[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011046058A1 - サーモスタット及び車両の冷却装置 - Google Patents

サーモスタット及び車両の冷却装置 Download PDF

Info

Publication number
WO2011046058A1
WO2011046058A1 PCT/JP2010/067625 JP2010067625W WO2011046058A1 WO 2011046058 A1 WO2011046058 A1 WO 2011046058A1 JP 2010067625 W JP2010067625 W JP 2010067625W WO 2011046058 A1 WO2011046058 A1 WO 2011046058A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
engine
temperature
thermostat
valve body
Prior art date
Application number
PCT/JP2010/067625
Other languages
English (en)
French (fr)
Inventor
茂樹 木野村
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to US13/255,797 priority Critical patent/US8596228B2/en
Priority to DE112010001317.9T priority patent/DE112010001317B4/de
Priority to CN201080019489.7A priority patent/CN102597448B/zh
Publication of WO2011046058A1 publication Critical patent/WO2011046058A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the present invention relates to a thermostat and a vehicle cooling device.
  • a vehicle cooling device includes a cooling water circuit in which cooling water circulates through the inside of an engine by driving a pump, and a thermostat provided downstream of the engine of the cooling water circuit.
  • the thermostat prohibits or allows passage of the cooling water inside the engine by selectively opening and closing the valve body according to the temperature of the cooling water.
  • Such a thermostat prohibits the passage of the cooling water inside the engine by closing the valve body when the temperature of the cooling water is low.
  • the thermostat allows the passage of the cooling water inside the engine by opening the valve body with a thermo element that receives heat from the cooling water.
  • the passage of the cooling water inside the engine is prohibited and the warming up of the engine is promoted.
  • the temperature of the cooling water is high, the passage of the cooling water inside the engine is allowed and the boiling of the cooling water inside the engine is suppressed.
  • the temperature of the cooling water in the cooling water circuit is low, so that the thermostat is closed and the engine warm-up is promoted. At this time, the thermostat is closed and passage of cooling water inside the engine is prohibited.
  • the heat generation in the combustion chamber increases due to the high load operation of the engine, only the temperature of the cooling water in the cylinder head of the engine rises, and the temperature of the cooling water around the thermostat element does not rise. Arise. Under such circumstances, the cooling water staying in the cylinder head of the engine receives heat from the combustion chamber, so that the temperature of the cooling water rises excessively and the cooling water may boil. .
  • the apparatus described in Patent Document 1 is provided with a heating element for heating the thermo element in the thermostat.
  • the valve element can be opened even if the temperature of the cooling water around the thermo element is low.
  • the thermoelement is heated by the heating element of the thermostat. An opening operation is achieved. If the valve body is thus opened to allow water to flow into the engine, boiling of the cooling water staying in the cylinder head can be suppressed.
  • thermoelement when the temperature of the cooling water around the thermoelement is low, even if the thermoelement is heated by the heating element, a long time, for example, 20 to 30 seconds from the start of heating until the valve opening operation of the valve element is completed. Take it. For this reason, even if the thermo element is heated by the heating element, the cooling water staying in the cylinder head may boil before the valve element actually opens and water is passed into the engine. is there.
  • An object of the present invention is to provide a thermostat and a vehicle cooling device that can prevent boiling of cooling water staying in a cylinder head of an engine after the engine starts from a cold state.
  • a thermostat provided downstream of an engine of a cooling water circuit in which cooling water circulates through the inside of the engine by driving a pump.
  • the thermostat includes a valve body that prohibits or allows passage of the cooling water flowing through the thermostat, and a thermo element that drives the valve body based on the temperature of the cooling water.
  • the thermostat prohibits passage of the cooling water inside the engine by closing the valve body when the temperature of the cooling water is lower than the determination value, and the cooling water when the temperature of the cooling water is equal to or higher than the determination value.
  • the valve element is opened by a thermo element that receives heat transfer from the water, thereby allowing the cooling water to pass through the engine.
  • the thermostat includes a heating element that heats the thermo element to forcibly open the valve body when the temperature of the cooling water in the cooling water circuit is lower than the determination value.
  • the valve body can be opened by an external device independently of the operation of the thermo element based on the temperature of the cooling water in the cooling water circuit.
  • a thermostat provided downstream of the engine of the cooling water circuit in which the cooling water circulates through the inside of the engine by driving the pump.
  • the thermostat includes a valve body that prohibits or allows passage of the cooling water flowing through the thermostat, and a thermo element that drives the valve body based on the temperature of the cooling water.
  • the thermo element prohibits passage of the cooling water inside the engine by closing the valve body when the temperature of the cooling water is lower than the judgment value, and the cooling is performed when the temperature of the cooling water is equal to or higher than the judgment value.
  • the valve element is opened by a thermo element that receives heat transfer from the water, thereby allowing the cooling water to pass through the engine.
  • the thermostat includes a heating element that heats the thermo element to forcibly open the valve body when the temperature of the cooling water in the cooling water circuit is lower than the determination value.
  • the valve body receives a pressure of cooling water circulating in the cooling water circuit by driving the pump, and the valve body has a cooling water discharge flow rate in the pump larger than a maximum value in a normal use region. When it opens, it opens based on the pressure of the cooling water.
  • a cooling device for a vehicle includes a cooling water circuit in which cooling water circulates through the engine by driving a pump, a water temperature sensor that detects a temperature of cooling water at an outlet of the engine of the cooling water circuit, and a first or second cooling device.
  • the thermostat of this aspect, and the control part which drive-controls the said pump and the said thermostat are provided.
  • the thermostat closes the valve body when the temperature of the cooling water around the thermo element is lower than a determination value.
  • the control unit heats the thermo element with a heating element of the thermostat, thereby causing the valve element in a closed state to Opening operation is performed.
  • the control unit sets the discharge flow rate of the pump to a value larger than the maximum value in the normal use region.
  • (A)-(c) is the schematic which shows the structure of the thermostat of the cooling device of FIG.
  • surface which shows the operating state of the engine cooling water circulation according to the engine warm-up state in the vehicle cooling device of the embodiment, a valve
  • the block diagram which shows the flow of the cooling water at the time of engine cold in the cooling device of the vehicle of the embodiment.
  • the block diagram which shows the flow of the cooling water at the time of engine half warming-up in the cooling device of the vehicle of the embodiment.
  • the graph which shows transition of the cooling water temperature inside an engine before and behind valve opening in the cooling device of the vehicle of the embodiment.
  • the flowchart which shows the drive procedure of a water pump.
  • FIG. 1 shows a configuration of a cooling water circuit of a vehicle cooling device of the present embodiment.
  • This cooling device includes a first cooling water circuit that circulates cooling water through the inside of the engine 1 and a second cooling water that circulates cooling water through the exhaust heat recovery unit 2 without passing through the inside of the engine 1. Circuit.
  • the cooling water in these cooling water circuits can be circulated by a common water pump 3.
  • the water pump 3 is an electric pump, and can change the flow rate of the cooling water discharged based on an external command.
  • the exhaust heat recovery unit 2 functions as a heat exchanger that performs heat exchange between the exhaust gas of the engine 1 and the cooling water of the second cooling water circuit and heats the cooling water with the heat of the exhaust gas.
  • the first cooling water circuit is branched into a main path that passes through the water pump 3, the engine 1, and the radiator 4, and a bypass path that bypasses the radiator 4.
  • the radiator 4 provided in the main path of the first cooling water circuit releases the heat of the cooling water in the first cooling water circuit into the outside air.
  • the cooling water discharged from the water pump 3 passes through the engine 1, the radiator 4, and the temperature sensing valve 5, and then returns to the water pump 3.
  • the temperature sensing valve 5 opens when the temperature of the cooling water after passing through a heater core 6 described later reaches a specified value (for example, 105 ° C.) or more, and allows the cooling water to circulate through the radiator 4.
  • the temperature sensing valve 5 is closed when the temperature of the cooling water after passing through the heater core 6 is less than the specified value, and prohibits the circulation of the cooling water through the radiator 4. That is, in this vehicle cooling device, the radiator 4 releases the heat of the cooling water that has passed through the inside of the engine 1 when the temperature of the cooling water flowing into the temperature sensing valve 5 exceeds a specified value. Activated.
  • a reservoir tank 13 for storing excess cooling water is installed in the vicinity of the radiator 4.
  • the cooling water discharged from the water pump 3 returns to the water pump 3 through the engine 1, the thermostat 7, the heater core 6, and the temperature sensing valve 5. Yes.
  • the thermostat 7 connected downstream of the engine 1 in the bypass path is selectively opened and closed based on the temperature of the surrounding cooling water, and can be forcibly opened from the closed state when the cooling water is at a low temperature. Possible on / off valve.
  • the heater core 6 functions as a heat exchanger that warms the air blown into the vehicle interior through heat exchange between the air and the cooling water.
  • the heater core 6 is also a heat utilization device that uses the heat recovered from the exhaust gas by the exhaust heat recovery device 2.
  • the temperature sensing valve 5 is formed so as to always allow the circulation of the cooling water through such a bypass path. Further, the circulation of the cooling water through the bypass path is stopped according to the closing of the thermostat 7. Therefore, when both the thermostat 7 and the temperature sensing valve 5 are closed, the circulation of the cooling water through the engine 1 is stopped.
  • the second cooling water circuit branches into two paths: a path that passes through the throttle body 9 of the engine 1 and a path that does not pass through the throttle body 9.
  • the paths are merged again, and then merged with the bypass path upstream of the heater core 6 through the EGR cooler 10 and the exhaust heat recovery unit 2.
  • the EGR cooler 10 provided in the second cooling water circuit is for cooling the exhaust gas recirculated from the exhaust system of the engine 1 to the intake system, that is, the recirculated exhaust gas.
  • the thermostat 7 has a valve body 22 biased by a spring 21 in the closing direction (left direction in the figure), and the valve body 22 resists the biasing force of the spring 21. And a thermo element 23 that is opened.
  • the thermo element 23 projects or immerses the shaft 24 in accordance with the thermal expansion or contraction of the wax enclosed therein, and the valve element 22 through the projecting or immersing of the shaft 24 and the biasing force of the spring 21. Is selectively opened and closed. By this opening / closing operation, the valve body 22 prohibits or allows passage of the cooling water flowing in the thermostat 7.
  • the thermostat 7 is provided with a heating element 25 that heats the thermo element 23 so as to forcibly open the valve element 22 in a closed state where the temperature of the surrounding cooling water is low.
  • the heating element 25 heats the thermo element 23 by generating heat when energized.
  • the valve element 22 is forcibly opened by heating the thermoelement 23 with the heating element 25. be able to.
  • the heat of the thermo element 23 by the heating element 25 causes the internal wax to thermally expand and the shaft 24 protrudes.
  • the thermostat 7 is formed as follows so that it can respond also to the situation which needs to complete the valve body 22 in the valve closing state quickly.
  • the valve body 22 in a closed state with a low temperature of the surrounding cooling water can be opened by an external device independently of the operation of the thermo element 23 based on the temperature of the cooling water. ing. Specifically, in the thermostat 7, the valve body 22 receives the pressure of the cooling water that circulates in the bypass path of the first cooling water circuit by driving the water pump 3, and the cooling water discharge flow rate in the water pump 3. When the value is larger than the maximum value in the normal use area, it is configured to open based on the pressure of the cooling water.
  • the biasing force of the spring 21 that biases the valve body 22 in the closing direction is a force based on the pressure of the cooling water acting on the valve body 22 when the discharge flow rate of the water pump 3 is a value within the normal use region. And a value smaller than the force based on the pressure of the cooling water acting on the valve body 22 when the discharge flow rate of the water pump 3 is larger than the maximum value in the normal use region. Accordingly, when the valve body 22 in the closed state needs to be quickly opened, if the discharge flow rate of the water pump 3 is set to a value larger than the maximum value in the normal use region, FIG.
  • the valve body 22 is quickly opened with good responsiveness by the force based on the water pressure received by the valve body 22 to complete the valve opening.
  • the normal use region of the discharge flow rate of the water pump 3 is a range of the discharge flow rate of the water pump 3 in which the valve body 22 is maintained in the closed state even when the cooling water pressure is applied during normal operation of the engine 1. Means.
  • the vehicle cooling device includes an engine cooling control unit 11 that controls the discharge flow rate of the water pump 3 and the forced opening operation of the valve body 22 using the heating element 25 in the thermostat 7.
  • the engine cooling control unit 11 temporarily stores a CPU for performing various arithmetic processes related to the cooling control of the engine 1, a ROM in which a control program and data are stored, a CPU calculation result, a sensor detection result, and the like.
  • This is an electronic control unit having a RAM and an I / O that controls input / output of signals with the outside.
  • detection signals from the water temperature sensors 12 and 14 and the air flow meter 16 are input to the engine cooling control unit 11.
  • the water temperature sensor 12 detects the cooling water temperature thw1 at the outlet portion of the engine 1 in the first cooling circuit.
  • the water temperature sensor 14 detects the temperature thw2 of the cooling water flowing into the heater core 6.
  • the air flow meter 16 detects the intake air amount of the engine 1.
  • FIG. 3 shows an operation mode of the coolant circulation of the engine 1, the thermostat 7 and the temperature sensing valve 5 according to the warm-up state of the engine 1 in the vehicle cooling device of the present embodiment.
  • the thermostat 7 and the temperature sensing valve 5 are closed, and the circulation of the cooling water inside the engine 1 is stopped.
  • the thermostat 7 is opened and the circulation of the cooling water inside the engine 1 is started.
  • the temperature sensing valve 5 is also opened, the radiator 4 is activated, and the cooling water is radiated.
  • the cooling water temperature thw1 used as the temperature of the engine 1 is equal to or higher than a warm-up determination value (for example, 90 ° C.) that is a value indicating completion of warm-up of the engine 1. It is a state. Further, the semi-warm-up state of the engine 1 means that the coolant temperature thw1 is set to a temperature (for example, 70 ° C.) that is lower than the warm-up determination value (90 ° C.) and lower than the warm-up determination value (for example, 70 ° C.). This is a state where the warm-up determination value is exceeded. Furthermore, when the engine 1 is cold, the cooling water temperature thw1 is less than the semi-warm-up determination value (70 ° C.).
  • a warm-up determination value for example, 90 ° C.
  • FIG. 4 shows the flow of cooling water when the engine 1 is cold. At this time, both the thermostat 7 and the temperature sensing valve 5 are closed, and the circulation of the cooling water in the first cooling water circuit is prohibited. Thus, if the circulation of the cooling water in the first cooling water circuit is prohibited and the cooling water is retained in the engine 1, the temperature rise of the cooling water in the engine 1 is promoted and the engine 1 is warmed up earlier. It is done.
  • the cooling water at this time is circulated only in the second cooling water circuit, as shown in FIG. That is, the cooling water at this time is circulated from the water pump 3 through the throttle body 9, the EGR cooler 10, the exhaust heat recovery device 2, the heater core 6, and the temperature sensing valve 5.
  • the cooling water in the second cooling water circuit is heated by the heat recovered from the exhaust in the EGR cooler 10 and the exhaust heat recovery unit 2.
  • the heater is turned on in the passenger compartment, the air blown into the passenger compartment is warmed by the heat recovered from the exhaust in the EGR cooler 10 and the exhaust heat recovery device 2. In this case, since most of the recovered heat is used for the heater, the temperature rise of the cooling water is delayed.
  • the temperature of the cooling water inside the engine 1 rises faster than the cooling water in the second cooling water circuit. If the engine 1 is warmed up (thw1 ⁇ 90 ° C.) and the thermostat 7 is opened in this situation, the cooling water in the second cooling water circuit and the cooling water in the first cooling water circuit are mixed. The cooling water temperature thw1 goes up and down across the warm-up determination value, and there is a risk of hindering the control to switch the control contents depending on whether or not the cooling water temperature thw1 is equal to or higher than the warm-up determination value.
  • the coolant temperature thw1 when the coolant temperature thw1 is lower than the warm-up determination value (70 ° C.), that is, less than the semi-warm-up determination value, that is, when the engine 1 is cold.
  • the thermostat 7 is closed.
  • the thermostat 7 is opened and the cooling water of both cooling water circuits is mixed. Specifically, heating of the thermo element 23 by the heating element 25 of the thermostat 7 when the cooling water temperature thw1 is less than the half warm-up determination value is stopped, and the temperature of the cooling water around the thermo element 23 is determined as the semi-warm-up determination.
  • the characteristics such as the thermal expansion coefficient of the wax sealed in the thermo element 23 are set so that the valve element 22 opens when the value becomes equal to the value. Further, when the cooling water temperature thw1 rises to the half warm-up determination value so that the opening operation of the valve body 22 of the thermostat 7 when the cooling water temperature thw1 becomes equal to or higher than the half warm-up determination value is performed.
  • the thermo element 23 is heated by the heating element 25.
  • FIG. 5 shows the flow of the cooling water at this time. At this time, circulation of the cooling water through the inside of the engine 1 is started by opening the thermostat 7. Then, the coolant passing through the engine 1 passes through the opened thermostat 7 and is mixed with the coolant flowing in the second coolant circuit upstream of the heater core 6.
  • FIG. 6 shows the transition of the cooling water temperature inside the engine 1 before and after the thermostat 7 is opened.
  • the semi-warm-up determination in which the coolant temperature inside the engine 1 is set to a temperature (70 ° C.) lower than the warm-up determination value (90 ° C.) of the engine 1.
  • the cooling water of a 1st cooling water circuit and the cooling water of a 2nd cooling water circuit are mixed. Therefore, even if the cooling water temperature of the second cooling water circuit at this time is low and the cooling water temperature inside the engine 1 rises and falls according to the mixing, as shown in FIG. ) Will be performed in a temperature range sufficiently lower than.
  • the cooling water temperature thw1 goes up and down across the warm-up determination value, and the cooling There is no problem in the control for switching the control contents depending on whether or not the water temperature thw1 is equal to or higher than the warm-up determination value.
  • the thermostat 7 In order to cope with such a situation, when the valve body 22 of the thermostat 7 is closed and the temperature of the cooling water in the cylinder head of the engine 1 reaches a value that may cause boiling, the thermostat 7 generates a thermostat. It is conceivable that the valve element 22 is forcibly opened even when the element 23 is heated and the temperature of the cooling water around the thermostat 7 is low. By opening the valve body 22 in this way, water can be passed into the engine 1 and, in turn, boiling of the cooling water staying in the cylinder head can be suppressed.
  • thermo element 23 when the temperature of the cooling water around the thermo element 23 is low, even if the thermo element 23 is heated by the heating element 25, for example, 20 to 30 seconds from the start of heating until the valve opening operation of the valve element 22 is completed. It takes a long time. For this reason, even if the thermoelement 23 is heated by the heating element 25, the cooling water staying in the cylinder head is not collected before the valve element 22 is actually opened to allow water to enter the engine 1. There is a risk of boiling.
  • This pump drive routine is for driving the water pump 3 and is periodically executed through the engine cooling control unit 11 by, for example, a time interruption every predetermined time.
  • the engine cooling control unit 11 first reads the cooling water temperature thw1 (step S101), and determines whether or not the cooling water temperature thw1 is less than the half warm-up determination value (step S102).
  • an affirmative determination means that the engine 1 is in a cold state and the thermostat 7 is in a valve-closed state. If an affirmative determination is made in step S102, the engine cooling control unit 11 determines the integrated value of the intake air amount of the engine 1 from the start of the start of the engine 1 and the measured value of the coolant temperature by the water temperature sensor 14. The temperature of the cooling water in the cylinder head of the engine 1 is estimated based on the cooling water temperature thw1 (step S103).
  • the integrated value of the intake air amount is a value obtained by accumulating the intake air amount of the engine 1 calculated every predetermined timing based on the detection signal from the air flow meter 16 for each calculation.
  • the integrated value of the intake air amount thus obtained is a value corresponding to the total value of the fuel consumption in the engine 1 from the start of the engine 1, in other words, the total value of the amount of heat generated in the engine 1.
  • a deviation amount ⁇ from the coolant temperature thw1 at the coolant temperature in the cylinder head is calculated based on the integrated value of the intake air amount.
  • the estimated water temperature thwP is calculated by adding the deviation amount ⁇ to the cooling water temperature thw1.
  • the cooling water temperature thw1 and the estimated water temperature thwP change as shown in FIG. 8, for example, with the passage of time after the start of the engine 1 from the cold state.
  • the engine cooling control unit 11 determines whether or not the estimated water temperature thwP is equal to or greater than a predetermined value A (step S104). If the determination is affirmative, it is determined that the cooling water may be boiled in the cylinder head. If the determination is negative, it is determined that the cooling water is not likely to boil in the cylinder head.
  • a predetermined value A a value determined in advance by an experiment is used as a value with which such a determination can be accurately performed. Then, when the temperature of the cooling water in the cylinder head suddenly rises due to the high load operation of the engine 1 with the thermostat 7 closed, an affirmative determination is made in step S104.
  • the engine cooling control unit 11 drives the water pump 3 so that the discharge flow rate of the water pump 3 is larger than the maximum value in the normal use region, for example, the maximum (step S105).
  • the discharge flow rate of the water pump 3 is maximized, the force in the opening direction due to the water pressure acting on the valve body 22 of the thermostat 7 is greater than the biasing force of the spring 21 acting on the valve body 22 in the closing direction. Also grows.
  • the valve body 22 opens quickly with good responsiveness, and the valve opening is completed.
  • the valve body 22 is quickly completed with a good responsiveness, whereby boiling of the cooling water staying in the cylinder head is suppressed.
  • the water flow in the cylinder head due to the valve opening operation of the valve body 22 is delayed in the cylinder head. It is suppressed that the retained cooling water boils.
  • step S106 If it is determined in step S102 that the cooling water temperature thw1 is equal to or higher than the semi-warm-up determination value, or if it is determined in step S104 that the estimated water temperature thwP is less than the predetermined value A, the water pump 3 The discharge flow rate is set to a normal value (step S106). That is, the water pump 3 is driven so that the discharge flow rate of the water pump 3 can be appropriately changed in accordance with the situation in the normal use region.
  • the following effects can be obtained. (1) Immediately after starting the engine 1 from the cold state, the temperature of the cooling water around the thermo element 23 of the thermostat 7 becomes less than the warm-up determination value. Therefore, the valve element 22 of the thermostat 7 is closed, and the passage of the cooling water inside the engine 1 is prohibited. In this state, when a high load operation of the engine 1 is performed, the cooling water staying in the cylinder head receives heat from the combustion chamber, so that the temperature of the cooling water rises. However, since the valve body 22 of the thermostat 7 is in a closed state, the temperature of the cooling water around the thermoelement 23 hardly increases.
  • thermoelement 23 is heated by the heating element 25 to open the valve body 22 of the thermostat 7, the heating of the valve body 22 from the start of heating until the valve body 22 actually completes the valve opening operation. For example, it takes a long time such as 20 to 30 seconds. Therefore, there is a possibility that the cooling water staying in the cylinder head before the valve opening operation of the valve body 22 of the thermostat 7 is boiled.
  • the temperature of the cooling water in the cylinder head (estimated water temperature thwP) estimated based on the engine operating state such as the intake air amount and the cooling water temperature thw1 causes the cooling water to boil.
  • the discharge flow rate of the water pump 3 is set to a value larger than the maximum fixed value in the normal use region.
  • the force in the opening direction by the water pressure acting on the valve body 22 of the thermostat 7 is the closing direction with respect to the valve body 22.
  • the urging force of the spring 21 acting on the valve body 22 becomes larger, and the valve body 22 is quickly opened with good responsiveness. Therefore, by setting the discharge flow rate of the water pump 3 to a value larger than the maximum value in the normal use region in the above-described situation, the valve body 22 can be opened quickly with good responsiveness, and water can flow into the engine 1. Is done. Thereby, it is possible to suppress boiling of the cooling water staying in the cylinder head before the valve opening operation of the valve body 22 is completed.
  • Estimating the estimated water temperature thwP is based on the integrated value of the intake air amount of the engine 1 from the start of starting and the measured value of the temperature of the cooling water at the outlet of the engine 1 in the first cooling water circuit (cooling water temperature thw1 ) And based on. More specifically, the integrated value is calculated by accumulating the intake air amount calculated at every predetermined timing. The estimated water temperature thwP is calculated by adding the deviation amount ⁇ calculated based on the integrated value and the cooling water temperature thw1 to the cooling water temperature thw1. Thereby, the calculated estimated water temperature thwP can be made to correspond exactly to the actual cooling water temperature in the cylinder head.
  • the said embodiment can also be changed as follows, for example.
  • the discharge flow rate of the water pump 3 is set back to a value larger than the maximum value in the normal use region, the discharge flow rate does not necessarily have to be the maximum.
  • valve body 22 may be opened by another external device such as a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 冷間状態からのエンジン(1)の始動開始直後に高負荷運転が行われた場合には、サーモスタット(7)が閉じられてエンジン(1)内部の冷却水の通過が禁止された状態で、シリンダヘッド内に滞留した冷却水が燃焼室からの熱を受ける。そのため、その冷却水が沸騰するおそれがある。しかし、ウォータポンプ(3)の吐出流量を通常使用領域内の流量よりも増大したとき、弁体(22)が強制的に開動作するように、サーモスタット(7)は形成されている。従って、上述した状況のときには、ウォータポンプ(3)の吐出流量を通常使用領域内の流量よりも増大して弁体(22)を応答性よく開弁動作させ、エンジン(1)内部への速やかな通水が行われる。それにより、その弁体(22)の開弁動作完了前にシリンダヘッド内に滞留した冷却水が沸騰することが抑制される。

Description

サーモスタット及び車両の冷却装置
 本発明は、サーモスタット及び車両の冷却装置に関する。
 車両の冷却装置として、ポンプの駆動により冷却水がエンジン内部を通って循環する冷却水回路を備え、その冷却水回路のエンジンよりも下流に設けられたサーモスタットを備えるものが知られている。サーモスタットは、冷却水の温度に応じて弁体を選択的に開閉動作させることによりエンジン内部の冷却水の通過を禁止したり許容したりする。
 こうしたサーモスタットは、冷却水の温度が低いときに弁体を閉動作させることにより、エンジン内部の冷却水の通過を禁止する。これに対して、サーモスタットは、冷却水の温度が高いときには同冷却水からの熱伝達を受けるサーモエレメントにより弁体を開動作させることによりエンジン内部の冷却水の通過を許容する。このようにサーモスタットの弁体を選択的に開閉動作させることにより、冷却水の温度が低くエンジンが冷間状態となるときにはエンジン内部の冷却水の通過が禁止されてエンジンの暖機促進が図られる。一方、冷却水の温度が高いときにはエンジン内部の冷却水の通過が許容されて同エンジン内部での冷却水の沸騰抑制が図られる。
 ところで、冷間状態からのエンジンの始動開始直後においては、冷却水回路の冷却水の温度が低くなっているため、サーモスタットが閉じられてエンジンの暖機促進が図られる。このとき、サーモスタットが閉じられてエンジン内部の冷却水の通過が禁止されている。この状態にあって、エンジンの高負荷運転により燃焼室での発熱が多くなると、エンジンのシリンダヘッド内の冷却水の温度だけが上昇し、サーモスタットエレメント周りの冷却水の温度は上昇しないという状況が生じる。このような状況のもとでは、エンジンのシリンダヘッド内に滞留した冷却水が燃焼室からの熱を受けることにより、その冷却水の温度が過度に上昇して同冷却水が沸騰するおそれがある。
 こうしたことに対処するため、特許文献1に記載の装置では、サーモスタットにサーモエレメントを加熱するための発熱体が設けられている。その発熱体でサーモエレメントを加熱することにより、サーモエレメント周りの冷却水の温度が低くても弁体を開動作させることができる。この場合、サーモスタットの弁体が閉弁状態でエンジンのシリンダヘッド内の冷却水の温度が沸騰するおそれのある値となったときに、サーモスタットの発熱体でサーモエレメントを加熱することによって弁体の開動作が図られる。このように弁体を開動作させることによりエンジン内部への通水を実現するようにすれば、シリンダヘッド内に滞留した冷却水の沸騰を抑制することが可能になる。
特開2003-328753公報
 しかし、サーモエレメント周りの冷却水の温度が低い場合、発熱体によりサーモエレメントを加熱したとしても、それによって弁体の開弁動作が完了するまでに例えば加熱開始から20~30秒といった長い時間がかかる。このため、発熱体でサーモエレメントを加熱したとしても、弁体が実際に開弁動作してエンジン内部への通水が実現される前に、シリンダヘッド内に滞留した冷却水が沸騰するおそれがある。
 本発明の目的は、冷間状態からのエンジン始動開始後、エンジンのシリンダヘッド内に滞留した冷却水が沸騰することを抑制できるサーモスタット及び車両の冷却装置を提供することにある。
 以下、上記目的を達成するための手段及びその作用効果について記載する。
 上記目的を達成するため、本発明の第1の態様によれば、ポンプの駆動により冷却水がエンジン内部を通って循環する冷却水回路のエンジンよりも下流に設けられるサーモスタットが提供される。サーモスタットは、該サーモスタット内を流れる冷却水の通過を禁止又は許容する弁体と、前記冷却水の温度に基づき該弁体を駆動するサーモエレメントとを有する。サーモスタットは、冷却水の温度が判定値よりも低いときに前記弁体を閉動作させることによりエンジン内部の冷却水の通過を禁止し、前記冷却水の温度が前記判定値以上であるときには前記冷却水からの熱伝達を受けるサーモエレメントにより前記弁体を開動作させることによりエンジン内部の冷却水の通過を許容する。サーモスタットは、前記冷却水回路の冷却水の温度が前記判定値よりも低いときに前記弁体を強制的に開動作させるべく前記サーモエレメントを加熱する発熱体を備える。前記弁体は、前記冷却水回路内の冷却水の温度に基づく前記サーモエレメントの動作と独立して外部機器により開動作可能とされている。
 本発明の第2の態様によれば、ポンプの駆動により冷却水がエンジン内部を通って循環する冷却水回路のエンジンよりも下流に設けられるサーモスタットが提供される。サーモスタットは、該サーモスタット内を流れる冷却水の通過を禁止又は許容する弁体と、前記冷却水の温度に基づき該弁体を駆動するサーモエレメントとを有する。サーモエレメントは、冷却水の温度が判定値よりも低いときに弁体を閉動作させることによりエンジン内部の冷却水の通過を禁止し、前記冷却水の温度が前記判定値以上であるときには同冷却水からの熱伝達を受けるサーモエレメントにより前記弁体を開動作させることによりエンジン内部の冷却水の通過を許容する。サーモスタットは、前記冷却水回路の冷却水の温度が前記判定値よりも低いときに前記弁体を強制的に開動作させるべく前記サーモエレメントを加熱する発熱体を備える。前記弁体は、前記ポンプの駆動により前記冷却水回路内を循環する冷却水による圧力を受け、かつ前記弁体は、前記ポンプにおける冷却水の吐出流量が通常使用領域内の最大値よりも大きいとき、その冷却水による圧力に基づき開動作する。
 本発明の第3の態様によれば、車両の冷却装置が提供される。車両の冷却装置は、ポンプの駆動により冷却水がエンジン内部を通って循環する冷却水回路と、その冷却水回路のエンジンの出口の冷却水の温度を検出する水温センサと、第1又は第2の態様のサーモスタットと、前記ポンプ及び前記サーモスタットを駆動制御する制御部とを備える。前記サーモスタットは、前記サーモエレメント周りの冷却水の温度が判定値未満であるときに弁体を閉弁させるものである。前記制御部は、前記水温センサによって検出された冷却水の温度が前記判定値以上となったとき、前記サーモスタットの発熱体により前記サーモエレメントを加熱することにより、閉弁状態にある前記弁体を開動作させるものである。また、冷間状態からのエンジンの始動開始後、前記水温センサによって検出された冷却水の温度が前記判定値未満であるとき、エンジン運転状態に基づき推定される同エンジンのシリンダヘッド内の冷却水の温度が同冷却水の沸騰を招くおそれのある値以上であるとき、前記制御部は、前記ポンプの吐出流量を通常使用領域内の最大値よりも大きくな値に設定する。
本発明の一実施形態に係る車両の冷却装置の全体構成を模式的に示したブロック図。 (a)~(c)は、図1の冷却装置のサーモスタットの構成を示す概略図。 同実施形態の車両の冷却装置におけるエンジンの暖機状態に応じたエンジン冷却水循環、バルブ及びサーモスタットの作動状態を示す表。 同実施形態の車両の冷却装置におけるエンジン冷間時の冷却水の流れを示すブロック図。 同実施形態の車両の冷却装置におけるエンジン半暖機時の冷却水の流れを示すブロック図。 同実施形態の車両の冷却装置におけるバルブの開弁前後のエンジン内部の冷却水温の推移を示すグラフ。 ウォータポンプの駆動手順を示すフローチャート。 水温センサにより測定された冷却水温、及びシリンダヘッド内の推定水温の推移を示すグラフ。
 以下、本発明の一実施形態に係る車両の冷却装置及び同装置に設けられるサーモスタットを、図1~図8に従って説明する。
 図1は、本実施形態の車両の冷却装置の冷却水回路の構成を示している。この冷却装置は、エンジン1の内部を通って冷却水を循環させる第1冷却水回路と、エンジン1の内部を通らずに且つ排熱回収器2を通って冷却水を循環させる第2冷却水回路とを備えている。これら冷却水回路の冷却水は、共通のウォータポンプ3により各々循環可能となっている。このウォータポンプ3は、電動式のポンプであり、外部からの指令に基づき吐出する冷却水の流量を可変とすることができる。また、上記排熱回収器2は、エンジン1の排ガスと第2冷却水回路の冷却水との間の熱交換を行い、排ガスの熱で冷却水を加熱する熱交換器として機能する。
 第1冷却水回路は、ウォータポンプ3、エンジン1、及びラジエータ4を通るメイン経路と、そのラジエータ4を迂回するバイパス経路とに分岐されている。第1冷却水回路のメイン経路に設けられたラジエータ4は、第1冷却水回路内の冷却水の熱を外気中に放出させる。上記メイン経路では、ウォータポンプ3から吐出された冷却水が、エンジン1、ラジエータ4、感温弁5を通った後、ウォータポンプ3に戻るようになっている。感温弁5は、後述するヒータコア6を通過した後の冷却水の温度が規定値(例えば105℃)以上となったときに開いて、ラジエータ4を通じた冷却水の循環を許容する。また、感温弁5は、ヒータコア6を通過した後の冷却水の温度が上記規定値未満のときには閉じて、ラジエータ4を通じた冷却水の循環を禁止する。すなわち、この車両の冷却装置では、ラジエータ4は、感温弁5に流入する冷却水の温度が規定値以上となったときに、エンジン1の内部を通った冷却水の熱を放させるように能動化される。こうしたラジエータ4の近傍には、余剰の冷却水を貯留するリザーバータンク13が設置されている。
 また、第1冷却水回路の上記バイパス経路では、ウォータポンプ3から吐出された冷却水が、エンジン1、サーモスタット7、ヒータコア6、及び感温弁5を通ってウォータポンプ3に戻るようになっている。上記バイパス経路のエンジン1よりも下流に接続されたサーモスタット7は、周囲の冷却水の温度に基づき選択的に開閉するとともに、同冷却水の低温時に閉弁状態から強制的に開動作させることも可能なオン・オフ弁である。また、ヒータコア6は、空気と冷却水との間の熱交換を通じて車室内に送風される空気を暖める熱交換機として機能する。ちなみにヒータコア6は、排熱回収器2により排ガスから回収された熱を利用する熱利用機器でもある。なお、感温弁5は、こうしたバイパス経路を通じた冷却水の循環を常時許容するように形成されている。また、同バイパス経路を通じた冷却水の循環は、サーモスタット7の閉弁に応じて停止される。従って、サーモスタット7と上記感温弁5とが共に閉弁したときには、エンジン1内部を通じた冷却水の循環は停止されるようになる。
 一方、第2冷却水回路は、図1に示されるウォータポンプ3を出た後、エンジン1のスロットルボディ9を通過する経路とこれを通過しない経路との2つの経路に分岐している。同経路は再び合流した後、EGRクーラ10及び上記排熱回収器2を通って、ヒータコア6の上流で上記バイパス経路に合流される。第2冷却水回路に設けられた上記EGRクーラ10は、エンジン1の排気系から吸気系へと還流される排気、即ち再循環排気を冷却するためのものである。
 次に、上記サーモスタット7の具体的な構造及び動作態様について、図2(a)~(c)を参照して説明する。
 図2(a)に示されるように、サーモスタット7は、ばね21により閉方向(図中左方向)に付勢される弁体22と、その弁体22を上記ばね21の付勢力に抗して開動作させるサーモエレメント23とを備えている。同サーモエレメント23は、内部に封入されたワックスの熱膨張または熱収縮に伴いシャフト24を突出または没入させるものであり、そうしたシャフト24の突出または没入と上記ばね21の付勢力とを通じて弁体22を選択的に開閉動作させる。この開閉動作により、弁体22は、サーモスタット7内を流れる冷却水の通過を禁止又は許容する。
 従って、サーモエレメント23周りの冷却水の温度が低いときには、サーモエレメント23内部のワックスの熱収縮によりシャフト24が没入状態となり、サーモスタット7の弁体22がばね21の付勢力によって閉弁状態とされる。このときには、第1冷却水回路のバイパス経路での冷却水の流通が上記弁体22の閉弁によって禁止されるため、エンジン1内部の冷却水の通過も禁止される。一方、サーモスタット7周りの冷却水の温度が高いときには、図2(b)に示されるように、サーモエレメント23内部のワックスの熱膨張によりシャフト24が突出し、サーモスタット7の弁体22がばね21の付勢力に抗して開動作して開弁状態となる。このときには、第1冷却水回路のバイパス経路での冷却水の流通が上記弁体22の開弁によって許容されるため、エンジン1内部の冷却水の通過も許容される。
 また、サーモスタット7においては、周囲の冷却水の温度が低く閉弁状態にある弁体22を強制的に開動作させるべくサーモエレメント23を加熱する発熱体25が設けられている。この発熱体25は、通電により発熱することによりサーモエレメント23を加熱する。このように発熱体25によりサーモエレメント23を加熱することにより、サーモエレメント23周りの冷却水の温度が低く弁体22が閉弁状態にあるとしても、その弁体22を強制的に開動作させることができる。ただし、サーモエレメント23周りに存在する冷却水の温度が低い場合には、発熱体25によるサーモエレメント23の加熱で内部のワックスが熱膨張してシャフト24が突出し、そのシャフト24の突出により弁体22が開弁動作完了するまでに長い時間(例えば加熱開始から20~30秒)を要する。このため、閉弁状態にある弁体22を素早く開弁完了させることが必要な状況にも対応できるよう、サーモスタット7が以下のように形成されている。
 すなわち、サーモスタット7においては、周囲の冷却水の温度が低く閉弁状態にある弁体22が、同冷却水の温度に基づく上記サーモエレメント23の動作と独立して外部機器により開動作可能とされている。具体的には、サーモスタット7においては、弁体22がウォータポンプ3の駆動により第1冷却水回路のバイパス経路内を循環しようとする冷却水による圧力を受け、ウォータポンプ3における冷却水の吐出流量が通常使用領域内の最大値よりも大きな値であるとき、その冷却水による圧力に基づき開動作するように形成されている。言い換えれば、弁体22を閉方向に付勢するばね21の付勢力は、ウォータポンプ3の吐出流量が通常使用領域内の値であるときに弁体22に作用する冷却水の圧力に基づく力よりも大きく、且つウォータポンプ3の吐出流量が通常使用領域内の最大値よりも大きな値であるときに弁体22に作用する冷却水の圧力に基づく力よりも小さい値に設定されている。従って、閉弁状態にある弁体22を素早く開弁完了させることが必要な状況のとき、ウォータポンプ3の吐出流量を通常使用領域内の最大値よりも大きな値に設定すれば、図2(c)に示されるように、弁体22が受ける水圧に基づく力により同弁体22が応答性よく速やかに開動作して開弁完了するようになる。なお、ウォータポンプ3の吐出流量の通常使用領域とは、エンジン1の通常運転時において、冷却水の圧力が作用しても弁体22が閉状態に維持されるウォータポンプ3の吐出流量の範囲を意味する。
 次に、本実施形態における車両の冷却装置の電気的構成について、図1を参照して説明する。
 車両の冷却装置は、上記ウォータポンプ3の吐出流量、及び、サーモスタット7における発熱体25を用いた弁体22の強制的な開動作を制御するエンジン冷却制御部11を備えている。
 このエンジン冷却制御部11は、エンジン1の冷却制御に係る各種演算処理を実施するCPU、制御用のプログラムやデータの記憶されたROM、CPUの演算結果やセンサの検出結果等を一時的に記憶するRAM、外部との信号の入出力を司るI/Oを備えた電子制御ユニットである。なお、エンジン冷却制御部11には、水温センサ12,14及びエアフローメータ16からの検出信号が入力される。水温センサ12は、第1冷却回路におけるエンジン1の出口部分の冷却水温thw1を検出する。水温センサ14は、ヒータコア6に流入する冷却水の温度thw2を検出する。エアフローメータ16は、エンジン1の吸入空気量を検出する。
 図3は、本実施形態の車両の冷却装置におけるエンジン1の暖機状態に応じたエンジン1の冷却水循環、サーモスタット7及び感温弁5の作動態様を示している。同図に示すように、エンジン1の冷間時には、サーモスタット7及び感温弁5は閉弁されており、エンジン1内部の冷却水の循環は停止されている。一方、エンジン1が半暖機状態になると、サーモスタット7が開弁してエンジン1内部の冷却水の循環が開始される。そしてエンジン1の暖機後には、感温弁5も開弁して、ラジエータ4が能動化され、冷却水の放熱が行われるようになる。
 なお、ここでいうエンジン1の暖機後とは、エンジン1の温度として代用される冷却水温thw1がエンジン1の暖機完了を示す値である暖機判定値(例えば90℃)以上となった状態のことである。また、エンジン1の半暖機状態とは、冷却水温thw1が上記暖機判定値(90℃)未満であって、且つ同暖機判定値よりも低い温度(例えば70℃)に設定された半暖機判定値以上となった状態のことである。更に、エンジン1の冷間時とは、冷却水温thw1が上記半暖機判定値(70℃)未満である状態のことである。
 図4は、エンジン1の冷間時における冷却水の流れを示している。このときには、サーモスタット7及び感温弁5が共に閉弁され、第1冷却水回路での冷却水の循環が禁止されるようになる。このように第1冷却水回路での冷却水の循環を禁止してエンジン1の内部に冷却水を滞留させると、エンジン1内部の冷却水の昇温が促進され、エンジン1の暖機が早められる。
 また、このときの冷却水は、同図に示すように、第2冷却水回路においてのみ循環される。すなわち、このときの冷却水は、ウォータポンプ3から、スロットルボディ9、EGRクーラ10、排熱回収器2、ヒータコア6、及び感温弁5を通って循環される。こうした第2冷却水回路の冷却水は、EGRクーラ10及び排熱回収器2において排気から回収した熱により昇温されるようになっている。ここで車室においてヒータがオンとなっていると、EGRクーラ10及び排熱回収器2において排気から回収した熱により、車室内に送風される空気が暖められる。この場合、回収した熱の多くがヒータに使用されるため、冷却水の昇温は遅れるようになる。こうした場合、エンジン1の内部の冷却水の方が、第2冷却水回路の冷却水よりも早く昇温するようになる。仮に、こうした状況で、エンジン1の暖機完了後(thw1≧90℃)にサーモスタット7が開弁されて第2冷却水回路の冷却水と第1冷却水回路の冷却水とが混合されたとすると、冷却水温thw1が上記暖機判定値を挟んで昇降し、同冷却水温thw1が上記暖機判定値以上であるか否かによって制御内容を切り替える制御に支障を来す虞がある。
 このため、本実施形態の車両の冷却装置では、冷却水温thw1が上記暖機判定値よりも低い温度(70℃)、即ち半暖機判定値未満であるとき、すなわちエンジン1の冷間時には、サーモスタット7が閉弁される。冷却水温thw1が上記半暖機判定値以上まで上昇したときに、サーモスタット7が開弁されて両冷却水回路の冷却水が混合される。詳しくは、冷却水温thw1が上記半暖機判定値未満であるときのサーモスタット7の発熱体25によるサーモエレメント23の加熱が停止され、且つサーモエレメント23周りの冷却水の温度が上記半暖機判定値と等しい値になったときに弁体22が開動作するようサーモエレメント23に封入されたワックスの熱膨張率等の特性が設定される。更に、冷却水温thw1が上記半暖機判定値以上となったときのサーモスタット7の弁体22の開動作がより確実に行われるよう、冷却水温thw1が上記半暖機判定値まで上昇したときに発熱体25によるサーモエレメント23の加熱が行われる。
 以上により、冷間状態からのエンジン1の始動後において、冷却水温thw1が上記半暖機判定値以上になると、閉弁状態にあったサーモスタット7が開くようになる。図5は、このときの冷却水の流れを示している。このときには、サーモスタット7の開弁により、エンジン1の内部を通じた冷却水の循環が開始される。そして、エンジン1内部を通過した冷却水は、開弁したサーモスタット7を通り、ヒータコア6の上流において第2冷却水回路を流れる冷却水と混合されるようになる。
 図6は、上記サーモスタット7の開弁前後のエンジン1内部の冷却水温の推移を示している。本実施形態の車両の冷却装置では、上述したように、エンジン1の内部の冷却水温がエンジン1の暖機判定値(90℃)よりも低い温度(70℃)に設定された半暖機判定値以上となったときに、第1冷却水回路の冷却水と第2冷却水回路の冷却水とが混合される。そのため、このときの第2冷却水回路の冷却水温が低く、混合に応じてエンジン1内部の冷却水温が昇降しても、同図に示すように、その昇降は、暖機判定値(90℃)よりも十分に低い温度域で行われるようになる。従って、サーモスタット7が開弁されて第2冷却水回路の冷却水と第1冷却水回路の冷却水とが混合されたとき、冷却水温thw1が上記暖機判定値を挟んで昇降し、同冷却水温thw1が上記暖機判定値以上であるか否かによって制御内容を切り替える制御に支障を来すことはない。
 ところで、冷間状態からのエンジン1の始動開始直後において、サーモスタット7の閉弁によりエンジン1の暖機促進が図られている状態で、エンジン1の高負荷運転により燃焼室での発熱が多くなると、エンジン1のシリンダヘッド内の冷却水の温度だけが上昇し、サーモスタット7周りの冷却水の温度は上昇しないという状況が生じる。このような状況のもとでは、エンジン1のシリンダヘッド内に滞留した冷却水が燃焼室からの熱を受けることにより、その冷却水の温度が過度に上昇して同冷却水が沸騰するおそれがある。
 こうしたことに対処するため、サーモスタット7の弁体22が閉弁状態でエンジン1のシリンダヘッド内の冷却水の温度が沸騰するおそれのある値となったときに、サーモスタット7の発熱体25でサーモエレメント23を加熱し、サーモスタット7周りの冷却水の温度が低くても弁体22を強制的に開動作させることが考えられる。このように弁体22を開動作させることにより、エンジン1内部への通水が図られ、ひいてはシリンダヘッド内に滞留した冷却水の沸騰の抑制が図られる。
 しかし、サーモエレメント23周りの冷却水の温度が低い場合、発熱体25によりサーモエレメント23を加熱したとしても、それによって弁体22の開弁動作が完了するまでに例えば加熱開始から20~30秒といった長い時間がかかる。このため、発熱体25でサーモエレメント23を加熱したとしても、弁体22が実際に開弁動作してエンジン1内部への通水が実現される前に、シリンダヘッド内に滞留した冷却水が沸騰するおそれがある。
 次に、冷間状態からのエンジン1の始動開始直後に同エンジン1の高負荷運転が行われる場合などに、サーモスタット7の閉弁に起因してエンジン1のシリンダヘッド内に滞留した冷却水が沸騰するという上記問題の本実施形態の対策について、ポンプ駆動ルーチンを示す図7のフローチャートを参照して説明する。このポンプ駆動ルーチンは、ウォータポンプ3を駆動するためのものであって、エンジン冷却制御部11を通じて例えば所定時間毎の時間割り込みにて周期的に実行される。
 同ルーチンにおいては、エンジン冷却制御部11は、まず冷却水温thw1を読み込み(ステップS101)、同冷却水温thw1が半暖機判定値未満であるか否かを判断する(ステップS102)。ここで肯定判定であるということは、エンジン1が冷間状態にあり、且つサーモスタット7が閉弁状態にあることを意味する。そして、ステップS102で肯定判定がなされると、エンジン冷却制御部11は、エンジン1の始動開始時点からの同エンジン1の吸入空気量の積算値、及び水温センサ14による冷却水の温度の実測値である冷却水温thw1に基づき、エンジン1のシリンダヘッド内の冷却水の温度を推定する(ステップS103)。
 なお、上記吸入空気量の積算値は、エアフローメータ16からの検出信号に基づき所定タイミング毎に算出されるエンジン1の吸入空気量を、その算出毎に累積することによって得られる値である。こうして求められた吸入空気量の積算値は、エンジン1の始動開始時点からのエンジン1での燃料消費量の合計値、言い換えればエンジン1で発生した熱量の合計値に対応した値となる。そして、ステップS103の処理では、上記吸入空気量の積算値に基づきシリンダヘッド内の冷却水の温度における冷却水温thw1との乖離量αが算出される。その乖離量αを冷却水温thw1に加算することにより、推定水温thwPが算出されている。なお、上記冷却水温thw1及び上記推定水温thwPは、冷間状態からのエンジン1の始動開始後、時間経過に伴い例えば図8に示されるように推移する。
 図7のステップS103の処理で推定水温thwPが算出されると、エンジン冷却制御部11は、同推定水温thwPが所定値A以上であるか否かを判断する(ステップS104)。ここで肯定判定であればシリンダヘッド内で冷却水の沸騰が生じるおそれがある旨判断され、否定判定であればシリンダヘッド内で冷却水の沸騰が生じるおそれはない旨判断される。上記所定値Aとしては、こうした判断を的確に行うことのできる値として、予め実験により定められた値が用いられる。そして、サーモスタット7の閉弁状態でのエンジン1の高負荷運転により、シリンダヘッド内の冷却水の温度が急激に上昇すると、上記ステップS104で肯定判定がなされる。この場合、エンジン冷却制御部11は、ウォータポンプ3の吐出流量が通常使用領域内の最大値よりも大きい値、例えば最大となるように同ウォータポンプ3を駆動する(ステップS105)。そして、ウォータポンプ3の吐出流量が最大とされると、サーモスタット7の弁体22に作用する水圧による開き方向への力が、同弁体22に対し閉じ方向に作用するばね21の付勢力よりも大きくなる。それにより、その弁体22が応答性よく速やかに開動作して開弁完了する。このように弁体22を応答性よく速やかに開弁動作完了させることで、シリンダヘッド内に滞留した冷却水が沸騰することは抑制される。つまり、その弁体22の開弁動作が完了するまでに長い時間がかかる場合のように、同弁体22の開弁動作によるシリンダヘッド内の通水が遅れることに起因する同シリンダヘッド内に滞留した冷却水が沸騰することは抑制される。
 なお、ステップS102の処理で冷却水温thw1が半暖機判定値以上である旨判断されたり、ステップS104で推定水温thwPが所定値A未満である旨判断されたりした場合には、ウォータポンプ3の吐出流量が通常の値とされる(ステップS106)。すなわち、ウォータポンプ3の吐出流量が通常使用領域内で状況に応じて適宜可変とされるよう、同ウォータポンプ3が駆動される。
 以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
 (1)冷間状態からのエンジン1の始動開始直後には、サーモスタット7のサーモエレメント23周りの冷却水の温度が暖機判定値未満となる。そのため、同サーモスタット7の弁体22が閉弁状態となりエンジン1内部の冷却水の通過が禁止された状態となる。この状態にあって、エンジン1の高負荷運転が行われた場合には、シリンダヘッド内に滞留した冷却水が燃焼室からの熱を受けることにより冷却水の温度が上昇する。しかしながら、サーモスタット7の弁体22が閉じられた状態となっていることから、サーモエレメント23周りの冷却水の温度はほとんど上昇しない。このような状況のもとで、サーモスタット7の弁体22を開弁動作させるべく発熱体25によりサーモエレメント23を加熱しても、加熱開始から弁体22が実際に開弁動作完了するまでに例えば20~30秒といった長い時間がかかる。そのため、サーモスタット7の弁体22の開弁動作完了までにシリンダヘッド内に滞留した冷却水が沸騰するおそれがある。
 しかし、冷間状態からのエンジン1の始動開始後、吸入空気量及び冷却水温thw1といったエンジン運転状態に基づき推定されるシリンダヘッド内の冷却水の温度(推定水温thwP)が同冷却水の沸騰を招くおそれのある値(所定値A)以上であるときには、ウォータポンプ3の吐出流量が通常使用領域内の最大定値よりも大きな値に設定される。このようにウォータポンプ3の吐出流量が通常使用領域内の最大値よりも大きくされると、サーモスタット7の弁体22に作用する水圧による開き方向への力が、同弁体22に対し閉じ方向に作用するばね21の付勢力よりも大きくなり、その弁体22が応答性よく速やかに開動作されるようになる。従って、上述した状況のときにウォータポンプ3の吐出流量を通常使用領域内の最大値よりも大きな値に設定することによって弁体22を応答性よく速やかに開かせてエンジン1内部への通水が行われる。それにより、その弁体22の開弁動作完了前にシリンダヘッド内に滞留した冷却水が沸騰することを抑制することができる。
 (2)推定水温thwPを推定することは、始動開始時点からのエンジン1の吸入空気量の積算値と、第1冷却水回路におけるエンジン1の出口の冷却水の温度の実測値(冷却水温thw1)とに基づいて行われる。より詳しくは、所定タイミング毎に算出される上記吸入空気量をその算出毎に累積することによって上記積算値が算出される。その積算値と冷却水温thw1とに基づき算出される乖離量αを冷却水温thw1に加算することにより、上記推定水温thwPが算出される。これにより、算出された推定水温thwPを的確にシリンダヘッド内の実際の冷却水の温度に対応させることができる。
 なお、上記実施形態は、例えば以下のように変更することもできる。
 ・ウォータポンプ3の吐出流量を通常使用領域内の最大値よりも大きな値に背設定する際、その吐出流量は必ずしも最大である必要はない。
 ・サーモスタット7の弁体22を強制的に開動作させる外部機器としてウォータポンプ3を例示したが、モータ等の他の外部機器により弁体22を開動作させるようにしてもよい。

Claims (6)

  1.  ポンプの駆動により冷却水がエンジン内部を通って循環する冷却水回路中においてエンジンよりも下流に接続されるサーモスタットであって、該サーモスタット内を流れる冷却水の通過を禁止又は許容する弁体と、前記冷却水の温度に基づき該弁体を駆動するサーモエレメントとを有し、冷却水の温度が判定値よりも低いときに前記弁体を閉動作させてエンジン内部の冷却水の通過を禁止し、前記冷却水の温度が前記判定値以上であるときには前記冷却水からの熱伝達を受ける前記サーモエレメントにより前記弁体を開動作させてエンジン内部の冷却水の通過を許容するサーモスタットにおいて、
     前記冷却水回路の冷却水の温度が前記判定値よりも低いときに前記弁体を強制的に開動作させるべく前記サーモエレメントを加熱する発熱体を備え、
     前記弁体は、前記冷却水回路内の冷却水の温度に基づく前記サーモエレメントの動作と独立して外部機器により開動作可能とされていることを特徴とするサーモスタット。
  2.  ポンプの駆動により冷却水がエンジン内部を通って循環する冷却水回路中においてエンジンよりも下流に接続されるサーモスタットであって、該サーモスタット内を流れる冷却水の通過を禁止又は許容する弁体、前記冷却水の温度に基づき該弁体を駆動するサーモエレメントとを有し、冷却水の温度が判定値よりも低いときに弁体を閉動作させてエンジン内部の冷却水の通過を禁止し、前記冷却水の温度が前記判定値以上であるときには同冷却水からの熱伝達を受ける前記サーモエレメントにより前記弁体を開動作させてエンジン内部の冷却水の通過を許容するサーモスタットにおいて、
     前記冷却水回路の冷却水の温度が前記判定値よりも低いときに前記弁体を強制的に開動作させるべく前記サーモエレメントを加熱する発熱体を備え、
     前記弁体は、前記ポンプの駆動により前記冷却水回路内を循環する冷却水による圧力を受け、かつ前記弁体は、前記ポンプにおける冷却水の吐出流量が通常使用領域内の最大値よりも大きいとき、その冷却水による圧力に基づき開動作することを特徴とするサーモスタット。
  3.  前記弁体はばねにより閉方向に付勢されており、前記サーモエレメントは前記ばねの付勢力に抗して前記弁体を開動作させるものであり、前記ばねの付勢力は、前記ポンプの吐出流量が通常使用領域内の値であるときに前記弁体に作用する冷却水の圧力に基づく力よりも大きく、且つ前記ポンプの吐出流量が通常使用領域内の最大値よりも大きな値であるときに前記弁体に作用する冷却水の圧力に基づく力よりも小さい値に設定されている請求項2記載のサーモスタット。
  4.  前記ポンプの吐出流量が最大であるとき、前記弁体が開動作する請求項2記載の車両の冷却装置。
  5.  ポンプの駆動により冷却水がエンジン内部を通って循環する冷却水回路と、その冷却水回路のエンジンの出口の冷却水の温度を検出する水温センサと、請求項2又は3記載のサーモスタットと、前記ポンプ及び前記サーモスタットを駆動制御する制御部とを備える車両の冷却装置において、
     前記サーモスタットは、前記サーモエレメント周りの冷却水の温度が判定値未満であるときに弁体を閉動作させるものであり、
     前記制御部は、前記水温センサによって検出された冷却水の温度が前記判定値以上となったとき、前記サーモスタットの発熱体により前記サーモエレメントを加熱することにより、閉弁状態にある前記弁体を開動作させるものであり、且つ、
     冷間状態からのエンジンの始動開始後、前記水温センサによって検出された冷却水の温度が前記判定値未満であるとき、エンジン運転状態に基づき推定される同エンジンのシリンダヘッド内の冷却水の温度が同冷却水の沸騰を招くおそれのある値以上であとき、前記制御部は、前記ポンプの吐出流量を通常使用領域内の最大値よりも大きな値に設定することを特徴とする車両の冷却装置。
  6.  前記制御部は、始動開始時点からのエンジンの吸入空気量の積算値と、前記冷却水回路におけるエンジンの出口の冷却水の温度の前記水温センサによる実測値とに基づき、同エンジンのシリンダヘッド内の冷却水の温度を推定する請求項5記載の車両の冷却装置。
PCT/JP2010/067625 2009-10-15 2010-10-07 サーモスタット及び車両の冷却装置 WO2011046058A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/255,797 US8596228B2 (en) 2009-10-15 2010-10-07 Thermostat and cooling device for vehicle
DE112010001317.9T DE112010001317B4 (de) 2009-10-15 2010-10-07 Thermostat und Kühlvorrichtung für Fahrzeuge
CN201080019489.7A CN102597448B (zh) 2009-10-15 2010-10-07 自动调温器和车辆用冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009237968A JP4998537B2 (ja) 2009-10-15 2009-10-15 車両の冷却装置
JP2009-237968 2009-10-15

Publications (1)

Publication Number Publication Date
WO2011046058A1 true WO2011046058A1 (ja) 2011-04-21

Family

ID=43876109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067625 WO2011046058A1 (ja) 2009-10-15 2010-10-07 サーモスタット及び車両の冷却装置

Country Status (5)

Country Link
US (1) US8596228B2 (ja)
JP (1) JP4998537B2 (ja)
CN (1) CN102597448B (ja)
DE (1) DE112010001317B4 (ja)
WO (1) WO2011046058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080495A (zh) * 2011-07-20 2013-05-01 丰田自动车株式会社 发动机的冷却装置
CN106321221A (zh) * 2012-09-07 2017-01-11 通用汽车环球科技运作有限责任公司 用于估计缸壁温度以及用于基于估计的缸壁温度来控制流经发动机的冷却剂的系统和方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556901B2 (ja) * 2010-12-24 2014-07-23 トヨタ自動車株式会社 車両および車両の制御方法
DE102011085961A1 (de) * 2011-11-08 2013-05-08 Behr Gmbh & Co. Kg Kühlkreislauf
DE102012200005B4 (de) * 2012-01-02 2015-04-30 Ford Global Technologies, Llc Verfahren zum Betreiben eines Kühlmittelkreislaufs
US9341105B2 (en) * 2012-03-30 2016-05-17 Ford Global Technologies, Llc Engine cooling system control
SE538356C2 (sv) * 2013-10-23 2016-05-24 Scania Cv Ab Metod och apparat för sänkning av motortemperatur i sambandmed att körpass avslutas
JP6299270B2 (ja) * 2014-02-24 2018-03-28 株式会社デンソー 内燃機関の冷却装置
RU2647349C1 (ru) * 2014-05-23 2018-03-15 Ниссан Мотор Ко., Лтд. Контур охлаждения для двигателей внутреннего сгорания
US10161290B2 (en) 2015-10-27 2018-12-25 Ford Global Technologies, Llc Cooling system for an internal combustion engine
KR102383230B1 (ko) * 2016-12-13 2022-04-05 현대자동차 주식회사 엔진 냉각 시스템
DE102018100992A1 (de) 2018-01-17 2019-07-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Überwachungsvorrichtung für eine Kühlvorrichtung
KR20200071529A (ko) * 2018-12-11 2020-06-19 현대자동차주식회사 엔진 냉각시스템
CN112555010B (zh) * 2019-09-25 2023-04-07 北京京东乾石科技有限公司 航空活塞发动机的温度控制方法、装置及系统
US11078825B2 (en) * 2019-10-01 2021-08-03 GM Global Technology Operations LLC Method and apparatus for control of propulsion system warmup based on engine wall temperature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303841A (ja) * 1999-04-20 2000-10-31 Honda Motor Co Ltd エンジンの冷却制御装置
JP2003328753A (ja) * 2002-05-10 2003-11-19 Nippon Thermostat Co Ltd 電子制御サーモスタット
JP2006070782A (ja) * 2004-09-01 2006-03-16 Toyota Motor Corp 冷却装置の故障判定装置
JP2009074380A (ja) * 2007-09-19 2009-04-09 Mazda Motor Corp エンジンの2系統式冷却装置
JP2009144624A (ja) * 2007-12-14 2009-07-02 Toyota Motor Corp エンジンの冷却装置及びサーモスタット弁

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4330215A1 (de) 1993-09-07 1995-03-09 Behr Thomson Dehnstoffregler Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Ventil
DE19606202B4 (de) 1996-02-21 2010-07-01 Behr Thermot-Tronik Gmbh Kühlsystem für einen Verbrennungsmotor
CN1204719A (zh) * 1997-07-02 1999-01-13 日本恒温装置株式会社 内燃机的冷却控制装置及冷却控制方法
US6128948A (en) 1999-02-16 2000-10-10 General Motors Corporation Methodology for diagnosing engine cooling system warm-up behavior
US6712028B1 (en) 2003-03-26 2004-03-30 General Motors Corporation Engine cooling system with water pump recirculation bypass control
CN200952418Y (zh) * 2006-08-18 2007-09-26 周明权 车用发动机温控仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303841A (ja) * 1999-04-20 2000-10-31 Honda Motor Co Ltd エンジンの冷却制御装置
JP2003328753A (ja) * 2002-05-10 2003-11-19 Nippon Thermostat Co Ltd 電子制御サーモスタット
JP2006070782A (ja) * 2004-09-01 2006-03-16 Toyota Motor Corp 冷却装置の故障判定装置
JP2009074380A (ja) * 2007-09-19 2009-04-09 Mazda Motor Corp エンジンの2系統式冷却装置
JP2009144624A (ja) * 2007-12-14 2009-07-02 Toyota Motor Corp エンジンの冷却装置及びサーモスタット弁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080495A (zh) * 2011-07-20 2013-05-01 丰田自动车株式会社 发动机的冷却装置
CN106321221A (zh) * 2012-09-07 2017-01-11 通用汽车环球科技运作有限责任公司 用于估计缸壁温度以及用于基于估计的缸壁温度来控制流经发动机的冷却剂的系统和方法

Also Published As

Publication number Publication date
US20120199084A1 (en) 2012-08-09
JP4998537B2 (ja) 2012-08-15
CN102597448B (zh) 2014-07-30
CN102597448A (zh) 2012-07-18
DE112010001317T5 (de) 2012-06-21
JP2011085059A (ja) 2011-04-28
DE112010001317B4 (de) 2016-04-07
US8596228B2 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
WO2011046058A1 (ja) サーモスタット及び車両の冷却装置
JP6079766B2 (ja) エンジン冷却システム及びその運転方法
US20090229543A1 (en) Cooling device for engine
WO2011042942A1 (ja) 車両の冷却装置
JP2011099400A (ja) 車両の冷却装置
JP2014009617A (ja) 内燃機関の冷却装置
JP5958150B2 (ja) エンジン冷却装置
US8978599B2 (en) Cooling apparatus of internal combustion engine for vehicle
CN108699946B (zh) 内燃机冷却系统
JP5665674B2 (ja) エンジンの冷却系および制御装置
WO2011089705A1 (ja) 車両の冷却装置
JP6040908B2 (ja) 車両
JP6443824B2 (ja) エンジンの冷却装置
KR20120050845A (ko) 자동차 엔진의 냉각수 순환회로
JP6028708B2 (ja) 車両
JP5257087B2 (ja) 内燃機関の制御装置
JP2015209792A (ja) エンジン冷却制御装置およびエンジン冷却制御方法
JP3906745B2 (ja) 内燃機関の冷却装置
JP2010248942A (ja) 内燃機関の制御装置
JP2004311229A (ja) 燃料電池システム
JP2008223725A (ja) 内燃機関の冷却装置
JP4543591B2 (ja) エンジン冷却水制御装置
JP2008223726A (ja) 内燃機関の冷却装置
JP2013002434A (ja) エンジンの冷却系および制御装置
JP2001030741A (ja) 車両用畜熱システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019489.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823326

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13255797

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010001317

Country of ref document: DE

Ref document number: 1120100013179

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823326

Country of ref document: EP

Kind code of ref document: A1