WO2011061992A1 - 無鉛圧電磁器組成物、及び該組成物を用いた圧電セラミックス部品並びに圧電セラミックス部品の製造方法 - Google Patents
無鉛圧電磁器組成物、及び該組成物を用いた圧電セラミックス部品並びに圧電セラミックス部品の製造方法 Download PDFInfo
- Publication number
- WO2011061992A1 WO2011061992A1 PCT/JP2010/066302 JP2010066302W WO2011061992A1 WO 2011061992 A1 WO2011061992 A1 WO 2011061992A1 JP 2010066302 W JP2010066302 W JP 2010066302W WO 2011061992 A1 WO2011061992 A1 WO 2011061992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric ceramic
- ceramic composition
- crystal structure
- piezoelectric
- electrode
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 227
- 239000000919 ceramic Substances 0.000 title claims description 258
- 238000000034 method Methods 0.000 title claims description 49
- 229910052573 porcelain Inorganic materials 0.000 title abstract description 12
- 230000008569 process Effects 0.000 title description 7
- 239000013078 crystal Substances 0.000 claims abstract description 238
- 230000007704 transition Effects 0.000 claims abstract description 105
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 15
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 12
- 239000000470 constituent Substances 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 230000010287 polarization Effects 0.000 claims description 119
- 238000002441 X-ray diffraction Methods 0.000 claims description 57
- 230000005684 electric field Effects 0.000 claims description 34
- 239000000758 substrate Substances 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 16
- 238000011282 treatment Methods 0.000 description 53
- 230000008859 change Effects 0.000 description 36
- 238000005259 measurement Methods 0.000 description 31
- 230000008878 coupling Effects 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 18
- 230000002269 spontaneous effect Effects 0.000 description 16
- 238000003991 Rietveld refinement Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 238000004719 convergent beam electron diffraction Methods 0.000 description 9
- 238000012795 verification Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 238000005162 X-ray Laue diffraction Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02015—Characteristics of piezoelectric layers, e.g. cutting angles
- H03H9/02031—Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/097—Forming inorganic materials by sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3294—Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/765—Tetragonal symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/768—Perovskite structure ABO3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/79—Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/178—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
Definitions
- the present invention relates to a piezoelectric ceramic composition having an alkali-containing niobate-based perovskite structure that does not contain lead, and a piezoelectric sounding body, a piezoelectric sensor, a piezoelectric actuator, a piezoelectric transformer, a piezoelectric ultrasonic motor, and the like using the composition.
- the present invention relates to a piezoelectric ceramic component and a method for manufacturing a piezoelectric ceramic component.
- a piezoelectric ceramic composition used for a piezoelectric ceramic part constituting a piezoelectric device is, for example, a piezoelectric ceramic composition (hereinafter referred to as PZT) containing lead composed of two components of PbTiO 3 —PbZrO 3 .
- Piezoelectric ceramic compositions containing Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Zn 1/3 Nb 2/3 ) O 3, etc. as a third component with respect to PZT exist. These piezoelectric ceramic compositions mainly composed of PZT have high piezoelectric characteristics and are used in most piezoelectric ceramic parts currently in practical use. However, since the piezoelectric ceramic composition containing PZT as a main component contains Pb, there is a problem of high environmental load such as volatilization of PbO during the production process.
- Non-Patent Documents 1 and 2 disclose that a porcelain composition is a porcelain composition having a piezoelectric effect comparable to PZT.
- the piezoelectric ceramic composition having the AN-PV structure mainly contains Li, Na, K, Nb, Ta, Sb, and O as constituent elements, and more specifically, the general formula ⁇ Li x [Na 1 -y K y] 1-x ⁇ a ⁇ Nb 1-z-w Ta z Sb w ⁇ b O 3 (x, y, z, w, a and b shows the molar ratio, 0 ⁇ x ⁇ 0 .2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.2, a ⁇ 0.95, b ⁇ 1.05). It is generally known that a piezoelectric ceramic composition having such an AN-PV structure has high piezoelectric characteristics (piezoelectric constant, electromechanical coupling coefficient, etc.) in the above range (see Patent Documents 1 to 3). ).
- MPB morphotropic phase boundary
- MPB is a composition boundary where the crystal structure of the compound changes, and it has been clarified that extremely high piezoelectric characteristics can be obtained in a region where the presence of MPB can be expected (Patent Document 4, Non-Patent Documents 1 to 4). reference).
- a piezoelectric ceramic composition having an AN-PV structure the composition is adjusted by appropriately dissolving Li, Ta, Sb, etc., so that the transition from orthorhombic to tetragonal or the number of molecules
- MPB by adjusting the transition point of the crystal structure in which the monoclinic system transitions from the monoclinic system to the tetragonal system in which Z is 2 or more (Z ⁇ 2) to a temperature near room temperature.
- the transition point of the crystal structure from the orthorhombic system to the tetragonal system in a piezoelectric ceramic composition having an AN-PV structure that is, [Na 1-y K y ] NbO 3 (0 ⁇ y ⁇ 1).
- the transition point of the crystal structure from monoclinic system to tetragonal system satisfying Z ⁇ 2 is between 200 ° C. and 350 ° C.
- an alkali-containing niobic acid system is used in a temperature range where high piezoelectric characteristics are required as a piezoelectric device by dissolving Li, Ta, and Sb as appropriate and lowering the transition point of the crystal structure to ⁇ 50 ° C. to 150 ° C. It is necessary to adjust the MPB of the piezoelectric ceramic composition.
- Non-Patent Document 2 and Patent Document 4 provide experimental examples in which Li is dissolved in Na 0.5 K 0.5 NbO 3 , and Li x (Na 0.5 K 0 .5 ) In the case of 1-x NbO 3 , specific examples of changes in the transition point of the crystal structure from orthorhombic to tetragonal when x is changed from 0 to 0.20 are shown. Yes.
- Non-Patent Document 5 from the orthorhombic system to the tetragonal system in the case where Nb is substituted with Ta for a composition in which the main phase is Na 0.5 K 0.5 NbO 3 .
- Specific examples of changes in the transition point of the crystal structure are shown.
- Non-Patent Document 6 provides an experimental example in which Li and Sb are dissolved in a composition in which the main phase is Na 0.5 K 0.5 NbO 3, and Li x ( Na 0.5 K 0.5 Nb) 1 ⁇ x Sb x O 3 , transition point of crystal structure from orthorhombic to tetragonal when x is changed from 0 to 0.10 Specific examples of changes are shown.
- a piezoelectric ceramic composition having an AN-PV structure having high piezoelectric characteristics in a practical region can be obtained by appropriately lowering the transition point of the crystal structure by the above-described method.
- the piezoelectric ceramic composition having the AN-PV structure mentioned above has an orthorhombic system or a monoclinic system in which Z ⁇ 2 at the transition point of the crystal structure at ⁇ 50 ° C. to 150 ° C. To the tetragonal system. When the crystal structure transitions from an orthorhombic system or a monoclinic system where Z ⁇ 2 to a tetragonal system, the electrical characteristics change greatly.
- the oriented crystal orientation depends on the crystal system and the space group of the piezoelectric composition.
- a piezoelectric ceramic composition having an AN-PV structure having a transition point of orthorhombic or monoclinic to tetragonal crystal structure satisfying Z ⁇ 2 at ⁇ 50 ° C. to 150 ° C. After the polarization treatment, the capacitance changes abruptly at the transition point of the crystal structure. This occurs because the direction of spontaneous polarization differs depending on the difference between the crystal system and the space group before and after the transition point of the crystal structure.
- a piezoelectric device using such a piezoelectric ceramic composition has a limited temperature range in which operation can be guaranteed because the change in capacitance is rapid with respect to temperature.
- the present invention uses the MPB at the transition point of the crystal structure, so that the transition point of the crystal structure exists within a temperature range of operation guarantee such as ⁇ 50 ° C. to 150 ° C.
- a piezoelectric ceramic composition having a completely new AN-PV structure that has a characteristic of always ⁇ C> 0 within the guaranteed temperature range and that can reduce the temperature dependence of the developed piezoelectric characteristics.
- By realizing the product it is possible to provide a piezoelectric ceramic composition in which a sudden change in capacitance and piezoelectric characteristics before and after the transition point of the crystal structure described above is reduced, and operation can be guaranteed in a wide temperature range. It provides various piezoelectric ceramic parts and piezoelectric devices that use the piezoelectric effect, and enables the replacement of lead-based piezoelectric devices using PbO, which has a high environmental impact. .
- the inventors of the present invention have a piezoelectric ceramic composition having an AN-PV structure having Li, Na, K, Nb, Ta, Sb and O as main constituent elements.
- the orientation to be polarized is controlled, and while having a transition point having a crystal structure at ⁇ 50 ° C. to 150 ° C., always By keeping the polarization in a certain direction, we found an orientation that can reduce the temperature dependence of the piezoelectric characteristics compared to the case where the polarization direction is not taken into account. Furthermore, in the piezoelectric ceramic composition, it has been found that by controlling the crystal system at the time of polarization, the direction of polarization can be controlled and the piezoelectric characteristics to be expressed can be dramatically improved.
- the X-ray diffraction line intensities I (h00), I (0k0), and I (00l) related to the indices h00, 0k0, and 00l are polarized on the diffraction surface that satisfies the Bragg formula of the piezoelectric ceramic composition.
- a plurality of first electrodes and second electrodes are alternately stacked via piezoelectric ceramic layers, and a first terminal electrode electrically connected to the first electrode, and the second electrode
- the piezoelectric ceramic layer is formed of the piezoelectric ceramic composition according to any one of [1] to [5]. Characteristic piezoelectric ceramic parts.
- the piezoelectric ceramic layer has the above [1] ]
- a first terminal electrode in which a plurality of first electrodes and second electrodes are alternately opposed to each other on a substrate having a piezoelectric ceramic layer, and electrically connected to the first electrode;
- a piezoelectric ceramic component having a second terminal electrode electrically connected to the second electrode the piezoelectric ceramic layer is formed of the piezoelectric ceramic composition according to any one of [1] to [5]. Piezoelectric ceramic parts characterized by the above.
- the piezoelectric ceramic composition of the present invention can take two orientations ⁇ 100> and ⁇ 001> as polarization orientations. By intentionally performing polarization treatment only in the ⁇ 001> polarization orientation. The temperature dependence of the piezoelectric characteristics at ⁇ 50 to 150 ° C.
- piezoelectric ceramic composition having an AN-PV structure using MPB a lead-free material that can be used for piezoelectric ceramic parts and piezoelectric devices that require operation in a wide temperature range of -50 to 150 ° C.
- a piezoelectric ceramic composition can be provided.
- the piezoelectric ceramic composition of the present invention can take two orientations ⁇ 100> and ⁇ 001> as polarization orientations, a high electromechanical coupling constant can be obtained. This is an effect that was not possible with conventional orthorhombic or tetragonal piezoelectric ceramic compositions.
- FIG. 6 is a graph showing the results of comparing the rate of change in capacitance ( ⁇ C) before and after polarization between the piezoelectric ceramic composition of the present invention (No.
- FIG. 6B is a diagram illustrating a measurement result of calculating an electromechanical coupling constant kp in the surface spreading direction of the disk-shaped vibrator with respect to 2-6 (b). It is a figure which shows the measurement result of the diffraction intensity of the reflective surface using the X ray diffraction method about the sample of an unpolarized state.
- FIG. 6 is a diagram showing a measurement result of diffraction intensity of a reflecting surface using a X-ray diffraction method for a sample (No. 2-6) in a monoclinic system polarized state.
- FIG. 1 It is a figure which shows the measurement result of the diffraction intensity of the reflective surface using the X-ray-diffraction method about the sample (No. # 2-7) in the state of polarization processing in the tetragonal system. It is an enlarged view of 200, 020, 002 diffraction lines of a monoclinic perovskite structure existing in 44 ° ⁇ 2 ⁇ ⁇ 47 ° of an X-ray diffraction profile at ⁇ 25 ° C. FIG. It is an enlarged view of 200, 020, 002 diffraction lines of a monoclinic perovskite structure existing in 44 ° ⁇ 2 ⁇ ⁇ 47 ° of an X-ray diffraction profile at 25 ° C. FIG. FIG. FIG.
- FIG. 2 is an enlarged view of 200, 002 diffraction lines of a tetragonal perovskite structure existing at 44 ° ⁇ 2 ⁇ ⁇ 47 ° of an X-ray diffraction profile at 125 ° C.
- FIG. 2 is an enlarged view of 200, 002 diffraction lines of a tetragonal perovskite structure existing at 44 ° ⁇ 2 ⁇ ⁇ 47 ° of an X-ray diffraction profile at 125 ° C.
- the present invention provides a piezoelectric ceramic composition having an AN-PV structure having Li, Na, K, Nb, Ta, Sb and O as main constituent elements, and an ABO 3 type perovskite structure as a unit cell.
- a piezoelectric ceramic composition having a transition point of crystal structure from monoclinic system to tetragonal system is proposed.
- the ABO 3 type perovskite structure indicates a crystal structure as shown in FIG. 1 (a), in which 6 Os are coordinated around the B site and 12 Os are coordinated around the A site. The structure is shown.
- FIG. 1B the angle between the crystal axes is defined. These a, b, c, ⁇ , ⁇ , and ⁇ are called lattice constants, and are generally defined in the field of crystallography. Further, in the crystal structure shown in FIG.
- the tetragonal system is defined as a unit cell with the lattice shown as a schematic diagram in FIG. It is a crystal structure having symmetry defined by the group P4 mm (No. 99).
- the space group is the International Table for Crystallography Volume A.
- it is spontaneously polarized in the c-axis orientation, that is, the [001] orientation, and can respond to an electric field applied from the outside.
- the orientation of the spontaneous polarization of the crystal structure can be directed to the direction in which the electric field is applied, and the piezoelectric ceramic composition subjected to the polarization treatment is a crystal that forms a polycrystalline structure of the porcelain.
- the internal domain structure is oriented in the direction in which the electric field is applied.
- the piezoelectric ceramic composition has a piezoelectric effect for the first time. Therefore, when the piezoelectric ceramic composition having an AN-PV structure is the above-described tetragonal system, the [001] orientation of the crystal structure is oriented in the direction in which the electric field is applied during the polarization treatment. .
- FIG. 3 shows a schematic diagram of the crystal structure when defined in the orthorhombic system.
- the crystal structure having symmetry defined by the space group Amm2 (No. 38) is defined in the shaded range in FIG. 3
- the lattice constant is shown in FIG.
- a ′, b ′, c ′, ⁇ ′, ⁇ ′, and ⁇ ′ In the case of this orthorhombic crystal structure, it is spontaneously polarized in the direction of the c ′ axis, that is, the direction of [001].
- this monoclinic crystal structure spontaneous polarization is possible in the c-axis orientation, that is, the [001] orientation.
- the space group is Pm, it is a crystal system capable of arbitrarily taking the direction of spontaneous polarization in the ⁇ 010 ⁇ plane.
- the space group is Pm, naturally, spontaneous polarization occurs in directions other than the c-axis. For example, in addition to [001], spontaneous polarization is possible in [100] and [101].
- the cause of the problem that the capacitance changes greatly before and after the transition point of the crystal structure is that the orientation of spontaneous polarization changes with the transition of the crystal structure. Therefore, an AN- having a transition point of -50 ° C. to 150 ° C. of a crystal structure that transitions from the orthorhombic system to the tetragonal system or from monoclinic system to tetragonal system that satisfies Z ⁇ 2.
- a piezoelectric ceramic composition having a PV structure it is conceivable to adjust the transition point of the crystal structure outside the temperature range in which the piezoelectric device operates.
- the piezoelectric ceramic composition of the present invention is represented by the composition formula ⁇ Li x [Na 1-y K y ] 1-x ⁇ i ⁇ Nb 1-zw Ta z Sb w ⁇ j O 3 , X, y, z, w, i, and j are 0.03 ⁇ x ⁇ 0.1, 0.3 ⁇ y ⁇ 0.7, 0.0 ⁇ z ⁇ 0.3, 0.0 ⁇ w ⁇ 0.1, 0.95 ⁇ i ⁇ 1.01, 0.95 ⁇ j ⁇ 1.01.
- the piezoelectric ceramic composition of the present invention contains a certain amount of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn as a first transition element, thereby controlling the sintering temperature.
- these elements may or may not be used, although it is possible to control the growth of particles and to extend the lifetime in increasing the electric field.
- at least one kind of Y, Zr, Mo, Ru, Rh, Pd, Ag as a second transition element is mixed in a certain amount to control the sintering temperature or the particle size. Although growth can be controlled and the lifetime in increasing the electric field can be extended, these elements may or may not be used.
- the piezoelectric ceramic composition of the present invention includes La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Re as third transition elements.
- Os, Ir, Pt, Au can be mixed in at least one constant amount to control the sintering temperature, to control the growth of particles, and to extend the life in high electric field. These elements may or may not be used.
- the sintering temperature can be controlled, the growth of particles can be controlled, although it is possible to extend the lifetime in the process, the same effect can be obtained with or without combining them.
- the piezoelectric ceramic composition of the present invention has a perovskite structure generally indicated as ABO 3 .
- elements conforming to A are K, Na, and Li
- elements conforming to B are Nb, Ta, and Sb.
- the composition will eventually vary by several percent, specifically 2% or less. Variations in these constituent elements can occur due to changes in the raw material, synthesis time, and synthesis process.
- the first electrode (102) and the second electrode (103) are opposed to each other with a plate-like piezoelectric ceramic layer (101) interposed therebetween.
- a piezoelectric ceramic component is obtained, for example, as follows.
- the raw material mixed powder of the piezoelectric ceramic composition is mixed with a binder, formed into a rectangular shape, a substantially circular shape or a ring shape, and fired to form a plate-like piezoelectric ceramic layer.
- the piezoelectric ceramic composition of the present invention is used for the piezoelectric ceramic layer of this piezoelectric ceramic component, it is possible to suppress a sharp change in capacitance at the transition point of the crystal structure while having a high piezoelectric effect by MPB. . Therefore, for example, sensors such as a pressure sensor and an impact sensor can provide a practical sensor with higher sensitivity and suppressed change in characteristics due to temperature.
- the first electrode (102) and the second electrode (103) are alternately stacked in plural layers via the piezoelectric ceramic layer (101).
- a laminated piezoelectric ceramic component having a first terminal electrode (104) electrically connected to the first electrode and a second terminal electrode (105) electrically connected to the second electrode. Used for etc.
- the piezoelectric ceramic composition of the present invention is used for this piezoelectric ceramic layer, it is possible to suppress a sharp change in capacitance at the transition point of the crystal structure while having a high piezoelectric effect by MPB. Therefore, for example, in a laminated actuator, since the response depends on the capacitance, it is possible to prevent the response from abruptly changing even when the crystal structure transition point is crossed.
- a piezoelectric ceramic layer (101) is formed on a substrate (106), and a first electrode (102) and a first electrode are formed on substantially the same surface of the piezoelectric ceramic layer on the substrate.
- This is a piezoelectric ceramic component disposed so as to face the second electrode (103), and a piezoelectric surface acoustic wave filter (SAW filter) is taken as an example of a piezoelectric device using this.
- SAW filter piezoelectric surface acoustic wave filter
- the piezoelectric ceramic component shown in the schematic cross-sectional view of FIG. 8 is arranged on the substrate (106) with the first electrode (102) and the second electrode (103) facing each other through the piezoelectric ceramic layer (101).
- a switch element using a bending type piezoelectric actuator is used as an example of a piezoelectric device using the piezoelectric ceramic component.
- 107 indicates an elastic body
- 108 indicates a contact point.
- the piezoelectric ceramic composition of the present invention is used for this piezoelectric ceramic layer, the response depends on the capacitance, as in the case of the laminated actuator described above. However, it is possible to prevent the responsiveness from changing suddenly.
- FIG. 8 shows a unimorph type piezoelectric actuator having one piezoelectric ceramic layer, a bimorph type or multimorph type piezoelectric actuator having two or more layers may be used.
- the starting material Li 2 CO 3 commercially available Li 2 CO 3 was preliminarily pulverized with a ball mill for 24 hours so as to have an average particle diameter of 1 ⁇ m or less.
- Li 2 CO 3 that is generally commercially available has an average particle size of 5 ⁇ m or more.
- the piezoelectric ceramic composition of the present invention is difficult to obtain.
- the above mixture was dried in an atmosphere of about 100 ° C. and calcined at 700 ° C. to 1000 ° C. to obtain a calcined powder. After that, wet pulverization was performed in a ball mill for about 24 hours, followed by drying in an atmosphere at about 100 ° C. to obtain pulverized powder.
- An organic binder is added to the pulverized powder, mixed, passed through a 60 mesh sieve, and the particle size is adjusted. Then, uniaxial molding is performed at a pressure of 1000 kg / cm 2 to form a disk having a diameter of 10 mm and a thickness of 0.5 mm. This was molded and fired at 950 ° C. to 1200 ° C. in the atmosphere to obtain a disk-shaped piezoelectric ceramic composition.
- a silver paste is applied to both surfaces of the piezoelectric ceramic composition and baked at 850 ° C. to form a silver electrode, and a sample of the piezoelectric ceramic composition before polarization is obtained.
- a piezoelectric ceramic composition sample after polarization was obtained by applying an electric field of about 3 to 4 kV / mm as a direct current voltage, applying polarization treatment for 15 minutes, and allowing to stand overnight.
- the polarization treatment is generally a treatment for aligning the domain orientation from the unpolarized state by applying a strong electric field higher than the coercive electric field to the piezoelectric ceramic composition. This is a necessary process.
- the coercive electric field refers to an electric field strength that does not change the orientation of domains in a crystal forming a polycrystalline structure unless an electric field higher than that is applied. In general, an electric field of several hundred V / mm to several kV / mm must be applied.
- the unpolarized state means that no electric field is applied to the piezoelectric ceramic composition, or an electric field of less than the coercive electric field is applied, and each crystal constituting the polycrystalline structure of the piezoelectric ceramic composition is disordered.
- a piezoelectric ceramic composition subjected to polarization treatment can be polarized by heating a crystal having a perovskite structure, which is a crystal constituting the polycrystalline structure of the piezoelectric ceramic composition, to a temperature higher than a cubic system. The processing is solved and the state returns to the unpolarized state.
- the temperature is generally called Curie temperature. This is because in the cubic system, the domains in the crystal disappear from the viewpoint of symmetry of the crystal structure.
- the polarization-treated piezoelectric ceramic composition is heated to a temperature equal to or higher than the Curie temperature, it is polarized by applying a strong electric field equal to or higher than the coercive electric field below the Curie temperature. You can return to the state.
- the piezoelectric ceramic composition subjected to the polarization treatment the domain structure inside the crystal constituting the polycrystalline structure of the porcelain is oriented in the direction in which the electric field is applied. At this time, the piezoelectric ceramic composition has a piezoelectric effect for the first time.
- the temperature of the piezoelectric characteristics as described in the effect of the invention can be obtained by evaluating the crystal system and performing the polarization treatment.
- Dependencies can be designed and high electromechanical coupling constants can be obtained.
- the crystal system can be easily controlled by setting the insulating oil for polarization to a predetermined temperature or applying pressure to the piezoelectric ceramic composition.
- the piezoelectric ceramic composition having the AN-PV structure referred to in the present invention can be obtained, and the piezoelectric ceramic composition having the AN-PV structure in which the polarization orientation is controlled. It is possible to obtain
- the piezoelectric ceramic composition having the AN-PV structure obtained by the procedure described above in order to evaluate whether the piezoelectric ceramic composition expected in the present invention is obtained, particularly before and after the transition point of the crystal structure.
- the silver electrode was peeled off, and then pulverized in an agate mortar for about 30 minutes, and then the X-ray diffraction profile at temperatures around the transition point of the crystal structure. was measured.
- the X-ray diffractometer was a parallel beam optical system RINT-2500PC (manufactured by Rigaku Corporation: headquarters, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo), and characteristic X-rays were Cu-K ⁇ rays.
- the voltage value and current value applied to generate the line were set to 50 kV and 300 mA.
- the Rietveld method is an effective means in powder X-ray diffraction for calculating the lattice constant, determining the atoms conforming to each site of the crystal structure, and specifying the position of the atoms conforming in the structure, This technique is generally used not only in piezoelectric ceramics but also in many functional ceramic fields.
- the X-ray diffractometer uses a concentrated optical system RINT-2500PC, and the characteristic X-ray uses Cu—K ⁇ ray to generate characteristic X-rays.
- the applied voltage value and current value were set to 50 kV and 100 mA.
- the measurement method was 2 ⁇ / ⁇ method, the measurement was performed by the Fixed Time method at intervals of 0.02 ° for 1 second, and the measurement range was 20 ° ⁇ 2 ⁇ ⁇ 90 °.
- a piezoelectric ceramic composition obtained by crushing the silver electrode in an agate mortar for about 30 minutes was used.
- Non-Patent Document 8 exists as an example of a material having relatively low symmetry such as orthorhombic perovskite, and in a semiconductor, a single crystal substrate, a piezoelectric ceramic, etc. This is a commonly used technique for evaluating lattice constants.
- the piezoelectric material by the polarization treatment as described above is used.
- the diffraction intensity of the main diffractive surfaces was confirmed by X-ray diffraction. The measurement is performed by polishing the electrode once with 2000th polishing paper and peeling off the surface of the piezoelectric ceramic composition with respect to the diffraction surface satisfying the Bragg formula of the piezoelectric ceramic composition.
- a sample of the piezoelectric ceramic composition is arranged so that measurement is performed in a state where an electric field is applied in the vertical direction when the polarization treatment is performed, and scanning by the 2 ⁇ / ⁇ method is performed at 44 ° ⁇ 2 ⁇ ⁇ 47 °. The total strength was earned until it was determined that sufficient measurements were made.
- a rotating cathode type generator is used as the X-ray source, Cu-K ⁇ ray is used as the characteristic X-ray, and the voltage value and current value applied to generate the characteristic X-ray are 50 kV and 300 mA. did.
- the detector used was a scintillation counter, and the X-ray diffractometer was RINT-2500PC with a parallel beam method optical system.
- ⁇ is an incident angle and a reflection angle (Bragg angle) of the diffraction surface and the X-ray, and the diffraction phenomenon does not occur unless the incident angle and the reflection angle are equal.
- n is an integer of 1 or more, and ⁇ is the wavelength of X-rays.
- the direction of the source of incident X-rays with respect to the surface to be measured and the reflection so that the surface to be measured can be observed as a diffraction surface
- the Bragg angle ⁇ is measured as a variable while controlling the position of the source, the position of the surface to be measured, and the position of the detector so that the directions of the detectors that detect the detected X-rays are always equal angles.
- Is a more preferable observation method and is a method generally called a 2 ⁇ / ⁇ method.
- X-rays are generally used. However, for example, electrons or neutrons can be used as the light source.
- X-ray generation sources there are those using a tube, those using a rotating counter cathode, those using a synchrotron, those using a cyclotron, etc. Any X-ray generation source is used. May be.
- detectors that detect X-rays for example, there are scintillation counters, semiconductor detectors, etc., but any detector may be used.
- the line intensities I (h00), I (0k0), I (00l), etc. may not be obtained accurately due to overlapping of diffraction lines, overlapping of K ⁇ 1 and K ⁇ 2, etc. Often there is a case to do. For this reason, it is more preferable to fit each diffraction line with a pseudo-Forked function, etc., and to evaluate the overlapping of the diffraction lines or separating K ⁇ 1 and K ⁇ 2.
- the line intensity was evaluated by using a divided pseudo-Forked function (J. Appl. Cryst. (1990). 23, 485-491) and eliminating factors such as overlap.
- FIG. 21 to FIG. 23 will be described later, these drawings show examples of fitting.
- the plot shows raw data, the two-point three-line shows K ⁇ 2, and the solid line shows K ⁇ 1. Among these, the K ⁇ 1 diffraction profile was defined as the linear intensity to be evaluated.
- the piezoelectric ceramic composition before the polarization treatment is used.
- the electrostatic capacity (Cb) and the electrostatic capacity (Ca) after the polarization treatment are measured at ⁇ 60 ° C. to 180 ° C., held for 30 minutes at each measured temperature, and after the temperature has reached a steady state Measurements were made and evaluated.
- the measurement was performed using an LCR meter (E4980A: manufactured by Agilent) by an AC four-terminal method with a measurement frequency of 1 kHz and a measurement signal voltage of 1 Vrms.
- the polarization when evaluating the temperature dependence of the capacitance change is performed at a temperature at which the piezoelectric ceramic composition to be evaluated takes a tetragonal system in order to ignore changes in the polarization orientation due to differences in crystal systems. Went.
- an X-ray diffraction profile was obtained in the temperature range before and after the phase transition point as described above, and was determined from the profile.
- an electromechanical coupling coefficient (kp) in the radial direction of the disk is expressed as impedance. Measurement was performed by a resonance-antiresonance method using a meter (HP4194A: manufactured by Agilent). The measurement was evaluated in accordance with EMAS-6100, which is a standard of the Japan Electronic Materials Engineering Society.
- the crystal structure has a transition point of the crystal structure from monoclinic to tetragonal.
- the monoclinic space group was Pm, and the tetragonal space group had P4 mm.
- the composition formula of the constituent elements is ⁇ Li x [Na 1-y K y ] 1-x ⁇ i ⁇ Nb 1-zw Ta z Sb w ⁇ j O 3 (wherein 0.03 ⁇ x ⁇ 0.1, 0.3 ⁇ y ⁇ 0.7, 0.0 ⁇ z ⁇ 0.3, 0 ⁇ w ⁇ 0.10, 0.95 ⁇ i ⁇ 1.01, 0.95 ⁇ j
- a piezoelectric ceramic composition in the range indicated by ⁇ 1.01, it was found that the above-mentioned characteristics were obtained.
- the crystal orientation when the crystal axis length is c>a> b and ⁇ , which is one of the inter-axis angles, is ⁇ > 90 °, ⁇ 100>, ⁇ 010 >, ⁇ 001> X-ray diffraction line intensities I (h00), I (0k0), I (00l) relating to surface indices h00, 0k0, 00l satisfying the Bragg formula of a piezoelectric ceramic composition
- the X-ray diffraction line intensity ratio I (h00) / I (0k0) of the polarization-treated piezoelectric ceramic composition was measured.
- the piezoelectric ceramic composition to be obtained was adjusted with no consideration, for example, the composition formula ⁇ Li x [Na 1 ⁇ y K y ] 1 ⁇ x ⁇ i ⁇ Nb 1 ⁇ z
- Example 1 First, a piezoelectric ceramic composition having an AN-PV structure was obtained by the procedure described above, and the composition formulas of the prepared samples are summarized in Table 1. However, the sample indicated by * in the sample numbers in Table 1 is a composition outside the scope of the present invention and is a comparative example.
- the plot is the actual value of XRD
- the dotted line is the result of fitting
- the solid line is the residual between the actual value and the fitting value. From the results shown in FIG. 11, it was confirmed that the fitting was sufficient for the calculation of the lattice constant by the Rietveld method and the determination of the space group and the crystal system.
- sample no. For the samples 1-5 to 1-7, the above-mentioned TEM was used to obtain an electron diffraction pattern at room temperature and a CBED pattern from a higher-order crystal axis, and the HOLZ lines appearing in these figures were analyzed. The space group and lattice constant of the crystal structure were evaluated.
- Sample No. FIG. 12 shows a scanning transmission electron microscope (STEM) image of a bright field in the 1-6 slice. Thus, it was found that the crystal had a clear domain structure and high crystallinity, and was a sufficient sample for evaluating the CBED figure and the HOLZ line appearing therein. And sample no. FIG.
- STEM scanning transmission electron microscope
- FIG. 13 shows an example of a CBED figure obtained from a 1-6 flake and a HOLZ line appearing thereon.
- the lattice constants of a, b, c, and ⁇ were calculated by fitting calculated values of the distance between the intersections of the HOLZ lines by the downhill simplex method.
- the parentheses at the end of the numerical values of the lattice constants shown in the table indicate errors in fitting.
- FIG. 14 shows the temperature characteristics of 1-7, the capacitance (Ca) after the polarization treatment and the capacitance (Cb) before the polarization treatment.
- a sample No. 1 having a transition point of the conventional crystal structure is used.
- the electromechanical coupling constant kp was measured as the piezoelectric characteristics of the sample after polarization having the composition formula shown in Table 1, and it was confirmed whether the piezoelectric characteristics sufficient for practical use were maintained. The results are also shown in Table 4.
- sample No. which is a comparative example.
- the sample No. which is the embodiment of FIG.
- the lattice constant was also determined to be appropriate because a ⁇ b ⁇ c and ⁇ > 90 °.
- the absolute value of the lattice constant in the above verification does not match the value in Table 2. This is because, in the evaluation of the HOLZ line appearing in the CBED figure, the absolute value of the calculated lattice constant value is greatly affected by the voltage of the convergent electron beam to be irradiated, the thickness of the sample used for measurement, and the nonuniformity of the thickness. Therefore, they should not be discussed individually but by the ratio of lattice constants between the same samples.
- the same verification result can be obtained by performing the verification in the same manner as described above in the temperature range of ⁇ 50 ° C. to 150 ° C. in the piezoelectric ceramic composition within the scope of the present invention.
- sample No. 1-7 showing the temperature dependence of the capacitance (Ca) after polarization treatment and the capacitance (Cb) before polarization treatment
- sample No. 1 as a comparative example.
- 1-16 shows the temperature dependence of the capacitance (Ca) after polarization treatment and the capacitance (Cb) before polarization treatment, and the change in capacitance before and after each polarization.
- the temperature dependence of the measured change in capacitance will be described with reference to FIG. 16 showing the temperature dependence of the rate ( ⁇ C).
- sample No. which is an example is shown.
- the piezoelectric ceramic composition of 1-7 always has Ca> Cb at each temperature of ⁇ 50 ° C. to 150 ° C. Therefore, ⁇ C shown in FIG. 16 satisfies ⁇ C> 0. Therefore, as a result, the change in capacitance after polarization before and after the transition point (around 25 ° C.) of the crystal structure was reduced and became gentle.
- sample No. as a comparative example.
- the piezoelectric ceramic composition within the range of the present example has a feature that it is possible to reduce an abrupt change in capacitance at the transition point of the crystal structure after the polarization treatment. As described above, this occurs because the crystallographic system before and after the transition point of the crystal structure has different orientations capable of spontaneous polarization.
- y 0.50
- z 0.0
- w 0.0
- Sample No. 1-9 is a sample satisfying ⁇ C> 0 at ⁇ 50 ° C. to 150 ° C., but the transition point of the crystal structure is not adjusted to the range of ⁇ 50 ° C. to 150 ° C. Since the index kp is low, the composition is out of the scope of this patent.
- a piezoelectric ceramic composition in which the transition point of the crystal structure is in the range of the guaranteed operating temperature and the sudden change in capacitance is reduced. Since it can be provided, we provide piezoelectric ceramic parts and piezoelectric devices that can guarantee operation in a wide temperature range while maintaining high piezoelectric characteristics using MPB, and use PbO with high environmental impact. It is possible to replace the lead-based piezoelectric device.
- Example 2 In this example, the difference depending on the crystal system during the polarization treatment was examined.
- the polarization treatment was performed at a temperature determined to be a tetragonal system, and a piezoelectric ceramic composition polarized at a temperature determined to be a monoclinic system.
- Samples were prepared. Specifically, for example, compositional formula Li 0.054 (Na 0.50 K 0.50 ) 0.946 NbO 3 is monoclinic at 25 ° C. and tetragonal at 150 ° C. It is possible to control the crystal system according to the temperature at which the treatment is performed. Samples of the prepared piezoelectric ceramic composition are summarized in Table 5.
- Sample of composition formula Li 0.054 (Na 0.50 K 0.50 ) 0.946 NbO 3 of # 2-7, a sample in an unpolarized state and a sample polarized in a monoclinic system 18 to 20 show the measurement results of the sample (No. 2-6) and the sample (No. # 2-7) in the state of polarization treatment in the tetragonal system.
- FIGS. 21 to 23 show 200, 020, and 002 diffraction lines existing in 44 ° ⁇ 2 ⁇ ⁇ 47 ° of the X-ray diffraction profiles at ⁇ 25 ° C., 25 ° C., and 125 ° C. of FIGS.
- a) is FIG. 18, b) is FIG. 19, and c) is FIG.
- I 0 (002) / I 0 (020) is a line intensity ratio of X-ray diffraction defined by the plane indices 002 and 020 in an unpolarized state
- I (002) / I (020) and It is a line intensity ratio measured by the same measuring means.
- the orientation state of the sample measured by the formulas (1) and (2) is the sample number. 2-6 and No. 2
- Table 6 summarizes the measurement results of the sample (No. 6) and the sample (No. # 2-7) in the state of polarization treatment in the tetragonal system.
- Table 7 shows the results of determining the polarization orientation by XRD as shown in FIGS. 18 to 20 for the samples in Table 5.
- Table 7 summarizes the calculation results of the electromechanical coupling constant Kp at room temperature of 25 ° C., the polarization phase, and the orientation state of the sample defined by the following formulas (1 ′) and (2) for the samples in Table 5.
- the adjustment was made in spite of no consideration, for example, the composition formula ⁇ Li z [Na 1-y K y ] 1-z ⁇ i ⁇ Nb 1
- the crystal system at the time of polarization to the piezoelectric ceramic composition represented by ⁇ z ⁇ w Ta z Sb w ⁇ j O 3
- this can be achieved by the polarization treatment generally performed in the above-described patent document and non-patent document by performing the polarization treatment in the crystal system defined as the monoclinic system. This is thought to be because the domain structure was oriented in no orientation.
- a piezoelectric ceramic composition within the scope of the present invention once subjected to a polarization treatment with a tetragonal perovskite structure, has an electric field strength higher than the coercive electric field where polarization occurs in the state of the monoclinic perovskite structure. It has been found that upon application, a polarized ceramic composition within the scope of the present invention is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
この圧電効果を用いた電子デバイスのことを、特に圧電デバイスといい、その圧電デバイスに用いられる圧電磁器組成物を有した電子部品を圧電セラミックス部品という。
従来、圧電デバイスを構成する圧電セラミックス部品に用いられる圧電磁器組成物は、例えば、PbTiO3-PbZrO3の2成分よりなる鉛を含有した圧電磁器組成物(以下、PZTとする。)や、このPZTに対してさらにPb(Mg1/3Nb2/3)O3やPb(Zn1/3Nb2/3)O3などを第3成分とした圧電磁器組成物が存在する。
これらのPZTを主成分とする圧電磁器組成物は、高い圧電特性を誇り、現在実用化されている圧電セラミックス部品のほとんどに使用されている。
しかしながら、前記PZTを主成分とする圧電磁器組成物はPbを含むために、生産工程時におけるPbOの揮発など、環境負荷が高いことが問題となっている。
具体的に電気特性としては、分極処理前の静電容量をCbとして、分極処理後の静電容量をCaとした場合の分極前後における静電容量の変化率を(Cb-Ca)/Cb=ΔCとしたときに、斜方晶系ないし、Z≧2となる単斜晶系では一般的にΔCが0より小さいマイナス値を取り、正方晶系では一般的にΔCが0より大きいプラス値を取る。これがために、前記のような結晶構造の転移点前後では大きく静電容量が変化してしまう。
またさらには、その発現する圧電特性に関しても、そのドメインの制御される方位が異なることで、前記のような結晶構造の転移点前後では大きく値が異なってしまう。
そして、このような回路の不整合や、発現する変位量の温度特性を低減するには、単純には前記結晶構造の転移点を圧電デバイスが動作する温度の範囲外に調整することが考えられるが、これは結晶構造の転移点におけるMPBを利用して高い圧電特性を具現するAN-PV構造を有する圧電磁器組成物の設計とは当然相反するため、全く新規の設計方法を発明する必要性があった。
また、前記圧電磁器組成物において、分極する際の結晶系を制御することで、分極される方位を制御して、-50℃~150℃に結晶構造を持つ転移点を持ちつつも、常にその分極を一定の方向に保つことによって、分極方向を加味しない場合と比較して、圧電特性の温度依存性を小さくすることのできる方位を見いだした。
さらに、前記圧電磁器組成物において、分極する際の結晶系を制御することで、分極される方位を制御して、発現する圧電特性を飛躍的に高めることができるという知見を得た。
[1]Li、Na、K、Nb、Ta、SbおよびOを主な構成元素とし、AN-PV構造を有する圧電磁器組成物において、ABO3型ペロブスカイト構造をZ=1とした単位格子として取った場合に、単斜晶系から正方晶系への結晶構造の転移点を有することを特徴とする圧電磁器組成物。
[2]ABO3型ペロブスカイト構造をZ=1とした単位格子として取った場合に、空間群Pmで定義される単斜晶系から空間群P4mmで定義される正方晶系への結晶構造の転移点を有することを特徴とする上記[1]の圧電磁器組成物。
[3]組成式{Lix[Na1-yKy]1-x}i{Nb1-z-wTazSbw}jO3(但し、式中、0.03≦x<0.1、0.3<y<0.7、0.0≦z<0.3、0≦w≦0.10、0.95≦i≦1.01、0.95≦j≦1.01である。)で示される上記[2]の圧電磁器組成物。
[4]その結晶軸長がc>a>bであり、その軸間角度の1つであるβがβ>90°のときの結晶方位<100>、<010>、<001>に属する面指数h00、0k0、00lに関わるX線回折の線強度I(h00)、I(0k0)、I(00l)を、圧電磁器組成物のブラッグの公式を満たす回折面に対して、分極処理をした際に電界を印加した方向を垂直方向にとった状態で測定した場合、分極処理した圧電磁器組成物のX線回折の線強度比I(h00)/I(0k0)、I(00l)/I(0k0)が、h=k=l=m(mは1以上の整数)としたときに、
[I(h00)/I(0k0)]/[I0(h00)/I0(0k0)]<1
[I(00l)/I(0k0)]/[I0(00l)/I0(0k0)]>1
(式中、I0(h00)、I0(0k0)、I0(00l)は、未分極の状態にある面指数h00、0k0、00lに関わるX線回折の線強度を表し、I(h00)、I(0k0)、I(00l)を測定した場合と同一の測定手段によって測定しなければならない。)
となることを特徴とする上記[3]の圧電磁器組成物。
[5]その結晶軸長がc>a>bであり、その軸間角度の1つであるβがβ>90°のときの結晶方位<100>、<010>、<001>に属する面指数h00、0k0、00lに関わるX線回折の線強度I(h00)、I(0k0)、I(00l)を、圧電磁器組成物のブラッグの公式を満たす回折面に対して、分極処理をした際に電界を印加した方向を垂直方向にとった状態で測定した場合、分極処理した圧電磁器組成物のX線回折の線強度比I(h00)/I(0k0)、I(00l)/I(0k0)が、h=k=l=m(mは1以上の整数)としたときに、
[I(h00)/I(0k0)]/[I0(h00)/I0(0k0)]>1
[I(00l)/I(0k0)]/[I0(00l)/I0(0k0)]>1
(式中、I0(h00)、I0(0k0)、I0(00l)は、未分極の状態にある面指数h00、0k0、00lに関わるX線回折の線強度を表し、I(h00)、I(0k0)、I(00l)を測定した場合と同一の測定手段によって測定しなければならない。)
となることを特徴とする上記[3]の圧電磁器組成物。
[6]第一の電極と第二の電極とが圧電セラミックス層を介して対向する圧電セラミックス部品において、前記圧電セラミックス層が、上記[1]~[5]のいずれかの圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
[7]第一の電極と第二の電極とが圧電セラミックス層を介して交互に複数層積み重ねられており、前記第一の電極と電気的に接続する第一の端子電極と、前記第二の電極と電気的に接続する第二の端子電極とを有する圧電セラミックス部品において、前記圧電セラミックス層が、上記[1]~[5]のいずれかの圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
[8]圧電セラミックス層を有する基板を有し、その圧電セラミックス層の上部に第一の電極と第二の電極が対向して配置される圧電セラミックス部品において、前記圧電セラミックス層が、上記[1]~[5]のいずれかの圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
[9]第一の電極と第二の電極とが圧電セラミックス層を有する基板上に交互に複数層対向しており、前記第一の電極と電気的に接続する第一の端子電極と、前記第二の電極と電気的に接続する第二の端子電極とを有する圧電セラミックス部品において、前記圧電セラミックス層が、上記[1]~[5]のいずれかの圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
[10]単斜晶系ペロブスカイト構造を取るAN-PV構造を持つことができる、[1]~[5]のいずれかの圧電磁器組成物で形成された圧電セラミックス層に、電極を形成した後、電界を印加することによって分極を行う工程を有することを特徴とする、圧電セラミックス部品の製造方法。
また、本発明の圧電磁器組成物は、分極方位として<100>、<001>の二つの方位を取りうることが可能であり、意図的に<001>の分極方位にのみ分極処理することによって、-50~150℃における圧電特性の温度依存性を、本発明を加味しなかった場合に較べて小さくすることができる。このため、MPBを利用したAN-PV構造を有する圧電磁器組成物を用いて、-50~150℃広い温度範囲の動作保障を求められる圧電セラミックス部品や圧電デバイスに用いることが可能な非鉛の圧電磁器組成物を提供することが可能となる。
さらに、本発明の圧電磁器組成物は、分極方位として<100>、<001>の二つの方位を取りうることが可能なため、高い電気機械結合定数を得ることが可能となる。これは従来の斜方晶系や正方晶系の圧電磁器組成物では不可能であった効果である。
102:第一の電極
103:第二の電極
104:第一の端子電極
105:第二の端子電極
106:基板
107:弾性体
108:接点
まず、本発明におけるABO3型ペロブスカイト構造の定義について説明する。ABO3型ペロブスカイト構造とは、図1(a)に示すような結晶構造のことを示し、Bサイトの周りに6個のOが配位し、Aサイトの周りに12個のOが配位している構造のことを示す。また、図1(b)に示すように結晶軸と結晶軸の間の角度を定義する。このa、b、c、α、β、γのことは格子定数と呼び、結晶学の分野では一般的な定義の仕方である。
また、図1(a)に示した結晶構造は、Aサイトは6面体の角に配座するために、6面体内部にはちょうど1個の原子が存在することになり、Bサイトは6面体の中心に配座するために、これもちょうど1個の原子が存在することになり、Oサイトは6面体の面の中央にそれぞれ配座するために、合計で3個の原子が存在することになり、ABO3で記される数の原子が図1(a)に示した6面体内に存在することになる。この状態のことを単位格子として定義しており、その分子数を1(Z=1)としている。
先に提案してきた、ABO3型ペロブスカイト構造をZ=1とした単位格子として取った場合に、空間群Pmで定義される単斜晶系から空間群P4mmで定義される正方晶系への結晶構造の転移点であれば、前記に指摘したとおり、結晶構造の転移点を跨ぎつつも、自発分極の方位を一定の方向に取ることができる。具体的には、前述した方位の内、常に[001]の方位への分極状態であれば、どちらの結晶構造でも分極処理後に静電容量が上昇し、電気機械結合定数に代表される圧電特性が安定するようになるため、結晶構造の転移点が圧電デバイスの動作温度範囲(例えば-50℃から150℃)にあることによった、MPBによる高い圧電特性の具現と、急激な静電容量の変化を低減することが可能である。
さらには、前記したZ=1でPmの対称性を有した単斜晶系の結晶構造の特徴を生かして、分極する方位を[101]とした本発明の圧電磁器組成物は、分極の方位を加味しないで分極処理を行った場合に比較して、高い電気機械結合定数を得ることが可能となる。
図5の側面図に示す圧電セラミックス部品は、板状の圧電セラミックス層(101)を介して、第一の電極(102)と第二の電極(103)とが対向しているものである。このような圧電セラミックス部品は例えば次のようにして得られる。圧電磁器組成物の原料混合粉をバインダと混合し、これを矩形形状、略円形状またはリング状に成形し、焼成して板状の圧電セラミックス層を形成する。この圧電セラミックス層の両面に、Cu、Ag、Au、Pt等の導電体を用いた導電ペーストを塗布して焼き付けて、図5に示す圧電セラミックス部品が得られる。この圧電セラミックス部品の圧電セラミックス層に本発明の圧電磁器組成物を用いると、MPBによる高い圧電効果を持ちつつも、結晶構造の転移点における静電容量の急峻な変化を抑えることが可能である。したがって、例えば圧力センサや衝撃センサ等のセンサ類では、より感度が高く、且つ温度による特性の変化が抑制された、実用的なセンサが得られる。
まず、本発明の請求の範囲内であるなしに関わらず、本発明において言及されているAN-PV構造を有する圧電磁器組成物を得るためには、次の手順を踏んだ。出発原料として純度が99%以上の、Li2CO3、Na2CO3(もしくはNaHCO3)、K2CO3(もしくはKHCO3)、Nb2O5、Ta2O5、Sb2O3(もしくはSb2O5)を用意し、これらを組成式{Lix[Na1-yKy]1-x}i{Nb1-z-wTazSbw}jO3で表現される範囲にある圧電磁器組成物を得られるように秤量し、ボールミルを用いて約24時間湿式混合して混合物を得た。ここにおいて、出発原料のLi2CO3には、市販のLi2CO3をボールミルにて24時間予備粉砕して平均粒子径が1μm以下となるように調整したものを用いた。我々の検討では、一般的に市販されるLi2CO3はその平均粒子径が5μm以上であり、このようなLi2CO3を用いると、本発明の圧電磁器組成物は得られにくい。次に、前述の混合物を約100℃の雰囲気で乾燥の後、700℃~1000℃で仮焼をし、仮焼成粉を得た。さらにその後、ボールミルにて約24時間湿式粉砕し、約100℃の雰囲気で乾燥して、粉砕粉を得た。この粉砕粉に有機バインダを加えて、混合し60メッシュの篩を通して、粒度の調整を行った後、1000kg/cm2の圧力で一軸成型を行って直径10mm、厚さ0.5mmの円板に成型し、これを大気中で950℃~1200℃で焼成することによって、円板状の圧電磁器組成物を得た。
前記の圧電磁器組成物の両表面に銀ペーストを塗布し、850℃で焼付け、銀電極を形成し、分極前の圧電磁器組成物の試料を得た後、絶縁性のオイル中で抗電界以上となる、約3~4kV/mmの電界を直流電圧で印加して15分間分極処理を施し、そして一晩静置することによって、分極後の圧電磁器組成物の試料を得た。
抗電界とは、それ以上の電界を印加しなければ多結晶構造を形成している結晶内のドメインの方位が変化しない電界強度のことをいう。一般に数百V/mmから数kV/mmの電界を印加しなくてはならない。
未分極の状態とは、圧電磁器組成物にまったく電界を印加していない、もしくは抗電界以下しか電界が印加されておらず、圧電磁器組成物の多結晶構造を構成する各々の結晶が無秩序なドメインの方位をもった状態にあることをいう。
また、分極処理された圧電磁器組成物であっても、圧電磁器組成物の多結晶構造を構成する結晶であるペロブスカイト構造を持った結晶を立方晶系となる温度以上に加熱することによって、分極処理は解け、未分極の状態に戻る。前記温度のことを一般にはキュリー温度という。これは立方晶系では、その結晶構造の対称性の観点から、結晶内のドメインが消滅するからである。
ただし、分極処理された圧電磁器組成物をキュリー温度以上の温度に加熱することによって、未分極の状態となっても、キュリー温度以下で再度抗電界以上の強い電界を印加することによって、分極された状態に戻すことができる。
分極処理を行った圧電磁器組成物は、磁器の有する多結晶構造を構成する結晶内部のドメイン構造が電界を印加した方向に配向した状態になる。このときに初めて圧電磁器組成物は圧電効果を有するようになる。
また、分極処理する際に圧電磁器組成物の取る結晶系により、分極される方位が異なるため、結晶系を評価して分極処理を行うことで、発明の効果で述べたような圧電特性の温度依存性を設計したり、高い電気機械結合定数を得たりすることが可能である。具体的な手法としては、分極する際の絶縁性のオイルを所定の温度に設定したり、圧電磁器組成物に対して、圧力を加えることで、結晶系を容易に制御することが出来る。
X線の回折現象は、例えば単結晶および多結晶といったその物質を構成する原子が周期的な構造の連なりを持った結果、結晶格子を有する場合において、以下の様なブラッグの公式を、回折するX線と測定する試料の位置関係が満足する場合に起こる。
2dsinθ = nλ ・・式(0)
式(0)において、dは格子面間隔の幅であり、回折面の間隔である。θは回折面とX線の入射角および反射角(ブラッグ角)であり、入射角および反射角は等しくなければ回折現象は起こらない。nは1以上の整数であり、λはX線の波長である。
また、本発明の状態を観察するに当たっては、X線を用いることが一般的な手法であるが、光源として、例えば電子を用いたり、中性子を用いたりすることもできる。
また、本発明の状態を観察するに当たってのX線源としてはもっとも一般的なX線源であるCu-Kα線(λ=1.5418Å)であることが望ましいが、それ以外の特性X線を用いてもよい。
また、X線の発生源としては例えば、管球を用いるもの、回転対陰極を用いるもの、シンクロトロンを用いるもの、サイクロトロンを用いるもの、などが存在するが、いずれのX線の発生源を用いてもよい。
X線を検出する検出器についても、例えばシンチレーションカウンタ、半導体検出器などが存在するが、いずれの検出器を用いてもよい。
図21~23については後述するが、これらの図は、フィッティングの例を示すものであり、プロットは生データを、2点3線はKα2を、実線はKα1を、それぞれ示している。この内、Kα1の回折プロファイルについて、評価する線強度とした。
なお、この静電容量変化の温度依存性を評価する際の分極は、結晶系の違いによる分極方位の変化を無視するために、評価する圧電磁器組成物が正方晶系を取る温度で分極処理を行った。圧電磁器組成物の結晶系の判断には、前記したように相転移点の前後の温度域で、X線回折プロファイルを得て、そのプロファイルから判断した。
本発明の圧電磁器組成物、すなわち、
Li、Na、K、Nb、Ta、SbおよびOを主な構成元素とし、アルカリ含有ニオブ酸系ペロブスカイト構造を有する圧電磁器組成物において、ABO3型ペロブスカイト構造をZ=1とした単位格子として取った場合に、単斜晶系から正方晶系への結晶構造の転移点を有することを特徴とすることが分かった。且つ、その単斜晶系の空間群はPmであり、正方晶系の空間群はP4mmを有していた。
そして、その構成元素の組成式は、{Lix[Na1-yKy]1-x}i{Nb1-z-wTazSbw}jO3(但し、式中、0.03≦x<0.1、0.3<y<0.7、0.0≦z<0.3、0≦w≦0.10、0.95≦i≦1.01、0.95≦j≦1.01である。)で示される範囲内の圧電磁器組成物である場合に、前述の特徴を有することが分かった。
[I(h00)/I(0k0)]/[I0(h00)/I0(0k0)]<1
[I(00l)/I(0k0)]/[I0(00l)/I0(0k0)]>1
(式中、I0(h00)、I0(0k0)、I0(00l)は、未分極の状態にある面指数h00、0k0、00lに関わるX線回折の線強度を表し、I(h00)、I(0k0)、I(00l)を測定した場合と同一の測定手段によって測定しなければならない。)
となる圧電磁器組成物は、なんの考慮をせずにただ淡々と調整をした、例えば組成式{Lix[Na1-yKy]1-x}i{Nb1-z-wTazSbw}jO3で示される圧電磁器組成物よりも、-50~150℃といった温度領域において、MBPが存在している場合でも、その圧電特性の温度変化を小さくすることが可能であった。そして、電気機械結合定数(例えばkp)の温度変化をより小さくすることができ、鉛を代替するに充分な圧電特性を有することが可能であった。
[I(h00)/I(0k0)]/[I0(h00)/I0(0k0)]>1
[I(00l)/I(0k0)]/[I0(00l)/I0(0k0)]>1
(式中、I0(h00)、I0(0k0)、I0(00l)は、未分極の状態にある面指数h00、0k0、00lに関わるX線回折の線強度を表し、I(h00)、I(0k0)、I(00l)を測定した場合と同一の測定手段によって測定しなければならない。)
となる圧電磁器組成物は、なんの考慮をせずにただ淡々と調整をした、例えば組成式{Lix[Na1-yKy]1-x}i{Nb1-z-wTazSbw}jO3で示される圧電磁器組成物よりも、飛躍的に高い電気機械結合定数(例えばkp)を得ることができ、鉛を代替するに十分な圧電特性を有することが可能であった。
まず、前記した手順でもって、AN-PV構造を有する圧電磁器組成物を得、作成した試料の組成式について、表1中にまとめた。ただし、表1の試料番号における※表記の試料は、本発明の範囲外にある組成であり、比較例である。
処々の考察の後、図10a)~図10k)に示した、温度に対してのペロブスカイト構造に由来した回折プロファイルの動きから、図4にしめすような、空間群Amm2よりも低対称性を有しているZ=1でPmの対称性を有した単斜晶系の結晶構造を有すと判断した。具体的には、Z=1でPmの対称性を有した単斜晶系の結晶構造の場合に得られるX線回折プロファイルの場合は、図10a)~図10k)の矩形のように、44°≦2θ≦47°の範囲において3本の回折プロファイルが存在できるためである。一方、図10の30℃~150℃においては、従来考えられているZ=1でP4mmの対称性を有した正方晶系の結晶構造を有する磁器組成物であることを確認した。そして、図9の0℃~30℃の間に関しては結晶構造の転移の過渡状態であると判断された。
この場合においては、特に圧電特性の指標としたkpが高く、且つ-50℃~150℃においてΔC>0を満たす場合は、前記Z=1の単斜晶系の結晶構造が-50℃~150℃に存在することが明らかとなった。したがって、試料No.3~8は、本特許の範囲内の組成であることが明らかになった。
本実施例では、分極処理時の結晶系による違いについて検討した。
このとき、分極処理は各々の磁器組成物の試料において、正方晶系と判断される温度で分極した圧電磁器組成物の試料と、単斜晶系と判断される温度で分極した圧電磁器組成物の試料を用意した。具体的には、例えば組成式Li0.054(Na0.50K0.50)0.946NbO3では、25℃では単斜晶系であり、150℃では正方晶系であるため、分極処理をする温度によって結晶系を制御することが可能である。
用意した圧電磁器組成物の試料を表5にまとめる。なお、表中、単斜晶系をとる温度(ここでは25℃)で分極処理を行った試料に対して、正方晶系をとる温度(ここでは150℃)で分極処理を行った試料については、試料番号の前に「#」を付して区別してある。ただし、表5の試料番号における※表記の試料は、本発明の範囲外にある組成である。
また、分極処理によった分極された方位の状態を観察するために、前記したようなX線回折法を用いて、配向状態を確認した。
例として、試料No.2-6とNo.#2-7の組成式Li0.054(Na0.50K0.50)0.946NbO3の試料における、分極されていない状態の試料と、単斜晶系で分極処理した状態の試料(No.2-6)と、正方晶系で分極処理した状態の試料(No.#2-7)の試料の測定結果を図18~20に示す。
図21~23は、ぞれぞれ、図18~20の、-25℃、25℃、125℃におけるX線回折プロファイルの44°≦2θ≦47°に存在する200、020、002回折線の拡大図であり、これらの図中、a)が図18、b)が図19、c)が図20である。
図18のプロファイルと図20のプロファイル及び拡大した図21~23のプロファイルから、正方晶系で分極処理した場合は、分極されていない状態との比較において、単斜晶系と判断される-50℃から75℃の範囲において、0k0に対するh00の強度は弱くなり、0k0に対する00lの強度は強くなることが判明し、したがって、<001>の方位にそのドメインが配向していることが分かった。よって、<100>の方位にはそのドメインは配向していないことが分かった。
以上における、結晶方位<uvw>の定数は、分子数1(Z=1)の単斜晶系ペロブスカイト構造をとり、その結晶軸がc>a>bであり、その軸間角度の1つであるβがβ>90°であるときとする。
[I(200)/I(020)]/[I0(200)/I0(020)]<1・・式(1)
を満たす場合に、<100>の方位へ配向したと判断した。ここにおいて、I0(200)/I0(020)は、未分極の状態における面指数200、020で定義されるX線回折の線強度比であり、I(200)/I(020)と同一の測定手段によって測定した線強度比である。
同様に、
[I(002)/I(020)]/[I0(002)/I0(020)]>1・・式(2)
を満たす場合に、<001>の方位へ配向したと判断した。ここにおいて、I0(002)/I0(020)は、未分極の状態における面指数002、020で定義されるX線回折の線強度比であり、I(002)/I(020)と同一の測定手段によって測定した線強度比である。
一方で、単斜晶系で分極した試料No.2-6については、分極方位の判別式(1)が常に成立しなかった。
上記の結果は、分極の晶系により、分極状態を制御することが可能であり、正方晶系で分極した場合においては、常に分極方位を<001>に取ることが可能であることを示している。
図17に示したような圧電特性、円板径方向の電気機械結合定数(kp)の温度依存性の差異は、この分極方位の違いによるものであり、分極方位を<001>にとることによって、明らかに温度依存性を緩和することが可能である。
表5の試料について、図18~図20に示したようなXRDによる分極方位の決定を行った結果を表7に示す。
したがって、分極方位を制御することによって、MPBを-50~150℃といった実用的な温度領域を存在させつつも、電気機械結合係数の温度依存性を小さくすることが可能なとなることが明らかとなった。
表5の試料について、室温25℃における電気機械結合定数Kpの算出結果、分極位相、下記の式(1′)、式(2)で規定した試料の配向状態を表7にまとめた。
[I(200)/I(020)]/[I0(200)/I0(020)]>1・式(1´)
[I(002)/I(020)]/[I0(002)/I0(020)]>1・・式(2)
これは具体的には、前記単斜晶系と定義した結晶系にて、分極処理が施されたことによって、一般に前記記載した特許文献、非特許文献で行われている分極処理では為し得ない方位にもドメイン構造が配向したためであると考えられた。
Claims (10)
- Li、Na、K、Nb、Ta、SbおよびOを主な構成元素とし、アルカリ含有ニオブ酸系ペロブスカイト構造を有する圧電磁器組成物において、ABO3型ペロブスカイト構造をZ=1とした単位格子として取った場合に、単斜晶系から正方晶系への結晶構造の転移点を有することを特徴とする圧電磁器組成物。
- ABO3型ペロブスカイト構造をZ=1とした単位格子として取った場合に、空間群Pmで定義される単斜晶系から空間群P4mmで定義される正方晶系への結晶構造の転移点を有することを特徴とする請求項1記載の圧電磁器組成物。
- 組成式{Lix[Na1-yKy]1-x}i{Nb1-z-wTazSbw}jO3(但し、式中、0.03≦x<0.1、0.3<y<0.7、0.0≦z<0.3、0≦w≦0.10、0.95≦i≦1、01、0.95≦j≦1.01である。)で示される請求項2に記載の圧電磁器組成物。
- その結晶軸長がc>a>bであり、その軸間角度の1つであるβがβ>90°のときの結晶方位<100>、<010>、<001>に属する面指数h00、0k0、00lに関わるX線回折の線強度I(h00)、I(0k0)、I(00l)を、圧電磁器組成物のブラッグの公式を満たす回折面に対して、分極処理をした際に電界を印加した方向を垂直方向にとった状態で測定した場合、分極処理した圧電磁器組成物のX線回折の線強度比I(h00)/I(0k0)、I(00l)/I(0k0)が、h=k=l=m(mは1以上の整数)としたときに、
[I(h00)/I(0k0)]/[I0(h00)/I0(0k0)]<1
[I(00l)/I(0k0)]/[I0(00l)/I0(0k0)]>1
(式中、I0(h00)、I0(0k0)、I0(00l)は、未分極の状態にある面指数h00、0k0、00lに関わるX線回折の線強度を表し、I(h00)、I(0k0)、I(00l)を測定した場合と同一の測定手段によって測定しなければならない。)
となることを特徴とする請求項3に記載の圧電磁器組成物。 - その結晶軸長がc>a>bであり、その軸間角度の1つであるβがβ>90°のときの結晶方位<100>、<010>、<001>に属する面指数h00、0k0、00lに関わるX線回折の線強度I(h00)、I(0k0)、I(00l)を、圧電磁器組成物のブラッグの公式を満たす回折面に対して、分極処理をした際に電界を印加した方向を垂直方向にとった状態で測定した場合、分極処理した圧電磁器組成物のX線回折の線強度比I(h00)/I(0k0)、I(00l)/I(0k0)が、h=k=l=m(mは1以上の整数)としたときに、
[I(h00)/I(0k0)]/[I0(h00)/I0(0k0)]>1
[I(00l)/I(0k0)]/[I0(00l)/I0(0k0)]>1
(式中、I0(h00)、I0(0k0)、I0(00l)は、未分極の状態にある面指数h00、0k0、00lに関わるX線回折の線強度を表し、I(h00)、I(0k0)、I(00l)を測定した場合と同一の測定手段によって測定しなければならない。)
となることを特徴とする請求項3に記載の圧電磁器組成物。 - 第一の電極と第二の電極とが圧電セラミックス層を介して対向する圧電セラミックス部品において、前記圧電セラミックス層が、請求項1~5のいずれか1項に記載の圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
- 第一の電極と第二の電極とが圧電セラミックス層を介して交互に複数層積み重ねられており、前記第一の電極と電気的に接続する第一の端子電極と、前記第二の電極と電気的に接続する第二の端子電極とを有する圧電セラミックス部品において、前記圧電セラミックス層が、請求項1~5のいずれか1項に記載の圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
- 圧電セラミックス層を有する基板を有し、その圧電セラミックス層の上部に第一の電極と第二の電極が対向して配置される圧電セラミックス部品において、前記圧電セラミックス層が、請求項1~5のいずれか1項に記載の圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
- 第一の電極と第二の電極とが圧電セラミックス層を有する基板上に交互に複数層対向しており、前記第一の電極と電気的に接続する第一の端子電極と、前記第二の電極と電気的に接続する第二の端子電極とを有する圧電セラミックス部品において、前記圧電セラミックス層が、請求項1~5のいずれか1項に記載の圧電磁器組成物で形成されていることを特徴とする圧電セラミックス部品。
- 単斜晶系ペロブスカイト構造を取るAN-PV構造を持つことができる、請求項1~5のいずれか1項に記載の圧電磁器組成物で形成された圧電セラミックス層に、電極を形成した後、電界を印加することによって分極を行う工程を有することを特徴とする、圧電セラミックス部品の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/510,261 US20120229953A1 (en) | 2009-11-18 | 2010-09-21 | Lead-free piezoelectric porcelain composition, piezoelectric ceramic component formed using the composition, and process for producing piezoelectric ceramic component |
CN201080051822.2A CN102725244B (zh) | 2009-11-18 | 2010-09-21 | 无铅压电陶瓷组成物、及使用该组成物的压电陶瓷零件以及压电陶瓷零件的制造方法 |
JP2011541845A JP5656866B2 (ja) | 2009-11-18 | 2010-09-21 | 無鉛圧電磁器組成物の製造方法、及び圧電セラミックス部品の製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009262489 | 2009-11-18 | ||
JP2009-262489 | 2009-11-18 | ||
JP2010115961 | 2010-05-20 | ||
JP2010-115961 | 2010-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011061992A1 true WO2011061992A1 (ja) | 2011-05-26 |
Family
ID=44059477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066302 WO2011061992A1 (ja) | 2009-11-18 | 2010-09-21 | 無鉛圧電磁器組成物、及び該組成物を用いた圧電セラミックス部品並びに圧電セラミックス部品の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120229953A1 (ja) |
JP (1) | JP5656866B2 (ja) |
CN (1) | CN102725244B (ja) |
WO (1) | WO2011061992A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102491752A (zh) * | 2011-11-18 | 2012-06-13 | 河南科技大学 | 一种锂、锑掺杂的铌酸钾钠无铅压电陶瓷的制备方法 |
JP2013051862A (ja) * | 2011-08-31 | 2013-03-14 | Daihatsu Motor Co Ltd | 発電システム |
JP2013151404A (ja) * | 2011-12-26 | 2013-08-08 | Tdk Corp | 圧電磁器および圧電素子 |
JP2017050353A (ja) * | 2015-08-31 | 2017-03-09 | セイコーエプソン株式会社 | 圧電素子、及び圧電素子応用デバイス |
JP2018088524A (ja) * | 2016-11-22 | 2018-06-07 | 日本特殊陶業株式会社 | 無鉛圧電磁器組成物及び圧電素子 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6457415B2 (ja) * | 2016-03-10 | 2019-01-23 | 太陽誘電株式会社 | 圧電素子及びその製造方法 |
JP7528556B2 (ja) * | 2020-06-17 | 2024-08-06 | セイコーエプソン株式会社 | 圧電素子、圧電素子応用デバイス |
KR102628407B1 (ko) * | 2021-06-21 | 2024-01-25 | 고려대학교 산학협력단 | 배향 무연 압전 세라믹 조성물 및 이의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000313664A (ja) * | 1999-02-24 | 2000-11-14 | Toyota Central Res & Dev Lab Inc | アルカリ金属含有ニオブ酸化物系圧電材料組成物 |
JP2004300012A (ja) * | 2002-07-16 | 2004-10-28 | Denso Corp | 圧電磁器組成物及びその製造方法並びに圧電素子及び誘電素子 |
JP2005228865A (ja) * | 2004-02-12 | 2005-08-25 | Toyota Central Res & Dev Lab Inc | 圧電セラミックスの製造方法 |
JP2008078267A (ja) * | 2006-09-20 | 2008-04-03 | Ngk Insulators Ltd | 圧電セラミックス、その製造方法、及び圧電/電歪素子 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7402938B2 (en) * | 2004-10-29 | 2008-07-22 | Jfe Mineral Co., Ltd. | Piezoelectric single crystal device |
JP2006151796A (ja) * | 2004-10-29 | 2006-06-15 | Nagoya Institute Of Technology | 圧電セラミックス組成物 |
JP5287658B2 (ja) * | 2008-11-14 | 2013-09-11 | 株式会社村田製作所 | セラミック電子部品 |
-
2010
- 2010-09-21 WO PCT/JP2010/066302 patent/WO2011061992A1/ja active Application Filing
- 2010-09-21 CN CN201080051822.2A patent/CN102725244B/zh not_active Expired - Fee Related
- 2010-09-21 US US13/510,261 patent/US20120229953A1/en not_active Abandoned
- 2010-09-21 JP JP2011541845A patent/JP5656866B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000313664A (ja) * | 1999-02-24 | 2000-11-14 | Toyota Central Res & Dev Lab Inc | アルカリ金属含有ニオブ酸化物系圧電材料組成物 |
JP2004300012A (ja) * | 2002-07-16 | 2004-10-28 | Denso Corp | 圧電磁器組成物及びその製造方法並びに圧電素子及び誘電素子 |
JP2005228865A (ja) * | 2004-02-12 | 2005-08-25 | Toyota Central Res & Dev Lab Inc | 圧電セラミックスの製造方法 |
JP2008078267A (ja) * | 2006-09-20 | 2008-04-03 | Ngk Insulators Ltd | 圧電セラミックス、その製造方法、及び圧電/電歪素子 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013051862A (ja) * | 2011-08-31 | 2013-03-14 | Daihatsu Motor Co Ltd | 発電システム |
CN102491752A (zh) * | 2011-11-18 | 2012-06-13 | 河南科技大学 | 一种锂、锑掺杂的铌酸钾钠无铅压电陶瓷的制备方法 |
CN102491752B (zh) * | 2011-11-18 | 2013-04-24 | 河南科技大学 | 一种锂、锑掺杂的铌酸钾钠无铅压电陶瓷的制备方法 |
JP2013151404A (ja) * | 2011-12-26 | 2013-08-08 | Tdk Corp | 圧電磁器および圧電素子 |
EP2610233B1 (en) * | 2011-12-26 | 2018-01-24 | TDK Corporation | Piezoelectric ceramic and piezoelectric device |
JP2017050353A (ja) * | 2015-08-31 | 2017-03-09 | セイコーエプソン株式会社 | 圧電素子、及び圧電素子応用デバイス |
JP2018088524A (ja) * | 2016-11-22 | 2018-06-07 | 日本特殊陶業株式会社 | 無鉛圧電磁器組成物及び圧電素子 |
Also Published As
Publication number | Publication date |
---|---|
CN102725244B (zh) | 2014-07-16 |
JPWO2011061992A1 (ja) | 2013-04-04 |
US20120229953A1 (en) | 2012-09-13 |
CN102725244A (zh) | 2012-10-10 |
JP5656866B2 (ja) | 2015-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5656866B2 (ja) | 無鉛圧電磁器組成物の製造方法、及び圧電セラミックス部品の製造方法 | |
Zuo et al. | Tantalum doped 0.94 Bi0. 5Na0. 5TiO3–0.06 BaTiO3 piezoelectric ceramics | |
Samanta et al. | Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios | |
JP5576365B2 (ja) | 圧電セラミックスおよびその製造方法ならびに圧電デバイス | |
JP5198864B2 (ja) | 圧電性材料 | |
WO2009116683A1 (en) | Piezoelectric material | |
Wei et al. | Templated grain growth and piezoelectric properties of< 001>-textured PIN–PMN–PT ceramics | |
WO2013106118A2 (en) | High performance textured piezoelectric ceramics and method for manufacturing same | |
Wang et al. | Phase transition behavior and high piezoelectric properties in lead-free BaTiO 3–CaTiO 3–BaHfO 3 ceramics | |
US20130162108A1 (en) | Piezoelectric ceramic and piezoelectric device | |
Cao et al. | Piezoelectric properties and thermal stabilities of strontium bismuth titanate (SrBi4Ti4O15) | |
Xie et al. | Comprehensive investigation of structural and electrical properties of (Bi, Na) CoZrO3-doped KNN ceramics | |
Yoon et al. | Phase-formation, microstructure, and piezoelectric/dielectric properties of BiYO3-doped Pb (Zr0. 53Ti0. 47) O3 for piezoelectric energy harvesting devices | |
Jiang et al. | Effects of Mn-doping on the properties of (Ba0. 92Ca0. 08)(Ti0. 95Zr0. 05) O3 lead-free ceramics | |
Weng et al. | Low-temperature–sintered CuF2-doped NKN ceramics with excellent piezoelectric and dielectric properties | |
Yoon et al. | Piezoelectric Properties of Pb [Zr0. 45Ti0. 5‐xLux (Mn1/3Sb2/3) 0.05] O3 Ceramics | |
Zhu et al. | Comparative investigations on dielectric, piezoelectric properties and humidity resistance of PZT–SKN and PZT–SNN ceramics | |
Tripathi et al. | Morphotropic phase-boundary-like characteristic in a lead-free and non-ferroelectric (1− x) Na Nb O 3-x Ca Ti O 3 system | |
Kim et al. | Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98 (Na0. 5K0. 5) NbO3–0.02 Li0. 04 (Sb0. 06Ta0. 1) O3 ceramics | |
Chen et al. | Study of the structure and electrical properties of PMN-PNN-PT ceramics near the morphotropic phase boundary | |
WO2017006984A1 (ja) | 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法 | |
Wang et al. | MnCO3 modified PMN-PZT piezoelectric ceramics with enhancing mechanical quality factor and low loss | |
Gaur et al. | Piezoelectric properties of (K0. 5Na0. 5) 1− xLix (Nb0. 96Sb0. 04) O3 ceramics prepared from nanocrystalline powders | |
Perumal et al. | Structural, dielectric, piezoelectric and ferroelectric properties of lead-free (1-x) Na0. 5 Bi0. 5 TiO3-xBaTiO3 (x= 0.00, 0.04, 0.06, 0.08) ceramic | |
KR101454341B1 (ko) | Pzt계 압전 세라믹 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080051822.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10831391 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011541845 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13510261 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10831391 Country of ref document: EP Kind code of ref document: A1 |