WO2011055495A1 - Receiver apparatus and reception method - Google Patents
Receiver apparatus and reception method Download PDFInfo
- Publication number
- WO2011055495A1 WO2011055495A1 PCT/JP2010/006158 JP2010006158W WO2011055495A1 WO 2011055495 A1 WO2011055495 A1 WO 2011055495A1 JP 2010006158 W JP2010006158 W JP 2010006158W WO 2011055495 A1 WO2011055495 A1 WO 2011055495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- calibration
- amplitude
- silence
- phase
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/30—Circuits for homodyne or synchrodyne receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/38—Demodulator circuits; Receiver circuits
- H04L27/3845—Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
- H04L27/3854—Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
- H04L27/3863—Compensation for quadrature error in the received signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/21—Monitoring; Testing of receivers for calibration; for correcting measurements
Definitions
- the present invention relates to a receiving apparatus and a receiving method in a wireless system, and more particularly to a technique for correcting a mismatch in amplitude and phase between an in-phase (I) component and a quadrature (Q) component in quadrature demodulation.
- the mode is changed from a reception mode in which an RF signal is received and converted into a baseband signal to a calibration mode in which a calibration signal is input by switching a switch (see Patent Document 1).
- the present invention solves the above-mentioned conventional problems, and calibration at the stage of process adjustment is unnecessary, the same broadcasting station is selected after turning on the power, and a change in ambient temperature occurs
- a receiving apparatus has a signal from a receiving antenna as an input, a high-frequency amplifier that outputs the high-frequency signal, an output of the high-frequency amplifier as one input, and the other A selection unit that selects and outputs one of the inputs, and the amplitude of the I signal and the Q signal when the output of the selection unit is input and converted into an I component and a Q component by a mixer
- a quadrature demodulator that performs quadrature conversion by reflecting phase correction data, an analog-digital converter that converts a demodulated I signal and a demodulated Q signal output from the quadrature demodulator from an analog signal to a digital signal, and Each digital output of the analog-to-digital converter is input, a baseband demodulator that demodulates the reproduction signal, and a silence period of the output signal of the baseband demodulator is detected, and the selection unit
- a calibration signal generator for outputting a calibration signal and a calibration period signal indicating the calibration period as the
- An IQ deviation detection unit and an output of the IQ deviation detection unit as inputs, and performs an operation for returning the amplitude and phase deviations generated in the I signal path and the Q signal path, Characterized in that a correcting operation unit for outputting to the quadrature demodulator as correction data of the amplitude and phase of the signal and the Q signal.
- a receiving method is a receiving method for demodulating an audio signal after performing an orthogonal demodulation step of converting a high-frequency signal input from a receiving antenna into an I component and a Q component.
- a silence period is detected, a calibration signal is used during the silence period, and amplitude and phase deviation correction amounts are calculated and output to the orthogonal demodulation step.
- the correction between the I signal path and the Q signal path is corrected using the calibration signal during the silence period, so that calibration at the stage of the process adjustment becomes unnecessary. Even when the same broadcasting station is still selected after being turned on, there is an effect that reception is always possible in a state adjusted to optimum reception characteristics.
- amendment calculating circuit in FIG. 2 is a timing chart showing the timing of silence detection and calibration in the receiving apparatus of FIG. 1. It is a block block diagram of the receiver in Embodiment 2 of this invention. 6 is a timing chart showing a reception situation in the receiving apparatus of FIG. 5. It is a block block diagram of the receiver in Embodiment 3 of this invention. It is a timing chart which shows the control process of the calibration period in the receiver of FIG.
- FIG. 1 is a block configuration diagram of a receiving apparatus according to Embodiment 1 of the present invention.
- 1 is a receiving antenna
- 2 is a high frequency amplifier circuit
- 3 is a selection circuit
- 4 is a calibration signal generating circuit
- 5 is an orthogonal demodulation circuit
- 6 and 7 are A / D conversion circuits (ADC)
- 8 is a baseband.
- a demodulation circuit 9 is a silence detection circuit
- 10 is a correction arithmetic circuit
- 11 is an IQ deviation detection circuit
- 15 is a mute circuit.
- the receiving antenna 1 receives the broadcast wave 1a.
- the high frequency amplifier circuit 2 amplifies the signal from the receiving antenna 1 and outputs a high frequency amplified signal 2a.
- the calibration signal generation circuit 4 uses a silence detection signal 9a as a trigger to generate a calibration signal 4a for adjusting variations in amplitude and phase of the IQ signal path of the orthogonal demodulation circuit 5, and a calibration period signal 4b indicating the calibration period. appear.
- the selection circuit 3 selects either the high-frequency amplified signal 2a or the calibration signal 4a according to the silence detection signal 9a and outputs a selection output signal 3a.
- the quadrature demodulation circuit 5 receives the selection output signal 3a, and uses the I amplitude correction data 10a, the Q amplitude correction data 10b, the I phase correction data 10c, and the Q phase correction data 10d to calculate the amplitude and phase of the I signal and the Q signal. Quadrature demodulation is performed while correction is performed, and an in-phase component I signal 5a and a quadrature component Q signal 5b are output.
- the A / D conversion circuits 6 and 7 perform analog-digital conversion on the in-phase component I signal 5a and the quadrature component Q signal 5b, and output digital I data 6a and digital Q data 7a.
- the baseband demodulation circuit 8 receives the digital I data 6a and the digital Q data 7a, performs sound demodulation according to the reception mode of the system, and outputs a reproduction L signal 8a and a reproduction R signal 8b.
- the silence detection circuit 9 receives the reproduction L signal 8a and the reproduction R signal 8b, detects a silence period, and outputs a silence detection signal 9a.
- the mute circuit 15 mutes the input reproduction L signal 8a and reproduction R signal 8b according to the calibration period signal 4b, and outputs the result as an L audio signal 15a and an R audio signal 15b.
- the IQ deviation detection circuit 11 receives the digital I data 6a and the digital Q data 7a which are the outputs of the A / D conversion circuits 6 and 7, and the orthogonality is maintained with no deviation in the path of the I and Q signals.
- the respective deviation amounts from the amplitude and phase are detected, and an I amplitude deviation amount 11a, a Q amplitude deviation amount 11b, an I phase deviation amount 11c, and a Q phase deviation amount 11d are output.
- the correction calculation circuit 10 receives the deviation amounts 11a to 11d output from the IQ deviation detection circuit 11 and inputs the deviation of the input in order to correct the amplitude and phase of the I and Q signals in the quadrature demodulation circuit 5. Data calculation from the quantities 11a to 11d to the correction data is performed and output as I amplitude correction data 10a, Q amplitude correction data 10b, I phase correction data 10c, and Q phase correction data 10d.
- FIG. 2 and 3 are vector plan views showing the relationship between the deviation amounts 11a to 11d and the correction data 10a to 10d in the IQ deviation detection circuit 11 and the correction calculation circuit 10.
- FIG. 2 and 3 are vector plan views showing the relationship between the deviation amounts 11a to 11d and the correction data 10a to 10d in the IQ deviation detection circuit 11 and the correction calculation circuit 10.
- FIG. 2 shows an I amplitude deviation amount 11a, a Q amplitude deviation amount 11b, an I phase deviation amount 11c, and an in-phase component I signal 5a ′ and a quadrature component Q signal 5b ′ that should be properly maintained in quadrature.
- the vector relationship on the IQ plane when the Q phase deviation amount 11d is generated by an analog element is shown.
- the IQ deviation detection circuit 11 detects these deviation amounts 11 a to 11 d and outputs them to the correction arithmetic circuit 10.
- the quadrature demodulation circuit 5 In the correction arithmetic circuit 10, the quadrature demodulation circuit 5 generates the I amplitude correction data 10a and the Q amplitude correction data 10b in order to generate the correct in-phase component I signal 5a and quadrature component Q signal 5b from the deviation amounts 11a to 11d.
- the I phase correction data 10c and the Q phase correction data 10d are obtained by calculation, and the quadrature demodulation circuit 5 performs correction to maintain the orthogonality. Note that the calculation contents of the correction calculation circuit 10 are determined by the contents of the components of the orthogonal demodulation circuit 5 configured for each system.
- the in-phase component I signal 5a ′ is returned to the in-phase component I signal 5a by the I amplitude correction data 10a and the I phase correction data 10c, and the quadrature component Q signal 5b ′ is converted by the Q amplitude correction data 10b and the Q phase correction data 10d.
- It shows a state where the quadrature component Q signal 5b is returned to, and as a result, the in-phase component I signal 5a and the quadrature component Q signal 5b having the original correct quadrature relationship are obtained.
- both the I signal and the Q signal are corrected.
- the orthogonality may be maintained by correcting only the other amplitude component and phase component on the basis of one of them.
- FIG. 4 is a timing chart showing the timing of silence detection and calibration.
- the high frequency amplified signal 2 a obtained by amplifying the broadcast wave 1 a by the high frequency amplifier circuit 2 is input to the quadrature demodulation circuit 5 via the selection circuit 3.
- the quadrature demodulation circuit 5 the high frequency amplified signal 2 a is converted into an in-phase component I signal 5 a and a quadrature component Q signal 5 b, converted into digital data by the A / D conversion circuits 6 and 7, and received in the reception mode by the baseband demodulation circuit 8.
- the reproduction signals 8a and 8b corresponding to the above are output.
- the silence detection circuit 9 detects the silence period of the broadcast content to be transmitted. If the silence period continues for a system set value or more, it is determined that the silence period has started, and the silence detection signal 9a is output.
- silence means a state in which only a carrier wave of a broadcast is detected, not a state in which only an audio signal below a certain threshold level is detected.
- the determination condition as silence in this case and the time from the determination to the generation of the silence detection signal 9a can be set by the operated system.
- the calibration signal generation circuit 4 outputs a calibration signal 4a for detecting a deviation between the I path and the Q path of the quadrature demodulation circuit 5 using the silence detection signal 9a as a trigger.
- the calibration signal 4a a one-point calibration method using a constant frequency signal with a predetermined constant amplitude is conceivable.
- analog elements for example, mixers
- the system characteristics may be greatly affected, so that the calibration signal may be generated at frequencies at three or plural points of both ends and the center of the reception band in consideration of the reception frequency band.
- it can be set according to the system to be operated and the magnitude of the variation of the analog elements.
- the selection circuit 3 When the selection circuit 3 receives the silence detection signal 9a, the selection output is switched from the high frequency amplification signal 2a to the calibration signal 4a and input to the orthogonal demodulation circuit 5.
- analog signals that have passed through the I path and Q path are converted into digital I data 6a and digital Q data 7a by A / D conversion circuits 6 and 7, respectively.
- the IQ deviation detection circuit 11 compares with a reference value when there is no deviation in the IQ path and the orthogonality is maintained, detects the deviation amount caused by the variation of analog elements when passing through the IQ path, and Output as amplitude deviation amount 11a, Q amplitude deviation amount 11b, I phase deviation amount 11c, and Q phase deviation amount 11d.
- the amplitude and phase of the I signal and the Q signal are corrected in order to correct the orthogonality in the orthogonal demodulation circuit 5 from the IQ deviation amounts 11 a to 11 d which are the outputs of the IQ deviation detection circuit 11.
- the I amplitude correction data 10a, Q amplitude correction data 10b, I phase correction data 10c, and Q phase correction data 10d are calculated and output, respectively.
- the quadrature demodulation circuit 5 uses the I amplitude correction data 10a, the Q amplitude correction data 10b, the I phase correction data 10c, and the Q phase correction data 10d, which are outputs of the correction arithmetic circuit 10, to restore the original orthogonal relationship. Processing is performed on the IQ path, and an in-phase component I signal 5a and a quadrature component Q signal 5b are output.
- the calibration signal 4a is also demodulated by the baseband demodulation circuit 8, the reproduction signals 8a and 8b are muted so that the calibration signal 4a is not output by the calibration period signal 4b by the mute circuit 15, and the L audio signals 15a and R It is assumed that the above-described calibration is performed while outputting as the audio signal 15b.
- the silence period is detected and the amplitude adjustment and the phase adjustment of the IQ path are performed, calibration at the stage of the process adjustment becomes unnecessary, and the same broadcasting station is turned on after the power is turned on. Even in a state in which is selected, reception is always possible in a state adjusted to optimum reception characteristics.
- FIG. 5 is a block diagram of a receiving apparatus according to the second embodiment of the present invention.
- the configuration of the receiving apparatus in FIG. 5 is obtained by adding a reception status signal 8c indicating the strength of the received electric field and the presence / absence of multipath as an output of the baseband demodulation circuit 8 to the first embodiment.
- the function of is the same.
- the reception status signal 8c is, for example, an identification signal that can determine whether a multipath has occurred in the current reception status by detecting the AC component of the carrier wave amplitude (reception S meter).
- FIG. 6 is an example of a timing chart showing the reception status.
- the reception status signal 8c invalidates the silence detection signal 9a in the silence detection circuit 9, so that it is possible to determine that there is no sound and there is a noise. This can be prevented, and even in a multipath situation, reception is always possible with the optimum reception characteristics adjusted.
- FIG. 7 is a block diagram of a receiving apparatus according to the third embodiment of the present invention.
- the configuration of the receiving apparatus in FIG. 7 is the same as that of the second embodiment in that a voiced disappearance detection circuit 12 is newly provided, and when the silent period ends and the voiced period disappears during the calibration period, the calibration period
- the control signal 12a is output to the calibration signal generation circuit 4 to perform control so as to shorten the next calibration period, and other configurations and functions of the respective blocks are the same.
- FIG. 8 is a timing chart showing the control process during the calibration period.
- the calibration signal 4a for correcting the deviation of the IQ path by the first silence detection signal 9a is input to the quadrature demodulation circuit 5, the deviation is detected by the IQ deviation detection circuit 11, and the quadrature is corrected by the correction arithmetic circuit 10. The deviation in the demodulation circuit 5 is corrected.
- the voiced disappearance detection circuit 12 detects the amplitude of the reproduced signals 8a and 8b which are the outputs of the baseband demodulation circuit 8 immediately after the calibration is completed and the calibration period signal 4b changes from the H level to the L level. Or no sound.
- the H output period of the calibration period signal 4b is the H output of the calibration period signal 4b in the first silent period.
- the calibration signal 4a is output so that it is set shorter than the period, and the generation period of the calibration signal 4a is also controlled to be shorter than the first silent period.
- FIG. 9 is a timing chart showing an example of an adjustment sequence according to the fourth embodiment of the present invention.
- the block diagram of the receiving apparatus is the same as that of the third embodiment, but the period of the calibration signal 4a generated by the calibration signal generation circuit 4 is set short, and the I signal path and the Q signal are set over a plurality of silent periods.
- the calibration signal generation circuit 4, the IQ deviation detection circuit 11, and the correction calculation circuit 10 are controlled so that an adjustment sequence that completes the deviation adjustment of the amplitude and phase between the paths is completed.
- FIG. 9 shows an example of a sequence in which the amplitude is adjusted in two silent periods and the phase is adjusted in the subsequent two silent periods. Since it is assumed that calibration is performed over a plurality of silence periods, the period of the calibration signal 4a in FIG. 9 is sufficiently shorter than the normal silence period.
- the number of times of silence over a plurality of times and the adjustment contents are examples, and the number of silences and the order of adjustment according to each system may be used.
- the calibration period is shortened and the calibration is completed over a plurality of silent periods. Therefore, the silent period continues even when the calibration signal 4a is input in each period. There is almost no loss of the broadcast sound period.
- FIG. 10 is a block diagram of a receiving apparatus according to the fifth embodiment of the present invention.
- the configuration of the receiving device in FIG. 10 is a configuration in which a time passage determination circuit 13 for controlling the silence detection signal 9a is newly provided in the third embodiment, and the other configurations and the configurations of the respective blocks are the same.
- FIG. 11 is a timing chart showing the relationship of control of the time passage determination circuit 13 with respect to the silence detection signal 9a.
- the silence detection signal 9a is directly input to the selection circuit 3 and the calibration signal generation circuit 4 as the time lapse determination signal 13a, and the calibration signal
- the amplitude and phase deviation adjustment between the I signal path and the Q signal path of the quadrature demodulation circuit 5 is performed by 4a.
- system settings and the frequency of adjustment over time can be set for each applicable system.
- FIG. 12 is a block diagram of a receiving apparatus according to the sixth embodiment of the present invention.
- the configuration of the receiving device in FIG. 12 is a configuration in which a temperature change determination circuit 14 for controlling the silence detection signal 9a is newly provided in the third embodiment, and the other configurations and the configurations of the respective blocks are the same.
- FIG. 13 is a timing chart showing the relationship of control of the temperature change determination circuit 14 with respect to the silence detection signal 9a.
- the silence detection signal 9a is used as the temperature change determination signal 14a, and the selection circuit 3 and the calibration signal generation circuit are set at a certain frequency set as a system. 4, and the deviation of the amplitude and phase between the I signal path and the Q signal path of the orthogonal demodulation circuit 5 is adjusted by the calibration signal 4 a.
- a certain frequency set as a system, a temperature change amount, etc. can be set for each applied system.
- FIG. 14 is a flowchart illustrating a control operation example in the reception method according to the seventh embodiment of the present invention.
- the received signal is quadrature demodulated and converted into an in-phase (I) component and a quadrature (Q) component. Performed (S121).
- Silence detection is performed to check whether or not the reproduction signal demodulated in the baseband is silent (S122). If there is sound, the state of the reception mode is continuously maintained. If it is determined that there is no sound, a calibration signal is generated from S123 to S127, and the amplitude and phase between the I component and Q component in the quadrature demodulation circuit are generated. Correct the deviation.
- a calibration signal period T is set in S123, a calibration signal is generated in S124, a deviation correction amount is calculated in S125, the amplitude and phase of the quadrature demodulation circuit are adjusted in S126, and a calibration end check is performed in S127. Execute.
- FIG. 15 is a flowchart illustrating an example of a control operation in the reception method according to the eighth embodiment of the present invention.
- the same control operation as in the seventh embodiment is performed except for S132.
- Silence detection is performed to check whether or not the reproduction signal demodulated in the baseband is silent (S122). Furthermore, it is possible to prevent erroneous silence judgment by taking into account information regarding reception status such as the presence / absence of multipath and the strength of the received electric field (S132). Even in a path situation, reception is always possible with the optimum reception characteristics adjusted.
- FIG. 16 is a flowchart illustrating an example of a control operation in the reception method according to the ninth embodiment of the present invention.
- control operations similar to those in the eighth embodiment are performed except for S141 and S142.
- the signal After detecting the silence period (S122, S132), generating a calibration signal from S123 to S127, and correcting the amplitude and phase deviation between the I and Q components in the quadrature demodulation circuit, the signal is demodulated. The magnitude of the signal amplitude of the I component and the Q component is compared with the set value, and the demodulated signal is judged to be sound or silent (S141).
- FIG. 17 is a flowchart illustrating a control operation example in the reception method according to the tenth embodiment of the present invention.
- control operations similar to those in the seventh embodiment are performed except for S151, S152, S153, S154, and S155.
- the calibration period is shortened and the calibration is completed over a plurality of silent periods, so the silent period continues even when the calibration signal is input in each period, It is possible to significantly reduce the frequency of disappearance of the broadcast sound period.
- FIG. 18 is a flowchart illustrating an example of a control operation in the reception method according to the eleventh embodiment of the present invention.
- control operations similar to those in the seventh embodiment are performed except for S161, S162, S163, and S164.
- the number of silent detections M is counted (S161).
- S162 the time elapsed immediately after the power is turned on is measured and compared with the set time set in the system. If the time is shorter than the set time (when the time has not passed since the power was turned on), the process starts from S123.
- S127 a calibration signal is generated, and the amplitude and phase deviation between the I component and the Q component in the quadrature demodulation circuit is corrected.
- the silence detection count M is reset (S164), and the flow returns to the normal reception operation (S121) flow.
- the silence detection count M matches the number set by the system. If the silent detection detection count M is equal to or greater than the set number, calibration is executed. If the number is less than the set number, the normal reception operation (S121) flow is performed without performing calibration even during the silent period. Return.
- FIG. 19 is a flowchart illustrating an example of a control operation in the reception method according to the twelfth embodiment of the present invention.
- the same control operation as in the seventh embodiment is performed except for S171, S172, S173, and S174.
- the number of silent detections M is counted (S171).
- S172 the ambient temperature change immediately after the power is turned on is measured, and the detected temperature change amount is compared with the temperature change amount set in the system. When the temperature change amount is larger than the set value, A calibration signal is generated from S123 to S127, and the deviation of the amplitude and phase between the I component and Q component in the quadrature demodulation circuit is corrected.
- the silence detection count M is reset (S174), and the flow returns to the normal reception operation (S121) flow.
- the receiving apparatus and the receiving method of the present invention are useful as techniques for adjusting demodulation characteristics caused by element variations of the receiving apparatus in a wireless system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Superheterodyne Receivers (AREA)
- Circuits Of Receivers In General (AREA)
Abstract
A silence detection circuit (9) detects a silence time interval of a transmitted broadcast content to output a silence detection signal. A calibration signal generation circuit (4) uses, as a trigger, the silence detection signal to output a calibration signal that is to be used for detecting deviation amounts between the I-path and Q-path of a quadrature demodulation circuit (5). An I/Q deviation detection circuit (11) performs comparisons with reference values of a case of no deviations between the I- and Q-paths, thereby outputting an amplitude deviation amount and a phase deviation amount between the I- and Q-paths. A correction calculation circuit (10) generates amplitude correction data and phase correction data that are to be used for the quadrature demodulation circuit (5) to perform amplitude and phase adjustments.
Description
本発明は、無線システムにおける受信装置及び受信方法に関し、特に直交復調における同相(I)成分と直交(Q)成分との間の振幅及び位相のミスマッチを補正する技術に関するものである。
The present invention relates to a receiving apparatus and a receiving method in a wireless system, and more particularly to a technique for correcting a mismatch in amplitude and phase between an in-phase (I) component and a quadrature (Q) component in quadrature demodulation.
従来の受信装置では、直交復調におけるI成分とQ成分との間の振幅及び位相のミスマッチを補正することができる。そのため、RF信号を受信してベースバンド信号に変換する受信モードから、スイッチを切り替えて校正信号を入力する校正モードにする(特許文献1参照)。
In the conventional receiving apparatus, it is possible to correct the amplitude and phase mismatch between the I component and the Q component in quadrature demodulation. For this reason, the mode is changed from a reception mode in which an RF signal is received and converted into a baseband signal to a calibration mode in which a calibration signal is input by switching a switch (see Patent Document 1).
上記従来の受信装置では、校正用の信号を入力するためにスイッチを切り替えて校正モードの状態にする必要があり、その期間は実際の放送波を受信することは不可能である。そのため、実際の校正が行われるのは工程調整の段階や電源投入直後、又はユーザによる受信局の切り替え発生時等に限られてしまい、例えば放送の連続受信中に周囲温度の変動で受信特性の調整が必要になった場合には、校正モードに切り替えてしまうと、アナログラジオ放送では放送される有音期間が消失してしまうという問題点を有していた。
In the above conventional receiving apparatus, it is necessary to switch the switch to enter the calibration mode in order to input the calibration signal, and during this period, it is impossible to receive the actual broadcast wave. For this reason, actual calibration is limited to the stage of process adjustment, immediately after power-on, or when the user changes the receiving station. When adjustment is necessary, switching to the calibration mode has a problem that the sound period broadcasted in analog radio broadcasting disappears.
本発明は、上記従来の問題点を解決するもので、工程調整の段階での校正が不要になり、電源投入してから同じ放送局を選択したままで、かつ周囲温度の変化が発生した場合でも、常に最適な受信特性に調整された状態で、放送内容の有音期間を消失することなく、放送受信を可能にする受信装置及び受信方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and calibration at the stage of process adjustment is unnecessary, the same broadcasting station is selected after turning on the power, and a change in ambient temperature occurs However, it is an object of the present invention to provide a receiving apparatus and a receiving method that enable broadcast reception without losing the sound period of the broadcast content in a state that is always adjusted to optimum reception characteristics.
上記課題を解決するために、本発明に係る受信装置は、受信アンテナからの信号を入力とし、その高周波信号を出力する高周波増幅部と、前記高周波増幅部の出力を一方の入力とし、他方の入力とのうちいずれか一方の入力を選択して出力する選択部と、前記選択部の出力を入力し、ミキサによってI成分とQ成分とに変換する際に、I信号とQ信号との振幅及び位相の補正データを反映させて直交変換する直交復調部と、前記直交復調部が出力する復調I信号と復調Q信号とをそれぞれアナログ信号からデジタル信号に変換するアナログ-デジタル変換部と、前記アナログ-デジタル変換部の各デジタル出力を入力とし、再生信号を復調するベースバンド復調部と、前記ベースバンド復調部の出力信号の無音期間を検出し、前記選択部に出力する無音検出部と、前記無音検出部の出力に応じて、前記選択部への他方の入力として校正信号とその校正の期間を示す校正期間信号とを出力する校正信号発生部と、前記ベースバンド復調部の出力信号を入力とし、前記校正期間信号に応じて前記入力信号に対してミュート処理を行い音声信号として出力するミュート部と、前記アナログ-デジタル変換部の各デジタル出力を入力とし、前記校正信号が入力された時のデジタルI信号とデジタルQ信号との振幅及び位相について、基準値からの偏差量を検出し、I信号及びQ信号についての振幅及び位相の各偏差量信号として出力するIQ偏差検出部と、前記IQ偏差検出部の出力を入力とし、I信号経路とQ信号経路とで生じた振幅及び位相の偏差を元に戻すための演算を行い、前記I信号及びQ信号についての振幅及び位相の補正データとして前記直交復調部に出力する補正演算部とを備えたことを特徴とする。
In order to solve the above problems, a receiving apparatus according to the present invention has a signal from a receiving antenna as an input, a high-frequency amplifier that outputs the high-frequency signal, an output of the high-frequency amplifier as one input, and the other A selection unit that selects and outputs one of the inputs, and the amplitude of the I signal and the Q signal when the output of the selection unit is input and converted into an I component and a Q component by a mixer A quadrature demodulator that performs quadrature conversion by reflecting phase correction data, an analog-digital converter that converts a demodulated I signal and a demodulated Q signal output from the quadrature demodulator from an analog signal to a digital signal, and Each digital output of the analog-to-digital converter is input, a baseband demodulator that demodulates the reproduction signal, and a silence period of the output signal of the baseband demodulator is detected, and the selection unit And a calibration signal generator for outputting a calibration signal and a calibration period signal indicating the calibration period as the other input to the selection unit according to the output of the silence detection unit, and the base An output signal of a band demodulator is input, a mute unit that performs mute processing on the input signal according to the calibration period signal and outputs it as an audio signal, and each digital output of the analog-digital converter is input, A deviation amount from a reference value is detected for the amplitude and phase of the digital I signal and the digital Q signal when the calibration signal is input, and output as amplitude and phase deviation amount signals for the I signal and the Q signal. An IQ deviation detection unit, and an output of the IQ deviation detection unit as inputs, and performs an operation for returning the amplitude and phase deviations generated in the I signal path and the Q signal path, Characterized in that a correcting operation unit for outputting to the quadrature demodulator as correction data of the amplitude and phase of the signal and the Q signal.
また、本発明に係る受信方法は、受信アンテナから入力された高周波信号をI成分とQ成分とに変換する直交復調工程を行った後に音声信号を復調する受信方法であって、前記音声信号における無音期間を検出し、前記無音期間に校正信号を用いて、振幅及び位相の各偏差補正量を演算し、前記直交復調工程に出力することを特徴とする。
A receiving method according to the present invention is a receiving method for demodulating an audio signal after performing an orthogonal demodulation step of converting a high-frequency signal input from a receiving antenna into an I component and a Q component. A silence period is detected, a calibration signal is used during the silence period, and amplitude and phase deviation correction amounts are calculated and output to the orthogonal demodulation step.
本発明によれば、無音検出の採用によって、無音期間中に校正信号を用いてI信号経路とQ信号経路とのばらつきの補正を行うので、工程調整の段階での校正が不要になり、電源投入してから同じ放送局を選択したままの状態であっても、常に最適な受信特性に調整された状態で受信可能となるという効果を有する。
According to the present invention, by adopting silence detection, the correction between the I signal path and the Q signal path is corrected using the calibration signal during the silence period, so that calibration at the stage of the process adjustment becomes unnecessary. Even when the same broadcasting station is still selected after being turned on, there is an effect that reception is always possible in a state adjusted to optimum reception characteristics.
以下、本発明の実施形態について図面を参照しながら説明する。各実施形態では特に必要な時以外は、同一又は同様の部分の説明を原則として繰り返さない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
《実施形態1》
図1は、本発明の実施形態1の受信装置のブロック構成図である。図1において、1は受信アンテナ、2は高周波増幅回路、3は選択回路、4は校正信号発生回路、5は直交復調回路、6及び7はA/D変換回路(ADC)、8はベースバンド復調回路、9は無音検出回路、10は補正演算回路、11はIQ偏差検出回路、15はミュート回路である。Embodiment 1
FIG. 1 is a block configuration diagram of a receiving apparatus according toEmbodiment 1 of the present invention. In FIG. 1, 1 is a receiving antenna, 2 is a high frequency amplifier circuit, 3 is a selection circuit, 4 is a calibration signal generating circuit, 5 is an orthogonal demodulation circuit, 6 and 7 are A / D conversion circuits (ADC), and 8 is a baseband. A demodulation circuit, 9 is a silence detection circuit, 10 is a correction arithmetic circuit, 11 is an IQ deviation detection circuit, and 15 is a mute circuit.
図1は、本発明の実施形態1の受信装置のブロック構成図である。図1において、1は受信アンテナ、2は高周波増幅回路、3は選択回路、4は校正信号発生回路、5は直交復調回路、6及び7はA/D変換回路(ADC)、8はベースバンド復調回路、9は無音検出回路、10は補正演算回路、11はIQ偏差検出回路、15はミュート回路である。
FIG. 1 is a block configuration diagram of a receiving apparatus according to
受信アンテナ1は、放送波1aを受信する。高周波増幅回路2は、受信アンテナ1からの信号を増幅し、高周波増幅信号2aを出力する。校正信号発生回路4は、無音検出信号9aをトリガとして、直交復調回路5のIQ信号経路の振幅及び位相のばらつきを調整するための校正信号4aと、その校正期間を示す校正期間信号4bとを発生する。選択回路3は、無音検出信号9aに応じて、高周波増幅信号2a又は校正信号4aのいずれか一方を選択し、選択出力信号3aを出力する。
The receiving antenna 1 receives the broadcast wave 1a. The high frequency amplifier circuit 2 amplifies the signal from the receiving antenna 1 and outputs a high frequency amplified signal 2a. The calibration signal generation circuit 4 uses a silence detection signal 9a as a trigger to generate a calibration signal 4a for adjusting variations in amplitude and phase of the IQ signal path of the orthogonal demodulation circuit 5, and a calibration period signal 4b indicating the calibration period. appear. The selection circuit 3 selects either the high-frequency amplified signal 2a or the calibration signal 4a according to the silence detection signal 9a and outputs a selection output signal 3a.
直交復調回路5は、選択出力信号3aを入力として、I振幅補正データ10a、Q振幅補正データ10b、I位相補正データ10c、及びQ位相補正データ10dでI信号及びQ信号の振幅と位相との補正を行いながら直交復調を行い、同相成分I信号5aと直交成分Q信号5bとを出力する。A/D変換回路6,7は、同相成分I信号5aと直交成分Q信号5bとをアナログ-デジタル変換し、デジタルIデータ6aとデジタルQデータ7aとを出力する。ベースバンド復調回路8は、デジタルIデータ6aとデジタルQデータ7aとを入力とし、システムの受信モードに応じて音声復調を行い、再生L信号8aと再生R信号8bとを出力する。無音検出回路9は、再生L信号8aと再生R信号8bとを入力して、無音期間を検出し、無音検出信号9aを出力する。ミュート回路15は、入力された再生L信号8aと再生R信号8bとを校正期間信号4bに応じてミュートし、L音声信号15a及びR音声信号15bとして出力する。
The quadrature demodulation circuit 5 receives the selection output signal 3a, and uses the I amplitude correction data 10a, the Q amplitude correction data 10b, the I phase correction data 10c, and the Q phase correction data 10d to calculate the amplitude and phase of the I signal and the Q signal. Quadrature demodulation is performed while correction is performed, and an in-phase component I signal 5a and a quadrature component Q signal 5b are output. The A / D conversion circuits 6 and 7 perform analog-digital conversion on the in-phase component I signal 5a and the quadrature component Q signal 5b, and output digital I data 6a and digital Q data 7a. The baseband demodulation circuit 8 receives the digital I data 6a and the digital Q data 7a, performs sound demodulation according to the reception mode of the system, and outputs a reproduction L signal 8a and a reproduction R signal 8b. The silence detection circuit 9 receives the reproduction L signal 8a and the reproduction R signal 8b, detects a silence period, and outputs a silence detection signal 9a. The mute circuit 15 mutes the input reproduction L signal 8a and reproduction R signal 8b according to the calibration period signal 4b, and outputs the result as an L audio signal 15a and an R audio signal 15b.
IQ偏差検出回路11は、A/D変換回路6,7の出力であるデジタルIデータ6aとデジタルQデータ7aとを入力とし、I信号及びQ信号の経路に偏差がなく直交性が保たれた場合の振幅及び位相からのそれぞれの偏差量を検出し、I振幅偏差量11a、Q振幅偏差量11b、I位相偏差量11c、及びQ位相偏差量11dを出力する。補正演算回路10は、IQ偏差検出回路11から出力される各偏差量11a~11dを入力として、直交復調回路5におけるI信号とQ信号との振幅及び位相の補正を行うために、入力の偏差量11a~11dから補正データへのデータ演算を行い、I振幅補正データ10a、Q振幅補正データ10b、I位相補正データ10c、及びQ位相補正データ10dとして出力する。
The IQ deviation detection circuit 11 receives the digital I data 6a and the digital Q data 7a which are the outputs of the A / D conversion circuits 6 and 7, and the orthogonality is maintained with no deviation in the path of the I and Q signals. The respective deviation amounts from the amplitude and phase are detected, and an I amplitude deviation amount 11a, a Q amplitude deviation amount 11b, an I phase deviation amount 11c, and a Q phase deviation amount 11d are output. The correction calculation circuit 10 receives the deviation amounts 11a to 11d output from the IQ deviation detection circuit 11 and inputs the deviation of the input in order to correct the amplitude and phase of the I and Q signals in the quadrature demodulation circuit 5. Data calculation from the quantities 11a to 11d to the correction data is performed and output as I amplitude correction data 10a, Q amplitude correction data 10b, I phase correction data 10c, and Q phase correction data 10d.
図2及び図3は、IQ偏差検出回路11及び補正演算回路10における偏差量11a~11dと補正データ10a~10dとの関係を示したベクトル平面図である。
2 and 3 are vector plan views showing the relationship between the deviation amounts 11a to 11d and the correction data 10a to 10d in the IQ deviation detection circuit 11 and the correction calculation circuit 10. FIG.
同相成分I信号5aと直交成分Q信号5bとがA/D変換回路6,7に入力されるまでの経路にはアナログ要素(ミキサ、増幅器、フィルタ等)が存在しており、そのばらつきによって、直交性を保ったままでA/D変換回路6,7に入力することは困難である。
There are analog elements (mixers, amplifiers, filters, etc.) in the path until the in-phase component I signal 5a and the quadrature component Q signal 5b are input to the A / D conversion circuits 6 and 7, and due to their variations, It is difficult to input to the A / D conversion circuits 6 and 7 while maintaining the orthogonality.
図2は、本来正しく直交性が保たれなければならない同相成分I信号5a’と直交成分Q信号5b’とに対してI振幅偏差量11a、Q振幅偏差量11b、I位相偏差量11c、及びQ位相偏差量11dがアナログ要素で発生している場合のIQ平面でのベクトル関係を示している。
FIG. 2 shows an I amplitude deviation amount 11a, a Q amplitude deviation amount 11b, an I phase deviation amount 11c, and an in-phase component I signal 5a ′ and a quadrature component Q signal 5b ′ that should be properly maintained in quadrature. The vector relationship on the IQ plane when the Q phase deviation amount 11d is generated by an analog element is shown.
IQ偏差検出回路11では、これらの偏差量11a~11dを検出し補正演算回路10に出力する。補正演算回路10では、前記偏差量11a~11dから正しい直交関係の同相成分I信号5aと直交成分Q信号5bとを直交復調回路5で生成するためにI振幅補正データ10a、Q振幅補正データ10b、I位相補正データ10c、及びQ位相補正データ10dを演算によって求め、直交復調回路5で補正を行うことで直交性を保持する。なお、補正演算回路10の演算内容は、システム毎によって構成される直交復調回路5の構成要素の内容によって決まる。
The IQ deviation detection circuit 11 detects these deviation amounts 11 a to 11 d and outputs them to the correction arithmetic circuit 10. In the correction arithmetic circuit 10, the quadrature demodulation circuit 5 generates the I amplitude correction data 10a and the Q amplitude correction data 10b in order to generate the correct in-phase component I signal 5a and quadrature component Q signal 5b from the deviation amounts 11a to 11d. The I phase correction data 10c and the Q phase correction data 10d are obtained by calculation, and the quadrature demodulation circuit 5 performs correction to maintain the orthogonality. Note that the calculation contents of the correction calculation circuit 10 are determined by the contents of the components of the orthogonal demodulation circuit 5 configured for each system.
図3は、I振幅補正データ10a及びI位相補正データ10cによって同相成分I信号5a’を同相成分I信号5aに戻し、Q振幅補正データ10b及びQ位相補正データ10dによって直交成分Q信号5b’を直交成分Q信号5bに戻し、その結果本来の正しい直交関係の同相成分I信号5aと直交成分Q信号5bとを得る様子を示している。ただし、本実施形態ではI信号及びQ信号ともに補正をしたが、どちらか一方を基準に、もう一方の振幅成分及び位相成分だけを補正することで直交性を保持しても構わない。
In FIG. 3, the in-phase component I signal 5a ′ is returned to the in-phase component I signal 5a by the I amplitude correction data 10a and the I phase correction data 10c, and the quadrature component Q signal 5b ′ is converted by the Q amplitude correction data 10b and the Q phase correction data 10d. It shows a state where the quadrature component Q signal 5b is returned to, and as a result, the in-phase component I signal 5a and the quadrature component Q signal 5b having the original correct quadrature relationship are obtained. However, in this embodiment, both the I signal and the Q signal are corrected. However, the orthogonality may be maintained by correcting only the other amplitude component and phase component on the basis of one of them.
図4は、無音検出及び校正のタイミングを示すタイミングチャートである。本実施形態によれば、通常の受信モードの際には、放送波1aを高周波増幅回路2によって増幅した高周波増幅信号2aが選択回路3を介して直交復調回路5に入力される。直交復調回路5では高周波増幅信号2aが同相成分I信号5aと直交成分Q信号5bとに変換され、A/D変換回路6,7によってデジタルデータに変換され、ベースバンド復調回路8にて受信モードに応じた再生信号8a,8bが出力される。
FIG. 4 is a timing chart showing the timing of silence detection and calibration. According to the present embodiment, in the normal reception mode, the high frequency amplified signal 2 a obtained by amplifying the broadcast wave 1 a by the high frequency amplifier circuit 2 is input to the quadrature demodulation circuit 5 via the selection circuit 3. In the quadrature demodulation circuit 5, the high frequency amplified signal 2 a is converted into an in-phase component I signal 5 a and a quadrature component Q signal 5 b, converted into digital data by the A / D conversion circuits 6 and 7, and received in the reception mode by the baseband demodulation circuit 8. The reproduction signals 8a and 8b corresponding to the above are output.
無音検出回路9では送信される放送内容の無音期間を検出し、その無音期間がシステムの設定値以上連続した場合、無音期間がスタートしたと判定し、無音検出信号9aを出力する。ここで言う「無音」とは、ある閾値レベル以下の音声信号だけが検出される状態ではなくて、放送の搬送波のみが検出される状態を意味する。ただし、この場合の無音としての判定条件や、判定後から無音検出信号9aの発生までの時間は、運用されるシステムによって設定可能とする。
The silence detection circuit 9 detects the silence period of the broadcast content to be transmitted. If the silence period continues for a system set value or more, it is determined that the silence period has started, and the silence detection signal 9a is output. Here, “silence” means a state in which only a carrier wave of a broadcast is detected, not a state in which only an audio signal below a certain threshold level is detected. However, the determination condition as silence in this case and the time from the determination to the generation of the silence detection signal 9a can be set by the operated system.
校正信号発生回路4では、無音検出信号9aをトリガとして直交復調回路5のI経路とQ経路との偏差を検出するための校正信号4aを出力する。
The calibration signal generation circuit 4 outputs a calibration signal 4a for detecting a deviation between the I path and the Q path of the quadrature demodulation circuit 5 using the silence detection signal 9a as a trigger.
校正信号4aとしては、決められた一定振幅の一定周波数の信号による1点での校正方法も考えられるが、システムによっては経路上にあるアナログ要素(例えばミキサ)のばらつきに周波数の依存性がある場合にシステム特性に大きく影響を与えてしまう場合もあるので、受信周波数帯を考慮して受信帯域の両端と中心との3点、又は複数点での周波数で校正信号を発生させることもある。ただし、運用されるシステムとアナログ要素のばらつきの大きさとに応じて設定可能とする。
As the calibration signal 4a, a one-point calibration method using a constant frequency signal with a predetermined constant amplitude is conceivable. However, depending on the system, there is a frequency dependency in the variation of analog elements (for example, mixers) on the path. In some cases, the system characteristics may be greatly affected, so that the calibration signal may be generated at frequencies at three or plural points of both ends and the center of the reception band in consideration of the reception frequency band. However, it can be set according to the system to be operated and the magnitude of the variation of the analog elements.
選択回路3では無音検出信号9aを受信した場合は、選択出力を高周波増幅信号2aから校正信号4aに切り替えて、直交復調回路5に入力する。直交復調回路5にて、I経路及びQ経路を通過したアナログ信号がA/D変換回路6,7でデジタルIデータ6aとデジタルQデータ7aとに変換される。
When the selection circuit 3 receives the silence detection signal 9a, the selection output is switched from the high frequency amplification signal 2a to the calibration signal 4a and input to the orthogonal demodulation circuit 5. In the quadrature demodulation circuit 5, analog signals that have passed through the I path and Q path are converted into digital I data 6a and digital Q data 7a by A / D conversion circuits 6 and 7, respectively.
IQ偏差検出回路11では、IQ経路に偏差が無く直交性が保たれた場合の基準値との比較を行い、IQ経路を通過する際にアナログ要素のばらつきによって生じた偏差量を検出し、I振幅偏差量11a、Q振幅偏差量11b、I位相偏差量11c、及びQ位相偏差量11dとして出力する。
The IQ deviation detection circuit 11 compares with a reference value when there is no deviation in the IQ path and the orthogonality is maintained, detects the deviation amount caused by the variation of analog elements when passing through the IQ path, and Output as amplitude deviation amount 11a, Q amplitude deviation amount 11b, I phase deviation amount 11c, and Q phase deviation amount 11d.
補正演算回路10では、IQ偏差検出回路11の出力であるIQの各偏差量11a~11dから、直交復調回路5での直交性を補正するために、I信号とQ信号との振幅及び位相についてそれぞれI振幅補正データ10a、Q振幅補正データ10b、I位相補正データ10c、及びQ位相補正データ10dを演算によって算出し出力する。
In the correction arithmetic circuit 10, the amplitude and phase of the I signal and the Q signal are corrected in order to correct the orthogonality in the orthogonal demodulation circuit 5 from the IQ deviation amounts 11 a to 11 d which are the outputs of the IQ deviation detection circuit 11. The I amplitude correction data 10a, Q amplitude correction data 10b, I phase correction data 10c, and Q phase correction data 10d are calculated and output, respectively.
直交復調回路5では、補正演算回路10の出力であるI振幅補正データ10a、Q振幅補正データ10b、I位相補正データ10c、及びQ位相補正データ10dを用いて、本来の直交性の関係に戻す処理をIQ経路に対して行い、同相成分I信号5aと直交成分Q信号5bとを出力する。
The quadrature demodulation circuit 5 uses the I amplitude correction data 10a, the Q amplitude correction data 10b, the I phase correction data 10c, and the Q phase correction data 10d, which are outputs of the correction arithmetic circuit 10, to restore the original orthogonal relationship. Processing is performed on the IQ path, and an in-phase component I signal 5a and a quadrature component Q signal 5b are output.
なお、ベースバンド復調回路8で校正信号4aも復調されてしまうので、ミュート回路15で校正期間信号4bによって校正信号4aが出力されないように再生信号8a,8bをミュートし、L音声信号15a及びR音声信号15bとして出力しながら前述した校正を行うものとする。
Since the calibration signal 4a is also demodulated by the baseband demodulation circuit 8, the reproduction signals 8a and 8b are muted so that the calibration signal 4a is not output by the calibration period signal 4b by the mute circuit 15, and the L audio signals 15a and R It is assumed that the above-described calibration is performed while outputting as the audio signal 15b.
このように、本実施形態によれば、無音期間を検出してIQ経路の振幅調整と位相調整とを行うので、工程調整の段階での校正が不要になり、電源投入してから同じ放送局を選択したままの状態であっても、常に最適な受信特性に調整された状態で受信可能となる。
As described above, according to the present embodiment, since the silence period is detected and the amplitude adjustment and the phase adjustment of the IQ path are performed, calibration at the stage of the process adjustment becomes unnecessary, and the same broadcasting station is turned on after the power is turned on. Even in a state in which is selected, reception is always possible in a state adjusted to optimum reception characteristics.
《実施形態2》
図5は、本発明の実施形態2の受信装置のブロック構成図である。図5における受信装置の構成は実施形態1に対し、ベースバンド復調回路8の出力として受信電界の強弱やマルチパス発生有無を表す受信状況信号8cを追加したものであり、その他の構成及び各ブロックの機能は同じである。 <<Embodiment 2 >>
FIG. 5 is a block diagram of a receiving apparatus according to the second embodiment of the present invention. The configuration of the receiving apparatus in FIG. 5 is obtained by adding areception status signal 8c indicating the strength of the received electric field and the presence / absence of multipath as an output of the baseband demodulation circuit 8 to the first embodiment. The function of is the same.
図5は、本発明の実施形態2の受信装置のブロック構成図である。図5における受信装置の構成は実施形態1に対し、ベースバンド復調回路8の出力として受信電界の強弱やマルチパス発生有無を表す受信状況信号8cを追加したものであり、その他の構成及び各ブロックの機能は同じである。 <<
FIG. 5 is a block diagram of a receiving apparatus according to the second embodiment of the present invention. The configuration of the receiving apparatus in FIG. 5 is obtained by adding a
受信状況信号8cとは、一例として搬送波振幅(受信Sメータ)の交流成分を検出することによって、現在の受信状況にてマルチパスが発生しているかどうかを判断できる識別信号のことである。
The reception status signal 8c is, for example, an identification signal that can determine whether a multipath has occurred in the current reception status by detecting the AC component of the carrier wave amplitude (reception S meter).
図6は、受信状況を示すタイミングチャート例であるが、無音から有音に変化した後に、マルチパスの影響で再生信号8a,8bの振幅が無音レベルまで極端に下がってしまった場合、振幅だけで検出すると無音期間として判定してしまう場合でも、受信状況信号8cが無音検出回路9において無音検出信号9aを無効にするため、無音ではなく有音と判定することが可能であり、誤判定を防ぐことができマルチパス状況でも常に最適な受信特性に調整された状態で受信可能となる。
FIG. 6 is an example of a timing chart showing the reception status. When the amplitude of the reproduction signals 8a and 8b is extremely lowered to the silence level due to the multipath effect after changing from silence to sound, only the amplitude is shown. Even if it is determined that there is a silence period when it is detected at, the reception status signal 8c invalidates the silence detection signal 9a in the silence detection circuit 9, so that it is possible to determine that there is no sound and there is a noise. This can be prevented, and even in a multipath situation, reception is always possible with the optimum reception characteristics adjusted.
《実施形態3》
図7は、本発明の実施形態3の受信装置のブロック構成図である。図7における受信装置の構成は実施形態2に対し、有音消失検出回路12を新たに設け、校正期間中に無音期間が終了してしまい有音期間が消失してしまった場合は、校正期間制御信号12aを校正信号発生回路4に対して出力し、次回の校正期間を短くするような制御を行うものであり、その他の構成及び各ブロックの機能は同じである。 <<Embodiment 3 >>
FIG. 7 is a block diagram of a receiving apparatus according to the third embodiment of the present invention. The configuration of the receiving apparatus in FIG. 7 is the same as that of the second embodiment in that a voiceddisappearance detection circuit 12 is newly provided, and when the silent period ends and the voiced period disappears during the calibration period, the calibration period The control signal 12a is output to the calibration signal generation circuit 4 to perform control so as to shorten the next calibration period, and other configurations and functions of the respective blocks are the same.
図7は、本発明の実施形態3の受信装置のブロック構成図である。図7における受信装置の構成は実施形態2に対し、有音消失検出回路12を新たに設け、校正期間中に無音期間が終了してしまい有音期間が消失してしまった場合は、校正期間制御信号12aを校正信号発生回路4に対して出力し、次回の校正期間を短くするような制御を行うものであり、その他の構成及び各ブロックの機能は同じである。 <<
FIG. 7 is a block diagram of a receiving apparatus according to the third embodiment of the present invention. The configuration of the receiving apparatus in FIG. 7 is the same as that of the second embodiment in that a voiced
図8は、校正期間の制御過程を示すタイミングチャートである。図8において、最初の無音検出信号9aによってIQ経路の偏差を補正するための校正信号4aが直交復調回路5に入力され、IQ偏差検出回路11によって偏差が検出され、補正演算回路10によって、直交復調回路5内の偏差の補正が行われる。
FIG. 8 is a timing chart showing the control process during the calibration period. In FIG. 8, the calibration signal 4a for correcting the deviation of the IQ path by the first silence detection signal 9a is input to the quadrature demodulation circuit 5, the deviation is detected by the IQ deviation detection circuit 11, and the quadrature is corrected by the correction arithmetic circuit 10. The deviation in the demodulation circuit 5 is corrected.
有音消失検出回路12では、校正が終了し校正期間信号4bがHレベルからLレベルに変化した直後のベースバンド復調回路8の出力である再生信号8a,8bの振幅を検出して、有音か無音かを判定する。
The voiced disappearance detection circuit 12 detects the amplitude of the reproduced signals 8a and 8b which are the outputs of the baseband demodulation circuit 8 immediately after the calibration is completed and the calibration period signal 4b changes from the H level to the L level. Or no sound.
図8の場合は直後の振幅検出の結果は有音と判定され、校正期間制御信号12aがLからHへ遷移して出力される。
In the case of FIG. 8, the result of amplitude detection immediately after is determined to be sound, and the calibration period control signal 12a transitions from L to H and is output.
2回目の無音期間においては、校正信号発生回路4では校正期間制御信号12aがHとなっているので、校正期間信号4bのH出力の期間を1回目の無音期間における校正期間信号4bのH出力期間よりも短く設定して出力し、校正信号4aの発生期間も1回目の無音期間よりも短くなるように制御しており、有音消失検出回路12では2回目の校正が終了し、校正期間信号4bがHレベルからLレベルに変化した直後の再生信号8a,8bの振幅を検出した時には無音と判定され、2回目の有音期間の消失を防いでいる様子を示している。このとき、校正期間制御信号12aはHからLへ戻され、以降の有音消失の検出に備える。
In the second silent period, since the calibration period control signal 12a is H in the calibration signal generation circuit 4, the H output period of the calibration period signal 4b is the H output of the calibration period signal 4b in the first silent period. The calibration signal 4a is output so that it is set shorter than the period, and the generation period of the calibration signal 4a is also controlled to be shorter than the first silent period. When the amplitude of the reproduction signals 8a and 8b immediately after the signal 4b changes from the H level to the L level is detected, it is determined that there is no sound, and the disappearance of the second sound period is prevented. At this time, the calibration period control signal 12a is returned from H to L to prepare for detection of the subsequent loss of sound.
このように校正時間を短くすることで実際に放送される有音期間の消失頻度を下げることが可能となる。
こ の By shortening the calibration time in this way, it is possible to reduce the disappearance frequency of the sound period actually broadcast.
《実施形態4》
図9は、本発明の実施形態4の調整シーケンスの例を示すタイミング図である。受信装置のブロック構成図は実施形態3と同様であるが、校正信号発生回路4で発生させる校正信号4aの期間を短く設定しておき、複数回の無音期間に渡ってI信号経路とQ信号経路との間の振幅及び位相の偏差調整が完了するような調整シーケンスになるように校正信号発生回路4、IQ偏差検出回路11、及び補正演算回路10を制御している。 <<Embodiment 4 >>
FIG. 9 is a timing chart showing an example of an adjustment sequence according to the fourth embodiment of the present invention. The block diagram of the receiving apparatus is the same as that of the third embodiment, but the period of thecalibration signal 4a generated by the calibration signal generation circuit 4 is set short, and the I signal path and the Q signal are set over a plurality of silent periods. The calibration signal generation circuit 4, the IQ deviation detection circuit 11, and the correction calculation circuit 10 are controlled so that an adjustment sequence that completes the deviation adjustment of the amplitude and phase between the paths is completed.
図9は、本発明の実施形態4の調整シーケンスの例を示すタイミング図である。受信装置のブロック構成図は実施形態3と同様であるが、校正信号発生回路4で発生させる校正信号4aの期間を短く設定しておき、複数回の無音期間に渡ってI信号経路とQ信号経路との間の振幅及び位相の偏差調整が完了するような調整シーケンスになるように校正信号発生回路4、IQ偏差検出回路11、及び補正演算回路10を制御している。 <<
FIG. 9 is a timing chart showing an example of an adjustment sequence according to the fourth embodiment of the present invention. The block diagram of the receiving apparatus is the same as that of the third embodiment, but the period of the
図9では、2回の無音期間で振幅の調整を行い、続く2回の無音期間で位相調整を行うシーケンスの例を示している。複数回の無音期間に渡って校正することを前提としているので、図9において校正信号4aの期間は通常の無音期間に比べて十分に短い期間であるから、校正が終了し校正期間信号4bがHレベルからLレベルに変化した直後のベースバンド復調回路8の出力である再生信号8a,8bの振幅は無音状態のままである。
FIG. 9 shows an example of a sequence in which the amplitude is adjusted in two silent periods and the phase is adjusted in the subsequent two silent periods. Since it is assumed that calibration is performed over a plurality of silence periods, the period of the calibration signal 4a in FIG. 9 is sufficiently shorter than the normal silence period. The amplitudes of the reproduction signals 8a and 8b, which are the outputs of the baseband demodulation circuit 8 immediately after changing from the H level to the L level, remain silent.
なお、複数回に渡る無音の回数とその調整内容は一例であり、それぞれのシステムに応じた無音の回数や調整順で構わない。
It should be noted that the number of times of silence over a plurality of times and the adjustment contents are examples, and the number of silences and the order of adjustment according to each system may be used.
このような調整シーケンスとすることで、校正期間を短くし、複数回の無音期間に渡って校正を完了させるので、各期間で校正信号4aを入力し終わった時点でも無音期間が継続しており、放送される有音期間の消失はほとんど発生しない。
By making such an adjustment sequence, the calibration period is shortened and the calibration is completed over a plurality of silent periods. Therefore, the silent period continues even when the calibration signal 4a is input in each period. There is almost no loss of the broadcast sound period.
《実施形態5》
図10は、本発明の実施形態5の受信装置のブロック構成図である。図10における受信装置の構成は実施形態3に対し、無音検出信号9aを制御する時間経過判定回路13を新たに設けたものであり、その他の構成及び各ブロックの構成は同じである。 <<Embodiment 5 >>
FIG. 10 is a block diagram of a receiving apparatus according to the fifth embodiment of the present invention. The configuration of the receiving device in FIG. 10 is a configuration in which a timepassage determination circuit 13 for controlling the silence detection signal 9a is newly provided in the third embodiment, and the other configurations and the configurations of the respective blocks are the same.
図10は、本発明の実施形態5の受信装置のブロック構成図である。図10における受信装置の構成は実施形態3に対し、無音検出信号9aを制御する時間経過判定回路13を新たに設けたものであり、その他の構成及び各ブロックの構成は同じである。 <<
FIG. 10 is a block diagram of a receiving apparatus according to the fifth embodiment of the present invention. The configuration of the receiving device in FIG. 10 is a configuration in which a time
図11は、無音検出信号9aに対する時間経過判定回路13の制御の関係を示すタイミングチャートである。電源投入直後は、無音期間が検出される毎(t0、t1、t2、t3)に無音検出信号9aは時間経過判定信号13aとしてそのまま選択回路3及び校正信号発生回路4へそれぞれ入力され、校正信号4aによって直交復調回路5のI信号経路とQ信号経路との間の振幅及び位相の偏差調整を実施する。
FIG. 11 is a timing chart showing the relationship of control of the time passage determination circuit 13 with respect to the silence detection signal 9a. Immediately after the power is turned on, every time a silence period is detected (t0, t1, t2, t3), the silence detection signal 9a is directly input to the selection circuit 3 and the calibration signal generation circuit 4 as the time lapse determination signal 13a, and the calibration signal The amplitude and phase deviation adjustment between the I signal path and the Q signal path of the quadrature demodulation circuit 5 is performed by 4a.
更に、電源投入から十分に時間経過し、システムの設定時間(図11の場合t3)を超えた場合には、十分な偏差調整が実施されている状態なので無音検出信号9aが出力されても、偏差の調整を毎回行う必要はなく、図11のようにt4、t5及びt10のタイミングでは偏差調整を実行せず、t6及びt17のタイミングで偏差調整を実行するので、放送される有音期間の消失頻度を更に低下させることが可能になる。
Furthermore, when a sufficient amount of time has elapsed since the power was turned on and the system set time (t3 in FIG. 11) has been exceeded, sufficient deviation adjustment has been performed, so even if the silence detection signal 9a is output, It is not necessary to adjust the deviation every time. As shown in FIG. 11, the deviation adjustment is not performed at the timings t4, t5, and t10, and the deviation adjustment is performed at the timings t6 and t17. It becomes possible to further reduce the disappearance frequency.
なお、時間経過のシステム設定値や調整の頻度は適用するシステム毎に設定できるものとする。
It should be noted that the system settings and the frequency of adjustment over time can be set for each applicable system.
《実施形態6》
図12は、本発明の実施形態6の受信装置のブロック構成図である。図12における受信装置の構成は実施形態3に対し、無音検出信号9aを制御する温度変化判定回路14を新たに設けたものであり、その他の構成及び各ブロックの構成は同じである。Embodiment 6
FIG. 12 is a block diagram of a receiving apparatus according to the sixth embodiment of the present invention. The configuration of the receiving device in FIG. 12 is a configuration in which a temperaturechange determination circuit 14 for controlling the silence detection signal 9a is newly provided in the third embodiment, and the other configurations and the configurations of the respective blocks are the same.
図12は、本発明の実施形態6の受信装置のブロック構成図である。図12における受信装置の構成は実施形態3に対し、無音検出信号9aを制御する温度変化判定回路14を新たに設けたものであり、その他の構成及び各ブロックの構成は同じである。
FIG. 12 is a block diagram of a receiving apparatus according to the sixth embodiment of the present invention. The configuration of the receiving device in FIG. 12 is a configuration in which a temperature
図13は、無音検出信号9aに対する温度変化判定回路14の制御の関係を示すタイミングチャートである。周囲温度が一定の時(図13においてはt0~t5、t14~t20)には無音検出信号9aは温度変化判定信号14aとして、システムとして設定される一定の頻度で選択回路3及び校正信号発生回路4へそれぞれ入力され、校正信号4aによって直交復調回路5のI信号経路とQ信号経路との間の振幅及び位相の偏差調整を実施する。
FIG. 13 is a timing chart showing the relationship of control of the temperature change determination circuit 14 with respect to the silence detection signal 9a. When the ambient temperature is constant (t0 to t5 and t14 to t20 in FIG. 13), the silence detection signal 9a is used as the temperature change determination signal 14a, and the selection circuit 3 and the calibration signal generation circuit are set at a certain frequency set as a system. 4, and the deviation of the amplitude and phase between the I signal path and the Q signal path of the orthogonal demodulation circuit 5 is adjusted by the calibration signal 4 a.
一方、周囲温度の変化が発生した場合(図13においてはt8~t13)は、回路でのばらつきが温度特性を持っているので、これまでの調整頻度では受信特性が不十分となるから、システムで設定される一定の頻度よりも高い頻度で調整が実施されるように無音検出信号9aを選択回路3及び校正信号発生回路4へ反映させることで、十分に偏差を調整することが可能となる。したがって、システム電源投入後の調整から十分な時間経過後に、更に周囲温度が変化したような場合でも、温度変化が発生する度に偏差調整の実行が可能になるので、常に最適な受信特性に調整された状態で受信可能になる。
On the other hand, when a change in ambient temperature occurs (t8 to t13 in FIG. 13), since the variation in the circuit has a temperature characteristic, the reception characteristic becomes insufficient with the adjustment frequency so far. By reflecting the silence detection signal 9a to the selection circuit 3 and the calibration signal generation circuit 4 so that the adjustment is performed at a frequency higher than the fixed frequency set in step 1, the deviation can be sufficiently adjusted. . Therefore, even if the ambient temperature changes after a sufficient amount of time has elapsed since the system power was turned on, deviation adjustment can be performed whenever a temperature change occurs. It becomes possible to receive in the state that has been done.
なお、システムとして設定される一定の頻度や、温度変化量等は適用するシステム毎に設定できるものとする。
In addition, a certain frequency set as a system, a temperature change amount, etc. can be set for each applied system.
《実施形態7》
図14は、本発明の実施形態7の受信方法における制御動作例を示すフローチャートである。図14において、システムに電源が投入されシステムが受信スタートすると、受信された信号は直交復調されて同相(I)成分と直交(Q)成分とに変換された後、ベースバンドでの音声復調が行われる(S121)。 <<Embodiment 7 >>
FIG. 14 is a flowchart illustrating a control operation example in the reception method according to the seventh embodiment of the present invention. In FIG. 14, when the system is turned on and the system starts receiving, the received signal is quadrature demodulated and converted into an in-phase (I) component and a quadrature (Q) component. Performed (S121).
図14は、本発明の実施形態7の受信方法における制御動作例を示すフローチャートである。図14において、システムに電源が投入されシステムが受信スタートすると、受信された信号は直交復調されて同相(I)成分と直交(Q)成分とに変換された後、ベースバンドでの音声復調が行われる(S121)。 <<
FIG. 14 is a flowchart illustrating a control operation example in the reception method according to the seventh embodiment of the present invention. In FIG. 14, when the system is turned on and the system starts receiving, the received signal is quadrature demodulated and converted into an in-phase (I) component and a quadrature (Q) component. Performed (S121).
ベースバンドで復調された再生信号が無音であるかどうかを調べるために無音検出を行う(S122)。有音であれば継続して受信モードの状態を維持し、無音と判断した場合はS123からS127にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。ここで、S123では校正信号期間Tを設定し、S124では校正信号を発生させ、S125では偏差補正量を演算し、S126では直交復調回路の振幅及び位相を調整し、S127では校正終了のチェックを実行する。
Silence detection is performed to check whether or not the reproduction signal demodulated in the baseband is silent (S122). If there is sound, the state of the reception mode is continuously maintained. If it is determined that there is no sound, a calibration signal is generated from S123 to S127, and the amplitude and phase between the I component and Q component in the quadrature demodulation circuit are generated. Correct the deviation. Here, a calibration signal period T is set in S123, a calibration signal is generated in S124, a deviation correction amount is calculated in S125, the amplitude and phase of the quadrature demodulation circuit are adjusted in S126, and a calibration end check is performed in S127. Execute.
S124からS127を繰り返すことでI成分とQ成分とについて偏差のない状態にすることが可能となり、同じ放送局を選択したままの状態であっても、常に最適な受信特性に調整された状態で受信可能となる。
By repeating S124 to S127, it becomes possible to make the I component and the Q component have no deviation, and even when the same broadcasting station is still selected, it is always adjusted to the optimum reception characteristics. It becomes possible to receive.
《実施形態8》
図15は、本発明の実施形態8の受信方法における制御動作例を示すフローチャートである。図15において、S132以外は実施形態7と同様の制御動作を行うものである。Embodiment 8
FIG. 15 is a flowchart illustrating an example of a control operation in the reception method according to the eighth embodiment of the present invention. In FIG. 15, the same control operation as in the seventh embodiment is performed except for S132.
図15は、本発明の実施形態8の受信方法における制御動作例を示すフローチャートである。図15において、S132以外は実施形態7と同様の制御動作を行うものである。
FIG. 15 is a flowchart illustrating an example of a control operation in the reception method according to the eighth embodiment of the present invention. In FIG. 15, the same control operation as in the seventh embodiment is performed except for S132.
ベースバンドで復調された再生信号が無音であるかどうかを調べるために無音検出を行う(S122)。さらにマルチパスの発生の有無や受信電界の強弱等の受信状況に関する情報を加味して判断する(S132)ことで、誤った無音判定を防止することが可能となり、通常受信電界のみならず、マルチパス状況の時でも常に最適な受信特性に調整された状態で受信可能となる。
Silence detection is performed to check whether or not the reproduction signal demodulated in the baseband is silent (S122). Furthermore, it is possible to prevent erroneous silence judgment by taking into account information regarding reception status such as the presence / absence of multipath and the strength of the received electric field (S132). Even in a path situation, reception is always possible with the optimum reception characteristics adjusted.
《実施形態9》
図16は、本発明の実施形態9の受信方法における制御動作例を示すフローチャートである。図16においてS141、S142以外は実施形態8と同様の制御動作を行うものである。Embodiment 9
FIG. 16 is a flowchart illustrating an example of a control operation in the reception method according to the ninth embodiment of the present invention. In FIG. 16, control operations similar to those in the eighth embodiment are performed except for S141 and S142.
図16は、本発明の実施形態9の受信方法における制御動作例を示すフローチャートである。図16においてS141、S142以外は実施形態8と同様の制御動作を行うものである。
FIG. 16 is a flowchart illustrating an example of a control operation in the reception method according to the ninth embodiment of the present invention. In FIG. 16, control operations similar to those in the eighth embodiment are performed except for S141 and S142.
無音期間を検出(S122、S132)し、S123からS127にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を終了した後に、復調されたI成分とQ成分との信号振幅の大きさと設定値との大小比較を行い、復調信号が有音又は無音の判定を行う(S141)。
After detecting the silence period (S122, S132), generating a calibration signal from S123 to S127, and correcting the amplitude and phase deviation between the I and Q components in the quadrature demodulation circuit, the signal is demodulated. The magnitude of the signal amplitude of the I component and the Q component is compared with the set value, and the demodulated signal is judged to be sound or silent (S141).
このとき無音であるならば校正の正常終了とみなす。反対に有音であるならば、校正期間中に無音期間が終了したと判断し、次回の校正信号の期間Tを短くするために、S142にて校正信号期間Tの長さを更新する(T=T-α)。
If it is silent at this time, it is considered that calibration is completed normally. On the other hand, if there is sound, it is determined that the silent period has ended during the calibration period, and the length of the calibration signal period T is updated in S142 to shorten the period T of the next calibration signal (T = T-α).
このように校正時間を短くすることで、実際に放送される有音期間の消失頻度を下げることが可能となる。
短 く By shortening the calibration time in this way, it is possible to reduce the frequency of disappearance of the sound period actually broadcast.
《実施形態10》
図17は、本発明の実施形態10の受信方法における制御動作例を示すフローチャートである。図17においてS151、S152、S153、S154、S155以外は実施形態7と同様の制御動作を行うものである。 <<Embodiment 10 >>
FIG. 17 is a flowchart illustrating a control operation example in the reception method according to the tenth embodiment of the present invention. In FIG. 17, control operations similar to those in the seventh embodiment are performed except for S151, S152, S153, S154, and S155.
図17は、本発明の実施形態10の受信方法における制御動作例を示すフローチャートである。図17においてS151、S152、S153、S154、S155以外は実施形態7と同様の制御動作を行うものである。 <<
FIG. 17 is a flowchart illustrating a control operation example in the reception method according to the tenth embodiment of the present invention. In FIG. 17, control operations similar to those in the seventh embodiment are performed except for S151, S152, S153, S154, and S155.
まず、復調音声信号の無音期間を検出(S122)すると、校正回数Nをカウント(S151)し、システムで設定した校正信号期間Tを設定する。そして、S124からS126、S153にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。
First, when the silent period of the demodulated audio signal is detected (S122), the number N of calibrations is counted (S151), and the calibration signal period T set by the system is set. Then, calibration signals are generated from S124 to S126 and S153, and the amplitude and phase deviations between the I component and the Q component in the quadrature demodulation circuit are corrected.
1無音期間での校正が終了したかどうか判断(S153)し、終了ならば校正回数Nがシステムで設定された回数と一致するかどうか判断(S154)し、一致しなければ次の無音期間にて継続して校正を行う。一致すれば、校正が終了したとみなして校正回数Nをリセット(S155)し、通常の受信動作(S121)フローに戻る。
It is determined whether the calibration in one silence period has been completed (S153). If it has been completed, it is determined whether the number of calibrations N matches the number set in the system (S154). Continue calibration. If they match, it is considered that the calibration has been completed, the number N of calibrations is reset (S155), and the flow returns to the normal reception operation (S121) flow.
このような動作制御を行うことで、校正期間を短くし、複数回の無音期間に渡って校正を完了させるので、各期間で校正信号を入力し終わった時点でも無音期間が継続しており、放送される有音期間の消失頻度を大幅に減少させることが可能となる。
By performing such operation control, the calibration period is shortened and the calibration is completed over a plurality of silent periods, so the silent period continues even when the calibration signal is input in each period, It is possible to significantly reduce the frequency of disappearance of the broadcast sound period.
《実施形態11》
図18は、本発明の実施形態11の受信方法における制御動作例を示すフローチャートである。図18においてS161、S162、S163、S164以外は実施形態7と同様の制御動作を行うものである。 <<Embodiment 11 >>
FIG. 18 is a flowchart illustrating an example of a control operation in the reception method according to the eleventh embodiment of the present invention. In FIG. 18, control operations similar to those in the seventh embodiment are performed except for S161, S162, S163, and S164.
図18は、本発明の実施形態11の受信方法における制御動作例を示すフローチャートである。図18においてS161、S162、S163、S164以外は実施形態7と同様の制御動作を行うものである。 <<
FIG. 18 is a flowchart illustrating an example of a control operation in the reception method according to the eleventh embodiment of the present invention. In FIG. 18, control operations similar to those in the seventh embodiment are performed except for S161, S162, S163, and S164.
復調音声信号の無音期間を検出(S122)すると、無音検出回数Mをカウント(S161)する。S162では電源投入直後からの時間経過を計測しており、システムで設定される設定時間との比較を行い、設定時間よりも小さければ(電源投入してからあまり時間がたっていない場合)、S123からS127にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。校正が終了した場合は無音検出回数Mをリセット(S164)し、通常の受信動作(S121)フローに戻る。
When the silent period of the demodulated audio signal is detected (S122), the number of silent detections M is counted (S161). In S162, the time elapsed immediately after the power is turned on is measured and compared with the set time set in the system. If the time is shorter than the set time (when the time has not passed since the power was turned on), the process starts from S123. In S127, a calibration signal is generated, and the amplitude and phase deviation between the I component and the Q component in the quadrature demodulation circuit is corrected. When the calibration is completed, the silence detection count M is reset (S164), and the flow returns to the normal reception operation (S121) flow.
また、S162にて電源投入直後からの時間経過が設定時間よりも大きければ(電源投入してから十分に時間が経過している場合)、無音検出回数Mとシステムで設定した回数との一致を判断(S163)し、無音検検出回数Mが設定回数以上になった場合は校正を実行するが、設定回数より少ない場合は、無音期間でも校正を実施しないで通常の受信動作(S121)フローに戻る。
If the elapsed time immediately after the power is turned on in S162 is longer than the set time (when the time has passed sufficiently since the power is turned on), the silence detection count M matches the number set by the system. If the silent detection detection count M is equal to or greater than the set number, calibration is executed. If the number is less than the set number, the normal reception operation (S121) flow is performed without performing calibration even during the silent period. Return.
このような動作制御を行うことで、システム電源投入後から十分時間経過した場合は、システムの動作環境の周囲温度も十分に一定になっていると想定されるので、校正タイミングを毎回の無音検出結果毎に対応させる必要はなく、校正の実行頻度を下げることが可能になり、放送される有音期間の消失頻度を更に低下させることが可能になる。
By performing such operation control, it is assumed that the ambient temperature of the system operating environment is sufficiently constant when sufficient time has elapsed since the system power was turned on. It is not necessary to correspond to each result, and the execution frequency of calibration can be lowered, and the frequency of disappearance of the broadcast sound period can be further reduced.
《実施形態12》
図19は、本発明の実施形態12の受信方法における制御動作例を示すフローチャートである。図19においてS171、S172、S173、S174以外は実施形態7と同様の制御動作を行うものである。 <<Embodiment 12 >>
FIG. 19 is a flowchart illustrating an example of a control operation in the reception method according to the twelfth embodiment of the present invention. In FIG. 19, the same control operation as in the seventh embodiment is performed except for S171, S172, S173, and S174.
図19は、本発明の実施形態12の受信方法における制御動作例を示すフローチャートである。図19においてS171、S172、S173、S174以外は実施形態7と同様の制御動作を行うものである。 <<
FIG. 19 is a flowchart illustrating an example of a control operation in the reception method according to the twelfth embodiment of the present invention. In FIG. 19, the same control operation as in the seventh embodiment is performed except for S171, S172, S173, and S174.
復調音声信号の無音期間を検出(S122)すると、無音検出回数Mをカウント(S171)する。S172では電源投入直後からの周囲の温度変化を計測しており、検出された温度変化量とシステムで設定される温度変化量との比較を行い、温度変化量が設定値よりも大きい時は、S123からS127にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。校正が終了した場合は無音検出回数Mをリセット(S174)し、通常の受信動作(S121)フローに戻る。
When the silent period of the demodulated audio signal is detected (S122), the number of silent detections M is counted (S171). In S172, the ambient temperature change immediately after the power is turned on is measured, and the detected temperature change amount is compared with the temperature change amount set in the system. When the temperature change amount is larger than the set value, A calibration signal is generated from S123 to S127, and the deviation of the amplitude and phase between the I component and Q component in the quadrature demodulation circuit is corrected. When the calibration is completed, the silence detection count M is reset (S174), and the flow returns to the normal reception operation (S121) flow.
また、S172にて温度変化量が設定値よりも小さい時は、無音検出回数Mとシステムで設定した回数との一致を判断(S173)し、無音検検出回数Mが設定回数以上になった場合は校正を実行するが、設定回数より少ない場合は、無音期間でも校正を実施しないで通常の受信動作(S121)フローに戻る。
When the temperature change amount is smaller than the set value in S172, it is determined whether the silence detection count M matches the system set count (S173), and the silence detection detection count M exceeds the set count. Performs calibration, but if the number is less than the set number of times, the flow returns to the normal reception operation (S121) flow without performing calibration even in the silent period.
このような動作制御を行うことで、システム電源投入後の調整から十分な時間が経過した後に、更に周囲温度が変化したような場合でも、温度変化が発生する度に校正による調整の実行が可能になるので、常に最適な受信特性に調整された状態で受信可能になる。
By performing this kind of operation control, calibration can be performed every time a temperature change occurs even if the ambient temperature changes after sufficient time has elapsed since the system power was turned on. Therefore, reception is always possible with the optimum reception characteristics adjusted.
以上説明してきたとおり、本発明の受信装置及び受信方法は、無線システムにおける受信装置の素子ばらつきによって生じる復調特性の調整等の技術として有用である。
As described above, the receiving apparatus and the receiving method of the present invention are useful as techniques for adjusting demodulation characteristics caused by element variations of the receiving apparatus in a wireless system.
1 受信アンテナ
2 高周波増幅回路
3 選択回路
4 校正信号発生回路
5 直交復調回路
6,7 アナログ-デジタル(A/D)変換回路
8 ベースバンド復調回路
9 無音検出回路
10 補正演算回路
11 IQ偏差検出回路
12 有音消失検出回路
13 時間経過判定回路
14 温度変化判定回路
15 ミュート回路 DESCRIPTION OFSYMBOLS 1 Reception antenna 2 High frequency amplifier circuit 3 Selection circuit 4 Calibration signal generation circuit 5 Orthogonal demodulation circuit 6,7 Analog-digital (A / D) conversion circuit 8 Baseband demodulation circuit 9 Silence detection circuit 10 Correction calculation circuit 11 IQ deviation detection circuit 12 Voice disappearance detection circuit 13 Time lapse determination circuit 14 Temperature change determination circuit 15 Mute circuit
2 高周波増幅回路
3 選択回路
4 校正信号発生回路
5 直交復調回路
6,7 アナログ-デジタル(A/D)変換回路
8 ベースバンド復調回路
9 無音検出回路
10 補正演算回路
11 IQ偏差検出回路
12 有音消失検出回路
13 時間経過判定回路
14 温度変化判定回路
15 ミュート回路 DESCRIPTION OF
Claims (12)
- 受信アンテナからの信号を入力とし、その高周波信号を出力する高周波増幅部と、
前記高周波増幅部の出力を一方の入力とし、他方の入力とのうちいずれか一方の入力を選択して出力する選択部と、
前記選択部の出力を入力し、ミキサによってI成分とQ成分とに変換する際に、I信号とQ信号との振幅及び位相の補正データを反映させて直交変換する直交復調部と、
前記直交復調部が出力する復調I信号と復調Q信号とをそれぞれアナログ信号からデジタル信号に変換するアナログ-デジタル変換部と、
前記アナログ-デジタル変換部の各デジタル出力を入力とし、再生信号を復調するベースバンド復調部と、
前記ベースバンド復調部の出力信号の無音期間を検出し、前記選択部に出力する無音検出部と、
前記無音検出部の出力に応じて、前記選択部への他方の入力として校正信号とその校正の期間を示す校正期間信号とを出力する校正信号発生部と、
前記ベースバンド復調部の出力信号を入力とし、前記校正期間信号に応じて前記入力信号に対してミュート処理を行い音声信号として出力するミュート部と、
前記アナログ-デジタル変換部の各デジタル出力を入力とし、前記校正信号が入力された時のデジタルI信号とデジタルQ信号との振幅及び位相について、基準値からの偏差量を検出し、I信号及びQ信号についての振幅及び位相の各偏差量信号として出力するIQ偏差検出部と、
前記IQ偏差検出部の出力を入力とし、I信号経路とQ信号経路とで生じた振幅及び位相の偏差を元に戻すための演算を行い、前記I信号及びQ信号についての振幅及び位相の補正データとして前記直交復調部に出力する補正演算部とを備えたことを特徴とする受信装置。 A high-frequency amplifier that receives the signal from the receiving antenna and outputs the high-frequency signal;
The output of the high-frequency amplification unit is one input, a selection unit that selects and outputs one of the other inputs, and
An orthogonal demodulator that inputs the output of the selection unit and performs orthogonal transformation by reflecting correction data of the amplitude and phase of the I signal and the Q signal when converted into an I component and a Q component by a mixer;
An analog-digital converter that converts the demodulated I signal and demodulated Q signal output from the orthogonal demodulator from an analog signal to a digital signal, respectively;
A baseband demodulator that receives each digital output of the analog-digital converter as an input and demodulates a reproduction signal;
Detecting a silence period of an output signal of the baseband demodulator, and outputting to the selector a silence detector;
In response to the output of the silence detector, a calibration signal generator that outputs a calibration signal and a calibration period signal indicating the calibration period as the other input to the selector;
The mute unit that receives the output signal of the baseband demodulator, performs a mute process on the input signal in accordance with the calibration period signal, and outputs it as an audio signal;
Each digital output of the analog-digital conversion unit is input, and the deviation amount from the reference value is detected for the amplitude and phase of the digital I signal and digital Q signal when the calibration signal is input, and the I signal and An IQ deviation detector for outputting amplitude and phase deviation signals for the Q signal;
Using the output of the IQ deviation detection unit as an input, performing an operation to restore the amplitude and phase deviations generated in the I signal path and the Q signal path, and correcting the amplitude and phase of the I signal and Q signal A receiving apparatus comprising: a correction calculation unit that outputs data to the orthogonal demodulation unit. - 請求項1記載の受信装置において、
前記無音検出部にて、受信電界の強弱・マルチパス発生有無の受信状況に関する情報と併せて無音検出を行うことを特徴とする受信装置。 The receiving device according to claim 1,
A receiving apparatus, wherein the silence detecting unit performs silence detection together with information related to reception status of strength of received electric field and presence / absence of multipath. - 請求項1記載の受信装置において、
前記校正信号発生部での校正終了タイミング信号を入力し、校正終了直後での復調信号が既に有音であれば、前記校正信号発生部での校正時間を短くするように校正期間制御信号を出力する有音消失検出部を更に備えたことを特徴とする受信装置。 The receiving device according to claim 1,
Input calibration end timing signal at the calibration signal generator and output a calibration period control signal to shorten the calibration time at the calibration signal generator if the demodulated signal is already sounded immediately after calibration A receiving apparatus further comprising a voiced disappearance detecting unit. - 請求項1記載の受信装置において、
複数回の無音期間に渡って前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整が完了するような調整シーケンスになるように前記無音検出部と前記校正信号発生部とを制御することを特徴とする受信装置。 The receiving device according to claim 1,
The silence detection unit and the calibration signal generation unit are arranged so that an adjustment sequence is completed so that deviation adjustment of amplitude and phase between the I signal path and the Q signal path is completed over a plurality of silence periods. A receiving device that controls the receiving device. - 請求項1記載の受信装置において、
システム電源投入直後からの時間経過を測定し、電源投入直後は前記無音検出部で無音が検出される毎に、前記校正信号発生部からの校正信号によって、前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整を行い、更に電源投入後の経過時間がシステムで設定した基準時間以上に達した場合には、前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整の実行制御を行う時間経過判定部を更に備えたことを特徴とする受信装置。 The receiving device according to claim 1,
The time elapses immediately after the system power is turned on, and immediately after the power is turned on, every time silence is detected by the silence detector, the I signal path and the Q signal path are determined by the calibration signal from the calibration signal generator. The amplitude and phase between the I signal path and the Q signal path when the elapsed time after turning on the power reaches a reference time set by the system or more is adjusted. A receiving apparatus, further comprising a time lapse determination unit that performs execution control of deviation adjustment. - 請求項1記載の受信装置において、
システム電源投入直後から周囲温度変化を検出し、周囲温度の変化が検出され、かつ、前記無音検出部で無音検出されたときには、前記校正信号発生部からの校正信号によって、前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整を行う温度変化判定部を更に備えたことを特徴とする受信装置。 The receiving device according to claim 1,
A change in ambient temperature is detected immediately after the system power is turned on, and when a change in ambient temperature is detected and the silence detection unit detects silence, the calibration signal from the calibration signal generation unit causes the I signal path and the A receiving apparatus, further comprising: a temperature change determining unit that adjusts a deviation in amplitude and phase between the Q signal path and the Q signal path. - 受信アンテナから入力された高周波信号をI成分とQ成分とに変換する直交復調工程を行った後に音声信号を復調する受信方法であって、
前記音声信号における無音期間を検出し、前記無音期間に校正信号を用いて、振幅及び位相の各偏差補正量を演算し、前記直交復調工程に出力することを特徴とする受信方法。 A reception method for demodulating an audio signal after performing an orthogonal demodulation step of converting a high-frequency signal input from a receiving antenna into an I component and a Q component,
A receiving method comprising: detecting a silent period in the audio signal; calculating a correction amount of each amplitude and phase deviation using a calibration signal during the silent period; and outputting the calculated deviation correction amount to the orthogonal demodulation step. - 請求項7記載の受信方法において、
前記無音期間の検出にて、受信電界の強弱・マルチパス発生有無の受信状況に関する情報と併せて無音検出を行うことを特徴とする受信方法。 The receiving method according to claim 7, wherein
A detection method for detecting silence by performing silence detection together with information on reception status of reception electric field strength / absence of multipath occurrence. - 請求項7記載の受信方法において、
前記校正信号を用いて校正が終了した直後の時点で、復調音声信号が既に有音であれば、前記校正信号の期間を短くすることを特徴とする受信方法。 The receiving method according to claim 7, wherein
If the demodulated audio signal is already voiced at the time immediately after the calibration is completed using the calibration signal, the period of the calibration signal is shortened. - 請求項7記載の受信方法において、
複数回の無音期間に渡って前記I成分と前記Q成分との間の振幅及び位相の偏差調整が完了するような調整シーケンスになるように前記無音期間の回数と前記校正信号の期間とを制御することを特徴とする受信方法。 The receiving method according to claim 7, wherein
The number of silence periods and the period of the calibration signal are controlled so that the adjustment sequence is completed so that the amplitude and phase deviation adjustment between the I component and the Q component is completed over a plurality of silence periods. And a receiving method. - 請求項7記載の受信方法において、
時間経過を測定し、電源投入直後は無音期間毎に、前記校正信号によって前記I成分と前記Q成分との間の振幅及び位相の偏差調整を行い、更に電源投入後の経過時間がシステムで設定した基準時間以上に達した場合には、前記I成分と前記Q成分との間の振幅及び位相の偏差調整の実行制御を行うことを特徴とする受信方法。 The receiving method according to claim 7, wherein
Measure the elapsed time, adjust the amplitude and phase deviation between the I component and the Q component by the calibration signal every silence period immediately after power-on, and set the elapsed time after power-on in the system When the time reaches the reference time or longer, execution control of amplitude and phase deviation adjustment between the I component and the Q component is performed. - 請求項7記載の受信方法において、
周囲温度を検出し、温度変化が検出され、かつ、無音期間の時に、前記校正信号によって、前記I成分と前記Q成分との間の振幅及び位相の偏差調整を行うことを特徴とする受信方法。 The receiving method according to claim 7, wherein
A receiving method, wherein an ambient temperature is detected, a change in temperature is detected, and a deviation of amplitude and phase between the I component and the Q component is adjusted by the calibration signal during a silent period. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009252765A JP2013016878A (en) | 2009-11-04 | 2009-11-04 | Receiver and reception method |
JP2009-252765 | 2009-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011055495A1 true WO2011055495A1 (en) | 2011-05-12 |
Family
ID=43969739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/006158 WO2011055495A1 (en) | 2009-11-04 | 2010-10-18 | Receiver apparatus and reception method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013016878A (en) |
WO (1) | WO2011055495A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018142745A1 (en) * | 2017-02-03 | 2018-08-09 | 株式会社Jvcケンウッド | Receiving apparatus, receiving method, and program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5768822B2 (en) | 2013-01-31 | 2015-08-26 | 株式会社デンソー | Sensor signal processing device and sensor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05129840A (en) * | 1991-11-05 | 1993-05-25 | Fujitsu Ten Ltd | Signal processor for radio using direct conversion receiving system |
JP2002043992A (en) * | 2000-07-28 | 2002-02-08 | Nippon Hoso Kyokai <Nhk> | Interference wave cancellation device |
JP2003110640A (en) * | 2001-09-28 | 2003-04-11 | Japan Radio Co Ltd | Quadrature detection circuit |
JP2009188547A (en) * | 2008-02-04 | 2009-08-20 | Sony Corp | Signal processor, control method, and radio communication device |
-
2009
- 2009-11-04 JP JP2009252765A patent/JP2013016878A/en active Pending
-
2010
- 2010-10-18 WO PCT/JP2010/006158 patent/WO2011055495A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05129840A (en) * | 1991-11-05 | 1993-05-25 | Fujitsu Ten Ltd | Signal processor for radio using direct conversion receiving system |
JP2002043992A (en) * | 2000-07-28 | 2002-02-08 | Nippon Hoso Kyokai <Nhk> | Interference wave cancellation device |
JP2003110640A (en) * | 2001-09-28 | 2003-04-11 | Japan Radio Co Ltd | Quadrature detection circuit |
JP2009188547A (en) * | 2008-02-04 | 2009-08-20 | Sony Corp | Signal processor, control method, and radio communication device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018142745A1 (en) * | 2017-02-03 | 2018-08-09 | 株式会社Jvcケンウッド | Receiving apparatus, receiving method, and program |
US10581653B2 (en) | 2017-02-03 | 2020-03-03 | Jvckenwood Corporation | Reception device, reception method, recording medium for receiving signals |
Also Published As
Publication number | Publication date |
---|---|
JP2013016878A (en) | 2013-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4834806B2 (en) | Method and apparatus for dynamic gain and phase compensation | |
JP2011015112A (en) | Radio receiver | |
JP4843094B2 (en) | Receiving device and program | |
WO2009096132A1 (en) | Power amplification device and communication device | |
US20070041470A1 (en) | Transmitter control | |
WO2011055495A1 (en) | Receiver apparatus and reception method | |
US20150236878A1 (en) | Fm receiver that receives fm signal and method for receiving fm signal | |
JP2010263430A (en) | Receiver | |
US8897350B2 (en) | Orthogonal transform error corrector | |
JP6260746B2 (en) | Receiving machine | |
WO2004038957A1 (en) | Communication device | |
US9954627B2 (en) | Quadrature demodulator and wireless receiver | |
US10581653B2 (en) | Reception device, reception method, recording medium for receiving signals | |
JP2008172568A (en) | Receiver | |
JP7060069B2 (en) | DC component fluctuation suppression device, DC component fluctuation suppression method, program | |
TWI779762B (en) | Control method and control circuit for channel mismatch compensation | |
JP5625797B2 (en) | Temperature correction circuit, demodulation circuit, communication device, temperature correction method, and demodulation method | |
JP7056611B2 (en) | Receiver, program | |
JP2005311775A (en) | Receiver | |
JP5187204B2 (en) | Digital broadcast receiver | |
JP2015154241A (en) | Fm receiving device and fm receiving method | |
JP2007005945A (en) | Receiving circuit, and wireless lan system and offset correction method | |
JP4603480B2 (en) | Mobile TV tuner | |
JP2011193287A (en) | Agc system | |
JP2020014167A (en) | Receiving device and receiving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10828057 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10828057 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |