[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011042041A1 - Microelectromechanical sensor with a differential capacitor principle - Google Patents

Microelectromechanical sensor with a differential capacitor principle Download PDF

Info

Publication number
WO2011042041A1
WO2011042041A1 PCT/EP2009/062887 EP2009062887W WO2011042041A1 WO 2011042041 A1 WO2011042041 A1 WO 2011042041A1 EP 2009062887 W EP2009062887 W EP 2009062887W WO 2011042041 A1 WO2011042041 A1 WO 2011042041A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor according
electrode
electrodes
microelectromechanical sensor
gap
Prior art date
Application number
PCT/EP2009/062887
Other languages
German (de)
French (fr)
Inventor
Marco Dienel
Jörg Schaufuß
Jan Mehner
Dirk Scheibner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2009/062887 priority Critical patent/WO2011042041A1/en
Publication of WO2011042041A1 publication Critical patent/WO2011042041A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0056Adjusting the distance between two elements, at least one of them being movable, e.g. air-gap tuning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/038Microengines and actuators not provided for in B81B2201/031 - B81B2201/037

Definitions

  • the invention relates to a microelectromechanical sensor with differential capacitor principle, which has a capacitor with a movable electrode and at least one fixed electrode, wherein the movable and the fixed electrode are formed at least in a partial area as flat surfaces which are arranged parallel to each other, i. between which there is a gap.
  • microelectromechanical sensors are known. It is also known in capacitive sensors to keep the gap as small as possible, since the sensitivity increases with the reduction of the gap distance. There are several methods available for generating small capacitive gap distances. For example, the microelectromechanical structure is produced with technologically easily realizable, relatively large gap distances. After completion, the gap distance is reduced by means of an adjustment actuator. Hitherto, the adjustment direction has always been the same as the detection direction or working direction of the sensor, such as, for example, the sensor. in the document "Micromechanical resonators with submicron capacitive gaps in 2 ⁇ process" from ELECTRONICS LETTERS, Dec. 6, 2007, Vol.43, No.25 This means that several adjustment actuators have to be integrated in order to reduce counteracting gap spacings of a differential arrangement ,
  • the invention has for its object to provide a microelectromechanical sensor of the type mentioned above, which allows a reduction in the gap distance in a simple manner.
  • the object is achieved with the features of claim 1.
  • the first means for gap reduction comprise at least one return spring.
  • the first means for gap reduction at least one stop umfas ⁇ sen.
  • microelectromechanical sensor is when, according to claim 4 second means are provided by which the movable electrode is movable in an Ar ⁇ beitsraum having an angle to the flat surfaces of the electrodes, which differs substantially from 90 °.
  • the adjustment direction and the working direction are separated from each other.
  • the cross-sensitivity for vibrations in the adjustment direction can be reduced.
  • the electrodes are formed in the shape of a comb with triangular tips which engage with each other, wherein the inclined surfaces of the triangular tips of the movable electrode at least partially opposite those of the fixed electrode with the gap.
  • a further particularly advantageous embodiment is when according to claim 9 for detecting the back and forth Movement of the movable electrode in the working direction two fixed electrodes are provided.
  • the fixed electrodes are designed with a multiplicity of triangular electrode elements which are interconnected by buried conductor tracks. This results in an electrode pair arrangement for detecting the movement of the movable electrode in the forward and reverse directions.
  • FIG. 3 shows a schematic representation of another erfinderi ⁇ rule sensor with differential capacitor principle and 4 different embodiments of electrode structures.
  • FIG 1 the basic principle of the inventive micro-electromechanical sensor with differential capacitor principle is shown schematically.
  • the sensor has a capacitor with a movable electrode and at least one fixed electrode.
  • the movable electrode is moved in the adjustment direction y.
  • the adjustment y has the position of the two surfaces 1.2 an angle ß, which is substantially smaller than 90 °.
  • the cross-sensitivity for vibrations in the adjustment direction is changed according to the angle ⁇ , preferably reduced by the factor sin ( ⁇ ), whereas the sensitivity in the working direction is changed only by cos ( ⁇ ).
  • sin (ß) is much smaller than cos (ß).
  • the sensor 3 has a movable electrode 4 and two fixed electrodes 5.
  • these electrodes 4, 5 is made comb-shaped with triangular tips 6 which interlock, wherein the inclined surfaces of the triangular tips 6 of the movable electrode 4 at least in part ⁇ as those of the fixed electrode 5 facing with a gap d.
  • the two fixed electrodes 5 lent a drive on the outward and return path during a movement in the working direction x.
  • two interconnected combs are provided for the electrodes 4, 5 in each case.
  • more combs can also be specified according to this principle.
  • the two combs forming the movable electrode 4 are each connected to first gap-reducing means 7 in an adjustment direction y.
  • the working direction x in which the deflection of the movable electrode 4 is provided, lies at an angle of 90 ° with respect to the adjustment direction y.
  • the separation of the working direction x and the adjustment direction y as well as the beveled shape of the electrodes 4, 5 also causes a gap reduction with only one adjusting actuator. tion simultaneously between two electrode pairs is possible and the use as a differential capacitor is still guaranteed.
  • the first means 7 for gap reduction comprise in addition to the Justieraktor two return springs 8 and two stops 9, which can be made fixed or variable. As stops 9, e.g. Serve stopper.
  • the adjustment movement can be stepped, e.g. via the stoppers or latching pawls or continuously. This also allows an adaptive adjustment of the gap distance.
  • second means 10 which are designed here as springs and which ensure the movement of the movable electrode 4 in the working direction x.
  • the described sensor 3 with first means 7 for gap reduction would be e.g. advantageous used when a vibration excitation occurs at high frequencies. In this case, smaller movement amplitudes result, which require greater sensor sensitivity by adjusting the gap distance.
  • FIG. 1 Another embodiment of an inventive sensor is shown in FIG.
  • the stationary electrodes 5 are not comb-shaped, but with a plurality of triangular electrode elements El and E2, which enable an electrode pair arrangement for detecting the movement of the movable electrode 4 in the forward and reverse directions.
  • the respective uniform electrode elements El and E2 are each connected by buried conductor tracks, ie in another plane of the microelectromechanical structure.
  • the present embodiment of the ⁇ be described embodiment of Figure 2 corresponds.
  • stops 9 are not absolutely necessary, since adjustment movements can also take place in several steps with a predetermined step size or continuously.
  • the adjustment movement can also take place via the stationary electrodes instead of via the inertial mass.
  • FIG. 4 shows various electrode structures for movable and stationary electrodes 4, 5.
  • the seismic mass (the tines or corners can be made larger or smaller in volume depending on the position of the resonance frequency).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)

Abstract

The invention proposes a microelectromechanical sensor (3) with a differential capacitor principle, which sensor has a capacitor with a moving electrode (4) and with at least one stationary electrode (5). In this case, the moving electrode (4) and the stationary electrode (5) are in the form of flat surfaces at least in a subregion, said flat surfaces being arranged parallel to one another, that is to say there being a gap between them. First means (7) for reducing the gap in an adjustment direction (y) are connected to the moving electrode (4), wherein the adjustment direction (y) has an angle which differs substantially by 90° from the flat surfaces of the electrodes (4, 5). The fingers of the comb-like electrodes are oriented obliquely in relation to the movement direction of the electrodes and to the movement direction of the adjustment means.

Description

Beschreibung description
Mikroelektromechanischer Sensor mit Differentialkondensatorprinzip Microelectromechanical sensor with differential capacitor principle
Die Erfindung betrifft einen mikroelektromechanischen Sensor mit Differentialkondensatorprinzip, der einen Kondensator mit einer beweglichen Elektrode und mit mindestens einer feststehenden Elektrode aufweist, wobei die bewegliche und die fest- stehende Elektrode zumindest in einem Teilbereich als ebene Flächen ausgebildet sind, die parallel zueinander angeordnet sind, d.h. zwischen denen ein Spalt besteht. The invention relates to a microelectromechanical sensor with differential capacitor principle, which has a capacitor with a movable electrode and at least one fixed electrode, wherein the movable and the fixed electrode are formed at least in a partial area as flat surfaces which are arranged parallel to each other, i. between which there is a gap.
Derartige mikroelektromechanische Sensoren sind bekannt. Es ist ebenfalls bei kapazitiven Sensoren bekannt, den Spalt möglichst klein zu halten, da die Empfindlichkeit mit der Reduzierung des Spaltsabstandes zunimmt. Zur Erzeugung geringer kapazitiver Spaltabstände stehen verschiedene Methoden zur Verfügung. Z.B. wird die mikroelektromechanische Struktur mit technologisch einfach realisierbaren, relativ großen Spaltabständen hergestellt. Nach der Fertigstellung wird mittels eines Justieraktors der Spaltabstand reduziert. Dabei ist bisher die Justierrichtung stets die gleiche wie die Detektions- richtung bzw. Arbeitsrichtung des Sensors wie z.B. im Doku- ment „Micromechanical resonators with submicron capacitive gaps in 2 μτη process" aus ELECTRONICS LETTERS, 06.12.2007, Vol.43, No.25, beschrieben. Dies bedeutet, dass zur Reduzierung gegenläufig arbeitender Spaltsabstände einer Differentialanordnung mehrere Justieraktoren integriert werden müssen. Such microelectromechanical sensors are known. It is also known in capacitive sensors to keep the gap as small as possible, since the sensitivity increases with the reduction of the gap distance. There are several methods available for generating small capacitive gap distances. For example, the microelectromechanical structure is produced with technologically easily realizable, relatively large gap distances. After completion, the gap distance is reduced by means of an adjustment actuator. Hitherto, the adjustment direction has always been the same as the detection direction or working direction of the sensor, such as, for example, the sensor. in the document "Micromechanical resonators with submicron capacitive gaps in 2 μτη process" from ELECTRONICS LETTERS, Dec. 6, 2007, Vol.43, No.25 This means that several adjustment actuators have to be integrated in order to reduce counteracting gap spacings of a differential arrangement ,
Der Erfindung liegt die Aufgabe zugrunde, einen mikroelektromechanischen Sensor der oben genannten Art vorzuschlagen, der auf einfache Weise eine Reduzierung des Spaltabstandes ermöglicht . The invention has for its object to provide a microelectromechanical sensor of the type mentioned above, which allows a reduction in the gap distance in a simple manner.
Die Aufgabe wird mit den Merkmalen nach Anspruch 1 gelöst. Eine vorteilhafte Weiterbildung des mikroelektromechanischen Sensors besteht, wenn gemäß Anspruch 2 die ersten Mittel zur Spaltreduzierung mindestens eine Rückstellfeder umfassen. Außerdem ist es vorteilhaft, wenn gemäß Anspruch 3 die ersten Mittel zur Spaltreduzierung zumindest einen Anschlag umfas¬ sen . The object is achieved with the features of claim 1. An advantageous development of the microelectromechanical sensor is when according to claim 2, the first means for gap reduction comprise at least one return spring. Moreover, it is advantageous if according to claim 3, the first means for gap reduction at least one stop umfas ¬ sen.
Eine vorteilhafte Weiterbildung des mikroelektromechanischen Sensors besteht, wenn gemäß Anspruch 4 zweite Mittel vorgesehen sind, durch die die bewegliche Elektrode in einer Ar¬ beitsrichtung beweglich ist, die zu den ebenen Flächen der Elektroden einen Winkel aufweist, der wesentlich von 90° abweicht . An advantageous development of the microelectromechanical sensor is when, according to claim 4 second means are provided by which the movable electrode is movable in an Ar ¬ beitsrichtung having an angle to the flat surfaces of the electrodes, which differs substantially from 90 °.
Es ist vorteilhaft, wenn gemäß Anspruch 5 die Justierrichtung und die Arbeitsrichtung voneinander getrennt sind. Durch die Trennung der Aufhängungsrichtung für Justierung und Detektion kann die Querempfindlichkeit für Schwingungen in Justierrich- tung verringert werden. It is advantageous if, according to claim 5, the adjustment direction and the working direction are separated from each other. By separating the suspension direction for adjustment and detection, the cross-sensitivity for vibrations in the adjustment direction can be reduced.
Weiterhin ist es vorteilhaft, wenn gemäß Anspruch 6 die Justierrichtung und die Arbeitsrichtung zueinander einen Winkel von 90° aufweisen. Furthermore, it is advantageous if according to claim 6, the adjustment direction and the working direction to each other at an angle of 90 °.
Eine weitere sehr vorteilhafte Ausführungsform besteht, wenn dieser gemäß Anspruch 7 zumindest teilweise als mikromechanische Struktur aus Silizium ausgeführt ist. Außerdem erweist es sich als vorteilhaft, wenn gemäß Anspruch 8 die Elektroden im Profil kammförmig mit dreieckförmigen Spitzen ausgeführt sind, die ineinandergreifen, wobei die schrägen Flächen der dreieckförmigen Spitzen der beweglichen Elektrode zumindest teilweise denen der feststehenden Elek- trode mit dem Spalt gegenüberstehen. Another very advantageous embodiment is when this is at least partially carried out according to claim 7 as a micromechanical structure made of silicon. In addition, it proves to be advantageous if according to claim 8, the electrodes are formed in the shape of a comb with triangular tips which engage with each other, wherein the inclined surfaces of the triangular tips of the movable electrode at least partially opposite those of the fixed electrode with the gap.
Eine weitere besonders vorteilhafte Ausführungsform besteht, wenn gemäß Anspruch 9 zur Erfassung der Hin- und Rückwärtsbe- wegung der beweglichen Elektrode in der Arbeitsrichtung zwei feststehende Elektroden vorgesehen sind. A further particularly advantageous embodiment is when according to claim 9 for detecting the back and forth Movement of the movable electrode in the working direction two fixed electrodes are provided.
Weiterhin ist es von Vorteil, wenn gemäß Anspruch 10 die feststehenden Elektroden mit einer Vielzahl von dreieckförmi- gen Elektrodenelementen ausgeführt sind, die durch vergrabene Leiterzüge untereinander verbunden sind. Dadurch ergibt sich eine Elektrodenpaaranordnung für die Erfassung der Bewegung der beweglichen Elektrode in Hin- und Rückrichtung . Furthermore, it is advantageous if, according to claim 10, the fixed electrodes are designed with a multiplicity of triangular electrode elements which are interconnected by buried conductor tracks. This results in an electrode pair arrangement for detecting the movement of the movable electrode in the forward and reverse directions.
Ein Ausführungsbeispiel der Erfindung wird im Folgenden anhand einer Zeichnung näher erläutert. Es zeigen: An embodiment of the invention will be explained in more detail below with reference to a drawing. Show it:
FIG 1 eine schematische Darstellung des Grundprinzips eines erfinderischen Sensors, 1 shows a schematic representation of the basic principle of an inventive sensor,
FIG 2 eine schematische Darstellung eines erfinderischen Sen¬ sors mit Differentialkondensatorprinzip, 2 shows a schematic representation of an inventive Sen ¬ sors with differential capacitor principle,
FIG 3 eine schematische Darstellung eines weiteren erfinderi¬ schen Sensors mit Differentialkondensatorprinzip und FIG 4 unterschiedliche Ausführungsformen von Elektrodenstrukturen . 3 shows a schematic representation of another erfinderi ¬ rule sensor with differential capacitor principle and 4 different embodiments of electrode structures.
In FIG 1 ist das Grundprinzip des erfinderischen mikroelek- tromechanischen Sensors mit Differentialkondensatorprinzip schematisch dargestellt. Der Sensor weist einen Kondensator mit einer beweglichen Elektrode und mit mindestens einer feststehenden Elektrode auf. In FIG 1, the basic principle of the inventive micro-electromechanical sensor with differential capacitor principle is shown schematically. The sensor has a capacitor with a movable electrode and at least one fixed electrode.
FIG 1 zeigt die Fläche 1 der beweglichen Elektrode 4 und pa- rallel dazu in einem Spaltabstand d angeordnet die Fläche 2 der feststehenden Elektrode 5. Zur Reduzierung des Spaltab¬ stands d wird die bewegliche Elektrode in Justierrichtung y bewegt. Die Justierrichtung y hat zur Lage der beiden Flächen 1,2 einen Winkel ß, der wesentlich kleiner ist als 90°. Ab- hängig vom gewählten Winkel ß verändert sich das Verhältnis von Justierweg zu Spaltverringerung. Extrem kleine, bisher nicht erreichbare Spaltabstände können durch einen größeren Justierweg, der mit hoher Genauigkeit aufgelöst werden kann, realisiert werden. Die bewegliche Elektrode lässt sich in der Arbeitsrichtung x bewegen, deren Fläche 1 hier im Winkel = 90° zur Justierrichtung liegt. Dies bedeutet, dass im Gegensatz zu bisherigen Strukturen die Trennung von Arbeitsrich- tung und Justierrichtung vorgesehen ist. Durch die Trennung der Aufhängungsrichtung für Justierung und Detektion wird die Querempfindlichkeit für Schwingungen in Justierrichtung entsprechend dem Winkel ß verändert, vorzugsweise mit dem Faktor sin(ß) verringert, wohingegen die Empfindlichkeit in Arbeits- richtung nur um cos(ß) verändert wird. Für kleine Winkel ß gilt, dass sin(ß) sehr viel kleiner als cos(ß) ist. 1 shows the surface 1 of the movable electrode 4 and In parallel, in a gap distance d arranged the surface 2 of the fixed electrode 5. To reduce the slit spacing ¬ stands d, the movable electrode is moved in the adjustment direction y. The adjustment y has the position of the two surfaces 1.2 an angle ß, which is substantially smaller than 90 °. Depending on the selected angle ß, the ratio of adjustment path to gap reduction changes. Extremely small, previously unattainable gap distances can be resolved by a larger adjustment path, which can be resolved with high accuracy will be realized. The movable electrode can be moved in the working direction x, whose surface 1 is here at an angle = 90 ° to the adjustment direction. This means that in contrast to previous structures, the separation of working direction and adjustment direction is provided. By separating the suspension direction for adjustment and detection, the cross-sensitivity for vibrations in the adjustment direction is changed according to the angle β, preferably reduced by the factor sin (β), whereas the sensitivity in the working direction is changed only by cos (β). For small angles ß, sin (ß) is much smaller than cos (ß).
Dieses anhand der FIG 1 erläuterte Grundprinzip wird beim erfinderischen Sensor 3 mit Differentialkondensatorprinzip ge- mäß FIG 2 angewendet, der z.B. zum Einsatz als Beschleuni¬ gungssensor geeignet ist. This explained with reference to FIG 1 Basic principle is applied in the inventive sensor 3 with differential capacitor principle ACCORDING TO FIG 2, the example is suitable for use as Accelerati ¬ supply sensor.
Der Sensor 3 weist eine bewegliche Elektrode 4 und zwei feststehende Elektroden 5 auf. Im Profil sind diese Elektroden 4, 5 kammförmig mit dreieckförmigen Spitzen 6 ausgeführt, die ineinandergreifen, wobei die schrägen Flächen der dreieckför- migen Spitzen 6 der beweglichen Elektrode 4 zumindest teil¬ weise denen der feststehenden Elektrode 5 mit einem Spalt d gegenüberstehen. Die beiden feststehenden Elektroden 5 ermög- liehen eine Ansteuerung auf dem Hin- und Rückweg bei einer Bewegung in Arbeitsrichtung x. The sensor 3 has a movable electrode 4 and two fixed electrodes 5. In the profile, these electrodes 4, 5 is made comb-shaped with triangular tips 6 which interlock, wherein the inclined surfaces of the triangular tips 6 of the movable electrode 4 at least in part ¬ as those of the fixed electrode 5 facing with a gap d. The two fixed electrodes 5 lent a drive on the outward and return path during a movement in the working direction x.
In diesem Ausführungsbeispiel gemäß FIG 2 sind für die Elektroden 4,5 jeweils zwei miteinander verbundene Kämme vorgese- hen. Gemäß diesem Prinzip können grundsätzlich auch mehr Kämme vorgegeben sein. Die beiden, die bewegliche Elektrode 4 bildenden Kämme sind jeweils mit ersten Mitteln 7 zur Spaltreduzierung in einer Justierrichtung y verbunden. Die Arbeitsrichtung x, in der die Auslenkung der beweglichen Elek- trode 4 vorgesehen ist, liegt zur Justierrichtung y im Winkel von 90°. Die Trennung von Arbeitsrichtung x und Justierrichtung y sowie die abgeschrägte Form der Elektroden 4,5 bewirkt außerdem, dass mit nur einem Justieraktor eine Spaltverringe- rung gleichzeitig zwischen zwei Elektrodenpaaren möglich wird und der Einsatz als Differentialkondensator weiterhin gewährleistet ist. Bei Ausführung des mikroelektromechanischen Sensors 3 mit Silizium bedarf es aufgrund der Anforderung nur eines Justieraktors einer verringerten Siliziumfläche. In this embodiment according to FIG. 2, two interconnected combs are provided for the electrodes 4, 5 in each case. In principle, more combs can also be specified according to this principle. The two combs forming the movable electrode 4 are each connected to first gap-reducing means 7 in an adjustment direction y. The working direction x, in which the deflection of the movable electrode 4 is provided, lies at an angle of 90 ° with respect to the adjustment direction y. The separation of the working direction x and the adjustment direction y as well as the beveled shape of the electrodes 4, 5 also causes a gap reduction with only one adjusting actuator. tion simultaneously between two electrode pairs is possible and the use as a differential capacitor is still guaranteed. When executing the microelectromechanical sensor 3 with silicon, due to the requirement of only one adjustment actuator, a reduced silicon area is required.
Für die Ausführung des Justieraktors sind Lösungen in mikro- elektromechanischer Struktur bekannt. Dazu gehören beispielsweise: For the execution of the Justieraktors solutions in micro-electromechanical structure are known. These include, for example:
- elektrostatische Zustellung, - electrostatic delivery,
- thermische Zustellung mittels Mehrschichtsystemen,  - thermal delivery by means of multi-layer systems,
- Schrittschaltwerk,  - stepper,
- bistabile Schnappmechanismen,  - bistable snap mechanisms,
- Ratschenmechanismus (Raste, Klinke) .  - Ratchet mechanism (catch, pawl).
Die ersten Mittel 7 zur Spaltreduzierung umfassen neben dem Justieraktor zwei Rückstellfedern 8 und zwei Anschläge 9, die fest oder variabel ausgeführt sein können. Als Anschläge 9 können z.B. Stopper dienen. Die Justierbewegung kann stufen- weise, z.B. über die Stopper oder Einrastklinken oder stufenlos erfolgen. Dies ermöglicht auch eine adaptive Einstellung des Spaltabstands. The first means 7 for gap reduction comprise in addition to the Justieraktor two return springs 8 and two stops 9, which can be made fixed or variable. As stops 9, e.g. Serve stopper. The adjustment movement can be stepped, e.g. via the stoppers or latching pawls or continuously. This also allows an adaptive adjustment of the gap distance.
Außerdem sind die beiden, die bewegliche Elektrode 4 bilden- den Kämme mit zweiten Mitteln 10 verbunden, die hier als Federn ausgeführt sind und die die Bewegung der beweglichen Elektrode 4 in Arbeitsrichtung x gewährleisten. In addition, the two combs which form the movable electrode 4 are connected to second means 10, which are designed here as springs and which ensure the movement of the movable electrode 4 in the working direction x.
Der beschriebene Sensor 3 mit ersten Mitteln 7 zur Spaltredu- zierung wäre z.B. vorteilhaft verwendbar, wenn eine Schwingungsanregung mit hohen Frequenzen erfolgt. In diesem Fall ergeben sich kleinere Bewegungsamplituden, die eine größere Sensorempfindlichkeit durch Nachstellen des Spaltsabstands erfordern . The described sensor 3 with first means 7 for gap reduction would be e.g. advantageous used when a vibration excitation occurs at high frequencies. In this case, smaller movement amplitudes result, which require greater sensor sensitivity by adjusting the gap distance.
Eine weitere Ausführungsform eines erfinderischen Sensors ist in FIG 3 dargestellt. Im Unterschied zu der Ausführungsform nach FIG 2 sind hier die feststehenden Elektroden 5 nicht kammförmig ausgeführt, sondern mit einer Vielzahl von drei- eckförmigen Elektrodenelementen El und E2, die eine Elektro- denpaaranordnung für die Erfassung der Bewegung der beweglichen Elektrode 4 in Hin- und Rückrichtung ermöglichen. Die betreffenden gleichförmigen Elektrodenelemente El und E2 sind jeweils durch vergrabene Leiterzüge, d.h. in einer anderen Ebene der mikroelektromechanischen Struktur verbunden. Im Übrigen entspricht die vorliegende Ausführungsform der be¬ schriebenen Ausführungsform gemäß FIG 2. Another embodiment of an inventive sensor is shown in FIG. In contrast to the embodiment according to FIG. 2, the stationary electrodes 5 are not comb-shaped, but with a plurality of triangular electrode elements El and E2, which enable an electrode pair arrangement for detecting the movement of the movable electrode 4 in the forward and reverse directions. The respective uniform electrode elements El and E2 are each connected by buried conductor tracks, ie in another plane of the microelectromechanical structure. Incidentally, the present embodiment of the ¬ be described embodiment of Figure 2 corresponds.
Es sei angemerkt, dass die Anschläge 9 nicht unbedingt erforderlich sind, da Justierbewegungen auch in mehreren Schritten mit vorgegebener Schrittweite oder stufenlos erfolgen können. Die Justierbewegung kann auch über die feststehenden Elektroden statt über die Inertialmasse erfolgen. It should be noted that the stops 9 are not absolutely necessary, since adjustment movements can also take place in several steps with a predetermined step size or continuously. The adjustment movement can also take place via the stationary electrodes instead of via the inertial mass.
In FIG 4 sind verschiedene Elektrodenstrukturen für bewegliche und feststehende Elektroden 4,5 dargestellt. Für die Auswahl der Elektrodenstruktur sind u.a. folgende Faktoren zu bedenken : FIG. 4 shows various electrode structures for movable and stationary electrodes 4, 5. For the selection of the electrode structure u.a. to consider the following factors:
- Welche Technologie wird verwendet (maximal erlaubte Spaltabstände, Hinter- bzw. Unterätzung an spitzen Ecken); - What technology is used (maximum allowable gap distances, undercut or undercut on sharp corners);
- Verteilung der seismischen Masse (die Zinken bzw. Ecken können je nach Lage der Resonanzfrequenz größer- oder kleinervolumig gestaltet werden) .  Distribution of the seismic mass (the tines or corners can be made larger or smaller in volume depending on the position of the resonance frequency).

Claims

Patentansprüche claims
1. Mikroelektromechanischer Sensor (3) mit Differentialkon¬ densatorprinzip, der einen Kondensator mit einer beweglichen Elektrode (4) und mit mindestens einer feststehenden Elektrode (5) aufweist, wobei die bewegliche Elektrode (4) und die feststehende Elektrode (5) zumindest in einem Teilbereich als ebene Flächen ausgebildet sind, die parallel zueinander angeordnet sind, d.h. zwischen denen ein Spalt besteht, dadurch gekennzeichnet, dass mit der beweglichen Elektrode (4) erste Mittel (7) zur Spaltreduzierung in einer Justierrichtung (y) verbunden sind, wobei die Justierrichtung (y) einen zu den ebenen Flächen der Elektroden (4,5) von 90° abweichenden Winkel aufweist. 1. A micro-electromechanical sensor (3) with Differentialkon ¬ densatorprinzip having a capacitor having a movable electrode (4) and having at least one stationary electrode (5), wherein the movable electrode (4) and the stationary electrode (5) at least in a Partial area are formed as flat surfaces which are arranged parallel to each other, that between which there is a gap, characterized in that with the movable electrode (4) first means (7) for gap reduction in an adjustment direction (y) are connected, wherein the adjustment direction (y) has an angle different from the flat surfaces of the electrodes (4, 5) of 90 °.
2. Mikroelektromechanischer Sensor nach Anspruch 1, dadurch gekennzeichnet, dass die ersten Mittel (7) zur Spaltreduzierung mindestens eine Rückstellfeder (8) umfassen. 2. Microelectromechanical sensor according to claim 1, characterized in that the first means (7) for gap reduction comprise at least one return spring (8).
3. Mikroelektromechanischer Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die ersten Mittel (7) zur Spaltreduzierung zumindest einen Anschlag (9) umfassen. 3. Microelectromechanical sensor according to claim 1 or 2, characterized in that the first means (7) for gap reduction comprise at least one stop (9).
4. Mikroelektromechanischer Sensor nach einem der oben ge- nannten Ansprüche, dadurch gekennzeichnet, dass zweite Mittel (10) vorgesehen sind, durch die die bewegliche Elektrode (4) in einer Arbeitsrichtung (x) beweglich ist, die zu den ebenen Flächen der Elektroden (4,5) einen Winkel aufweist, der we¬ sentlich von 90° abweicht. 4. Microelectromechanical sensor according to one of the above-mentioned claims, characterized in that second means (10) are provided, by means of which the movable electrode (4) is movable in a working direction (x) facing the flat surfaces of the electrodes (10). 4.5) has an angle which we ¬ sentlich deviates from 90 °.
5. Mikroelektromechanischer Sensor nach Anspruch 4, dadurch gekennzeichnet, dass die Justierrichtung (y) und die Arbeits¬ richtung (x) voneinander getrennt sind. 5. microelectromechanical sensor according to claim 4, characterized in that the adjustment direction (y) and the working ¬ direction (x) are separated from each other.
6. Mikroelektromechanischer Sensor nach Anspruch 5, dadurch gekennzeichnet, dass die Justierrichtung (y) und die Arbeits¬ richtung (x) zueinander einen Winkel von 90° aufweisen. 6. Microelectromechanical sensor according to claim 5, characterized in that the adjustment direction (y) and the working ¬ direction (x) to each other at an angle of 90 °.
7. Mikroelektromechanischer Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser zumindest teilweise als mikromechanische Struktur aus Silizium ausge¬ führt ist. 7. Microelectromechanical sensor according to one of the preceding claims, characterized in that it is at least partially out as a micromechanical structure made of silicon ¬ leads.
8. Mikroelektromechanischer Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Elektroden (4,5) im Profil kammförmig mit dreieckförmigen Spitzen (6) ausgeführt sind, die ineinandergreifen, wobei die schrägen Flächen der dreieckförmigen Spitzen (6) der beweglichen 8. Microelectromechanical sensor according to one of the preceding claims, characterized in that the electrodes (4,5) in the form of a comb are formed with triangular tips (6) which engage with each other, wherein the inclined surfaces of the triangular-shaped tips (6) of the movable
Elektrode (4) zumindest teilweise denen der feststehenden Elektrode (5) mit dem Spalt gegenüberstehen. Electrode (4) at least partially facing those of the fixed electrode (5) with the gap.
9. Mikroelektromechanischer Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Erfassung der Hin- und Rückwärtsbewegung der beweglichen Elektrode (4) in der Arbeitsrichtung (x) zwei feststehende Elektroden (5) vorgesehen sind. 9. Microelectromechanical sensor according to one of the preceding claims, characterized in that for detecting the back and forth movement of the movable electrode (4) in the working direction (x) two fixed electrodes (5) are provided.
10. Mikroelektromechanischer Sensor nach einem der vorange¬ henden Ansprüche, dadurch gekennzeichnet, dass die festste¬ henden Elektroden (5) mit einer Vielzahl von dreieckförmigen Elektrodenelementen (E1,E2) ausgeführt sind, die durch ver¬ grabene Leiterzüge untereinander verbunden sind. 10. A micro-electromechanical sensor according to one of vorange ¬ Henden claims, characterized in that the festste ¬ Henden electrodes (5) having a plurality of triangular-shaped electrode elements (E1, E2) are executed, which are connected by ver ¬ buried conductor lines with each other.
PCT/EP2009/062887 2009-10-05 2009-10-05 Microelectromechanical sensor with a differential capacitor principle WO2011042041A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/062887 WO2011042041A1 (en) 2009-10-05 2009-10-05 Microelectromechanical sensor with a differential capacitor principle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/062887 WO2011042041A1 (en) 2009-10-05 2009-10-05 Microelectromechanical sensor with a differential capacitor principle

Publications (1)

Publication Number Publication Date
WO2011042041A1 true WO2011042041A1 (en) 2011-04-14

Family

ID=42199127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/062887 WO2011042041A1 (en) 2009-10-05 2009-10-05 Microelectromechanical sensor with a differential capacitor principle

Country Status (1)

Country Link
WO (1) WO2011042041A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814293A (en) * 2022-06-29 2022-07-29 成都华托微纳智能传感科技有限公司 MEMS accelerometer with sawtooth-shaped comb tooth structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888394A1 (en) * 2005-07-08 2007-01-12 Commissariat Energie Atomique CAPACITIVE DEVICE WITH OPTIMIZED CAPACITIVE VOLUME
EP1819035A2 (en) * 2006-02-13 2007-08-15 Commissariat A L'energie Atomique Energy conversion system with adjustable air-gap distance and corresponding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888394A1 (en) * 2005-07-08 2007-01-12 Commissariat Energie Atomique CAPACITIVE DEVICE WITH OPTIMIZED CAPACITIVE VOLUME
EP1819035A2 (en) * 2006-02-13 2007-08-15 Commissariat A L'energie Atomique Energy conversion system with adjustable air-gap distance and corresponding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG HAN JE ET AL: "Sensing gap reconfigurable capacitive type MEMS accelerometer", PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING USA, vol. 6800, 21 December 2007 (2007-12-21), pages 68001Z-1 - 68001Z-7, XP002588302, ISSN: 0277-786X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814293A (en) * 2022-06-29 2022-07-29 成都华托微纳智能传感科技有限公司 MEMS accelerometer with sawtooth-shaped comb tooth structure

Similar Documents

Publication Publication Date Title
EP2100151B1 (en) Micromechanical z-sensor
DE102008040855B4 (en) Triaxial accelerometer
DE102008043524B4 (en) Accelerometer and process for its manufacture
EP3250931B1 (en) Acceleration sensor having spring force compensation
DE102009000606A1 (en) Micromechanical structures
DE102009028924A1 (en) Capacitive sensor and actuator
DE102012223016B4 (en) Inertial sensor with reduced cross sensitivity
WO2009132917A1 (en) Micromechanical component and method for operating a micromechanical component
WO2008092824A2 (en) Device and method for the micromechanical positioning and handling of an object
EP2032994A2 (en) Micromechanical acceleration sensor
EP2435786A1 (en) Micromechanical structure
DE102013007593A1 (en) ACCELERATION SENSOR AND METHOD FOR PRODUCING A ACCELERATION SENSOR
DE102013208699A1 (en) Spring for a micromechanical sensor device
DE102011057110A1 (en) MEMS Accelerometer
DE10038099A1 (en) Micromechanical component
EP1535027B1 (en) Rotation speed sensor
DE102014225021B4 (en) Micromechanical component, wafer device, manufacturing method for a micromechanical component and manufacturing method for a wafer device
WO2011042041A1 (en) Microelectromechanical sensor with a differential capacitor principle
WO2021083589A1 (en) Micromechanical component, in particular inertial sensor, comprising a seismic mass, a substrate and a cap
DE102018222615B4 (en) Component with an optimized multi-layer torsion spring
DE102020204767A1 (en) Micromechanical device with a stop spring structure
EP3665438B1 (en) Yaw-rate sensor, method for producing a yaw rate sensor
DE102020212998A1 (en) Micromechanical z-inertial sensor
DE102017216962A1 (en) Micromechanical sensor arrangement
DE102006059929A1 (en) Inertial sensor, with a seismic mass, has two electrode arrays to apply resetting forces to move the mass back to its start position

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09740868

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09740868

Country of ref document: EP

Kind code of ref document: A1