[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011058793A1 - シート肉盛を施したポペットバルブおよびその製造方法 - Google Patents

シート肉盛を施したポペットバルブおよびその製造方法 Download PDF

Info

Publication number
WO2011058793A1
WO2011058793A1 PCT/JP2010/062681 JP2010062681W WO2011058793A1 WO 2011058793 A1 WO2011058793 A1 WO 2011058793A1 JP 2010062681 W JP2010062681 W JP 2010062681W WO 2011058793 A1 WO2011058793 A1 WO 2011058793A1
Authority
WO
WIPO (PCT)
Prior art keywords
build
sheet
valve
poppet valve
head
Prior art date
Application number
PCT/JP2010/062681
Other languages
English (en)
French (fr)
Inventor
一憲 倉橋
眞 安池
田中 靖人
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Publication of WO2011058793A1 publication Critical patent/WO2011058793A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • B23P15/002Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Definitions

  • the present invention relates to a method for manufacturing a poppet valve, and more particularly, to a method for manufacturing a large-sized poppet valve for land use or marine use with a built-up sheet.
  • the seat of the poppet valve is made of a corrosion-resistant, wear-resistant, wear-resistant, heat-resistant alloy to protect the valve surface and increase the useful life of the valve. It is generally performed.
  • Patent Document 1 describes a conventional method for manufacturing a poppet valve with a built-up sheet.
  • a method for manufacturing an engine poppet valve including a second hot forging step in which a head having a predetermined shape is formed by hot forging the entire head including the overlay material is described.
  • Patent Document 1 has no problem in manufacturing a poppet valve used for an engine of an automobile or a motorcycle, but this method is used as it is for manufacturing a large poppet valve used for a land or marine engine.
  • the land or marine engine includes a large diesel engine for generators, a large gas engine, a large diesel engine for ships, and the like.
  • NCF80A, NCF751, NCF4015 which is superior in corrosion resistance, wear resistance, wear resistance, and heat resistance compared to poppet valves for automobiles and motorcycles, is required for operation in corrosive atmospheres.
  • An alloy containing a large amount of nickel base such as NCF3015 (hereinafter referred to as a high Ni content alloy) is used.
  • Ni-rich alloy promotes precipitation of Al and Ti by heat input (heat of welding), increases the amount of precipitation of gamma-prime phase, grows crystal grains, and has high cracking susceptibility (easy to crack). It has the characteristic of
  • the sheet material is welded to the base material 1 as shown in FIG. 12 (a)
  • the sheet material welded portion immediately after the end of the welding is shown in FIG. 12 (b).
  • the surface layer part 1a melts, and the sheet build-up part 2 which is a liquid phase is formed on the outer side (surface side).
  • the base material side heat-affected zone 1 b in which a solid phase (within crystal grains) and a liquid phase (crystal grain boundary) are mixed under the influence of welding heat is affected by the heat of welding. It is formed between the base material side non-heat-affected zone 1c that is a solid phase that is not received. Thereafter, when the valve head (sheet material welded portion) cools, the sheet build-up portion 2 and the base material side heat affected zone 1b also change to a solid phase, as shown in FIG.
  • the sheet build-up portion 2 in contact with the air cools the fastest and becomes a solid phase, but the base material side heat-affected zone 1b in the lower layer of the sheet build-up portion 2 has a large heat capacity of the valve head and is difficult to cool, It is maintained in a state of being mixed (a form in which a solid phase and a liquid phase coexist), the amount of precipitation of the gamma prime phase increases, crystal grains grow, and cracking susceptibility increases (becomes easy to crack). Then, it is presumed that hot cracking occurs in the base material side heat affected zone 1b due to the solidification shrinkage stress generated in the base material side heat affected zone 1b in the process of cooling the sheet material welded portion.
  • the inventor shortens the time during which the solid phase / liquid phase mixed form of the base material side heat affected zone 1b is continued (solidification start temperature ( If the time difference between the liquidus) and the solidification end temperature (solidus) is reduced), it is considered that the amount of gamma prime phase precipitated and the solidification shrinkage stress in the base metal side heat affected zone 1b are reduced.
  • the valve head is actively cooled in the build-up process, and the liquid phase (crystal grain boundary) of the base metal side heat affected zone 1b may be solidified quickly, that is, the base metal side heat affected zone. It was thought that the whole 1b should be cooled quickly.
  • the present invention has been made based on the above-mentioned problems of the prior art and the above-mentioned knowledge of the inventor, and the first object thereof is a land equipped with a sheet overlaying process that does not involve hot cracking.
  • a second purpose of the present invention is to provide a land or marine poppet valve that is excellent in durability of a seat portion subjected to overlaying.
  • the poppet valve manufacturing method is a method of manufacturing a poppet valve in which a head is integrally formed at a shaft end, and the valve head is formed.
  • a process of hot forging an unfinished poppet valve from raw materials a process of forming a groove for sheet overlaying on the head of the unfinished poppet valve, and sheet overlaying in the groove for sheet overlaying
  • the poppet valve is made of a high Ni-containing alloy.
  • the base material is an alloy containing high Ni (the precipitation of Al and Ti is accelerated by the heat of welding, the amount of precipitation of gamma-prime phase is increased, and crystal grains grow. It has a characteristic that sensitivity increases (becomes easy to break)). Furthermore, land or marine poppet valves are larger than poppet valves for automobiles and motorcycles, and the boundary area between the base material and the seat overlay in the seat material welded part is naturally large. The solidification shrinkage stress generated at the boundary between the base material and the sheet build-up portion when it cools is also larger than in the case of poppet valves for automobiles and motorcycles.
  • the inside of the sheet material welded part (base material side thermal effect in which solid phase and liquid phase are mixed under the influence of welding heat) May cause high temperature cracking due to solidification shrinkage stress, but the valve head is cooled during the overlaying process of welding the sheet material, so the base material side heat affected zone inside the sheet material welded part Then, heat is dissipated to the sheet build-up portion laminated on the upper layer side, and is also actively radiated to the base material side non-heat-affected portion constituting the head, which is laminated on the lower layer side.
  • the time until it cools down to the solid phase that is, the time during which the solid phase / liquid phase mixed form continues is reduced (solidification start temperature (liquidus line) and solidification end temperature). (The time difference from the solid phase line is reduced), the amount of precipitation of the gamma-prime phase and the solidification shrinkage stress in the base metal side heat affected zone are reduced, and no hot cracking occurs in the base metal side heat affected zone.
  • valve If the valve is cooled too much (when the cooling rate is too high), a region with a large solidification shrinkage stress moves to a part with poor heat dissipation (slow cooling) and locally hot cracks there. Therefore, it is desirable to cool the entire valve substantially uniformly and gradually.
  • the cooling rate when the end face side of the valve head is cooled and the valve is cooled too much (when the cooling rate is too high), the inner diameter side of the base material side heat affected zone is heated to a high temperature. Since cracking occurs, it is desirable to cool the end face side of the valve head substantially uniformly and gradually.
  • the sheet build-up material is placed in the groove for sheet build-up while the end face side of the valve head is cooled. It comprised so that it might weld.
  • the base material side heat affected zone is laminated on the base material side non-heat affected zone constituting the end face side of the valve head, and cools the end face side (base material side non-heat affected zone) of the valve head. Therefore, heat dissipation from the base metal side heat affected zone to the base metal side non heat affected zone is effectively promoted, and the solid phase / liquid phase mixed form of the base metal side heat affected zone is further shortened (solidification starts) Because the time difference between the temperature (liquidus) and the solidification end temperature (solidus) is smaller), the precipitation amount of the gamma-prime phase and the solidification shrinkage stress in the base metal side heat affected zone are reliably reduced. In addition, hot cracking does not occur reliably in the base metal side heat affected zone.
  • the sheet build-up material in a state where an end face side of the valve head is in contact with a cooling base. was configured to be welded.
  • the end face side of the valve head can be uniformly cooled by configuring the cooling pedestal with cooling metal.
  • the sheet build-up material is configured to be plasma arc welded in the build-up step.
  • Sheet overlay material is a high melting point that is superior in corrosion resistance, wear resistance, wear resistance, and heat resistance to the base material of the valve (high Ni content alloy) such as cobalt base alloy or nickel base alloy.
  • the powdered sheet overlay material is used as a plasma arc discharge torch.
  • the cladding material can be welded from the torch to the groove for sheet deposition.
  • the sheet build-up groove is directly opposite to a plasma arc discharge torch directed vertically downward.
  • the valve is arranged so as to be inclined, and the sheet build-up material is welded to the groove while the valve is rotated around its axis.
  • the plasma arc discharge torch fixed vertically downward is configured to rotate the valve tilted so that the groove for sheet build-up faces the axis, the shaft is rotated.
  • the posture (relationship) of the torch with respect to the groove for sheet build-up is always constant, the thickness of the sheet welded portion is uniform in the circumferential direction, and the post-process is simple.
  • the build-up process there is little molten build-up material scattered out of the groove for sheet build-up, and there is little waste of the sheet build-up material.
  • the poppet valve according to claim 6 is a poppet valve in which a head is integrally formed at a shaft end portion, and is configured to be manufactured by the method according to any one of claims 1 to 5.
  • a method for manufacturing a poppet valve provided with a build-up process in which hot cracking does not occur in the sheet material welded portion is provided.
  • a land or marine poppet valve excellent in durability of the welded portion of the sheet material can be manufactured.
  • a method for manufacturing a poppet valve that does not reliably cause high-temperature cracking in the sheet material welded part in the build-up process is provided. It is possible to manufacture land or marine poppet valves with excellent endurance.
  • the build-up process can be easily performed by welding a high melting point, for example, a cobalt base alloy or a nickel base alloy, which is a sheet build-up material, along the groove for sheet build-up.
  • a high melting point for example, a cobalt base alloy or a nickel base alloy, which is a sheet build-up material
  • the post-process is simplified because the thickness of the sheet welded portion is uniform in the circumferential direction. Moreover, since there is little molten build-up material scattered outside the sheet build-up groove in the build-up process, the consumption of the sheet build-up material can be greatly reduced.
  • a land or marine poppet valve that does not crack in the seat portion can be manufactured, a land or marine poppet valve having excellent durability of the seat portion can be provided.
  • FIGS. 1 to 8 are diagrams showing an example method for manufacturing a marine poppet valve.
  • a marine poppet valve 10 in which a head 12 having a predetermined shape is integrally formed at one end of the shaft 11 and the seat portion 13 of the head 12 is reinforced with a sheet build-up material made of stellite alloy 712 can be manufactured.
  • the poppet valve 10 is a large poppet valve having a head diameter of about 100 mm, a shaft diameter of about 25 mm, and an overall length of about 500 mm.
  • Reference numeral 11a denotes a cotter groove.
  • this poppet valve 10 In order to manufacture this poppet valve 10, first, in the upsetting process shown in FIG. 1, a rod-shaped material W1 made of NCF80A heated by applying a voltage between the pair of electrodes 14a and 14b (about 1100 ° C.) While pressurizing in the direction, the head portion is processed into a predetermined shape, and preheating is applied to the head portion for the next hot forging.
  • the unfinished valve after the upsetting process is indicated by reference numeral W2.
  • the head portion of the material W2 installed in the upsetting process is formed into a predetermined shape by hot forging.
  • the unfinished valve after the completion of this hot forging step is indicated by reference numeral W3.
  • the groove 16 for overlaying is formed on the seating surface of the head portion using the cutting tool 15 while rotating the unfinished valve W3.
  • the unfinished valve after the completion of the groove forming process is indicated by reference numeral W4.
  • a wear resistant material (Stellite alloy 712) is plasma arc welded to form the unfinished valve W ⁇ b> 4. It is welded (filled) to the groove 16 for filling.
  • reference numeral W ⁇ b> 5 indicates an unfinished valve after completion of the build-up process
  • reference numeral 2 indicates a sheet build-up portion welded to the groove 16.
  • the unfinished valve W4 is inclined and disposed so that the sheet build-up groove 16 faces directly below the plasma arc discharge torch 70 directed vertically downward.
  • the entire groove 16 is overlaid.
  • no hot cracking occurs in the sheet material welded portion.
  • the unfinished valve W ⁇ b> 5 that has undergone the overlaying process is rotated, and cutting is performed using the cutting tool 17 so that the overlaying part becomes a flat surface.
  • the unfinished valve after the end of the cutting process is indicated by reference numeral W6.
  • the mold and the unfinished valve W6 are heated to 900 to 1000 ° C. with a burner, the valve W6 is hot-forged again, and then solutionized into the valve W4. Treatment (cooling after holding in an electric furnace at a temperature of about 1000 ° C.) and aging treatment (cooling after holding in an electric furnace at a temperature of about 700 ° C. for a predetermined time) are performed.
  • the unfinished valve after the completion of the re-hot forging / heat treatment process is indicated by reference numeral W7.
  • the cutting tool 18 is used to cut the head sheet portion, the neck lower R portion, the shaft portion, and the cotter groove 11 a.
  • the valve 10 shown in FIG. It by rotating the unfinished valve W8 and using the grinding tool 19 to finish the seat portion and the shaft portion to the roughness as designed, the valve 10 shown in FIG. It ’s done.
  • FIG. 11 is a cross-sectional view showing a configuration of the entire apparatus for performing the build-up process shown in FIG.
  • Reference numeral 20 denotes a disk-shaped cooling metal having a cooling water circulation path L therein, and a concave portion 22 that can hold the head end face side of the valve 10 in close contact is formed on the upper surface thereof.
  • Reference numeral 30 denotes a shaft end presser that supports the shaft end of the valve 10, and is rotatably supported by a valve shaft end support 34 on the apparatus main body side via an angular bearing 32.
  • the cooling water circulation path L inside the cooling metal 20 is composed of a central water supply path L1 and a drainage path L2 extending radially from the water supply path L1 in the circumferential direction, and the water supply path L1 and the drainage path L2 are connected to the cooling metal 20.
  • the cooling joint joint 24 integrated and connected, the driven rotary shaft 40 connected and integrated to the cooling joint 24, and the rotary joint 50 (movable joint 50a, fixed side) connected to the lower end of the driven rotary shaft.
  • the joints 50b) respectively extend into the water supply pipes 42 and the water distribution pipes 44 connected to the fixed rotary joint 50b.
  • the cooling metal joint 24 protruding to the lower surface side of the cooling metal 20 is held by three chucks (claw members) 52 provided on the chuck base 50 and capable of expanding and contracting in the radial direction, and fixed on the chuck base 50. Has been.
  • a driven pulley 64 integrated with a lower portion of the chuck base 50 is attached to the driven rotary shaft 40 that extends downward through the central circular hole 51 of the chuck base 50, and an output shaft of the servo motor 60.
  • a timing belt 66 is interposed between the driving pulley 52 and the driven pulley 54 that are attached to the shaft 62.
  • valve shaft end support portion 34 on the apparatus main body side is configured so that the valve 10 can be cooled and pressurized (pressed) toward the metal 20 via a shaft end presser 30 that supports the shaft end of the valve 10.
  • the valve 10 sandwiched in the vertical direction by the cooling metal 20 and the shaft end presser 30 is integrated with the chuck pedestal 50, the rotary shaft 40, the pulley 54, and the rotary joint movable part 50a by the drive of the servo motor 60.
  • the rotary joint fixing portion 50b and the valve shaft end support portion 34 on the apparatus main body side are rotated.
  • the rotation center axis of the driven side rotating shaft 40 is disposed so as to be inclined at 45 degrees with respect to the plasma arc discharge torch 70 directed vertically downward (inclined at 45 degrees with respect to the vertical axis).
  • the valve 10 supported by the shaft end presser 30 has a form in which the sheet build-up groove 16 faces the torch 70 in the vertical direction directly under the plasma arc discharge torch 70.
  • the driving of the servo motor 60 and the welding of the sheet material by the plasma arc discharge torch 70 are controlled by a control unit (not shown) so that the sheet material is welded by the torch 70 while rotating the valve 10.
  • the sheet build-up portion having a substantially uniform predetermined thickness can be formed over the entire circumference of the groove 16 by rotating the valve 10 twice.
  • the water supply / drainage to the cooling water circulation path L inside the cooling metal 20 is also controlled by a control unit (not shown). That is, the cooling gold 20 is provided with a temperature sensor, and the pump P is driven so that the temperature detected by the temperature sensor becomes a predetermined temperature while the sheet material is welded to the groove 16 by the torch 70. On / off control of the water supply to the cooling water circulation path L inside the cooling metal 20 is controlled.
  • the sheet overlay material is sprayed into the groove 16 from the torch 70, so that the sheet overlay material is built up around the entire groove 16.
  • the temperature on the head end face side of the valve 10 is maintained at a predetermined temperature during the build-up process shown in FIG. 4, that is, while the sheet build-up material is sprayed (welded) from the torch 70 to the groove 16. Hot cracks do not occur inside the weld.
  • the marine poppet valve 10 has a base material of NCF80A (precipitation of Al and Ti is promoted by the heat of welding, the amount of precipitation of gamma-prime phase increases, and crystal grains grow, so that cracking susceptibility increases (cracking). It is made of a high Ni content alloy having the characteristics of
  • the marine poppet valve 10 is larger than the poppet valve for automobiles and motorcycles, and the boundary area between the base material and the sheet build-up portion in the sheet material welded portion is naturally large, and when the sheet material welded portion cools.
  • the solidification shrinkage stress generated at the boundary between the base material and the seat build-up portion is also larger than in the case of poppet valves for automobiles and motorcycles.
  • the sheet material welded portion is cooled and the interior of the sheet material welded portion (the solid phase is affected by the heat of welding).
  • the base material side heat-affected zone 3a in which the liquid phase is mixed, but during the overlaying process of welding the sheet material, the end face side of the valve head is cooled and positively applied by the gold 20
  • heat is radiated to the sheet build-up portion 2 laminated on the upper layer side, and the head is laminated on the lower layer side.
  • Heat is positively dissipated also to the base material side non-heat-affected zone 3b, and the time during which the solid-phase / liquid-phase mixed form of the base material side heat-affected zone 3a continues is shortened (solidification start temperature (liquidus line)) And the time difference between the solidification end temperature (solidus) and the base material A solidification shrinkage stress precipitation amount of gamma-prime phase in the heat-affected zone 3a is reduced, high temperature cracking the base material side heat affected zone 3a does not occur.
  • the temperature of the cooling metal 20 is set at the base material side heat affected zone 3a in the sheet material welded portion. Since it is maintained at a predetermined temperature effective in reducing the precipitation amount of the gamma prime phase and the solidification shrinkage stress, hot cracking does not occur reliably in the base material side heat affected zone 3a.
  • symbol 3 shows a base material and the arrow in FIG. 10 shows the heat dissipation direction.
  • the mold and the valve W6 are heated to 900 to 1000 ° C. with a burner to hot forge the valve W6, but the valve W6 after the build-up process is forged again. Thereby, the high temperature crack in the base material side heat affected zone 3a inside the sheet welded portion is more reliably wiped out.
  • the marine poppet valve 10 having excellent durability of the seat portion 13 can be manufactured using the marine poppet valve on which the seat is built up.
  • the poppet valve 10 in which the seat material 13 made of stellite alloy 712 is built up on the seat portion 13 of the valve body whose base material is NCF80A has been described, and the manufacturing method thereof is described.
  • NCF80A, NCF751, NCF4015, NCF3015, etc. can be considered as the base material, and the sheet material constituting the seat portion 13 is superior in corrosion resistance, wear resistance, abrasion resistance, and heat resistance to the base material constituent material.
  • a cobalt base alloy or a nickel base alloy can be considered.
  • the valve head is cooled by adjusting the temperature of the cooling metal 20 to a predetermined temperature, but the base material of the valve, the sheet material to be built-up, the welding temperature, Needless to say, the set temperature of the cooling metal 20 varies depending on the size of the groove width or the like.
  • the cooling metal 20 is cooled by the water cooling method, but it may be cooled by oil or air.
  • the manufacturing method of the marine poppet valve 10 has been described.
  • the present invention is not limited to the manufacturing method of the marine poppet valve 10, and a large diesel engine for a generator, a large gas engine, etc. Needless to say, the present invention can be similarly applied to a method for manufacturing a large-sized land poppet valve that is required to be used in a corrosive atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Forging (AREA)

Abstract

 ヘッドのシート肉盛用溝に肉盛材料を溶着する肉盛工程を備えた大型ポペットバルブの製造方法であって、バルブの母材を高Ni基材で構成し、肉盛工程では、ヘッド端面側を冷却しつつ、肉盛材料を溶着する。高Ni基材は、溶着熱でガンマ・プライム相の析出量が増えて結晶粒が成長するため、割れ感受性が増加し、大型バルブでは、溶着面積が大きく、母材(3)と肉盛部(2)間の境界に生じる熱応力(凝固収縮力)も大きいため、肉盛部(2)に沿った母材熱影響部(3a)内で高温割れ発生が懸念されるが、肉盛工程中、ヘッド端面側が冷し金(20)で冷却されて、母材熱影響部(3a)では固相と液相が混在する時間が短縮され、ガンマ・プライム相の析出量と凝固収縮力が低減されて、高温割れが発生しない。

Description

シート肉盛を施したポペットバルブおよびその製造方法
 本発明は、ポペットバルブの製造方法に係り、特に、シート肉盛が施された陸用または舶用の大型のポペットバルブを製造する方法に関する。
 エンジンのポペットバルブ、特に、ディーゼルエンジンや有鉛燃料エンジン用に供されている吸気・排気バルブは、比較的高い温度で、どちらかというと腐食雰囲気中で作動することが当産業界でよく知られている。
 このため、エンジンのポペットバルブの製造では、バルブの表面を保護し、バルブの耐用寿命を上げるために、ポペットバルブのシート部を耐食性、耐摩耗性、耐摩損性、耐熱性のある合金で肉盛することが一般的に行なわれている。
 下記特許文献1には、シート肉盛を施したポペットバルブを製造する従来の方法が記載されている。
 即ち、ここには、「所望形状のヘッドを有するポペットバルブを製造する方法であって、初期のバルブヘッドを形成するために原材料から未仕上げのポペットバルブを熱間鍛造する熱間鍛造工程と、前記未仕上げポペットバルブのヘッドにシート肉盛用の溝を形成する溝形成工程と、前記未仕上げポペットバルブの前記シート肉盛用の溝にシート肉盛材料を溶着させる肉盛工程と、前記シート肉盛材料を含むヘッド全体を熱間鍛造して所定形状のヘッドを形成する第2の熱間鍛造工程とを備えたエンジンポペットバルブの製造方法」が記載されている。
特開2002-160039
 しかし、前記した特許文献1の方法は、自動車や自動二輪車のエンジンに用いるポペットバルブを製造する上では問題ないが、この方法を、陸用または舶用のエンジンに用いる大型のポペットバルブの製造にそのまま適用した場合には、シート材溶着部の内部に高温割れが発生し、バルブ(シート肉盛部)の耐久性に難がある、という問題が提起された。
なお、陸用または舶用のエンジンとしては、発電機用の大型ディーゼエンジンや大型ガスエンジン、船舶用の大型ディーゼエンジン等がある。
 そこで、発明者がその原因について検討したところ、以下のようなことがわかった。
 即ち、この種の陸用または舶用の大型のポペットバルブは、エンジンの燃料が重油であるため、ガソリンや軽油を燃料とする自動車や自動二輪車用のエンジンに用いられるバルブに比べて、より過酷な腐食雰囲気中での作動が求められており、母材は、自動車や自動二輪車用のポペットバルブの場合よりも、耐食性、耐摩耗性、耐摩損性、耐熱性により優れたNCF80A、NCF751、NCF4015、NCF3015等のニッケル基を多く含有する合金(以下、Ni高含有合金という)が用いられる。
 しかし、Ni高含有合金は、入熱(溶着熱)によりAl,Tiの析出が促進されてガンマ・プライム相の析出量が増え、結晶粒が成長して、割れ感受性が高く(割れやすく)なる、という特性をもつ。
そして、この種の大型のポペットバルブは、自動車や自動二輪車用のポペットバルブよりも大型で、シート材溶着部における母材とシート肉盛部との境界面積も当然大きく、シート材溶着部が冷える際に母材とシート肉盛部との境界に発生する凝固収縮応力も、自動車や自動二輪車用のポペットバルブの場合と比べて大きい。
 このため、肉盛工程において、シート材溶着部におけるシート肉盛部に沿った母材側熱影響部に、熱応力分布(シート材溶着部が冷える過程で母材側熱影響部に生じる凝固収縮応力)に起因した高温割れが発生し、バルブ(シート肉盛部)の耐久性が低下する。なお、肉盛工程で生じた高温割れが微細な場合は、肉盛工程後の第2の熱間鍛造工程によって、それが改善される(高温割れが鍛接される)場合もあるが、ほとんどの場合、第2の熱間鍛造工程を経たとしても高温割れが残り、バルブ(シート肉盛部)の耐久性が低下するという問題がある。
 発明者が、肉盛工程における高温割れについて考察したところ、以下のことがわかった。図12(a)に示すように、母材1に対しシート材を溶着すると、溶着終了直後のシート材溶着部は、図12(b)に示すように、溶着した高温のシート材に母材表層部1aが溶け込んで、液相であるシート肉盛部2が外側(表面側)に形成される。
 このシート肉盛部2の内側には、溶着熱の影響を受けて固相(結晶粒内)と液相(結晶粒界)が混在する母材側熱影響部1bが、溶着熱の影響を受けない固相である母材側非熱影響部1cとの間に形成される。その後、バルブヘッド(シート材溶着部)が冷えると、図12(c)に示すように、シート肉盛部2および母材側熱影響部1bも固相に変化する。しかし、大気に接するシート肉盛部2は、最も早く冷えて固相となるが、シート肉盛部2下層の母材側熱影響部1bでは、バルブヘッドの熱容量が大きいため冷え難く、熱がこもる状態(固相と液相が混在する形態)に保持されて、ガンマ・プライム相の析出量が増え、結晶粒が成長し、割れ感受性が増加する(割れやすくなる)。そして、シート材溶着部が冷える過程で、母材側熱影響部1bに発生する凝固収縮応力によって母材側熱影響部
1bに高温割れが発生する、と推定される。そして、この母材側熱影響部1bに発生する高温割れは、母材側熱影響部1bにおける凝固開始温度(液相線)と凝固終了温度(固相線)との時間差が大きいほど著しい、ということが判った。
 そこで、発明者は、母材側熱影響部1bに発生する高温割れを抑制するには、母材側熱影響部1bの固相・液相混在形態が継続する時間を短縮(凝固開始温度(液相線)と凝固終了温度(固相線)との時間差を小さく)すれば、母材側熱影響部1bにおけるガンマ・プライム相の析出量と凝固収縮応力が低減されると考えた。そして、そのためには、肉盛工程でバルブヘッドを積極的に冷やして、母材側熱影響部1bの液相(結晶粒界)を早く凝固させてやればよく、即ち母材側熱影響部1b全体を早く冷却すればよい、と考えた。
 そして、ヘッドの(端面側)を冷却しつつ、シート肉盛用の溝にシート肉盛材料を溶着する実験を重ねた結果、有効である(肉盛工程においてシート材溶着部の内部に高温割れが発生しない)ことが確認されたので、このたびの出願に至ったものである。
 このように、本発明は、前記した従来技術の問題点および前記した発明者の知見に基づいてなされたもので、その第1の目的は、高温割れを伴わないシート肉盛工程を備えた陸用または舶用のポペットバルブの製造方法を提供することであり、その第2の目的は、肉盛を施したシート部の耐久性に優れた陸用または舶用のポペットバルブを提供することである。
 前記第1の目的を達成するために、請求項1に係るポペットバルブの製造方法においては、 軸端部にヘッドが一体的に形成されたポペットバルブを製造する方法であって、 バルブヘッドを形成するために原材料から未仕上げのポペットバルブを熱間鍛造する工程と、 前記未仕上げのポペットバルブのヘッドにシート肉盛用の溝を形成する工程と、 前記シート肉盛用の溝にシート肉盛材料を溶着する肉盛工程と、 前記ヘッドの前記シート肉盛部を含む領域を熱間鍛造する工程を備えたポペットバルブの製造方法において、 前記ポペットバルブは、その母材がNi高含有合金で構成された陸用または舶用のポペットバルブで、前記肉盛工程では、ヘッドを冷却しつつ、シート肉盛用の溝にシート肉盛材料を溶着するように構成した。
(作用)陸用または舶用ポペットバルブは、その母材がNi高含有合金(溶着熱によりAl,Tiの析出が促進されてガンマ・プライム相の析出量が増え、結晶粒が成長するため、割れ感受性が増大する(割れやすくなる)、という特性をもつ)で構成されている。さらに、陸用または舶用のポペットバルブは、自動車や自動二輪車用のポペットバルブよりも大型で、シート材溶着部における母材とシート肉盛部との境界面積も当然に大きく、シート材溶着部が冷える際に母材とシート肉盛部との境界に発生する凝固収縮応力も、自動車や自動二輪車用のポペットバルブの場合と比べて大きい。
 このため、シート材を溶着する肉盛工程終了後、シート材溶着部が冷える過程で、シート材溶着部の内部(溶着熱の影響を受けて固相と液相が混在する母材側熱影響部)に凝固収縮応力に起因した高温割れが発生するおそれがあるが、シート材を溶着する肉盛工程中、バルブヘッドが冷却されているので、シート材溶着部内部の母材側熱影響部では、その上層側に積層するシート肉盛部に放熱されるとともに、その下層側に積層する、ヘッドを構成する母材側非熱影響部にも積極的に放熱される。このため、母材側熱影響部では、冷えて固相になるまでの時間、即ち固相・液相混在形態が継続する時間が短縮されて(凝固開始温度(液相線)と凝固終了温度(固相線)との時間差が小さくなって)、母材側熱影響部におけるガンマ・プライム相の析出量と凝固収縮応力が低減され、母材側熱影響部に高温割れが発生しない。
 なお、バルブを冷却しすぎた場合(冷却速度が速すぎた場合)は、放熱性の悪い(冷えるのが遅い)部位に凝固収縮応力の大きい領域が移動して、そこに局所的に高温割れが発生するので、バルブ全体をほぼ均一に、しかも徐々に冷却することが望ましい。例えば、請求項2に示すように、バルブヘッドの端面側を冷却する場合で、バルブを冷却しすぎた場合(冷却速度が速すぎた場合)は、母材側熱影響部における内径側に高温割れが発生するので、バルブヘッドの端面側をほぼ均一に、しかも徐々に冷却することが望ましい。
 請求項2においては、請求項1に記載のポペットバルブの製造方法において、前記肉盛工程では、前記バルブヘッドの端面側を冷却しつつ、前記シート肉盛用の溝に前記シート肉盛材料を溶着するように構成した。
(作用)母材側熱影響部は、バルブヘッドの端面側を構成する母材側非熱影響部に積層しており、バルブヘッドの端面側(母材側非熱影響部)を冷却することで、母材側熱影響部から母材側非熱影響部への放熱が有効に促進されて、母材側熱影響部の固相・液相混在形態が継続する時間がより短縮(凝固開始温度(液相線)と凝固終了温度(固相線)との時間差がより小さく)されて、母材側熱影響部におけるガンマ・プライム相の析出量と凝固収縮応力が確実に低減されるので、母材側熱影響部に高温割れが確実に発生しない。
 請求項3においては、請求項1または2に記載のポペットバルブの製造方法において、前記肉盛工程では、前記バルブヘッドの端面側を冷却用台座に当接させた状態で、前記シート肉盛材料を溶着するように構成した。
特に、冷却用台座を冷し金で構成することで、バルブヘッドの端面側を均一に冷却することができる。
(作用)母材側非熱影響部に伝達された溶着熱が冷却用台座(冷し金)を介して確実かつ効果的に放熱されるので、母材側熱影響部が固相・液相混在形態に保持される時間がさらにいっそう短縮され、ガンマ・プライム相の析出量が確実に低減されることになって、いっそう割れ感受性が増加しない(割れやすくならない)。
請求項4においては、請求項1~3のいずれかに記載のポペットバルブの製造方法において、前記肉盛工程では、前記シート肉盛材料をプラズマアーク溶接するように構成した。
(作用)シート肉盛材料は、例えばコバルトベース合金やニッケルベース合金等といった、バルブの母材(Ni高含有合金)よりも耐食性、耐磨耗性、耐摩損性、耐熱性に優れた高融点の素材で構成されているが、プラズマアーク放電で生成されるアークは、シート肉盛材料(素材)の融点以上の所定の高温になるので、粉末状のシート肉盛材料をプラズマアーク放電用トーチに導き、該トーチからシート肉盛用の溝に肉盛材料を溶着することができる。
 請求項5においては、請求項4に記載のポペットバルブの製造方法において、前記肉盛工程では、鉛直下方に向けたプラズマアーク放電用トーチの真下に前記シート肉盛用の溝が正対するように前記バルブを傾斜して配置するとともに、前記バルブを軸廻りに回転させつつ前記溝にシート肉盛材料を溶着するように構成した。
 (作用)バルブを軸廻りに回転させつつ、プラズマアーク放電用トーチから、溶融したシート肉盛材料を重力方向下方のシート肉盛用の溝に溶着することで、シート肉盛用の溝全周にシート肉盛材料を溶着する。
 固定したバルブヘッドの廻りにトーチをシート肉盛用の溝に沿って走行(周回)させる方法もあるが、シート肉盛用の溝に正対するように配置したトーチの溶着方向は鉛直下向きではなく、バルブの軸に対し傾斜するため、トーチのシート肉盛用の溝に対する姿勢も常に変化し、シート溶着部の厚さが周方向に不均一となり、それだけ後工程も面倒である。さらに、肉盛工程において、シート肉盛用の溝外に飛散する溶融肉盛材料も多く、それだけシート肉盛材料が無駄に消費される。
 これに対し、請求項5では、鉛直下向きに固定したプラズマアーク放電用トーチに対し、シート肉盛用の溝が正対するように傾斜させたバルブを、その軸廻りに回転させるように構成したので、トーチのシート肉盛用の溝に対する姿勢(関係)は常に一定であり、シート溶着部の厚さが周方向に均一となり、それだけ後工程も簡単である。さらに、肉盛工程において、シート肉盛用の溝外に飛散する溶融肉盛材料が少なく、シート肉盛材料の無駄が少ない。
 請求項6に係るポペットバルブにおいては、軸端部にヘッドが一体的に形成されたポペットバルブであって、請求項1~5のいずれかに記載の方法により製造するように構成した。
(作用)製造された陸用または舶用ポペットバルブのシート部に割れが発生しない。
 以上の説明から明らかなように、請求項1に係るポペットバルブの製造方法によれば、シート材溶着部に高温割れが発生しない肉盛工程を備えたポペットバルブの製造方法が提供されるので、シート材溶着部の耐久性に優れた陸用または舶用のポペットバルブを製造できる。
 請求項2によれば、シート材溶着部に高温割れが確実に発生しない肉盛工程を備えたポペットバルブの製造方法が提供されるので、シート材溶着部の耐久性にさらに優れた陸用または舶用のポペットバルブを製造できる。
 請求項3によれば、割れ感受性の増加(割れやすくなること)が抑制されるので、肉盛工程でシート材溶着部に高温割れの確実に発生しないポペットバルブの製造方法が提供されて、肉盛部の耐久性に優れた陸用または舶用のポペットバルブを製造できる。
 請求項4によれば、シート肉盛材料である高融点の例えばコバルトベース合金やニッケルベース合金をシート肉盛用の溝に沿って溶着することで、肉盛工程を簡単に遂行できる。
 請求項5によれば、トーチのシート肉盛用の溝に対する姿勢(関係)は常に一定であるため、シート溶着部の厚さが周方向に均一となる分、後工程が簡単になる。また、肉盛工程において、シート肉盛用の溝外に飛散する溶融肉盛材料が少ないため、シート肉盛材料の消費量を大幅に低減できる。
 請求項6によれば、シート部の内部に割れが発生しない陸用または舶用のポペットバルブを製造できるので、シート部の耐久性に優れた陸用または舶用のポペットバルブを提供できる。
舶用ポペットバルブの据え込み工程を説明する説明図である。 同ポペットバルブを熱間鍛造する工程を説明する説明図である。 同ポペットバルブのヘッド外周に溝入れする工程を説明する説明図である。 同ポペットバルブのヘッド外周の溝にシート材を溶着する工程を説明する説明図である。 シート材溶着部を荒削りする工程を説明する説明図である。 同ポペットバルブを再び熱間鍛造する工程を説明する説明図である。 同ポペットバルブの表面を切削する工程を説明する説明図である。 同ポペットバルブの表面を研削する工程を説明する説明図である。 製造されたポペットバルブ全体の側面図である。 肉盛工程終了時のシート材溶着部を拡大して示すポペットバルブのヘッドの断面図である。 肉盛工程の際にポペットバルブを支持する装置全体の構成を示す断面図である。 肉盛工程においてシート材溶着部の内部に高温割れが発生するメカニズムを説明する図で、(a)は肉盛前の母材の断面図、(b)は肉盛中のシート材溶着部の断面図、(c)は肉盛した後に冷却されたシート材溶着部の断面図をそれぞれ示す。
 次に、本発明の実施の形態を実施例に基づいて説明する。
 図1~8は、舶用ポペットバルブを製造する実施例方法を示す図で、 NCF80A製の棒状素材に対し、図1~8に示すそれぞれの加工を順次施すことで、図9に示すように、軸11の一端部に所定形状のヘッド12が一体的に形成され、ヘッド12のシート部13をステライト合金712製のシート肉盛材で補強した舶用ポペットバルブ10を製造することができる。このポペットバルブ10は、ヘッド径約100mm、軸径約25mm、全長約500mmの大型のポペットバルブで、符号11aは、コッター溝である。
 このポペットバルブ10を製造するには、まず、図1に示す据え込み工程において、一対の電極14a,14b間に電圧を与えて加熱(約1100℃)したNCF80A製の棒状の素材W1を、軸方向に加圧してヘッド部を所定の形状に加工するとともに、次の熱間鍛造のために、ヘッド部に余熱を与える。この据え込み工程終了後の未仕上げバルブを符号W2で示す。
 次に、図2に示す熱間鍛造では、据え込み工程で据え込んだ素材W2のヘッド部を熱間鍛造により、所定の形状に成形する。この熱間鍛造工程終了後の未仕上げバルブを符号W3で示す。
 次に、図3に示す溝形成工程では、未仕上げバルブW3を回転させつつ、切削工具15を使って、ヘッド部の座面に肉盛用の溝16を形成する。この溝形成工程終了後の未仕上げバルブを符号W4で示す。
 次に、図4に示す肉盛工程では、シート部13(図9参照)の耐久性等を高めるために、耐摩耗性材料(ステライト合金712)をプラズマアーク溶接により、未仕上げバルブW4の肉盛用の溝16に溶着(肉盛り)する。図10において、符号W5は、この肉盛工程終了後の未仕上げバルブを示し、符号2は、溝16に溶着されたシート肉盛部を示す。
 この図4に示す肉盛工程では、鉛直下方に向けたプラズマアーク放電用トーチ70の真下にシート肉盛用の溝16が正対するように未仕上げバルブW4を傾斜して配置するとともに、バルブW4を軸廻りに回転させつつシート肉盛材料を溝16内に溶着することで、溝16全体に肉盛りを施す。特に、バルブW4のヘッド部を冷し金20を用いて冷却しつつ、肉盛工程を行うことで、シート材溶着部の内部に高温割れが生じない。
 次に、図5に示す切削工程では、肉盛工程を経た未仕上げバルブW5を回転させつつ、切削工具17を使って、肉盛部が平面となるように切削加工する。切削加工終了後の未仕上げバルブを符号W6で示す。
 次に、図6に示す再熱間鍛造・熱処置工程では、金型および未仕上げバルブW6をバーナで900~1000℃に加熱し、バルブW6を再び熱間鍛造した後、バルブW4に溶体化処理(約1000℃で電気炉に所定時間保持した後、冷却)と時効処理(約700℃で電気炉に所定時間保持した後、冷却)を施す。再熱間鍛造・熱処置工程終了後の未仕上げバルブを符号W7で示す。
 次に、図7に示す切削工程では、未仕上げバルブW7を回転させつつ、切削工具18を使って、ヘッドのシート部,首下R部,軸部およびコッター溝11aの切削加工を行い、最後に、図8に示すように、未仕上げバルブW8を回転させつつ、研削工具19を使って、シート部および軸部を設計値どおりの粗さに仕上げることで、図9に示す、バルブ10が出来上がる。
 そして、バルブ10の製造方法を説明する、図1~8に示す各工程のうち、図4に示す肉盛工程を除く各工程、即ち、図1の据え込み工程,図2の熱間鍛造工程,図3の溝入れ工程,図5のシート面荒削り工程,図6の熱間鍛造・熱処理工程,図7の切削工程および図8の研削工程については、いずれの工程も従来の舶用バルブの製造方法を構成する各工程と同じであるので、これらの各工程の詳しい説明は省略し、従来の舶用バルブの製造方法と異なる図4に示す肉盛工程について、詳しく説明する。
 図11は、図4に示す肉盛工程を実施するための装置全体の構成を示す断面図である。
 符号20は、内部に冷却水循環路Lを備えた円盤形状の冷し金で、その上面には、バルブ10のヘッド端面側を密着した状態に保持できる凹部22が形成されている。
 符号30は、バルブ10の軸端部を支持する軸端押さえ金で、アンギュラーベアリング32を介して、装置本体側のバルブ軸端支持部34に回転可能に支承されている。
 冷し金20内部の冷却水循環路Lは、中央の給水路L1と給水路L1から周方向等分放射状に延びる排水路L2で構成され、給水路L1と排水路L2は、冷し金20に連結一体化された冷し金継手24,冷し金継手24に連結一体化された従動側回転軸40および従動側回転軸の下端部に連結されたロータリジョイント50(可動側ジョイント50a、固定側ジョイント50b)内にそれぞれ延びて、固定側ロータリジョイント50bに接続された給水管42と配水管44にそれぞれ連通している。
 冷し金20の下面側に突出する冷し金継手24は、チャック台座50に設けた半径方向に拡縮動作可能な3個のチャック(爪部材)52で把持されて、チャック台座50上に固定されている。
 チャック台座50の中央円孔51を貫通して下方に延出する従動側回転軸40には、チャック台座50の下部に一体化された従動側プーリ64が軸着され、サーボモータ60の出力軸62に軸着された駆動側プーリ52と従動側プーリ54間には、タイミングベルト66が介装されている。
 また、装置本体側のバルブ軸端支持部34は、バルブ10の軸端部を支持する軸端押さ金30を介してバルブ10を冷し金20に向けて加圧(押圧)できるように構成されており、冷し金20と軸端押え金30で上下方向に挟持されたバルブ10は、サーボモータ60の駆動により、チャック台座50,回転軸40,プーリ54,ロータリジョイント可動部50aと一体となって、装置本体側のロータリジョイント固定部50b,バルブ軸端支持部34に対し回転する。
 また、従動側回転軸40の回転中心軸は、鉛直下方に向けたプラズマアーク放電用トーチ70に対し45度傾斜(鉛直軸に対し45度傾斜)するように配置されており、冷し金20と軸端押え金30に支持されたバルブ10は、そのシート肉盛用の溝16がプラズマアーク放電用トーチ70の真下において、トーチ70と上下方向に正対する形態となる。
 サーボモータ60の駆動およびプラズマアーク放電用トーチ70によるシート材の溶着は、バルブ10を回転しつつ、トーチ70によるシート材の溶着を行うように、図示しない制御ユニットによって制御されている。例えば、バルブ10を2回転させることで、溝16全周に亘ってほぼ均一な所定厚さのシート肉盛部を形成できる。
 また、冷し金20内部の冷却水循環路Lへの給排水についても、図示しない制御ユニットによって制御されている。即ち、冷し金20には、温度センサが設けられ、トーチ70による溝16へのシート材の溶着が行われている間、温度センサによる検出温度が所定温度となるように、ポンプPの駆動をオン/オフ制御することで、冷し金20内部の冷却水循環路Lへの給水が制御されている。
 このため、バルブ10をその軸廻りに所定速度で回転させつつ、トーチ70からシート肉盛材を溝16内に溶射することで、溝16全周にシート肉盛材が肉盛りされるが、図4に示す肉盛工程の間中、即ちトーチ70からシート肉盛材を溝16に溶射(溶着)する間中、バルブ10のヘッド端面側の温度は所定の温度に保持されて、シート材溶着部の内部に高温割れが生じない。
 即ち、舶用ポペットバルブ10は、その母材がNCF80A(溶着熱によりAl,Tiの析出が促進されてガンマ・プライム相の析出量が増え、結晶粒が成長するため、割れ感受性が増大する(割れやすくなる)、という特性をもつNi高含有合金)で構成されている。
 さらに、舶用ポペットバルブ10は、自動車や自動二輪車用のポペットバルブよりも大型で、シート材溶着部における母材とシート肉盛部との境界面積も当然に大きく、シート材溶着部が冷える際に母材とシート肉盛部との境界に発生する凝固収縮応力も、自動車や自動二輪車用のポペットバルブの場合と比べて大きい。
 このため、図10に拡大して示すように、シート材を溶着する肉盛工程終了後、シート材溶着部が冷える過程で、シート材溶着部の内部(溶着熱の影響を受けて固相と液相が混在する母材側熱影響部3a)に凝固収縮応力に起因した高温割れが発生するおそれがあるが、シート材を溶着する肉盛工程中、バルブヘッド端面側が冷し金20によって積極的に冷却されているので、シート材溶着部内部の母材側熱影響部3aでは、その上層側に積層するシート肉盛部2に放熱されるとともに、その下層側に積層する、ヘッドを構成する母材側非熱影響部3bにも積極的に放熱されて、母材側熱影響部3aの固相・液相混在形態が継続する時間が短縮されて(凝固開始温度(液相線)と凝固終了温度(固相線)との時間差が小さくなって)、母材側熱影響部3aにおけるガンマ・プライム相の析出量と凝固収縮応力が低減され、母材側熱影響部3aに高温割れが発生しない。
 特に、肉盛工程の間中(トーチ70による溝16へのシート材の溶着が行われている間中)、冷し金20の温度は、シート材溶着部における母材側熱影響部3aにおけるガンマ・プライム相の析出量と凝固収縮応力を低減する上で有効な所定温度に保持されているので、母材側熱影響部3aに高温割れが確実に発生しない。なお、図10において、符号3は母材を示し、図10における矢印は、放熱方向を示す。
 また、図6に示す再熱間鍛造工程では、金型およびバルブW6をバーナで900~1000℃に加熱し、バルブW6を熱間鍛造するが、肉盛工程終了後のバルブW6を再び鍛造することで、シート溶着部の内部の母材側熱影響部3aにおける高温割れがより確実に一掃されている。
 即ち、肉盛工程では、母材側熱影響部3aに高温割れが発生しないが、仮に、肉盛工程を経た段階で、母材側熱影響部3aに微小な割れが残存していたとしても、肉盛工程後に行われる再熱間鍛造によって、母材側熱影響部3aに生じている高温割れが接合(鍛接)されることになるので、シート肉盛部の内部の母材側熱影響部3aに高温割れが残るおそれは、全くない。
 このように、本実施例方法では、シート肉盛を施した舶用ポペットバルブで、シート部13の耐久性に優れた舶用ポペットバルブ10を製造できる。
 なお前記した実施例方法では、母材をNCF80Aで構成したバルブ本体のシート部13にステライト合金712製のシート材を肉盛したポペットバルブ10およびその製造方法について説明したが、バルブ本体を構成する母材としては、NCF80A以外にNCF751、NCF4015、NCF3015などが考えられ、シート部13を構成するシート材としては、母材構成材よりも耐食性、耐摩耗性、耐摩損性、耐熱性により優れたコバルトベース合金またはニッケルベース合金等が考えられる。
 そして、前記した実施例方法の肉盛工程では、冷し金20の温度を所定の温度に調整してバルブヘッドを冷却しているが、バルブの母材、肉盛するシート材,溶着温度,溝巾の大きさ等によって、冷し金20の設定温度が異なることは言うまでもない。
 また、前記した実施例方法では、冷し金20を水冷方式で冷却しているが、オイルや空気で冷却するようにしてもよい。
 また、前記した実施例方法では、舶用ポペットバルブ10の製造方法について説明したが、本発明は、舶用ポペットバルブ10の製造方法に限るものではなく、発電機用の大型ディーゼルエンジンや大型ガスエンジン等の腐食雰囲気での使用が求められている大型の陸用ポペットバルブの製造方法についても、同様に適用できることは言うまでもない。
 2 シート肉盛部
 3 母材
 3a 母材側熱影響部
 3b 母材側非熱影響部
 10 エンジンポペットバルブ
 11 軸
 12 バルブヘッド
 13 バルブシート部
 16 シート肉盛用の溝
 20 冷し金
 L  冷却水循環路
 70 プラズマアーク放電用トーチ

Claims (6)

  1. 軸端部にヘッドが一体的に形成されたポペットバルブを製造する方法であって、
     バルブヘッドを形成するために原材料から未仕上げのポペットバルブを熱間鍛造する工程と、
     前記未仕上げのポペットバルブのヘッドにシート肉盛用の溝を形成する工程と、
     前記シート肉盛用の溝にシート肉盛材料を溶着する肉盛工程と、
     前記ヘッドの前記シート肉盛部を含む領域を熱間鍛造する工程を備えたポペットバルブの製造方法において、
     前記ポペットバルブは、その母材がNi高含有合金で構成された陸用または舶用のポペットバルブで、前記肉盛工程では、ヘッドを冷却しつつ、シート肉盛用の溝にシート肉盛材料を溶着することを特徴とするポペットバルブの製造方法。
  2. 前記肉盛工程では、前記バルブヘッドの端面側を冷却しつつ、前記シート肉盛用の溝に前記シート肉盛材料を溶着することを特徴とする請求項1に記載のポペットバルブの製造方法。
  3. 前記肉盛工程では、前記バルブヘッドの端面側を冷却用台座に当接させた状態で、前記シート肉盛材料を溶着することを特徴とする請求項1または2に記載のポペットバルブの製造方法。
  4. 前記肉盛工程では、前記シート肉盛材料をプラズマアーク溶接することを特徴とする請求項1~3のいずれかに記載のポペットバルブの製造方法。
  5. 前記肉盛工程では、鉛直下方に向けたプラズマアーク放電用トーチの真下に前記シート肉盛用の溝が正対するように前記バルブを傾斜して配置するとともに、前記バルブを軸廻りに回転させつつ前記溝にシート肉盛材料を溶着することを特徴とする請求項4に記載のポペットバルブの製造方法。
  6. 請求項1~5のいずれかに記載の方法により製造されたポペットバルブ。
PCT/JP2010/062681 2009-11-12 2010-07-28 シート肉盛を施したポペットバルブおよびその製造方法 WO2011058793A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-258528 2009-11-12
JP2009258528A JP2011101897A (ja) 2009-11-12 2009-11-12 シート肉盛を施したポペットバルブおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2011058793A1 true WO2011058793A1 (ja) 2011-05-19

Family

ID=43991457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062681 WO2011058793A1 (ja) 2009-11-12 2010-07-28 シート肉盛を施したポペットバルブおよびその製造方法

Country Status (2)

Country Link
JP (1) JP2011101897A (ja)
WO (1) WO2011058793A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010765B1 (ja) * 2011-10-14 2012-08-29 日鍛バルブ株式会社 内燃機関用バルブの製造方法
WO2013054437A1 (ja) * 2011-10-14 2013-04-18 日鍛バルブ株式会社 内燃機関用バルブの製造方法
EP2740908B1 (en) * 2012-06-14 2016-10-26 Nittan Valve Co., Ltd. Method of forming poppet valve faces and poppet valves having faces formed by this method
CN114131242A (zh) * 2021-12-24 2022-03-04 东方电气集团东方汽轮机有限公司 一种用于阀座密封面堆焊层的合金材料及其焊接工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596807B1 (ko) * 2014-09-12 2016-02-23 금용기계 주식회사 마찰교반 장치
CN109759684B (zh) * 2018-12-28 2021-03-30 上海理工大学 协助机器人自动化弧焊的车身辅助夹紧方法
CN114101877B (zh) * 2021-12-28 2023-09-05 怀集登月气门有限公司 一种基于堆焊的气门杆端加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120666A (ja) * 1984-07-09 1986-01-29 Daido Steel Co Ltd 肉盛溶接装置
JPS6123573A (ja) * 1984-07-12 1986-02-01 Daido Steel Co Ltd エンジンバルブの製造方法
JPS61259881A (ja) * 1985-05-11 1986-11-18 エム・ア−・エヌ−ベ−・ウント・ヴエ−・デイ−ゼル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ディーゼル内燃機関のガス交換弁の弁座面を外装する方法
JPH0533967U (ja) * 1991-10-17 1993-05-07 フジオーゼツクス株式会社 粉体肉盛溶接装置における水冷式ワーク回転装置
JP2002160039A (ja) * 2000-09-13 2002-06-04 Eaton Corp シート肉盛を施されたエンジンバルブおよびその製作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120666A (ja) * 1984-07-09 1986-01-29 Daido Steel Co Ltd 肉盛溶接装置
JPS6123573A (ja) * 1984-07-12 1986-02-01 Daido Steel Co Ltd エンジンバルブの製造方法
JPS61259881A (ja) * 1985-05-11 1986-11-18 エム・ア−・エヌ−ベ−・ウント・ヴエ−・デイ−ゼル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ディーゼル内燃機関のガス交換弁の弁座面を外装する方法
JPH0533967U (ja) * 1991-10-17 1993-05-07 フジオーゼツクス株式会社 粉体肉盛溶接装置における水冷式ワーク回転装置
JP2002160039A (ja) * 2000-09-13 2002-06-04 Eaton Corp シート肉盛を施されたエンジンバルブおよびその製作方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010765B1 (ja) * 2011-10-14 2012-08-29 日鍛バルブ株式会社 内燃機関用バルブの製造方法
WO2013054436A1 (ja) * 2011-10-14 2013-04-18 日鍛バルブ株式会社 内燃機関用バルブの製造方法
WO2013054437A1 (ja) * 2011-10-14 2013-04-18 日鍛バルブ株式会社 内燃機関用バルブの製造方法
CN103797220A (zh) * 2011-10-14 2014-05-14 日锻汽门株式会社 内燃机用阀的制造方法
CN103890328A (zh) * 2011-10-14 2014-06-25 日锻汽门株式会社 内燃机用阀的制造方法
KR101421470B1 (ko) 2011-10-14 2014-07-22 니탄 밸브 가부시키가이샤 내연 기관용 밸브의 제조 방법
JP5575991B2 (ja) * 2011-10-14 2014-08-20 日鍛バルブ株式会社 内燃機関用バルブの製造方法
EP2767687A4 (en) * 2011-10-14 2015-01-21 Nittan Valva METHOD FOR MANUFACTURING A VALVE FOR A COMBUSTION ENGINE
US8978248B2 (en) 2011-10-14 2015-03-17 Nittan Valve Co., Ltd. Method of manufacturing a valve for an internal combustion engine
US9015940B2 (en) 2011-10-14 2015-04-28 Nittan Valve Co., Ltd. Method of manufacturing a valve for an internal combustion engine
CN103890328B (zh) * 2011-10-14 2016-04-06 日锻汽门株式会社 内燃机用阀的制造方法
EP2740908B1 (en) * 2012-06-14 2016-10-26 Nittan Valve Co., Ltd. Method of forming poppet valve faces and poppet valves having faces formed by this method
CN114131242A (zh) * 2021-12-24 2022-03-04 东方电气集团东方汽轮机有限公司 一种用于阀座密封面堆焊层的合金材料及其焊接工艺
CN114131242B (zh) * 2021-12-24 2023-08-25 东方电气集团东方汽轮机有限公司 一种用于阀座密封面堆焊层的合金材料及其焊接工艺

Also Published As

Publication number Publication date
JP2011101897A (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2011058793A1 (ja) シート肉盛を施したポペットバルブおよびその製造方法
EP2090396B1 (en) System an process for solid state depositing of metals
US8720056B2 (en) Turbine rotor blade repair method
US8703044B2 (en) Machine components and methods of fabricating and repairing
EP2300196B1 (en) Method of reconditioning a cast iron cylinder head of an internal combustion engine
JP2014524535A (ja) ケーシングフランジ孔の抵抗溶接補修方法
JPH11285842A (ja) 接合金属部材及び該部材の接合方法
CN101376189A (zh) 涉及连接相异的金属的方法和装置
JPH08246821A (ja) バルブシート
US6991150B2 (en) Method of build up welding to thin-walled portion
JP3409631B2 (ja) レーザビームによる肉盛り方法及び肉盛り構造
US20160169056A1 (en) Process for Lobe and Journal Preparation and Weld Repair
US20070068648A1 (en) Method for repairing die cast dies
JP2013107101A (ja) 金属部品の修理方法
JP2875960B2 (ja) バルブシートの製造方法
KR101771158B1 (ko) 고효율 마찰용접을 이용한 배기밸브 스핀들의 제조방법
JP5294589B2 (ja) バルブシート形成方法及びシリンダーヘッド
JPH1190620A (ja) 金属部材の接合方法及び接合装置
CN110621868A (zh) 内燃机用活塞及其制造方法
JP4397711B2 (ja) 耐摩耗部の補修方法
JPH11285846A (ja) 金属部材の接合方法
JP4161757B2 (ja) エンジン用吸排気バルブの製造方法
JP4292100B2 (ja) バルブシート付シリンダヘッドの製造方法
JPH10299433A (ja) エンジンのバルブガイド及び溶着加工装置
JP3752832B2 (ja) 金属部材の接合方法及び接合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829753

Country of ref document: EP

Kind code of ref document: A1