図1~3はこの発明のコンベア装置を示し、図1はコンベア装置の反転部におけるスプロケットとチェーンとガイドとの関係を示す図であり、図2は図1の線II-IIに沿った断面図であり、図3はチェーンリンクのピンが移動すべき軌跡の作図の仕方を説明するための説明図である。
1 to 3 show a conveyor device according to the present invention, FIG. 1 is a diagram showing a relationship among sprockets, chains and guides in a reversing portion of the conveyor device, and FIG. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is an explanatory diagram for explaining how to draw a trajectory to which the pin of the chain link should move.
乗客コンベアにおけるスプロケット駆動による踏板あるいはチェーンの水平速度の変動の問題は良く知られているが、この速度変動は、スプロケットが回転することによる駆動半径の変動が大きいほど大きくなり、駆動半径の変動は、歯数が少なく多角形運動の度合いが大きいほど大きくなる。
The problem of fluctuations in the horizontal speed of the tread board or chain due to sprocket drive in the passenger conveyor is well known, but this speed fluctuation becomes larger as the fluctuation of the driving radius due to the rotation of the sprocket increases. The smaller the number of teeth and the greater the degree of polygonal movement, the larger the teeth.
一般的な乗客コンベアでは、踏板の間隔は約410mmで大きなバラツキはなく、筐体寸法もほぼ横並びであることから、スプロケットの大きさに大きな差はなく、多角形運動の大きさを示すスプロケットの歯数は踏板間のリンクの数によって決まる。つまり踏板間のリンク数が少なく、スプロケットの歯数が少ないほど多角形運動が顕著になる。そこでここでは、踏板の水平部速度変動が最も顕著に現れるように、踏板間が1つのリンクで連結された場合を例にとって、その動作を説明する。
In a general passenger conveyor, the distance between the treads is about 410 mm and there is no large variation, and the housing dimensions are almost side by side, so there is no big difference in the size of the sprocket, and the sprocket that shows the size of the polygonal motion The number of teeth depends on the number of links between treads. That is, the polygonal movement becomes more remarkable as the number of links between the treads is smaller and the number of sprocket teeth is smaller. Therefore, here, the operation will be described by taking as an example a case where the treads are connected by one link so that the horizontal speed fluctuation of the treads appears most remarkably.
ここで多角形運動による速度変動の発生原理について説明すると、スプロケットの溝数(歯数)が5の場合、スプロケット1の回転角で72°を周期として一溝ずつ噛合いが進んでいく。つまり、チェーンのリンクの或るピン6が12時の位置で噛合ってから次のピン6が12時の位置に来るまでに、スプロケットの一定速度の回転によって踏板の水平速度を発生する駆動半径(スプロケットの溝に係合したチェーンの軸のスプロケットピッチ円の半径の垂直方向成分)は、スプロケット1のピッチ円半径をrとすると、rからr・cos72°の範囲で変動することになり、スプロケットの回転速度が一定であるので、この駆動半径の変動に伴い、チェーンの水平速度の変動が発生することになる。
Here, the generation principle of the speed fluctuation due to the polygonal movement will be explained. When the number of sprocket grooves (number of teeth) is 5, the meshing of the sprocket 1 progresses one groove at a cycle of 72 °. That is, the driving radius that generates the horizontal speed of the tread by the rotation of the sprocket at a constant speed from when the pin 6 of the link of the chain is engaged at the 12 o'clock position until the next pin 6 comes to the 12 o'clock position. (The vertical component of the radius of the sprocket pitch circle of the chain shaft engaged with the groove of the sprocket) will vary within a range of r to r · cos 72 °, where r is the pitch circle radius of the sprocket 1. Since the rotational speed of the sprocket is constant, the fluctuation of the horizontal speed of the chain occurs with the fluctuation of the driving radius.
乗客コンベアの場合、これは踏板の速度変動となって現れ、乗客の乗り心地を悪化させる大きな要因である。
In the case of passenger conveyors, this appears as a fluctuation in the speed of the tread, which is a major factor that deteriorates the passenger comfort.
ところで、スプロケットのチェーンとの噛合い位置と踏板の位置の関係は、踏板の水平経路とスプロケットの回転中心位置が決まれば幾何学的に一意に決まるものであり、本発明はこれを利用してチェーンの従って踏板の水平経路上での速度変動を抑制するものである。
By the way, the relationship between the meshing position of the sprocket chain and the position of the tread is determined uniquely geometrically if the horizontal path of the tread and the rotation center position of the sprocket are determined. It suppresses the speed fluctuation on the horizontal path of the chain and thus the tread.
従って、この発明によれば、スプロケットと、スプロケットに噛み合って駆動され、1つのリンクについて設けられた第1および第2のピンによって互いに連結された複数のリンクを持つチェーンとを備えたコンベア装置は、チェーンのピンを案内してチェーンの速度変動を抑制するガイドを備え、このガイドは、ピンを、或るリンクの第1のピンの中心から第2のピンの中心までの長さを半径として描いた円弧と、スプロケットの中心とスプロケットの或る溝の中心の位置とを結ぶ径方向直線との交点の軌跡に沿って案内するものである。
Therefore, according to the present invention, there is provided a conveyor apparatus including a sprocket and a chain having a plurality of links connected to each other by first and second pins provided for one link and driven by meshing with the sprocket. And a guide for guiding the chain pin to suppress the speed fluctuation of the chain, the guide having the radius from the center of the first pin of the certain link to the center of the second pin. It is guided along the locus of the intersection of the drawn arc and the radial straight line connecting the center of the sprocket and the position of the center of a certain groove of the sprocket.
また、スプロケットの溝が、半径方向に延びていて、ピンが軌跡に沿って移動できるようにしてある。
Also, the sprocket groove extends in the radial direction so that the pin can move along the trajectory.
即ち、図1および2において、コンベア装置は、スプロケット1と、スプロケット1に噛み合って図で反時計方向に駆動されるチェーン2とを備えている。スプロケット1は、図示してない主枠上に回転軸3によって回転中心4回りに回転可能に支持されていて、周縁に互いに等間隔に離間した5つの溝5a~5eを備えている。チェーン2は、それぞれ進行方向前後に互いにピン6で連結されて環状をなす複数のリンク7を備えている。
That is, in FIGS. 1 and 2, the conveyor device includes a sprocket 1 and a chain 2 that meshes with the sprocket 1 and is driven counterclockwise in the drawing. The sprocket 1 is supported on a main frame (not shown) so as to be rotatable around a rotation center 4 by a rotation shaft 3, and has five grooves 5a to 5e spaced apart from each other at equal intervals. The chain 2 includes a plurality of links 7 that are connected to each other by pins 6 in the front and rear directions in the traveling direction to form a ring.
チェーン2は、主枠(図示してない)に取り付けられた上ガイドレール8によって案内されながら、スプロケット1に供給されて、進行方向前方のピン6が先ずスプロケット1の図1で12時の方向に在る第1の溝5aに係合する。第1の溝5aに係合した第1のピン6はスプロケット1によって図1で左側に駆動される。
The chain 2 is supplied to the sprocket 1 while being guided by an upper guide rail 8 attached to a main frame (not shown), and the pin 6 at the front in the traveling direction is first the direction of the sprocket 1 in FIG. Engages with the first groove 5a. The first pin 6 engaged with the first groove 5a is driven to the left in FIG.
コンベア装置はまた、チェーン2のピン6を案内してチェーン2の速度変動を抑制するガイド9を備えている。このガイド9は、スプロケット1に沿って平行に同軸に配置され、ほぼ半円形のカム板部材であって、チェーン2のピン6を、変形した円弧状の案内面10に沿って案内するものである。案内面10に沿って案内されてスプロケット1を巡って反転したチェーン2のピン6は、スプロケット1の溝から離れ、下ガイドレール11に受け入れられて案内されつつ循環する。スプロケット1の溝5a~5eは、スプロケット1の半径方向に長く延ばされていて、ピン6が溝5a~5e内に受け入れられたまま、案内面10に沿って移動できるようにしてある。
The conveyor device also includes a guide 9 that guides the pin 6 of the chain 2 and suppresses the speed fluctuation of the chain 2. The guide 9 is a substantially semi-circular cam plate member that is coaxially arranged in parallel along the sprocket 1 and guides the pin 6 of the chain 2 along the deformed arc-shaped guide surface 10. is there. The pin 6 of the chain 2 guided along the guide surface 10 and turned around the sprocket 1 is separated from the groove of the sprocket 1 and is circulated while being received and guided by the lower guide rail 11. The grooves 5a to 5e of the sprocket 1 are extended in the radial direction of the sprocket 1 so that the pin 6 can move along the guide surface 10 while being received in the grooves 5a to 5e.
ガイド9の案内面10は、先の説明では変形した円弧状と説明したが、正確にはチェーン2のピン6を図3に示す作図方法によって得られる軌跡を描くように案内する形状のものである。案内面10は、図1に示すように、スプロケット1の12時の位置では、スプロケット1のピッチ円12よりも径方向内側にあり、チェーン2のピン6が溝5aに完全に受け入れられるような位置にある。案内面10は、その位置から湾曲した曲線を描きながら次第にピッチ円12に近づき、12時の位置から72°反時計方向に回転した位置ではピン6が溝5bから殆ど脱出した位置に押し出されるような位置にある。更に72°反時計方向に回転した溝5cの位置では、案内面10は再びピッチ円12よりも内側に入り込んでピン6が溝5cに受け入れられるように案内する。案内面10はそこから次第に径方向外側に向かって延びて、ほぼ6時の位置でピン6がピッチ円12にほぼ外接するような位置となっていて、そこでピン6の下ガイドレール11への受け渡しをするようにされている。
Although the guide surface 10 of the guide 9 has been described as a deformed arc shape in the above description, it is of a shape that guides the pin 6 of the chain 2 so as to draw a locus obtained by the drawing method shown in FIG. is there. As shown in FIG. 1, the guide surface 10 is located radially inward of the pitch circle 12 of the sprocket 1 at the 12 o'clock position of the sprocket 1 so that the pin 6 of the chain 2 is completely received in the groove 5a. In position. The guide surface 10 gradually approaches the pitch circle 12 while drawing a curved curve from the position, and the pin 6 is pushed out to a position where the pin 6 has almost escaped from the groove 5b at a position rotated 72 ° counterclockwise from the 12 o'clock position. In the right position. Further, at the position of the groove 5c rotated counterclockwise by 72 °, the guide surface 10 again enters the inside of the pitch circle 12 and guides the pin 6 to be received in the groove 5c. The guide surface 10 gradually extends outward in the radial direction from the guide surface 10 so that the pin 6 is substantially circumscribed by the pitch circle 12 at approximately 6 o'clock. It is supposed to be handed over.
このような案内面10を得るための作図方法は図3から明らかな通りであり、チェーン2の複数のリンク7のうち、或るリンク7の進行方向後方のピン6の中心を中心としてそのリンク7の進行方向前方のピン6の中心までの長さLを半径として描いた円弧と、スプロケット1の回転中心4とスプロケット1の或る溝の中心の位置とを結ぶ径方向直線との交点を滑らかに結んで得られる曲線をピン6が辿って移動すべきピン中心移動曲線とし、このピン中心移動曲線からピン6の半径だけ内側に移動させて得た曲線を案内面10とするのである。
The drawing method for obtaining such a guide surface 10 is as apparent from FIG. 3, and among the plurality of links 7 of the chain 2, the link is centered on the center of the pin 6 behind the certain link 7 in the traveling direction. 7 is an intersection of a circular arc drawn with a length L to the center of the pin 6 ahead in the traveling direction and a radial straight line connecting the rotation center 4 of the sprocket 1 and the position of the center of a certain groove of the sprocket 1. The curve obtained by smoothly connecting the pins 6 is the pin center movement curve to be moved by the pin 6, and the curve obtained by moving the pin center movement curve inward by the radius of the pin 6 is the guide surface 10.
図3に示す例に於いては、先ず、チェーン2の複数のリンク7のうち、例えば進行方向前方のピン6がスプロケット1の12時の位置にある溝5aの中に受け入れられているリンク7(図3で右上に2点鎖線で示されているリンク7)の進行方向後方のピン6の中心a0を中心として進行方向前方のピン6の中心までのピン間長さLを半径として描いた円弧r0と、スプロケット1の回転中心4とスプロケット1の12時の位置にある溝5aの中心とを結ぶ径方向直線Rb0との交点b0を得る。
In the example shown in FIG. 3, first, among the plurality of links 7 of the chain 2, for example, the link 7 in which the forward pin 6 is received in the groove 5 a at the 12 o'clock position of the sprocket 1. The length L between pins from the center a0 of the pin 6 at the rear in the traveling direction to the center of the pin 6 at the front in the traveling direction is drawn as a radius. An intersection point b0 between the arc r0 and the radial straight line Rb0 connecting the rotation center 4 of the sprocket 1 and the center of the groove 5a at the 12 o'clock position of the sprocket 1 is obtained.
次にリンク7がL進む間に、スプロケットは72°回転する必要があるが、必要な精度を得るためにリンクのピン間長さLを4等分して、リンク7のL/4ずつの進行位置毎のピン6が占めるべき位置を求める。従って、進行方向後方のピン6の中心a0がL/4=Δx0進んでa1の位置になり、この間にスプロケット1がΔθ0=72°/4=18°回転するためには、進行方向前方のピン6の中心は、進行方向後方の中心a1を中心として半径Lで描いた円弧r1と、12時の位置から18°反時計方向に回転した径方向直線Rb1との交点b1上にある必要がある。
Next, while the link 7 travels L, the sprocket needs to rotate 72 °, but in order to obtain the required accuracy, the link pin length L is divided into four equal parts, and the link 7 L / 4 each. The position which the pin 6 should occupy for every advancing position is calculated | required. Accordingly, the center a0 of the pin 6 at the rear in the traveling direction advances by L / 4 = Δx0 to the position a1, and the sprocket 1 rotates during this time by Δθ0 = 72 ° / 4 = 18 °. The center of 6 needs to be on the intersection b1 of the circular arc r1 drawn with the radius L about the center a1 at the rear in the traveling direction and the radial straight line Rb1 rotated counterclockwise by 18 ° from the 12 o'clock position. .
同様に、進行方向前方のピン6の中心は、リンク7のL/4ずつの移動に伴って進行方向後方のピン6の中心がa1からa2、a3、a4へと進み、それらの中心から半径Lで描いた円弧r2、r3、r4と、18°ずつ進んだ径方向直線Rb2、Rb3、Rb4との交点b2、b3、b4上にある必要がある。このような作図作業を同様に続けると、図3に示すように、交点c1、c2、c3、c4、d1、d2およびd3が得られ、これらの一連の交点b0(a0)~b4、c1~c4およびd1~d3を滑らかに結んだ曲線がピン中心移動曲線である。ガイド9の案内面10の曲線は、このピン中心移動曲線に対してピン6の半径分だけ内側に移動した曲線Sであり、またピン6に内側から接する曲線でもある。
Similarly, the center of the pin 6 at the front in the traveling direction is such that the center of the pin 6 at the rear in the traveling direction advances from a1 to a2, a3, a4 as the link 7 moves by L / 4, and the radius from these centers increases. It must be on the intersections b2, b3, and b4 of the arcs r2, r3, and r4 drawn by L and the radial straight lines Rb2, Rb3, and Rb4 advanced by 18 °. If such drawing work is continued in the same manner, as shown in FIG. 3, intersections c1, c2, c3, c4, d1, d2, and d3 are obtained, and a series of these intersections b0 (a0) to b4, c1 to A curve smoothly connecting c4 and d1 to d3 is a pin center movement curve. The curve of the guide surface 10 of the guide 9 is a curve S that has moved inward by the radius of the pin 6 with respect to this pin center movement curve, and is also a curve that contacts the pin 6 from the inside.
この構成により、スプロケット1が回転することにより、チェーン2のリンク7のピン6が、ガイド9の案内面10の形状を求める際に行った幾何的検討で求めたとまったく同じ動きをすることになり、上ガイドレール8上を走行するピン6に連結された踏板は、スプロケット1上でのリンク7多角形運動による水平速度の脈動をまったく発生することなく一定速度で移動することができる。
With this configuration, when the sprocket 1 rotates, the pin 6 of the link 7 of the chain 2 performs exactly the same movement as obtained in the geometrical examination performed when obtaining the shape of the guide surface 10 of the guide 9. The tread board connected to the pin 6 traveling on the upper guide rail 8 can move at a constant speed without generating any pulsation of the horizontal speed due to the polygonal movement of the link 7 on the sprocket 1.
ここで、実際に本方式を用いて固定レール形状を決定した場合を考える。図3に示すとおり、スプロケット1上の12時の位置で踏段の水平速度脈動を抑制するための経路は、本来のピッチ円12よりも低い位置になっている。これは、先に述べた設計手順に沿って経路を求める際に、本来のピッチ円12に従った水平高さを仮定すると、最初の移動時にa1を中心とする半径Lの円弧と円の半径線であるr1との間に交点が存在しないからである。これは、水平部の移動距離Δx0に対して、スプロケット1の回転に伴う円弧距離の方が長いことが原因であるので、これを解決して経路を決定するための交点b1を求めるためには、図3のように水平部高さ(a0~a4の位置)を下げて、同じ回転角に伴うb0、b1間の円弧長さを短くすればよい。
Here, consider the case where the fixed rail shape is actually determined using this method. As shown in FIG. 3, the path for suppressing the horizontal speed pulsation of the step at the 12 o'clock position on the sprocket 1 is lower than the original pitch circle 12. This is based on the assumption that the horizontal height according to the original pitch circle 12 is assumed when the route is obtained in accordance with the design procedure described above. This is because there is no intersection point with the line r1. This is because the arc distance associated with the rotation of the sprocket 1 is longer than the moving distance Δx0 of the horizontal portion. In order to solve this problem and obtain the intersection b1 for determining the path, As shown in FIG. 3, the horizontal part height (positions a0 to a4) is lowered to shorten the arc length between b0 and b1 with the same rotation angle.
しかし、実際の乗客コンベアの踏段では、図4(a)に示すとおり踏段13の姿勢は踏段13に取り付けられたピン6とそれを案内するレール8および11の取り付け位置によって規定されている。よって、図3に示すように水平部の速度脈動を抑制するために、下側の案内レール14の高さを変えずに上ガイドレール8の位置を低くして水平部高さを変更すると、踏段13の形状やピン6取り付け位置が変わらないと仮定した場合、図4(b)のように踏段13の姿勢が変化し大きく傾くことになってしまう。これに対してはピン取り付け位置を含めた踏段13の形状変更により解決することが可能ではあるが、製品としての性能向上を目的として考えた場合、踏段の形状変更は従来機との互換性や構造変更に伴う大幅なコストアップといった問題が発生する。
However, in an actual passenger conveyor step, the posture of the step 13 is defined by the mounting position of the pin 6 attached to the step 13 and the rails 8 and 11 for guiding it as shown in FIG. Therefore, in order to suppress the speed pulsation of the horizontal portion as shown in FIG. 3, when the horizontal portion height is changed by lowering the position of the upper guide rail 8 without changing the height of the lower guide rail 14, If it is assumed that the shape of the step 13 and the pin 6 attachment position are not changed, the posture of the step 13 is changed as shown in FIG. This can be solved by changing the shape of the step 13 including the pin mounting position. However, when considering the purpose of improving the performance of the product, the change of the shape of the step is compatible with the conventional machine. Problems such as a significant increase in costs associated with structural changes occur.
従って図5に示すこの発明のコンベア装置においては、水平部での踏段姿勢の変化をできるだけ小さくしつつ踏段水平部速度の脈動を抑制する駆動機構が提案されている。
Therefore, in the conveyor apparatus of the present invention shown in FIG. 5, a drive mechanism that suppresses the pulsation of the step horizontal portion speed while minimizing the change in the step posture in the horizontal portion is proposed.
先述の通り、12時の位置を始点とした経路決定手法において、最初のステップでa1を中心とする半径Lの円弧と12時からΔθ回転した半径線Rb1には交点が存在せず経路を決定することができない。しかし、スプロケット1による牽引では、12時の位置でスプロケット1とピン6が必ず噛合わなければならないことはなく、その時点で他のいずれかのピン6がスプロケット1の溝と噛合うことで牽引する力を発生すればよい。
As described above, in the route determination method starting from the 12 o'clock position, in the first step, the arc is determined with a radius L centered at a1 and the radius line Rb1 rotated Δθ from 12 o'clock does not have an intersection and the route is determined. Can not do it. However, when pulling with the sprocket 1, the sprocket 1 and the pin 6 do not necessarily mesh with each other at the 12 o'clock position, and any other pin 6 meshes with the groove of the sprocket 1 at that time. It is only necessary to generate a force to perform.
図3に示す脈動抑制機構では、初期位置においてスプロケット1と噛合うピン6を、12時に位置するピン6よりひとつ先に位置するピン6(中心b1を持つピン6)とし、先述の手順に従って脈動抑制レール経路を決定するものである。図3に示すように、ピッチ円12と同じ高さの線上でスプロケット1の12時の位置から踏段間距離L離れた位置を経路決定の始点a0とすると、Δx0進んだ水平部a1を中心とする円弧r1と、スプロケット1がΔθ1回転した線分Rb1とに交点が求められない。
In the pulsation suppression mechanism shown in FIG. 3, the pin 6 that meshes with the sprocket 1 at the initial position is the pin 6 (the pin 6 having the center b1) that is located one ahead of the pin 6 that is located at 12:00, and pulsates according to the procedure described above. The suppression rail route is determined. As shown in FIG. 3, assuming that the position of the step distance L from the 12 o'clock position of the sprocket 1 on the same height line as the pitch circle 12 is the starting point a0 for route determination, the horizontal portion a1 advanced by Δx0 is the center. The intersection point is not obtained between the arc r1 to be rotated and the line segment Rb1 obtained by rotating the sprocket 1 by Δθ1.
そのためこの実施例によるコンベア装置においては、図5に示すように、経路決定の始点a0をスプロケット1に接近する方向にずらした位置に設定する。すると、初期位置でのスプロケット1の12時に位置するピン6の位置が、ピッチ円12に対してやや外側の交点として求められる。この高さは、水平部初期位置あa0を本来の位置からスプロケット1方向に接近させる量が大きいほど高くなり、スプロケット1突入直前での踏段の姿勢の傾きが大きくなる。そのため、この値はできる限り小さな値となるように設定する必要がある。
Therefore, in the conveyor apparatus according to this embodiment, as shown in FIG. 5, the starting point a0 for route determination is set at a position shifted in the direction approaching the sprocket 1. Then, the position of the pin 6 positioned at 12:00 of the sprocket 1 at the initial position is obtained as an intersection slightly outside the pitch circle 12. This height increases as the amount by which the horizontal initial position a0 is approached from the original position in the direction of the sprocket 1 increases, and the inclination of the posture of the step immediately before entering the sprocket 1 increases. Therefore, it is necessary to set this value to be as small as possible.
このとき、12時位置のピン6(中心b0)はピッチ円から外に位置するため、12時位置においてはスプロケット1の溝5aとの噛合いは発生していない。一方、このときの12時に位置するピン6(中心b0)のひとつ先のピン6(中心b4)は、12時に位置するピン6の中心b0がピッチ円12の外側にあるため、これを中心とする円弧とひとつ先の溝の中心線Rb4との交点(b4)は、本来のピッチ円12に対して内側に位置することになり、スプロケット1溝5bとの噛合いが発生していることになる。よって、初期位置において、12時に位置する中心b0のピン6では噛合いがないものの、中心b4のピン6において噛合いが確保されているため、スプロケット1による牽引動作には何等支障を来たすことがない。
At this time, since the pin 6 (center b0) at the 12 o'clock position is located outside the pitch circle, the engagement with the groove 5a of the sprocket 1 does not occur at the 12 o'clock position. On the other hand, the pin 6 (center b4) that is one ahead of the pin 6 (center b0) located at 12:00 at this time is centered on this because the center b0 of the pin 6 located at 12:00 is outside the pitch circle 12. The point of intersection (b4) between the arc and the center line Rb4 of the next groove is located on the inner side with respect to the original pitch circle 12, and engagement with the sprocket 1 groove 5b occurs. Become. Therefore, in the initial position, the pin 6 at the center b0 located at 12:00 is not engaged, but the engagement is ensured at the pin 6 at the center b4, so that the towing operation by the sprocket 1 may be hindered. Absent.
このようにして図3に示す作図方法と同様に、チェーン2の複数のリンク7のうち、或るリンク7の進行方向後方のピン6の中心を中心としてそのリンク7の進行方向前方のピン6の中心までの長さLを半径として描いた円弧と、スプロケット1の回転中心4とスプロケット1の或る溝の中心の位置とを結ぶ径方向直線との交点を滑らかに結んで得られる曲線をピン6が辿って移動すべきピン中心移動曲線とし、このピン中心移動曲線からピン6の半径だけ内側に移動させて得た曲線Sが案内面10である。
3, among the plurality of links 7 of the chain 2, the pin 6 in the forward direction of the link 7 around the center of the pin 6 in the forward direction of the link 7. A curve obtained by smoothly connecting the intersection of the arc drawn with the length L to the center of the radius as the radius and the radial straight line connecting the rotation center 4 of the sprocket 1 and the position of the center of a certain groove of the sprocket 1. The guide surface 10 is a curved surface S obtained by moving the pin 6 along the radius of the pin 6 from the pin center movement curve.
その他の構成は先に説明したものと同様である。このとき、各ピン6とスプロケット1とは、一般にチェーンにかかる張力を単独で受け持つことを仮定した強度設計がなされているため、噛合い位置が変更したことによる、強度面、寿命面での新たな問題が発生することもない。この構成により、本来のピッチ円高さ12を走行経路としながら、かつ水平部速度脈動を抑制することができる駆動機構が実現できる。
Other configurations are the same as described above. At this time, since each pin 6 and the sprocket 1 are generally designed with the strength assuming that the tension applied to the chain is singularly, new in terms of strength and life due to the change of the meshing position. No problems occur. With this configuration, it is possible to realize a drive mechanism that can suppress the horizontal portion speed pulsation while using the original pitch circle height 12 as a travel route.
この実施例2によれば、踏板の間隔やスプロケット1の歯数(溝5a~5eの数)から幾何学的に一意に決まる曲線Sに基づいた案内面10を持つガイド9を用いるため、構造的にも非常に安価で、また幾何学的に一意に決まる経路を走行するため確実に速度変動と共にステップの揺動をも抑制することができる。特に、ガイド9を一般的な板金の切断加工によって製作したカム板部材で構成すると、構造が単純で信頼性が高く、製造も容易である。
According to the second embodiment, the guide 9 having the guide surface 10 based on the curve S uniquely determined geometrically from the distance between the treads and the number of teeth of the sprocket 1 (the number of grooves 5a to 5e) is used. Therefore, since it travels on a route that is uniquely determined geometrically, it is possible to reliably suppress step fluctuations as well as speed fluctuations. In particular, when the guide 9 is formed of a cam plate member manufactured by a general sheet metal cutting process, the structure is simple, the reliability is high, and the manufacture is easy.
以上に図示して説明したコンベア装置は単なる例であって様々な変形が可能であり、またそれぞれの具体例の特徴を全てあるいは選択的に組み合わせて用いることもできる。
The conveyor apparatus illustrated and described above is merely an example, and various modifications can be made, and the features of each specific example can be used altogether or selectively combined.