WO2011040613A1 - 腫瘍治療剤 - Google Patents
腫瘍治療剤 Download PDFInfo
- Publication number
- WO2011040613A1 WO2011040613A1 PCT/JP2010/067288 JP2010067288W WO2011040613A1 WO 2011040613 A1 WO2011040613 A1 WO 2011040613A1 JP 2010067288 W JP2010067288 W JP 2010067288W WO 2011040613 A1 WO2011040613 A1 WO 2011040613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mir27b
- cancer
- nucleic acid
- tumor
- cells
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
- C12N2310/141—MicroRNAs, miRNAs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2330/00—Production
- C12N2330/10—Production naturally occurring
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
Definitions
- the present invention relates to a therapeutic agent for tumors, particularly a cell growth inhibitor for drug-resistant cancer, an agent for suppressing or preventing tumor metastasis, an agent for suppressing or preventing cancer recurrence, and the like.
- RNA interference refers to a phenomenon in which mRNA is degraded in a sequence-specific manner by double-stranded RNA, resulting in suppression of gene expression. Since it was reported in 2001 that 21-base small double-stranded RNA can mediate RNAi in mammalian cells (Non-patent Document 1), siRNA (small (interference RNA) is frequently used as a method for suppressing the expression of target genes. Has been. siRNA is expected to be applied to pharmaceuticals and various refractory diseases including cancer.
- MiRNA is an endogenous non-coding RNA of about 20 to 25 bases encoded on the genome. miRNA is first transcribed from the miRNA gene on the genomic DNA as a primary transcript (Primary miRNA; hereinafter referred to as “Pri-miRNA”) with a length of several hundred to several thousand bases, and then processed to about 60 It becomes pre-miRNA (precusor miRNA) having a hairpin structure of about 70 bases. After that, it moves from the nucleus into the cytoplasm and is further processed into a double-stranded mature miRNA of about 20-25 bases. It is known that double-stranded mature miRNAs function to inhibit target gene translation by forming a complex with a protein called RISC, and then acting on the mRNA of the target gene. (For example, refer nonpatent literature 1).
- Primary miRNA Primary miRNA
- precusor miRNA precusor miRNA
- More than 1000 types of miRNA are known in humans and mice, and each of them has been suggested to regulate the expression of a plurality of target genes and participate in various life phenomena such as cell proliferation and differentiation.
- miRNA involved in hematopoietic cell and neuronal cell differentiation for example, see Non-Patent Document 2.
- miRNAs involved in cancer cell growth have been reported, and miRNA expression patterns are used for clinical diagnosis of cancer, and miRNA expression is suppressed to suppress cancer cell growth. Proposals have been made for the treatment of cancer (see, for example, Patent Documents 1 and 2).
- Non-patent Document 3 Attention has been focused on the powerful anticancer drug-discharging ability of cancer stem cells.
- Non-patent Document 5 describes that when miR27b is forcibly expressed in ZR75 cells, which are low metastatic cells of breast cancer, cell proliferation is promoted.
- ZR75 cells which are low metastatic cells of breast cancer
- the object of the present invention is to treat tumors, particularly drug-resistant cancers, agents that suppress or prevent tumor metastasis, agents that suppress or prevent cancer recurrence, drugs using the agents, and drug resistance.
- a method for determining cancer a method for determining cancer stem cells, a method for predicting the prognosis of cancer treatment, an agent for determining drug-resistant cancer or cancer stem cells, and an effect of inhibiting the growth of drug-resistant cancer. It is an object of the present invention to provide a screening method for a substance having a function and a screening method for a substance having an action of inhibiting tumor metastasis.
- miR27b expression is markedly reduced in drug-resistant cancer cells, and that drug-resistant cancer cells have a constant expression of miR27b. It was found that the growth of the plant was suppressed. Cancer cells that are highly expressed as drug efflux pump molecules, MDR1, are known to be resistant to anticancer drugs, but miR27b was also found to suppress MDR1 expression. In addition, the present inventors have newly found that the expression of RPN2 is suppressed by introducing miR27b into cancer cells. As for RPN2, it is known that cancer metastasis is suppressed by suppressing RPN2 expression (Nat. Med. 2008 Sep; 14 (9): 939-48).
- cancer stem cells are resistant to common antitumor agents and are said to be deeply involved in tumor recurrence and metastasis, but miR27b expression is reduced in these cancer stem cells It was found that introduction of pre-miR27b into breast cancer stem cells suppressed CD44-expressing cells and decreased the proportion of cancer stem cells. Based on these findings, the present inventors (1) miR27b is useful for the treatment of drug resistant cancer, (2) miR27b can suppress cancer metastasis by suppressing the expression of RPN2, The present invention was completed by finding that (3) miR27b is useful for cancer stem cell differentiation therapy, and (4) drug-resistant cancer and cancer stem cells can be determined using miR27b expression as an index.
- a therapeutic agent for a tumor comprising a nucleic acid comprising miR27b or a nucleotide sequence represented by SEQ ID NO: 1 having a nucleotide sequence having 70% or more identity and having a function equivalent to miR27b.
- the therapeutic agent according to [1] wherein the nucleic acid is single-stranded or double-stranded.
- miR27b is a nucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1.
- nucleic acid is RNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a partial sequence thereof, or a modified form thereof.
- nucleic acid is RNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a modified form thereof.
- nucleic acid containing miR27b is at least one nucleic acid selected from the group consisting of miR27b and a precursor thereof.
- the precursor is pri-miRNA or pre-miRNA of miR27b.
- the therapeutic agent according to [1], wherein the tumor is a drug resistant cancer.
- the therapeutic agent according to [8], wherein the tumor is drug resistant breast cancer or drug resistant lung cancer.
- the therapeutic agent according to [11], wherein the cancer is breast cancer or lung cancer.
- B A therapeutic agent for tumors that is used in combination with an antitumor agent.
- the therapeutic agent according to [13], wherein the tumor is a drug resistant cancer.
- the therapeutic agent according to [13], wherein the tumor is drug resistant breast cancer or drug resistant lung cancer.
- a method for determining drug-resistant cancer based on measuring the expression level or concentration of miR27b in a tumor, and based on a negative correlation between the expression level or the concentration and drug resistance.
- [17] A method for determining cancer stem cells by measuring the expression level of miR27b in a tumor. [18] The method according to [17], wherein the cancer stem cells are breast cancer stem cells or lung cancer stem cells. [19] A method for determining the prognosis of cancer treatment by measuring the expression level or concentration of miR27b in a tumor and determining the presence or absence of cancer stem cells. [20] The method according to [19], wherein the cancer stem cells are breast cancer stem cells or lung cancer stem cells. [21] An agent for determining drug-resistant cancer, comprising a nucleic acid probe capable of specifically detecting miR27b. [22] An agent for determining cancer stem cells, comprising a nucleic acid probe capable of specifically detecting miR27b.
- a method for searching for a substance capable of suppressing the growth of drug-resistant cancer comprising the following steps: (1) contacting a test substance with a cell capable of measuring the expression of miR27b; (2) measuring the expression level of miR27b in cells contacted with the test substance, and comparing the expression level with the expression level of miR27b in control cells not contacted with the test substance; and (3) (2) above Based on these comparison results, the test substance that upregulates the expression level of miR27b should be selected as a substance that can inhibit the growth of drug-resistant cancer.
- a method for searching for a substance that can inhibit tumor metastasis or tumor cell invasion ability comprising the following steps: (1) contacting a test substance with a cell capable of measuring the expression of miR27b; (2) measuring the expression level of miR27b in cells contacted with the test substance, and comparing the expression level with the expression level of miR27b in control cells not contacted with the test substance; and (3) (2) above Based on the comparison results, a test substance that upregulates the expression level of miR27b is selected as a substance that can inhibit tumor metastasis or tumor cell invasion ability.
- [26] Administration of an effective amount of miR27b or a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 and having a function equivalent to miR27b to a mammal
- a method of treating a tumor in said mammal [27] The method of [26], wherein the tumor is a drug resistant cancer. [28] The method of [26], wherein the tumor is drug-resistant breast cancer or drug-resistant lung cancer.
- [29] Administration of an effective amount of miR27b or a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 and having a function equivalent to miR27b to a mammal A method of suppressing or preventing tumor metastasis in the mammal.
- Administration of an effective amount of miR27b or a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 and having a function equivalent to miR27b to a mammal A method for suppressing or preventing cancer recurrence in the mammal.
- an effective amount of (A) miR27b or a nucleotide sequence comprising 70% or more of the nucleotide sequence represented by SEQ ID NO: 1 and having a function equivalent to miR27b Nucleic acids (B) A method for treating a tumor in a mammal, comprising administering an antitumor agent.
- the method of [32], wherein the tumor is a drug resistant cancer.
- the method according to [32], wherein the tumor is drug-resistant breast cancer or drug-resistant lung cancer.
- [35] Including an effective amount of (A) miR27b or a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 and having a function equivalent to miR27b for mammals Nucleic acids, (B) A method for suppressing or preventing tumor metastasis in the mammal, comprising administering an antitumor agent.
- [36] Including an effective amount of (A) miR27b or a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 and having a function equivalent to miR27b for mammals Nucleic acids, (B) A method of suppressing or preventing cancer recurrence in the mammal, comprising administering an antitumor agent. [37] The method according to [36], wherein the cancer is breast cancer or lung cancer.
- a therapeutic agent for tumors particularly a therapeutic agent for drug-resistant cancer, an agent for suppressing or preventing tumor metastasis, an agent for suppressing or preventing cancer recurrence, and a medicine using the agent. it can.
- a method for determining drug-resistant cancer a method for determining cancer stem cells, a method for determining the prognosis of cancer treatment, an agent for determining drug-resistant cancer or cancer stem cells, and drug resistance
- a screening method for a substance having an action of inhibiting cancer growth a screening method for a substance having an action of inhibiting tumor metastasis, and the like.
- miR27b has (1) a function of suppressing the growth of drug-resistant cancer cells (see Examples, described later), and (2) an activity of suppressing RPN2 expression. (Refer to Examples, described later) Having a function of suppressing metastasis of cancer cells, (3) Effective in cancer stem cell differentiation therapy (see Examples, described later), thus suppressing or preventing cancer recurrence It has been found that it has a function, and that miR27b can be used as an active ingredient of a tumor therapeutic agent.
- the present invention provides an agent comprising a nucleic acid comprising a nucleotide sequence comprising miR27b or a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 and having a function equivalent to miR27b. is there. That is, the agent of the present invention is useful as a drug-resistant cancer therapeutic agent or cell growth inhibitor, a tumor metastasis suppression or prevention agent, and a cancer recurrence suppression or prevention agent.
- the nucleic acid of the present invention is RNA, a chimeric nucleic acid of RNA and DNA (hereinafter referred to as a chimeric nucleic acid) or a hybrid nucleic acid.
- the chimera nucleic acid means a single-stranded or double-stranded nucleic acid containing RNA and DNA in one nucleic acid
- a hybrid nucleic acid is a double-stranded nucleic acid in which one strand is RNA or It refers to a nucleic acid in which the other strand is a DNA or a chimeric nucleic acid.
- the nucleic acid of the present invention is single-stranded or double-stranded.
- Double-stranded embodiments include double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, RNA / chimeric nucleic acid hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid, and chimeric nucleic acid / DNA hybrid.
- the nucleic acid of the present invention is preferably a single-stranded RNA, single-stranded chimeric nucleic acid, double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, RNA / chimeric nucleic acid hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid or chimeric nucleic acid / DNA hybrid, more preferably single-stranded RNA, single-stranded chimeric nucleic acid, double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid or RNA / chimeric nucleic acid hybrid .
- the length of the nucleic acid of the present invention is not limited as long as it has an activity to inhibit the invasive ability of mammalian (preferably human) tumor cells. However, considering the ease of synthesis, antigenicity problems, etc., the length of the nucleic acid of the present invention is, for example, about 200 bases or less, preferably about 130 bases or less, more preferably about 50 bases or less, and most preferably 30 bases or less. The lower limit is, for example, 15 bases or more, preferably 17 bases or more. Note that the length of a nucleic acid when a nucleic acid forms a double-stranded structure by taking a hairpin loop type structure is considered as a single-stranded length.
- MiR27b is a known molecule, and typically refers to what is called mature miRNA.
- miR27b includes miR27b isomers. Specifically, for example, it means a nucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 (MIMAT0000419).
- the mature miR27b means single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 1.
- nucleic acid of the present invention when incorporated into tumor cells, has the activity of suppressing the growth of drug-resistant cancer cells, the activity of suppressing the invasive ability of tumor cells, or the activity of suppressing cancer recurrence.
- “nucleotide having a function equivalent to miR27b” means a substance that forms a hybrid with a target mRNA of miR27b under biological conditions (for example, 0.1 ⁇ M phosphate buffer (pH 7.0) at 25 ° C.). More specifically, it means a nucleotide that forms a hybrid with the target mRNA of miR27b under biological conditions (for example, 0.1 ⁇ M phosphate buffer (pH 7.0)) 25 ° C).
- Examples of the target mRNA of miR27b include RPN2, MDR1, and CD44.
- the “nucleotide having a function equivalent to miR27b” may be any nucleotide that can form a hybrid with at least one target mRNA of miR27b target mRNA and can suppress the function of the target mRNA.
- Tumor cells are usually mammalian (eg, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, monkey, human, preferably human) cells.
- Tumor types include breast cancer including breast and ductal cancer, lung cancer, pancreatic cancer, prostate cancer, osteosarcoma, esophageal cancer, liver cancer, stomach cancer, colon cancer, rectal cancer, Colon cancer, ureteral tumor, brain tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, renal cancer, bladder cancer, ovarian cancer, cervical cancer, thyroid cancer, testicular tumor, Kaposi sarcoma, maxilla
- solid cancers such as cancer, tongue cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, myoma, skin cancer, myeloma, leukemia and the like.
- Whether or not the nucleic acid has the activity of inhibiting cell growth of drug-resistant cancer is determined using a drug-resistant cancer cell line such as the MCF7-ADR cell described in Example 1 and the PC14-CDDP cell of Example 8. It can be confirmed by use. Whether or not the nucleic acid has an activity of inhibiting the invasive ability of tumor cells can be confirmed by, for example, the following assay. That is, after culturing 143B cells, which are human osteosarcoma cell lines having metastatic potential, in 1 ⁇ 10 6 cells / 6 cm dish overnight, 30 nM of nucleic acid is introduced by DharmaFECT transfection (manufactured by GE Healthcare Biosciences). The cells after 48 hours are subjected to cell invasion assay using CytoSelect TM 96-Well Cell Invasion Assay kit (manufactured by Cell Biolab), and the number of infiltrating cells after 20 hours is counted.
- a drug-resistant cancer cell line such as the MCF7-A
- nucleotide sequence of “nucleotide having a function equivalent to miR27b” used in the present invention is 70% or more, preferably 80% or more, more preferably 90% or more, and further preferably, the nucleotide sequence represented by SEQ ID NO: 1. Has an identity of 95% or more.
- Identity refers to an optimal alignment when two nucleotide sequences are aligned using mathematical algorithms known in the art (preferably the algorithm uses one or the other of the sequences for optimal alignment). The ratio of the same nucleotide residue to the total overlapping nucleotide residues in the case of introducing gaps into both).
- NCBI BLAST-2 National Center for Biotechnology Information Basic Local Alignment Search Tool
- nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 one or more nucleotides in the nucleotide sequence represented by SEQ ID NO: 1 have been deleted, substituted, inserted or added
- a sequence for example, (1) a nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by SEQ ID NO: 1 have been deleted, (2) A nucleotide sequence obtained by adding 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides to the nucleotide sequence represented by SEQ ID NO: 1, and (3) a nucleotide represented by SEQ ID NO: 1.
- the nucleotide sequence (in this case, the total number of mutated nucleotides is 1 to 6 (preferably 1 to 3, more preferably 1 or 2)).
- the nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 is preferably 15 or more consecutive nucleotides (preferably 17 or more nucleotides or more) included in the nucleotide sequence represented by SEQ ID NO: 1.
- the nucleic acid includes “miR27b” or “nucleotide having a function equivalent to miR27b”.
- the nucleic acid of the present invention may be modified so as to be resistant to various degrading enzymes.
- the modified form of the present invention includes various modifications including modifications of the sequence within the range of nucleotides having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1 and having the same function as miR27b. Modified products are included.
- modifications in the modified form include, for example, those in which the sugar chain part is modified (for example, 2'-O methylation), those in which the base part is modified, phosphate group or hydroxyl part is modified (For example, biotin, amino group, lower alkylamine group, acetyl group and the like), but not limited thereto.
- the nucleic acid itself may be modified. Further, for example, it may be a synthetic nucleic acid containing the same region as miR27b and a complementary region that is complementary to the sequence by 60% to less than 100%. Synthetic RNA molecules as described in WO 2006/627171 may also be used.
- the nucleic acid of the present invention may have an additional base at the 5 'or 3' end.
- the length of the additional base is usually 5 bases or less.
- the additional base may be DNA or RNA, but the use of DNA may improve the stability of the nucleic acid. Examples of such additional base sequences include ug-3 ', uu-3', tg-3 ', tt-3', ggg-3 ', guuu-3', gttt-3 ', ttttt-3 Examples include, but are not limited to, ', uuuuuu-3'.
- nucleic acid of the present invention include nucleic acids such as mature miR27b and precursors thereof.
- Another preferred embodiment of the nucleic acid of the present invention is to use a nucleic acid comprising a nucleotide having the same activity as that of the mature miRNA, such as miR27b mimic synthesized so as to mimic the endogenous mature miR27b. Can do.
- Commercially available products can also be used.
- Pre-miR TM miRNA precursor molecule manufactured by Life Technologies. Since Ambion has become Life Technologies by merger and acquisition as of September 2009, Ambion's products are referred to as Life Technologies in this specification. For example, it is described as “made by company”.
- the precursor of miR27b means a nucleic acid capable of producing mature miR27b in the cell as a result of intracellular processing or cleavage of a double-stranded nucleic acid.
- Examples of the precursor include miR27b pri-miRNA and pre-miRNA.
- pri-miRNA is a primary transcription product (single-stranded RNA) of a miRNA gene, and usually has a length of about several hundred to several thousand bases.
- Pre-miRNA is a single-stranded RNA having a hairpin structure generated by pri-miRNA undergoing intracellular processing, and usually has a length of 90 to 110 bases.
- the pri-miRNA and pre-miRNA of miR27b are known molecules, and are disclosed in, for example, the miRBase database prepared by Sanger Institute: http://microrna.sanger.ac.uk/.
- a suitable pre-miRNA of miR27b a single-stranded RNA consisting of a nucleotide sequence represented by the following SEQ ID NO: 2 (MI0000440) can be exemplified.
- a single-stranded nucleic acid in which, for example, a nucleotide sequence represented by SEQ ID NO: 1 (first sequence) and its complementary sequence (second sequence) are linked via a hairpin loop part A nucleic acid in which the first sequence has a shape of a double-stranded structure with the second sequence by taking a hairpin loop type structure is also a preferred embodiment of the nucleic acid of the present invention.
- the nucleic acid of the present invention is obtained by isolating from a mammalian cell (human cell or the like) using a known method, or by chemically synthesizing, or by using a gene recombination technique. be able to. It is also possible to use commercially available nucleic acids as appropriate. miR27b mimic is available, for example, from Life Technologies.
- the agent of the present invention can contain any carrier, for example, a pharmaceutically acceptable carrier, in addition to an effective amount of the nucleic acid of the present invention, and is applied as a pharmaceutical in the form of a pharmaceutical composition.
- Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolidone, dispersants such as surfactants, water, physiological Although diluents, such as salt solution, base wax, etc. are mentioned, it is not limited to them.
- excipients such as sucrose and starch
- binders such as cellulose and methylcellulose
- disintegrants such as starch and carboxymethylcellulose
- lubricants such as magnesium stearate and aerosil
- citric acid Fragrances such as menthol
- preservatives such as sodium benzoate and sodium bisulfite
- stabilizers
- the agent of the present invention can further contain a reagent for nucleic acid introduction.
- the nucleic acid introduction reagent include atelocollagen; liposome; nanoparticle; lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI) Cationic lipids such as can be used.
- the nucleic acid of the present invention can be efficiently delivered to the target tumor cells and efficiently incorporated into the cells.
- the agent of the present invention can be administered to mammals orally or parenterally, but the agent of the present invention is preferably administered parenterally.
- Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Further, a buffer solution, an antibacterial agent, an isotonic agent and the like may be contained. Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
- the preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
- the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
- a spray etc. can be mentioned.
- the content of the nucleic acid of the present invention in the pharmaceutical composition is, for example, about 0.1 to 100% by weight of the whole pharmaceutical composition.
- the dosage of the agent of the present invention varies depending on the purpose of administration, administration method, tumor type, size, and the situation of the subject of administration (sex, age, body weight, etc.).
- the amount of the nucleic acid of the present invention is preferably from 1 to 10 mol / kg and from 2 to 50 nmol / kg for systemic administration. It is desirable to administer such dose 1 to 10 times, more preferably 5 to 10 times.
- the agent of the present invention is a mammal (eg, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, so that the nucleic acid of the present invention, which is an active ingredient thereof, is delivered to tumor tissue (tumor cells). It is safely administered to monkeys and humans.
- the agent of the present invention Since the nucleic acid of the present invention has the activity of suppressing cell growth of drug-resistant cancer and the activity of suppressing MDR1 expression, the agent of the present invention is administered to patients with drug-resistant cancer, etc. Can treat drug-resistant cancer diseases.
- the nucleic acid of the present invention since the nucleic acid of the present invention has RPN2 expression inhibitory activity, administration of the agent of the present invention to tumor patients, patients after treatment of tumors having a risk of tumor metastasis, etc. Metastasis can be suppressed, and diseases caused by tumor metastasis can be treated or prevented.
- the nucleic acid of the present invention has the activity of changing cancer stem cells into non-cancer stem cells as described in the Examples.
- Cancer stem cells are resistant to common antitumor agents and are said to be deeply involved in tumor recurrence and metastasis (Hiroo Setoguchi et al. Protein Nucleic Acid Enzyme Vol.50 No.15 1999 (2005) , Keisuke Ieda et al. Cancer Molecular Targeted Therapy Vol.5 No.3 187 (2007)), if the agent of the present invention is administered to a tumor patient, the number of cancer stem cells in the tumor can be reduced. Can prevent or prevent recurrence and metastasis. Therefore, the agent of the present invention is extremely useful as a therapeutic agent for tumors.
- drug resistant cancer means a cancer resistant to an anticancer drug.
- Metalastasis suppression means that tumor cells reach a different site from the primary lesion and suppress the secondary generation of a tumor at the site.
- Cancer stem cells are cells that have both self-replicating ability and cancer-forming ability, and are cells that are resistant to anticancer drugs and radiation therapy and cause cancer recurrence.
- tumors to which the agent of the present invention can be applied include breast cancer, lung cancer, pancreatic cancer, prostate cancer, osteosarcoma, esophageal cancer, liver cancer, stomach cancer, colon cancer, rectal cancer, colon cancer, Ureteral tumor, brain tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, renal cancer, bladder cancer, ovarian cancer, cervical cancer, thyroid cancer, testicular tumor, Kaposi sarcoma, maxillary cancer, tongue Cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, muscle tumor, skin cancer, retinoblastoma and other solid cancer, myeloma, leukemia, malignant lymphoma, myeloma, malignant melanoma, Examples include hemangioma, polycythemia vera, neuroblastoma and the like.
- drug-resistant cancer metastatic cancer, and cancer at risk of cancer recurrence are preferable.
- the drug resistant cancer include the above-mentioned tumors and drug resistant cancers, preferably drug resistant breast cancer and drug resistant lung cancer, more preferably drug resistant breast cancer (ductal carcinoma). .
- metastatic cancer examples include breast cancer, lung cancer, pancreatic cancer, prostate cancer, renal cancer, multiple myeloma, thyroid cancer, adenocarcinoma, leukemia and lymphoma, blood cell malignancies; head and neck Cancer; gastrointestinal cancer including stomach cancer, colon cancer, colorectal cancer, liver cancer; malignant tumor of female reproductive tract including ovarian cancer, endometrial cancer, and cervical cancer; bladder Brain tumors including neuroblastoma; sarcomas, osteosarcomas; and metastatic cancers such as malignant melanoma or skin cancer including squamous cell carcinoma, preferably breast cancer or lung cancer metastasis Can be mentioned.
- the disease caused by tumor metastasis include metastatic cancer, respiratory failure due to tumor growth and cancerous pleurisy.
- Cancer that is at risk of cancer recurrence is a cancer that is at risk of cancer recurrence after cancer treatment or surgery.
- cancers that have a risk of cancer recurrence include cancers described above and cancers that have a risk of cancer recurrence, and preferably include breast cancer and lung cancer that have a risk of cancer recurrence. It is desirable to administer the agent of the present invention to a patient whose miR27b expression level is decreased in the tumor tissue.
- the present invention provides a tumor therapeutic agent comprising the above-described nucleic acid of the present invention and an antitumor agent in combination.
- the antitumor agent that can be used in the concomitant drug of the present invention is not particularly limited, but preferably has an activity of suppressing the growth of the tumor itself.
- antitumor agents include not only microtubule agonists such as taxanes, but also antimetabolites, DNA alkylating agents, DNA binding agents (platinum preparations), anticancer antibiotics, and the like.
- amrubicin hydrochloride irinotecan hydrochloride, ifosfamide, etoposidrastat, gefitinib, cyclophosphamide, cisplatin, trastuzumab, fluorouracil, mitomycin C, imatinib mesylate, methotrexate, rituxan and adriamycin.
- the administration timing of the nucleic acid of the present invention and the antitumor agent is not limited, and the nucleic acid of the present invention and the antitumor agent are administered simultaneously to the administration subject. Alternatively, administration may be performed with a time difference.
- the administration target preferably include drug-resistant cancer patients, metastatic cancer patients, cancer recurrence patients, and patients at risk of cancer recurrence. It is desirable to administer the agent of the present invention to patients whose miR27b expression level is decreased in tumor tissues.
- the dosage of the nucleic acid of the present invention is not particularly limited as long as it can achieve prevention / treatment of the applicable disease, and can be administered within the dosage range described in the above section (1. Agent of the present invention).
- the dose of the antitumor agent can be determined according to the dose adopted when the antitumor agent is administered as a single agent in the clinic.
- the administration mode of the nucleic acid of the present invention and the antitumor agent is not particularly limited as long as the nucleic acid of the present invention and the antitumor agent are combined at the time of administration.
- Examples of such administration forms include (1) administration of a single preparation obtained by simultaneously formulating the nucleic acid of the present invention and an antitumor agent, and (2) separating the nucleic acid of the present invention and the antitumor agent separately.
- An agent comprising a combination of the nucleic acid of the present invention and an antitumor agent can be formulated by a conventional method according to the description in the above section (1. Agent of the present invention).
- the dosage form of the antitumor agent is selected according to the dosage form adopted when the antitumor agent is administered as a single agent in clinical practice. I can do it.
- the nucleic acid-containing preparation of the present invention and the anti-tumor agent-containing preparation may be administered at the same time.
- the preparation containing the antitumor agent may be administered first, followed by the preparation containing the nucleic acid of the present invention, or the preparation containing the nucleic acid of the present invention may be administered first, and then the antitumor agent May be administered.
- the time difference varies depending on the active ingredient to be administered, dosage form, and administration method. For example, when a preparation containing an antitumor agent is administered first, a preparation containing an antitumor agent was administered.
- Examples thereof include a method of administering a preparation containing the nucleic acid of the present invention within 1 minute to 3 days, preferably within 10 minutes to 1 day, more preferably within 15 minutes to 1 hour.
- a preparation containing the nucleic acid of the present invention is administered first, after administration of the preparation containing the nucleic acid of the present invention, 1 minute to 1 day, preferably 10 minutes to 6 hours, more preferably 15 minutes to
- the method of administering the formulation containing an antitumor agent within 1 hour is mentioned.
- the concomitant drug of the present invention can be applied to tumors described in detail as “tumor to which the agent of the present invention can be applied” in the above section (1. Agent of the present invention).
- the concomitant drug of the present invention is preferably applied to drug-resistant cancer, metastatic cancer, and cancer at risk of cancer recurrence.
- the present invention measures whether miR27b expression level in a tumor and determines whether it is a drug-resistant cancer based on a negative correlation between the expression level and drug resistance A method for determining drug-resistant cancer.
- the expression level of miR27b in a tumor tissue or a tumor cell of a tumor removed from a measurement target patient is measured.
- tumors to which the determination method of the present invention can be applied include tumors detailed in the above section (1. Agent of the present invention) as “Tumors to which the agent of the present invention can be applied”. I can do it.
- the determination method of the present invention is preferably applicable to lung cancer and breast cancer.
- the miR27b whose expression level is measured in the determination method of the present invention includes mature type, pri-miRNA, and pre-miRNA.
- the expression level of miR27b can be measured by a method known per se using a nucleic acid probe that can specifically detect the miRNA.
- the measuring method include RT-PCR, Northern blotting, in situ hybridization, nucleic acid array and the like.
- it can be measured by a commercially available kit (for example, TaqMan (registered trademark) MicroRNA Cells-to-CT TM Kit).
- the nucleic acid probe capable of specifically detecting miR27b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the full length of the nucleotide sequence represented by SEQ ID NO: 1. Mention may be made of polynucleotides comprising a continuous nucleotide sequence or its complementary sequence.
- the nucleic acid probe may contain an additional sequence (a nucleotide sequence that is not complementary to the polynucleotide to be detected) as long as specific detection is not hindered.
- the nucleic acid probe may be an appropriate labeling agent such as a radioisotope (eg, 125 I, 131 I, 3 H, 14 C, etc.), an enzyme (eg, ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase, peroxidase).
- fluorescent substances eg, fluorescamine, fluorescein isothiocyanate, etc.
- luminescent substances eg, luminol, luminol derivatives, luciferin, lucigenin, etc.
- a quencher quenching substance
- the fluorescence is detected by separating the fluorescent substance and the quencher during the detection reaction.
- the nucleic acid probe may be any of DNA, RNA, and chimeric nucleic acid, and may be single-stranded or double-stranded.
- the nucleic acid probe or primer can be synthesized according to a conventional method using an automatic DNA / RNA synthesizer based on the information of the nucleotide sequence represented by SEQ ID NO: 1 or 2, for example.
- the miR27b expression level is lower in drug-resistant cancer cells than in cancer cells that are not drug-resistant. The above determination is made based on a negative correlation between miR27b expression level and drug resistance.
- tumors are removed from cancer patients who are not drug-resistant cancer (negative control) and patients who are drug-resistant cancer (positive control) (or tumor cells are obtained), and the expression level of miR27b in the target patient is positive. Compared to that of control and negative control.
- a correlation diagram between the expression level of miR27b in a tumor and a drug resistant cancer may be prepared in advance, and the expression level of miR27b in a tumor (or tumor cell) removed from the subject patient may be compared with that correlation diagram. Good. The comparison of expression levels is preferably performed based on the presence or absence of a significant difference.
- the therapeutic target of the therapeutic agent of the present invention is preferably a patient with drug-resistant cancer in which the expression level of miR27b in the tumor tissue (or tumor cell) is decreased
- the method of the present invention is useful for selecting patients.
- the present invention also provides an agent for determining drug-resistant cancer (hereinafter referred to as “agent (II) of the present invention”), which comprises a nucleic acid probe capable of specifically detecting the above-described miR27b. Is.
- agent (II) of the present invention may be a kit for determining tumor drug resistance.
- the nucleic acid probe is usually in the form of an aqueous solution dissolved at an appropriate concentration in water or an appropriate buffer (eg, TE buffer, PBS, etc.), or the nucleic acid probe is immobilized on a solid support.
- the nucleic acid array is included in the agent (II) of the present invention.
- the agent (II) of the present invention may further contain other components necessary for the implementation of the method as a component, depending on the measurement method of miR27b.
- the agent (II) of the present invention can further contain a blotting buffer, a labeling reagent, a blotting membrane and the like.
- the agent (II) of the present invention can further contain a labeling reagent, a chromogenic substrate and the like.
- the present invention determines whether or not it is a cancer stem cell based on measuring the expression level of miR27b in a tumor cell and negative correlation between the expression level and the cancer stem cell
- the present invention provides a method for determining cancer stem cells.
- the types of tumors to which the determination method of the present invention in which the expression level or concentration of miR27b in a tumor tissue or tumor cell of a tumor removed from a measurement target patient can be applied In the above section (1. Agent of the present invention), the tumors described in detail as “Tumors to which the agent of the present invention is applicable” can be mentioned.
- the determination method of the present invention is preferably a cancer in which cancer stem cells are characterized by CD44 expression (eg, breast cancer, prostate cancer, pancreatic cancer, head and neck squamous cell cancer, lung cancer, etc.), more preferably breast cancer. Applicable for lung cancer.
- the miR27b whose expression level or concentration is measured in the determination method of the present invention includes mature type, pri-miRNA and pre-miRNA, but preferably the sum of the expression levels of all these types or mature type expression. Level, more preferably the mature expression level is measured.
- the expression level and concentration of miR27b can be measured by a method known per se using a nucleic acid probe that can specifically detect the miRNA.
- the measuring method include RT-PCR, Northern blotting, in situ hybridization, nucleic acid array and the like.
- it can be measured by a commercially available kit (for example, TaqMan (registered trademark) MicroRNA Cells-to-CT TM Kit).
- the nucleic acid probe capable of specifically detecting miR27b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the full length of the nucleotide sequence represented by SEQ ID NO: 1. Mention may be made of polynucleotides comprising a continuous nucleotide sequence or its complementary sequence.
- the nucleic acid probe may contain an additional sequence (a nucleotide sequence that is not complementary to the polynucleotide to be detected) as long as specific detection is not hindered.
- the nucleic acid probe may be an appropriate labeling agent such as a radioisotope (eg, 125 I, 131 I, 3 H, 14 C, etc.), an enzyme (eg, ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase, peroxidase).
- fluorescent substances eg, fluorescamine, fluorescein isothiocyanate, etc.
- luminescent substances eg, luminol, luminol derivatives, luciferin, lucigenin, etc.
- a quencher quenching substance
- the fluorescence is detected by separating the fluorescent substance and the quencher during the detection reaction.
- the nucleic acid probe may be any of DNA, RNA, and chimeric nucleic acid, and may be single-stranded or double-stranded.
- the nucleic acid probe or primer can be synthesized according to a conventional method using an automatic DNA / RNA synthesizer based on the information of the nucleotide sequence represented by SEQ ID NO: 1 or 2, for example.
- the cell is a cancer stem cell.
- the expression level of miR27b in cancer stem cells is low.
- the above determination is made based on such a negative correlation between the expression level or concentration of miR27b and tumor cancer stem cells. From the comparison result of the miR27b expression level or concentration, when the expression level or concentration of the measurement target miR27b is relatively low, it can be determined to be a cancer stem cell.
- the presence or absence of cancer stem cells in a patient's tumor after anti-tumor treatment is considered to have a positive correlation with the risk of cancer recurrence and the risk of tumor metastasis.
- the prognosis can be predicted.
- the present invention also provides an agent (referred to as the agent (III) of the present invention) for determining cancer stem cells, comprising a nucleic acid probe capable of specifically detecting the above-described miR27b.
- the agent (III) of the present invention may be a kit for determining the risk of cancer recurrence or the prognosis of cancer patients. By using the agent (III) of the present invention, the prognosis of a cancer patient can be easily determined by the above-described determination method.
- the nucleic acid probe is usually in the form of an aqueous solution dissolved at an appropriate concentration in water or an appropriate buffer (eg, TE buffer, PBS, etc.), or the nucleic acid probe is immobilized on a solid support.
- the nucleic acid array is included in the agent (III) of the present invention.
- the agent (III) of the present invention may further contain other components necessary for carrying out the method according to the measurement method of miR27b.
- the agent (III) of the present invention can further contain a blotting buffer, a labeling reagent, a blotting membrane and the like.
- the agent (III) of the present invention can further contain a labeling reagent, a chromogenic substrate and the like.
- the present invention also determines whether or not the test substance enhances the expression of miR27b.
- a method of searching for a substance that inhibits the growth of drug-resistant cancer including a method of evaluation, a method of searching for a substance that can inhibit tumor metastasis or tumor cell invasion ability, and changing a cancer stem cell to a non-cancer stem cell
- the substance that upregulates the expression of miR27b is a substance that can suppress the growth of drug-resistant cancer, a substance that can inhibit tumor metastasis or tumor cell invasion ability, or a cancer stem cell function Selected as an inhibitor.
- test substance used in the search method of the present invention may be any known compound and novel compound, for example, using nucleic acids, carbohydrates, lipids, proteins, peptides, organic low molecular weight compounds, combinatorial chemistry techniques.
- the prepared compound library, random peptide library, natural components derived from microorganisms, animals and plants, marine organisms, and the like can be mentioned.
- the search method of the present invention includes the following steps: (1) contacting a test substance with a cell capable of measuring the expression of miR27b; (2) measuring the expression level of miR27b in cells contacted with the test substance, and comparing the expression level with the expression level of miR27b in control cells not contacted with the test substance; and (3) (2) above Based on the comparison results, a test substance that upregulates the expression level of miR27b is selected as a substance that can inhibit tumor metastasis or tumor cell invasion ability.
- miR27b whose expression level is measured includes mature type, pri-miRNA and pre-miRNA.
- the expression level of all these types or the expression level of mature type is included. More preferably, the expression level of the mature form is measured.
- a cell capable of measuring expression refers to a cell capable of evaluating the expression level of the miRNA to be measured. Examples of the cells include cells that can naturally express the miRNA to be measured.
- the measurement target that is, a cell capable of naturally expressing miR27b is not particularly limited as long as it can potentially express miR27b.
- the cell include primary cultured cells of mammals (eg, human, mouse, etc.), the primary Cell lines derived from cultured cells can be used.
- Examples of cells that can naturally express miR27b include, for example, tumor cells (breast cancer cells and lung cancer cells) that are described in detail as “tumors to which the agent of the present invention can be applied” in the above section (1. Agent of the present invention). Can be mentioned.
- Breast cancer cells and lung cancer cells are preferred, and drug resistant breast cancer cells and drug resistant lung cancer cells are more preferred.
- the contact between the test substance and cells capable of measuring the expression of miR27b is performed in a culture medium.
- the culture medium is appropriately selected depending on the cells capable of measuring the expression of miR27b.
- a minimum essential medium (MEM) containing about 5 to 20% fetal calf serum, Dulbecco's modified Eagle medium (DMEM), etc. is there.
- the culture conditions are appropriately determined in the same manner.
- the pH of the medium is about 6 to about 8
- the culture temperature is usually about 30 to about 40 ° C.
- the culture time is about 12 to about 72 hours.
- the measurement of the expression level of miR27b can be performed according to the method described in the section (3. Method for determining drug-resistant cancer).
- the comparison of expression levels can be preferably performed based on the presence or absence of a significant difference.
- the expression level of miR27b in the control cells not contacted with the test substance is the expression level measured at the same time, even if the expression level was measured in advance compared to the measurement level of miR27b expression in the cells contacted with the test substance.
- it may be an amount, it is preferably an expression amount measured simultaneously from the viewpoint of the accuracy and reproducibility of the experiment.
- the substance that up-regulates the expression level of miR27b is a substance that can suppress the growth of drug-resistant cancer cells, a substance that can inhibit tumor metastasis or tumor cell invasion ability, or Selected as a stem cell therapy.
- the compound obtained by the search method of the present invention is useful as a candidate substance for the development of a new tumor therapeutic agent.
- nucleotide sequence is described using the RNA sequence for the sake of convenience, but this does not mean that the nucleic acid identified by the SEQ ID NO represents only RNA, and U It should be understood that (uracil) is replaced with T (thymine) to indicate the nucleotide sequence of DNA or chimeric nucleic acid.
- MCF7-ADR cells MCF7 cells and MCF7-ADR cells were cultured in a medium containing 10% fetal bovine serum (FBS) in DMEM medium.
- MicroRNA was extracted using mirVana RNA Isolation kit (Life Technologies) according to the protocol attached to the kit.
- reverse transcription reaction was performed using the obtained microRNA as a template using TaqMan MicroRNA Reverse Transcription kit (manufactured by Life Technologies), miR27b TaqMan MicroRNA Assay, and U6 TaqMan MicroRNA Assay (manufactured by Life Technologies).
- Example 1 Suppressive activity of miR27b on RPN2 expression
- Taq polymerase manufactured by Life Technologies
- PCR is first treated at 95 ° C for 9 minutes, then repeated 25 heat cycles consisting of 95 ° C for 30 seconds, 62 ° C for 30 seconds, 72 ° C for 1 minute, and finally 72 ° C for 5 minutes It was done in After PCR, a PCR product showing about 281 bp was recovered by agarose electrophoresis. The recovered PCR product was then subcloned into the XbaI site of pGL-3 vector (Promega), and E. coli DH5 ⁇ competent cell (TOYOBO) was transformed with the plasmid.
- Human-derived RPN2 is isolated and purified from cultured cells obtained by culturing transformed cells in 100 mL of LB medium containing 50 ⁇ g / mL kanamycin using the QIAGEN Plasmid Maxi kit (QIAGEN).
- QIAGEN Plasmid Maxi kit QIAGEN Plasmid Maxi kit (QIAGEN).
- a plasmid FLuc-hRPN2-3′UTR in which the 3′UTR region of the gene was ligated to the 3 ′ side of the Firefly luciferase gene was obtained.
- FLuc-hRPN2-3'UTR 300 ng, Renilla luciferase expression vector 50 ng, and 2 ⁇ M Pre-miR TM miRNA27b Precursor Molecule (Life Technologies) or Pre-miR TM miRNA Precursor Molecules-Negative Control (NC1) 1 ⁇ l of Life Technologies was transfected into the cells described above using Lipofectamine 2000 reagent (Invitrogen). The cells were then cultured for 1 day at 37 ° C. in the presence of 5% CO 2, and then the expression levels of firefly and Renilla luciferase were measured using the Dual-Glo Luciferase Assay System (Promega). Measured by Elmer Co.).
- pre-miR TM miRNA27b Precursor Molecule (manufactured by Life Technologies) transfected cells Pre-miR TM miRNA Precursor Molecules-Negative Control (NC1) (manufactured by Life Technologies) (Fig. 2). That is, it was shown that RPN2 expression is suppressed by miR27b.
- Example 2 MDR1 Expression Inhibitory Activity of miR27b
- PCR is first treated at 95 ° C for 9 minutes, then repeated 25 heat cycles consisting of 95 ° C for 30 seconds, 62 ° C for 30 seconds, 72 ° C for 1 minute, and finally 72 ° C for 5 minutes It was done in After PCR, a PCR product showing about 575 bp was collected by agarose electrophoresis. Next, the recovered PCR product was subcloned into the XbaI site of pGL3 vector (Promega), and then E. coli DH5 ⁇ competent cell (TOYOBO) was transformed with the plasmid.
- Human-derived RPN2 is isolated and purified from cultured cells obtained by culturing transformed cells in 100 mL of LB medium containing 50 ⁇ g / mL kanamycin using the QIAGEN Plasmid Maxi kit (QIAGEN).
- QIAGEN Plasmid Maxi kit QIAGEN Plasmid Maxi kit (QIAGEN).
- a plasmid FLuc-hMDR1-3′UTR in which the 3′UTR region of the gene was linked to the 3 ′ side of the Firefly luciferase gene was obtained.
- FLuc-hRPN2-3'UTR 300 ng, Renilla luciferase expression vector 50 ng, and 2 ⁇ M Pre-miR TM miRNA27b Precursor Molecule (Life Technologies) or Pre-miR TM miRNA Precursor Molecules-Negative Control (NC1) 1 ⁇ l of Life Technologies was transfected into the cells described above using Lipofectamine 2000 reagent (Invitrogen). The cells were then cultured for 1 day at 37 ° C. in the presence of 5% CO 2, and then the expression levels of firefly and Renilla luciferase were measured using the Dual-Glo Luciferase Assay System (Promega). Measured by Elmer Co.).
- Pre-miR TM miRNA27b Precursor Molecule (manufactured by Life Technologies) introduced luciferase activity into the control system, Pre-miR TM miRNA Precursor Molecules-Negative Control (NC1) (manufactured by Life Technologies). There was a decrease compared to cells ( Figure 3). That is, it was shown that miR27b suppresses MDR1 expression.
- Example 3 Expression of miR27b in Breast Cancer Stem Cells 1 ⁇ 10 6 MCF7 cells and 10 ⁇ L of CD24-PE antibody (BD Bioscience) were incubated at 4 ° C. for 30 minutes. After washing the cells twice with PBS, the cells were suspended in 500 ⁇ L of PBS containing 5 ⁇ L of 0.1 mg / mL Propidium iodide. The obtained cell suspension was subjected to Cell sorter (manufactured by Bay Bioscience) and fractionated into a CD24 positive cell group (cancer cell group) and a CD24 negative cell group (cancer stem cell group).
- Cell sorter manufactured by Bay Bioscience
- Example 4 CD44 expression inhibitory activity of miR27b
- PCR is first treated at 95 ° C for 9 minutes, then repeated 25 heat cycles consisting of 95 ° C for 30 seconds, 62 ° C for 30 seconds, 72 ° C for 1 minute, and finally 72 ° C for 5 minutes It was done in After PCR, a PCR product showing about 840 bp was collected by agarose electrophoresis. The recovered PCR product was then subcloned into the XbaI site of pGL-3 vector (Promega), and E. coli DH5 ⁇ competent cell (TOYOBO) was transformed with the plasmid.
- Human-derived RPN2 is isolated and purified from cultured cells obtained by culturing transformed cells in 100 mL of LB medium containing 50 ⁇ g / mL kanamycin using the QIAGEN Plasmid Maxi kit (QIAGEN).
- QIAGEN Plasmid Maxi kit QIAGEN Plasmid Maxi kit (QIAGEN).
- a plasmid FLuc-hCD44-3′UTR was obtained in which the 3′UTR region of the gene was linked to the 3 ′ side of the Firefly luciferase gene.
- Example 5 Cell Proliferation Activity of MCF7-ADR-luc Cells Constantly Expressed with miR27b
- miR27b Expression Vector 4 ⁇ l of 10 nM synthetic miR27b consisting of the nucleotide sequence shown in SEQ ID NO: 12 and pcDNA6.2-GW / EmGFP- After mixing 10 ng of miR (Invitrogen), a ligation reaction was performed at room temperature for 5 minutes using a ligation kit (Invitrogen). After the reaction, E. coli TOP10 transformed cells were obtained using 2 ⁇ L of the ligation reaction solution and E. coli TOP10 strain competent cell (manufactured by Invitrogen).
- the miR27b expression vector is isolated and purified from cultured cells obtained by culturing transformed cells in 100 mL of LB medium containing 50 ⁇ g / mL spectinomycin using the QIAGEN Plasmid Maxi kit. PcDNA6.2-GW / EmGFP-miR-miR27b was obtained.
- Example 6 Cancer stem cell abundance ratio of miR27b constitutively expressed MCF7-ADR-luc cells 1 ⁇ 10 6 ⁇ L of CD24-PE antibody (BD Biosciences) each with 6 miR27b constitutively expressed MCF7-ADR-luc cells and control cells And 4 minutes at 4 ° C. After washing the cells twice with PBS, the cells were suspended in 500 ⁇ L of PBS containing 5 ⁇ L of 0.1 mg / mL Propidium iodide. The obtained cell suspension was applied to a Cell sorter (manufactured by Bay Bioscience), and a cell group positive for both GFP and CD24 (cancer cell group) and a cell group positive for GFP and CD24 (cancer stem cell group). When the number of cells was measured, the proportion of cancer stem cells in miR27b constitutively expressed MCF7-ADR-luc cells decreased compared to control cells, whereas the proportion of non-cancer stem cells increased. ( Figure 7).
- Example 7 Expression of miR27b in drug-resistant PC14 cells (PC14 cells) Using a medium in which 10% fetal bovine serum (FBS) is added to DMEM medium with PC14 cells, which are lung cancer cell lines, and PC14-CDDP cells, which are drug-resistant lung cancer cells
- FBS fetal bovine serum
- PC14-CDDP cells which are drug-resistant lung cancer cells
- the microRNA was extracted from both cell lines using mirVana RNA Isolation kit (Life Technologies) according to the protocol attached to the kit.
- reverse transcription reaction was performed using the obtained microRNA as a template using TaqMan MicroRNA Reverse Transcription kit (Life Technologies), miR27b TaqMan MicroRNA Assay, and U6 TaqMan MicroRNA Assay (Life Technologies).
- Example 8 Tumor-forming ability of miR27b constitutively expressed MCF7-ADR-luc cells
- the same number of miR27b constitutively expressed MCF7-ADR-luc cells and control cells are transplanted in the vicinity of the mammary gland of nude mice. Every day after transplantation, the amount of luciferase luminescence was measured by in vivo imaging, indicating that the luminescence of miR27b constitutively expressed MCF7-ADR-luc cells decreased compared to control cells, despite the same number of cells transplanted. . That is, it can be seen that tumorigenicity is lowered by forced expression of miR27b.
- the therapeutic agent for tumors of the present invention is useful for the treatment and prevention of diseases caused by drug-resistant cancer, cancer recurrence or tumor metastasis.
- Drug-resistant cancer and cancer stem cells can be determined by the method of the present invention, an agent for determining drug-resistant cancer and cancer stem cells, and a substance having an action of suppressing the growth of drug resistance, A screening method for a substance having an action of inhibiting tumor metastasis can be provided.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
また、本発明者らは、がん細胞にmiR27bを導入することによりRPN2の発現が抑制されることを新たに見出した。RPN2については、RPN2発現を抑制すればがん転移が抑制されることが知られている(Nat. Med. 2008 Sep; 14(9): 939-48)。
さらに、がん幹細胞は、一般的な抗腫瘍剤に抵抗性があり、腫瘍の再発や転移に深く関与しているといわれているが、このがん幹細胞においてmiR27bの発現量が低下していることが判明し、乳がん幹細胞にpre-miR27bを導入するとCD44発現細胞が抑制され、がん幹細胞の割合が減少することを新たに見出した。
本発明者らは、これらの知見により、(1)miR27bは薬剤耐性がんの治療に有用である、(2)miR27bはRPN2の発現を抑制することによりがん転移を抑制することができる、(3)miR27bはがん幹細胞分化療法に有用である、(4)miR27bの発現を指標に薬剤耐性がんやがん幹細胞を判定することができる、ことを見出して本発明を完成させた。
[1]miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸を含む、腫瘍の治療剤。
[2]核酸が一本鎖または二本鎖である、[1]に記載の治療剤。
[3]miR27bが配列番号1で表されるヌクレオチド配列からなるヌクレオチドである、[1]に記載の治療剤。
[4]核酸が配列番号1で表されるヌクレオチド配列またはその部分配列からなるRNA、或いはその修飾体である、[1]に記載の治療剤。
[5]核酸が配列番号1で表されるヌクレオチド配列からなるRNAまたはその修飾体である、[1]に記載の治療剤。
[6]miR27bを含む核酸が、miR27bおよびその前駆体からなる群から選ばれる少なくとも一種の核酸である、[1]に記載の治療剤。
[7]前駆体が、miR27bのpri-miRNAまたはpre-miRNAである、[6]に記載の治療剤。
[8]腫瘍が薬剤耐性がんである、[1]に記載の治療剤。
[9]腫瘍が薬剤耐性乳がんまたは薬剤耐性肺がんである、[8]に記載の治療剤。
[10]腫瘍の転移を抑制または予防するための、[1]に記載の治療剤。
[11]がん再発を抑制または予防するための、[1]に記載の治療剤。
[12]がんが乳がんまたは肺がんである、[11]に記載の治療剤。
[13](A) miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸と、
(B) 抗腫瘍剤
とを併用してなる腫瘍の治療剤。
[14]腫瘍が薬剤耐性がんである、[13]に記載の治療剤。
[15]腫瘍が薬剤耐性乳がんまたは薬剤耐性肺がんである、[13]に記載の治療剤。
[16]腫瘍におけるmiR27bの発現レベルもしくは濃度を測定すること、および該発現レベルもしくは該濃度と薬剤耐性との間の負の相関に基づき、薬剤耐性がんを判定する方法。
[17]腫瘍におけるmiR27bの発現レベルを測定することにより、がん幹細胞を判定する方法。
[18]がん幹細胞が乳がん幹細胞または肺がん幹細胞である、[17]記載の方法。
[19]腫瘍におけるmiR27bの発現レベルもしくは濃度を測定し、がん幹細胞の有無を判定することにより、がん治療の予後を判定する方法。
[20]がん幹細胞が乳がん幹細胞または肺がん幹細胞である、[19]記載の方法。
[21]miR27bを特異的に検出し得る核酸プローブを含む、薬剤耐性がんを判定するための剤。
[22]miR27bを特異的に検出し得る核酸プローブを含む、がん幹細胞を判定するための剤。
[23]がん幹細胞が乳がん幹細胞または肺がん幹細胞である、[22]記載の剤。
[24]以下の工程を含む、薬剤耐性がんの増殖を抑制し得る物質を探索する方法:
(1)被検物質とmiR27bの発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR27bの発現量を測定し、該発現量を被検物質を接触させない対照細胞におけるmiR27bの発現量と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR27bの発現量を上昇制御する被検物質を、薬剤耐性がんの増殖を阻害し得る物質として選択すること。
[25]以下の工程を含む、腫瘍の転移または腫瘍細胞の浸潤能を阻害し得る物質を探索する方法:
(1)被検物質とmiR27bの発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR27bの発現量を測定し、該発現量を被検物質を接触させない対照細胞におけるmiR27bの発現量と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR27bの発現量を上昇制御する被検物質を、腫瘍の転移または腫瘍細胞の浸潤能を阻害し得る物質として選択すること。
[26]哺乳動物に対して、有効量のmiR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸を投与することを含む、該哺乳動物における腫瘍を治療する方法。
[27]腫瘍が薬剤耐性がんである、[26]に記載の方法。
[28]腫瘍が薬剤耐性乳がんまたは薬剤耐性肺がんである、[26]に記載の方法。
[29]哺乳動物に対して、有効量のmiR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸を投与することを含む、該哺乳動物における腫瘍の転移を抑制または予防する方法。
[30]哺乳動物に対して、有効量のmiR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸を投与することを含む、該哺乳動物におけるがん再発を抑制または予防する方法。
[31]がんが乳がんまたは肺がんである、[30]に記載の方法。
[32]哺乳動物に対して、有効量の
(A) miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸と、
(B) 抗腫瘍剤
を投与することを含む、該哺乳動物における腫瘍の治療方法。
[33]腫瘍が薬剤耐性がんである、[32]に記載の方法。
[34]腫瘍が薬剤耐性乳がんまたは薬剤耐性肺がんである、[32]に記載の方法。
[35]哺乳動物に対して、有効量の
(A) miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸と、
(B) 抗腫瘍剤
を投与することを含む、該哺乳動物における腫瘍の転移を抑制または予防する方法。
[36]哺乳動物に対して、有効量の
(A) miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸と、
(B) 抗腫瘍剤
を投与することを含む、該哺乳動物におけるがん再発を抑制または予防する方法。
[37]がんが乳がんまたは肺がんである、[36]に記載の方法。
また本発明により、薬剤耐性がんを判定する方法、がん幹細胞を判定する方法、がん治療の予後を判定する方法、薬剤耐性がんまたはがん幹細胞を判定するための剤、薬剤耐性がんの増殖を抑制する作用を有する物質のスクリーニング方法、および腫瘍の転移を阻害する作用を有する物質のスクリーニング方法等も提供することができる。
本発明者らは、今回このmiR27bが、(1)薬剤耐性がん細胞の増殖を抑制する機能を有すること(実施例参照、後述)、(2)RPN2発現抑制活性を有するので(実施例参照、後述)、がん細胞の転移を抑制する機能を有すること、(3)がん幹細胞分化療法に有効であるので(実施例参照、後述)、がん再発を抑制または予防する機能を有すること、を見出し、miR27bが腫瘍治療剤の有効成分として利用可能であることを見出した。
即ち、本発明は、miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸を含む剤を提供するものである。
すなわち、本発明の剤は、薬剤耐性がんの治療剤乃至細胞増殖抑制剤、腫瘍の転移の抑制または予防剤、およびがん再発を抑制または予防する剤として有用である。
即ち、転移能を有するヒト骨肉腫細胞株である143B細胞を1x106細胞/6cm dishで終夜培養後、DharmaFECT transfection(GEヘルスケアバイオサイエンス株式会社製)によって核酸を30nM導入する。48時間後の細胞を用いてCytoSelectTM 96-Well Cell Invasion Assay kit(Cell Biolab社製)により、細胞浸潤アッセイを行い、20時間後の浸潤細胞数を計測する。
また、核酸自体を修飾してもよい。また、例えば、miR27bと同一の領域と、その配列と60%~100%未満相補的である相補領域とを含む合成核酸であってもよい。WO 2006/627171に記載のような合成RNA分子としてもよい。
miR27bのpri-miRNAやpre-miRNAは公知の分子であり、例えばサンガー研究所が作成しているmiRBaseデータベース:http://microrna.sanger.ac.uk/等に開示されている。miR27bの好適なpre-miRNAとしては、下記の配列番号2(MI0000440)で表されるヌクレオチド配列からなる1本鎖RNAを挙げることが出来る。
非経口的な投与に好適な別の製剤としては、噴霧剤等を挙げることが出来る。
また、本発明の核酸は、RPN2発現抑制活性を有するので、本発明の剤を、腫瘍の患者や、腫瘍の転移リスクを有する腫瘍の治療後の患者等に対して投与することにより、腫瘍の転移を抑制し、腫瘍の転移に起因する疾患を治療または予防することが出来る。
さらに、本発明の核酸は、実施例に記載のように、がん幹細胞を非がん幹細胞に変える活性を有する。がん幹細胞は、一般的な抗腫瘍剤に抵抗性があり、腫瘍の再発や転移に深く関与しているといわれているため(瀬戸口啓夫ら 蛋白質核酸酵素 Vol.50 No.15 1999(2005)、家田敬輔ら がん分子標的治療 Vol.5 No.3 187(2007))、本発明の剤を腫瘍の患者に対して投与すれば、腫瘍におけるがん幹細胞数を減少させることができ、がん再発や転移を抑制または予防することが出来る。
従って、本発明の剤は、腫瘍の治療剤として極めて有用である。
「転移抑制」とは、腫瘍細胞が原発巣から異なる部位へ到達し、該部位において腫瘍を二次的に生じることを抑制することを意味する。
「がん幹細胞」とは、自己複製能とがん形成能を併せもつ細胞で、抗がん剤・放射線療法に耐性でがん再発の原因細胞を意味する。
薬剤耐性がんとしては、例えば、上述の腫瘍で且つ薬剤耐性のがんが例示でき、好ましくは薬剤耐性乳がんや薬剤耐性肺がん、より好ましくは薬剤耐性乳腺がん(乳管がん)が挙げられる。
また、腫瘍の転移に起因する疾患としては、例えば、転移性がん、腫瘍の増大やがん性胸膜炎による呼吸不全等が挙げられる。
本発明の剤は、腫瘍組織においてmiR27b発現量が減少している患者に投与するのが望ましい。
本発明の核酸と抗腫瘍剤とを併用することによって、腫瘍そのものの増殖を抑制するとともに、薬剤耐性がんの増殖抑制、腫瘍の転移抑制、およびがん幹細胞数が減少する効果が得られるため、根治的に腫瘍を治療することができる。従って、本発明は、上述の本発明の核酸と抗腫瘍剤とを併用してなる腫瘍治療剤を提供するものである。
投与対象としては、好ましくは薬剤耐性がん患者、転移性がん患者、がん再発患者、がん再発リスクのある患者を挙げることができる。
本発明の剤は腫瘍組織においてmiR27b発現量が減少している患者に投与することが望ましい。
本発明の併用剤は、上記(1.本発明の剤)の項において「本発明の剤が適用できる腫瘍」として詳述されている腫瘍に適用することができる。本発明の併用剤は、具体的には、薬剤耐性がん、転移性がん、がん再発のリスクがあるがんに適用するのが好ましい。
本発明は、腫瘍におけるmiR27bの発現レベルを測定すること、および該発現レベルと薬剤耐性との間の負の相関に基づき、薬剤耐性がんであるかどうかについて判定することを含む、薬剤耐性がんを判定する方法を提供するものである。
また、核酸プローブは、適当な標識剤、例えば、放射性同位元素(例:125I、131I、3H、14C等)、酵素(例:β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素等)、蛍光物質(例:フルオレスカミン、フルオレッセンイソチオシアネート等)、発光物質(例:ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニン等)などで標識されていてもよい。あるいは、蛍光物質(例:FAM、VIC等)の近傍に該蛍光物質の発する蛍光エネルギーを吸収するクエンチャー(消光物質)がさらに結合されていてもよい。かかる実施態様においては、検出反応の際に蛍光物質とクエンチャーとが分離して蛍光が検出される。
そして、miR27bの発現レベルの比較結果より、測定対象のmiR27bの発現レベルが相対的に低い場合には、腫瘍が薬剤耐性がんである可能性が相対的に高いと判定することができる。逆に、測定対象のmiR27bの発現レベルが相対的に高い場合には、腫瘍が薬剤耐性がんである可能性が相対的に低いと判定することができる。
本発明は、腫瘍細胞におけるmiR27bの発現レベルを測定すること、および該発現レベルとがん幹細胞との間の負の相関に基づき、がん幹細胞であるかどうかについて判定することを含む、がん幹細胞を判定する方法を提供するものである。
また、核酸プローブは、適当な標識剤、例えば、放射性同位元素(例:125I、131I、3H、14C等)、酵素(例:β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素等)、蛍光物質(例:フルオレスカミン、フルオレッセンイソチオシアネート等)、発光物質(例:ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニン等)などで標識されていてもよい。あるいは、蛍光物質(例:FAM、VIC等)の近傍に該蛍光物質の発する蛍光エネルギーを吸収するクエンチャー(消光物質)がさらに結合されていてもよい。かかる実施態様においては、検出反応の際に蛍光物質とクエンチャーとが分離して蛍光が検出される。
本発明はまた、被検物質がmiR27bの発現を増強するか否かを評価することを含む、薬剤耐性がんの増殖を抑制する物質を探索する方法、腫瘍の転移または腫瘍細胞の浸潤能を阻害し得る物質を探索する方法、がん幹細胞を非がん幹細胞に変える物質を探索する方法、並びに当該方法により得られうる物質を提供する。本発明の探索方法においては、miR27bの発現を上方制御する物質が、薬剤耐性がんの増殖を抑制しえる物質、腫瘍の転移または腫瘍細胞の浸潤能を阻害し得る物質、またはがん幹細胞機能抑制剤として選択される。
(1)被検物質とmiR27bの発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR27bの発現量を測定し、該発現量を被検物質を接触させない対照細胞におけるmiR27bの発現量と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR27bの発現量を上昇制御する被検物質を、腫瘍の転移または腫瘍細胞の浸潤能を阻害し得る物質として選択すること。
MCF7細胞およびMCF7-ADR細胞をDMEM培地にウシ胎児血清(FBS)を10%添加した培地を用いて培養し、両細胞株からマイクロRNAをmirVana RNA Isolation kit (Life Technologies社製) を用いてキット添付のプロトコールに従って抽出した。次に、得られたマイクロRNAを鋳型としてTaqMan MicroRNA Reverse Transcription kit (Life Technologies社製) およびmiR27b TaqMan MicroRNA Assay、U6 TaqMan MicroRNA Assay (Life Technologies社製) を用いて逆転写反応を行った。即ち、マイクロRNA 5 μL、100 mM dNTPs (with dTTP) 0.15 μL、MultiScribe Reverse Transcriptase (50 U/μL) 1 μL、10×Reverse Transcription Buffer 1.5 μL、RNase Inhibitor (20 U/μL) 0.19 μL、Nuclease-free water 4.16 μL、TaqMan MicroRNA Assay (5×) 3 μLを混合し、16℃ 30分間、42℃ 30分間、85℃ 5分間の保温を行った。続いて、当該反応液の15倍希釈液 1.33 μL、TaqMan MicroRNA Assay (20×) 1 μL、TaqMan 2×Universal PCR Master Mix, No AmpErase UNGa (Life Technologies社製) 10 μL、Nuclease-free water 7.67 μLを混合し、95℃ 10分間の保温後、95℃ 15秒間、60℃ 1分間の保温サイクルを40回繰り返すPCR反応を7300 Real Time PCR System (Life Technologies社製) を用いて行うことにより、MCF7、MCF7-ADR細胞におけるmiR27b、U6の発現量を定量した。その結果、図1に示される通り、MCF7細胞と比較してMCF7-ADR細胞におけるmiR27bの発現量が減少していることが分かった。
(1)FLuc-hRPN2-3’UTRの構築
ヒト乳がんcDNAライブラリー溶液 2 μL、配列番号3で示された塩基配列からなるプライマー 100 pmol、配列番号4で示される塩基配列からなるプライマー 100 pmol、Taqポリメラーゼ(Life Technologies社製)0.1 μL、Taqポリメラーゼ添付のバッファー 2 μLおよびTaqポリメラーゼ添付のdNTP mixture 2 μLを含む20 μLの反応液を調製した。PCRは、まず95℃で9分間処理し、次いで95℃で30秒間、62℃で30秒間、更に72℃で1分間からなる保温サイクルを25回繰り返し、最後に72℃で5分間保温する条件にて行われた。PCR後、アガロース電気泳動で約281 bpを示すPCR産物を回収した。次いで回収されたPCR産物をpGL-3 vector (Promega社製) のXbaIサイトにサブクローニングした後、当該プラスミドでE. coli DH5α株コンピテントセル(TOYOBO社製)を形質転換した。形質転換された細胞を50 μg/mL カナマイシン含有LB培地 100 mLで培養することにより得られる培養菌体から、QIAGEN Plasmid Maxi kit (QIAGEN社製) を用いて分離・精製することにより、ヒト由来RPN2遺伝子の3’UTR領域をFirefly luciferase遺伝子の3’側に連結したプラスミドFLuc-hRPN2-3’UTRを得た。得られたプラスミドを鋳型として、BigDye(登録商標)Terminator v3.1 Cycle Sequencing キット(Life Technologies社製)およびABI PRISM(登録商標)3100 Genetic Analyzer配列読み取り装置(Life Technologies社製)を用いて配列番号5で示される塩基配列からなるヒト由来RPN2遺伝子の3’UTR領域の塩基配列を決定した。
つぎにmiR27bのRPN2発現抑制活性を上記(1)記載の方法で得られたFLuc-hRPN2-3’UTRを用いて評価した。50000 cells/mlに調製したMCF7-ADR細胞を96-wellプレート上にそれぞれ100 μl撒き、37℃で一晩インキュベートした。翌日、FLuc-hRPN2-3’UTR 300 ng、Renilla luciferase expression vector 50 ng、および2 μMのPre-miRTM miRNA27b Precursor Molecule (Life Technologies社製) もしくはPre-miRTM miRNA Precursor Molecules-Negative Control (NC1) (Life Technologies社製) 1 μlをLipofectamine 2000試薬 (Invitrogen社製) を用いて上述した細胞にトランスフェクションした。次いで、当該細胞を5% CO2存在下、37℃で1日間培養した後、Dual-Glo Luciferase Assay System(Promega社製)を用いてホタルおよびウミシイタケルシフェラーゼの発現量をEnvision 2101 Multilabel Reader(パーキンエルマー社製)で測定した。その結果、Pre-miRTM miRNA27b Precursor Molecule (Life Technologies社製) を導入した細胞のルシフェラーゼ活性はコントロールであるPre-miRTM miRNA Precursor Molecules-Negative Control (NC1) (Life Technologies社製) を導入した細胞と比較して減少していることが分かった (図2)。即ち、miR27bによりRPN2発現が抑制されることが示された。
(1)FLuc-hMDR1-3’UTRの構築
MCF7-ADR細胞由来のcDNAライブラリー溶液 2 μL、配列番号6で示された塩基配列からなるプライマー 100 pmol、配列番号7で示される塩基配列からなるプライマー 100 pmol、Taqポリメラーゼ(Life Technologies社製)0.1 μL、Taqポリメラーゼ添付のバッファー 2 μLおよびTaqポリメラーゼ添付のdNTP mixture 2 μLを含む20 μLの反応液を調製した。PCRは、まず95℃で9分間処理し、次いで95℃で30秒間、62℃で30秒間、更に72℃で1分間からなる保温サイクルを25回繰り返し、最後に72℃で5分間保温する条件にて行われた。PCR後、アガロース電気泳動で約575 bpを示すPCR産物を回収した。次いで回収されたPCR産物をpGL3 vector (Promega社製) のXbaIサイトにサブクローニングした後、当該プラスミドでE. coli DH5α株コンピテントセル(TOYOBO社製製)を形質転換した。形質転換された細胞を50 μg/mL カナマイシン含有LB培地 100 mLで培養することにより得られる培養菌体から、QIAGEN Plasmid Maxi kit (QIAGEN社製) を用いて分離・精製することにより、ヒト由来RPN2遺伝子の3’UTR領域をFirefly luciferase遺伝子の3’側に連結したプラスミドFLuc-hMDR1-3’UTRを得た。得られたプラスミドを鋳型として、BigDye(登録商標)Terminator v3.1 Cycle Sequencing キット(Life Technologies社製)およびABI PRISM(登録商標)3100 Genetic Analyzer配列読み取り装置(Life Technologies社製)を用いて配列番号8で示される塩基配列からなるヒト由来MDR1遺伝子の3’UTR領域の塩基配列を決定した。
つぎにmiR27bのMDR1発現抑制活性を上記(1)記載の方法で得られたFLuc-hMDR1-3’UTRを用いて評価した。50000 cells/mlに調製したMCF7-ADR細胞を96-wellプレート上にそれぞれ100 μl撒き、37℃で一晩インキュベートした。翌日、FLuc-hRPN2-3’UTR 300 ng、Renilla luciferase expression vector 50 ng、および2 μMのPre-miRTM miRNA27b Precursor Molecule (Life Technologies社製) もしくはPre-miRTM miRNA Precursor Molecules-Negative Control (NC1) (Life Technologies社製) 1 μlをLipofectamine 2000試薬 (Invitrogen社製) を用いて上述した細胞にトランスフェクションした。次いで、当該細胞を5% CO2存在下、37℃で1日間培養した後、Dual-Glo Luciferase Assay System(Promega社製)を用いてホタルおよびウミシイタケルシフェラーゼの発現量をEnvision 2101 Multilabel Reader(パーキンエルマー社製)で測定した。その結果、Pre-miRTM miRNA27b Precursor Molecule (Life Technologies社製) を導入した細胞のルシフェラーゼ活性は、コントロールであるPre-miRTM miRNA Precursor Molecules-Negative Control (NC1) (Life Technologies社製) を導入した細胞と比較して減少していた (図3)。即ち、miR27bによりMDR1発現が抑制されることが示された。
1×106個のMCF7細胞と10 μLのCD24-PE抗体(BDバイオサイエンス社製)を4℃、30分間インキュベートした。PBSを用いて細胞を2度洗浄した後、5 μLの0.1 mg/mL Propidium iodideを含む500 μLのPBSに細胞を懸濁した。得られた細胞懸濁液をCell sorter (ベイバイオサイエンス社製) に供し、CD24陽性細胞群(がん細胞群)とCD24陰性細胞群 (がん幹細胞群) に分画した。両細胞画分からmirVana miRNA isolation kit(Life Technologies社製)を用いてRNAを調製し、参考例1記載の方法でmiR27bの発現量を定量した。その結果、CD24陰性細胞群 (がん幹細胞群) においてmiR27bの発現量が低下していることが分かった (図4)。
(1)FLuc-hCD44-3’UTRの構築
MCF7-ADR細胞由来のcDNAライブラリー溶液 2 μL、配列番号9で示された塩基配列からなるプライマー 100 pmol、配列番号10で示される塩基配列からなるプライマー 100 pmol、Taqポリメラーゼ(Life Technologies社製)0.1 μL、Taqポリメラーゼ添付のバッファー 2 μLおよびTaqポリメラーゼ添付のdNTP mixture 2 μLを含む20 μLの反応液を調製した。PCRは、まず95℃で9分間処理し、次いで95℃で30秒間、62℃で30秒間、更に72℃で1分間からなる保温サイクルを25回繰り返し、最後に72℃で5分間保温する条件にて行われた。PCR後、アガロース電気泳動で約840 bpを示すPCR産物を回収した。次いで回収されたPCR産物をpGL-3 vector (Promega社製) のXbaIサイトにサブクローニングした後、当該プラスミドでE. coli DH5α株コンピテントセル(TOYOBO社製)を形質転換した。形質転換された細胞を50 μg/mL カナマイシン含有LB培地100 mLで培養することにより得られる培養菌体から、QIAGEN Plasmid Maxi kit (QIAGEN社製) を用いて分離・精製することにより、ヒト由来RPN2遺伝子の3’UTR領域をFirefly luciferase遺伝子の3’側に連結したプラスミドFLuc-hCD44-3’UTRを得た。得られたプラスミドを鋳型として、BigDye(登録商標)Terminator v3.1 Cycle Sequencing キット(Life Technologies社製)およびABI PRISM(登録商標)3100 Genetic Analyzer配列読み取り装置(Life Technologies社製)を用いて配列番号11で示される塩基配列からなるヒト由来CD44遺伝子の3’UTR領域の塩基配列を決定した。
つぎにmiR27bのCD44発現抑制活性を上記(1)記載の方法で得られたFLuc-hCD44-3’UTRを用いて評価した。50000 cells/mlに調製したMCF7-ADR細胞を96-wellプレート上にそれぞれ100 μl撒き、37℃で一晩インキュベートした。翌日、FLuc-hRPN2-3’UTR 300 ng、Renilla luciferase expression vector 50 ng、および2 μMのpre-miR27bもしくはNC1 (Life Technologies社製) 1 μlをLipofectamine 2000試薬 (Invitrogen社製) を用いて上述した細胞にトランスフェクションした。次いで、当該細胞を5% CO2存在下、37℃で1日間培養した後、Dual-Glo Luciferase Assay System(Promega社製)を用いてホタルおよびウミシイタケルシフェラーゼの発現量をEnvision 2101 Multilabel Reader(パーキンエルマー社製)で測定した。その結果、Pre-miRTM miRNA27b Precursor Molecule (Life Technologies社製) を導入した細胞のルシフェラーゼ活性はコントロールであるPre-miRTM miRNA Precursor Molecules-Negative Control (NC1) (Life Technologies社製) を導入した細胞と比較して減少していた (図5)。即ち、miR27bによりCD44発現が抑制されることが示された。
(1)miR27b発現ベクターの作製
配列番号12で示される塩基配列からなる10 nMの合成miR27b 4 μlとpcDNA6.2-GW/EmGFP-miR (Invitrogen社製) 10 ngを混合した後、ligationキット(Invitrogen社製)を用いて室温で5分間ライゲーション反応した。反応後、当該ライゲーション反応液 2 μLおよびE. coli TOP10株コンピテントセル(Invitrogen社製)を用いて、E. coli TOP10形質転換細胞を得た。形質転換された細胞を50 μg/mLスペクチノマイシン含有LB培地100 mLで培養することにより得られる培養菌体から、QIAGEN Plasmid Maxi kitを用いて分離・精製することにより、miR27b発現ベクターであるところのpcDNA6.2-GW/EmGFP-miR-miR27bを得た。
MCF7-ADR-luc細胞に上述した方法で作製されたpcDNA6.2-GW/EmGFP-miR-miR27bをLipofectamine 2000試薬を用いて導入した。該細胞を2 μg/mLのBlastcidinを含む培地にて14日間培養を継続した後、生き残った細胞を単離し、miR27b恒常発現細胞を得た。一方、これと同様の方法でpcDNA6.2-GW/EmGFP-miRを導入した細胞を作製し、以降の実験のコントロール細胞に使用した。
10,000 cells/mlに調製したmiR27b恒常発現MCF7-ADR-luc細胞とコントロール細胞を96穴プレートに播き込み、4日間、細胞増殖活性をTetracolor one for cell proliferation assay (生化学工業製) を用いて測定した。その結果、miR27b恒常発現細胞の細胞増殖速度がコントロール細胞と比較して遅いことが分かった (図6)。
1×106個のmiR27b恒常発現MCF7-ADR-luc細胞とコントロール細胞をそれぞれ10 μLのCD24-PE抗体(BDバイオサイエンス社製)と4℃、30分間インキュベートした。PBSを用いて細胞を2度洗浄した後、5 μLの0.1 mg/mL Propidium iodideを含む500 μLのPBSに細胞を懸濁した。得られた細胞懸濁液をCell sorter (ベイバイオサイエンス社製) に供し、GFP、CD24共に陽性の細胞群(がん細胞群)とGFP陽性、CD24陰性の細胞群 (がん幹細胞群) の細胞数を計測したところ、miR27b恒常発現MCF7-ADR-luc細胞のがん幹細胞群の割合がコントロール細胞に比べて減少しているのに対して非がん幹細胞群の割合が増加していることが分かった (図7)。
肺がん細胞株であるPC14細胞および薬剤耐性肺がん細胞株PC14-CDDP細胞をDMEM培地にウシ胎児血清(FBS)を10%添加した培地を用いて培養し、両細胞株からマイクロRNAをmirVana RNA Isolation kit (Life Technologies社製) を用いてキット添付のプロトコールに従って抽出した。次に、得られたマイクロRNA を鋳型としてTaqMan MicroRNA Reverse Transcription kit (Life Technologies社製) およびmiR27b TaqMan MicroRNA Assay、U6 TaqMan MicroRNA Assay (Life Technologies社製) を用いて逆転写反応を行った。即ち、マイクロRNA 5 μL、100 mM dNTPs (with dTTP) 0.15 μL、MultiScribe Reverse Transcriptase (50 U/μL) 1 μL、10×Reverse Transcription Buffer 1.5 μL、RNase Inhibitor (20 U/μL) 0.19 μL、Nuclease-free water 4.16 μL、TaqMan MicroRNA Assay (5×) 3 μLを混合し、16℃ 30分間、42℃ 30分間、85℃ 5分間の保温を行った。続いて、当該反応液の15倍希釈液 1.33 μL、TaqMan MicroRNA Assay (20×) 1 μL、TaqMan 2×Universal PCR Master Mix, No AmpErase UNGa (Life Technologies社製) 10 μL、Nuclease-free water 7.67 μLを混合し、95℃ 10分間の保温後、95℃ 15秒間、60℃ 1分間の保温サイクルを40回繰り返すPCR反応を7300 Real Time PCR System (Life Technologies社製) を用いて行うことにより、MCF7、MCF7-ADR細胞におけるmiR27b、U6の発現量を定量した。その結果、図8に示される通り、PC14細胞と比較してPC14-CDDP細胞におけるmiR27bの発現量が減少していることが分かった。
同じ細胞数のmiR27b恒常発現MCF7-ADR-luc細胞とコントロール細胞をヌードマウスの乳腺付近にそれぞれ移植する。移植後毎日、生体イメージングによりルシフェラーゼ発光量を計測すると、同じ細胞数移植したにも関わらず、miR27b恒常発現MCF7-ADR-luc細胞の発光量はコントロール細胞に比べて減少していることが示される。すなわち、miR27bを強制発現させることで、腫瘍形成能が落ちることが分かる。
Claims (25)
- miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸を含む、腫瘍の治療剤。
- 核酸が一本鎖または二本鎖である、請求項1に記載の治療剤。
- miR27bが配列番号1で表されるヌクレオチド配列からなるヌクレオチドである、請求項1に記載の治療剤。
- 核酸が配列番号1で表されるヌクレオチド配列またはその部分配列からなるRNA、或いはその修飾体である、請求項1に記載の治療剤。
- 核酸が配列番号1で表されるヌクレオチド配列からなるRNAまたはその修飾体である、請求項1に記載の治療剤。
- miR27bを含む核酸が、miR27bおよびその前駆体からなる群から選ばれる少なくとも一種の核酸である、請求項1に記載の治療剤。
- 前駆体が、miR27bのpri-miRNAまたはpre-miRNAである、請求項6に記載の治療剤。
- 腫瘍が薬剤耐性がんである、請求項1に記載の治療剤。
- 腫瘍が薬剤耐性乳がんまたは薬剤耐性肺がんである、請求項8に記載の治療剤。
- 腫瘍の転移を抑制または予防するための、請求項1に記載の治療剤。
- がん再発を抑制または予防するための、請求項1に記載の治療剤。
- がんが乳がんまたは肺がんである、請求項11に記載の治療剤。
- (A) miR27bまたは配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つmiR27bと同等の機能を有するヌクレオチドを含む核酸と、
(B) 抗腫瘍剤
とを併用してなる腫瘍の治療剤。 - 腫瘍が薬剤耐性がんである、請求項13に記載の治療剤。
- 腫瘍が薬剤耐性乳がんまたは薬剤耐性肺がんである、請求項13に記載の治療剤。
- 腫瘍におけるmiR27bの発現レベルもしくは濃度を測定すること、および該発現レベルもしくは該濃度と薬剤耐性との間の負の相関に基づき、薬剤耐性がんを判定する方法。
- 腫瘍におけるmiR27bの発現レベルを測定することにより、がん幹細胞を判定する方法。
- がん幹細胞が乳がん幹細胞または肺がん幹細胞である、請求項17記載の方法。
- 腫瘍におけるmiR27bの発現レベルもしくは濃度を測定し、がん幹細胞の有無を判定することにより、がん治療の予後を判定する方法。
- がん幹細胞が乳がん幹細胞または肺がん幹細胞である、請求項19記載の方法。
- miR27bを特異的に検出し得る核酸プローブを含む、薬剤耐性がんを判定するための剤。
- miR27bを特異的に検出し得る核酸プローブを含む、がん幹細胞を判定するための剤。
- がん幹細胞が乳がん幹細胞または肺がん幹細胞である、請求項22記載の剤。
- 以下の工程を含む、薬剤耐性がんの増殖を抑制し得る物質を探索する方法:
(1)被検物質とmiR27bの発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR27bの発現量を測定し、該発現量を被検物質を接触させない対照細胞におけるmiR27bの発現量と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR27bの発現量を上昇制御する被検物質を、薬剤耐性がんの増殖を阻害し得る物質として選択すること。 - 以下の工程を含む、腫瘍の転移または腫瘍細胞の浸潤能を阻害し得る物質を探索する方法:
(1)被検物質とmiR27bの発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR27bの発現量を測定し、該発現量を被検物質
を接触させない対照細胞におけるmiR27bの発現量と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR27bの発現量を上昇制御する被検物質を、腫瘍の転移または腫瘍細胞の浸潤能を阻害し得る物質として選択すること。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10820727.5A EP2486929B1 (en) | 2009-10-01 | 2010-10-01 | Therapeutic agent for tumor |
US13/498,771 US8921333B2 (en) | 2009-10-01 | 2010-10-01 | Therapeutic agent for tumor |
JP2011534353A JP5812491B2 (ja) | 2009-10-01 | 2010-10-01 | 腫瘍治療剤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009230016 | 2009-10-01 | ||
JP2009-230016 | 2009-10-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011040613A1 true WO2011040613A1 (ja) | 2011-04-07 |
WO2011040613A8 WO2011040613A8 (ja) | 2011-07-14 |
Family
ID=43826416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/067288 WO2011040613A1 (ja) | 2009-10-01 | 2010-10-01 | 腫瘍治療剤 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8921333B2 (ja) |
EP (1) | EP2486929B1 (ja) |
JP (1) | JP5812491B2 (ja) |
WO (1) | WO2011040613A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013224860A (ja) * | 2012-04-20 | 2013-10-31 | Mie Univ | マイクロRNA145(miR−145)によるMDR1/P−糖タンパク質(P−gp)の転写後発現調節 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130236891A1 (en) * | 2010-08-20 | 2013-09-12 | 3-D Matrix, Ltd. | Method and composition for the treatment, prevention, and diagnosis of cancer containing or derived from cancer stem cells |
US9512425B2 (en) | 2012-10-23 | 2016-12-06 | Cornell University | Inhibiting migration of cancer cells |
WO2018018077A1 (en) * | 2016-07-25 | 2018-02-01 | Garvan Institute Of Medical Research | Methods of treating breast cancer and reagents therefor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060105360A1 (en) * | 2004-02-09 | 2006-05-18 | Croce Carlo M | Diagnosis and treatment of cancers with microRNA located in or near cancer associated chromosomal features |
WO2009075787A1 (en) * | 2007-12-05 | 2009-06-18 | The Johns Hopkins University | Compositions and methods of treating neoplasia |
JP2009171876A (ja) * | 2008-01-23 | 2009-08-06 | Fujifilm Corp | 癌の検出方法および癌抑制剤 |
JP2009531018A (ja) * | 2006-01-05 | 2009-09-03 | ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション | 肺癌の診断、予後診断及び治療のためのマイクロrnaを基盤とした方法及び組成物 |
WO2010056737A2 (en) * | 2008-11-11 | 2010-05-20 | Mirna Therapeutics, Inc. | Methods and compositions involving mirnas in cancer stem cells |
EP2199412A1 (en) * | 2008-12-10 | 2010-06-23 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Compositions and methods for micro-RNA expression profiling of cancer stem cells |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040152112A1 (en) | 2002-11-13 | 2004-08-05 | Thomas Jefferson University | Compositions and methods for cancer diagnosis and therapy |
US7825229B2 (en) * | 2005-03-25 | 2010-11-02 | Rosetta Genomics Ltd. | Lung cancer-related nucleic acids |
US20090186353A1 (en) * | 2004-10-04 | 2009-07-23 | Rosetta Genomics Ltd. | Cancer-related nucleic acids |
WO2007137342A1 (en) * | 2006-05-26 | 2007-12-06 | Medvet Science Pty. Ltd. | Methods of modulating epithelial-mesenchymal transition and mesenchymal-epithelial transition in cells and agents useful for the same |
JP2008086201A (ja) | 2006-09-29 | 2008-04-17 | Gifu Prefecture Kenkyu Kaihatsu Zaidan | マイクロrna生成の検出方法と癌の診断・治療およびマイクロrna生成調整剤 |
WO2008112283A2 (en) | 2007-03-12 | 2008-09-18 | Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Microrna profiling of androgen responsiveness for predicting the appropriate prostate cancer treatment |
WO2009080437A1 (en) | 2007-12-21 | 2009-07-02 | Exiqon A/S | Micro-rna based drug resistance analysis method |
EP2358902A1 (en) * | 2008-12-10 | 2011-08-24 | Universität Regensburg | Compositions and methods for micro-rna expression profiling of cancer stem cells |
-
2010
- 2010-10-01 JP JP2011534353A patent/JP5812491B2/ja active Active
- 2010-10-01 US US13/498,771 patent/US8921333B2/en active Active
- 2010-10-01 WO PCT/JP2010/067288 patent/WO2011040613A1/ja active Application Filing
- 2010-10-01 EP EP10820727.5A patent/EP2486929B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060105360A1 (en) * | 2004-02-09 | 2006-05-18 | Croce Carlo M | Diagnosis and treatment of cancers with microRNA located in or near cancer associated chromosomal features |
JP2009531018A (ja) * | 2006-01-05 | 2009-09-03 | ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション | 肺癌の診断、予後診断及び治療のためのマイクロrnaを基盤とした方法及び組成物 |
WO2009075787A1 (en) * | 2007-12-05 | 2009-06-18 | The Johns Hopkins University | Compositions and methods of treating neoplasia |
JP2009171876A (ja) * | 2008-01-23 | 2009-08-06 | Fujifilm Corp | 癌の検出方法および癌抑制剤 |
WO2010056737A2 (en) * | 2008-11-11 | 2010-05-20 | Mirna Therapeutics, Inc. | Methods and compositions involving mirnas in cancer stem cells |
EP2199412A1 (en) * | 2008-12-10 | 2010-06-23 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Compositions and methods for micro-RNA expression profiling of cancer stem cells |
Non-Patent Citations (3)
Title |
---|
See also references of EP2486929A4 * |
TSUCHIYA, Y. ET AL.: "MicroRNA regulates the expression of human cytochrome P450 1B1", CANCER RESEARCH, vol. 66, no. 18, 2006, pages 9090 - 9098, XP008162179, DOI: doi:10.1158/0008-5472.CAN-06-1403 * |
WANG, Y. ET AL.: "ST14 (suppression of tumorigenicity 14) gene is a target for miR- 27b, and the inhibitory effect of ST14 on cell growth is independent of miR-27b regulation", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 284, no. 34, 2009, pages 23094 - 23106, XP008162229 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013224860A (ja) * | 2012-04-20 | 2013-10-31 | Mie Univ | マイクロRNA145(miR−145)によるMDR1/P−糖タンパク質(P−gp)の転写後発現調節 |
Also Published As
Publication number | Publication date |
---|---|
WO2011040613A8 (ja) | 2011-07-14 |
EP2486929B1 (en) | 2017-03-15 |
EP2486929A1 (en) | 2012-08-15 |
US8921333B2 (en) | 2014-12-30 |
JP5812491B2 (ja) | 2015-11-11 |
US20120252881A1 (en) | 2012-10-04 |
JPWO2011040613A1 (ja) | 2013-02-28 |
EP2486929A4 (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107454843B (zh) | 包含微小核糖核酸作为活性成分的用于治疗癌症的药物组合物 | |
JP6081798B2 (ja) | miRNAに関連する癌を検出および処置するための方法および組成物およびmiRNAインヒビターおよび標的 | |
CA2930315A1 (en) | Compositions and methods of using transposons | |
JP2013523126A (ja) | miR−155によるミスマッチ修復およびゲノム安定性の調節に関連する材料および方法 | |
WO2009131887A2 (en) | Methods of using mir210 as a biomarker for hypoxia and as a therapeutic agent for treating cancer | |
JP2014500871A (ja) | マイクロrna−21、ミスマッチ修復および結腸直腸癌に関連する物質および方法 | |
US9421218B2 (en) | Compositions and methods for treatment of melanoma | |
JP5933010B2 (ja) | 癌治療剤 | |
JP5812491B2 (ja) | 腫瘍治療剤 | |
JP2011093892A (ja) | がん抑制的マイクロrnaを含む腫瘍増殖抑制剤 | |
CN108220446B (zh) | Linc01356作为分子标志物在胃癌中的应用 | |
EP2622075B1 (en) | Use of mirnas for the diagnosis, prophylaxis, treatment and follow-up of diseases involving macroautophagy abnormalities | |
EP3541939A1 (en) | Modulators of human kai1 metastasis suppressor gene, methods and uses thereof | |
EP3904518A1 (en) | Pharmaceutical composition for preventing or treating cancer, comprising tut4/7 expression modulator | |
US20220145395A1 (en) | Transpochimeric Gene Transcripts (TCGTS) As Cancer Biomarkers | |
WO2010050328A1 (ja) | 腫瘍の転移抑制剤 | |
US20220372475A1 (en) | Inhibitors Of RNA Editing And Uses Thereof | |
KR102120659B1 (ko) | 난소과립막세포암 또는 자궁내막암의 진단 및 치료를 위한 마이크로rna-1236의 용도 | |
WO2010083162A2 (en) | Unc-45a splice variants based cancer diagnostics and therapeutics | |
JP2012171894A (ja) | 腫瘍縮小剤 | |
KR101445921B1 (ko) | miR-185의 항암적 용도 | |
KR102293777B1 (ko) | 신규한 UQCRB-관련 순환 miRNA 바이오 마커 및 이를 이용한 대장암의 진단 방법 | |
JP7226763B2 (ja) | 癌幹細胞における薬物耐性の低減剤、癌幹細胞における転移能の抑制剤及び癌の転移性再発リスクを予測する方法 | |
JP2021075473A (ja) | 中皮腫の予防・治療剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820727 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011534353 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498771 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2010820727 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010820727 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |