Solid-state image sensing apparatus, control method, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414791B2 (en) * 2021-12-07 2024-01-16 キヤノン株式会社 Photoelectric conversion devices and equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252529A (en) * 2004-03-03 2005-09-15 Sony Corp Solid-state image pickup device and pixel signal reading method
JP2005348040A (en) * 2004-06-02 2005-12-15 Canon Inc Amplification type imaging apparatus and imaging system
JP2007067622A (en) * 2005-08-30 2007-03-15 Konica Minolta Holdings Inc Radiation imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252529A (en) * 2004-03-03 2005-09-15 Sony Corp Solid-state image pickup device and pixel signal reading method
JP2005348040A (en) * 2004-06-02 2005-12-15 Canon Inc Amplification type imaging apparatus and imaging system
JP2007067622A (en) * 2005-08-30 2007-03-15 Konica Minolta Holdings Inc Radiation imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250836B2 (en) 2014-12-15 2019-04-02 Sony Corporation Solid-state image sensing apparatus, control method, and electronic device
US10368026B2 (en) 2014-12-15 2019-07-30 Sony Corporation Solid-state image sensing apparatus, control method, and electronic device
US10630930B2 (en) 2014-12-15 2020-04-21 Sony Corporation Solid-state image sensing apparatus, control method, and electronic device

Also Published As

Publication number Publication date
JP2011114731A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
US10171760B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus using an amplifier and signal lines for low and high gain
US11012651B2 (en) Solid-state imaging device and electronic apparatus
US9973700B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
KR101398539B1 (en) Solid-state image pickup device, a method of driving the same, a signal processing method for the same, and image pickup apparatus
US7511275B2 (en) Semiconductor device, and control method and device for driving unit component of semiconductor device
JP5250474B2 (en) Solid-state imaging device
JP4929075B2 (en) Solid-state imaging device, driving method thereof, and imaging device
US8063964B2 (en) Dual sensitivity image sensor
US11070761B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus having an amplifier with an inverting input terminal having at least a first inverting input channel and a second inverting input channel
JP6631887B2 (en) Solid-state imaging device and camera
JP2009038531A (en) Solid imaging apparatus, and driving method thereof
KR20110109891A (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
JP2008252195A (en) Cmos solid-state imaging device
US20110279720A1 (en) Solid-state imaging device and camera
JP2012147339A (en) Solid-state imaging device, camera provided with solid-state imaging device, and driving method of solid-state imaging device
JP4661212B2 (en) Physical information acquisition method, physical information acquisition device, and semiconductor device
WO2011064921A1 (en) Solid-state image pickup device, method for driving same, and image pickup device
US9344659B2 (en) Image pickup apparatus
US20160300873A1 (en) Pixel amplification apparatus, cmos image sensor including the same and operation method thereof
JP6370135B2 (en) Imaging device, imaging system, and driving method of imaging device
JP2012151692A (en) Solid state image pickup device and imaging system including same
JP5177198B2 (en) Physical information acquisition method and physical information acquisition device
WO2011010420A1 (en) Solid-state image capturing device and camera provided with same
JP4655785B2 (en) Driving method of solid-state imaging device
WO2024090058A1 (en) Current mirror circuit and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832777

Country of ref document: EP

Kind code of ref document: A1