[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011054994A1 - Sistemas de expresión regulada - Google Patents

Sistemas de expresión regulada Download PDF

Info

Publication number
WO2011054994A1
WO2011054994A1 PCT/ES2010/070715 ES2010070715W WO2011054994A1 WO 2011054994 A1 WO2011054994 A1 WO 2011054994A1 ES 2010070715 W ES2010070715 W ES 2010070715W WO 2011054994 A1 WO2011054994 A1 WO 2011054994A1
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
hepato
sequence
gene construct
expression
Prior art date
Application number
PCT/ES2010/070715
Other languages
English (en)
French (fr)
Inventor
Gloria GONZÁLEZ ASEGUINOLAZA
Jesús María PRIETO VALTUEÑA
Lucía María VANRELL MAJÓ
Original Assignee
Proyecto De Biomedicina Cima, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proyecto De Biomedicina Cima, S.L. filed Critical Proyecto De Biomedicina Cima, S.L.
Priority to MX2012005340A priority Critical patent/MX2012005340A/es
Priority to EP10795406A priority patent/EP2497830A1/en
Priority to RU2012123145/10A priority patent/RU2012123145A/ru
Priority to US13/508,494 priority patent/US20120225933A1/en
Priority to AU2010316996A priority patent/AU2010316996A1/en
Priority to BR112012010755A priority patent/BR112012010755A2/pt
Priority to CA2780671A priority patent/CA2780671A1/en
Priority to CN201080060595XA priority patent/CN102712933A/zh
Priority to JP2012537425A priority patent/JP2014503173A/ja
Publication of WO2011054994A1 publication Critical patent/WO2011054994A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/025Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a parvovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • C12N2830/003Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor tet inducible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination

Definitions

  • the invention is within the field of adjustable expression systems and, more specifically, within the spatially adjustable expression (in a given tissue) and temporally (in response to the addition of an inducing agent).
  • the invention also relates to gene constructs and virions that allow regulated hepato-specific expression as well as the use thereof for the treatment of liver diseases.
  • the functions of the liver include, among others, carbohydrate and lipid metabolism, cytokine secretion, elimination of insulin and other hormones, bile production, etc.
  • factors that affect numerous genetic, cardiovascular, metabolic, hemorrhagic and cancerous diseases occur in the liver.
  • the liver cells have high half-life and are directly connected to the bloodstream, which facilitates the arrival of therapeutic agents. For these reasons, the liver is considered to be a good candidate for gene therapy.
  • inducible systems In order to avoid the effects resulting from the constant expression of genes of interest, inducible systems have been developed in which the expression takes place only in the presence of a certain inducing agent.
  • an inducible system of temporally and spatially controllable expression is known based on the use of a promoter that is activatable in the presence of a chimeric transcription factor whose activity is induced in the presence of mifepristone (RU486) (see Wang et al., Nat. Biotechnol., 1997, 15: 239-43).
  • This type of regulation can be applied to any cell type using a tissue specific promoter.
  • This system is specific, reversible and non-toxic. However, it has the disadvantage that it leads to high levels of expression in basal conditions, which makes it unacceptable if its application is desired in vivo.
  • Zabala and cois have described plasmid vectors that include different embodiments of a tetracycline-inducible expression system (tet-on) where all comprise a sequence encoding a transgene (luciferase, or IL- 12) that is transcribed from a transcriptional unit controlled by an operator-promoter sequence consisting of 7 copies of the tetracycline Operator (tet07) attached to the albumin promoter (Palb); this system also includes a sequence encoding a reverse rtTA transactivator ( rtTA2s-M2), placed under the control of hepato-specific promoter sequences, different according to the embodiments, selected from EIIPalAT (promoter of the human al-antitrypsin gene, PalAT fused with the core antigen enhancer region of hepatitis B virus, IBD ), EalbPalAT (promoter of the human al-antitrypsin gene
  • the basal expression of the transgene was directly proportional to the strength of the hepato-specific promoter used to control the expression of rtTA; the ability to induce transgenic expression was inversely proportional to baseline expression (maximum induction rate when Phpx, the weakest promoter was used); however the levels Expression maximums after induction were directly proportional to the promoter potency, that is, the strongest promoter expressed the highest levels after induction.
  • the transcriptional units for the rtTA and the transgene are arranged in tandem, the transgenic expression is greater than when they are arranged in opposite directions.
  • the use of a Palb promoter to direct transgenic expression was associated with a lower expression of the transgene, compared to that obtained with a system in which the minimum cytomegalovirus promoter was used.
  • Chtarto and cois describe an AAV vector for the inducible expression of a transgene (reporter gene eGFP, enhanced GFP) from a bi-directional tetracycline-inducible transgenic expression system.
  • Said system includes a sequence containing the tet07 operating region flanked on both sides by minimal cytomegalovirus promoter sequences (pCMVm) that direct, in opposite directions, the transcription of a transactivator (rtTA) activatable by tetracyclines and the transgene, so that in presence of doxycycline the rtTA transactivator induces transcription of the transgene and of itself.
  • pCMVm minimal cytomegalovirus promoter sequences
  • the system also includes bidirectional SV40 polyadenylation signals.
  • This self-regulating system exhibits an induction capacity for the expression of a transgene in tumor cell lines and for in vivo expression in the brain.
  • this same group describes an improved version of the vector carrying a mutated rtTA transactivator, and which allows expressing GDNF in the striatum nucleus in biologically active concentrations that suppress tyrosine hydroxylase in rats treated with doxycycline but not in non-induced controls.
  • no data are available.
  • These vectors are suitable for obtaining a transgenic expression in the liver with the aforementioned requirements.
  • inducible expression vectors based on the use of tetracycline-sensitive transactivators and minimal CMV promoter do not have good behavior for specific controlled expression in liver but, on the contrary, gene expression systems heterologists that include the human albumin (pAlb) promoters in substitution of the minimum pCMV promoters allow not only to obtain a lower and more specific basal expression in the liver but also, surprisingly, allow to obtain expression levels, after induction, higher than those obtained with stronger promoters of the minimum CMV type.
  • pAlb human albumin
  • the present invention relates, in a first aspect, to a gene construct that allows inducible hepato-specific expression of a polynucleotide of interest in response to an inducing agent comprising
  • a bidirectional inducible operator-promoter comprising at least one response element to said inducing agent flanked by a first hepato-specific promoter sequence and by a second hepato-specific promoter sequence wherein both hepato-specific promoter sequences act divergently,
  • a first nucleotide sequence comprising a sequence encoding a transactivator activatable by said inducing agent and a polyadenylation signal located at position 3 'with respect to the region encoding the transactivator, wherein said sequence encoding a transactivator is operatively coupled to the first hepato-specific promoter sequence and
  • a second nucleotide sequence comprising a polynucleotide that is operatively coupled to the second hepatospecific promoter sequence and a 3 'position polyadenylation signal with respect to the polynucleotide of interest
  • the invention relates to a vector, a viral genome or a virion comprising the gene construct of the invention.
  • the invention relates to a virion obtainable by expressing a viral genome of the invention in a suitable packaging cell.
  • the invention relates to an in vitro method for expression in a cell of hepatic origin of a polynucleotide of interest comprising the steps of
  • the invention relates to a pharmaceutical composition gene construct according to the invention, to a vector according to the invention, to a viral genome according to the invention or to a virion according to the invention as well as to the use thereof as a medicament or for its use in the treatment of liver disease.
  • the invention relates to a bidirectional inducible operator-promoter suitable for hepatospecific expression and inducible by a two polynucleotide inducing agent of interest comprising
  • first and second hepato-specific promoter sequence act divergently with respect to the response element to the inducing agent and wherein the promoter activity of the first and second hepato-specific promoter sequence is increased in the presence of said inducing agent and in the presence of a transactivator that joins the response element.
  • the invention relates to a gene construct suitable for hepatospecific expression and inducible by a polynucleotide inducing agent of interest comprising
  • first and second hepato-specific promoter sequence act divergently with respect to the response element to the inducing agent and wherein the promoter activity of the first and second hepato-specific promoter sequence is increased in the presence of said inducing agent and in the presence of a transactivator that binds to the response element in the bidirectional inducible operator-promoter.
  • FIG. 1 Schematic of the structure of the expression system of a tetracycline inducible transgene of the invention.
  • bidirectional operator-promoter sequence (2) bidirectional element of response to the active form of the transactivator; (3) promoter sequences comprising a hepatospecific promoter (preferably an albumin promoter (pAlb) or a minimum albumin promoter (pmAlb)); (4) sequence encoding a reverse transactivator activatable by an inducing agent, preferably by tetracyclines (rtTA); (5) sequence encoding a transgene of interest; (6) polyadenylation signals (polyA or pA).
  • pAlb albumin promoter
  • pmAlb minimum albumin promoter
  • the bidirectional operator-promoter sequence controls the transcription of the sequences encoding the transactivator (preferably rtTA) (4) and the transgene of interest (5); Its promoter activity is in turn induced by the transactivator protein (preferably rtTA) (4) in the presence of the inducing agent (preferably tetracycline or a tetracycline analog such as doxycycline).
  • the inducing agent preferably tetracycline or a tetracycline analog such as doxycycline.
  • FIG. 1 Structure of different recombinant adeno-associated viruses, in which an expression system of a tetracycline inducible transgene, used in the examples, has been incorporated.
  • rAAV-pTetbidi-pCMV-luc The genome of this adeno-associated virus incorporates a tetracycline-inducible bidirectional expression system that includes an operating region with 7 copies of 42 bases of the tetracycline Operator (tet07), flanked by 2 minimum cytomegalovirus promoters (pCMV); the operator-promoter controls the expression of 2 sequences, placed one on each side, which respectively encode a reverse transactivator rtTA-M2 and luciferase (luc) as a transgene of interest; as bidirectional polyadenylation signals of SV40 have been incorporated as polyadenylation (pA) signals; flanking the expression cassette, the 5 'ITR (inverted terminal repeat) and 3' ITR of adeno-associated virus type 2 (AAV2) have been included.
  • tetracycline Operator tetracycline Operator
  • pCMV 2 minimum cytomegalovirus promoters
  • luc
  • rAAV-pTetbidi-pAlb-luc The genome of this adeno-associated virus incorporates a two-way tetracycline-inducible expression system that includes the same elements as the rAAV-pTetbidi-pCMV-luc virus, with the only difference that the minimal pCMV promoters have been replaced by the promoter sequences of the albumin gene (pAlb).
  • rAAV-pTet b i d i-pAlb-mIL12 The genome of this adeno-associated virus incorporates a two-way tetracycline inducible expression system that includes the same elements as the rAAV-pTetbidi-pAlb-luc virus, with the only difference that the luciferase gene has been replaced by the sequences of the single chain mouse IL12 (Lieschke, GJ, et al. Nat Biotechnol, 1997. 15: 35-40).
  • FIG. 1 Bio luminescence images obtained by CCD camera. They show the regions that are selected for the measurement of luciferase activity levels. A) Upper abdominal area (includes the liver), and B) Bioluminescence levels emitted throughout the animal.
  • Figure 4 Measurement of luciferase activity (photons / sec) in female BALB / ca mice that injected virions or viral particles containing rAAV-pTetbidi-pCMV-luc recombinant virus genomes (in doses of 10 x 10 , 3 x 10 and 10 10 11 viral genomes (gv) per mouse, depending on the groups).
  • Injected virions were AAV2 / 8 virions, which contained genomes constructed on AAV2 virus ITRs but packaged in AAV8 capsids (formed by capsid proteins corresponding to an AAV of serotype 8).
  • each animal was administered doxycycline (50 mg / kg of weight; via ip), and after 24 hours the induction was maintained by administering doxycycline (dox) for 7 days in drinking water (2 mg / ml doxycycline; 5% sucrose).
  • the lines indicate luciferase activity measured over time, expressed in days t (d) from the first ip administration of doxycycline (day 0).
  • Activity levels in the liver area are represented with solid lines; Activity levels throughout the animal are represented by dashed lines.
  • FIG. 5 Measurement of luciferase activity (photons / sec) in mice injected with AAV2 / 8 virions containing rAAV-pTetbidi-pCMV-luc virus genomes (lxlO 10 , 3x l 0 10 , and lxlO 11 gv / mouse) .
  • the measurements were made after repeated inductions with increasing doses of doxycycline (mg / kg; via ip), separated by a period 15 days Luciferase activity was measured in the upper abdominal or hepatic area after 24 hours after the ip administration of doxycycline.
  • Luciferase activity photons / sec measured in BALB / ca females which were injected intravenously with AAV2 / 8 virions containing genomes of the rAAV-pTetbidi-pAlb-luc recombinant virus (lx 10 11 gv / mouse) .
  • Activity was measured at baseline before induction with doxycycline (Dose 0), and at induced state 24 hours after administration by ip of 50 mg / kg of weight (Dose 50); These measurements were made both in the upper abdominal area (Liver) and in the whole animal (Total).
  • Figure 7 Comparison between luciferase activities (photons / sec) measured at baseline (Dose 0) and induced, 24 hours after ip administration of 50 mg / Kg of doxycycline (Dose 50) in female BALB / mice c injected with AAV2 / 8 virions containing rAAV-pTetbidi-pCMV-lu code rAAV-pTetbidi-pAlb-luc genomes (10 x 11 gv / mouse; iv route). The measurements were performed in the upper abdominal area (liver).
  • FIG. 8 Luciferase activity (photons / sec) in BALB / c females injected with AAV2 / 8 virions incorporating rAAV-pTetbidi-pAlb-luc virus genomes (at doses of 10 x 11 and 10 x 10 gv / mouse according to groups; iv). The activity was measured at baseline (Induction 0) and 24 hours after induction with 50 mg / Kg of doxycycline in 4 cycles of repeated induction (Induction 1, 2, 3 and 4 respectively). 15 days passed between induction 1 and induction 2, and between 2 and 3; 80 days passed between Induction 3 and Induction 4.
  • FIG. 9 A) Luciferase activity (photons / sec) of females and C57BL / 6 males injected with AAV2 / 8 virions carrying rAAV-pTetbidi-pAlb-luc genomes (lx 10 11 gv / mouse; iv), measured in basal and induced state, after induction with different doses of doxycycline.
  • Basal activity measurement was performed on day 14 after the corresponding virus injection; the measurement In an induced state it was performed 22 days after the injection of the virus and 24 hours after the administration of the dose of doxycycline.
  • FIG. 10 Luciferase activity (photons / sec) measured in C57BL / 6 females and males injected with AAV2 / 8 virions carrying rAAV-pTetbidi-pAlb-luc (10 ⁇ 11 gv / mouse; iv), at baseline ( day 0) and on different days during the period of administration of doxycycline in drinking water (2 mg / ml + 5% sucrose).
  • FIG. 11 Biodistribution of luciferase activity ex vivo.
  • Female BALB / c (A) and C57BL / 6 (B) (N 4-8) strains were injected with rAAV-pTetbidi-pCMV-luc or rAAV-pTetbidi-pAlb-luc ( a dose of lO lx 11 gv / mouse iv).
  • luciferase expression was induced by the administration of doxycycline (50 mg / kg; via ip); 24 hours after induction the animals were sacrificed; The organs were removed and luciferase activity (RLU) in each of them was measured, normalizing it by the amount of total protein (RLU / mg protein).
  • FIG. 12 Biodistribution of luciferase activity ex vivo.
  • Males of the strains BALB / c (A), and C57BL / 6 (B) (N 4-8) were injected with AAV2 / 8 virions carrying rAAV-pTetbidi-pCMV-luc or rAAV-pTetbidi-pAlb-luc ( a dose of lO lx 11 gv / mouse iv).
  • FIG 13 Diagram of the anti-tumor treatment protocol administered to female C57BL / 6 mice after implantation of MC38 syngeneic tumor line cells.
  • 5 ⁇ 10 5 MC38 cells were implanted intrahepaticly.
  • Ten days after implantation day 40 of the protocol) the induction of the system was started with an ip administration of doxycline (50 mg / Kg).
  • FIG. 14 Levels of transaminases, ALT (A), and AST (B), in the serum of C57BL / 6 female animals injected with AAV2 / 8 virions carrying rAAV-pTetbidi-pAlb-MM12, at three different doses: 3 > ⁇ 10 10 , lxl O 10 and 3> ⁇ 10 9 gv / mouse.
  • the levels are shown in the baseline state (day 0 of induction), on day 1, 4 and 7 after an initial administration of 50 mg / kg of doxycycline ip, performed on day 0 of induction followed by the administration of doxycline in water of drink (2 mg / ml dox + 5% sucrose).
  • Figure 15 Percentage of survival over time, of the C57BL / 6 mice to which the protocol described in Figure 13 was applied.
  • the legends show the dose of virus (in gv / mouse) that each group received intravenously at the beginning of the protocol. The control group did not receive a vector.
  • Statistical evaluations were performed using the Logrank test (GraphPad Prism software) (*** p ⁇ 0.001).
  • FIG. 16 Tumor size of treated mice that underwent subcutaneous rechallenge with 10 x 6 MC38 cells / mouse (B) compared to a group of untreated, control mice (A). In brackets (in B) the dose of virus expressed in gv that each mouse received according to the protocol described in Figure 13 is indicated. In (C) the tumor sizes reached by the different groups are shown at the end the experiment (day 132 of the procoto lo). In brackets, the dose of virus expressed in gv that each mouse received according to the protocol described in Figure 13 is indicated.
  • FIG. 17 Percentage of CD8 / Tet + PBLs (MC38). The blood was extracted from the mice on day 23 post-rechallenge (day 113 of the protocol described in Figure 13), PBLs were obtained and labeled with anti-CD8 + antibodies and with a tetramer loaded with a specific peptide of MC38 cells. The percentage of CD8 + -MC38Tet + PBLs was analyzed using the FlowJo software. Statistical evaluations were performed using Student's t-test (* p ⁇ 0.05)
  • Figure 18 Percentage of intra-tumor CD8 + lymphocytes specific to the MC38 tetramer and positive for the CD44 activation marker. Groups of treated mice were grouped because they did not show significant differences between them (A). In B and C) the diagrams of points corresponding to a mouse representative of the control group and one of the treated group are shown, respectively. Statistical evaluations were performed using Student's t test (*** p ⁇ 0.001).
  • FIG. 19 Diagram of the therapeutic antitumor treatment protocol administered to female C57BL / 6 mice.
  • doxycycline 50 mg / kg
  • Figure 20 Percentage of survival over time of the C57BL / 6 mice to which the protocol described in Figure 19 was applied.
  • the legends show the dose of virus (in gv / mouse) that the treated animals received.
  • the control group did not receive a vector.
  • Statistical evaluations were performed using the Logrank test (GraphPad Prism software) (*** p ⁇ 0.001). DETAILED DESCRIPTION OF THE INVENTION
  • the authors of the present invention have developed a polynucleotide expression system of interest that allows precise temporal and spatial expression of said polynucleotides in the liver. To do this, they make use of an activatable bidirectional operator-promoter that is associated with a first hepato-specific promoter that controls the expression of a transactivator which activates the expression of said bidirectional promoter in the presence of an inducing agent and a second hepato-specific promoter that controls The expression of the gene of interest. In the basal state (without inducing), the hepato-specific promoter directs the expression of small amounts of both the transactivator and the transgene giving rise to what is called residual system expression. The transactivator in the absence of inducing agent is conformationally incapable of binding to the operator sites in the bidirectional promoter and, therefore, of activating the transcription of the bidirectional promoter.
  • transactivator molecules In the presence of an inducer, it binds to the residual transactivator molecules present in the cell, producing a conformational change that allows it to bind to the operator sites of the bidirectional inducible promoter-operator and activate its transcription. In this way, the expression of the transgene is induced, as well as the transactivator.
  • inducer In the presence of an inducer, it binds to the residual transactivator molecules present in the cell, producing a conformational change that allows it to bind to the operator sites of the bidirectional inducible promoter-operator and activate its transcription. In this way, the expression of the transgene is induced, as well as the transactivator.
  • These new synthesized transactivator molecules are able to bind to the cell's free inducing agent and create a positive feedback loop or loop, until a state is reached in which two situations can occur:
  • the authors of the present invention have shown how, surprisingly, the vectors developed allow hepato-specific expression after induction that reaches levels higher than that obtained by vectors in which promoters whose basal expression is higher are used.
  • the maximum expression of the induction systems described to date correlates directly with the promoter potency at baseline, in the system object of the present invention where tissue specific promoters are used which are generally more weaker than ubiquitous CMV type promoters, an expression is obtained at baseline after induction that is higher than that obtained with CMV.
  • example 2 of the present invention it is observed how the induction rate of a reporter gene obtained using the hepato-specific system of the invention after administration of the inducing agent is approximately 85 times higher than the induction rate of the system based on the ubiquitous CMV promoter (see figure 7), which contrasts with the results obtained by Zabala et al (Zabala, M., et al., Cancer Res. 2004; 64: 2799-2804) where the use of a Palb promoter to direct the transgenic expression was associated with a lower expression of the transgene, compared to that obtained with a system in which the minimum cytomegalovirus promoter was used.
  • the difference in the induced state between both systems for this dose of dox is highly significant.
  • the liver expression of a reporter gene controlled by the hepato-specific and inducible expression system of the present invention reaches levels of induction of luciferase activity greater than the system based on the ubiquitous CMV promoter (see Figure 11).
  • the invention relates to a gene construct that allows inducible hepato-specific expression of a polynucleotide of interest in response to an inducing agent comprising
  • a bidirectional inducible operator-promoter comprising a response element to said inducing agent flanked by a first hepato-specific promoter sequence and by a second hepato-specific promoter sequence wherein both hepato-specific promoter sequences are divergently oriented
  • a first nucleotide sequence comprising a sequence encoding a transactivator activatable by said inducing agent and a polyadenylation signal located at position 3 'with respect to the region encoding the transactivator, wherein the sequence encoding an activatable transactivator is is operatively coupled to the first hepato-specific promoter sequence and
  • a second nucleotide sequence comprising a polynucleotide that is operatively coupled to the second hepatospecific promoter sequence and a 3 'position polyadenylation signal with respect to the polynucleotide of interest
  • gene construct refers to a single-stranded or double-stranded nucleic acid, which comprises a region capable of expressing itself and, optionally, regulatory sequences that precede said nucleic acid ( 5 'non-coding sequences) or found after said nucleic acid (3' non-coding sequences).
  • gene construct and “nucleic acid construct” are used interchangeably in the present invention.
  • expression refers to the transcription of a gene or genes or gene construct to give rise to structural RNA (rRNA, tRNA) or mRNA with or without the subsequent translation of said RNA into protein.
  • inducible expression refers to the fact that the expression can be increased in response to an activator / inducer.
  • polynucleotide of interest refers to a nucleic acid sequence that is partially or totally heterologous with respect to the cell or subject in which it is introduced and which, by virtue of the presence of regulatory regions of the expression in 5 'or 3' position with respect to said polynucleotide of interest, can be transcribed and, eventually, translated to give rise to a polypeptide with a desired biological activity.
  • polynucleotide of interest should not be understood solely as a polynucleotide capable of encoding a polypeptide, but can also be used to refer to a nucleic acid sequence that is partially or totally complementary to a polynucleotide endogenous to the cell or subject in which it is to be introduced, so that after its transcription, it generates an RNA molecule (microRNA, shRNA or siRNA) capable of hybridizing and inhibiting the expression of the endogenous polynucleotide.
  • the polynucleotide of interest can be DNA or cDNA.
  • inducing agent refers to any molecule that is capable of causing an increase in the transcription of a gene.
  • the gene whose transcription is induced in response to said inducing agent is under operational control of a transcription regulatory region which, in turn, has binding sites for a transcriptional activator whose activity increases in the presence of said inducing agent.
  • response element for the inducing agent when referring to the transcription regulatory region of a gene of interest, is used to refer to the binding sites for a transcriptional activator. whose activity is increased by the binding of the inducing agent.
  • the inducing agent is a compound of easy administration and distribution in the organism and safe at the doses used for Activate the system. It must also be able to penetrate the desired tissue or organ, and have a half-life of a few hours (no minutes, no days).
  • the element (a) of the gene construct of the invention comprises a bidirectional inducible operator-promoter comprising a response element to a transactivator in its active form flanked by a first hepato-specific promoter sequence and by a second hepato-specific promoter sequence wherein both sequences Hepatospecific promoters are oriented divergently,
  • adjustable bidirectional operator-promoter refers to a promoter that is capable of activating the transcription of specific polynucleotides in opposite directions from said "operator-promoter” in the presence of a particular signal.
  • response element to an inducing agent refers to one or more DNA elements that act in cis and that give a promoter the ability to activate transcription in response to the interaction of said element with the binding domains of DNA of a transcription factor or a transactivator whose transcriptional activity is induced in the presence of the inducing agent, usually as a result of a conformational change in the transactivator resulting from binding to the inducing agent. Therefore, the expression “response element to an inducing agent” should be understood as a response element to a transcriptional activator in the presence of an inducing agent.
  • the DNA binding domain of the transcription factor or transactivator is capable of binding, in the presence or absence of the activating agent, to the DNA sequence of the response element to initiate or inhibit the transcription of genes located at 3 'position with respect to to the promoter.
  • the term "response element” is used interchangeably with "transcriptional response element” or TRE (transcriptional response element).
  • the adjustable bidirectional promoter-operator comprises at least one response element to an antibiotic activatable trans activator, preferably a tetracycline response element and, even more preferably, a tetracycline response element comprising a Variable number of copies of the 42 base pair operating sequence (called TetO) as originally described in Barón et al.
  • the copy number of the TetO can be at least 2, at least 5 or, preferably, no more than 7.
  • This type of tetracycline response elements can activate transcription bi-directionally in the presence of the tetracycline activated reverse transactivator (or its doxycycline analogue) as originally described by Gossen et al. (Science, 1995, 278: 1766-1769).
  • the transactivator + tetracycline response element comprises 7 copies of the operating sequence, in which case it is called Tet07.
  • the operator-promoter comprises or consists of the sequence SEQ.ID.NO.:l.
  • the element (a) of the gene construct additionally comprises a first and a hepato-specific promoter sequence.
  • transcription promoter sequence refers to a nucleic acid sequence that is recognized by a host cell and that results in the activation of transcription of nucleic acid sequences present in position 3 'with respect to said promoter region.
  • the promoter sequence contains transcriptional control sequences that allow expression of the polynucleotide of interest.
  • liver promoter region of transcription refers to said region being capable of activating transcription selectively in liver cells or in cell lines derived from liver cells.
  • Specific liver promoters suitable for the present invention include, without limitation, the ⁇ -trypsin promoter (AAT), the thyroid hormone binding globulin promoter, the alpha fetoprotein promoter, the alcohol dehydrogenase promoter, the promoter of IGF-II, the promoter of factor VIII (FVIII), the core core protein promoter (Basic Core Protein or BCP) of HBV and PreS2 promoter, the thyroxine-binding globulin (TBG) promoter, the liver control region hybrid (HCR) -ApoCII promoter, the HCR hybrid promoter -hAAT, the AAT promoter combined with the mouse albumin gene enhancer element (Ealb), the apolipoprotein E promoter, the low density lipoprotein promoter, the pyruv
  • tissue specific promoters can be found in Tissue-Specific Promoter Datábase, TiProD (Nucleic Acids Research, J4: D104-D107 (2006).
  • hybrid promoters comprising a specific liver enhancer and a specific promoter is possible of liver
  • This type of promoters include the hybrid liver control region (HCR) -ApoCII promoter, the HCR-hAAT hybrid promoter, the AAT promoter combined with the mouse albumin gene enhancer element (Ealb) and a apolipoprotein E promoter, the hybrid promoter formed by the mouse albumin gene enhancer (Ealb) and the mouse alpha 1-antitrypsin (AAT) promoter (Ealb-AATp).
  • the hepatospecific promoter that is part of the first expression cassette is the albumin gene promoter of murine origin or of human origin.
  • the present invention contemplates the use of the complete albumin gene promoter (SEQ.ID.NO.:2) or the minimum region of said promoter (SEQ.ID.NO.:3), corresponding to nucleotides 1 13 to 196 of the complete promoter defined in SEQ.ID.NO.:2.
  • the invention contemplates the use of any fragment of the promoter that includes at least the minimum promoter (residues 113-196 of the sequence SEQ ID NO: 2).
  • a specific liver promoter is a promoter that is more active in the liver compared to its activity in any other body tissue.
  • the activity of a specific liver promoter will be considerably higher in the liver than in other tissues.
  • such a promoter can be at least 2, at least 3, at least 4, at least 5 or at least 10 times more active in liver tissue than in other types of cells.
  • the activity of said promoter in cells of hepatic origin with respect to a reference cell can be determined by its ability to direct expression in a given tissue while preventing expression in other cells or tissues. Accordingly, a specific liver promoter allows an active expression of the bound gene in the liver and prevents expression in other cells or tissues.
  • first and second promoter regions of hepatospecific transcription may be the same or may be different.
  • both transcription regulatory regions are the same.
  • both the first transcription promoter region and the second transcription promoter region comprise the albumin gene promoter.
  • the albumin gene promoter that forms the first and / or second transcription promoter region comprises a sequence selected from the group of SEQ.ID.NO.:2 and SEQ.ID.NO .:3.
  • the adjustable bidirectional promoter-operator comprises a tetracycline response element formed by seven transactivator binding sites activatable by the inducing agent, preferably tetracycline, which is flanked by two oriented albumin gene promoters. divergently.
  • said promoter operator comprising the Tet07 operator and two albumin promoters comprises the sequence of SEQ.ID.NO.:4. Sequences with hepato-specific promoter activity are divergently oriented with respect to the operating region.
  • the elements that form the bidirectional operator-promoter of the gene construct of the invention are organized so that the promoter activity of the first and second hepato-specific promoter sequence is induced as a consequence of the union of the transactivator to the operator's operating region. promoter in the presence of the inducing agent.
  • said induction of the transcription promoter activity will depend, among other factors, on the distance between the operator element and the hepatospecific promoter sequences.
  • the distance between the operator and the first or second promoter sequence may vary between 0 and 30 nucleotides, more preferably between 0 and 20 and even more preferably between 0 and 15 nucleotides.
  • the element (b) of the gene construct of the invention is a nucleotide sequence comprising: a sequence encoding a transactivator activatable by said inducing agent that is operatively coupled to the first hepatospecific promoter sequence; and a polyadenylation signal located at position 3 'with respect to the region encoding the transactivator.
  • nucleotide sequence refers to the polymeric form of the ribonucleoside phosphate ester (adenosine, guanosine, uridine or cytidine; "molecules of AN ") or deoxy ribonucleosides (deoxiadenosine, deoxyguanosine, deoxythymidine or deoxycytidine;” DNA molecules ”) or any phosphoester analog thereof such as phosphorothioates and thioesters, in the form of single strand or double strand.
  • ribonucleoside phosphate ester adenosine, guanosine, uridine or cytidine
  • deoxy ribonucleosides deoxiadenosine, deoxyguanosine, deoxythymidine or deoxycytidine
  • DNA molecules or any phosphoester analog thereof such as phosphorothioates and thioesters
  • nucleic acid sequence and, in particular, the DNA or RNA molecule, refers only to the primary or secondary structure of the molecule and does not limit no particular type of tertiary structure Thus, this term encompasses double stranded DNA as it appears in linear or circular DNA molecules, supercoiled DNA plasmids and chromosomes.
  • transactivator activatable by the inducing agent refers to a polypeptide which, when bound to said inducing agent, is capable of promoting the transcription of a particular gene by binding to regions.
  • specific recognition for said polypeptide in the non-coding region of said gene, that is, its activity can be modulated by means of additional factors that can be contributed or eliminated depending on the need to promote the transcription of genes comprising sites specific binding for such regulators.
  • the transactivator encoded by the first nucleotide sequence of the invention is capable of binding to the region of the operator-promoter comprising the response elements to said inducing agent, so that the transactivator activates the transcription of said First and second hepatospecific promoter sequences after binding to the operator-promoter operating region in the presence of the inducing agent.
  • the invention contemplates any method for regulating the expression of the transcriptional regulator provided that it allows expression in a regulated manner and with a minimum of basal transcription.
  • the invention contemplates the use of transcriptional regulators whose induction takes place not by increasing the levels of expression of the transcriptional regulator but by a conformational change in response to the binding of the inducing agent that can result in translocation of the transcription factor. to the nucleus where it exerts its effect or in an increase in transcriptional activity.
  • Transcriptional agents are usually formed by a DNA binding domain or DBD (DNA binding domain), a ligand binding domain or LBD (ligand binding domain), and a transcription activation domain or AD (activating domain).
  • the DNA binding domain can be any domain for which there is a known specific binding element, including synthetic, chimeric or analogous DNA binding domains.
  • DNA binding domains suitable for the present invention include (i) homeodomains (Scott et al., 1989, Biochim. Biophys. Acta 989: 25-48; Rosenfeld et al, 1991, Genes Dev.
  • DNA binding domains in the present invention include the DNA binding domain of GAL4, LexA, transcription factors, group H nuclear receptors, nuclear receptors of the steroid / thyroid hormone superfamily.
  • the person skilled in the art will appreciate that the invention contemplates the use of hybrid DNA binding domains formed by various DNA binding motifs that can recognize DNA binding sites other than those of the elements that compose them. Thus, it is possible to use DNA binding domains formed by the union of a zinc finger and a homeobox.
  • the DNA binding domain is that derived from the transcriptional repressor Tet of E.coli.
  • Ligand binding sequences capable of promoting the nuclear localization of a transcriptional activator containing them include the localization sequence derived from PPAR (receptors activated by peroxisomal activators), which are translocated to the nucleus.
  • retinoic acid receptors that are translocated to the nucleus in the presence of the alpha, beta or gamma isomers of 9-cis-retinoic acid, X-farnesoid receptors, activated by retinoic acid and TTNPB, hepatic X receptors activated by 24-hydroxycholesterol, benzoate X receptors, activatable by 4-amino-butylbenzoate, constitutive androstane receptor, pregnan receptors, inducible by pregnolono-16-carbonitrile, steroid and xenobiotic receptors, inducible by rifampicin, progesterone receptors, activatable by medroxyprogesterone as well as by agonists and antagonists of mifepristone and rivados of 19-nortestosterone, glucocorticoid receptors activated by glucocortic
  • the transcriptional activation domain can be an acidic activation domain, a proline-rich activation domain, an serine / threonine-rich activation domain and an glutamine-rich activation domain.
  • acidic activation domains include the regions of VP16 and the region of GAL4 formed by amino acids 753-881.
  • activation domains Proline-rich transcriptional include amino acids 399-499 of CTF / NF1 and amino acids 31-76 of AP2.
  • Examples of serine-threonine-rich activation domains include amino acids 1-427 of ITF1 and amino acids 2-452 of ITF2.
  • glutamine-rich activation domains include amino acids 175-269 of Octl and amino acids 132-243 of Spl.
  • the sequences of each of the regions described as well as other transcriptional activation domains have been described by Seipel, K. et al. (EMBO J. (1992) 13: 4961-4968). Additionally, other transcriptional activation domains can be obtained from the above using methods known in the state of the art. Additionally, the activation domain may be the activation domain of group H nuclear receptors, of thyroid or steroid hormone nuclear receptors, the activation domain of VP16, GAL4, NF- ⁇ , B42, BP64 , or from p65.
  • the transcriptional activation domain is herpes simplex virion protein 16 (hereinafter VP16), whose amino acid sequence has been described by Triezenberg, S. J. et al. (Genes Dev., 1988, 2: 718-729). This domain may be formed by about 127 amino acids of the C-terminal end of VP 16. Alternatively, the transcriptional activation domain may be formed by the 1 1 amino acids of the C-terminal region of VP16 and that maintain the ability to Activate transcription. Suitable regions of the C-terminal end of VP16 suitable for use as transcriptional activation domains have been described by Seipel, K. et al. (EMBO J. (1992) 13: 4961-4968).
  • the transcriptional activator comprises the minimum region of said protein formed by 13 amino acids whose sequence is PADALDDFDLDML (SEQ.ID.NO.:5) as described by Barón et al. (Nucleics Acids. Res., 1997, 25: 2723-2729).
  • the transcriptional activator is a transcriptional activator activatable by tetracycline or its analogues.
  • tetracycline analogue refers to structurally related tetracycline compounds capable of binding to the tetracycline repressor (TetR) with a Ka of at least about 10 ⁇ 6 M "1 .
  • TetR tetracycline repressor
  • the tetracycline analogue has an affinity for TetR of at least 10 ⁇ 9 M "1.
  • tetracycline analogs suitable for the present invention include, without limitation, anhydrotetracycline, doxycycline (Dox), chlorotetracycline, oxytetracycline, epioxytetracycline, cyanotetracycline, demeclocycline, meclocycline, methocycline and others described by Hlavka and Boothe, "The Tetracyclines," in “Handbook of Experimental Pharmacology 78, RK Blackwood et al.
  • the tetracycline activatable transactivator may be the so-called reverse tetracycline repressor protein, or reverse tetR, which refers to a polypeptide that (i) shows specific affinity for the inducing agent, (ii) shows specific affinity by the tet type response element when it is attached to the inducing agent and (iii) moves from the tet element when it is not attached to the inducing agent.
  • This activator includes both natural forms thereof and functional derivatives.
  • the tetracycline adjustable activator may be the so-called tetracycline-dependent reverse transactivator (rtTA) characterized in that in the presence of tetracycline or its analogs they undergo a conformational change that allows them to become transcription activators, being inactive in the absence of tetracycline.
  • rtTA tetracycline-dependent reverse transactivator
  • the tetracycline-dependent reverse transactivators preferably include the rtTA transactivator or any of the rtTA variants described by Urlinger, S. et al. (Proc.Natl.Acad.Sci USA, 2000; 97: 7963-7968).
  • the rtTA variant is the variant known as rtTA-M2, characterized in that it requires for its activation a doxycycline concentration 10 times lower than that required by orignal rtTA.
  • the rtTA-M2 transactivator is a polypeptide encoded by the sequence polynucleotide SEQ.ID.NO .: 6.
  • the element (b) of the first nucleotide sequence of the gene construct of the invention further comprises a polyadenylation sequence that is in a 3 'position with respect to the polynucleotide encoding the transactivator.
  • polyadenylation sequence or “polyadenylation signal”, as used in the present invention, refers to a nucleic acid that contains a transcription termination signal and which, when it appears in an RNA transcript, allows said transcript is polyadenylated in the presence of an enzyme with polyadenyl transferase activity.
  • Polyidenylation refers to the addition of a stretch of polyadenines to the 3 'end of the mRNA.
  • Polyadenylation signals suitable for use in the present invention include, without limitation, the SV40 early-late polyadenylation signal, the HSV thymidine kinase polyadenylation signal, the protamine gene polyadenylation signal, the polyadenylation signal of Elb from adeno virus 5, the polyadenylation signal of bovine growth hormone, the polyadenylation signal of the human variant of growth hormone and the like.
  • the polyadenylation signal is a bidirectional polyadenylation signal.
  • the use of a bidirectional polyadenylation signal is particularly advantageous when the gene construct of the invention is to be expressed using viral vectors in which the termination sequences have some promoter activity of transcription (in particular AAVs, lentivirus). In this way it is avoided that it can interfere with the inducible system, and thus reduce the basal activity).
  • the bidirectional polyadenylation signal corresponds to the SV40 polyadenylation signal.
  • the SV40 polyadenylation signal comprises the sequence SEQ.ID.NO.:7.
  • Second nucleotide sequence of the gene construct of the invention further comprises a polynucleotide that is operatively coupled to the second hepatospecific promoter sequence and a 3 'position polyadenylation signal with respect to the polynucleotide of interest.
  • nucleotide sequence refers to a DNA sequence whose manipulation is desirable for various reasons and includes DNA, cDNA, genomic DNA, RNA or nucleic acid analogs as well as the corresponding molecules antisense that are capable of generating an RNA protein or molecule such as, and not limited to, small interfering RNA (siRNA), short loop RNA (shRNA) or ribozymes.
  • siRNA small interfering RNA
  • shRNA short loop RNA
  • the polynucleotide of interest encodes a polypeptide.
  • This polypeptide can be a luciferase type reporter gene, green fluorescent protein (GFP), GFP variants (EGFP. YFP or BFP), alkaline phosphatase, beta-galactosidase, beta-glucuronidase, catechol dehydrogenase.
  • GFP green fluorescent protein
  • EGFP GFP variants
  • alkaline phosphatase beta-galactosidase
  • beta-glucuronidase catechol dehydrogenase.
  • polypeptides suitable for use in the treatment of liver disorders include, without limitation, an interferon ⁇ and, in particular, an IFN- ⁇ selected from the group of IFN-a2a, IFN-a2b, IFN-a4, IFN-a5, IFN-a8, oncostatin, cardiotrophin, IL-6, IGF-I and variants thereof, anfiregulin, IL-15, IL-12, CD134, CD137, PBGD, antibodies, TGF- ⁇ inhibitors such as P 17 YP peptides 144 described in international patent applications WO0031135, WO200519244 and WO0393293 which are incorporated herein by reference, IL-10 inhibitors, FoxP3 inhibitors, TNFa inhibitors, VEGF inhibitors, PD-1 inhibitors and CD152 inhibitors.
  • an interferon ⁇ and, in particular, an IFN- ⁇ selected from the group of IFN-a2a, IFN-a2b, IFN-a4, IFN-a5, IFN-a8, on
  • the polynucleotide of interest encodes IL-12 or a functionally equivalent variant thereof.
  • Interleukin-12 is a type I cytokine that is mostly secreted by macrophages and dendritic cells, which includes both native IL-12 and recombinantly prepared IL-12 and is capable of increasing immunity antitumor through multiple mechanisms that include: (1) increased cytotoxic T lymphocyte responses, (2) activation of natural cytolytic cells (NK, natural killer), (3) promoting proliferation of natural cytolytic cells and T lymphocytes , (4) induction of the polarization of a subset of auxiliary T cells of type 1 (Thl, T helper 1), and (5) induction of an antiangiogenic effect. Many of these activities are mediated by the production and secretion of interferon- ⁇ (INF- ⁇ ) by natural cytolytic cells and activated T lymphocytes.
  • INF- ⁇ interferon- ⁇
  • the IL-12 cytokine is a heterodimer consisting of a heavy chain (p40) and a light chain (p35).
  • Light and heavy chain sequences of human origin have been described by Gubler et al. (Proceedings of the National Academy of Sciences, USA, 1991, 88: 4143).
  • the polynucleotide of interest can encode the heavy chain if the light chain is provided exogenously, it can encode the light chain if the heavy chain is exogenously supplied or it can encode both chains.
  • the polynucleotide encoding IL-12 results in a single RNA comprising two open reading frames separated from each other by an internal ribosomal entry site which leads to the expression of each of the chains from each of the frames open reading.
  • the polynucleotide encoding IL-12 comprises a single open reading frame encoding a fusion protein comprising light and heavy chains linked together by a linker as described in W09624676 and Lieschke GJ. et al. (Nat Biotechnol. 1997, 15: 35-40).
  • the polynucleotide encoding single chain IL-12 comprises the sequence of SEQ.ID.NO.:8.
  • the term "functionally equivalent variant" refers to polypeptides that differ from the sequence of IL-12 by means of one or more insertions, deletions or substitutions but which substantially maintain the biological activity of IL. -12.
  • the functionally equivalent variant of IL-12 suitable for use in the present invention has a sequence identity with said cytokine of at least 50%, at least 60%, at least 70%>, at least 80%> , at least 90%>, at least 91%>, at least 92%, at least 93%), at least 94%>, at least 95%, at least 96%>, at least 97%, at least 98% or at least 99%.
  • the degree of identity between variants and immunostimulatory cytokines is determined using computer algorithms and methods that are widely known to those skilled in the art.
  • the identity between two amino acid sequences is preferably determined using the BLASTP algorithm [BLASTM Annual, Altschul, S., et al, NCBI NLM NIH Bethesda, Md.
  • Functions of IL-12 that can be monitored to determine if a given polypeptide is a functionally equivalent variant of IL-12 includes, without limitation, differentiation of immature T cells into Thl cells, growth stimulation and function of T cells, synthesis of IFN- ⁇ and TNF- ⁇ by NK cells (natural killer), reduction in suppression of IFN- ⁇ mediated by IL-4, increase in cytotoxic activity of NK cells and CD8 + lymphocytes, stimulation of cell expression beta 1 and beta 2 chains of the IL-12 receptor and anti-angiogenic activity.
  • the determination of the IL-12 activity of a variant is carried out by measuring the ability to increase antitumor immunity, determined for example by the assay described by Zabala, M. 2007 et al, [J Hepatology, vol. 47 (6): 807-815].
  • the invention relates to a vector comprising a gene construct of the invention.
  • the term "vector” refers to a vehicle through which a polynucleotide or a DNA molecule can be manipulated or introduced into a cell.
  • the vector can be a linear or circular polynucleotide or it can be a larger polynucleotide or any other type of construction such as DNA or RNA of a viral genome, a virion or any other biological construct that allows the manipulation of DNA or its introduction in the cell.
  • vector can be used interchangeably with the term vector.
  • vector can be a cloning vector suitable for propagation and to obtain suitable polynucleotides or gene constructs or expression vectors in different organisms. suitable heterologists for the purification of the conjugates.
  • suitable vectors include prokaryotic expression vectors such as pUC 18, pUC 19, Bluescript and their derivatives, mp l 8, mp l 9, pBR322, pMB9, CoIEl, pCRl, RP4, phages and vectors "shuttle” such as pSA3 and pAT28, yeast expression vectors such as 2 micron plasmid type vectors, integration plasmids, YEP vectors, centromeric plasmids and the like, insect cell expression vectors such as insect vectors pAC series and pVL series, plant expression vectors such as pIBI series, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE and the like vectors and expression vectors in higher eukaryotic cells well based on vectors viral (adenovirus, adenovirus associated viruses as well as retroviruses and lenti
  • the vector of the invention can be used to transform, transfect or infect cells capable of being transformed, transfected or infected by said vector.
  • Said cells can be prokaryotic or eukaryotic.
  • the vector where said DNA sequence is introduced can be a plasmid or a vector that, when introduced into a host cell, is integrated into the genome of said cell and is replicates together with the chromosome (or chromosomes) in which (or in which) it has been integrated.
  • the obtaining of said vector can be carried out by conventional methods known to those skilled in the art (Sambrook et al, 2001, cited supra).
  • the invention relates to a cell comprising a polynucleotide, a gene construct or a vector of the invention, for which said cell has been able to be transformed, transfected or infected with a construct or vector provided by it.
  • Transformed, transfected or infected cells can be obtained by conventional methods known to those skilled in the art (Sambrook et al., 2001, cited supra).
  • said host cell is an animal cell transfected or infected with an appropriate vector.
  • Suitable host cells for the expression of the conjugates of the invention include, but are not limited to, mammalian, plant, insect, fungal and bacterial cells.
  • Bacterial cells include, but are not limited to, Gram positive bacteria cells such as species of the genus Bacillus, Streptomyces and Staphylococcus and Gram negative bacteria cells such as cells of the genus Escherichia and Pseudomonas.
  • Fungal cells preferably include yeast cells such as Saccharomyces, Pichia pastoris and Hansenula polymorpha.
  • Insect cells include, without limitation, Drosophila cells and Sf9 cells.
  • Plant cells include, among others, crop plant cells such as cereals, medicinal, ornamental or bulb plants.
  • Mammalian cells suitable for the present invention include epithelial cell lines (pigs, etc.), osteosarcoma cell lines (human, etc.), neuroblastoma cell lines (human, etc.), epithelial carcinomas (human, etc.). , glial cells (murine, etc.), liver cell lines (mono, etc.).
  • the gene construct of the invention may be part of a recombinant viral genome.
  • the invention relates to a recombinant viral genome comprising a gene construct according to the invention.
  • viral genome refers to the genetic complement of a virus either completely complete or well manipulated so that the nonessential elements have been removed while maintaining the essential elements so as to maintain adequate functionality. to infect, transduce and introduce a nucleotide sequence of interest to a target cell.
  • the viral genome comprising the construction of the invention is the genome is of a recombinant adeno-associated virus.
  • adeno-associated virus includes any AAV serotype.
  • AAV serotypes have genomic sequences of significant homology at the level of amino acids and nucleic acid, provide an identical series of genetic functions, produce virions that are essentially physically and functionally equivalent, and are replicated and assembled by virtually identical mechanisms.
  • the invention can be carried out using serotype 1 of AAV (AAV1), AAV2, AAV3 (including types 3 A and 3B), AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV1 1, Avian AAV, bovine AAV, canine AAV, equine AAV, sheep AAV, and any other AAV known now or discovered later.
  • AAV1 AAV
  • AAV2 AAV2
  • AAV3 including types 3 A and 3B
  • AAV4 AAV5
  • AAV6, AAV7, AAV8, AAV9 AAV10
  • AAV1 1 Avian AAV
  • bovine AAV canine AAV, equine AAV, sheep AAV, and any other AAV known now or discovered later.
  • Genomic sequences of various AAV serotypes and autonomous parvoviruses, as well as sequences of inverted terminal repeats (ITR), Rep proteins, and capsid subunits are known in the art. Such sequences can be found in the bibliography or in public databases such as GenBank.
  • the "AAV recombinant genome” refers to a vector comprising one or more polynucleotide sequences of interest, genes of interest or “transgenes” that are flanked by at least one terminal repeat sequence. inverted (ITR) parvovirus or AAV.
  • ITR inverted parvovirus
  • rAAV vectors can be replicated and packaged into infectious viral particles when they are present in a host cell that expresses the products of the AAV rep and cap genes (i.e. the AAV Rep and Cap proteins).
  • an rAAV vector When an rAAV vector is incorporated into a major nucleic acid construct (for example, on a chromosome or another vector such as a plasmid or baculovirus used for cloning or transfection), the rAAV vector is typically referred to as a "pro-vector.” which can be "rescued” by replication and encapsidation in the presence of AAV packaging functions and necessary auxiliary functions.
  • the recombinant viral genome of the invention comprises the gene construct of the invention and at least one AAV ITR.
  • the gene construct of the invention is flanked by AAV ITRs.
  • Inverted terminal repeats ITR are typically present in at least two copies in the AAV vector, typically flanking the gene construct of the invention.
  • the ITRs will typically be at the 5 'and 3 'of the gene construct of the invention but do not need to be contiguous with it.
  • the terminal repetitions may be the same or different from each other.
  • terminal repeat includes any viral terminal repeat and / or partially or completely synthetic sequences that form hairpin structures and function as inverted terminal repeats, such as the "double D sequence" described in US Patent No.
  • a "AAV terminal repeat” may be of any AAV, including but not limited to serotypes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 or any other AAV known now or discovered later.
  • the terminal repeat of AAV does not need to have a wild sequence (for example, a wild sequence can be altered by insertion, deletion, truncation or nonsense mutations), as long as the terminal repetition mediates the desired functions, for example, replication, cutting, packaging of virus, integration, and / or rescue of provirus, and the like.
  • the genome of the vector may comprise one or more (for example, two) terminal AAV repeats, which may be the same or different.
  • one or more AAV terminal repeats may be of the same AAV serotype as the AAV capsid, or it may be different.
  • the vector genome comprises a terminal repeat of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11 and / or AAV12, in particular AAV1, AAV2 and / or AAV4.
  • the ITRs can be derived from AAV2 and can be defined by SEQ.ID.NO.:9 (5'-ITR) and SEQ.ID.NO .: 10 (3'-ITR).
  • the invention also contemplates AAV genomes that further comprise a sequence encoding one or more capsid proteins. which packages the polynucleotide sequence mentioned above.
  • the sequences encoding capsid proteins VP1, VP2 and VP3 for use in the context of the present invention can be derived from any of the 42 known serotypes, more preferably AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 or AAV9 or newly developed AAV-like particles obtained by, for example, capsid mixing techniques and AAV capsid libraries.
  • the AAV genome is known as the "hybrid" AAV genome (ie, in which the AAV capsid and the AAV terminal repeats are from different AAVs) as described in international patent publication WO 00/28004 and Chao et al., (Molecular Therapy 2000, 2: 619).
  • the rAAV vector can be any suitable rAAV vector known now or discovered later.
  • the sequences encoding the capsid genes can be provided in trans by cotransfection in the packaging cell of a polynucleotide encoding said capsid proteins.
  • the viral vector comprises ITR of AAV1, AAV2 and / or AAV4 and one or more or all of the capsid genes of AAV1, AAV2, AAV5, AAV6 or AAV8.
  • the AAV genomes of the invention may comprise additional sequences encoding Rep proteins.
  • the sequences encoding Rep (Rep78 / 68 and Rep52 / 40) are preferably derived from AAV1, AAV2 and / or AAV4.
  • the AAV Rep and ITR sequences are particularly conserved among most serotypes.
  • Rep78 proteins of several AAV serotypes are, for example, more than 89% identical and the total nucleotide sequence identity at genome level between AAV2, AAV3A, AAV3B and AAV6 is about 82% (Bantel-Schaal et al, 1999, J. Viral., 73: 939-947).
  • AAV VP proteins determine the cell tropism of the AAV virion.
  • the sequences encoding VP proteins are significantly less conserved than Rep proteins and genes between different AAV serotypes.
  • the ability of the Rep and ITR sequences to trans-complement the corresponding sequences of other serotypes allows the production of pseudotyped rAAV particles comprising the capsid proteins of a serotype (e.g., AAV5) and the Rep and / or ITR sequences of another AAV serotype (for example, AAV2).
  • pseudotyped rAAV particles are part of the present invention.
  • the invention in another aspect, relates to a virion obtainable by expressing a viral genome according to the present invention in a suitable packaging cell.
  • virion obtainable by expressing a viral genome according to the present invention in a suitable packaging cell.
  • infectious virus particle deficient in replication
  • the virion is an AAV virion.
  • the virion of the invention is a "recombinant AAV virion”.
  • rAAV virion refers to an infectious, replication-deficient virus composed of an AAV protein shell encapsidating a polynucleotide comprising the gene construct of the invention flanked on both. ends by AAV ITRs.
  • Cap protein refers to a polypeptide that has at least one functional activity of a AAV native Cap protein (eg, VP1, VP2, VP3).
  • AAV native Cap protein eg., VP1, VP2, VP3
  • functional activities of Cap proteins include the ability to induce the formation of a capsid, facilitate the accumulation of single-stranded DNA, facilitate the packaging of AAV DNA into capsids (i.e. encapsidation) , binding to cellular receptors, and facilitating virion entry into host cells.
  • the polynucleotide sequence encoding the cap gene corresponds to the AAV8 cap gene.
  • the framework of an AAV virion shows icosahedral symmetry and usually contains a main Cap protein, usually the smallest of the Cap protein, and one or two minor Cap proteins or proteins.
  • Rep protein refers to a polypeptide that has at least one functional activity of a AAV native Rep protein (eg, Rep 40, 52, 68, 78).
  • a "functional activity" of a Rep protein is any activity associated with the physiological function of the protein, including facilitating DNA replication by recognizing, binding and cutting off the origin of AAV DNA replication as well as DNA helicase activity. Additional functions include the transcription modulation of AAV promoters (or other heterologous) and site-specific integration of AAV DNA into a host chromosome.
  • the polynucleotide sequence encoding the rep gene corresponds to the AAV2 rep gene.
  • the AAV virions of the invention can comprise capsid proteins of any AAV serotype.
  • AAV virions will contain a capsid protein that is more suitable for distribution to liver cells.
  • rAAV virions with capsid proteins of AAV1, AAV8 and AAV5 are preferred (Nathwani et al., 2007, Blood 109: 1414-1421; Kitajima et al, 2006, Atherosclerosis 186: 65-73) .
  • sequences encoding Rep may be of any AAV serotype, but preferably derived from AAV1, AAV2 and / or AAV4. Sequences encoding the capsid proteins VP1, VP2 and VP3 for use in the context of the present invention can however be taken from any of the 42 known serotypes, more preferably from AAV1, AAV2, AAV5, AAV6 or AAV8.
  • the invention also contemplates virions comprising a capsid and a recombinant viral genome, in which an exogenous targeting sequence has been inserted or replaced in the native capsid.
  • the virion is preferably directed (ie, directed to a particular type or types of cell) by replacing or inserting the exogenous targeting sequence in the capsid.
  • the exogenous targeting sequence preferably confers an altered tropism to the virion.
  • the targeting sequence increases the distribution efficiency of the vector directed to a cell.
  • the exogenous addressing sequence (s) may change or replace part or all of a subunit of the capsid, alternatively, more than one subunit of the capsid.
  • more than one exogenous targeting sequence can be introduced into the virion capsid.
  • insertions and substitutions in the minor subunits of the capsid are preferred.
  • insertions or substitutions in VP2 and VP3 are also preferred.
  • the exogenous targeting sequence may be an amino acid sequence encoding a peptide or protein, which is inserted or replaced in the virion capsid to change the virion tropism.
  • the tropism of the native virion can be reduced or eliminated by insertion or substitution of the amino acid sequence.
  • the insertion or substitution of the exogenous amino acid sequence can direct the virion to a particular cell type.
  • the exogenous targeting sequence can be any amino acid sequence that encodes a protein or peptide that changes the tropism of the virion.
  • the targeting peptide or protein may be natural or, alternatively, completely or partially synthetic.
  • Exemplary peptides and proteins include ligands and other peptides that bind to cell surface receptors present in liver cells include ligands capable of binding to the Sr-Bl receptor for apolipoprotein E, galactose and lactose specific lectins, lipoprotein receptor ligands of low density, asialoglycoprotein (galactose-terminal) ligands and the like.
  • the exogenous targeting sequence may be an antibody or an antigen recognition group thereof.
  • antibody refers to all types of immunoglobulins, including IgG, IgM, IgA, IgD, and IgE.
  • the antibodies can be monoclonal or polyclonal and can be of any species of origin, including (for example) mouse, rat, council, horse, or human, or they can be chimeric antibodies.
  • the term “antibody” also encompasses bispecific or "bridging” antibodies known to those skilled in the art.
  • the Antibody fragments within the scope of the present invention include, for example, Fab, F (ab ') 2 and Fe fragments, and corresponding fragments obtained from antibodies other than IgG. Such fragments can be produced by known techniques.
  • Surface hepatic markers that can be used for addressing the rAAVs of the invention include, without limitation, the hepatitis B virus and LDL surface antigen.
  • the exogenous amino acid sequence inserted into the virion capsid may be one that facilitates the purification or detection of the virion. According to this aspect of the invention, it is not necessary that the exogenous amino acid sequence also change the modified parvovirus virion.
  • the exogenous amino acid sequence may include a poly-histidine sequence that is useful for purifying the virion on a nickel column, as those skilled in the art know or an antigenic peptide or protein can be used to purify the virion by standard immunopurification techniques.
  • the amino acid sequence can encode a receptor ligand or any other peptide or protein that can be used to purify the modified virion by affinity purification or any other method known in the art (for example purification techniques based on size, density , charge, or differential isoelectric point, ion exchange chromatography, or peptide chromatography). Insertions of exogenous targeting or purification sequences can be inserted into any capsid protein as long as the insertion does not imply the ability of said protein to assemble. In particular, it is preferable to insert the exogenous amino acid sequence into the minor Cap subunits of the AAV, for example in the VP1 and VP2 subunits of AAV. Alternatively, it is possible to insert in VP2 or VP3.
  • Preferred AAV virions can be modified to reduce the host response (see, for example, Russell (2000, J. Gen. Viral. 81: 2573-2604), US20080008690 and Zaldumbide and Hoeben (Gene Therapy, 2008: 239-246 ).
  • Recombinant virions of the invention can be prepared using standard technology for the preparation of AAV.
  • rAAVs are prepared by introduction into a suitable host cell of the viral genome according to the invention and co-expression in said AAV rep protein cell, an AAV cap protein and, optionally, a nucleic acid sequence encoding viral and / or cellular functions on which AAV depends for replication.
  • the genome of the recombinant vector is generally about 80% to about 105% the size of the wild genome and comprises a suitable packaging signal.
  • the genome is preferably about 5.2 kb in size or less. In other embodiments, the genome is preferably greater than about 3.6, 3.8, 4.0, 4.2 or 4.4 kb in length and / or less than about 5.4, 5.2 , 5.0 or 4.8 kb in length.
  • the heterologous nucleotide sequence (s) will typically be less than about 5.0 kb in length (more preferably less than about 4.8 kb, still more preferably less than about 4.4 kb in length, even more preferably less than about 4.2 kb in length) to facilitate the packaging of the recombinant genome by the AAV capsid.
  • nucleic acid sequences necessary for the production of the virion of the invention are the so-called "AAV auxiliary functions" and comprise one, or both of the main AAV ORFs, that is the regions encoding rep and cap, or functional homologs of the same.
  • Suitable nucleic acid sequences encoding the rep and cap proteins for use in the method of the invention have been described in detail above in relation to the virions of the invention.
  • the person skilled in the art will appreciate, however, that the auxiliary sequences encoding the AAV rep and cap proteins can be provided from one, two or more vectors in various combinations.
  • the term "vector” includes any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, artificial chromosome, virus, virion, etc., which is capable of replication when associated with the elements of adequate control and that can transfer gene sequences between cells.
  • the term includes cloning and expression vehicles, as well as viral vectors.
  • AAV rep and / or cap genes may alternatively be provided by a packaging cell that expresses these genes stably (see, for example, Gao et al, (1998) Human Gene Therapy 9: 2353; Inoue et al, (1998) J. Viral. 72: 7024; U.S. Patent No. 5837484; WO 98 / 27207; U.S. Patent No. 5658785; WO 96/17947).
  • the polynucleotides encoding the rep and cap proteins can be provided from a single individual vector, which is normally referred to as an AAV auxiliary function vector.
  • AAV auxiliary function vector examples include pHLP19, described in US Pat. No. 6001650, and the vector pRep6cap6, described in US Pat. No. 6156303, the disclosure of which is incorporated herein by reference in its entirety.
  • the additional sequences are in the form of an auxiliary adenovirus virus that can be a hybrid auxiliary virus encoding the Rep and / or AAV capsid proteins.
  • Ad / AAV helper hybrid vectors expressing AAV rep and / or cap genes and methods for producing AAV stores using these reagents are known in the art (see, for example, US Patent No. 5589377; and U.S. Patent No. 5871982, U.S. Patent No. 6251677; and U.S. Patent No. 6387368).
  • the hybrid Ad of the invention expresses the AAV capsid proteins (ie, VP1, VP2 and VP3).
  • the hybrid adenovirus can express one or more of the AAV Rep proteins (i.e. Rep40, Rep52, Rep68 and / or Rep78).
  • AAV sequences may be operatively associated with a tissue specific or inducible promoter.
  • the optional component for the generation of recombinant virions may comprise a nucleic acid sequence encoding viral functions not derived from AAV and / or cellular on which AAV depends on replication (ie, "accessory functions").
  • Accessory functions include those functions required for AAV replication, including, without limitation, those groups involved in the activation of AAV gene transcription, support of phase-specific AAV mRNA, AAV DNA replication, product synthesis of cap expression, and AAV capsid assembly.
  • Accessory virus-based functions may be derived from any of the known auxiliary viruses such as adenovirus, herpesvirus (other than herpes simplex virus type 1), and vaccine virus.
  • the AAV vector packaging plasmid according to the invention contains as auxiliary virus DNA sequences the E2A, E4 and VA genes of Ad5, which may be derived from the plasmid pDG described in German patent application DE196 44 500.0-41, and which are controlled by the respective original promoter or by heterologous promoters.
  • the expression of the structural components of the AAVs and their contact with the viral genome of the invention is possible so that encapsidation takes place in vitro.
  • any suitable host cell type can be used.
  • insect cells are used as described by Urabe et al, (Hum. Gene Ther. 2002, 13: 1935-1943; US6723551 and US20040197895).
  • Cell lines suitable for the expression of the structural components of rAAVs include, without limitation, the Spodoptera frugiperda cell lines, Drosophila cell lines, or mosquito cell lines, for example, cell lines derived from Aedes albopictus.
  • Preferred insect cells or cell lines are from insect species that are susceptible to baculovirus infection, including, for example, Se301, SeIZD2109, SeUCRl, Sf9, Sf900 +, Sf21, BTI-TN-5B1-4, MG-I, Tn368, HzAmI, Ha2302, Hz2E5, High Five (Invitrogen, CA, USA) and expresSF + ® (US 6,103,526; Protein Sciences Corp., CT, USA).
  • the virions of the invention have been assembled, it is possible to purify them to separate them from those components that have not become part of the virions.
  • the virions are separated from the other components by a density gradient, typically a iodixanol gradient.
  • chromatography which may be an ion exchange or hydroxyapatite chromatography. This type of purification is preferred for Purification of virions that have capsids containing AAV serotype 1 and 5 proteins because these serotypes do not bind heparin columns.
  • heparin-agarose chromatography is preferred. See, for example, US Pat. No. 6146874.
  • Virions are also purified using chromatography in the absence of density gradient centrifugation.
  • the lysates of infected cells can be directly subjected to chromatography for purification of rAAV virions.
  • chromatography For large-scale production methods of rAAV vectors that involve chromatography, see Potter et al. (Methods Enzymol, 2002, 346: 413-430).
  • Recombinant virions can be used or an additional affinity purification step of the virion vectors can be included using an anti-AAV antibody, preferably an immobilized antibody.
  • the anti-AAV antibody is preferably a monoclonal antibody.
  • a particularly suitable antibody is a single chain camelid antibody or a fragment thereof, obtainable, for example, from camels or llamas (see, for example, Muyldermans, 2001, Biotechnol. 74: 277-302).
  • the antibody for rAAV affinity purification is preferably an antibody that specifically binds to an epitope of an AAV capsid protein, wherein the epitope is preferably an epitope that is present in capsid proteins of more than one serotype. of AAV.
  • the antibody can be produced or selected based on the specific binding to the AAV2 capsid but at the same time it can also specifically bind the AAV1, AAV3 and AAV5 capsids.
  • the invention relates to an in vitro method for expression in a liver-derived cell of a polynucleotide of interest comprising the steps of (i) contacting said cell with a gene construct of the invention, with a vector of the invention, with a viral genome of the invention or with a virion of the invention under conditions suitable for entry into the cell of said construct, of said vector or of said virion and
  • Hepatic cells in which a polynucleotide of interest can be expressed using the in vitro method of the present invention include not only cells from primary hepatocyte cultures, but immortalized cells of hepatic origin such as Hepoma2 Hepatoma cell lines, COLO 587 , FaO, HTC, HuH-6, HuH-7, PLC, Hep3B, BPRCL, MCA-RH777, BEL-7404, SMMC-7221, L-02, CYNK-1, PLC / PRF / 5 and MCA-RH8994, as well as lines immortalized experimentally by the expression of viral or cellular oncogenes, such as the Fa2N-4 and EalC-35 line cells.
  • immortalized cells of hepatic origin such as Hepoma2 Hepatoma cell lines, COLO 587 , FaO, HTC, HuH-6, HuH-7, PLC, Hep3B, BPRCL, MCA-RH777, BEL-7404, SMMC-7221,
  • the in vitro expression method according to the invention comprises a first stage in which the cell of hepatic origin is contacted with a gene construct, a vector, a viral genome or with a virion of the invention under conditions suitable for the entry into the cell of said construction, said vector or said virion.
  • Suitable methods for promoting the entry of a nucleic acid into a cell include, without limitation, direct injection of naked DNA, ballistic methods, liposome-mediated transfer, receptor-mediated transfer (ligand-DNA complex), electroporation, and precipitation. with calcium phosphate (see, for example, US 4970154, WO 96/40958, US 5679559, US 5676954 and US 5593875).
  • the entry into the cell of the genetic material takes place thanks to the intrinsic ability of the virions to bind to the surface of the liver cell and to release the genetic material in their inside.
  • the use of rAAV in which the capsid proteins belong to serotypes AAV1, AAV8 and AAV5 as previously described (Nathwani et al, 2007, Blood 109: 1414-1421; Kitajima et al, 2006, Atherosclerosis 186: 65-73).
  • the cells that contain the gene construct of the invention within them are contacted with an inducing agent, so that transcription of both the transactivator and the polynucleotide of interest is activated.
  • an inducing agent as well as the adequate incubation time of the cells with said inducing agent should be determined experimentally.
  • the determination of the expression of the polynucleotide of interest in response to the inducing agent can be determined using techniques known to a person skilled in the art for the determination of mRNA levels in a sample (RT-PCR, Northern blot and the like) or for the determination of protein levels (ELISA, Western blot, RIA and the like)
  • the invention relates to a pharmaceutical preparation comprising a therapeutically effective amount of a gene construct of the invention, of a vector of the invention, of a virion of the invention and a carrier (carrier) or excipient. pharmaceutically acceptable.
  • the invention relates to a gene construct of the invention, a vector of the invention or a virion of the invention for use in medicine.
  • compositions of the invention may be administered by any route, including, but not limited to, oral, intravenous, intramuscular, intrarterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteric, topical, sublingual or rectal.
  • routes including, but not limited to, oral, intravenous, intramuscular, intrarterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteric, topical, sublingual or rectal.
  • compositions comprising said vehicles can be formulated by conventional procedures known in the state of the art.
  • nucleic acids polynucleotides of the invention, vectors, gene constructs or viral vectors
  • the invention contemplates pharmaceutical compositions specially prepared for the administration of said nucleic acids.
  • the pharmaceutical compositions can comprise said nucleic acids in a naked form, that is, in the absence of compounds that protect nucleic acids from their degradation by the body's nucleases, which entails the advantage that the toxicity associated with the reagents used is eliminated for transfection.
  • Suitable routes of administration for naked compounds include intravascular, intratumoral, intracranial, intraperitoneal, intrasplenic, intramuscular, subretinal, subcutaneous, mucosa, topical and oral (Templeton, 2002, DNA Cell Biol, 21: 857-867).
  • nucleic acids can be administered as part of liposomes, cholesterol-conjugated or conjugated to compounds capable of promoting translocation through cell membranes such as the Tat peptide derived from HIV-1 TAT protein, the third helix of homeodomain of the Antennapedia protein of D.melanogaster, the VP22 protein of the herpes simplex virus, arginine oligomers and peptides such as those described in WO07069090 (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21: 99-103 , Schwarze, SR et al., 2000, Trends Pharmacol. Sci., 21: 45-48, Lundberg, M et al, 2003, Mol.
  • compounds capable of promoting translocation through cell membranes such as the Tat peptide derived from HIV-1 TAT protein, the third helix of homeodomain of the Antennapedia protein of D.melanogaster, the VP22 protein of the herpes simplex virus,
  • virions are administered, the amount of these and the administration time will depend on the circumstances and should be optimized in each case by the person skilled in the art using standard technology.
  • the administration of therapeutically effective amounts of virions of the invention is possible by a single administration, such as, for example, a single injection of a sufficient number of infectious particles to provide therapeutic benefit to the patient undergoing such treatment.
  • the number of infectious particles administered to a mammal may be of the order of about 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , or even greater, infectious particles / ml given as a single dose, or divided into two or more administrations as may be required to achieve the therapy of the particular disease or disorder to be treated.
  • compositions and polynucleotides of the invention are administered by the so-called “hydrodynamic administration” as described by Liu, F., et al, (Gene Ther, 1999, 6: 1258-66).
  • the compounds are introduced into the body intravascularly at high speed and volume, resulting in high levels of transfection with a more diffuse distribution. It has been shown that the effectiveness of intracellular access depends directly on the volume of fluid administered and the speed of injection (Liu et al, 1999, Science, 305: 1437-1441).
  • mice In mice, administration has been optimized in values of lml / 10 g of body weight in a period of 3-5 seconds (Hodges et al, 2003, Exp.Opin.Biol.Ther, 3: 91-918).
  • the exact mechanism that allows cell transfection in vivo with polynucleotides after hydrodynamic administration is not fully known.
  • administration by the tail vein takes place at a rate that exceeds the heart rate, which causes the administered fluid to accumulate in the superior vena cava. This fluid subsequently accesses the vessels in the organs and, subsequently, through fenestrations in said vessels, accesses the extravascular space.
  • the polynucleotide comes into contact with the cells of the target organ before it mixes with the blood thus reducing the chances of degradation by nucleases.
  • compositions of the invention can be administered in doses of less than 10 mg per kilogram of body weight, preferably less than 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of body weight and less than 200 nmol of AN agent, that is, around 4.4 x 10 16 copies per kg of body weight or less than 1500, 750, 300, 150, 75, 15, 7.5, 1.5, 0.75, 0.15 or 0.075 nmol per kg of body weight.
  • the unit dose can be administered by injection, by inhalation or by topical administration.
  • AAV virions are administered, they can be administered systemically since, thanks to their tropism by liver cells, they will access this organ.
  • the gene constructs of the invention or the plasmids of the invention are administered, they should preferably be administered in a directed manner to the liver by administration in the hepatic artery or by other hepatic administration systems known in the prior art such as those described by Wen et al, (World J. Gastroenterol, 2004, 10, 244-9), Murao et al, (Pharm. Res., 2002, 19, 1808-14), Lin et al , (Gene Ther., 2003, 10, 180-7), Hong et al, (, J. Pharm.
  • compositions can be administered at doses between 0.00001 mg to 3 mg, preferably between 0.0001 and 0.001 mg, even more preferably around 0.03 and 3.0 mg per organ, around 0.1 and 3.0 mg per organ. or between 0.3 and 3.0 mg per organ.
  • the dose to be administered of the compositions of the invention depends on the severity and response of the condition to be treated and may vary between several days and several months or until it is observed that the condition remits.
  • the optimal dosage can be determined by periodic measurements of the agent concentrations in the patient's organism.
  • the optimal dose can be determined from the EC50 values obtained by previous tests in vitro or in vivo in animal models.
  • the unit dose can be administered once a day or less than once a day, preferably, less than once every 2, 4, 8 or 30 days.
  • the maintenance regimen may involve treating the patient with doses ranging from 0.01 ⁇ g to 1.4 mg / kg body weight per day, for example 10, 1, 0.1, 0.01, 0.001, or 0, 00001 mg per kg body weight per day.
  • Maintenance doses are preferably administered at most once every 5, 10 or 30 days.
  • the treatment should be continued for a time that will vary according to the type of alteration suffered by the patient, its severity and the patient's condition. After treatment, the evolution of the patient should be monitored to determine if the dose should be increased in case the disease does not respond to the treatment or the dose is decreased if an improvement in the disease is observed or if unwanted side effects are observed.
  • the daily dose can be administered in a single dose or in two or more doses depending on the particular circumstances. If repeated administration or frequent administrations is desired, it is advisable to implant an administration device such as a pump, a semi-permanent catheter (intravenous, intraperitoneal, intracisternal or intracapsular) or a reservoir.
  • the therapeutic uses of the gene constructs of the invention contemplate a second stage of administration.
  • inducing agent can be administered in the form of prodrug, salt, solvate or clathrate, either in isolation or in combination with additional active agents.
  • Preferred excipients for use in the present invention include sugars, starches, celluloses, gums and proteins.
  • Inducing agents can be administered as formulated in a pharmaceutical form of solid administration (e.g.
  • the invention relates to a gene construct of the invention, a vector of the invention, a viral genome of the invention, a virion of the invention or a pharmaceutical composition of the invention for use. in the treatment of liver disease.
  • the invention relates to the use of a gene construct of the invention, of a vector of the invention, of a viral genome of the invention, of a virion of the invention or of a pharmaceutical composition of the invention for the manufacture of a medication for use in the treatment of liver disease.
  • the invention relates to a method for the treatment of a liver disease comprising the administration to an individual in need of a gene construct of the invention, of a vector of the invention, of a viral genome of the invention, of a virion of the invention or a pharmaceutical composition of the invention.
  • treatment refers to the act of reversing, improving or inhibiting the evolution of the disorder or condition for which such term is applied, or one or more symptoms of such disorder or condition.
  • prevention refers to the act of preventing the occurrence, re-existence, or alternatively delaying the onset or recurrence of a disease, disorder or condition for which such term is applied, or one or more of the symptoms associated with a disease, disorder or condition.
  • CD134 Immunotherapy adjuvant
  • CD137 Immunotherapy adjuvant
  • PBGD Acute intermittent porcine p 17 (TGF- ⁇ inhibitor) Adjuvant in colon cancer
  • Table 1 Polynucleotides of interest that can be incorporated into the gene constructs of the invention and disorders in which they can be used.
  • the polynucleotide of interest encodes IL-12 or a functionally equivalent variant in which case the gene construct of the invention, a vector of the invention, the viral genome of the invention or the virion of the invention or the Pharmaceutical composition of the invention are employed for the treatment of liver cancer.
  • liver cancer refers to both primary and secondary cancer including that formed from any type of primary tumor.
  • liver cancer includes, without limitation, hepatocellular carcinoma (sometimes called hepatoma or HCC), carcinoma, fibrolamellar HCC, cholangiocarcinoma, hemangioma, hepatic adenoma, nodular focal hyperplasia, angiosarcoma and hepatoblastoma.
  • HCC hepatocellular carcinoma
  • carcinoma sometimes called hepatoma or HCC
  • fibrolamellar HCC cholangiocarcinoma
  • hemangioma hemangioma
  • hepatic adenoma nodular focal hyperplasia
  • nodular focal hyperplasia angiosarcoma
  • hepatoblastoma hepatoblastoma
  • bidirectional hepatospecific promoter does not necessarily have to be part of a gene construct that additionally comprises a transcriptional activator and a polynucleotide of interest but can be used in isolation as an integral element of other vectors , viral genomes or gene constructs.
  • the invention relates to a bidirectional inducible operator-promoter suitable for hepatospecific expression and inducible by an inducer of two polynucleotides of interest comprising
  • first and second hepato-specific promoter sequence act divergently with respect to the response element to the inducing agent and where the promoter activity of the first and second hepato-specific promoter sequence is increased in the presence of a transactivator that after administration of the inducing agent binds to the response element.
  • the elements that form the bidirectional inducible operator specifically, the response element to the transactivator in its active form, the first hepato-specific promoter sequence and the second hepato-specific promoter sequence have been described in detail previously and are interpreted in the same way as described above in relation to the gene construct of the invention.
  • the adjustable bidirectional operator-promoter comprises at least one transactivator + tetracycline response element.
  • the tetracycline response element comprises a nucleic acid sequence defined in SEQ.ID.NO .: l.
  • first hepato-specific promoter sequence and the second hepato-specific promoter sequence are the same.
  • the first hepato-specific promoter sequence and the second hepato-specific promoter sequence comprise the albumin gene promoter or a functionally equivalent variant thereof.
  • the albumin gene promoter comprises a sequence selected from the group of SEQ.ID.NO.:2 and SEQ.ID.NO.:3.
  • the bidirectional inducible operator-promoter comprises SEQ.ID.NO .: 4.
  • the invention relates to a gene construct suitable for hepatospecific expression and inducible by a polynucleotide inducing agent of interest comprising
  • first and second hepato-specific promoter sequence act divergently with respect to the response element to the inducing agent and wherein the promoter activity of the first and second hepato-specific promoter sequence is increased in the presence of said inducing agent and in the presence of a transactivator that binds to the response element in the bidirectional inducible operator-promoter.
  • the elements that form the bidirectional inducible operator in particular, the response element to the inducing agent, the type of transactivator, the first hepatospecific promoter sequence, the second hepatospecific promoter sequence and the polyadenylation signal have been described in detail previously and interpreted in the same manner as described above in relation to the first gene construct of the invention.
  • the adjustable bidirectional operator-promoter comprises at least one tetracycline response element.
  • the tetracycline response element comprises a nucleic acid sequence defined in SEQ.ID.NO .:! .
  • the transactivator is a tetracycline-dependent reverse transactivator.
  • the rtTA reverse tetracycline activatable transactivator is rtTA-M2.
  • first hepatospecific promoter sequence and the second hepatospecific promoter sequence are the same.
  • first hepato-specific promoter sequence and the second hepato-specific promoter sequence comprise the albumin gene promoter or a functionally equivalent variant thereof.
  • the albumin gene promoter comprises a sequence selected from the group of SEQ.ID.NO .: 2 and SEQ.ID.NO.:3.
  • the bidirectional inducible operator-promoter comprises SEQ.ID.NO .: 4.
  • the polyadenylation signal is a bidirectional polyadenylation signal. In an even more preferred embodiment, the polyadenylation signal is a bidirectional polyadenylation signal of the SV40 virus.
  • the second gene construct of the invention can be provided in isolation or, preferably, can be provided as part of a vector to facilitate its propagation and manipulation.
  • the vector further comprises and in a 3 'position with respect to the second hepatospecific promoter sequence one or more sites that allows the cloning of polynucleotides of interest so that they can be expressed in a hepatospecific form in response to the Addition of the activating agent.
  • the cloning sites are grouped together forming a multiple cloning site as it frequently appears in cloning vectors.
  • multiple cloning site refers to a nucleic acid sequence comprising a series of two or more target sequences for restriction endonucleases close to each other. Multiple cloning sites include targets for restriction endonucleases that allow the insertion of fragments that show blunt ends, protruding 5 'ends or 3 'protruding ends.
  • the insertion of polynucleotides of interest is carried out using standard molecular bilogy methods as described, for example, by Sambrook et al (supra.)
  • Example 1 C o n s t r u c c i o n and c a r a cterization of the recombinant virus rAAV-pTetbidi-pCMV-luc.
  • the main objective was to obtain an inducible vector based on AAV8 that allowed to regulate the expression of the transgene over time, varying the dose of inducer administered, and that directed the expression of the transgene specifically to hepatocytes, thus acting at the target site of our therapy, and avoiding possible toxic adverse effects of the transgene.
  • AAV8 mostly transduces the liver with high efficiency, we wanted to find out if the rAAV-pTetbidi-pCMV-luc system complied with the characteristics explained above when administered intravenously through the tail vein.
  • the luciferase gene was used as a reporter gene, which allowed the biodistribution of the expression of the transgene to be analyzed in vivo, in addition to allowing its quantification.
  • the eGFP gene present in the plasmid kindly provided by Dr. Lilianne Tenenbaum of the University of Brussels Free, was replaced by the firefly luciferase gene, to obtain the rAAV-pTetbidi-pCMV-luc system ( Figure 2. A) with which we produced the rAAV2 / 8-pTetb ⁇ di- pCMV-luc virions.
  • the plasmid containing the AAV recombinant genome with the inducible pTetbidi-pCMV-luc system (pAClM2-pCMV-luc) was generated as follows: the luciferase gene was amplified from the plasmid pAlb-luc (Kramer G. et al. Molecular Therapy 2003, 7: 375-385) with primers A (sense primer) and B (antisense primer) (A: GTC GA C AT G GAA GA C GCC AAA AAC (SEQ.ID.NO.
  • rAAV2 / 8 virions were produced by transfection with PEI in HEK 293T cells for which the following protocol was followed:
  • the PEI-DNA complexes were prepared in the following manner: a) Preparation of the DNA solution: A DNA solution was prepared with the appropriate amount of plasmids p5F6 (40 ⁇ g / plate), p518 (20 ⁇ g / plate) and the one that contained the corresponding recombinant AAV-2 genome (20 ⁇ g / plate), in saline solution or sterile physiological serum, in a final volume of 1 ml per plate. It was mixed and incubated for 5 min at room temperature. Plasmid characteristics are described at the end of the protocol.
  • PEI concentration 10 mM.
  • the volume of calculated PEI was mixed and incubated for 5 min at T. amb. c) After the 5 minutes, the PEI solution on the DNA was added and vigorously stirred with vortex for 15 seconds, after which it was incubated for 30 minutes at room temperature to allow the formation and stabilization of the PEI- complexes.
  • the medium was removed to the cells, and mechanically peeled off, using scraper (Costar, Corning). Each plate was washed with 3 ml of clean DMEM medium and collected in 50 ml Falcon tube. The cells were centrifuged at 1800 rpm for 5 minutes, and the supernatant was discarded. The total cells were resuspended in 18.5 ml of clean DMEM medium and frozen at -80 ° C for later purification. To release the virus produced inside the 293T cells, 3 successive freezing and thawing steps were performed at -80 ° C and 37 ° C, respectively. It was then centrifuged at 3000 rpm and 4 ° C for 5 minutes to remove cell debris. The supernatant was incubated with 0.1 mg per plate of DNAse I and RNAse A (Roche) for 30 minutes at 37 ° C and filtered using filters of a pore size of 0.22 ⁇ (MILLIPORE).
  • plasmid p5F6 was kindly assigned by the company AMT (Amsterdam Molecular Therapeutics). It contains the adenovirus genes necessary for the viral replication of an AAV
  • plasmid p518 was kindly ceded by the company AMT (Amsterdam Molecular Therapeutics). It contains the genes that encode the Rep proteins of the AAV-2 serotype and the VP proteins of the serotype 8.
  • the iodixanol gradient ultracentrifugation method was used to purify the adeno-associated vectors.
  • fresh 7.4X PBS-MK buffer 500 ml PBS without Mg 2+ and without Ca 2+ + 50 ml of 1M MgCl 2 + 125 ml 1M KC1 was prepared.
  • Table 2 summarizes the preparation of the phases of the gradient used.
  • Table 2 Composition of the gradient phases used for purification of AAVs The total volumes of each phase prepared depend on the amount of purifications to be performed on each occasion.
  • the AAV particles concentrated at the 40% - 60% interface of iodixanol were collected by pricking the bottom of the tube with a 5 ml needle and syringe.
  • the 5 ml obtained, enriched in viral particles (fraction 1) were washed and concentrated in PBS + 5% sucrose, using centricon (Amicon Ultra-15, Centrifugal Filter Devices-MILLIPORE).
  • centricon Amicon Ultra-15, Centrifugal Filter Devices-MILLIPORE
  • the amount of washings and the centrifugation times vary in each production, and were performed until the absence of iodixanol's own viscosity was observed.
  • the virus was concentrated in 1 ml of 5% sucrose PBS, and stored at -80 ° C until use. The recovery percentage was approximately 94%.
  • mice were anesthetized with ketamine / xylazine and administered intraperitoneally, 100 ⁇ of D-luciferin (Xenogen / Alameda, USA) diluted in PBS a a concentration of 30 mg / ml.
  • Luciferase activity measurements are made by delimiting an area of interest chosen by the user.
  • the levels of total luciferase activity are significantly higher than the levels obtained by measuring only the upper abdominal or hepatic area both in the basal state and in the induced, and throughout the induction period, indicating that the transgene is expressed considerably in organs other than the liver, as is also observed in bioluminescence images captured by the CCD camera, which are not shown to have an impossible color code of interpreting in grayscale.
  • the basal or residual activity of the system is dependent on the dose of virus administered.
  • the background noise of the bioluminescence chamber for the selected area is approximately 1 x 10 5
  • the basal luciferase activity in the liver area is relatively low in all three cases, being very close to the background noise with The lowest dose of virus used.
  • Luciferase activity of the liver area was measured, 24 hours post induction. Comparing the levels of luciferase activity in the induced state, a linear response is observed with respect to the dose of dox administered ( Figure 5), but this linearity is lost when the dose of 200mg / kg of dox is reached. Upon reaching this point, several mice died and the rest were sacrificed, as they showed symptoms of toxicity mediated by dox (fever, abdominal adhesions, etc). These symptoms were also observed in control mice, without vector. The maximum induction rate of the system is reached at a dose of 100 mg / kg of dox, and is approximately 10 times.
  • mice of both strains and sexes 4-8 mice were induced per group (who had been infected 21 days earlier with lx 10 11 gv / mouse of rAAV2 / 8 with the corresponding induction system), with 50 mg / Kg of dox ip
  • the activity of luciferase was determined in vivo in the CCD chamber and subsequently, the animals were sacrificed and several of its organs were removed, freezing them immediately to then measure the luciferase activity of each of them and normalize it by the amount of total protein.
  • the rAAV-pTetbidi-pCMV-luc virus designed is not suitable for regulating transgenic expression in the liver, since its maximum induction rate is reduced (approximately 10), and the biodistribution of the transgene activity is not restricted mainly to the liver, but is dispersed by various organs of the animal.
  • Example 2 Construction and characterization of the recombinant virus rAAV-pTetbidi-pAlb-luc.
  • the plasmid containing the AAV recombinant genome with the pTetbidi-pAlb-luc inducible system (pAClM2-pAlb-luc) was generated as follows: the fragment containing the 7 tetracycline response operator sites was amplified and the promoter of albumin (Tet07-pAlb) from the plasmid pTonL2 (T) -mIL12 generated in our department (Zabala, M., et al., Cancer Res.
  • albumin promoter was amplified from plasmid pAlb-luc (Kramer G. et al. Molecular Therapy 2003, 7: 375-385) with primers E (sense) and F (antisense) (E: AGC GCT ACA GCT CCA GAT GGC AAA (SEQ.ID.NO .: 15); F: AGC GCT GAA TTC TTA GTG GGG TTG ATA GGA AAG (SEQ.ID.NO .: 16)) containing at its 5 'ends, Afel sites (sense primer) and Afel sites, and EcoRI (antisense primer).
  • This fragment was subcloned into the cloning vector pCDNA3.1 / V5-His TOPO TA (Invitrogen) and was named: pCDNA3.
  • 1-pAlb He Albumin promoter was extracted from this vector by digestion with Afel, and inserted into the plasmid: pCDNA3.1-Tet07-pAlb, digested with the same enzyme. Plasmids were selected whose digestion with EcoRI / SalI resulted in a band of approximately 700 bp, corresponding to the pAlb-Tet07-pAlb fragment. This digestion fragment was inserted into the plasmid pAClM2-pCMV-luc digested with the same enzymes, obtaining plasmid pAClM2-pAlb-luc.
  • a dose of rAAV2 / 8-pTetb ⁇ di-pAlb-luc virus of 11 gv / mouse was injected into 4 female BALB / c mice intravenously, and baseline activity was measured (at 14 days post intravenous injection of the vector) as induced (24 hours post ip administration of 50 mg / kg of dox, and day 22 post administration of the vector) of luciferase in the liver area and in the total animal.
  • This dose of dox ip was chosen to be sure not to induce unwanted toxic effects due to an excessive inducer dose.
  • FIG 9.B the logarithmic values of the luciferase activities observed in Figure 9 are shown.
  • A which fit a sigmoid curve typical of saturable systems, which allow us to estimate luciferase activity at a given inducer dose within the linear range of each curve (2 to 25 mg / kg of dox for males, and 10 to 50 mg / kg for females).
  • the rAAV-pTetbidi-pAlb-luc system is the first inducible and hepato-specific system described for adeno-associated vectors (hepato-specific inducible systems vehiculized by hydrodynamic injection have already been described (Zabala, M., et al, Cancer Res. 2004; 64: 2799-2804), and by adeno high capacity virus (Wang, L., et al. Gastro lo gy, 2004.
  • liver diseases that require strict regulation of transgene expression, either by presenting a limited therapeutic range (as in the case of IGF-1 in liver cirrhosis models), such as for presenting toxic effects when expressed uncontrollably (as in the case of several immunopotentiating cytokines such as IL-12, IFNy, IFNa, etc.).
  • Example 3 Construction and characterization of the recombinant rAAV-pTet bidi- pAlb-IL12 virus.
  • the AAV represents a very promising candidate, since it is a long-term vector and its production in clinical grade and in high doses had already been verified (Meghrous, J., et al Biotechnol Prog. 2005, 21: 154-160).
  • the single-chain mIL-12 (mIL-12 se), formed by the p40 and p35 subunits fused into a single protein sequence, was used.
  • the mIL-12 has a size much smaller than the construction that is usually used to express the IL-12, which consists of the P35 subunit, an IRES element ("Internal Ribosomal Entry Site") and the P40 subunit ( Waehler, R., et al. Hum Gene Ther, 2005, 16: 307-317). This allows subcloning it into the viral skeleton of the rAAV and generating the corresponding recombinant virus.
  • IRES element Internal Ribosomal Entry Site
  • the mIL12sc was amplified by PCR from plasmid pCDNA3.1-mIL12sc (kindly ceded by Dr. Crettaz of our department The construction and sequence of the mIL12sc are detailed in Lieschke, GJ, et al. (Nat. Biotechnol.
  • the liver metastasis model of colorectal cancer will be used by implanting MC38 cells in the liver of syngeneic C57BL / 6 mice.
  • the procedure used consists of hepatic implantation (by laprarotomy) of 500,000 MC38 cells in the major lobe of the liver). Seven days after liver implantation of the cells, tumors 4-6 mm in diameter are detected (by laparotomy), which grow continuously until the death of the mouse occurs around 30-50 days post-implantation.
  • IL-12 As an antitumor agent
  • serum transaminase levels AST: aspartate aminotransferase
  • ALT alanine aminotransferase
  • the first way to measure the antitumor efficacy of the treatment was to determine the survival percentage of the different groups of mice over time.
  • the experiment on day 132 of the protocol, corresponding to day 102 postimplantation of the tumor cells was terminated ( Figure 13).
  • the mice that were alive today had no intrahepatic tumors, however, all animals that died during the study had large tumors (approximately 4 cm 3 ). No mortality was observed due to the expression of IL-12. All control mice and those injected with the lowest dose of the virus died, although in the latter a slight delay in tumor growth is observed.
  • Figure 15 shows shows that the minimum dose of therapeutic rAAV2 / 8-pTet b -di-pAlb-mIL12 virus was 10 x 10 gv / mouse, obtaining 100% of tumor-free mice.
  • the dose of 3 x 10 10 gv / mouse produced a percentage of 80% of tumor-free mice.
  • FIG. 16 shows the tumor progression over time of previously treated mice, compared to 5 untreated, control mice. Protection is observed in 40% of the previously treated mice, while the tumor size at the end of the experiment (day 42 post reject and day 132 of the protocol) is significantly lower in the treated groups, than in the untreated mice.
  • the inducible rAAV-pTetbidi-pAlb system coding for single chain mIL 12 constitutes a good antitumor treatment for hepatic metastases of colorectal carcinoma, with the absence of toxic effects associated with the expression of IL-12, and the Development of an effective cellular response.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La invención se relaciona con métodos y herramientas para la expresión inducible hepatoespecífica de un gen de interés mediante el uso de promotores bidireccionales hepatoespecíficos que se encuentran operativamente acoplados a dicho gen de interés y a un transactivador que es capaz de promover la transcripción en presencia de un determinado gen de interés. La invención se refiere también a construcciones génicas y viriones que permiten la expresión regulada hepatoespecífica así como al uso de los mismos para el tratamiento de enfermedades hepáticas.

Description

SISTEMAS DE EXPRESIÓN REGULADA CAMPO TÉCNICO DE LA INVENCIÓN
La invención se encuentra dentro del campo de los sistemas de expresión regulables y, más concretamente, dentro de la expresión regulable de forma espacial (en un tejido determinado) y temporal (en respuesta a la adición de un agente inductor). La invención se refiere también a construcciones génicas y viriones que permiten la expresión regulada hepatoespecífica así como al uso de los mismos para el tratamiento de enfermedades hepáticas.
ANTECEDENTES DE LA INVENCIÓN
Las funciones del hígado incluye, entre otros, el metabolismo de carbohidratos y de lípidos, secreción de citoquinas, eliminación de insulina y de otras hormonas, la producción de bilis, etc. Asimismo, en el hígado se producen factores que afectan a numerosas enfermedades genéticas, cardiovasculares, metabólicas, hemorrágicas y cancerosas. Las células del hígado tienen tiempos de vida media elevados y están directamente conectadas al torrente sanguíneo lo que facilita la llegada a las mismas de agentes terapéuticos. Por estos motivos, se considera que el hígado constituye un buen candidato para la terapia génica. No obstante, con el fin de evitar los efectos secundarios asociados a la expresión del gen diana en tejidos no hepáticos, es conveniente disponer de sistemas que permitan la expresión de un gen de interés de forma específica en el hígado.
Para ello, se han utilizado construcciones en las que el gen de interés se encuentra bajo el control de un promotor hepatoespecífico del tipo del promotor de la fosfoenolpiruvato carboxiquinasa (PEPCK), enzimas de la gluconeogénesis (Yang, Y. W., J. et al, Gene Med., 5:417'-424 (2003)), al -antitripsina, albúmina, FVII, polipéptido transportador de aniones orgánicos (OATP-C), proteína core del virus de la hepatitis B (Kramer, M. G, et al, Mol. Ther., 7:375-385, 2003), y la globulina de unión a tiroxina (Wang, L., et al, Proc. Nati. Acad. Sci, 96: 3906-3910 (1999). No obstante, este tipo de sistemas tiene la desventaja de que resultan en la expresión constante del gen de interés, lo que puede resultar en toxicidad y efectos indeseados.
Con el fin de evitar los efectos resultantes de la expresión constante de genes de interés, se han desarrollado sistemas inducibles en los que la expresión tiene lugar únicamente en presencia de un determinado agente inductor. Así, es conocido un sistema inducible de expresión controlable temporal- y espacialmente basado en el uso de un promotor que es activable en presencia de un factor de transcripción quimérico cuya actividad se induce en presencia de mifepristona (RU486) (véase Wang et al., Nat. Biotechnol., 1997, 15:239-43). Este tipo de regulación se puede aplicar a cualquier tipo celular usando un promotor específico de tejido. Este sistema es específico, reversible y no tóxico. No obstante, presenta la desventaja de que conduce a niveles de expresión elevados en condiciones básales, lo que lo hace inaceptable si se desea su aplicación in vivo.
Zabala y cois (Cáncer Research 2004, 64:2799-2804] han descrito vectores plasmídicos que incluyen distintas realizaciones de un sistema de expresión inducible por tetraciclinas (tet-on) donde todos comprenden una secuencia que codifica un transgén (luciferasa, o IL-12) que se transcribe desde una unidad transcripcional controlada por una secuencia operadora-promotora constituida por 7 copias del Operador de tetraciclina (tet07) unidas al promotor de la albúmina (Palb); este sistema incluye también una secuencia que codifica un transactivador reverso rtTA (rtTA2s-M2), puesta bajo el control de secuencias promotoras hepatoespecíficas, diferentes según las realizaciones, seleccionadas entre EIIPalAT (promotor del gen de la al -antitripsina humana, PalAT fusionado con la región potenciadora del antígeno core del virus de la hepatitis B, EII), EalbPalAT (promotor del gen de la al -antitripsina humana, PalAT fusionado con la región potenciadora del gen de la albúmina, Ealb) y Phpx (promotor del gen de la hemopexina humana). En este trabajo se comprobó que la expresión basal del transgén era directamente proporcional a la fuerza del promotor hepatoespecífico utilizado para controlar la expresión del rtTA; la capacidad de inducir la expresión transgénica era inversamente proporcional a la expresión basal (máxima tasa de inducción cuando se utilizó Phpx, el promotor más débil); sin embargo los niveles máximos de expresión tras inducción eran directamente proporcionales a la potencia de promotor, es decir el promotor mas fuerte expresaba los niveles mas altos tras la inducción. Por otro lado, cuando las unidades transcripcionales para el rtTA y el transgén están dispuestas en tándem, la expresión transgénica es mayor que cuando se disponen en sentidos opuestos. Sin embargo, en este estudio la utilización de un promotor Palb para dirigir la expresión transgénica estaba asociada a una menor expresión del transgén, en comparación con la obtenida con un sistema en el que se utilizaba el promotor mínimo del citomegalovirus.
Kramer y cois (Molecular Therapy, 2003, 7:375-385) compara la actividad promotora de diversas construcciones de promotores, entre ellos los promotores hepatoespecíficos ElIPal AT, EalbPalAT, y Phpx. Comprueban que el promotor Pal AT, solo o unido a los potenciadores Ealb o EII del virus VHB, es el más potente para dirigir la expresión estable de un gen en células hepáticas.
Chtarto y cois (Gene Therapy, 2003, 10:84-94) describen un vector AAV para la expresión inducible de un transgén (gen reportero eGFP, enhanced GFP) desde un sistema de expresión transgénica inducible por tetraciclinas bidireccional. Dicho sistema incluye una secuencia que contiene la región operadora tet07 flanqueada a ambos lados por secuencias promotoras mínimas del citomegalovirus (pCMVm) que dirigen, en direcciones opuestas, la transcripción de un transactivador (rtTA) activable por tetraciclinas y del transgén, de manera que en presencia de doxiciclina el transactivador rtTA induce la transcripción del transgén y de él mismo. El sistema incluye también señales de poliadenilación de SV40 bidireccional. Este sistema autoregulable exhibe una capacidad de inducción para la expresión de un transgén en líneas celulares tumorales y para la expresión in vivo en cerebro. En una divulgación más reciente (Chtarto et al. Experimental Neurology 2007, 204:387-399) este mismo grupo describe una versión mejorada del vector que porta un transactivador rtTA mutado, y que permite expresar el GDNF en el núcleo estriado en concentraciones biológicamente activas que reprimen la tirosina-hidroxilasa en ratas tratadas con doxiciclina pero no en controles no inducidos. Sin embargo, no se dispone de datos de si estos vectores son adecuados para obtener una expresión transgénica en el hígado con los requerimientos antes señalados.
No obstante, existe la necesidad en la técnica de desarrollar sistemas alternativos para la expresión hepatoespecífica e inducible de genes de interés que no presenten las desventajas de los sistemas descritos hasta la fecha.
COMPENDIO DE LA INVENCIÓN
Los autores de la presente invención han demostrado que vectores de expresión inducibles basados en el uso de transactivadores sensibles a tetraciclina y promotor mínimo de CMV no tienen un buen comportamiento para expresión controlada específica en hígado pero que, por el contrario, sistemas de expresión de genes heterólogos que incluyen los promotores de la albúmina humana (pAlb) en sustitución de los promotores pCMV mínimo permiten no sólo obtener una expresión basal mas baja y específica en hígado sino que además, de forma sorprendente, permiten obtener niveles de expresión, tras la inducción, superiores a los que se obtienen con promotores más fuertes del tipo de CMV mínimo.
Así, la presente invención se refiere, en un primer aspecto, a una construcción génica que permite la expresión inducible hepatoespecífica de un polinucleótido de interés en respuesta a un agente inductor que comprende
(i) un operador-promotor inducible bidireccional que comprende al menos un elemento de respuesta a dicho agente inductor flanqueado por una primera secuencia promotora hepatoespecífica y por una segunda secuencia promotora hepatoespecífica en donde ambas secuencias promotoras hepatoespecíficas actúan de forma divergente,
(ii) una primera secuencia nucleotídica que comprende una secuencia que codifica un transactivador activable por dicho agente inductor y una señal de poliadenilación situada en posición 3 ' con respecto a la región que codifica el transactivador, en donde dicha secuencia que codifica un transactivador se encuentra operativamente acoplada a la primera secuencia promotora hepatoespecífica y
(iii) una segunda secuencia nucleotídica que comprende un polinucleótido que se encuentra operativamente acoplado a la segunda secuencia promotora hepatoespecífica y una señal de poliadenilación situada en posición 3 ' con respecto al polinucleótido de interés,
en donde la actividad promotora de dichas primera y segunda secuencias promotoras hepatoespecíficas se induce como consecuencia de la unión del transactivador a la región operadora del operador-promotor en presencia del agente inductor.
En un segundo aspecto, la invención se relaciona con un vector, un genoma viral o un virión que comprende la construcción génica de la invención.
En otro aspecto, la invención se relaciona con un virión obtenible expresando un genoma viral de la invención en una célula empaquetadora adecuada.
En otro aspecto, la invención se refiere a un método in vitro para la expresión en una célula de origen hepático de un polinucleótido de interés que comprende las etapas de
(i) poner en contacto dicha célula con una construcción génica según la invención, con un vector según la invención, con un genoma viral según la invención o con un virión según la invención en condiciones adecuadas para la entrada en la célula de dicha construcción, de dicho vector o de dicho virión y
(ii) poner en contacto la célula con el agente inductor durante el tiempo necesario para que se produzca la expresión del polinucleótido de interés.
En aspectos adicionales, la invención se relaciona con una composición farmacéutica construcción génica según la invención, con un vector según la invención, con un genoma viral según la invención o con un virión según la invención así como al uso de los mismos como medicamento o para su uso en el tratamiento de una enfermedad hepática. En otro aspecto, la invención se relaciona con un operador-promotor inducible bidireccional adecuado para la expresión hepatoespecífica e inducible por un agente inductor de dos polinucleótidos de interés que comprende
(i) al menos un elemento de respuesta a dicho agente inductor,
(ii) una primera secuencia promotora hepatoespecífica y
(iii) una segunda secuencia promotora hepatoespecífica,
en donde la primera y la segunda secuencia promotora hepatoespecífica actúan de forma divergente con respecto al elemento de respuesta al agente inductor y en donde la actividad promotora de la primera y la segunda secuencia promotora hepatoespecífica se ve aumentada en presencia de dicho agente inductor y en presencia de un transactivador que se une al elemento de respuesta.
En un aspecto adicional, la invención se relaciona con una construcción génica adecuada para la expresión hepatoespecífica e inducible por un agente inductor de un polinucleótido de interés que comprende
(a) Un operador-promotor inducible bidireccional que comprende
(i) al menos un elemento de respuesta a dicho agente inductor,
(ii) una primera secuencia promotora hepatoespecífica y
(iii) una segunda secuencia promotora hepatoespecífica,
(b) una secuencia nucleotídica que codifica un transactivador activable por dicho agente inductor que se encuentra operativamente acoplada a la primera secuencia promotora hepatoespecífica y una señal de poliadenilación situada en posición 3 ' con respecto a la región que codifica el transactivador,
en donde la primera y la segunda secuencia promotora hepatoespecífica actúan de forma divergente con respecto al elemento de respuesta al agente inductor y en donde la actividad promotora de la primera y la segunda secuencia promotora hepatoespecífica se ve aumentada en presencia de dicho agente inductor y en presencia de un transactivador que se une al elemento de respuesta en el operador-promotor inducible bidireccional . DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Esquema de la estructura del sistema de expresión de un transgén inducible por tetraciclinas de la invención. (1) secuencia operadora-promotora bidireccional; (2) elemento bidireccional de respuesta a la forma activa del transactivador; (3) secuencias promotoras que comprenden un promotor hepatoespecífico (preferiblemente un promotor de albúmina (pAlb) o un promotor mínimo de la albúmina (pmAlb)); (4) secuencia que codifica un transactivador reverso activable por un agente inductor, preferiblemente por tetraciclinas (rtTA); (5) secuencia que codifica un transgén de interés; (6) señales de poliadenilación (poliA o pA). La secuencia operadora-promotora bidireccional controla la transcripción de las secuencias que codifican el transactivador (preferiblemente rtTA) (4) y el transgén de interés (5); su actividad promotora es a su vez inducida por la proteína transactivadora (preferiblemente rtTA) (4) en presencia del agente inductor (preferiblemente tetraciclina o un análogo de la tetraciclina como la doxiciclina).
Figura 2. Estructura de distintos virus adeno-asociados recombinantes, en los que se ha incorporado un sistema de expresión de un transgén inducible por tetraciclinas, utilizados en los ejemplos.
A) rAAV-pTetbidi-pCMV-luc: El genoma de este virus adeno-asociado lleva incorporado un sistema de expresión bidireccional inducible por tetraciclinas que incluye una región operadora con 7 copias de 42 bases del Operador de la tetraciclina (tet07), flanqueado por 2 promotores mínimos del citomegalovirus (pCMV); el operador-promotor controla la expresión de 2 secuencias, colocadas una a cada lado, que codifican respectivamente un transactivador reverso rtTA-M2 y luciferasa (luc) como transgén de interés; como señales de poliadenilación (pA) se han incorporado las señales de poliadenilación bidireccionales de SV40; flanqueando el cásete de expresión se han incluido el 5 ' ITR (inverted terminal repeat) y 3 ' ITR del virus adeno-asociado de tipo 2 (AAV2).
B) rAAV-pTetbidi-pAlb-luc: El genoma de este virus adeno-asociado lleva incorporado un sistema de expresión bidireccional inducible por tetraciclinas que incluye los mismos elementos que el virus rAAV-pTetbidi-pCMV-luc, con la única diferencia de que los promotores mínimos pCMV han sido sustituidos por las secuencias promotoras del gen de la albúmina (pAlb).
C) rAAV-pTetbidi-pAlb-mIL12: El genoma de este virus adeno-asociado lleva incorporado un sistema de expresión bidireccional inducible por tetraciclinas que incluye los mismos elementos que el virus rAAV-pTetbidi-pAlb-luc, con la única diferencia de que el gen de la luciferasa ha sido sustituido por las secuencia de la IL12 de ratón de cadena única (Lieschke, G.J., et al. Nat Biotechnol, 1997. 15: 35-40).
Figura 3. Imágenes de bio luminiscencia obtenidas mediante cámara CCD. En ellas se muestran las regiones que se seleccionan para la medición de los niveles de actividad de luciferasa. A) Zona abdominal superior (incluye el hígado), y B) Niveles de bioluminiscencia emitidos por todo el animal.
Figura 4. Medición de la actividad luciferasa (fotones/seg) en ratones hembras BALB/c a los que se inyectaron viriones o partículas virales que contenían genomas del virus recombinante rAAV-pTetbidi-pCMV-luc (en dosis de lxlO10, 3xl010 y lxlO11 genomas virales (gv) por ratón, según los grupos). Los viriones inyectados eran viriones AAV2/8, que contenían genomas construidos sobre ITRs del virus AAV2 pero empaquetados en cápsidas AAV8 (formadas por proteínas de la cápsida correspondientes a un AAV del serotipo 8). Para inducir la expresión de la luciferasa, a los 21 días de la administración del vector viral, a cada animal se le administró doxiciclina (50 mg/Kg de peso; vía i.p.), y tras 24 horas la inducción se mantuvo mediante la administración de doxiciclina (dox) durante 7 días en el agua de bebida (2 mg/ml de doxiciclina; 5 % sacarosa). Las líneas indican la actividad luciferasa medida en el tiempo, expresado en días t(d) desde la primera administración i.p. de doxiciclina (día 0). Los niveles de actividad en el área hepática se representan con líneas de trazo continuo; los niveles de actividad en todo el animal se representan con líneas de trazo discontinuo.
Figura 5. Medida de la actividad luciferasa (fotones/seg) en ratones inyectados con viriones AAV2/8 que contenían genomas del virus rAAV-pTetbidi-pCMV-luc (dosis lxlO10, 3x l 010, y lxlO11 gv/ratón). Las mediciones se realizaron tras inducciones repetidas con dosis crecientes de doxiciclina (mg/Kg; vía i.p.), separadas por un periodo de 15 días. La actividad luciferasa se midió en el área abdominal superior o hepática una vez transcurridas 24 horas desde la administración i.p. de la doxiciclina.
Figura 6. Actividad luciferasa (fotones/seg) medida en hembras BALB/c a las que se inyectaron, por vía intravenosa, viriones AAV2/8 que contenían genomas del virus recombinante rAAV-pTetbidi-pAlb-luc (l x lO11 gv/ratón). La actividad se midió en estado basal antes de la inducción con doxiciclina (Dosis 0), y en estado inducido 24 horas después de la administración por vía i.p. de 50 mg/Kg de peso (Dosis 50); estas mediciones se realizaron tanto en el área superior abdominal (Hígado) y como en el animal completo (Total).
Figura 7. Comparación entre las actividades de luciferasa (fotones/seg) medidas en estado basal (Dosis 0) e inducido, 24 horas después de la administración por vía i.p. de 50 mg/Kg de doxiciclina (Dosis 50) en ratones hembras BALB/c inyectados con viriones AAV2/8 que contenían genomas de rAAV-pTetbidi-pCMV-lu c o d e rAAV-pTetbidi-pAlb-luc (l x lO11 gv/ratón; vía i.v.). Las medidas se realizaron en el área superior abdominal (hepática).
Figura 8. Actividad luciferasa (fotones/seg) en hembras BALB/c inyectadas con viriones AAV2/8 que incorporan genomas del virus rAAV-pTetbidi-pAlb-luc (a dosis de l x lO11 y l x lO10 gv/ratón según grupos; vía i.v.). La medida de la actividad se realizó en el estado basal (Inducción 0) y 24 horas después de inducir con 50 mg/Kg de doxiciclina en 4 ciclos de inducción repetida (Inducción 1 , 2, 3 y 4 respectivamente). Entre la inducción 1 y la inducción 2, y entre la 2 y 3 transcurrieron 15 días; entre la Inducción 3 y la Inducción 4 transcurrieron 80 días.
Figura 9. A) Actividad luciferasa (fotones/seg) de hembras y machos C57BL/6 inyectados con viriones AAV2/8 portadores de genomas de rAAV-pTetbidi-pAlb-luc (l x lO11 gv/ratón; por vía i.v.), medida en estado basal e inducido, tras inducción con distintas dosis de doxiciclina. Se administró una dosis de diferente de doxiclina por grupo (N = 5) de ratones (Dosis en mg/Kg de peso; vía i.p.). La medición de actividad basal se realizó el día 14 después de la inyección del virus correspondiente; la medición en estado inducido se realizó 22 días después de la inyección del virus y 24 horas después de la administración de la dosis de doxiciclina.
B) Transformación logarítmica [Logio (fotones/seg)] de los datos de actividad mostrados en A).
Figura 10. Actividad luciferasa (fotones/seg) medida en hembras y machos C57BL/6 inyectados con viriones AAV2/8 portadores de rAAV-pTetbidi-pAlb-luc (l x lO11 gv/ratón; por vía i.v.), en estado basal (día 0) y en distintos días durante el periodo de administración de doxiciclina en agua de bebida (2 mg/ml + 5% sacarosa).
Figura 11. Biodistribución de la actividad luciferasa ex vivo. Se inyectaron hembras de las cepas BALB/c (A), y C57BL/6 (B) (N = 4-8) con viriones AAV2/8 portadores de rAAV-pTetbidi-pCMV-luc o rAAV-pTetbidi-pAlb-luc (una dosis de l x lO11 gv/ratón por vía i.v). 21 días después de la inyección de los virus se indujo la expresión de luciferasa mediante la administración de doxiciclina (50 mg/Kg; vía i.p.); 24 horas después de la inducción se sacrificaron los animales; se extrajeron los órganos y se midió la actividad luciferasa (RLU) en cada uno de ellos, normalizándola por la cantidad de proteína total (RLU/mg proteína).
Figura 12. Biodistribución de la actividad luciferasa ex vivo. Se inyectaron machos de las cepas BALB/c (A), y C57BL/6 (B) (N = 4-8) con viriones AAV2/8 portadores de rAAV-pTetbidi-pCMV-luc o rAAV-pTetbidi-pAlb-luc (una dosis de l x lO11 gv/ratón por vía i.v). 21 días después de la inyección de los virus indujo la expresión mediante la administración de doxiciclina (50 mg/Kg; vía i.p.); 24 horas después de la inducción se sacrificaron los animales; se extrajeron los órganos y se midió la actividad luciferasa (RLU) en cada uno de ellos, normalizándola por la cantidad de proteína total (RLU/mg proteína).
Figura 13 Esquema del protocolo del tratamiento antitumoral administrado a ratones hembras C57BL/6 tras la implantación de células de la línea tumoral singénica MC38. A día 0 se les administraron 3 dosis diferentes de viriones AAV2/8 portadores de rAAV-pTetbidipAlb-mIL12 (3x l010, l x lO10 y 3x l09 gv/ratón), y se dejó un grupo de ratones sin vector (N=5). Tras 30 días, se implantaron 5χ 105 células MC38 de forma intrahepática. Diez días después de la implantación (día 40 del protocolo) se comenzó la inducción del sistema con una administración i.p de doxiclina (50 mg/Kg). Al día siguiente se continuó la inducción en agua de bebida (2 mg/ml de dox + 5% sacarosa) que se mantuvo durante los 6 días posteriores (hasta el día 47 del protocolo). A día 90 se realizó un rechallenge subcutáneo con l x lO6 células MC38/ratón, en los dos grupos que recibieron mayor dosis de vector, y como control se usaron 5 ratones naive. Se midió el tamaño tumoral a los 13, 23 y 42 días post-rechallenge (día 103, 113 y 132 del protocolo). A día 1 13 se sangraron los ratones, y se extrajeron PBLs. Por último, a día 132 se sacrificaron los animales y se extrajeron los tumores subcutáneos de aquellos ratones que no fueron completamente protegidos. En líneas verticales rojas se indican los días de sangrado para medición de parámetros séricos. En líneas verticales azules se indican los días en que se realizó la medición del tamaño tumoral post-rechallenge.
Figura 14. Niveles de las transaminasas, ALT (A), y AST (B), en el suero de animales hembras C57BL/6 inyectados con viriones AAV2/8 portadores de rAAV-pTetbidi-pAlb- mIL12, a tres dosis diferentes: 3>< 1010, l x l O10 y 3>< 109 gv/ratón. Se muestran los niveles en el estado basal (día 0 de inducción), a día 1, 4 y 7 tras una administración inicial de 50 mg/Kg de doxiclina i.p., realizada a día 0 de inducción seguido de la administración de doxiclina en agua de bebida (2 mg/ml dox + 5% sacarosa).
Figura 15. Porcentaje de supervivencia en el tiempo, de los ratones C57BL/6 a los que se les aplicó el protocolo descrito en la Figura 13. Las leyendas muestran la dosis de virus (en gv/ratón) que recibió cada grupo de forma intravenosa al comienzo del protocolo. El grupo control no recibió vector. Las evaluaciones estadísticas se realizaron utilizando el test de Logrank (GraphPad Prism software) (***p<0.001).
Figura 16. Tamaño tumoral de los ratones tratados que fueron sometidos a un rechallenge subcutáneo con l x lO6 células MC38/ratón (B) comparados con un grupo de ratones sin tratar, control (A). Entre paréntesis (en B) se indica la dosis de virus expresada en gv que recibió cada ratón según el protocolo descrito en la Figura 13. En (C) se muestran los tamaños tumorales alcanzados por los diferentes grupos al finalizar el experimento (día 132 del procoto lo). Entre paréntesis se indica la dosis de virus expresada en gv que recibió cada ratón según el protocolo descrito en la Figura 13.
Figura 17. Porcentaje de PBLs CD8 /Tet+ (MC38). Se extrajo sangre de los ratones a día 23 post-rechallenge (día 113 del protocolo descrito en la Figura 13), se obtuvieron PBLs y se marcaron con anticuerpos anti-CD8+ y con un tetrámero cargado con un péptido específico de células MC38. Se analizó el porcentaje de PBLs CD8+-MC38Tet+ utilizando el programa informático FlowJo. Las evaluaciones estadísticas se realizaron utilizando el test t de Student (*p<0.05)
Figura 18. Porcentaje de linfocitos CD8+ intra-tumorales específicos del tetrámero de MC38 y positivos para el marcador de activación CD44. Se agruparon los grupos de los ratones tratados por no presentar diferencias significativas entre ellos (A). En B y C) se muestran los diagramas de puntos correspondientes a un ratón representativo del grupo control y a uno del grupo tratado, respectivamente. Las evaluaciones estadísticas se realizaron utilizando el test t de Student (***p<0.001).
Figura 19. Esquema del protocolo del tratamiento terapéutico antitumoral administrado a ratones hembras C57BL/6. A día 0 se realizó la implantación de células de la línea tumoral singénica MC38. 7 días mas tarde se les inyecto una única dosis de l x lO10 genomas virales (gv) de rAAV-pTetbid¡pAlb-mIL12 y se dejó un grupo de ratones sin vector (N=5). 15 días más tarde se comenzó la inducción del sistema con una administración i.p de doxiciclina (50 mg/Kg). Al día siguiente se continuó la inducción en agua de bebida (2 mg/ml de dox + 5% sacarosa) que se mantuvo durante los 6 días posteriores tras lo cual se analizo la supervivencia en ambos grupos.
Figura 20. Porcentaje de supervivencia en el tiempo, de los ratones C57BL/6 a los que se les aplicó el protocolo descrito en la Figura 19. Las leyendas muestran la dosis de virus (en gv/ratón) que recibieron los animales tratados. El grupo control no recibió vector. Las evaluaciones estadísticas se realizaron utilizando el test de Logrank (GraphPad Prism software) (***p<0.001). DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
CONSTRUCCIONES GÉNICAS DE LA INVENCIÓN
Los autores de la presente invención han desarrollado un sistema de expresión de polinucleótidos de interés que permite una expresión precisa tanto temporal como espacial de dichos polinucleótidos en el hígado. Para ello, hacen uso de un operador- promotor bidireccional activable que está aso ciado a un primer promotor hepatoespecífico que controla la expresión de un transactivador el cual activa la expresión de dicho promotor bidireccional en presencia de un agente inductor y a un segundo promotor hepatoespecífico que controla la expresión del gen de interés. En estado basal (sin inducir), el promotor hepatoespecífico dirige la expresión de pequeñas cantidades tanto del transactivador como del transgén dando lugar a lo que se denomina expresión residual del sistema. El transactivador en ausencia de agente inductor es incapaz conformacionalmente de unirse a los sitios operadores en el promotor bidireccional y, por lo tanto, de activar la transcripción del promotor bidireccional.
En presencia de inductor, éste se une a las moléculas de transactivador residuales presentes en la célula, produciéndole un cambio conformacional que le permite unirse a los sitios operadores del promotor-operador inducible bidireccional y activar su transcripción. De esta manera, se induce la expresión del transgén, tanto como del transactivador. Estas nuevas moléculas de transactivador sintetizadas son capaces de unirse al agente inductor libre de la célula y de crear un bucle o "loop" de retroalimentación positiva, hasta que se llega a un estado en el cual pueden presentarse dos situaciones:
(a) que todos los sitios operadores estén ocupados por moléculas del complejo agente inductor-transactivador; o
(b) que se consuma el agente inductor libre de la célula, en el caso de que no se haya administrado en exceso, y las moléculas de transactivador sintetizado no puedan seguir uniéndose a los sitios operadores. Por lo tanto, tras la administración del inductor comenzará la etapa de inducción o estado inducido. Los niveles de expresión tanto del transactivador como del transgén dependerán de la dosis de inductor administrada. Una vez retirado el inductor, el transactivador vuelve a su estado conformacional inactivo, y no logra unirse eficientemente a los sitios operadores, lo cual hace que la expresión transgénica disminuya hasta volver al estado inicial o basal. La expresión máxima se obtiene cuando todos los sitios operadores estén ocupados por moléculas del complejo agente inductor-transactivador.
Los autores de la presente invención han demostrado como, de forma sorprendente, los vectores desarrollados permiten una expresión hepatoespecífica tras la inducción que alcanza niveles superiores a la que se obtiene mediante vectores en los que se utilizan promotores cuya expresión basal es superior. Así, aunque la expresión máxima de los sistemas de inducción descritos hasta la fecha correlaciona de forma directa con la potencia del promotor en estado basal, en el sistema objeto de la presente invención en donde se usan promotores específicos de tejido que son por lo general más débiles que los promotores ubicuos del tipo CMV, se obtiene una expresión en situación basal tras la inducción que es más alta que la obtenida con el CMV. En concreto, en el ejemplo 2 de la presente invención se observa como la tasa de inducción de un gen reportero obtenida usando el sistema hepatoespecífico de la invención tras la administración del agente inductor es aproximadamente 85 veces mayor que la tasa de inducción del sistema basada en el promotor ubicuo CMV (véase figura 7), lo que contrasta con los resultados obtenidos por Zabala et al (Zabala, M., et al., Cáncer Res. 2004; 64: 2799- 2804) en donde la utilización de un promotor Palb para dirigir la expresión transgénica estaba asociada a una menor expresión del transgén, en comparación con la obtenida con un sistema en el que se utilizaba el promotor mínimo del citomegalovirus. Además, la diferencia en el estado inducido entre ambos sistemas para esta dosis de dox es altamente significativa. Por otro lado, la expresión en hígado de un gen reportero controlado por el sistema de expresión hepatoespecífico e inducible de la presente invención alcanza niveles de inducción de la actividad de luciferasa mayores que el sistema basado en el promotor ubicuo CMV (véase figura 11). Así, en un primer aspecto, la invención se relaciona con una construcción génica que permite la expresión inducible hepatoespecífica de un polinucleótido de interés en respuesta a un agente inductor que comprende
(i) un operador-promotor inducible bidireccional que comprende un elemento de respuesta a dicho agente inductor flanqueado por una primera secuencia promotora hepatoespecífica y por una segunda secuencia promotora hepatoespecífica en donde ambas secuencias promotoras hepatoespecíficas se orientan de forma divergente,
(ii) una primera secuencia nucleotídica que comprende una secuencia que codifica un transactivador activable por dicho agente inductor y una señal de poliadenilación situada en posición 3 ' con respecto a la región que codifica el transactivador, en donde la secuencia que codifica un transactivador activable se encuentra operativamente acoplada a la primera secuencia promotora hepatoespecífica y
(iii) una segunda secuencia nucleotídica que comprende un polinucleótido que se encuentra operativamente acoplada a la segunda secuencia promotora hepatoespecífica y una señal de poliadenilación situada en posición 3 ' con respecto al polinucleótido de interés,
en donde la actividad promotora de dichas primera y segunda secuencias promotoras hepatoespecíficas se induce como consecuencia de la unión del transactivador a la región operadora del operador-promotor en presencia del agente inductor.
La expresión "construcción génica", según se usa en la presente invención, se refiere a un ácido nucleico, de cadena sencilla o de cadena doble, que comprende una región capaz de expresarse y, opcionalmente, secuencias reguladoras que preceden a dicho ácido nucleico (secuencias 5 ' no codificantes) o que se encuentran a continuación de dicho ácido nucleico (secuencias 3 ' no codificantes). Las expresiones "construcción génica" y "construcción de ácidos nucleicos" se usan indistintamente en la presente invención. El término "expresión", se refiere a la transcripción de un gen o genes o construcción génica para dar lugar a RNA estructural (ARNr, ARNt) o ARNm con o sin la posterior traducción de dicho ARN en proteína.
La expresión "expresión inducible", según se usa en la presente invención, se refiere a que la expresión puede verse aumentada en respuesta a un activador/inductor.
La expresión "polinucleótido de interés", según se usa en la presente invención, se refiere a una secuencia de ácidos nucleicos que es parcial o totalmente heteróloga con respecto a la célula o al sujeto en el que se introduce y que, en virtud de la presencia de regiones reguladoras de la expresión en posición 5 ' o 3 ' con respecto a dicho polinucleótido de interés, puede transcribirse y, eventualmente, traducirse para dar lugar a un polipéptido con una actividad biológica deseada. La expresión "polinucleótido de interés", no debe entenderse únicamente como un polinucleótido con capacidad de codificar un polipéptido, sino que también puede utilizarse para referirse a una secuencia de ácidos nucleicos que es parcial o totalmente complementaria a un polinucleótido endógeno a la célula o sujeto en el que se va a introducir, de forma que tras su transcripción, genere una molécula de ARN (microRNA, shRNA o siRNA) capaz de hibridar e inhibir la expresión del polinucleótido endógeno. El polinucleótido de interés puede ser ADN o ADNc.
La expresión "agente inductor", según se usa en la presente invención, se refiere a cualquier molécula que sea capaz de provocar un aumento en la transcripción de un gen. Habitualmente, el gen cuya transcripción se induce en respuesta a dicho agente inductor se encuentra bajo control operativo de una región reguladora de la transcripción que, a su vez, presenta sitios de unión para un activador transcripcional cuya actividad aumenta en presencia de dicho agente inductor. Así, en el contexto de la presente invención, la expresión "elemento de respuesta para el agente inductor", al referirse a la región reguladora de la transcripción de un gen de interés, se usa para referirse a los sitios de unión para un activador transcripcional cuya actividad se ve aumentada por la unión del agente inductor. Preferiblemente, el agente inductor es un compuesto de fácil administración y distribución en el organismo e inocuo a las dosis empleadas para activar el sistema. Además debe ser capaz de penetrar en el tejido u órgano deseado, y contar con una vida media de unas cuantas horas (no minutos, ni días).
Operador-promotor bidireccional regulable
El elemento (a) de la construcción génica de la invención comprende un operador- promotor inducible bidireccional que comprende un elemento de respuesta a un transactivador en su forma activa flanqueado por una primera secuencia promotora hepatoespecífica y por una segunda secuencia promotora hepatoespecífica en donde ambas secuencias promotoras hepatoespecíficas se orientan de forma divergente,
La expresión "operador-promotor bidireccional regulable" según se usa en la presente invención, se refiere a un promotor que es capaz de activar la transcripción de polinucleótidos específicos en direcciones opuestas a partir de dicho "operador- promotor" en presencia de una señal determinada.
El término "elemento de respuesta a un agente inductor" se refiere a uno o más elementos de ADN que actúan en cis y que confieren a un promotor la capacidad de activar la transcripción en respuesta a la interacción de dicho elemento con los dominios de unión de ADN de un factor de transcripción o de un transactivador cuya actividad transcripcional se induce en presencia del agente inductor, normalmente a consecuencia de un cambio conformacional en el transactivador resultante de la unión al agente inductor. Por tanto, la expresión "elemento de respuesta a un agente inductor" debe de entenderse como elemento de respuesta a un activador transcripcional en presencia de un agente inductor. El dominio de unión de ADN del factor de transcripción o del transactivador es capaz de unirse, en presencia o ausencia del agente activador, a la secuencia de ADN del elemento de respuesta para iniciar o inhibir la transcripción de genes situados en posición 3 ' con respecto al promotor. El término "elemento de respuesta" se usa indistintamente con "elemento de respuesta transcripcional" o TRE (transcripcional response element). En una forma preferida de realización, el promotor-operador bidireccional regulable comprende al menos un elemento de respuesta a un trans activador activable por antibióticos, preferiblemente un elemento de respuesta a tetraciclina y, aún más preferiblemente, un elemento de respuesta a tetraciclina que comprende un número variable de copias de la secuencia operadora de 42 pares de bases (denominado TetO) tal y como fue descrita originalmente en Barón et al. (Nucleic Acids Res., 1995, 17:3605-3606). El número de copias del TetO puede ser de al menos 2, al menos 5 o, preferiblemente, no más de 7. Este tipo de elementos de respuesta tetraciclina puede activar la transcripción de forma bidireccional en presencia del transactivador reverso activado por tetraciclina (o su análogo doxiciclina) según fue descrito originalmente por Gossen et al. (Science, 1995, 278: 1766-1769). En una forma preferida de realización, el elemento de respuesta a transactivador+tetraciclina comprende 7 copias de la secuencia operadora, en cuyo caso se denomina Tet07. En una forma aún más preferida, el operador-promotor comprende o consiste en la secuencia SEQ.ID.NO.:l .
El elemento (a) de la construcción génica comprende, adicionalmente, una primera y una secuencia promotora hepatoespecífica.
La expresión "secuencia promotora de la transcripción" según se usa en la presente invención, se refiere a una secuencia de ácidos nucleicos que es reconocida por una célula huésped y que resulta en la activación de la transcripción de secuencias de ácidos nucleicos presentes en posición 3' con respecto a dicha región promotora. Generalmente, la secuencia promotora contiene secuencias de control transcripcional que permite la expresión del polinucleótido de interés.
La expresión "hepatoespecífica", según se usa en la presente invención para referirse a la región promotora de la transcripción, se refiere a que dicha región es capaz de activar la transcripción de forma selectiva en células hepáticas o en líneas celulares derivadas de células hepáticas. Promotores específicos de hígado adecuados para la presente invención incluyen, sin limitación, el promotor de αΐ-anti-tripsina (AAT), el promotor de globulina de unión a hormona tiroidea, el promotor de alfa fetoproteína, el promotor de alcohol deshidrogenasa, el promotor de IGF-II, el promotor del factor VIII (FVIII), el promotor de la proteína núcleo básico (Basic Core Protein o BCP) de HBV y promotor PreS2, el promotor de globulina de unión a tiroxina (TBG), el promotor de híbrido región de control hepática (HCR)-ApoCII, el promotor híbrido HCR-hAAT, el promotor AAT combinado con el elemento potenciador del gen de la albúmina de ratón (Ealb), el promotor de apolipoproteína E, el promotor de lipoproteína de baja densidad, el promotor de piruvato quinasa, el promotor de fosfenol piruvato carboxiquinasa, el promotor de lecitina-colesterol acil transferasa (LCAT), el promotor de apolipoproteína H (ApoH), el promotor de la transferrina, el promotor de transtiretina, los promotores de alfa-fibrinógeno y beta-fibrinógeno, el promotor de alfa 1-antiquimiotripsina, el promotor de glicoproteína alfa 2-HS, el promotor de haptoglobina, el promotor de ceruloplasmina, el promotor de plasminógeno, promotores de las proteínas del complemento (CIq, CIr, C2, C3 , C4, C5 , C6, C8, C9, factor I y factor H del complemento), el promotor del activador del complemento C3, el promotor de la hemopexina y el promotor de la glicoproteína αΐ-ácida. Se pueden encontrar promotores específicos de tejido adicionales en Tissue-Specific Promoter Datábase, TiProD (Nucleic Acids Research, J4:D104-D107 (2006). Alternativamente, es posible el uso de promotores híbridos que comprenden un potenciador específico de hígado y un promotor específico de hígado. Este tipo de promotores incluyen el promotor híbrido de la región de control hepática (HCR)-ApoCII, el promotor híbrido HCR-hAAT, el promotor AAT combinado con el elemento potenciador del gen de la albúmina de ratón (Ealb) y un promotor de apolipoproteína E, el promotor híbrido formado por el potenciador del gen de la albúmina de ratón (Ealb) y el promotor de la alfa 1 -antitripsina (AAT) de ratón (Ealb-AATp).
En una forma preferida de realización, el promotor hepatoespecífico que forma parte del primer cásete de expresión es el promotor del gen de albúmina de origen murino o de origen humano. En particular, la presente invención contempla el uso del promotor completo del gen de albúmina (SEQ.ID.NO.:2) o la región mínima de dicho promotor (SEQ.ID.NO.:3), correspondiente a los nucleótidos 1 13 a 196 del promotor completo definido en SEQ.ID.NO.:2. La invención contempla el uso de cualquier fragmento del promotor que incluya al menos el promotor mínimo (residuos 113-196 de la secuencia SEQ ID NO:2). En el contexto de esta invención, un promotor específico de hígado es un promotor que es más activo en hígado comparado con su actividad en cualquier otro tejido del cuerpo. Típicamente, la actividad de un promotor específico de hígado será considerablemente mayor en hígado que en otros tejidos. Por ejemplo, tal promotor puede ser al menos 2, al menos 3, al menos 4, al menos 5 ó al menos 10 veces más activo en tejido hepático que en otro tipo de células. La actividad de dicho promotor en células de origen hepático con respecto a una célula de referencia puede ser determinado mediante su capacidad de dirigir la expresión en un tejido determinado al tiempo que previene la expresión en otras células o tejidos. Según esto, un promotor específico de hígado permite una expresión activa del gen unido en el hígado y previene la expresión en otras células o tejidos.
El experto en la materia apreciará que la primera y la segunda región promotora de la transcripción hepatoespecífica pueden ser iguales o pueden ser distintas. En una forma preferida de realización, ambas regiones reguladoras de la transcripción son iguales. En una forma de realización aún más preferida, tanto la primera región promotora de la transcripción como la segunda región promotora de la transcripción comprenden el promotor del gen de albúmina. En una forma de realización aún más preferida, el promotor del gen de albúmina que forma la primera y/o la segunda región promotora de la transcripción comprende una secuencia seleccionada del grupo de SEQ.ID.NO.:2 y SEQ.ID.NO.:3.
En una forma preferida de realización, el promotor-operador bidireccional regulable comprende un elemento de respuesta a tetraciclina formado por siete sitios de unión a al transactivador activable por el agente inductor, preferiblemente tetraciclina, que se encuentra flanqueado por dos promotores del gen de albúmina orientados de forma divergente. En una forma aún más preferida de realización, dicho operador promotor que comprende el operador Tet07 y dos promotores de albúmina comprende la secuencia de SEQ.ID.NO.:4. Las secuencias con actividad promotora hepatoespecífica se encuentran orientadas en forma divergente con respecto a la región operadora. La expresión "orientación divergente", según se usa en la presente invención para referirse a los promotores hepatoespecíficos, se refiere a parejas de promotores en donde la activación de la transcripción mediada por el primer promotor del par tiene lugar sobre una de las hebras de la molécula de ADN permitiendo la actuación de la RNA polimerasa en sentido 5 '-3 ', mientras que el segundo promotor actuaría sobre la hebra opuesta lo que resultaría en el desplazamiento de la RNA polimerasa en dirección opuesta a la que actúa junto con el primer promotor.
Los elementos que forman el operador-promotor bidireccional de la construcción génica de la invención se encuentran organizados de forma que la actividad promotora de la primera y la segunda secuencia promotora hepatoespecífica se induzca como consecuencia de la unión del transactivador a la región operadora del operador- promotor en presencia del agente inductor. El experto en la materia apreciará que dicha inducción de la actividad promotora de la transcripción dependerá, entre otros factores, de la distancia existente entre el elemento operador y las secuencias promotoras hepatoespecíficas. Preferiblemente, la distancia entre el operador y la primera o segunda secuencia promotora puede variar entre 0 y 30 nucleótidos, más preferiblemente entre 0 y 20 y aún más preferiblemente entre 0 y 15 nucleótidos.
Primera secuencia nucleotídica de la construcción génica de la invención
El elemento (b) de la construcción génica de la invención es una secuencia nucleotídica que comprende: una secuencia que codifica un transactivador activable por dicho agente inductor que se encuentra operativamente acoplada a la primera secuencia promotora hepatoespecífica; y una señal de poliadenilación situada en posición 3' con respecto a la región que codifica el transactivador.
La expresión "secuencia nucleotídica", "ácido nucleico" o "polinucleótido" se usan indistintamente en la presente invención para referirse a la forma polimérica del éster fosfato de ribonucleosidos (adenosina, guanosina, uridina o citidina; "moléculas de A N") o deoxi ribonucleosidos (deoxiadenosina, deoxiguanosina, deoxitimidina o deoxicitidina; " moléculas de ADN") o cualquier análogo fosfoester de los mismos tales como fosforotioatos y tioesteres, en forma de hebra sencilla o de doble hebra. Así, son posibles las hélices formadas por ADN-ADN, AD -ARN y ARN-ARN. El término "secuencia de ácidos nucleicos" y, en particular, la molécula de ADN o ARN, se refiere únicamente a la estructura primaria o secundaria de la molécula y no limita a ningún tipo particular de estructura terciaria. Así, este término engloba ADN de doble cadena tal y como aparece en moléculas de ADN lineales o circulares, plásmidos ADN superenrrollado y cromosomas.
La expresión "transactivador activable por el agente inductor", según se usa en la presente invención, se refiere a un polipéptido que, cuando se encuentra unido a dicho agente inductor, es capaz de promover la transcripción de un determinado gen mediante su unión a regiones específicas de reconocimiento para dicho polipéptido en la región no codificante de dicho gen, es decir, que su actividad puede ser modulada por medio de factores adicionales que pueden ser aportados o eliminados en función de la necesidad de promover la transcripción de los genes que comprenden sitios de unión específicos para tales reguladores. El experto en la materia apreciará que el transactivador codificado por la primera secuencia nucleotídica de la invención es capaz de unirse a la región del operador-promotor que comprende los elementos de respuesta a dicho agente inductor, de forma que el transactivador active la transcripción de dichas primera y segunda secuencias promotoras hepatoespecíficas tras su unión a la región operadora del operador-promotor en presencia del agente inductor.
Adicionalmente, el experto en la materia apreciará que la invención contempla cualquier método para regular la expresión del regulador transcripcional siempre que permita la expresión de forma regulada y con un mínimo de transcripción basal. En particular, la invención contempla el uso de reguladores transcripcionales cuya inducción tiene lugar no mediante un aumento de los niveles de expresión del regulador transcripcional sino mediante un cambio conformacional en respuesta a la unión del agente inductor que puede resultar en la translocación del factor de transcripción al núcleo donde ejerce su efecto o en un aumento de la actividad transcripcional. En este tipo de reguladores transcripcionales suelen estar formados por un dominio de unión a ADN o DBD (DNA binding domain), un dominio de unión a un ligando o LBD (ligand binding domain), y un dominio de activación de la transcripción o AD (activating domain).
El dominio de unión de ADN puede ser cualquier dominio para el que exista un elemento de unión específico conocido, incluyendo dominios de unión a ADN sintéticos, quiméricos o análogos. Dominios de unión a ADN adecuados para la presente invención incluyen (i) homeodominios (Scott et al., 1989, Biochim. Biophys. Acta 989:25-48; Rosenfeld et al, 1991 , Genes Dev. 5 :897-907) formados, por regla general, por una cadena de aproximadamente 61 amino ácidos que presenta una estructura secundaria compuesta por tres hélices alfa, (ii) dedos de zinc formados por dos a tres docenas de dedos de ADN de fórmula general Cys2His2 organizados en tándem (por ejemplo TFIIIA, Zif268, Gli, and SRE-ZBP) en donde cada módulo comprende una hélice alfa capaz de contactar con una región de ADN de 3 a 5 pares de bases siendo necesarios al menos 3 dedos de zinc para generar un sitio de unión a ADN de alta afinidad y al menos dos dedos de zinc para generar sitios de unión a ADN de baja afinidad, (iii) los dominios de unión a ADN denominados hélice-giro-hélice o HLH (helix-turn-helix) tal es como TetR, MAT1, MAT2, MATal, Antennapedia, Ultrabithorax, Engrailed, Paired, Fushi tarazu, HOX, Unc86, Octl , Oct2 y Pit-1 , (iv) dominios de unión a ADN del tipo cremalleras de leucina (leucine zipper) tales como GCN4, C/EBP, c-Fos/c-Jun y JunB. Ejemplos de dominios de unión a ADN adecuados en la presente invención incluyen el dominio de unión a ADN de GAL4, de LexA, de factores de transcripción, de receptores nucleares del grupo H, receptores nucleares de la superfamilia de las esteroides/hormonas tiroideas. El experto en la materia apreciará que la invención contempla el uso de dominios de unión a ADN híbridos formados por varios motivos de unión a ADN que pueden reconocer sitios de unión a ADN distintos a los de los elementos que los componen. Así, es posible el uso de dominios de unión de ADN formados por la unión de un dedo de zinc y un homeobox. En una forma preferida de realización, el dominio de unión a ADN es el procedente del represor transcripcional Tet de E.coli. Las secuencias de unión a ligando capaces de promover la localización nuclear de un activador transcripcional que los contienen, adecuadas para el uso en la presente invención, incluyen la secuencia de localización derivada de PPAR (receptores activados por activadores peroxisomales), que se translocan al núcleo en presencia de 15-desoxy-[Delta]-prostaglandina J2, receptores del ácido retinoico que se translocan al núcleo en presencia de los isómeros alfa, beta o gamma del ácido 9-cis-retinoico, receptores de farnesoide X, activables por ácido retinoico y TTNPB, receptores X hepáticos activables por 24-hidroxicolesterol, receptores de benzoato X, activables por 4-amino-butilbenzoato, receptor constitutivo de androstano, receptores de pregnano, inducibles por pregnolono-16-carbonitrilo, receptores de esteroides y xenobióticos, inducibles por rifampicina, receptores de progesterona, activables por medroxiprogesterona así como por agonistas y antagonistas de mifepristona y derivados de 19-nortestosterona, receptores de glucocorticoides activables por glucocorticoides, receptores de hormonas tiroideas, activables por T3 y/o T4, y receptores de estrógenos, activables por estrógenos y sus derivados tales como el 17-betaestradiol y el estradiol, transactivadores tTA activables por tetraciclina/doxiciclina "tet-of ' (Gossen y Bujard, 1992, Proc. Nati. Acad. Sci. USA, 89: 5547-5551), transactivadores rtTA activables por tetraciclinas "tet-on" (Gossen et al., 1995, Science, 268: 1766-1769), transactivador inducible por muristerona A o ligandos análogos del receptor de la eedisona (No et al., 1996, Proc. Nati. Acad. Sci. USA, 93 : 3346-3351), transactivadores activables por el ligando RSL1, como el sistema RheoSwitch inicialmente descrito por Palli et al. (2003, Eur. J. Biochem., 270: 1308-1315), un transactivador activable por rapamicina o análogos de la rapamicina (Ho et al., 1996, Nature, 382: 822-826; Amara et al., 1997, Proc. Nati. Acad. Sci. USA, 94 : 10618-10623), y un transactivador activable por coumermicina/novobiocina, que actúan competitivamente como inductor y represor respectivamente (Zhao et al., 2003, Hum. Gene Ther., 14: 1619-1629).
Por último, el dominio de activación transcripcional puede ser un dominio de activación acídico, un dominio de activación rico en prolinas, un dominio de activación rico en serinas/treoninas y un dominio de activación rico en glutamina. Ejemplos de dominios de activación acídicos incluyen las regiones de VP16 y la región de GAL4 formada por los aminoácidos 753-881. Ejemplos de dominios de activación transcripcional ricos en pro lina incluyen los aminoácidos 399-499 de CTF/NF1 y los aminoácidos 31-76 de AP2. Ejemplos de dominios de activación ricos en serina- treonina incluyen los aminoácidos 1-427 de ITF1 y los aminoácidos 2-452 de ITF2. Ejemplos de dominios de activación ricos en glutamina incluyen los aminoácidos 175- 269 de Octl y los aminoácidos 132-243 de Spl. Las secuencias de cada uno de las regiones descritas así como otros dominios de activación transcripcional han sido descritos por Seipel, K. et al. (EMBO J. (1992) 13 :4961-4968). Adicionalmente, otros dominios de activación transcripcional pueden ser obtenidos a partir de los anteriores usando métodos conocidos en el estado de la técnica. Adicionalmente, el dominio de activación puede ser el dominio de activación de los receptores nucleares del grupo H, de los receptores nucleares de hormonas tiroideas o esteroideas, el dominio de activación de VP16, de GAL4, de NF-κΒ, de B42, de BP64, o de p65.
En una forma preferida de realización, el domino de activación transcripcional es la proteína 16 del virión del herpes simplex (en adelante VP16), cuya secuencia de amino ácidos ha sido descrita por Triezenberg, S. J. et al. (Genes Dev., 1988, 2:718-729). Este dominio puede estar formado por en torno a 127 amino ácidos del extreme C-terminal de VP 16. Alternativamente, el dominio de activación transcripcional puede estar formado por los 1 1 aminoácidos de la región C-terminal de VP16 y que mantienen la capacidad de activar la transcripción. Regiones adecuadas del extremo C-terminal de VP16 adecuadas para su uso como dominios de activación transcripcional han sido descritos por Seipel, K. et al. (EMBO J. (1992) 13:4961-4968). En una forma aún más preferida, el activador transcripcional comprende la región mínima de dicha proteína formada por 13 aminoácidos cuya secuencia es PADALDDFDLDML (SEQ.ID.NO.:5) tal y como ha sido descrito por Barón et al. (Nucleics Acids. Res., 1997, 25:2723-2729).
En una forma preferida de realización el activador transcripcional es un activador transcripcional activable por tetraciclina o sus análogos.
El término "análogo de tetraciclina", según se usa en la presente invención, se refiere a compuestos estructuralmente relacionados con tetraciclina con capacidad de unión al represor de tetraciclina (TetR) con una Ka de al menos en torno a 10~6 M"1. Preferiblemente, el análogo de tetraciclina tiene una afinidad por el TetR de al menos 10~9 M"1. Ejemplos de análogos de tetraciclina adecuados para la presente invención incluyen, sin limitación, anhidrotetraciclina, doxiciclina (Dox), clorotetraciclina, oxitetraciclina, epioxitetraciclina, cianotetraciclina, demeclociclina, meclociclina, metociclina y otros de los que han sido descritos por Hlavka and Boothe, "The Tetracyclines," en "Handbook o f Experimental Pharmacology 78, R. K. Blackwood et al. (eds.), Springer-Verlag, Berlin-New York, 1985; L. A. Mitscher, "The Chemistry of the Tetracycline Antibiotics", Medicinal Research 9, Dekker, N.Y., 1978; Noyee Development Corporation, "Tetracycline Manufacturing Processes" Chemical Process Reviews, Park Ridge, N.J., 2 volumes, 1969; R. C. Evans, "The Technology of the Tetracyclines", Biochemical Reference Series 1, Quadrangle Press, New York, 1968; and H. F. Dowling, "Tetracycline", Antibiotic Monographs, no. 3, Medical Encyclopedia, New York, 1955.
En una forma preferida de realización, el transactivador activable por tetraciclinas puede ser el denominado proteína represora de tetraciclina reversa, o tetR reverso, que se refiere a un polipéptido que (i) muestra afinidad específica por el agente inductor, (ii) muestra afinidad especifica por el elemento de respuesta del tipo tet cuando se encuentra unido al agente inductor y (iii) se desplaza del elemento tet cuando no se encuentra unido al agente inductor. Este activador incluye tanto formas naturales del mismo como derivados funcionales. En una forma preferida de realización, el activador regulable por tetraciclinas puede ser el denominado transactivador reverso dependiente de tetraciclina (rtTA) caracterizados por que en presencia de tetraciclina o de sus análogos sufren un cambio conformacional que los permite convertirse en activadores de la transcripción, siendo inactivos en ausencia de tetraciclina. De esta forma se evitan los problemas asociados con los transactivadores derivados del represor TetR de E.coli que es capaz de activar la transcripción de genes que presentan elementos de respuesta a tetraciclina en ausencia de tetraciclina y que, en presencia de tetraciclina, dejarían de activar. Los transactivadores reversos dependiente de tetraciclina (rtTA) incluyen, preferiblemente, el transactivador rtTA o cualquiera de las variantes de rtTA descritas por Urlinger, S. et al. (Proc.Natl.Acad.Sci USA, 2000; 97:7963-7968). En una forma preferida de realización, la variante de rtTA es la variante conocida como rtTA-M2, caracterizada en que requiere para su activación una concentración doxiciclina 10 veces menor que la que requiere el rtTA orignal. El transactivador rtTA-M2 es un polipéptido codificado por el polinucleótido de secuencia SEQ.ID.NO.: 6.
El elemento (b) de la primera secuencia nucleotídica de la construcción génica de la invención comprende, adicionalmente, una secuencia de poliadenilación que se encuentra en posición 3 ' con respecto al polinucleótido que codifica el transactivador. La expresión "secuencia de poliadenilación" o "señal de poliadenilación", según se usa en la presente invención, se refiere a un ácido nucleico que contiene una señal de terminación de la transcripción y que, cuando aparece en un transcrito de ARN, permite que dicho transcrito sea poliadenilado en presencia de una enzima con actividad poliadenil transferasa. La "polidenilación", según se usa aquí, se refiere a la adición de un tramo de poliadeninas al extremo 3 ' del ARNm. Señales de poliadenilación adecuadas para su uso en la presente invención incluyen sin limitación, la señal de poliadenilación temprana-tardía de SV40, la señal de poliadenilación de la timidina quinasa de HSV, la señal de poliadenilación del gen de la protamina, la señal de poliadenilación de Elb de adeno virus 5, la señal de poliadenilación de la hormona de crecimiento bovina, la señal de poliadenilación de la variante humana de la hormona de crecimiento y similares.
En una forma preferida de realización, la señal de poliadenilación es una señal de poliadenilación bidireccional. El uso de una señal poliadenilación bidireccionales es particularmente ventajoso cuando la construcción génica de la invención se va a expresar usando vectores virales en los que las secuencias de terminación tienen cierta actividad promotora de la transcripción (en particular AAVs, lentivirus). De esta manera se evita que pueda interferir con el sistema inducible, y reducir así la actividad basal). En una forma de realización aún más preferida, la señal de poliadenilación bidireccional corresponde a la señal de poliadenilación de SV40. En una forma de realización aún más preferida, la señal de poliadenilación de SV40 comprende la secuencia SEQ.ID.NO.:7.
Segunda secuencia nucleotídica de la construcción génica de la invención La construcción génica de la invención comprende, adicionalmente, un polinucleótido que se encuentra operativamente acoplado a l a segunda secuencia promotora hepatoespecífica y una señal de poliadenilación situada en posición 3 ' con respecto al polinucleótido de interés.
Los términos "secuencia nucleotídica", "polinucleótido", "secuencia promotora hepatoespecífica", "control operativo" y "señal de polidenilación" han sido definidos con anterioridad y se utilizan en la primera secuencia nucleotídica de la misma forma que en la primera secuencia nucleotídica de expresión. El termino "polinucleótido de interés", según se usa en la presente invención, se refiere a una secuencia de ADN cuya manipulación es deseable por distintos motivos e incluye ADN, ADNc, ADN genómico, ARN o análogos de ácidos nucleicos así como las correspondientes moléculas antisentido que son capaces de generar una proteína o molécula de ARN como por ejemplo, y de manera no limitante, ARN interferente pequeño (ARNip), ARN de bucle corto (shRNA) o ribozimas.
En una forma preferida de realización, el polinucleótido de interés codifica un polipéptido. Este polipéptido puede ser un gen reportero de tipo de luciferasa, proteína verde fluorescente (GFP), variantes de GFP (EGFP. YFP o BFP), fosfatasa alcalina, beta-galactosidasa, beta-glucuronidasa, catecol deshidrogenasa.
Alternativamente, el polinucleótido de interés codifica un polipéptido cuya expresión en el hígado o en células hepáticas es útil para la corrección de transtornos hepáticos que se befeneficiarán mediante la expresión de dicho polipéptido. Así, polipéptidos adecuados para su uso en el tratamiento de alteraciones hepáticas incluyen, sin limitación,un interferón α y, en concreto, un IFN-α seleccionado del grupo de IFN-a2a, IFN-a2b, IFN-a4, IFN-a5, IFN-a8, oncostatina, cardiotrofina, IL-6, IGF-I y variantes del mismo, anfiregulina, IL-15, IL-12, CD134, CD137, PBGD, anticuerpos, inhibidores de TGF-βΙ tales como los péptidos P 17 Y P 144 descritos en las solicitudes internacionales de patente WO0031135, WO200519244 y WO0393293 que se incorporan aquí mediante referencia, inhibidores de IL-10, inhibidores FoxP3, inhibidores TNFa, inhibidores VEGF, inhibidores PD-1 e inhibidores CD152.
En una forma preferida de realización, el polinucleótido de interés codifica IL-12 o una variante funcionalmente equivalente de la misma. La interleuquina-12 (IL-12) es una citoquina de tipo I que se secreta mayormente por macrófagos y células dendríticas, que incluye tanto la IL-12 nativa como la IL-12 preparada de forma recombinante y que es capaz de aumentar la inmunidad antitumoral a través de múltiples mecanismos que incluyen: (1) aumento de las respuestas de linfocitos T citotóxicos, (2) activación de células citolíticas naturales (NK, natural killer), (3) fomento de la proliferación de células citolíticas naturales y linfocitos T, (4) inducción de la polarización de una subserie de células T auxiliares de tipo 1 (Thl, T helper 1), y (5) inducción de un efecto antiangiogénico. Muchas de estas actividades están mediadas por la producción y secreción de interferón-γ (INF-γ) por las células citolíticas naturales y linfocitos T activados.
La citoquina IL-12 es un heterodímero que consta de una cadena pesada (p40) y una cadena ligera (p35). Las secuencias de las cadenas ligera y pesada de origen humano han sido descritas por Gubler et al. (Proceedings of the National Academy of Sciences, USA, 1991 , 88:4143). El polinucleótido de interés puede codificar la cadena pesada si la cadena ligera se aporta de forma exógena, puede codificar la cadena ligera si la cadena pesada se aporta exógenamente o puede codificar ambas cadenas. El polinucleótido que codifica IL-12 da lugar a un único ARN que comprende dos marcos abierto de lectura separados entre sí por una sitio interno de entrada ribosomal lo que lleva a la expresión de cada una de las cadenas a partir de cada uno de los marcos abiertos de lectura. Preferiblemente, el polinucleótido que codifica IL-12 comprende un único marco abierto de lectura que codifica una proteína de fusión que comprende las cadenas ligeras y pesadas unidas entre sí por un enlazador tal y como ha sido descrito en W09624676 y en Lieschke GJ. et al. (Nat Biotechnol. 1997, 15 :35-40). En una forma preferida, el polinucleótido que codifica IL-12 de cadena sencilla comprende la secuencia de SEQ.ID.NO.:8. El término "variante funcionalmente equivalente", según se usa en la presente invención, se refiere a polipéptidos que difieren de la secuencia de la IL-12 por medio de una o más inserciones, deleciones o sustituciones pero que mantienen sustancialmente la actividad biológica de IL-12. La variante funcionalmente equivalente de IL-12 adecuadas para su uso en la presente invención presentan una identidad de secuencia con dicha citoquina de al menos el 50%, al menos el 60%, al menos el 70%>, al menos el 80%>, al menos el 90%>, al menos el 91%>, al menos el 92%, al menos el 93%), al menos el 94%>, al menos el 95%, al menos el 96%>, al menos el 97%, al menos el 98%o o al menos el 99%. El grado de identidad entre las variantes y las citoquinas inmunoestimuladoras se determina utilizando algoritmos y métodos de ordenador que son ampliamente conocidos por los expertos en la materia. La identidad entre dos secuencias de aminoácidos se determina preferiblemente utilizando el algoritmo BLASTP [BLASTManual, Altschul, S., et al, NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al, J Mol Biol, 215 : 403-410 (1990)]. Funciones de IL-12 que puede ser monitorizadas para determinar si un determinado polipéptido es una variante funcionalmente equivalente de IL-12 incluye, sin limitación, diferenciación de células T inmaduras en células Thl , estimulación del crecimiento y función de las células T, síntesis de IFN-γ y TNF-α por células NK (natural killer), reducción de la supresión de IFN-γ mediada por IL-4, aumento de la actividad citotóxica de las células NK y de los linfocitos CD8+, estimulación de la expresión de las cadenas beta 1 y beta 2 del receptor de IL-12 y actividad anti-angiogénica. Preferiblemente, la determinación de la actividad IL-12 de una variante se lleva a cabo mediante la medida de la capacidad de aumentar la inmunidad antitumoral, determinada por ejemplo por medio del ensayo descrito por Zabala, M. 2007 et al, [J Hepatology, vol. 47(6): 807-815].
VECTORES, GENOMAS VIRALES Y VIRIONES DE LA INVENCIÓN
La construcción génica de la invención puede presentarse de forma aislada. No obstante, con el fin de facilitar su manipulación y propagación, es conveniente incorporar la construcción en un vector. Así, en otro aspecto, la invención se relaciona con un vector que comprende una construcción génica de la invención. Según se usa en la presente invención, el término "vector", se refiere a un vehículo por el que un polinucleótido o una molécula de ADN puede ser manipulada o introducida en una célula. El vector puede ser un polinucleótido linear o circular o puede ser un polinucleótido de mayor tamaño o cualquier otro tipo de construcción tal y como el ADN o el ARN de un genoma viral, un virión o cualquier otra construcción biológica que permite la manipulación del ADN o su introducción en la célula. Se entiende que la expresiones "vector recombinante", "sistema recombinante" se pueden usar de forma intercambiable con el término vector. El experto en la materia apreciará que no existe limitación en cuanto al tipo de vector que puede ser utilizado ya que dicho vector puede ser un vector de clonaje adecuado para la propagación y para obtener los polinucleótidos o construcciones génicas adecuadas o vectores de expresión en distintos organismos heterólogos adecuados para la purificación de los conjugados. Así, vectores adecuados de acuerdo a la presente invención incluyen vectores de expresión en procariotas tales como pUC 18, pUC 19, Bluescript y sus derivados, mp l 8, mp l 9, pBR322, pMB9, CoIEl , pCRl , RP4, fagos y vectores "shuttle" tales como pSA3 y pAT28, vectores de expresión en levaduras tales como vectores del tipo de plásmidos de 2 mieras, plásmidos de integración, vectores YEP, plásmidos centroméricos y similares, vectores de expresión en células de insectos tales como los vectores de la serie pAC y de la serie pVL, vectores de expresión en plantas tales como vectores de la serie pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE y similares y vectores de expresión en células eucariotas superiores bien basados en vectores virales (adenovirus, virus asociados a los adenovirus así como retrovirus y lentivirus) así como vectores no virales tales como pSilencer 4.1-CMV (Ambion), pcDNA3, pcDNA3.1/hyg pHCMV/Zeo, pCR3.1 , pEFl/His, pIND/GS, pRc/HCMV2, pSV40/Zeo2, pTRACER- HCMV, pUB6/V5-His, pVAXl, pZeoSV2, pCI, pSVL y pKSV-10, pBPV-1 , pML2d y pTDTl.
El vector de la invención puede ser utilizado para transformar, transfectar o infectar células susceptibles de ser transformadas, transfectadas o infectadas por dicho vector. Dichas células pueden ser procariotas o eucariotas. A modo de ejemplo, el vector donde se introduce dicha secuencia de ADN puede ser un plásmido o un vector que, cuando se introduce en una célula hospedadora, se integra en el genoma de dicha célula y se replica junto con el cromosoma (o cromosomas) en el que (o en los que) se ha integrado. La obtención de dicho vector puede realizarse por métodos convencionales conocidos por los técnicos en la materia (Sambrook et al, 2001, citado supra).
Por tanto, en otro aspecto, la invención se relaciona con una célula que comprende un polinucleótido, una construcción génica o un vector de la invención, para lo cual dicha célula ha podido ser transformada, transfectada o infectada con una construcción o vector proporcionado por esta invención. Células transformadas, transfectadas o infectadas pueden ser obtenidas por métodos convencionales conocidos por los expertos en la materia (Sambrook et al., 2001, citado supra). En una realización particular, dicha célula hospedadora es una célula animal transfectada o infectada con un vector apropiado.
Células huésped adecuadas para la expresión de los conjugados de la invención incluyen, sin estar limitado, células de mamíferos, plantas, insectos, de hongos y de bacterias. Células bacterianas incluyen, sin estar limitado, células de bacterias Gram positivas tales como especies del género Bacillus, Streptomyces y Staphylococcus y células de bacterias Gram negativas tales como células del género Escherichia y Pseudomonas. Células de hongos incluyen, preferiblemente, células de levaduras tales como Saccharomyces, Pichia pastoris y Hansenula polymorpha. Células de insectos incluyen, sin limitación, células de Drosophila y células Sf9. Células de plantas incluyen, entre otros, células de plantas de cultivos tales como cereales, plantas medicinales, ornamentales o de bulbos. Células de mamíferos adecuadas para en la presente invención incluyen líneas celulares epiteliales (porcinas, etc.), líneas celulares de osteosarcoma (humanas, etc.), líneas celulares de neuroblastoma (humanas, etc.), carcinomas epiteliales (humanos, etc.), células gliales (murinas, etc.), líneas celulares hepáticas (de mono, etc.). células CHO (Chínese Hámster Ovary), células COS, células BHK, células HeLa, 911, AT1080, A549, 293 o PER.C6, células ECCs humana NTERA-2, células D3 de la línea de mESCs, células troncales embrionarias humanas tales como HS293 y BGVOl, SHEFl, SHEF2 y HS181, células NIH3T3, 293T, REH y MCF-7 y células hMSCs. Alternativamente, la construcción génica de la invención puede estar formando parte de un genoma viral recombinante. Así, en otra forma de realización, la invención se relaciona con un genoma viral recombinante que comprende una construcción génica de acuerdo a la invención. El término "genoma viral", según se usa en la presente invención, se refiere al complemento genético de un virus bien completo o bien manipulado de forma que se hayan eliminado los elementos no esenciales manteniendo los elementos esenciales de forma que se mantenga la funcionalidad adecuada para infectar, transducir e introducir una secuencia de nucleótidos de interés a una célula diana.
En una forma preferida de realización, el genoma viral que comprende la construcción de la invención es el genoma es de un virus adeno-asociado recombinante. Según se usa aquí, el término "virus adenoasociado" (AVV) incluye cualquier serotipo de AAV. En general, los serotipos de AAV tienen secuencias genómicas de homología significativa a nivel de aminoácidos y ácido nucleico, proporcionan un serie idéntica de funciones genéticas, producen viriones que son esencialmente física y funcionalmente equivalentes, y se replican y ensamblan mediante mecanismos prácticamente idénticos. En particular, la invención se puede llevar a cabo usando el serotipo 1 de AAV (AAV1), AAV2, AAV3 (incluyendo los tipos 3 A y 3B), AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV1 1 , AAV aviar, AAV bovino, AAV canino, AAV equino, AAV ovino, y cualquier otro AAV conocido ahora o descubierto más adelante. Ver por ejemplo, Fields et al., Virology, volumen 2, capítulo 69 (4a ed., Lippincott-Raven Publishers). Recientemente, se han identificado un número de putativos nuevos serotipos y ciados de AAV (ver, por ejemplo, Gao et al., (2004) J. Virology 78:6381- 6388; Morís et al., (2004) Virology 33 :375-383). Las secuencias genómicas de varios serotipos de AAV y los parvovirus autónomos, así como las secuencias de las repeticiones terminales invertidas (ITR), proteínas Rep, y subunidades de la cápside son conocidas en la técnica. Tales secuencias se pueden encontrar en la bibliografía o en bases de datos públicas tal como GenBank. Ver por ejemplo, Números de acceso de GenBank NC_002077, NC_001401, NC_001729, NC_001863, NC_001829, NC_001862, NC_000883, NC_001701, NC_001510, NC_006152, NC_006261, AF063497, U89790, AF043303, AF028705, AF028704, J02275, J01901, J02275, X01457, AF288061 , AH009962, AY028226, AY028223, NC_001358, NC_001540, AF513851 , AF513852, AY530579; las divulgaciones de los cuales se incorporan aquí mediante referencia para enseñanza de secuencias de ácidos nucleicos y aminoácidos de parvovirus y AAV. Ver también, por ejemplo, Srivistava et al., (1983) J. Virology 45:555; Chiorini et al, (1998) J. Virology 71 :6823; Chiorini et al, (1999) J. Virology 73: 1309; Bantel-Schaal et al, (1999) J. Virology 73:939; Xiao et al, (1999) J. Virology 73 :3994; Muramatsu et al., (1996) Virology 221 : 208; Shade et al., (1986) J. Virol. 58:921; Gao et al, (2002) Proc. Nat. Acad. Sci. USA 99: 11854; Morís et al, (2004) Virology 33-: 375-383; publicaciones de patentes internacionales WO 00/28061, WO 99/61601 , WO 98/1 1244; y patente de EE.UU. No. 6156303; las divulgaciones de los cuales se incorporan aquí mediante referencia para una descripción de las secuencias de ácidos nucleicos y aminoácidos de AAV.
Típicamente, el "genoma recombinante de AAV" (o "genoma rAAV") se refiere a un vector que comprende una o más secuencias de polinucleótidos de interés, genes de interés o "transgenes" que están flanqueados por al menos una secuencia de repetición terminal invertida (ITR) de parvovirus o AAV. Tales vectores rAAV se pueden replicar y empaquetar en partículas víricas infecciosas cuando están presentes en una célula huésped que expresa los productos de los genes rep y cap de AAV (es decir las proteínas Rep y Cap de AAV). Cuando un vector rAAV se incorpora en una construcción de ácido nucleico mayor (por ejemplo, en un cromosoma o en otro vector tal como un plásmido o baculovirus usado para clonación o transfección), el vector rAAV se refiere típicamente como un "pro-vector" que se puede "rescatar" mediante replicación y encapsidación en presencia de funciones empaquetadoras de AAV y funciones auxiliares necesarias.
Así, en una forma preferida de realización, el genoma viral recombinante de la invención comprende la construcción génica de la invención y al menos una ITR de AAV. Preferiblemente, la construcción génica de la invención se encuentra flanqueada por ITRs de AAV. Las repeticiones terminales invertidas (ITR) están típicamente presentes en al menos dos copias en el vector AAV, típicamente flanqueando la construcción génica de la invención. Las ITR típicamente estarán en los extremos 5' y 3 ' de la construcción génica de la invención pero no necesitan ser contiguas a ella. Las repeticiones terminales pueden ser iguales o diferentes entre sí. El término "repetición terminal" incluye cualquier repetición terminal vírica y/o secuencias parcial o completamente sintéticas que forman estructuras en horquilla y funcionan como repeticiones terminales invertidas, tal como la "secuencia doble D" descrita en la patente de los Estados Unidos No. 5478745 a Salmulski y col. Una "repetición terminal de AAV" puede ser de cualquier AAV, incluyendo pero no limitado a los serotipos 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , ó 12 o cualquier otro AAV conocido ahora o descubierto con posterioridad. La repetición terminal de AAV no necesita tener una secuencia salvaje (por ejemplo, una secuencia salvaje puede estar alterada por inserción, deleción, truncamiento o mutaciones sin sentido), mientras la repetición terminal medie las funciones deseadas, por ejemplo, replicación, corte, empaquetamiento de virus, integración, y/o rescate de provirus, y similares. El genoma del vector puede comprender una o más (por ejemplo, dos) repeticiones terminales de AAV, que pueden ser iguales o diferentes. Además, una o más repeticiones terminales de AAV pueden ser del mismo serotipo de AAV que la cápside de AAV, o puede ser diferente. En formas de realización particulares, el genoma del vector comprende una repetición terminal de AAV1 , AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11 y/o AAV12, en particular de AAV1 , AAV2 y/o AAV4. En una forma de realización preferida, las ITR pueden derivar de AAV2 y se pueden definir mediante SEQ.ID.NO.:9 (5'-ITR) y SEQ.ID.NO.: 10 (3'-ITR).
Aunque se prefiere que las secuencias de ácidos nucleicos que codifican los genes de la cápside estén proporcionadas en trans por la célula empaquetadora o por un segundo vector, la invención también contempla genomas AAV que comprenden además una secuencia que codifica una o más proteínas de la cápside que empaqueta la secuencia de polinucleótido mencionada anteriormente. Las secuencias que codifican las proteínas de cápside VP1 , VP2 y VP3 para su uso en el contexto de la presente invención pueden proceder de cualquiera de los 42 serotipos conocidos, más preferiblemente de AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 o AAV9 o partículas similares a AAV recién desarrolladas obtenidas mediante, por ejemplo técnicas de mezcla de la cápside y librerías de cápside de AAV. Cuando las secuencias que codifican las proteínas de la cápside derivan de un serotipo de AAV diferente que las ITR, el genoma de AAV se conoce como genoma de AAV "híbrido" (es decir, en el que la cápside de AAV y las repeticiones terminales de AAV son de diferentes AAV) como se describe en la publicación de patente internacional WO 00/28004 y Chao et al., (Molecular Therapy 2000, 2:619). Según se describe aquí, el vector rAAV puede ser cualquier vector rAAV adecuado conocido ahora o descubierto más adelante. De forma alternativa, las secuencias que codifican los genes de la cápside se pueden proporcionar en trans mediante cotransfección en la célula empaquetadora de un polinucleótido que codifica dichas proteínas de la cápside. En una forma de realización preferida, el vector viral comprende ITR de AAV1, AAV2 y/o AAV4 y uno o más o todos los genes de la cápside de AAV1, AAV2, AAV5, AAV6 o AAV8.
Opcionalmente, los genomas de AAV de la invención pueden comprender secuencias adicionales que codifican proteínas Rep. Las secuencias que codifican Rep (Rep78/68 y Rep52/40) derivan preferiblemente de AAV1, AAV2 y/o AAV4. Las secuencias Rep e ITR de AAV están particularmente conservadas entre la mayoría de los serotipos. Las proteínas Rep78 de varios serotipos de AAV son por ejemplo, más del 89% idénticas y la identidad total de la secuencia de nucleótidos a nivel del genoma entre AAV2, AAV3A, AAV3B y AAV6 es alrededor del 82% (Bantel-Schaal et al, 1999, J. Viral., 73:939-947). Además, se sabe que las secuencias Rep y las ITR de la muchos serotipos de AAV trans-complementan (es decir, se sustituyen funcionalmente) de forma eficaz las secuencias correspondientes de otros serotipos en la producción de partículas de AAV en células de mamífero. US2003148506 describe que las secuencias Rep e ITR de AAV también trans-complementan eficazmente otras secuencias Rep e ITR de AAV en células de insecto.
Se sabe que las proteínas VP de AAV determinan el tropismo celular del virión AAV. Las secuencias que codifican las proteínas VP están significativamente menos conservadas que las proteínas y genes Rep entre los diferentes serotipos de AAV. La capacidad de las secuencias Rep e ITR para trans-complementar las secuencias correspondientes de otros serotipos permite la producción de partículas rAAV pseudotipadas que comprenden las proteínas de la cápside de un serotipo (por ejemplo, AAV5) y las secuencias Rep y/o ITR de otro serotipo de AAV (por ejemplo, AAV2). Tales partículas rAAV pseudotipadas son parte de la presente invención.
En otro aspecto, la invención se relaciona con un virión obtenible expresando un genoma viral de acuerdo con la presente invención en una célula empaquetadora adecuada. Los términos "virión", "partícula de virus recombinante" y "vector viral" se usan aquí de forma intercambiable y se refieren a una partícula de virus infecciosa, deficiente en replicación, que comprende el genoma vírico empaquetado en una cápside y, opcionalmente, en una envuelta lipídica rodeando la cápside. En una forma de realización preferida, el virión es un virión AAV. En otra forma de realización, si el virión se obtiene empaquetando un vector AAV de la invención, el virión de la invención es un "virión AAV recombinante". El término, "virión AAV recombinante" o "virión rAAV", como se usa aquí, se refiere a un virus infeccioso, deficiente en replicación compuesto de un armazón proteico de AAV encapsidando un polinucleótido que comprende la construcción génica de la invención flanqueada en ambos extremos por los ITRs de AAV.
El término "proteína Cap", como se usa aquí, se refiere a un polipéptido que tiene al menos una actividad funcional de una proteína Cap nativa de AAV (por ejemplo, VP1 , VP2, VP3). Ejemplos de actividades funcionales de proteínas Cap (por ejemplo, VP1, VP2, VP3) incluyen la capacidad de inducir la formación de una cápside, facilitar la acumulación de ADN monocatenario, facilitar el empaquetamiento de ADN de AAV en cápsides (es decir, encapsidación), unión a receptores celulares, y facilitar la entrada del virión en las células huésped. En una forma de realización preferida, la secuencia de polinucleótidos que codifica el gen cap corresponde al gen cap de AAV8. El armazón de un virión AAV muestra simetría icosaédrica y normalmente contiene una proteína Cap principal, normalmente la menor de la proteína Cap, y una o dos proteína o proteínas Cap minoritarias.
El término "proteína Rep", como se usa aquí, se refiere a un polipéptido que tiene al menos una actividad funcional de una proteína Rep nativa de AAV (por ejemplo, Rep 40, 52, 68, 78). Una "actividad funcional" de una proteína Rep (por ejemplo, Rep 40, 52, 68, 78) es cualquier actividad asociada con la función fisiológica de la proteína, incluyendo facilitar la replicación del ADN mediante reconocimiento, unión y corte del origen de replicación de ADN de AAV así como actividad ADN helicasa. Funciones adicionales incluyen la modulación de la transcripción de promotores de AAV (u otro heterólogo) e integración específica de sitio de ADN de AAV en un cromosoma huésped. En una forma de realización preferida, la secuencia de polinucleótidos que codifica el gen rep corresponde al gen rep de AAV2.
El experto en la materia entenderá que los viriones AAV de la invención pueden comprender proteínas de cápside de cualquier serotipo de AAV. Sin embargo, debido al diferente tropismo de los serotipos conocidos de AAV por diferentes células, los viriones AAV contendrán una proteína de la cápside que es más adecuada para la distribución a las células hepáticas. Para la transducción de células hepáticas los viriones rAAV con proteínas de la cápside de AAV1 , AAV8 y AAV5 son preferidos (Nathwani et al., 2007, Blood 109: 1414-1421; Kitajima et al, 2006, Atherosclerosis 186:65-73).
Las secuencias que codifican Rep (Rep78/68 y Rep52/40) pueden ser de cualquier serotipo de AAV, pero preferiblemente derivan de AAV1 , AAV2 y/o AAV4. Las secuencias que codifican las proteínas de la cápside VPl, VP2 y VP3 para su uso en el contexto de la presente invención se pueden sin embargo tomar de cualquiera de los 42 serotipos conocidos, más preferiblemente de AAV1, AAV2, AAV5, AAV6 o AAV8.
La invención también contempla viriones que comprenden una cápside y un genoma vírico recombinante, en donde se ha insertado o sustituido una secuencia exógena de direccionamiento en la cápside nativa. El virión se dirige preferiblemente (es decir, dirigida a un tipo o tipos particulares de célula) mediante la sustitución o inserción de la secuencia exógena de direccionamiento en la cápside. Expresado de forma alternativa, la secuencia exógena de direccionamiento preferiblemente confiere un tropismo alterado al virión. Como una exposición adicional alternativa, la secuencia de direccionamiento aumenta la eficacia de distribución del vector dirigido a una célula. La(s) secuencia(s) exógena(s) de direccionamiento pueden cambiar o sustituir parte de o toda una subunidad de la cápside, alternativamente, más de una subunidad de la cápside. Como una alternativa adicional, se puede introducir más de una secuencia exógena de direccionamiento (por ejemplo, dos, tres, cuatro, cinco o más secuencias) en la cápside del virión. En formas de realización alternativas, se prefieren las inserciones y sustituciones en las subunidades minoritarias de la cápside (por ejemplo, VP1 y VP2 de AAV). Para cápsides AAV, las inserciones o sustituciones en VP2 y VP3 también son preferidas.
En formas de realización más preferidas, la secuencia exógena de direccionamiento puede ser una secuencia de aminoácidos que codifica un péptido o proteína, que se inserta o sustituye en la cápside del virión para cambiar el tropismo del virión. El tropismo del virión nativo se puede reducir o eliminar mediante inserción o sustitución de la secuencia de aminoácidos. Alternativamente, la inserción o sustitución de la secuencia exógena de aminoácidos puede dirigir el virión a un tipo de células particular. La secuencia exógena de direccionamiento puede ser cualquier secuencia de aminoácidos que codifique una proteína o péptido que cambia el tropismo del virión. En formas de realización particulares, el péptido o proteína de direccionamiento puede ser natural o, de forma alternativa, completa o parcialmente sintética. Péptidos y proteínas ejemplares incluyen ligandos y otros péptidos que se unen a receptores de la superficie celular presentes en células de hígado incluyen ligandos capaces de unirse al receptor Sr-Bl para apolipoproteína E, lectinas específicas de galactosa y lactosa, ligandos del receptor de lipoproteínas de baja densidad, ligandos de asialoglicoproteína (galactosa- terminal) y similares.
De forma alternativa, la secuencia exógena de direccionamiento puede ser un anticuerpo o un grupo de reconocimiento del antígeno del mismo. El término "anticuerpo" como se usa aquí se refiere a todos los tipos de inmunoglobulinas, incluyendo IgG, IgM, IgA, IgD, e IgE. Los anticuerpos pueden ser monoclonales o policlonales y pueden ser de cualquier especie de origen, incluyendo (por ejemplo) ratón, rata, concejo, caballo, o ser humano, o pueden ser anticuerpos quiméricos. El término "anticuerpo" también abarca anticuerpos biespecíficos o "de puente" conocidos por los expertos en la materia. Los fragmentos de anticuerpos dentro del ámbito de la presente invención incluyen, por ejemplo, fragmentos Fab, F(ab')2 y Fe, y los fragmentos correspondientes obtenidos de anticuerpos diferentes de IgG. Tales fragmentos se pueden producir por técnicas conocidas. Marcadores hepáticos de superficie que pueden ser usados para el direccionamiento de los rAAV de la invención incluyen, sin limitación, el antígeno de superficie del virus de la hepatitis B y LDL.
La secuencia exógena de aminoácidos insertada en la cápside del virión puede ser una que facilite la purificación o detección del virión. Según este aspecto de la invención, no es necesario que la secuencia exógena de aminoácidos también cambie el virión del parvovirus modificado. Por ejemplo, la secuencia exógena de aminoácidos puede incluir una secuencia de poli-histidina que es útil para purificar el virión sobre una columna de níquel, como saben los expertos en la materia o se puede emplear un péptido o proteína antigénicos para purificar el virión mediante técnicas estándar de inmunopurificación. Alternativamente, la secuencia de aminoácidos puede codificar un ligando de receptor o cualquier otro péptido o proteína que se puede usar para purificar el virión modificado mediante purificación de afinidad o cualquier otro método conocido en la técnica (por ejemplo técnicas de purificación basadas en tamaño, densidad, carga, o punto isoeléctrico diferencial, cromatografía de intercambio iónico, o cromatografía de péptidos). Las inserciones de secuencias exógenas de direccionamiento o de purificación se pueden insertar en cualquier proteína de la cápsida siempre que la inserción no implique la capacidad de dicha proteína de ensamblarse. En particular, es preferible insertar la secuencia exógena de aminoácidos en las subunidades Cap minoritarias del AAV, por ejemplo en las subunidades VPl y VP2 de AAV. De forma alternativa, es posible realizar las inserciones en VP2 o VP3. Los viriones AAV preferidos pueden ser modificados para reducir la respuesta del huésped (véase, por ejemplo, Russell (2000, J. Gen. Viral. 81 :2573-2604), US20080008690 y Zaldumbide y Hoeben (Gene Therapy, 2008:239-246).
Los viriones recombinantes de la invención se pueden preparar usando tecnología estándar para la preparación de AAV. Típicamente, los rAAV se preparan mediante la introducción en una célula hospedadora adecuada del genoma viral de acuerdo a la invención y la co-expresión en dicha célula de proteína rep de AAV, una proteína cap de AAV y, opcionalmente, una secuencia de ácidos nucleico que codifica funciones víricas y/o celulares de las que depende AAV para la replicación.
Para facilitar el empaquetamiento, el genoma del vector recombinante es generalmente de alrededor del 80% hasta alrededor del 105% del tamaño del genoma salvaje y comprende una señal de empaquetamiento adecuada. Para facilitar el empaquetamiento en una cápside AAV, el genoma es preferiblemente aproximadamente 5,2 kb de tamaño o menos. En otros formas de realización, el genoma es preferiblemente mayor de alrededor de 3,6, 3,8, 4,0, 4,2 ó 4,4 kb de longitud y/o menos de alrededor de 5,4, 5,2, 5,0 ó 4,8 kb de longitud. Dicho de forma alternativa, la(s) secuencia(s) heteróloga(s) de nucleótidos serán típicamente de menos de alrededor de 5,0 kb de longitud (más preferiblemente menos de alrededor de 4,8 kb, todavía más preferiblemente menos de alrededor de 4,4 kb de longitud, aún más preferiblemente menos de alrededor de 4,2 kb de longitud) para facilitar el empaquetamiento del genoma recombinante por la cápside de AAV.
La secuencias de ácidos nucleicos necesarias para la producción del virión de la invención son las denominadas "funciones auxiliares de AAV" y comprenden una, o ambas de las ORF principales de AAV, es decir las regiones que codifican rep y cap, u homólogos funcionales de las mismas. Secuencias de ácido nucleicos adecuadas que codifican las proteínas rep y cap para su uso en el método de la invención se han descrito en detalle anteriormente en relación con los viriones de la invención. El experto en la materia apreciará, sin embargo, que las secuencias auxiliares que codifican las proteínas rep y cap de los AAV se pueden proporcionar a partir de uno, dos o más vectores en varias combinaciones. Como se usa aquí, el término "vector" incluye cualquier elemento genético, tal como un plásmido, fago, transposón, cósmido, cromosoma, cromosoma artificial, virus, virión, etc., que es capaz de replicación cuando se asocia con los elementos de control adecuados y que puede transferir secuencias de genes entre células. De esta manera, el término incluye vehículos de clonación y expresión, así como vectores virales. Alternativamente, los genes rep y/o cap de AAV se pueden proporcionar de forma alternativa por una célula empaquetadora que expresa estos genes establemente (ver, por ejemplo, Gao et al, (1998) Human Gene Therapy 9:2353; Inoue et al, (1998) J. Viral. 72:7024; patente de EE.UU. No. 5837484; WO 98/27207; patente de EE.UU. No. 5658785; WO 96/17947).
En una forma de realización preferida, los polinucleótidos que codifican las proteínas rep y cap se pueden proporcionar a partir de un único vector individual, al que normalmente se refiere como un vector de función auxiliar de AAV. Ejemplos de vectores adecuados para su uso con la presente invención incluyen pHLP19, descrito en la patente de EE.UU. No. 6001650, y el vector pRep6cap6, descrito en la patente de EE.UU. No. 6156303 , la divulgación de las cuales se incorpora aquí mediante referencia en su totalidad.
En otras formas de realización particulares, las secuencias adicionales están en forma de un virus adenovirus auxiliar que puede ser un virus auxiliar híbrido que codifica las proteínas Rep y/o de la cápside de AAV. Los vectores híbridos ayudantes Ad/AAV que expresan los genes rep y/o cap de AAV y métodos para producir las reservas de AAV usando estos reactivos son conocidos en la técnica (ver, por ejemplo, patente de EE.UU. No. 5589377; y patente de EE.UU. No. 5871982, patente de EE.UU. No. 6251677; y patente de EE.UU. No . 6387368). Preferiblemente, el Ad híbrido de la invención expresa las proteínas de la cápside de AAV (es decir, VP1, VP2 y VP3). De forma alternativa, o adicional, el adenovirus híbrido puede expresar una o más de las proteínas Rep de AAV (es decir, Rep40, Rep52, Rep68 y/o Rep78). Las secuencias de AAV pueden estar operativamente asociadas con un promotor específico de tejido o inducible.
El componente optativo para la generación de viriones recombinantes puede comprender una secuencia de ácido nucleico que codifica funciones víricas no derivadas de AAV y/o celulares de las que AAV depende para la replicación (es decir, "funciones accesorias"). Las funciones accesorias incluyen aquellas funciones requeridas para la replicación de AAV, incluyendo, sin limitación, aquellos grupos implicados en la activación de la transcripción génica de AAV, ayuste de ARNm de AAV específico de fase, replicación de ADN de AAV, síntesis de productos de expresión de cap, y ensamblaje de la cápside de AAV. Las funciones accesorias basadas en virus pueden derivar de cualquiera de los virus auxiliares conocidos tales como adenovirus, herpesvirus (diferentes del virus del herpes simple de tipo 1), y virus de la vacuna. Típicamente, el plásmido de empaquetamiento del vector AAV según la invención contiene como secuencias de ADN de virus auxiliar los genes E2A, E4 y VA de Ad5, que pueden derivar del plásmido pDG descrito en la solicitud de patente alemana DE196 44 500.0-41, y que están controladas por el promotor original respectivo o por promotores heterólogos.
Alternativamente, es posible la expresión de los componentes estructurales de los AAV y la puesta en contacto de éstos con el genoma viral de la invención de forma que la encapsidación tenga lugar in vitro. Para la preparación de las proteínas estructurales, se puede usar cualquier tipo de célula hospedadora adecuada. Preferiblemente, se usan células de insecto tal y como ha sido descrito por Urabe et al, (Hum. Gene Ther. 2002, 13 : 1935-1943; US6723551 y US20040197895). Líneas celulares adecuadas para la expresión de los componentes estructurales de los rAAV incluyen, sin limitación, la líneas celulares de Spodoptera frugiperda, líneas celulares de Drosophila, o líneas celulares de mosquito, por ejemplo, líneas celulares derivadas de Aedes albopictus. La células o líneas celulares de insecto preferidas son de especies de insecto que son susceptible de infección por baculovirus, incluyendo, por ejemplo, Se301, SeIZD2109, SeUCRl, Sf9, Sf900+, Sf21, BTI-TN-5B1-4, MG-I, Tn368, HzAmI, Ha2302, Hz2E5, High Five (Invitrogen, CA, EE.UU.) y expresSF+® (US 6,103,526; Protein Sciences Corp., CT, EE.UU.).
Una vez que se han ensamblado los viriones de la invención, es posible la purificación de los mismos para separarlos de aquellos componentes que no hayan pasado a formar parte de los viriones. Típicamente, los viriones se separan del resto de componentes mediante un gradiente de densidad, típicamente un gradiente de iodixanol. Tras la recuperación de la fracción que contiene los rAAV, es posible la posterior purificación de esta mediante el uso de cromatografía, que puede ser una cromatografía de intercambio iónico o de hidroxiapatito. Este tipo de purificación es el preferido para la purificación de viriones que tienen cápsides que contienen proteínas de los serotipos 1 y 5 de AAV porque estos serotipos no se unen a columnas de heparina.
Para la purificación de viriones rAAV2, la cromatografía en heparina-agarosa es preferida. Ver, por ejemplo, la patente de EE.UU. No. 6146874.
Los viriones también se purifican usando cromatografía en ausencia de centrifugación en gradiente de densidad. Como ejemplo, los lisados de células infectadas se pueden someter directamente a cromatografía para la purificación de viriones rAAV. Para métodos de producción a gran escala de vectores rAAV que implican cromatografía, ver Potter et al. (Methods Enzymol, 2002, 346:413-430).
Los viriones recombinantes se pueden usar o se puede incluir un paso adicional de purificación por afinidad de los vectores viriones usando un anticuerpo anti-AAV, preferiblemente un anticuerpo inmovilizado. El anticuerpo anti-AAV preferiblemente es un anticuerpo monoclonal. Un anticuerpo particularmente adecuado es un anticuerpo de camélido de cadena sencilla o un fragmento del mismo, obtenible por ejemplo, de camellos o llamas (ver, por ejemplo, Muyldermans, 2001, Biotechnol. 74: 277-302). El anticuerpo para la purificación por afinidad de rAAV preferiblemente es un anticuerpo que se une específicamente a un epítopo de una proteína de la cápside de AAV, en donde el epítopo preferiblemente es un epítopo que está presente en proteínas de la cápside de más de un serotipo de AAV. Por ejemplo el anticuerpo se puede producir o seleccionar en base de la unión específica a la cápside de AAV2 pero al mismo tiempo también se puede unir específicamente a las cápsides de AAV1, AAV3 y AAV5.
MÉTODO IN VITRO PARA LA EXPRESIÓN IN VITRO DE POLINUCLEÓTIDO DE INTERÉS
Las construcciones génicas, vectores y viriones de la invención permiten la expresión in vitro de polinucleótidos de interés en una célula de origen hepático. Por tanto, en otro aspecto, la invención se relaciona con un método in vitro para la expresión en una célula de origen hepático de un polinucleótido de interés que comprende las etapas de (i) poner en contacto dicha célula con una construcción génica de la invención, con un vector de la invención, con un genoma viral de la invención o con un virión de la invención en condiciones adecuadas para la entrada en la célula de dicha construcción, de dicho vector o de dicho virión y
(ii) poner en contacto la célula con el agente inductor durante el tiempo necesario para que se produzca la expresión del polinucleótido de interés.
Células de origen hepático en las que se puede expresar un polinucleótido de interés usando el método in vitro de la presente invención incluyen no sólo células de cultivos primarios de hepatocitos, sino células inmortalizadas de origen hepático tales como las líneas celulares de hepatoma HepG2, COLO 587, FaO, HTC, HuH-6, HuH-7, PLC, Hep3B, BPRCL, MCA-RH777, BEL-7404, SMMC-7221 , L-02, CYNK-1, PLC/PRF/5 y MCA-RH8994, así como líneas inmortalizadas de forma experimental mediante la expresión de oncogenes virales o celulares, tales como las células de las líneas Fa2N-4 y EalC-35.
El método de expresión in vitro de acuerdo a la invención comprende una primera etapa en el que la célula de origen hepático se pone en contacto con una construcción génica, un vector, un genoma viral o con un virión de la invención en condiciones adecuadas para la entrada en la célula de dicha construcción, de dicho vector o de dicho virión. Métodos adecuados para promover la entrada de un ácido nucleico al interior de una célula incluyen, sin limitación, la inyección directa de ADN desnudo, métodos balísticos, transferencia mediada por liposomas, transferencia mediada por receptores (complejo ligando-ADN), electroporación, y precipitación con fosfato cálcico (véase, por ejemplo, US 4970154, WO 96/40958, US 5679559, US 5676954 y US 5593875). En el caso de que la construcción génica se aporte en forma de virión, la entrada en la célula del material genético tiene lugar gracias a la capacidad intrínseca de los viriones de unirse a la superficie de la célula hepática y de liberar el material genético en su interior. En este sentido y tal como se mencionó anteriormente, es preferible el uso de rAAV en los que las proteínas de la cápsida pertenezcan a los serotipos AAV1, AAV8 y AAV5 tal y como ha sido descrito con anterioridad (Nathwani et al, 2007, Blood 109: 1414-1421; Kitajima et al, 2006, Atherosclerosis 186:65-73).
En la segunda etapa del método de la invención, las células que contienen en su interior la construcción génica de la invención se ponen en contacto con un agente inductor, de forma que se active la transcripción tanto del transactivador como del polinucleótido de interés. La concentración óptima de agente inductor así como el tiempo adecuado de incubación de las células con dicho agente inductor deberán ser determinados de forma experimental.
La determinación de la expresión del polinucleótido de interés en respuesta al agente inductor se puede determinar usando técnicas conocidas para un experto en la materia para la determinación de los niveles de ARNm en una muestra (RT-PCR, Northern blot y similares) o para la determinación de los niveles de proteína (ELISA, Western blot, RIA y similares)
COMPOSICIONES FARMACÉUTICAS Y US O S TERAPEÚTIC O S DE LA INVENCIÓN
Los compuestos de la invención resultan de utilidad para la expresión controlada temporal y hepatoespecífica de productos de interés terapéutico. Por tanto, en otro aspecto, la invención se relaciona con una preparación farmacéutica que comprende una cantidad terapéuticamente efectiva de una construcción génica de la invención, de un vector de la invención, de un virión de la invención y un vehículo (carrier) o excipiente farmacéuticamente aceptable.
En otro aspecto, la invención se relaciona con una construcción génica de la invención, un vector de la invención o un virión de la invención para su uso en medicina.
Las composiciones farmacéuticas de la invención pueden ser administradas por cualquier ruta, incluyendo, sin ser limitante, oral, intravenosa, intramuscular, intrarterial, intramedular, intratecal, intraventricular, transdérmica, subcutánea, intraperitoneal, intranasal, entérica, tópica, sublingual o rectal. Una revisión de las distintas formas de administración de principios activos, de los excipientes a utilizar y de sus procedimientos de fabricación puede encontrarse en el Tratado de Farmacia Galénica, C. Faulí i Trillo, Luzán 5, S.A. de Ediciones, 1993 y en Remington's Pharmaceutical Sciences (A.R. Gennaro, Ed.), 20a edición, Williams & Wilkins PA, USA (2000). Ejemplos de vehículos farmacéuticamente aceptables son conocidos en el estado de la técnica e incluyen soluciones salinas tamponadas con fosfato, agua, emulsiones, tales como emulsiones aceite/agua, diferentes tipos de agentes humectantes, soluciones estériles, etc. Las composiciones que comprenden dichos vehículos se pueden formular por procedimientos convencionales conocidos en el estado de la técnica.
En el caso de que se administren ácidos nucleicos (los polinucléotidos de la invención, los vectores, las construcciones génicas o los vectores virales), la invención contempla composiciones farmacéuticas especialmente preparadas para la administración de dichos ácidos nucleicos. Las composiciones farmacéuticas pueden comprender dichos ácidos nucleicos en forma desnuda, es decir, en ausencia de compuestos que protejan a los ácidos nucleicos de su degradación por las nucleasas del organismo, lo que conlleva la ventaja de que se elimina la toxicidad asociada a los reactivos usados para la transfección. Rutas de administración adecuadas para los compuestos desnudos incluyen intravascular, intratumoral, intracraneal, intraperitoneal, intraesplénica, intramuscular, subretinal, subcutánea, mucosa, tópica y oral (Templeton, 2002, DNA Cell Biol, 21 :857-867). Alternativamente, los ácidos nucleicos pueden administrarse formando parte de liposomas, conjugadas a colesterol o conjugados a compuestos capaces de promover la translocación a través de membranas celulares tales como el péptido Tat derivado de la pro teína TAT de HIV-1, la tercera hélice del homeodominio de la proteína Antennapedia de D.melanogaster, la proteína VP22 del virus del herpes simplex, oligómeros de arginina y péptidos tales como los descritos en WO07069090 (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21 :99-103, Schwarze, S.R. et al., 2000, Trends Pharmacol. Sci., 21 :45-48, Lundberg, M et al, 2003, Mol. Therapy 8: 143- 150 y Snyder, EX. y Dowdy, S.F., 2004, Pharm. Res. 21 :389-393). En caso de que se administren viriones, la cantidad de éstos y el tiempo de administración dependerán de las circunstancias y deberán ser optimizadas en cada caso por el experto en la materia usando tecnología estándar. Así, es posible la administración de cantidades terapéuticamente eficaces de viriones de la invención mediante una única administración, tal como por ejemplo, una única inyección de un número suficiente de partículas infecciosas para proporcionar beneficio terapéutico al paciente que se somete a tal tratamiento . De forma alternativa, en algunas circunstancias, puede ser deseable proporcionar administraciones múltiples o sucesivas de las composiciones de viriones, bien durante un periodo de tiempo relativamente corto o relativamente prolongado, como puede ser determinado por el médico que supervisa la administración de tales composiciones. Por ejemplo, el número de partículas infecciosas administrado a un mamífero puede ser del orden de alrededor de 107, 108, 109, 1010, 1011, 1012, 1013, o incluso mayor, partículas infecciosas/ml dadas como una dosis única, o divididas en dos o más administraciones como se pueda requerir para alcanzar la terapia de la enfermedad o trastorno particular que se va a tratar. De hecho, en ciertas formas de realización, puede ser deseable administrar dos o más composiciones de diferentes de vectores de viriones, bien solas o en combinación con uno o más fármacos para alcanzar los efectos deseados de la pauta terapéutica particular. En la mayoría de las pautas de terapia génica basada en viriones, el uso de un promotor específico de hígado para controlar la expresión del polinucleótido de interés resultará en que se requerirá un título menor de partículas infecciosas cuando se usan los viriones según la invención que comparado con protocolos de terapia génica convencionales.
En otra forma de realización, las composiciones y polinucleótidos de la invención se administran mediante la llamada "administración hidrodinámica" según ha sido descrito por Liu, F., et al, (Gene Ther, 1999, 6: 1258-66). Según dicho método, los compuestos se introducen en el organismo por vía intravascular a alta velocidad y volumen, lo que resulta en unos elevados niveles de transfección con una distribución más difusa. Se ha demostrado que la eficacia del acceso intracelular depende de forma directa del volumen de fluido administrado y de la velocidad de la inyección (Liu et al, 1999, Science, 305: 1437-1441). En ratones, la administración se ha optimizado en valores de lml/10 g de peso corporal en un periodo de 3-5 segundos (Hodges et al, 2003, Exp.Opin.Biol.Ther, 3:91-918). El mecanismo exacto que permite la transfección celular in vivo con polinucleótidos tras su administración hidrodinámica no es del todo conocido. En el caso de ratones, se piensa que la administración por la vena de la cola tiene lugar a un ritmo que excede el ritmo cardiaco, lo que provoca que el fluido administrado se acumule en la vena cava superior. Este fluido accede posteriormente a los vasos en los órganos y, posteriormente, a través de fenestraciones en dichos vasos, accede al espacio extravascular. De esta forma, el polinucleótido entra en contacto con las células del órgano diana antes de que se mezcle con la sangre reduciendo así las posibilidades de degradación por nucleasas.
Las composiciones de la invención pueden ser administradas en dosis de menos de 10 mg por kilogramo de peso corporal, preferiblemente menos de 5, 2, 1 , 0.5, 0.1 , 0,05, 0,01, 0,005, 0,001, 0,0005, 0,0001, 0,00005 ó 0,00001 mg por cada kg de peso corporal y menos de 200 nmol de agente A N, es decir, en torno a 4.4 x 1016 copias por kg de peso corporal o menos de 1500, 750, 300, 150, 75, 15, 7,5, 1,5, 0,75, 0,15 ó 0,075 nmol por Kg de peso corporal. La dosis unitaria se puede administrar por inyección, por inhalación o por administración tópica. En el caso de que se administren viriones AAV, estos pueden ser administrados sistémicamente puesto que gracias a su tropismo por células hepáticas, accederán a este órgano. No obstante, en el caso de que se administren las construcciones génicas de la invención o los plásmidos de la invención, estos deben ser preferiblemente administrados de forma dirigida al hígado mediante la administración en la arteria hepática o mediante otros sistemas de administración hepática conocidos en el estado de la técnica tales como los descritos por Wen et al, (World J. Gastroenterol, 2004, 10, 244-9), Murao et al, (Pharm. Res., 2002, 19, 1808- 14), Lin et al, (Gene Ther., 2003, 10, 180-7), Hong et al, (, J. Pharm. Pharmacol., 2003, 54, 51-8), Herrmann et al, (Arch Viral, 2004, 149, 1611-7) y Matsuno et al, (Gene Ther, 2003, 10, 1559-66). Las composiciones se pueden administran a dosis de entre 0.00001 mg a 3 mg, preferiblemente entre 0.0001 y 0.001 mg, aún más preferiblemente en torno a 0,03 y 3.0 mg por órgano, en torno a 0,1 y 3,0 mg por órgano o entre 0,3 y 3,0 mg por órgano. La dosis a administrar de las composiciones de la invención depende de la severidad y respuesta de la condición a tratar y puede variar entre varios días y varios meses o hasta que se observe que la condición remite. La dosificación óptima se puede determinar realizando mediciones periódicas de las concentraciones de agente en el organismo del paciente. La dosis óptima se puede determinar a partir de los valores de EC50 obtenidos mediante ensayos previos in vitro o in vivo en modelos animales. La dosis unitaria se puede administrar una vez al día o menos de una vez al día, preferiblemente, menos de una vez cada 2, 4, 8 o 30 días. Alternativamente, es posible administrar una dosis inicial seguida de una o varias dosis de mantenimiento, generalmente de menos cantidad que la dosis inicial. El régimen de mantenimiento puede implicar tratar al paciente con dosis que oscilan entre 0,01 μg y 1 ,4 mg/kg de peso corporal por día, por ejemplo 10, 1, 0,1 , 0,01 , 0,001, o 0,00001 mg por kg de peso corporal por día. Las dosis de mantenimiento se administran, preferiblemente, como mucho una vez cada 5 , 10 ó 30 días. El tratamiento se debe continuar durante un tiempo que variará según el tipo de alteración que sufra el paciente, su severidad y el estado del paciente. Tras el tratamiento, se debe monitorizar la evolución del paciente para determinar si se debe incrementar la dosis en caso de que la enfermedad no responda al tratamiento o se disminuye la dosis si se observa una mejora de la enfermedad o si se observan efectos secundarios indeseados. La dosis diaria se puede administrar en una única dosis o en dos o más dosis según las circunstancias particulares. Si se desea una administración repetida o administraciones frecuentes, es aconsejable la implantación de un dispositivo de administración tal como una bomba, un catéter semipermanente (intravenoso, intraperitoneal, intracisternal o intracapsular) o un reservorio.
Dado que las construcciones de la invención permiten la expresión de un polinucleótido de interés de forma regulada cuando la célula que contienen dicha construcción se pone en contacto con un agente inductor, los usos terapéuticos de las construcciones génicas de la invención contemplan una segunda etapa de administración de agente inductor. El agente inductor puede administrarse en forma de prodroga, sal, solvato o clatrato, bien de forma aislada o bien en combinación con agentes activos adicionales. Excipientes preferidos para su uso en la presente invención incluyen azúcares, almidones, celulosas, gomas y proteínas. Los agentes inductores se pueden administrar como formulados en una forma farmacéutica de administración sólida (por ejemplo comprimidos, cápsulas, grageas, gránulos, supositorios, sólidos estériles cristalinos o amorfos que pueden reconstituirse para proporcionar formas líquidas etc.), líquida (por ejemplo soluciones, suspensiones, emulsiones, elixires, lociones, ungüentos etc.) o semisólida (geles, pomadas, cremas y similares). La dosis de agente inductor, la vía de administración y el tiempo de espera entre la administración de la construcción génica o de los viriones y la administración del agente inductor pueden ser determinados en cada caso concreto de forma rutinaria por el experto en la materia.
Dada la capacidad de las construcciones de la invención de permitir la expresión regulada de forma temporal y espacial en el hígado, estas construcciones son particularmente adecuadas para la expresión en el hígado de polipéptidos cuya función es de utilidad para el tratamiento y prevención de enfermedades hepáticas. Así, en otro aspecto, la invención se relaciona con una construcción génica de la invención, con un vector de la invención, con un genoma viral de la invención, con un virión de la invención o con una composición farmacéutica de la invención para su uso en el tratamiento de una enfermedad hepática. Alternativamente, la invención se relaciona con el uso de una construcción génica de la invención, de un vector de la invención, de un genoma viral de la invención, de un virión de la invención o de una composición farmacéutica de la invención para la fabricación de un medicamento para su uso en el tratamiento de una enfermedad hepática. Alternativamente, la invención se relaciona con un método para el tratamiento de una enfermedad hepática que comprende la administración a un individuo que lo necesita de una construcción génica de la invención, de un vector de la invención, de un genoma viral de la invención, de un virión de la invención o de una composición farmacéutica de la invención.
El término "tratamiento", como se usa aquí, se refiere al acto de revertir, mejorar o inhibir la evolución del trastorno o afección para el que se aplica tal término, o uno o más síntomas de tal trastorno o afección.
El término "prevención", como se usa aquí, se refiere al acto de evitar que se produzca, exista, o de forma alternativa retrasar el inicio o reaparición de una enfermedad, trastorno o afección para la cual se aplica tal término, o uno o más de los síntomas asociados con una enfermedad, trastorno o afección.
Trastornos hepáticos que pueden ser tratados o prevenidos de forma adecuada mediante el uso de las construcciones, vectores y viriones de la invención se muestran en la Tabla 1 junto el polipéptido que debería ser codificado por el polinucleótido de interés:
Polipéptido codificado por Enfermedad
el polinucleótido de interés
IFNa5 hepatitis crónica C
hepatitis crónica B
adyuvante vacunas hepatocarcinoma
Oncostatina M hepatitis crónica C
hepatitis crónica B
hepatocarcinoma
Cardiotrofina Transplante hepático
Transplante renal
Hepatectomías
hepatitis crónica C
hepatitis crónica B
hepatocarcinoma
IL6 Transplante hepático
Transplante renal
Hepatectomías
Anfiregulina Transplante hepático
Hepatectomías
EDA: Adyuvante de vacunas
IL15 Adyuvante inmunoterapia hepatitis crónica C
hepatitis crónica B
hepatocarcinoma
IL12 Hepatocarcinoma
Adyuvante inmunoterapia hepatitis crónica C
hepatitis crónica B
CD134: Adyuvante inmunoterapia
CD137: Adyuvante inmunoterapia
PBGD: Porñria aguda intermitente p 17 (inhibidor TGF-βΙ) Adyuvante en el cáncer de colon
Fibrosis Pulmonar
Metástasis a hueso
p 144 (inhibidor TGF-βΙ) Adyuvante en el cáncer de colon
Prótesis mamarias
Esclerosis sistémica
Morfea
Quemaduras
Fribrosis cardíaca
Fibrosis renal
Inhibidores IL10 Infecciones virales
Infecciones bacterianas Infecciones parasitarias Linfoma no Hodgking
Inhibidores FoxP3 Adyuvante inmunoterapia (bloqueo células T reguladoras)
Iinhibidores TNFa Artritis reumatoide
Inhibidores VEGF Antiangiogénesis
Inhibidores PD-1 Adyuvante inmunoterapia
Inhibidores CD152 Adyuvante inmunoterapia
IGF-I cirrosis
Tabla 1: Polinucleótidos de interés que pueden ser incoporados en las construcciones génicas de la invención y transtornos en los que pueden ser utilizados.
En una forma de realización preferida, el polinucleótido de interés codifica IL-12 o una variante funcionalmente equivalente en cuyo caso la construcción génica de la invención, un vector de la invención, el genoma viral de la invención o el virión de la invención o la composición farmacéutica de la invención se emplean para el tratamiento del cáncer hepático. El término "cáncer hepático", según se usa en la presente invención, se refiere tanto al cáncer primario como al cáncer secundario incluyendo el formado a partir de cualquier tipo de tumor primario. El tipo de cáncer hepático incluye, sin limitación, carcinoma hepatocelular (llamado a veces hepatoma o HCC), carcinoma, HCC fibrolamelar, colangiocarcinoma, hemangioma, adenoma hepáticos, hiperplasia focal nodular, angiosarcoma y hepatoblastoma.
CONSTRUCCIONES Y VECTORES DE USO GENERAL DE LA INVENCIÓN
El experto en la materia apreciará que el promotor bidireccional hepatoespecífico de acuerdo a la invención no tiene porque encontrarse necesariamente formando parte de una construcción génica que comprende adicionalmente un activador transcripcional y un polinucleótido de interés sino que puede ser usado aisladamente como elemento integrante de otros vectores, genomas virales o construcciones génicas.
Así, en otro aspecto, la invención se relaciona con un operador-promotor inducible bidireccional adecuado para la expresión hepatoespecífica e inducible por un agente inductor de dos polinucleótidos de interés que comprende
(i) al menos un elemento de respuesta al transactivador en su forma activa, es decir en presencia del inductor, (ii) una primera secuencia promotora hepatoespecíñca y
(iii) una segunda secuencia promotora hepatoespecíñca,
en donde la primera y la segunda secuencia promotora hepatoespecíñca actúan de forma divergente con respecto al elemento de respuesta al agente inductor y en donde la actividad promotora de la primera y la segunda secuencia promotora hepatoespecíñca se ve aumentada en presencia de un transactivador que tras la administración del agente inductor se une al elemento de respuesta.
Los elementos que forman el operador inducible bidireccional, en concreto, el elemento de respuesta al transactivador en su forma activa, la primera secuencia promotora hepatoespecíñca y la segunda secuencia promotora hepatoespecíñca han sido descritos en detalle con anterioridad y se interpretan de la misma forma que se ha descrito anteriormente en relación con la construcción génica de la invención.
En una forma preferida de realización, el operador-promotor bidireccional regulable comprende al menos un elemento de respuesta a transactivador+tetraciclina. En una forma de realización aún más preferida, el elemento de respuesta a la tetraciclina comprende un secuencia de ácidos nucleicos definida en SEQ.ID.NO.: l .
En otra forma preferida de realización, la primera secuencia promotora hepatoespecíñca y la segunda secuencia promotora hepatoespecíñca son iguales. En una forma de realización aún más preferida, la primera secuencia promotora hepatoespecíñca y la segunda secuencia promotora hepatoespecíñca comprenden el promotor del gen de albúmina o una variante funcionalmente equivalente del mismo. En una forma de realización aún más preferida, el promotor del gen de albúmina comprende una secuencia seleccionada del grupo de SEQ.ID.NO.:2 y SEQ.ID.NO.:3.
En otra forma preferida de realización, el operador-promotor inducible bidireccional comprende la SEQ.ID.NO.: 4. Así, en otro aspecto, la invención se relaciona con una construcción génica adecuada para la expresión hepatoespecífica e inducible por un agente inductor de un polinucleótido de interés que comprende
(a) Un operador-promotor inducible bidireccional que comprende
(i) al menos un elemento de respuesta al transactivador en su forma activa, es decir en presencia del inductor,
(ii) una primera secuencia promotora hepatoespecífica y
(iii) una segunda secuencia promotora hepatoespecífica,
(b) una secuencia nucleotídica que codifica un transactivador activable por dicho agente inductor que se encuentra operativamente acoplada a la primera secuencia promotora hepatoespecífica y una señal de poliadenilación situada en posición 3 ' con respecto a la región que codifica el transactivador,
en donde la primera y la segunda secuencia promotora hepatoespecífica actúan de forma divergente con respecto al elemento de respuesta al agente inductor y en donde la actividad promotora de la primera y la segunda secuencia promotora hepatoespecífica se ve aumentada en presencia de dicho agente inductor y en presencia de un transactivador que se une al elemento de respuesta en el operador-promotor inducible bidireccional .
Los elementos que forman el operador inducible bidireccional, en concreto, el elemento de respuesta al agente inductor, el tipo de transactivador, la primera secuencia promotora hepatoespecífica, la segunda secuencia promotora hepatoespecífica y la señal de poliadenilación han sido descritos en detalle con anterioridad y se interpretan de la misma forma que se ha descrito anteriormente en relación con la primera construcción génica de la invención.
En una forma preferida de realización, el operador-promotor bidireccional regulable comprende al menos un elemento de respuesta a una tetraciclina. En una forma de realización aún más preferida, el elemento de respuesta a la tetraciclina comprende una secuencia de ácidos nucleicos definida en SEQ.ID.NO.: ! . En otra forma preferida de realización, el transactivador es un transactivador reverso dependiente de tetraciclina. En una forma de realización aún más preferida, el transactivador activable por tetracic linas reverso rtTA es rtTA-M2.
En otra forma preferida de realización, la primera secuencia promotora hepatoespecífica y la segunda secuencia promotora hepatoespecífica son iguales. En una forma de realización aún más preferida, la primera secuencia promotora hepatoespecífica y la segunda secuencia promotora hepatoespecífica comprenden el promotor del gen de albúmina o una variante funcionalmente equivalente del mismo. En una forma de realización aún más preferida, el promotor del gen de albúmina comprende una secuencia seleccionada del grupo de SEQ.ID.NO.: 2 y SEQ.ID.NO.:3.
En otra forma preferida de realización, el operador-promotor inducible bidireccional comprende la SEQ.ID.NO.: 4.
En otra forma preferida de realización, la señal de poliadenilación es una señal de poliadenilación bidireccional. En una forma de realización aún más preferida, la señal de poliadenilación es una señal de poliadenilación bidireccional del virus SV40.
La segunda construcción génica de la invención puede aportarse de forma aislada o, preferiblemente, puede aportarse formando parte de un vector para facilitar su propagación y manipulación. En una forma preferida de realización, el vector comprende, adicionalmente y en posición 3' con respecto a la segunda secuencia promotora hepatoespecífica uno o varios sitios que permite el clonaje de polinucleótidos de interés de forma que puedan ser expresados de forma hepatoespecífica en respuesta a la adición del agente activador. Preferiblemente, los sitios de clonaje se encuentran agrupados formando un sitio de clonaje múltiple tal y como aparece frecuentemente en vectores de clonaje. Así, el término "sitio de clonaje múltiple", tal y como se usa en la presente invención, se refiere a una secuencia de ácidos nucleicos que comprende una serie de dos o más secuencias diana para endonucleasas de restricción próximas entre sí. Sitios de clonaje múltiple incluyen dianas para endonucleasas de restricción que permite la inserción de fragmentos que muestran extremos romos, extremos 5' protuberantes o extremos 3 ' protuberantes. La inserción de polinucleótidos de interés se lleva a cabo usando métodos estándar de bilogía molecular tal y como se describen, por ejemplo, por Sambrook et al (supra.)
La invención se describe a continuación por medio de los siguientes ejemplos que tienen carácter meramente ilustrativo y en ningún caso limitativo de la invención.
EJEMPLOS
Ejemplo 1. C o n s t r u c c i ó n y c a r a cterización del virus recombinante rAAV-pTetbidi-pCMV-luc.
El objetivo principal era obtener un vector inducible basado en AAV8 que permitiera regular la expresión del transgén en el tiempo, variando la dosis de inductor administrada, y que dirigiera l a e xpresión del transgén específicamente a los hepatocitos, actuando de esta manera en el sitio diana de nuestra terapia, y evitando posibles efectos adversos tóxicos del transgén. Dado que el AAV8 transduce mayoritariamente el hígado con alta eficiencia, quisimos averiguar si el sistema rAAV- pTetbidi-pCMV-luc cumplía con las características anteriormente explicadas al ser administrado mediante vía intravenosa por la vena de la cola.
Este sistema había sido previamente caracterizado por Chtarto y cois (Chtarto, A., et al. Gene Ther, 2003. 10: 84-94), pero su administración había sido intracerebral, por lo cual se desconocía la biodistribución del sistema tras su administración sistémica.
Para ello se utilizó como gen reportero el gen de la luciferasa, que permitió analizar in vivo la biodistribución de la expresión del transgén, además de permitir su cuantificación. Para ello se reemplazó el gen de la eGFP presente en el plásmido, amablemente cedido por la Dra. Lilianne Tenenbaum de la Universidad de Libre de Bruselas, por el gen de la luciferasa de luciérnaga, para obtener el sistema rAAV- pTetbidi-pCMV-luc (Figura 2. A) con el cual produjimos los viriones rAAV2/8-pTetb¡di- pCMV-luc. 1.1 Construcción del vector
Detalladamente, el plásmido que contiene el genoma recombinante de AAV con el sistema inducible pTetbidi-pCMV-luc (pAClM2-pCMV-luc) se generó de la siguiente manera: se amplificó el gen de la luciferasa a partir del plásmido pAlb-luc (Kramer G. et al. Molecular Therapy 2003, 7: 375-385) con los cebadores A (cebador sentido) y B (cebador antisentido) (A: G T C GA C AT G GAA GA C GCC AAA AAC (SEQ.ID.NO.: l l) y B: GCGGCCGC TTA CAC GGC GAT CTT TCC (SEQ.ID.NO.: 12) que contienen en sus extremos 5 ', los sitios Salí (cebador sentido), y Notl (cebador antisentido). Este fragmento se subclonó en el vector de clonaje pCDNA3.1/V5-His TOPO TA (Invitrogen), y se extrajo de él mediante digestión con las enzimas anteriormente mencionadas. El fragmento extraído se insertó en el vector pAClM2-EGFP (Chtarto, A., et al. Gene Ther, 2003. 10: 84-94; Chtarto, A., et al. Exp Neurol, 2007, 204: 387-399) previamente digerido con las mismas enzimas, obteniendo el plásmido pAClM2-pCMV-luc.
Una vez obtenido el plásmido conteniendo el sistema pTetbidi-pCMV-luc, se produjeron viriones rAAV2/8 mediante transfección con PEI en células HEK 293T para lo que se siguió el siguiente protocolo:
Veinticuatro horas antes de la transfección se plaquearon 8,5x 106 células/placa en medio DMEM completo , y en placas de 1 50 mm de diámetro (30 placas aproximadamente/producción), para alcanzar una confluencia del 70-80% en el momento de la transfección. Momentos antes de la transfección se cambió el medio por DMEM al 1-2%.
Se prepararon los complejos PEI-ADN de la siguiente manera: a) Preparación de la solución de ADN: Se preparó una solución de ADN con la cantidad apropiada de los plásmidos p5F6 (40 μg/placa), p518 (20 μg/placa) y el que contenía al genoma de AAV-2 recombinante correspondiente (20 μg/placa), en solución salina o suero fisiológico estéril, en un volumen final de 1 mi por placa. Se mezcló e incubó durante 5 min a temperatura ambiente. Las características de los plásmidos se describen al final del protocolo. b) Preparación de la solución de PEI: Simultáneamente a la preparación de la solución de ADN se preparó la solución del agente de transfección, PEI, en un volumen final de lml de suero fisiológico estéril por placa. Para calcular el volumen de PEI lOmM que se disolvió en suero salino por placa utilizamos la ecuación μΙΡΕΙ = 9ΑΡΝ χ 3 χ (Ν Ρ) ^ gn χ& ADN = 80; el cociente N/P= 10; y la concentraciónPEI
concentración de PEI = lOmM. Se mezcló el volumen de PEI calculado y se incubó durante 5 min a T.amb. c) Una vez transcurridos los 5 minutos, se agregó la solución del PEI sobre la ADN y se agitó vigorosamente con vortex durante 15 segundos, tras lo cual se incubó durante 30 minutos a temperatura ambiente para permitir la formación y estabilización de los complejos PEI-ADN.
Posteriormente se añadieron 2 mi de los complejos PEI-ADN por placa, gota a gota utilizando micropipetas y distribuyéndose por toda la placa. Se agitó suavemente la placa en forma de cruz, y se incubó a 37°C durante 4-6 horas. Transcurrido ese periodo de tiempo, se agregaron 10 mi de medio DMEM al 5% de FBS por placa, y se incubó a 37°C en una atmósfera con 5% de C02, durante 48 horas.
A las 48 horas post-transfección se quitó el medio a las células, y se despegaron mecánicamente, utilizando raspador (Costar, Corning). Se lavó cada placa con 3 mi de medio DMEM limpio y se recogieron en tubo Falcon de 50 mi. Se centrifugaron las células a 1800 rpm durante 5 minutos, y se descartó el sobrenadante. El total de células se resuspendió en 18,5 mi de medio DMEM limpio y se congeló a -80 °C para su posterior purificación. Para liberar el virus producido en el interior de las células 293T se realizaron 3 pasos sucesivos de congelación y descongelación a -80 °C y 37 °C, respectivamente. A continuación se centrifugó a 3000 rpm y 4 °C durante 5 minutos para eliminar los restos celulares. El sobrenadante se incubó con 0.1 mg por placa de DNAsa I y RNAsa A (Roche) durante 30 minutos a 37 °C y se filtró empleando filtros de un tamaño de poro de 0.22 μιη (MILLIPORE).
Nota: a) el plásmido p5F6 fue cedido amablemente por la empresa AMT (Amsterdam Molecular Therapeutics). Contiene los genes de adenovirus necesarios para la replicación viral de un AAV, b) el plásmido p518 fue cedido amablemente por la empresa AMT (Amsterdam Molecular Therapeutics). Contiene los genes que codifican las proteínas Rep del serotipo AAV-2 y las proteínas VP del serotipo 8.
Para la purificación de los vectores adeno-asociados se empleó el método de ultracentrifugación en gradiente de iodixanol. Para preparar las fases, se preparó el tampón 7,4X PBS-MK fresco (500 mi PBS sin Mg2+ y sin Ca2+ + 50 mi de 1M MgCl2 + 125 mi 1M KC1). En la Tabla 2 se resume la preparación de las fases del gradiente utilizado.
Iodixanol 7.4X P S- w m destilad Volumen
Iodixanol
m estéril
15 125 mi 67,57 mi 100 mi 207,43 mi 500 mi
25 125 mi 40,5 mi 134,5 mi 300 mi
40 200 mi 40,5 mi 59,5 mi 300 mi
60 60 mi 60 mi
Tabla 2: Composición de las fases del gradiente utilizado para la purificación de los AAV Los volúmenes totales de cada fase preparados dependen de la cantidad de purificaciones a realizar en cada ocasión.
Todos los tampones utilizados en este protocolo se esterilizaron por filtración utilizando filtros con un tamaño de poro de 0,22 μιη (MILLIPORE). Para la ultracentrifugación se utilizaron tubos de 25x89 mm Quick-Seal-Ultra-Clear (Beckman). El gradiente de iodixanol se formó utilizando pipetas pasteur de vidrio de 23 mm. Se introdujo una pipeta hasta el fondo del tubo y se comenzó a preparar el gradiente por la fase menos densa, constituida por el lisado celular enriquecido con los vectores adeno-asociados (18,5 mi), seguido de 9 mi de la solución de iodixanol al 15%, 5 mi de la solución al 25%, 5 mi de la solución al 40% y finalmente 3 mi de la solución al 60%. Se equilibraron los tubos y se sellaron. Posteriormente se realizó la ultracentrifugación a 69000 rpm y 16 °C durante 1 hora, utilizando el rotor Beckman 70 Ti.
Tras la ultracentrifugación, las partículas de AAV concentradas en la interfase 40%- 60%) de iodixanol, se recogieron pinchando el fondo del tubo con aguja y jeringa de 5 mi. Los 5 mi obtenidos, enriquecidos en partículas virales (fracción 1), se lavaron y concentraron en PBS + sacarosa al 5%, utilizando centricón (Amicon Ultra-15, Centrifugal Filter Devices-MILLIPORE). Para ello los centricones se centrifugaron a 5000 rpm y 4 ° C durante 10 minutos. La cantidad de lavados y los tiempos de centrifugación varían en cada producción, y se realizaron hasta que se observó ausencia de viscosidad propia del iodixanol. El virus se concentró en 1 mi de PBS 5% sacarosa, y se almacenó a - 80°C hasta su utilización. El porcentaje de recuperación fue de aproximadamente 94%.
1.2 Medida de actividad luciferasa en animal vivo mediante determinación de bio luminiscencia con cámara CCD.
Para realizar las mediciones de la actividad luciferasa obtenida tras la administración de los viriones rAAV2/8 conteniendo el sistema inducible rAAV-pTetb¡di-pCMV-luc, los ratones fueron anestesiados con ketamina/xilacina y se les administró, por vía intraperitoneal, 100 μΐ de D-luciferina (Xenogen/Alameda, EE.UU) diluida en PBS a una concentración de 30 mg/ml. Tras 5 minutos, los animales se colocaron en una cámara oscura luminométrica (CCD, del inglés: "cooled-charged couple device", IVIS, Xenogen Corp. , Alameda, EE.UU) y se obtuvo una imagen de luminiscencia superpuesta a una fotografía en escala de grises. La imagen de luminiscencia representa la intensidad de luz mediante una escala de color, siendo el azul la intensidad menor, y el rojo la intensidad mayor. Para el tratamiento de estas imágenes se utilizó el programa informático Livinglmage (Xenogen Corp., Alameda, EE.UU.) que permite cuantificar la señal. Las unidades empleadas para medir la bioluminiscencia son fotones/segundo. Los fundamentos de la metodología utilizada se describen en los siguientes artículos: Bronstein I, et al., Chemiluminescent and Bioluminescent Repórter Gene Assays. Anal Biochem, 1994. 219: p.196-181; y Contag CH, et al, Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng., 2002. 4: p.235- 60.
1.3 Expresión basal e inducibilidad del sistema en ratones BALB/c:
Como primera aproximación a la caracterización del sistema rAAV2/8-pTetb¡di-pCMV- luc, inyectamos 3 dosis diferentes de virus por vía intravenosa, en 3 grupos de 4 hembras BALB/c: l x lO11, 3x 1010, y l x lO10 gv/ratón. Esperamos 15 días (ya que la transducción hepática por un rAAV8 tarda 14 días aproximadamente en llegar a su máximo de expresión (Pañeda, A. , et al. Hum. Gene Ther. 2009, 20: 908-917), y medimos los niveles de actividad de la luciferasa en ausencia de inductor, o expresión en estado basal. El día 15 post inyección, realizamos una inyección intraperitoneal (i.p.). de 50 mg/Kg de dox, y al día siguiente mantuvimos la inducción mediante la administración de la doxiciclina en agua de bebida durante 6 días consecutivos (2 mg/ml de dox, y 5% de sacarosa). Este protocolo de inducción fue puesto a punto en nuestro departamento para otro sistema inducible TetON (Zabala, M., et al., Cáncer Res. 2004; 64: 2799-2804), y fue con el cual se obtuvieron mayores niveles de inducción del transgén, sin llegar a niveles de toxicidad mediada por el inductor.
Las mediciones de actividad de luciferasa se realizan delimitando un área de interés elegida por el usuario. En este caso, elegimos el área abdominal superior o hepática, representada por una circunferencia en la Figura 3. A, y el área total del animal, representada por un óvalo en la Figura 3.B.
Las mediciones de bio luminiscencia a lo largo del tiempo se muestran en la Figura 4.
Como se puede comprobar en la Figura 4, los niveles de actividad de luciferasa total, es decir cuando se analiza todo el animal, son significativamente superiores a los niveles obtenidos al medir solamente el área abdominal superior o hepática tanto en el estado basal como en el inducido, y durante todo el periodo de inducción, indicando que el transgén se expresa considerablemente en otros órganos aparte del hígado, como también se observa en las imágenes de bioluminiscencia capturadas por la cámara CCD, que no se muestran por poseer un código de colores imposible de interpretar en escala de grises.
Por otra parte, la actividad basal o residual del sistema es dependiente de la dosis de virus administrada. Considerando que el ruido de fondo de la cámara de bioluminiscencia para el área seleccionada es aproximadamente 1 x 105, podemos decir que la actividad basal de luciferasa en el área hepática es relativamente baja en los tres casos, siendo muy cercana al ruido de fondo con la menor dosis de virus utilizada.
Como se puede ver en la Figura 4, tras la administración de la doxiciclina, se observa un aumento de aproximadamente 3 a 4 veces en la expresión de luciferasa en todos los grupos, tanto en el área hepática como en el animal completo. Por otra parte, se comprueba que la expresión del transgén se mantiene estable durante los 7 días de inducción mediante la administración de doxiciclina en agua de bebida.
Respecto a la cinética de inducibilidad del sistema se observa que, a las 10 horas post administración intraperitoneal de doxiciclina, el transgén alcanza el mismo nivel de expresión que a las 24 horas (sin haber agregado aún la dox en agua de bebida). Por lo tanto, de aquí en adelante, tras la administración de una inyección i.p. de doxiciclina, se medirá la actividad luciferasa del estado de inducción 24 horas post administración de la droga. 1.4 Dosis-respuesta del sistema a la doxiciclina y toxicidad.
En vista de que los niveles de actividad de luciferasa obtenidos en el estado inducido fueron muy bajos, se decidió aumentar la dosis de inductor. Para ello, se administraron dos dosis consecutivas de 100 y 200 mg/kg de dox i.p separadas por un período de 14 días.
Se midió la actividad luciferasa del área hepática, 24 horas post inducción. Comparando los niveles de actividad luciferasa en estado inducido se observa una respuesta lineal respecto a la dosis de dox administrada (Figura 5), pero esta linealidad se pierde al alcanzar la dosis de 200mg/Kg de dox. Al llegar a este punto, varios ratones murieron y el resto fueron sacrificados, ya que mostraban síntomas de toxicidad mediada por dox (fiebre, adherencias abdominales, etc). Estos síntomas también se observaron en los ratones control, sin vector. La tasa de inducción máxima del sistema se alcanza a una dosis de 100 mg/Kg de dox, y es aproximadamente de 10 veces.
1.5 Biodistribución de rAAV-pTethjHi-pCMV-luc
Para realizar un estudio de la biodistribución de la actividad del transgén obtenida tras la inducción del sistema rAAV-pTetbidi-pCMV-luc en ratones de ambas cepas y sexos, se indujeron 4-8 ratones por grupo (que habían sido infectados 21 días antes con l x lO11 gv/ratón del rAAV2/8 con el correspondiente sistema de inducción), con 50 mg/Kg de dox i.p. A las 24 hs se determinó la actividad de luciferasa in vivo en la cámara CCD y posteriormente, se sacrificaron los animales y se extrajeron varios de sus órganos, congelándolos inmediatamente para luego medir la actividad luciferasa de cada uno de ellos y normalizarla por la cantidad de proteína total.
En la Figura 11 se observa claramente como en hembras de las dos cepas estudiadas (BALB/c y C57BL/6), el sistema rAAV2/8-pTetb¡di-pCMV-luc se expresa tanto en hígado como en corazón, útero y ovario, lo que se corresponde con las imágenes in vivo recogidas de la cámara luminométrica, en las cuales hay una distribución de la bio luminiscencia dispersa por todo el animal, pero más intensa en la zona abdominal baja (datos no mostrados). Estos datos también corroboran lo observado en un estudio con varios serotipos de AAV realizado en nuestro grupo (Pañeda, A., et al. Hum. Gene Ther. 2009, 20: 908-917). Además, transduce otros órganos como el páncreas, el músculo esquelético, etc, en concordancia con lo descrito para el serotipo AAV8 con promotores constitutivos por varios autores (Nakai, H., et al. J. Virol, 2005, 79: 214- 224; Wang, Z., et al, Nat. Biotechnol. 2005, 23: 321-328).
En el caso de los machos, los patrones de biodistribución de la actividad de luciferasa de ambos sistemas son muy similares entre las dos cepas de ratón (Figura 12), al igual que lo observado en las hembras, y se corresponde con las imágenes de bioluminiscencia obtenidas con la cámara CCD antes del sacrificio (datos no mostrados). Encontramos expresión de luciferasa principalmente en el hígado y en el corazón, seguido de los ríñones, el estómago, intestino y músculo.
En conclusión, el virus rAAV-pTetbidi-pCMV-luc diseñado no es adecuado para regular la expresión transgénica en hígado, ya que su tasa de inducción máxima es reducida (aproximadamente 10), y la biodistribución de la actividad del transgén no se restringe mayoritariamente al hígado, sino que se dispersa por varios órganos del animal.
Ejemplo 2. C onstrucción y caracterización del virus recombinante rAAV-pTetbidi-pAlb-luc.
Tras comprobar que el vector con el sistema rAAV-pTetbidi-pCMV-luc presentaba muy pobre inducibilidad y una significativa expresión fuera del hígado, se intentó construir un sistema que lograra, por una parte, una tasa de inducción máxima mayor que el anterior, y por otra, una expresión localizada del transgén en el órgano de nuestro interés, el hígado. Para ello, se sustituyeron los promotores CMV mínimos por promotores de la albúmina (pAlb). Estudios realizados por Zabala y cois. (Zabala, M., et al, Cáncer Res. 2004; 64: 2799-2804) habían demostrado que el pAlb tiene una expresión residual baja (aún menor que el pCMV mínimo), cuando se utiliza en otros sistemas inducibles, y sin embargo, presenta muy alta tasa de inducibilidad cuando se sitúa junto a los sitios Tet07. Por otra parte, ya se conocía que su expresión es específica de hepatocitos (Frain, M., et al. Mol Cell Biol, 1990, 10: 991-999; Cereghini, S., et al. Cell, 1987, 50: 627-633). Sin embargo, los niveles máximos de inducción alcanzados con este promotor precedido de los sitios Tet07 eran significativamente menores a los obtenidos con el promotor CMV mínimo (también precedido por los sitios Tet07), en el contexto de un sistema inducible por tetraciclina en el cual el transactivador se expresaba constitutivamente a partir del promotor CMV (Zabala, M., et al, Cáncer Res. 2004; 64: 2799-2804).
Este nuevo sistema se denomina rAAV2/8-pTetb¡di-pAlb-luc (Figura 2.B). 2.1 Construcción del vector
El plásmido que contiene el genoma recombinante de AAV con el sistema inducible pTetbidi-pAlb-luc (pAClM2-pAlb-luc) se generó de la siguiente manera: se amplificó el fragmento que contiene los 7 sitios operadores de respuesta a tetraciclina y el promotor de la albúmina (Tet07-pAlb) a partir del plásmido pTonL2(T)-mIL12 generado en nuestro departamento (Zabala, M., et al., Cáncer Res. 2004; 64: 2799-2804) con los cebadores C (cebador sentido) y D (cebador antisentido) (C: AGC GCT TTA CGC GTC GAG TTT ACC ACT (SEQ.ID.NO.: 13); D: GTCGAC TTA GTG GGG TTG ATA GGA AAG (SEQ.ID.NO.: 14)) que contienen en sus extremos 5 ', los sitios Afel (cebador sentido), y Salí (cebador antisentido). Este fragmento se subclonó en el vector de clonaje pCDNA3.1/V5-His TOPO TA (Invitrogen) y se denominó: pCDNA3.1- Tet07-pAlb.
Por otra parte se amplificó el promotor de la albúmina a partir del plásmido pAlb-luc (Kramer G. et al. Molecular Therapy 2003, 7: 375-385) con los cebadores E (sentido) y F (antisentido) (E: AGC GCT ACA GCT CCA GAT GGC AAA (SEQ.ID.NO.: 15); F: AGC GCT GAA TTC TTA GTG GGG TTG ATA GGA AAG (SEQ.ID.NO.: 16)) que contienen en sus extremos 5 ', los sitios Afel (cebador sentido) y los sitios Afel, y EcoRI (cebador antisentido). Este fragmento se subclonó en el vector de clonaje pCDNA3.1/V5-His TOPO TA (Invitrogen) y se denominó : pCDNA3. 1-pAlb. El promotor de la albúmina se extrajo de este vector mediante digestión con Afel, y se insertó en el plásmido: pCDNA3.1-Tet07-pAlb, digerido con la misma enzima. Se seleccionaron los plásmidos cuya digestión con EcoRI/SalI dieron como resultado una banda de aproximadamente 700 pb, correspondiente al fragmento pAlb-Tet07-pAlb. Este fragmento de digestión se insertó en el plásmido pAClM2-pCMV-luc digerido con las mismas enzimas, obteniendo el plásmido pAClM2-pAlb-luc.
La producción y la purificación del vector rAAV8-pTetb¡di-pAlb-luc se realizó de la misma forma que la descrita para el sistema inducible anterior.
2.2 Expresión basal e inducibilidad del sistema en ratones BALB/c
Como primera aproximación se inyectó una dosis de virus rAAV2/8-pTetb¡di-pAlb-luc de l x lO11 gv/ratón a 4 ratones hembras BALB/c por vía intravenosa, y se midió tanto la actividad basal (a los 14 días post inyección intravenosa del vector) como inducida (24 hs post administración i.p de 50 mg/Kg de dox, y día 22 post administración del vector) de luciferasa en el área hepática y en el animal total. Se eligió esta dosis de dox i.p. para estar seguros de no inducir efectos tóxicos no deseados debido a una excesiva dosis de inductor.
Al comparar la actividad de luciferasa tanto en el estado basal como inducido, en el área abdominal superior (hepática) y en el animal total, se observó que no existen diferencias significativas entre ellas (Figura 6) indicando que el sistema rAAV2/8-pTetbid¡pAlb-luc se expresa específicamente en el área hepática. Por ello, a partir de ahora, siempre que se muestren datos de actividad luciferasa se referirán a la medida en el área hepática de los ratones.
Por otra parte, al comparar los datos de las mediciones del área hepática con los correspondientes para el sistema rAAV2/8-pTetb¡di-pCMV-luc (con la misma dosis de vector, y la misma dosis de dox administrada), se observa que en el estado basal, la actividad de luciferasa es significativamente menor con el sistema rAAV2/8-pTetb¡di- pAlb-luc, aunque no despreciable (Figura 7). Sin embargo, el dato más destacable es la tasa de inducción obtenida con el nuevo sistema rAAV2/8-pTetb¡di-pAlb-luc tras la administración de una dosis i.p. de 50 mg/Kg de dox, que es aproximadamente 250 (Figura 7), casi 85 veces mayor que la tasa de inducción del sistema rAAV2/8-pTetb¡di-pCMV-luc, dato no esperado, a la vista de los resultados obtenidos por Zabala et al en un ya citado estudio (Zabala, M., et al, Cáncer Res. 2004; 64: 2799-2804). Además, la diferencia en el estado inducido entre ambos sistemas para esta dosis de dox es altamente significativa.
2.3 Re-inducibilidad del sistema a largo plazo
Una de las características importantes que debe cumplir todo sistema inducible es su capacidad de re-inducirse a lo largo del tiempo, por lo cual se realizaron administraciones repetidas de dox i.p. (50 mg/Kg), separadas por intervalos de 15 días (entre la Ia y 2a, y entre la 2a y 3a inducción) y 80 días (entre la 3a y 4a). Se midió la expresión de luciferasa 24 horas post inducción. La Figura 8 muestra que tanto a dosis de l x l O10 como de l x l O11 gv/ratón, la capacidad de re-inducción del sistema se mantiene durante al menos 4 meses. Sin embargo, se puede observar que la tasa de inducción máxima es dependiente de la dosis de virus administrada, dado que la obtenida con la dosis más baja de virus es aproximadamente 10, mientras que la obtenida con la dosis alta es 250.
2.4 Dosis-respuesta a la doxiciclina en ratones C57B6/L y comparación de la inducibilidad del sistema entre sexos.
Al comparar los niveles de luciferasa obtenidos en el estado basal e inducido con el sistema rAAV2/8-pTetb¡di-pAlb-luc en hembras C57BL/6 vs. hembras BALB/c, observamos que ambos niveles son significativamente superiores en las hembras C57BL/6, sugiriendo que el rAAV2/8 transduce mejor el hígado de esta cepa de ratón que el de la cepa BALB/c, sin embargo, no encontramos diferencias significativas en la tasa de inducción del sistema en este experimento. A partir de aquí, se seguirá caracterizando el sistema inducible rAAV2/8-pTetb¡di-pAlb-luc en ratones C57BL/6. Se quiso evaluar, por una parte, la dependencia existente entre la actividad del transgén en el estado inducido y la dosis de inductor administrada. La existencia de una linealidad entre ambos parámetros permite un control preciso de la expresión de transgén, lo cual es importante cuando el rango terapéutico del transgén es acotado, o cuando la toxicidad del mismo requiere un control estricto de sus niveles.
Por otra parte, dada la diferencia entre sexos que existe en la transducción hepática del rAAV8, y nos pareció interesante estudiar su influencia sobre el sistema inducible. Por ello se quisó comparar la dosis respuesta a dox en hembras y en machos de la misma cepa.
Para ello, se formaron 5 grupos de 5 animales cada uno, para cada sexo, a los cuales se les inyectó una dosis de virus rAAV2/8-Tetbid¡pAlb-luc de l x lO11 gv/ratón. Se midió la actividad basal a los 14 días post-inyección del virus (pre-inducción), y a los 21 días post-inyección del vector, les administramos una dosis i.p. de dox a cada grupo: 2, 10, 25, 50 y 100 mg/Kg. La actividad luciferasa se midió a las 24 horas post-inducción.
Se observan diferencias significativas entre los niveles de luciferasa en estado inducido de machos y hembras a partir de la dosis de 2 mg/Kg de dox, y hasta la dosis de 50 mg/Kg, siendo la actividad luciferasa en los machos superior que en las hembras (Figura 9A). La tasa de inducción máxima del sistema rAAV2/8-pTetb¡di-pAlb-luc en esta cepa se alcanza a la dosis de 100 mg/kg en el caso de las hembras (ya que a una dosis mayor los efectos tóxicos de la dox impedirían ver un aumento en los niveles de luciferasa) y es 650, mientras que en los machos se alcanza a la dosis de 50 mg/kg y es 450.
Tras la administración de la dosis de 100 mg/kg de dox, se observa que tanto machos como hembras alcanzan niveles similares de actividad luciferasa. Esto, y el hecho de que los machos alcancen los mismos niveles de actividad luciferasa cuando se inducen con 50 y con 100 mg/kg de dox, sugiere que se está alcanzando el estado de saturación del sistema, en el cual todos los sitios operadores del sistema presentes en la célula se encuentran ocupados por el complejo transactivador-inductor.
En la Figura 9.B, se muestran los valores logarítmicos de las actividades de luciferasa observadas en la Figura 9. A, que se ajustan a una curva sigmoidea propia de sistemas saturables, que nos permiten estimar la actividad luciferasa a una dosis de inductor determinada dentro del rango lineal de cada curva (2 a 25 mg/kg de dox para los machos, y de 10 a 50 mg/kg para las hembras).
2.5 Evaluación de la vía de administración oral de inductor.
Otro punto a tener en cuenta es la toxicidad de la droga inductora en función de la vía de administración utilizada. Está descrito que la administración oral de dox es mucho más segura que la intraperitoneal, en términos de toxicidad asociada, en modelos animales. El hecho de que se utilice la administración intraperitoneal en modelos animales es debido a razones de reproducibilidad, ya que el investigador se asegura la administración correcta de la dosis calculada, mientras que oralmente (en agua de bebida en el caso de pequeños animales) se corren mayores riesgos de dispersión de los datos, debido a las cantidades dispares de agua consumida por animal. De todas maneras, la forma clínica de administración oral de este antibiótico también asegura la correcta dosificación de la droga. Por todo ello se quiso estudiar si la inducibilidad del sistema se veía afectada por la vía de administración del inductor, y para ello indujimos el sistema mediante administración oral de dox en agua de bebida (2 mg/ml dox, 5% sacarosa). Como se observa en la Figura 10, los niveles de actividad luciferasa en estado inducido obtenidos mediante la administración oral de la droga son algo menores (un 50% aproximadamente) que los obtenidos a las 24 horas de inducción i.p. con 50 mg/kg de dox, lo que indica que la vía oral puede ser utilizada eficazmente y de forma segura para inducir este sistema, aunque no alcanza los mayores niveles alcanzados por las dosis i.p. de dox más elevadas. No se han ensayado concentraciones mayores de dox en agua de bebida, sino que se han usado protocolos similares a los ya descritos para los sistemas de inducción por tetraciclina en la literatura. 2.6 Biodistribución de rAAV-pTetbidi-pAlb-luc.
Ya se había observado que la actividad luciferasa se encontraba más restringida al hígado al comparar los niveles medidos en el área hepática versus el animal total (Figura 6) en animales vivos utilizando cámara CCD.
Ahora bien, para realizar un estudio más detallado y exhaustivo de la biodistribución de la actividad del transgén obtenida tras la inducción del nuevo sistema en ratones de ambas cepas y sexos, indujimos 4-8 ratones por grupo (que habían sido infectados 21 días antes con 1 x 1011 gv/ratón del rAAV2/8 con el correspondiente sistema de inducción), con 50 mg/Kg de dox i.p. A las 24 hs medimos la actividad de luciferasa in vivo en la cámara CCD y posteriormente, sacrificamos los animales y extrajimos varios de sus órganos, congelándolos inmediatamente para luego medir la actividad luciferasa de cada uno de ellos y normalizarla por la cantidad de proteína total. Este protocolo es el mismo que se aplicó para el caso del anterior sistema inducible.
Tanto en hembras como en machos, se observa expresión de luciferasa exclusivamente en el hígado de los animales de ambas cepas con el sistema rAAV-pTetbidi-pAlb-luc (Figura 1 1 y 12). Si se fija la atención en cada órgano, la expresión debida a este sistema es siempre mayor (y en casi todos los casos de forma significativa) que la debida a la del sistema rAAV-pTetbidi-pAlb-luc, con excepción del hígado. En el hígado, vemos que el sistema rAAV-pTetbidi-pAlb-luc alcanza niveles de inducción de la actividad de luciferasa mayores que el sistema rAAV-pTetbidi-pCMV-luc en ambas cepas, lo que corrobora lo predicho por las mediciones de bio luminiscencia in vivo, realizadas en la zona hepática con ambos sistemas. De esta manera queda demostrada la hepato-especificidad del sistema inducible rAAV2/8-pTetb¡di-pAlb-luc en ratones hembras y machos de ambas cepas.
En conclusión, el sistema rAAV-pTetbidi-pAlb-luc es el primer sistema inducible y hepato-específico descrito para vectores adeno-asociados (ya han sido descrito sistemas inducibles hepato-específicos vehiculizados mediante inyección hidrodinámica (Zabala, M., et al, Cáncer Res. 2004; 64: 2799-2804), y mediante adeno virus de alta capacidad (Wang, L., et al. Gastro entero lo gy, 2004. 126: 278-289) cuyo tamaño es superior al máximo aceptado por los rAAVs), y constituye una herramienta muy importante para el tratamiento a largo plazo de enfermedades hepáticas que requieran una regulación estricta de la expresión del transgén, ya sea por presentar un rango terapéutico acotado (como en el caso de la IGF-1 en modelos de cirrosis hepáticas), como por presentar efectos tóxicos al ser expresado incontroladamente (como en el caso de varias citoquinas inmunopotenciadoras como la IL-12, el IFNy, el IFNa, etc).
Ejemplo 3. Construcción y caracterización del virus recombinante rAAV-pTetbidi-pAlb-IL12.
Numerosos estudios preclínicos mostraron la eficacia antitumoral derivada de la transferencia génica de la IL-12. Estos datos impulsaron la realización de un ensayo clínico fase I para el tratamiento de tumores digestivos utilizando un adenovirus de primera generación, portador de IL-12 (Sangro, B., et al. J Clin Oncol. 2004, 22: 1389- 1397). El ensayo clínico puso en evidencia la necesidad de una expresión mas prolongada de la IL-12 para lograr obtener un efecto terapéutico. En este sentido en el departamento se está trabajando desarrollando vectores virales de larga expresión portadores de sistemas de expresión inducibles de IL-12 (Wang, L., et al. Gastroenterology, 2004. 126: 278-289).
Dentro de los vectores virales con los que contamos, el AAV representa un candidato muy prometedor, ya que se trata de un vector de larga expresión y su producción en grado clínico y en altas dosis ya había sido constatada (Meghrous, J., et al. Biotechnol Prog. 2005, 21 : 154-160).
Por ello se intentó desarrollar un vector adenoasociado capaz de producir de forma inducible y hepatoespecífica la IL-12 y testar su actividad antitumoral en modelos animales. La implantación de ciertas líneas de cáncer de colon en el hígado de ratones singénicos, como la línea MC38 en ratones C57, constituye un tipo de modelo de cáncer intrahepático muy utilizado en aproximaciones de inmunoterapia y otras terapias pre- clínicas (Heijstek, M.W., et al. Dig Surg, 2005, 22: 16-25), por lo que va a ser el modelo elegido para probar el nuevo vector terapéutico.
Se utilizó la mIL-12 de simple cadena (mIL-12 se), formada por las subunidades p40 y p35 fusionadas en una sola secuencia proteica. La mIL-12 se tiene un tamaño bastante menor que la construcción que habitualmente se usa para expresar la IL-12, que consta de la subunidad P35, un elemento IRES (del inglés: "Internal Ribosomal Entry Site") y la subunidad P40 (Waehler, R., et al. Hum Gene Ther, 2005, 16: 307-317). Esto permite subclonarla en el esqueleto viral del rAAV y generar el virus recombinante correspondiente. Además, se ha descrito que la proteína resultante de la expresión de esta construcción es más activa que aquella obtenida de la construcción en la cual ambas subunidades se encuentran asociadas mediante una secuencia de unión interna de ribosoma o IRES.
Por lo tanto, se sustituyó el gen de la luciferasa por el de la mIL-12 se obteniendo la construcción que se muestra en la Figura 2.C. Esta nueva construcción se denomina rAAV-pTetbidi-pAlb-mIL12. Posteriormente se pasó a producir el virus rAAV2/8- pTetbidi-pAlb-mIL12.
3.1 Construcción del vector
Para generar el plásmido pAClM2-pAlbIL12 que contiene el genoma recombinante de AAV con el sistema inducible pTetbidi-pAlb-mIL12 , se amplificó por PCR la mIL12sc a partir del plásmido pCDNA3.1-mIL12sc (Cedido amablemente por el Dr. Crettaz de nuestro departamento. La construcción y secuencia de la mIL12sc se encuentran detalladas en Lieschke, G.J., et al. (Nat. Biotechnol. 1997, 15: 35-40) con los cebadores G (sentido) y H (antisentido) (G: GTC GAC ATG GGT CCT CAG AAG (SEQ.ID.NO.: 17), H: GCG GCC GCT TAG GCG GAG CTC AGA TAG CC (SEQ.ID.NO.: 18) que contienen en sus extremos 5' los sitios Salí (cebador sentido), y Notl (cebador antisentido). Este fragmento se subclonó en el vector de clonaje pCDNA3.1/V5-His TOPO TA (Invitrogen), y se extrajo de él mediante digestión con las enzimas anteriormente mencionadas. El fragmento extraído se insertó en el vector pAClM2-pAlb-luc, previamente digerido con Sall/Notl, obteniendo el plásmido p AC 1 M2-p Alb-mIL 12sc.
La producción y purificación del virus rAAV2/8-pTetbidi-pAlb-mIL12, se realizó de la misma forma que la descrita para los otros vectores ya descritos.
3.2 Protocolo antitumoral.
Descripción del modelo tumoral
Como se menciona anteriormente, se utilizará el modelo de metástasis hepáticas de cáncer colorrectal implantando células MC38 en el hígado de ratones singénicos C57BL/6. El procedimiento utilizado consiste en la implantación hepática (mediante laprarotomía) de 500.000 células MC38 en el lóbulo mayor del hígado). Siete días tras la implantación hepática de las células se detectan tumores de 4-6 mm de diámetro (mediante laparotomía), que crecen ininterrumpidamente hasta producir la muerte del ratón alrededor de 30-50 días post-implantación.
El protocolo que se siguió fue el siguiente: se administraron 3 dosis distintas del vector rAAV2/8-pTetbidi-pAlb-IL12 por vía intravenosa, a 3 grupos de ratones hembras C57BL/6 (N=5): 3x l010, l x l O10 y 3x l09 gv/ratón. Tras un mes de la inyección del vector, se implantaron 5χ 105 células MC38 en el lóbulo mayor del hígado (se añadieron 5 ratones control, a los que no se les había administrado el vector previamente), y 10 días después se realizó una inducción i.p. de dox 50mg/Kg mantenida durante una semana en agua de bebida (2mg/ml de dox) al 5% de sacarosa. Se esperó un mes antes de implantar las células tumorales con el objeto de prevenir una posible respuesta inmune contra la cápside del rAAV8 que pudiera estar presente a tiempos cortos tras la administración del vector. Se extrajo sangre de los ratones en varios puntos, y se midió la concentración en suero de mIL12sc, mlFNy, y transaminasas (Figura 13). Se corroboró una relación lineal entre los niveles de mIL-12 se e mlFNgamma en el estado inducido y la dosis de virus administrada. La expresión de mIL 12sc fue transitoria, descendiendo hasta niveles indetectables a día 7 de inducción (inhibición mediada por mlFNgamma, ya descrita por Reboredo, M., et al (Reboredo, M., et al. Gene Ther. 2008, 15 : 277-288). Los niveles de mlFNgamma alcanzaron su pico de expresión a día 7 de inducción. La expresión de ambas citoquinas fue indetectable para las tres dosis de virus administradas en el estado basal, previo a la inducción, medida mediante ELISA.
3.3 Ausencia de toxicidad.
Uno de los problemas más importantes a la hora de utilizar la IL-12 como agente anti- tumoral es su alta toxicidad sistémica cuando su expresión es alta y no regulada. Por ello se quiso analizar los efectos tóxicos debidos a la expresión de la mIL-12 se por el vector en el hígado. Para ello se midieron las transaminasas séricas (AST: aspartato aminotransferasa, y ALT: alanina aminotransferasa) durante y después de la inducción.
En ningún caso se observaron efectos tóxicos visibles en los animales, y las mediciones de transaminasas séricas indican ausencia de fallo hepático importante en los puntos de tiempo elegidos (Figura 14), aunque se observan aumentos puntuales y transitorios de ambas enzimas, principalmente 24 horas post inducción i.p. de dox. Esto indica que la inducción regulada de IL-12 es segura en términos de toxicidad.
3.4 Eficacia antitumoral en profilaxis: Supervivencia
La primera forma de medir la eficacia antitumoral del tratamiento fue la determinación del porcentaje de supervivencia de los diferentes grupos de ratones en el tiempo. Se dio por finalizado el experimento a día 132 del protocolo, correspondiente al día 102 postimplantación de las células tumorales (Figura 13). Los ratones que a este día estaban vivos no presentaba tumores intrahep áticos, sin embargo, todos los animales que murieron durante el estudio presentaban tumores de gran tamaño (aproximadamente 4 cm3). No se observó mortalidad debida a la expresión de IL-12. Todos los ratones control y los inyectados con la dosis más baja del virus murieron, aunque en estos últimos se observa un ligero retraso en el crecimiento del tumor. En la Figura 15 se muestra que la dosis mínima de virus rAAV2/8-pTetb¡di-pAlb-mIL12 terapéutica fue l x lO10 gv/ratón, obteniéndose el 100% de ratones libres de tumor. La dosis de 3x 1010 gv/ratón produjo un porcentaje del 80% de ratones libres de tumor.
3.5 Eficacia antitumoral: Evaluación de la respuesta inmune de memoria.
Para evaluar la eficacia de la respuesta inmune memoria inducida por la administración del vector, realizamos un rechallenge (o segundo desafío) de células MC38 (l x lO6 células/ratón) administradas subcutáneamente en aquellos ratones. La Figura 16 muestra la progresión tumoral en el tiempo de los ratones previamente tratados, comparados con 5 ratones no tratados, control. Se observa protección en el 40 % de los ratones previamente tratados, mientras que el tamaño tumoral al final del experimento (día 42 post rechallenge y día 132 del protocolo) es significativamente menor en los grupos tratados, que en los ratones sin tratar. Estos datos indican el desarrollo de una respuesta memoria efectora eficaz en los ratones tratados, frente a aquellos sin tratar.
Por otra parte, se marcó y analizó el porcentaje de PBLs CD8 -MC38Tet+ (tetrámeros específicos cargados con péptido inmuno dominante de la línea MC38) presentes a día 23 post rechallenge (día 113 del protocolo) en todos los grupos. Se observó que el grupo tratado, en el que se agrupan los ratones tratados con las dos dosis más altas de vector por no presentar diferencias significativas entre ellos, presentaba niveles significativamente mayores que los controles sin tratar de estos linfocitos (Figura 17).
Por último, se analizó la presencia de estos linfocitos efectores en el entorno tumoral, para lo cual se sacrificaron los animales y se marcaron los CD8+ presentes en el homogeneizado tumoral. Se analizó mediante FACS y el programa FlowJo, el porcentaje de linfocitos CD8+ específicos del tetrámero de MC38 utilizado anteriormente, y positivos para el marcador de activación CD44. Ya que no se observaron diferencias significativas entre los grupos tratados, se presentan los datos agrupados en la Figura 18. Se observan diferencias significativas entre los ratones previamente tratados y los controles, indicando que no solamente existen células efectoras memoria en sangre periférica, sino que también se localizan en el tumor, donde realizarán su función citotóxica. Aproximadamente el 50% de los linfocitos CD8+ efectores son específicos de tetrámero y se encuentran activados en los ratones que recibieron tratamiento.
En conclusión, se demuestra que el sistema inducible rAAV-pTetbidi-pAlb codificante para la mIL 12 de cadena única constituye un buen tratamiento antitumoral para metástasis hepáticas de carcinoma colorrectal, con ausencia de efectos tóxicos asociados a la expresión de IL-12, y el desarrollo de una respuesta celular efectiva. Además, observamos la inducción mediada por el vector, de una eficiente respuesta celular de tipo memoria al volver a desafiar a los ratones tratados con las mismas células transformadas. Esta podría constituir una posible aplicación al sistema inducible y hepato-específico presentado en este trabajo.
3.6 Eficacia antitumoral terapéutica: Supervivencia
Tras comprobar que el tratamiento lograba prevenir el desarrollo de tumores comprobamos si el mismo tratamiento era capaz de eliminar tumores ya implantados. Para ello en primer lugar se implantaron las células tumorales MC38 siete días mas tade se inyecto una única dosis del vector terapéutico. Siete días tras la inyección del vector se comenzó la inducción de la expresión de IL-12 (Figura 19). Se dio por finalizado el experimento al día 100 post-implantación de las células tumorales Los ratones que a este día estaban vivos no presentaba tumores intrahepáticos, sin embargo, todos los animales que murieron durante el estudio presentaban tumores de gran tamaño (aproximadamente 4 cm3). No se observó mortalidad debida a la expresión de IL-12. Todos los ratones control murieron (Figura 20).

Claims

REIVINDICACIONES
Una construcción génica que permite la expresión inducible hepatoespecífica de un polinucleótido de interés en respuesta a un agente inductor que comprende
(i) un operador-promotor inducible bidireccional que comprende al menos un elemento de respuesta a dicho agente inductor flanqueado por una primera secuencia promotora hepatoespecífica y por una segunda secuencia promotora hepatoespecífica en donde ambas secuencias promotoras hepatoespecíficas actúan de forma divergente,
(ii) una primera secuencia nucleotídica que comprende una secuencia que codifica un transactivador activable por dicho agente inductor y una señal de poliadenilación situada en posición 3 ' con respecto a la región que codifica el transactivador, en donde dicha secuencia que codifica un transactivador se encuentra operativamente acoplada a la primera secuencia promotora hepatoespecífica y
(iii) una segunda secuencia nucleotídica que comprende un polinucleótido que se encuentra operativamente acoplado a la segunda secuencia promotora hepatoespecífica y una señal de poliadenilación situada en posición 3 ' con respecto al polinucleótido de interés,
en donde la actividad promotora de dichas primera y segunda secuencias promotoras hepatoespecíficas se induce como consecuencia de la unión del transactivador a la región operadora del operador-promotor en presencia del agente inductor.
Una construcción génica según la reivindicación 1 en donde el elemento de respuesta al agente inductor comprende al menos un elemento de respuesta a tetraciclina y el transactivador es un transactivador de tetraciclina reverso.
Una construcción según la reivindicación 2 en donde el elemento de respuesta tetraciclina comprende la secuencia de ácidos nucleicos definida en SEQ.ID.NO.: !.
4. Una construcción génica según cualquiera de las reivindicaciones 2 ó 3 en donde el transactivador de tetraciclina reverso está codificado por un polinucleótido que comprende la secuencia SEQ ID NO:6.
5. Una construcción génica según cualquiera de las reivindicaciones 1 a 4 en donde la primera secuencia promotora hepatoespecífica y la segunda secuencia promotora hepatoespecífica son iguales.
6. Una construcción génica según la reivindicación 5 en donde la primera secuencia promotora hepatoespecífica y la segunda secuencia promotora hepatoespecífica comprenden el promotor del gen de albúmina o una variante fimcionalmente equivalente del mismo.
7. Una construcción génica según la reivindicación 6 en donde el promotor del gen de albúmina comprende una secuencia seleccionada del grupo de SEQ.ID.NO.: 2 y SEQ.ID.NO.:3.
8. Una construcción génica según la reivindicación 7 en donde el operador-promotor inducible bidireccional comprende la SEQ.ID.NO.: 4.
9. Una construcción génica según cualquiera de las reivindicaciones 1 a 8 en donde al menos una de las señales de poliadenilación es una señal de poliadenilación bidireccional.
10. Una construcción génica según la reivindicación 9 en donde la señal de poliadenilación es una señal de poliadenilación bidireccional del virus SV40.
11. Una construcción génica según cualquiera de las reivindicaciones 1 a 10 en el que el polinucleótido de interés codifica la cadena pesada y/o la cadena ligera de IL-12 o una variante funcionalmente equivalente de las mismas.
12. Una construcción génica según la reivindicación 11 en donde el polinucleótido de interés codifica una IL-12 de cadena sencilla.
13. Un vector que comprende una construcción génica según cualquiera de las reivindicaciones 1 a 12.
14. Un genoma viral recombinante que comprende una construcción génica según cualquiera de las reivindicaciones 1 a 12.
15. Un genoma viral según la reivindicación 14 en donde dicho genoma es de un virus adeno-asociado recombinante.
16. Un virión obtenible expresando un genoma viral según las reivindicaciones 14 ó 15 en una célula empaquetadora adecuada.
17. Un método in vitro para la expresión en una célula de origen hepático de un polinucleótido de interés que comprende las etapas de
(i) poner en contacto dicha célula con una construcción génica según cualquiera de las reivindicaciones 1 a 12, con un vector según la reivindicación 13, con un genoma viral según cualquiera de las reivindicaciones 14 o 15 o con un virión según la reivindicación 15 en condiciones adecuadas para la entrada en la célula de dicha construcción, de dicho vector o de dicho virión y
(ii) poner en contacto la célula con el agente inductor durante el tiempo necesario para que se produzca la expresión del polinucleótido de interés.
18. Una composición farmacéutica que comprende una construcción génica según cualquiera de las reivindicaciones 1 a 12, un vector según la reivindicación 13, un genoma viral según las reivindicaciones 14 ó 15 o un virión según la reivindicación 16 y un vehículo farmacéuticamente aceptable.
19. Una construcción génica según cualquiera de las reivindicaciones 1 a 12, un vector según la reivindicación 13, un genoma viral según las reivindicaciones 14 ó 15 o un virión según la reivindicación 16 o una composición farmacéutica según la reivindicación 18 para uso como medicamento.
20. Una construcción génica según cualquiera de las reivindicaciones 1 a 12, un vector según la reivindicación 13, un genoma viral según las reivindicaciones 14 ó 15 o un virión según la reivindicación 16 o una composición farmacéutica según la reivindicación 18 para su uso en el tratamiento de un enfermedad hepática.
21. Una construcción génica según cualquiera de las reivindicaciones 1 a 12, un vector según la reivindicación 13, un genoma viral según las reivindicaciones 14 ó 15 o un virión según la reivindicación 16 o una composición farmacéutica según la reivindicación 18 en donde el polinucleótido de interés codifica IL-12 o una variante funcionalmente equivalente de la misma para su uso en el tratamiento del cáncer hepático.
22. Un operador-promotor inducible bidireccional adecuado para la expresión hepatoespecífica e inducible por un agente inductor de dos polinucleótidos de interés que comprende
(i) al menos un elemento de respuesta a dicho agente inductor,
(ii) una primera secuencia promotora hepatoespecífica y
(iii) una segunda secuencia promotora hepatoespecífica,
en donde la primera y la segunda secuencia promotora hepatoespecífica actúan de forma divergente con respecto al elemento de respuesta al agente inductor y en donde la actividad promotora de la primera y la segunda secuencia promotora hepatoespecífica se ve aumentada en presencia de dicho agente inductor y en presencia de un transactivador que se une al elemento de respuesta.
23. Un operador inducible bidireccional según la reivindicación 22 en donde el elemento de respuesta al agente inductor en el operador-promotor bidireccional regulable comprende al menos un elemento de respuesta a una tetraciclina.
24. Un operador inducible bidireccional según la reivindicación 23 en donde el elemento de respuesta a la tetraciclina comprende un secuencia de ácidos nucleicos definida en SEQ.ID.NO.: l .
25. Un operador inducible bidireccional según cualquiera de las reivindicaciones 22 a 24 en donde la primera secuencia promotora hepatoespecíñca y la segunda secuencia promotora hepatoespecíñca son iguales.
26. Un operador inducible bidireccional según la reivindicación 25 en donde la primera secuencia promotora hepatoespecíñca y la segunda secuencia promotora hepatoespecíñca comprenden el promotor del gen de albúmina o una variante f ncionalmente equivalente del mismo.
27. Un operador inducible bidireccional según la reivindicación 26 en donde el promotor del gen de albúmina comprende una secuencia seleccionada del grupo de SEQ.ID.NO.: 2 y SEQ.ID.NO.:3.
28. Un operador inducible bidireccional según la reivindicación 27 en donde la secuencia nucleotídica del operador-promotor inducible bidireccional comprende la SEQ.ID.NO.: 4.
29. Una construcción génica adecuada para la expresión hepatoespecíñca e inducible por un agente inductor de un polinucleótido de interés que comprende
(a) Un operador-promotor inducible bidireccional que comprende
(i) al menos un elemento de respuesta a dicho agente inductor,
(ii) una primera secuencia promotora hepatoespecíñca y
(iii) una segunda secuencia promotora hepatoespecíñca,
(b) una secuencia nucleotídica que codifica un transactivador activable por dicho agente inductor que se encuentra operativamente acoplada a la primera secuencia promotora hepatoespecíñca y una señal de poliadenilación situada en posición 3 ' con respecto a la región que codifica el transactivador,
en donde la primera y la segunda secuencia promotora hepatoespecífica actúan de forma divergente con respecto al elemento de respuesta al agente inductor y en donde la actividad promotora de la primera y la segunda secuencia promotora hepatoespecífica se ve aumentada en presencia de dicho agente inductor y en presencia de un transactivador que se une al elemento de respuesta en el operador- promotor inducible bidireccional.
30. Una construcción génica según la reivindicación 29 en donde el elemento de respuesta al agente inductor en el operador-promotor bidireccional regulable comprende al menos un elemento de respuesta a una tetraciclina y e l transactivador es activable por dicha tetraciclina.
31. Una construcción según la reivindicación 30 en donde el elemento de respuesta a la tetraciclina comprende una secuencia de ácidos nucleicos definida en SEQ.ID.NO.: l.
32. Una construcción génica según cualquiera de las reivindicaciones 30 ó 31 en el que el trans activador inducible por tetraciclinas reverso está codificado por un polinucleótido que comprende la secuencia SEQ ID NO:2.
33. Una construcción génica según cualquiera de las reivindicaciones 29 a 32 en donde la primera secuencia promotora hepatoespecífica y la segunda secuencia promotora hepatoespecífica son iguales.
34. Una construcción génica según la reivindicación 33 en donde la primera secuencia promotora hepatoespecífica y la segunda secuencia promotora hepatoespecífica comprenden el promotor del gen de albúmina o una variante funcionalmente equivalente del mismo. Una construcción génica según la reivindicación 34 en donde el promotor del gen de albúmina comprende una secuencia seleccionada del grupo de SEQ.ID.NO.: 2 y SEQ.ID.NO.:3.
Una construcción génica según la reivindicación 35 en donde la secuencia nucleotídica del operador-promotor inducible bidireccional comprende la SEQ.ID.NO.: 4.
Una construcción génica según cualquiera de las reivindicaciones 29 a 36 donde la señal de poliadenilación es una señal de poliadenilación bidireccional.
38. Una construcción génica según la reivindicación 37 en la que la señal de poliadenilación es una señal de poliadenilación bidireccional del virus SV40.
PCT/ES2010/070715 2009-11-05 2010-11-04 Sistemas de expresión regulada WO2011054994A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2012005340A MX2012005340A (es) 2009-11-05 2010-11-04 Sistemas de expresion regulada.
EP10795406A EP2497830A1 (en) 2009-11-05 2010-11-04 Regulated expression systems
RU2012123145/10A RU2012123145A (ru) 2009-11-05 2010-11-04 Генный конструкт (варианты), вектор и рекомбинантный вирусный геном на его основе, вирион, их фармацевтическая композиция, способ in vitro экспрессии полинуклеотида в клетке печеночной природы, лекарственное средство, способ лечения заболевания печени (варианты), индуцируемый двунаправленный оператор-промотор
US13/508,494 US20120225933A1 (en) 2009-11-05 2010-11-04 Regulated expression systems
AU2010316996A AU2010316996A1 (en) 2009-11-05 2010-11-04 Regulated expression systems
BR112012010755A BR112012010755A2 (pt) 2009-11-05 2010-11-04 constructo de gene que permite a expressão hepato-específica induzível de um polinucleotídeo de interesse em resposta a um agente indutor, vetor, genoma viral recombinante, vírion, método in vitro para a expressão de um polinucleotídeo de interesse em uma célula de origem hepática, composição farmacêutica e operador-promotor bi-direcional induzível adequado para a expressão hepato-específica induzível de dois polinucleotídeos de interesse por um agente indutor
CA2780671A CA2780671A1 (en) 2009-11-05 2010-11-04 Regulated expression system
CN201080060595XA CN102712933A (zh) 2009-11-05 2010-11-04 调控的表达系统
JP2012537425A JP2014503173A (ja) 2009-11-05 2010-11-04 制御された発現系

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200902122 2009-11-05
ESP200902122 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011054994A1 true WO2011054994A1 (es) 2011-05-12

Family

ID=43569271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070715 WO2011054994A1 (es) 2009-11-05 2010-11-04 Sistemas de expresión regulada

Country Status (10)

Country Link
US (1) US20120225933A1 (es)
EP (1) EP2497830A1 (es)
JP (1) JP2014503173A (es)
CN (1) CN102712933A (es)
AU (1) AU2010316996A1 (es)
BR (1) BR112012010755A2 (es)
CA (1) CA2780671A1 (es)
MX (1) MX2012005340A (es)
RU (1) RU2012123145A (es)
WO (1) WO2011054994A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316352A (zh) * 2014-07-29 2016-02-10 深圳先进技术研究院 一种调节性表达目的基因的载体及其制备方法和应用
US10413598B2 (en) 2014-11-12 2019-09-17 Ucl Business Plc Factor IX gene therapy
US10842885B2 (en) 2018-08-20 2020-11-24 Ucl Business Ltd Factor IX encoding nucleotides
US12071633B2 (en) 2020-10-13 2024-08-27 Kriya Therapeutics, Inc. Viral vector constructs for delivery of nucleic acids encoding cytokines and uses thereof for treating cancer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091065A2 (en) * 2010-01-19 2011-07-28 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities
EP3747998B1 (en) * 2013-03-15 2024-07-24 The Trustees of the University of Pennsylvania Compositions for treating mpsi
EP3184548A1 (en) * 2015-12-23 2017-06-28 Miltenyi Biotec GmbH Chimeric antigen receptor with cytokine receptor activating or blocking domain
WO2017123688A1 (en) * 2016-01-12 2017-07-20 University Of Cincinnati A lentivirus packaging system comprising a synthetic positive feedback loop
KR20240063170A (ko) 2017-07-06 2024-05-09 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 I형 점액다당류증을 치료하기 위한 유전자 요법
CN107365785B (zh) * 2017-09-11 2020-02-18 东南大学 一种调控细胞内NF-κB活性的基因表达载体及其调控方法和应用
CN118829729A (zh) * 2022-03-16 2024-10-22 罗格斯新泽西州立大学 受控的肌肉特异性基因递送
CN114891829B (zh) * 2022-05-24 2023-09-26 新乡医学院 一种肝特异性游离型表达载体和基因治疗载体及其应用
WO2024213573A1 (en) 2023-04-13 2024-10-17 Vector Biopharma Ag Inducible expression system
CN118460545A (zh) * 2024-07-08 2024-08-09 凌意(杭州)生物科技有限公司 一种诱导型表达Rep多肽的表达框

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970154A (en) 1987-10-09 1990-11-13 Baylor College Of Medicine Method for inserting foreign genes into cells using pulsed radiofrequency
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
WO1996017947A1 (en) 1994-12-06 1996-06-13 Targeted Genetics Corporation Packaging cell lines for generation of high titers of recombinant aav vectors
WO1996024676A1 (en) 1995-02-08 1996-08-15 Whitehead Institute For Biomedical Research Bioactive fusion proteins and pre-existing tumor therapy
WO1996040958A1 (en) 1995-06-07 1996-12-19 Baylor College Of Medicine Nucleic acid transporters for delivery of nucleic acids into a cell
US5589377A (en) 1990-10-30 1996-12-31 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Recombinant adeno-associated virus vectors
US5593875A (en) 1994-09-08 1997-01-14 Genentech, Inc. Methods for calcium phosphate transfection
US5658785A (en) 1994-06-06 1997-08-19 Children's Hospital, Inc. Adeno-associated virus materials and methods
US5676954A (en) 1989-11-03 1997-10-14 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US5679559A (en) 1996-07-03 1997-10-21 University Of Utah Research Foundation Cationic polymer and lipoprotein-containing system for gene delivery
WO1998011244A2 (en) 1996-09-11 1998-03-19 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Aav4 vector and uses thereof
WO1998027207A1 (en) 1996-12-18 1998-06-25 Targeted Genetics Corporation Recombinase-activatable aav packaging cassettes for use in the production of aav vectors
US5837484A (en) 1993-11-09 1998-11-17 Medical College Of Ohio Stable cell lines capable of expressing the adeno-associated virus replication gene
US5871982A (en) 1994-10-28 1999-02-16 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
WO1999061601A2 (en) 1998-05-28 1999-12-02 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Aav5 vector and uses thereof
US6001650A (en) 1995-08-03 1999-12-14 Avigen, Inc. High-efficiency wild-type-free AAV helper functions
WO2000028061A2 (en) 1998-11-05 2000-05-18 The Trustees Of The University Of Pennsylvania Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same
WO2000028004A1 (en) 1998-11-10 2000-05-18 The University Of North Carolina At Chapel Hill Virus vectors and methods of making and administering the same
WO2000031135A1 (es) 1998-11-24 2000-06-02 Instituto Cientifico Y Tecnologico De Navarra, S.A. PEPTIDOS INHIBIDORES DE TGFβ1
US6103526A (en) 1998-10-08 2000-08-15 Protein Sciences Corporation Spodoptera frugiperda single cell suspension cell line in serum-free media, methods of producing and using
US6146874A (en) 1998-05-27 2000-11-14 University Of Florida Method of preparing recombinant adeno-associated virus compositions
US6156303A (en) 1997-06-11 2000-12-05 University Of Washington Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom
US6251677B1 (en) 1997-08-25 2001-06-26 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6387368B1 (en) 1999-02-08 2002-05-14 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US20030148506A1 (en) 2001-11-09 2003-08-07 The Government Of The United States Of America, Department Of Health And Human Services Production of adeno-associated virus in insect cells
WO2003093293A2 (en) 2002-04-29 2003-11-13 Saint Louis University Peptide antagonists of tgf-beta family members and therapeutic uses thereof
US20040197895A1 (en) 2001-11-09 2004-10-07 Kotin Robert M. Packaging lines for generation of high titers or recombinant aav vectors
WO2005019244A1 (es) 2003-08-22 2005-03-03 Proyecto De Biomedicina Cima S.L. Péptidos con capacidad de unirse al factor transformante de crecimiento beta 1 (tgf-beta1)
WO2007069090A2 (en) 2005-12-06 2007-06-21 Centre National De La Recherche Scientifique Cell penetrating peptides for intracellular delivery of molecules
US20080008690A1 (en) 2003-06-19 2008-01-10 Arbetman Alejandra E AAV virions with decreased immunoreactivity and uses therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010612A1 (en) * 1998-08-18 2000-03-02 Research Development Foundation Methods to enhance and confine expression of genes
WO2000028062A1 (fr) * 1998-11-09 2000-05-18 Aventis Pharma S.A. Nouveau systeme de regulation de l'expression d'un transgene
EP1317288A2 (en) * 2000-09-11 2003-06-11 MUSC Foundation For Research Development Method and composition for treating tumors by selective induction of apoptosis
US6835568B2 (en) * 2001-10-30 2004-12-28 Virxsys Corporation Regulated nucleic acid expression system
US6852505B1 (en) * 2003-10-15 2005-02-08 Chau-Ting Yeh Hepatitis
CN101481704A (zh) * 2009-01-21 2009-07-15 中国人民解放军第四军医大学 一种四环素严紧调控的真核表达载体

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970154A (en) 1987-10-09 1990-11-13 Baylor College Of Medicine Method for inserting foreign genes into cells using pulsed radiofrequency
US5676954A (en) 1989-11-03 1997-10-14 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US5589377A (en) 1990-10-30 1996-12-31 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Recombinant adeno-associated virus vectors
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US5837484A (en) 1993-11-09 1998-11-17 Medical College Of Ohio Stable cell lines capable of expressing the adeno-associated virus replication gene
US5658785A (en) 1994-06-06 1997-08-19 Children's Hospital, Inc. Adeno-associated virus materials and methods
US5593875A (en) 1994-09-08 1997-01-14 Genentech, Inc. Methods for calcium phosphate transfection
US5871982A (en) 1994-10-28 1999-02-16 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
WO1996017947A1 (en) 1994-12-06 1996-06-13 Targeted Genetics Corporation Packaging cell lines for generation of high titers of recombinant aav vectors
WO1996024676A1 (en) 1995-02-08 1996-08-15 Whitehead Institute For Biomedical Research Bioactive fusion proteins and pre-existing tumor therapy
WO1996040958A1 (en) 1995-06-07 1996-12-19 Baylor College Of Medicine Nucleic acid transporters for delivery of nucleic acids into a cell
US6001650A (en) 1995-08-03 1999-12-14 Avigen, Inc. High-efficiency wild-type-free AAV helper functions
US5679559A (en) 1996-07-03 1997-10-21 University Of Utah Research Foundation Cationic polymer and lipoprotein-containing system for gene delivery
WO1998011244A2 (en) 1996-09-11 1998-03-19 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Aav4 vector and uses thereof
WO1998027207A1 (en) 1996-12-18 1998-06-25 Targeted Genetics Corporation Recombinase-activatable aav packaging cassettes for use in the production of aav vectors
US6156303A (en) 1997-06-11 2000-12-05 University Of Washington Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom
US6251677B1 (en) 1997-08-25 2001-06-26 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6146874A (en) 1998-05-27 2000-11-14 University Of Florida Method of preparing recombinant adeno-associated virus compositions
WO1999061601A2 (en) 1998-05-28 1999-12-02 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Aav5 vector and uses thereof
US6103526A (en) 1998-10-08 2000-08-15 Protein Sciences Corporation Spodoptera frugiperda single cell suspension cell line in serum-free media, methods of producing and using
WO2000028061A2 (en) 1998-11-05 2000-05-18 The Trustees Of The University Of Pennsylvania Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same
WO2000028004A1 (en) 1998-11-10 2000-05-18 The University Of North Carolina At Chapel Hill Virus vectors and methods of making and administering the same
WO2000031135A1 (es) 1998-11-24 2000-06-02 Instituto Cientifico Y Tecnologico De Navarra, S.A. PEPTIDOS INHIBIDORES DE TGFβ1
US6387368B1 (en) 1999-02-08 2002-05-14 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US20030148506A1 (en) 2001-11-09 2003-08-07 The Government Of The United States Of America, Department Of Health And Human Services Production of adeno-associated virus in insect cells
US6723551B2 (en) 2001-11-09 2004-04-20 The United States Of America As Represented By The Department Of Health And Human Services Production of adeno-associated virus in insect cells
US20040197895A1 (en) 2001-11-09 2004-10-07 Kotin Robert M. Packaging lines for generation of high titers or recombinant aav vectors
WO2003093293A2 (en) 2002-04-29 2003-11-13 Saint Louis University Peptide antagonists of tgf-beta family members and therapeutic uses thereof
US20080008690A1 (en) 2003-06-19 2008-01-10 Arbetman Alejandra E AAV virions with decreased immunoreactivity and uses therefor
WO2005019244A1 (es) 2003-08-22 2005-03-03 Proyecto De Biomedicina Cima S.L. Péptidos con capacidad de unirse al factor transformante de crecimiento beta 1 (tgf-beta1)
WO2007069090A2 (en) 2005-12-06 2007-06-21 Centre National De La Recherche Scientifique Cell penetrating peptides for intracellular delivery of molecules

Non-Patent Citations (98)

* Cited by examiner, † Cited by third party
Title
"Chemical Process Reviews", vol. 2, 1969, NOYEE DEVELOPMENT CORPORATION, article "Tetracycline Manufacturing Processes"
"Handbook of Experimental Pharmacology", vol. 78, 1985, SPRINGER-VERLAG
"Remington's Pharmaceutical Sciences", 2000, WILLIAMS & WILKINS
"Tratado de Farmacia Galdnica", 1993
ALTSCHUL, S. ET AL., J MOL BIOL, vol. 215, 1990, pages 403 - 410
ALTSCHUL, S. ET AL.: "BLASTManual", NCBI NLM NIH
AMARA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 10618 - 10623
BANTEL-SCHAAL ET AL., J. VIROL., vol. 73, 1999, pages 939 - 947
BANTEL-SCHAAL ET AL., J. VIROLOGY, vol. 73, 1999, pages 939
BARON ET AL., NUCLEIC ACIDS RES., vol. 17, 1995, pages 3605 - 3606
BARON ET AL., NUCLEICS ACIDS. RES., vol. 25, 1997, pages 2723 - 2729
BARON U ET AL: "CO-REGULATION OF TWO GENE ACTIVITIES BY TETRACYCLINE VIA A BIDIRECTIONAL PROMOTER", NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 23, no. 17, 11 September 1995 (1995-09-11), XP000775822, ISSN: 0305-1048 *
BRONSTEIN I ET AL.: "Chemiluminescent and Bioluminescent Reporter Gene Assays", ANAL BIOCHEM, vol. 219, 1994, pages 196 - 181
CEREGHINI, S. ET AL., CELL, vol. 50, 1987, pages 627 - 633
CHAO ET AL., MOLECULAR THERAPY, vol. 2, 2000, pages 619
CHIORINI ET AL., J. VIROLOGY, vol. 71, 1998, pages 6823
CHIORINI ET AL., J. VIROLOGY, vol. 73, 1999, pages 1309
CHTARTO A ET AL: "Tetracycline-inducible transgene expression mediated by a single AAV vector", GENE THERAPY, MACMILLAN PRESS LTD., BASINGSTOKE, GB, vol. 10, no. 1, 1 January 2003 (2003-01-01), pages 84 - 94, XP002540413, ISSN: 0969-7128, DOI: DOI:10.1038/SJ.GT.3301838 *
CHTARTO ET AL., EXPERIMENTAL NEUROLOGY, vol. 204, 2007, pages 387 - 399
CHTARTO ET AL., GENE THERAPY, vol. 10, 2003, pages 84 - 94
CHTARTO ET AL: "Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible AAV vector", EXPERIMENTAL NEUROLOGY, ACADEMIC PRESS, NEW YORK, NY, US, vol. 204, no. 1, 3 March 2007 (2007-03-03), pages 387 - 399, XP005927105, ISSN: 0014-4886, DOI: DOI:10.1016/J.EXPNEUROL.2006.11.014 *
CHTARTO, A. ET AL., EXP NEUROL, vol. 204, 2007, pages 387 - 399
CHTARTO, A. ET AL., GENE THER, vol. 10, 2003, pages 84 - 94
CONTAG CH ET AL.: "Advances in in vivo bioluminescence imaging of gene expression", ANNU REV BIOMED ENG., vol. 4, 2002, pages 235 - 60
FECHNER ET AL: "A bidirectional Tet-dependent promotor construct regulating the expression of E1A for tight control of oncolytic adenovirus replication", JOURNAL OF BIOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 127, no. 4, 22 December 2006 (2006-12-22), pages 560 - 574, XP005810970, ISSN: 0168-1656, DOI: DOI:10.1016/J.JBIOTEC.2006.09.011 *
FIELDS ET AL.: "Virology", vol. 2, LIPPINCOTT-RAVEN PUBLISHERS
FRAIN, M. ET AL., MOL CELL BIOL, vol. 10, 1990, pages 991 - 999
GAO ET AL., HUMAN GENE THERAPY, vol. 9, 1998, pages 2353
GAO ET AL., J. VIROLOGY, vol. 78, 2004, pages 6381 - 6388
GAO ET AL., PROC. NAT. ACAD. SCI. USA, vol. 99, 2002, pages 11854
GOSSEN ET AL., SCIENCE, vol. 268, 1995, pages 1766 - 1769
GOSSEN ET AL., SCIENCE, vol. 278, 1995, pages 1766 - 1769
GOSSEN; BUJARD, PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 5547 - 5551
GUBLER ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 88, 1991, pages 4143
H. F. DOWLING: "Antibiotic Monographs", 1955, MEDICAL ENCYCLOPEDIA, article "Tetracycline"
HEIJSTEK, M.W. ET AL., DIG SURG, vol. 22, 2005, pages 16 - 25
HERRMANN ET AL., ARCH VIROL, vol. 149, 2004, pages 1611 - 7
HO ET AL., NATURE, vol. 382, 1996, pages 822 - 826
HODGES ET AL., EXP. OPIN. BIOL. THER, vol. 3, 2003, pages 91 - 918
HONG ET AL., J. PHARM. PHARMACOL., vol. 54, 2003, pages 51 - 8
INOUE ET AL., J. VIROL., vol. 72, 1998, pages 7024
KITAJIMA ET AL., ATHEROSCLEROSIS, vol. 186, 2006, pages 65 - 73
KRAMER ET AL., MOLECULAR THERAPY, vol. 7, 2003, pages 375 - 385
KRAMER G. ET AL., MOLECULAR THERAPY, vol. 7, 2003, pages 375 - 385
KRAMER M GABRIELA ET AL: "In vitro and in vivo comparative study of chimeric liver-specific promoters.", MOLECULAR THERAPY : THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY MAR 2003 LNKD- PUBMED:12668133, vol. 7, no. 3, March 2003 (2003-03-01), pages 375 - 385, XP002624075, ISSN: 1525-0016 *
KRAMER, M. G. ET AL., MOL. THER., vol. 7, 2003, pages 375 - 385
L. A. MITSCHER: "Medicinal Research", vol. 9, 1978, DEKKER, article "The Chemistry of the Tetracycline Antibiotics"
LIESCHKE G.J. ET AL., NAT BIOTECHNOL., vol. 15, 1997, pages 35 - 40
LIESCHKE, G.J. ET AL., NAT. BIOTECHNOL., vol. 15, 1997, pages 35 - 40
LIESCHKE, G.J., NAT BIOTECHNOL, vol. 15, 1997, pages 35 - 40
LIN ET AL., GENE THER., vol. 10, 2003, pages 180 - 7
LINDGREN, A. ET AL., TRENDS PHARMACOL. SCI, vol. 21, 2000, pages 99 - 103
LIU ET AL., SCIENCE, vol. 305, 1999, pages 1437 - 1441
LIU, F. ET AL., GENE THER, vol. 6, 1999, pages 1258 - 66
LUNDBERG, M. ET AL., MOL. THERAPY, vol. 8, 2003, pages 143 - 150
MATSUNO ET AL., GENE THER, vol. 10, 2003, pages 1559 - 66
MEGHROUS, J. ET AL., BIOTECHNOL PROG., vol. 21, 2005, pages 154 - 160
MORIS ET AL., VIROLOGY, vol. 33, 2004, pages 375 - 383
MURAMATSU ET AL., VIROLOGY, vol. 221, 1996, pages 208
MURAO ET AL., PHARM. RES., vol. 19, 2002, pages 1808 - 14
MUYLDERMANS, BIOTECHNOL., vol. 74, 2001, pages 277 - 302
NAKAI, H. ET AL., J. VIROL, vol. 79, 2005, pages 214 - 224
NATHWANI ET AL., BLOOD, vol. 109, 2007, pages 1414 - 1421
NO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 3346 - 3351
NUCLEIC ACIDS RESEARCH, vol. J4, 2006, pages D104 - D107
PALLI ET AL., EUR. J BIOCHEM., vol. 270, 2003, pages 1308 - 1315
PANEDA, A. ET AL., HUM. GENE THER., vol. 20, 2009, pages 908 - 917
POTTER ET AL., METHODS ENZYMOL., vol. 346, 2002, pages 413 - 430
R. C. EVANS: "Biochemical Reference Series", vol. 1, 1968, QUADRANGLE PRESS, article "The Technology of the Tetracyclines"
REBOREDO, M. ET AL., GENE THER., vol. 15, 2008, pages 277 - 288
ROSENFELD ET AL., GENES DEV., vol. 5, 1991, pages 897 - 907
RUSSELL, J. GEN. VIROL., vol. 81, 2000, pages 2573 - 2604
SANGRO, B. ET AL., J CLIN ONCOL., vol. 22, 2004, pages 1389 - 1397
SCHWARZE, S.R. ET AL., TRENDS PHARMACOL. SCI., vol. 21, 2000, pages 45 - 48
SCOTT ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 989, 1989, pages 25 - 48
SEIPEL, K. ET AL., EMBO J., vol. 13, 1992, pages 4961 - 4968
SHADE ET AL., J. VIROL., vol. 58, 1986, pages 921
SNYDER, E.L.; DOWDY, S.F., PHARM. RES., vol. 21, 2004, pages 389 - 393
SRIVISTAVA ET AL., J. VIROLOGY, vol. 45, 1983, pages 555
TEMPLETON, DNA CELL BIOL., vol. 21, 2002, pages 857 - 867
TRIEZENBERG, S. J. ET AL., GENES DEV., vol. 2, 1988, pages 718 - 729
URABE ET AL., HUM. GENE THER., vol. 13, 2002, pages 1935 - 1943
URLINGER, S. ET AL., PROC. NATL. ACAD. SCI USA, vol. 97, 2000, pages 7963 - 7968
WAEHLER, R. ET AL., HUM GENE THER, vol. 16, 2005, pages 307 - 317
WANG ET AL., NAT. BIOTECHNOL., vol. 15, 1997, pages 239 - 43
WANG ET AL: "Prolonged and inducible transgene expression in the liver using gutless adenovirus: A potential therapy for liver cancer", GASTROENTEROLOGY, ELSEVIER, PHILADELPHIA, PA, vol. 126, no. 1, 1 January 2004 (2004-01-01), pages 278 - 289, XP005313326, ISSN: 0016-5085, DOI: DOI:10.1053/J.GASTRO.2003.10.075 *
WANG, L. ET AL., GASTROENTEROLOGY, vol. 126, 2004, pages 278 - 289
WANG, L. ET AL., PROC. NATL. ACAD. SCI, vol. 96, 1999, pages 3906 - 3910
WANG, Z. ET AL., NAT. BIOTECHNOL., vol. 23, 2005, pages 321 - 328
WEN ET AL., WORLD J. GASTROENTEROL, vol. 10, 2004, pages 244 - 9
XIAO ET AL., J. VIROLOGY, vol. 73, 1999, pages 3994
YANG, Y.W., J. ET AL., GENE MED., vol. 5, 2003, pages 417 - 424
ZABALA ET AL., CANCER RESEARCH, vol. 64, 2004, pages 2799 - 2804
ZABALA MAIDER ET AL: "Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors", CANCER RESEARCH, vol. 64, no. 8, 15 April 2004 (2004-04-15), pages 2799 - 2804, XP002624074, ISSN: 0008-5472 *
ZABALA, M. ET AL., CANCER RES., vol. 64, 2004, pages 2799 - 2804
ZABALA, M. ET AL., J HEPATOLOGY, vol. 47, no. 6, 2007, pages 807 - 815
ZALDUMBIDE; HOEBEN, GENE THERAPY, 2008, pages 239 - 246
ZHAO ET AL., HUM. GENE THER., vol. 14, 2003, pages 1619 - 1629

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316352A (zh) * 2014-07-29 2016-02-10 深圳先进技术研究院 一种调节性表达目的基因的载体及其制备方法和应用
US10413598B2 (en) 2014-11-12 2019-09-17 Ucl Business Plc Factor IX gene therapy
US11344608B2 (en) 2014-11-12 2022-05-31 Ucl Business Ltd Factor IX gene therapy
US10842885B2 (en) 2018-08-20 2020-11-24 Ucl Business Ltd Factor IX encoding nucleotides
US11517631B2 (en) 2018-08-20 2022-12-06 Ucl Business Ltd Factor IX encoding nucleotides
US12071633B2 (en) 2020-10-13 2024-08-27 Kriya Therapeutics, Inc. Viral vector constructs for delivery of nucleic acids encoding cytokines and uses thereof for treating cancer

Also Published As

Publication number Publication date
MX2012005340A (es) 2012-12-05
CA2780671A1 (en) 2011-05-12
RU2012123145A (ru) 2013-12-10
JP2014503173A (ja) 2014-02-13
US20120225933A1 (en) 2012-09-06
AU2010316996A1 (en) 2012-06-14
BR112012010755A2 (pt) 2015-09-22
EP2497830A1 (en) 2012-09-12
CN102712933A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2011054994A1 (es) Sistemas de expresión regulada
ES2946747T3 (es) Variantes de cápsides de virus adenoasociado y su utilización para inhibir la angiogénesis
KR102200642B1 (ko) 유전자 치료를 위한 변형된 프리드라이히 운동실조증 유전자 및 벡터
EP3294894B1 (en) Aav isolate and fusion protein comprising nerve growth factor signal peptide and parathyroid hormone
KR102234930B1 (ko) 아데노-관련 바이러스 변이체 캡시드 및 그 용도
ES2920850T3 (es) Procedimientos y composiciones para el tratamiento de enfermedades oculares genéticas
ES2724122T3 (es) Composiciones para dirigir células de las vías respiratorias de conducción que comprenden construcciones de virus adenoasociado
ES2607029T3 (es) Adenovirus que comprende una proteína hexónica de la cápside del adenovirus E de simio SAdV-39 y usos de la misma
CA3054687A1 (en) Modified aav capsids and uses thereof
BR112013027120B1 (pt) Vírion de vírus adenoassociado recombinante (raav), seu uso, composição farmacêutica e vírion de vírus adenoassociado recombinante 2 (raav2)
WO2011126808A9 (en) Pharmacologically induced transgene ablation system
JP2022505816A (ja) 小型化ジストロフィンおよびそれらの使用
EP1869191B1 (en) Novel neural cell specific promoter and baculovirus and method for gene delivery
US20240343768A1 (en) Gene therapy for tuberous sclerosis
Poutou et al. Adaptation of vectors and drug-inducible systems for controlled expression of transgenes in the tumor microenvironment
US20040161847A1 (en) Vigilant vector system
ES2384975T3 (es) Vectores AAV para terapia genética in vivo de artritis reumatoide
KR20240132386A (ko) 호산구성 장애에 대한 유전자 요법
ES2809479T3 (es) Composiciones promotoras
ES2276623A1 (es) Nuevos adenovirus recombinantes de replicacion condicionada (crad).
Duarte 77. HIV-1 Vector Production Mediated by Rev Protein Transduction
BR112017017867B1 (pt) Proteína do capsídeo do vírus adenoassociado modificado (aav), sequência de ácido nucleico, partícula de vetor viral, composição farmacêutica, bem como usos do vetor viral

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060595.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10795406

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012537425

Country of ref document: JP

Ref document number: 13508494

Country of ref document: US

Ref document number: MX/A/2012/005340

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2780671

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4332/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010316996

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010795406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012123145

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010316996

Country of ref document: AU

Date of ref document: 20101104

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010755

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010755

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120507