WO2010109832A1 - 冷凍機 - Google Patents
冷凍機 Download PDFInfo
- Publication number
- WO2010109832A1 WO2010109832A1 PCT/JP2010/001974 JP2010001974W WO2010109832A1 WO 2010109832 A1 WO2010109832 A1 WO 2010109832A1 JP 2010001974 W JP2010001974 W JP 2010001974W WO 2010109832 A1 WO2010109832 A1 WO 2010109832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- supercooling
- compressor
- throttle valve
- circuit
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0253—Compressor control by controlling speed with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2509—Economiser valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a refrigerator provided with a refrigerant circuit in which a compressor, a condenser, a heat exchanger for supercooling, a throttle valve, and an evaporator are connected by piping.
- the refrigerator described in this document includes a refrigerant circuit in which a compressor, a condenser, a supercooling heat exchange unit, a throttle valve, and an evaporator are connected in this order, and refrigerant circulation in the supercooling heat exchange unit in the refrigerant circuit.
- An intermediate pressure injection circuit branched from the downstream position in the direction and connected to the intermediate pressure chamber of the compressor, an intermediate pressure throttle valve with variable valve opening disposed in the intermediate pressure injection circuit, and a heat exchanger for supercooling in the refrigerant circuit
- a suction injection circuit that branches from a downstream position in the refrigerant flow direction and passes through the supercooling heat exchange section and leads to the refrigerant suction side of the compressor, and a valve opening degree disposed on the refrigerant inlet side of the supercooling heat exchange section in the suction injection circuit
- a variable supercooling throttle valve discharge temperature sensor, temperature sensor on the outlet side of the heat exchanger for the supercooling of the refrigerant circuit, temperature sensor on the outlet side of the heat exchanger for the supercooling of the suction injection circuit, etc.
- a driving state detection means for detecting the operation status data in the refrigerant circuit.
- the discharge gas refrigerant temperature of the compressor is controlled by controlling the opening degree of the intermediate pressure throttle valve of the intermediate pressure injection circuit. Also, by controlling the opening degree of the supercooling throttle valve in the suction injection circuit, the refrigerant on the downstream side of the condenser is supercooled to prevent re-evaporation of the refrigerant, and to prevent refrigerant overfilling and refrigeration capacity deterioration. It is like that.
- the conventional refrigerator has two injection circuits, an intermediate pressure injection circuit and a suction injection circuit, and has an intermediate pressure throttle valve and a supercooling throttle valve accordingly.
- the control configuration is complicated and the manufacturing cost is high.
- the refrigerant supercooled in the supercooling heat exchanger is returned to the compressor suction side by the suction injection circuit, the operation has to be performed with low efficiency.
- the specifications of the heat exchanger for supercooling differ for each model having different operating capacities, there is a problem that the number of production lots is reduced, which increases the cost. This problem is particularly noticeable in large-capacity models with a small number of production lots.
- the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a refrigerator that can be manufactured at a low cost with a simple configuration and that can be operated with high efficiency.
- a refrigerator according to the present invention includes a refrigerant circuit in which a compressor, a condenser, a liquid reservoir, a supercooling heat exchange unit, a throttle valve, and an evaporator are connected in this order.
- a return circuit branched from the downstream position in the refrigerant flow direction of the supercooling heat exchange section in the refrigerant circuit and connected to the intermediate pressure chamber of the compressor through the supercooling heat exchange section, and a return circuit And a supercooling throttle valve with variable valve opening disposed on the refrigerant inlet side of the subcooling heat exchange section in the subcooling heat exchange section on the outlet side of the subcooling heat exchange section of the return circuit from the detected operating state data Since the degree of dryness of the refrigerant is calculated and the valve opening degree of the supercooling throttle valve is controlled so that the calculated degree of dryness approaches the value of 1, the supercooling is added to the intermediate pressure in the compressor.
- the coefficient of performance COP of the refrigerant circuit can be improved as compared with the case of adding supercooling to the low pressure side (compressor suction side) as in the prior art.
- the piping, throttle valve, and control system for the return circuit (injection circuit) can be reduced by one system, which simplifies the configuration and reduces manufacturing costs. It becomes.
- (A) is a Mollier diagram showing a state when the dryness of the refrigerant on the refrigerant outlet side of the heat exchanger for subcooling in the return circuit is 1
- (b) is a refrigerant output of the heat exchanger for subcooling in the return circuit.
- FIG. 8C is a state when the dryness of the refrigerant on the refrigerant outlet side of the heat exchanger for supercooling in the return circuit is smaller than 1.
- It is a Mollier diagram which shows.
- (A) is a front view of the refrigerator condensation unit which concerns on Embodiment 3 of this invention
- (b) is a front view of the refrigerator condensation unit which concerns on Embodiment 4 of this invention.
- FIG. 1 is a refrigerant circuit configuration diagram of a refrigerator according to Embodiments 1 and 2 of the present invention
- FIG. 2 is a diagram showing a refrigerator condensing unit of the refrigerator, (a) is a front view, (b) ) Is a left side view, (c) is a right side view, and (d) is a plan view.
- the refrigerator according to this embodiment includes one liquid reservoir module 1 and three compressor modules 2, 2, and 2 installed and connected to the upper surface 40 of the liquid reservoir module 1.
- a refrigerator condensing unit consisting of These three compressor-side modules 2, 2, and 2 all have a common structure that is compatible with each other.
- Each compressor-side module 2 includes a flat first base frame 37 at the bottom. On the first base frame 37, the compressor 3, the accumulator 27, the oil separator 4, the oil regulator 36, and the condenser 6 are arranged.
- a first opening / closing valve 30 is provided in the middle of the refrigerant pipe 26 connected to the suction side of the accumulator 27.
- the 1st connection member 33 which connects the refrigerant
- the discharge side of the accumulator 27 is connected to the suction side of the compressor 3 by a refrigerant pipe 48.
- the discharge side of the compressor 3 and the condenser 6 are connected by piping through an oil separator 4.
- the refrigerant in the condenser 6 is cooled by blowing air from the blower 5.
- a second on-off valve 31 is provided in the middle of the refrigerant pipe 7 connected to the refrigerant outlet side of the condenser 6.
- a second connection member 34 that connects the refrigerant pipe 7 in a separable manner is provided.
- An oil regulator 36 is connected to the compressor 3 by piping.
- the oil regulator 36 is connected to an oil leveling pipe 51 that connects between the oil regulators 36 and 36 of the other compressor-side modules 2 and 2.
- a fourth on-off valve 52 is provided in the middle of the oil leveling pipe 51. Between the 4th on-off valve 52 and the oil regulator 36 in the oil leveling pipe 51, the 4th connection member 53 which connects the oil leveling pipe 51 so that separation is possible is arrange
- the configurations of the first connecting member 33, the second connecting member 34, the third connecting member 35, and the fourth connecting member 53 are not particularly limited, but here, for example, they are embodied as flare nuts.
- the three compressor side modules 2, 2, and 2 are arranged side by side in the left-right direction, and each first base frame 37 is fixed to the casing upper surface 40 of the liquid storage side module 1 with screws or the like. Moreover, the side surfaces of the left and right compressor side modules 2 and 2 are covered with lattice plates 50 and 50 having good ventilation. The opening above the blower 5 in each compressor-side module 2 is covered with a bell mouth plate 46. On the other hand, on the bottom plate of the liquid storage module 1, a liquid storage container 10 for storing liquid refrigerant from the three compressor modules 2, 2, 2 is disposed.
- coolant piping 7,7,7 connected to the condensers 6,6,6 of the three compressor side modules 2,2,2 is via two confluence
- the refrigerant pipe 9 is connected.
- the refrigerant pipe 9 is connected to the liquid storage container 10 of the liquid storage side module 1.
- the refrigerant pipes 26, 26, 26 connected to the accumulators 27, 27, 27 are connected to the refrigerant pipe 24 via two distribution pipe portions 25, 25 that are three-way pipes.
- the refrigerant pipe 11 from the liquid reservoir 10 is connected to three parallel parallel pipes 13, 13, 13 corresponding to the number of the compressor-side modules 2 via distribution pipe parts 12, 12, and further, a junction pipe It is connected to the refrigerant pipe 15 via the parts 14 and 14.
- subcooling heat exchange units 28, 28, 28 are provided in the middle of the parallel pipes 13, 13, 13, subcooling heat exchange units 28, 28, 28.
- Each subcooling heat exchange section 28 exchanges heat between the refrigerant in the return circuit 29 and the refrigerant in the parallel pipe 13.
- a supercooling throttle valve 49 (LEV) having a variable valve opening degree is provided on the refrigerant inlet side of the supercooling heat exchange section 28 in the return circuit 29.
- the refrigerant sublimed by the supercooling throttle valve 49 of the return circuit 29 increases the degree of supercooling of the refrigerant in the parallel pipe 13, and the refrigerant in the return circuit 29 is compressed by the compressor. Returned to 3.
- a third open / close valve 32 is provided between the branch portion from the parallel pipe 13 in the return circuit 29 and the supercooling heat exchange portion 28.
- the refrigerant pipe 15 from the merging pipe portion 14 is connected to the refrigerant pipe 17.
- the above refrigerator is connected to the throttle valve 20 and the evaporator 21 by pipes to form a refrigerant circuit.
- the refrigerant pipe 17 of the refrigerator is connected to the refrigerant pipe 19 connected to the throttle valve 20 by the connecting pipe portion 18.
- the refrigerant pipe 24 of the refrigerator is connected to the refrigerant pipe 22 from the evaporator 21 by the connecting pipe portion 23.
- a high-pressure sensor (an example of a condensing temperature detecting means) 65 for detecting the refrigerant condensing temperature is provided in the refrigerant pipe on the outlet side of the oil separator 4.
- the refrigerant evaporation temperature is calculated by converting the high-pressure side refrigerant pressure detected by the high-pressure sensor 65 into a saturation temperature.
- a low-pressure sensor (an example of evaporation temperature detecting means) 66 for detecting the refrigerant evaporation temperature is provided in the refrigerant pipe 48 on the compressor 3 suction side.
- the refrigerant evaporation temperature is calculated by converting the low-pressure side refrigerant pressure detected by the low-pressure sensor 66 into a saturation temperature.
- a temperature sensor (an example of a liquid refrigerant temperature detecting means) 67 for detecting the liquid refrigerant temperature is provided in the parallel pipe 13 on the outlet side of the heat exchanger 28 for supercooling in the refrigerant circuit.
- a temperature sensor 70 is provided on the suction side of the compressor 3 in the refrigerant circuit.
- FIG. 1 only the detailed configuration of one compressor side module 2 is shown and the detailed configuration of the remaining two compressor side modules 2 is omitted, but the detailed configuration of the remaining two compressor side modules 2 is also shown. These are the same as those of the compressor side module 2 shown.
- the refrigerator of this embodiment includes a control device 60.
- the control device 60 is embodied by a general-purpose microprocessing unit MPU, for example, and functions as the operation state detection means 61 for detecting the operation state data in the refrigerant circuit and the return circuit from the operation state data detected by the operation state detection means 61. 29 is output to the function of the dryness calculating means 62 for calculating the dryness Xmo of the refrigerant on the outlet side of the subcooling heat exchange section 28 and an inverter device (not shown) for driving the motor of the variable capacity compressor 3.
- each compressor-side module 2 the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 is cooled by the condenser 6 through the oil separator 4 and becomes liquid refrigerant and flows through the refrigerant pipe 7.
- the liquid refrigerant from the respective refrigerant pipes 7 joins at the junction pipe portions 8 and 8, flows through the refrigerant pipe 9, and flows into the liquid reservoir 10.
- the liquid refrigerant from the liquid storage container 10 passes through the refrigerant pipe 11 and is distributed to the parallel pipes 13, 13, 13 by the distribution pipe parts 12, 12 and flows into the supercooling heat exchange parts 28, 28, 28, respectively.
- the liquid refrigerant in the parallel pipes 13 in each supercooling heat exchange section 28 flows into the return circuit 29 on the downstream side and is cooled by the refrigerant throttled by the supercooling throttle valve 49 to increase the degree of supercooling.
- the liquid refrigerant in the refrigerant circuit that has passed through the parallel pipes 13, 13, 13 merges at the merging pipe portions 14, 14, flows through the refrigerant pipe 15, and reaches the refrigerant pipe 17.
- the liquid refrigerant in the refrigerant pipe 17 reaches the throttle valve 20 from the refrigerant pipe 19.
- the refrigerant is squeezed in the throttle valve 20 to become a gas-liquid two-phase and flows into the evaporator 21.
- the refrigerant receives heat to become a gas refrigerant and flows through the refrigerant pipe 22.
- the gas refrigerant in the refrigerant pipe 22 flows into the refrigerant pipe 24 of the refrigerator, and is distributed to the refrigerant pipes 26, 26, 26 directed to the compressor side modules 2, 2, 2 by the distribution pipe portions 25, 25, respectively.
- coolant piping 26 of each compressor side module 2 flows in into each accumulator 27, and returns to the suction side of the compressor 3 through the refrigerant
- FIG. Such a refrigeration cycle operation is repeated.
- the control device 60 determines whether or not 10 seconds have elapsed since the start of the compressor 3 in step S1. If 10 seconds have not elapsed since startup (NO in the same step), the minimum opening of the supercooling throttle valve 49 is output as the command opening that is output to the driver of the supercooling throttle valve (LEV) 49. (Step S2), the process returns to the start of the control operation. On the other hand, if it is exactly 10 seconds after activation (YES in step S1), it is determined in step S3 whether 10 seconds have elapsed since the compressor 3 was activated.
- step S5 If 10 seconds or more have elapsed since startup (NO), is the operation frequency for the inverter device determined by the next calculation increased in step S4 by more than 20% with respect to the currently applied operation frequency? Judge whether or not. If the next operation frequency is to be increased by more than 20% with respect to the current operation frequency (YES), the process reaches step S5. If the operating frequency changes significantly, the initial opening is recalculated to improve followability. Also, in the case where it is exactly 10 seconds after the start of the compressor 3 in step S3 (YES in the same step), the process reaches step S5.
- step S5 the control device 60 detects the current operating frequency detected by the operating capacity detection means 64, the condensation temperature obtained by the high pressure sensor 65, the evaporation temperature obtained by the low pressure sensor 66, and the temperature sensor 70.
- the LEV opening A of the subcooling throttle valve 49 is determined based on the intake gas temperature.
- the initial opening value A of the previous process flow is compared with the current opening LEV0, and the larger opening value is set as the valve opening that is output to the subcooling throttle valve 49 next time. (Step S6), the process returns to the start of the control operation.
- step S4 when the control device 60 does not increase the operation frequency determined next time by more than 20% with respect to the current operation frequency (NO in step S4), the control device 60 performs supercooling in step S7.
- An opening change width ⁇ LEVsc is calculated so that the dryness Xmo of the refrigerant on the outlet side of the heat exchanger 28 approaches 1.
- the calculation method at this time is based on the following calculation method (1).
- Calculation method (1) “Determination method of opening change width ⁇ LEVsc depending on the dryness of refrigerant on the outlet side of the supercooling heat exchanger 28”.
- the control device 60 estimates the current dryness Xmo from the detected current opening degree LEV0, the operating frequency of the inverter device of the compressor 3, the condensation temperature, the evaporation temperature, and the liquid piping temperature.
- This degree of dryness Xmo is calculated in advance from experimental values as a function of operating frequency, condensation temperature, evaporation temperature, and liquid piping temperature.
- the opening change width ⁇ LEVsc is obtained by the following equation, for example.
- ⁇ LEVsc B ⁇ (Xmo-Xmom)
- B is a coefficient obtained from an experiment or the like
- the absolute value of the opening change width ⁇ LEVsc increases when the current dryness Xmo is away from the target dryness Xmom, and when the current dryness Xmo approaches the target dryness Xmom, the opening change width ⁇ LEVsc is increased. The absolute value becomes smaller.
- step S7 the control device 60 further calculates a LEV opening change width ⁇ LEVTd for preventing an increase in the discharge temperature.
- the calculation method at this time is based on the following calculation method (2).
- Calculation method (2) “determining opening degree change width ⁇ LEVTd for preventing discharge temperature from rising”.
- the opening change width ⁇ LEVTd is obtained by the following equation, for example.
- ⁇ LEVTd C / (120 ⁇ Td0)
- C is a coefficient obtained from an experiment or the like
- Td0 is a detected value of the current discharge temperature.
- the opening degree ⁇ LEVTd increases.
- the control modes described above are intended to control the amount of supercooling of the condensate refrigerant so that the discharge temperature of the compressor 3 is set to a permissible value or less and the operation is good in refrigeration efficiency.
- the opening degree of the throttle valve 49 is compared, and the larger opening degree is output to the supercooling throttle valve 49.
- the most efficient operation is when the dryness Xmo of the refrigerant on the outlet side of the supercooling heat exchanger 28 in the return circuit 29 is 1 (see FIG. 4A).
- the moisture control is performed with a dryness Xmo of less than 1 (see FIG. 4C), so the refrigeration efficiency is slightly reduced but the discharge temperature is allowed. Reliability can be maintained by lowering the value below this value.
- the operating frequency detected by the operating state detecting means 61 of the control device 60 the condensation temperature by the high pressure sensor 65, the evaporation temperature by the low pressure sensor 66, and the suction from the temperature sensor 70.
- the refrigerant dryness Xmo on the outlet side of the subcooling heat exchange section 28 of the return circuit 29 connected to the intermediate pressure chamber 3A of the compressor 3 is calculated. Since the valve opening degree of the supercooling throttle valve 49 is controlled so as to approach the value, supercooling can be added with an intermediate pressure in the compressor 3.
- the coefficient of performance COP can be improved as compared with the configuration in which supercooling is added to the low pressure side of the refrigerant circuit as in the prior art. Further, compared to the prior art, parts such as piping and throttle valves and their control systems constituting the injection circuit can be reduced by one system, the configuration is simplified, and the manufacturing cost can be reduced.
- the number of compressor-side modules 2 to be used is appropriately determined, and the determined number of compressor-side modules 2 are connected to the liquid reservoir-side module 1 to produce a refrigerator corresponding to a desired refrigerator capacity.
- the compressor side module 2 has a common configuration, the production lot can be increased, and the manufacturing cost of the refrigerator can be reduced.
- the set of the return circuit 29, the supercooling heat exchanging portion 28, and the supercooling throttle valve 49 provided in each of the parallel pipes 13, 13, and 13 has a common configuration, these also produce the production lot. As a result, the manufacturing cost of the refrigerator can be reduced.
- first connection members 33, 33, 33, the second connection members 34, 34, 34, the third connection members 35, 35, 35, and the fourth connection members 53, 53, 53 are provided.
- the refrigerant pipe 26, the refrigerant pipe 7, the return circuit 29, and the oil equalizing pipe 51 can be divided in the middle, respectively, and the compressor side module 2 can be removed from the entire refrigerator condensing unit for maintenance and repair.
- Embodiment 2 In the refrigerator according to the second embodiment, as shown in FIG. 1, a temperature sensor (supercooling inlet side) that detects the refrigerant temperature at that portion is provided on the refrigerant inlet side of the heat exchanger 28 for supercooling in each return circuit 29. Examples of the refrigerant temperature detecting means) 68 are respectively provided. Further, a temperature sensor (an example of a supercooling outlet side refrigerant temperature detecting means) 69 for detecting the refrigerant temperature at that portion is provided on the refrigerant outlet side of the supercooling heat exchange section 28 in each return circuit 29. Therefore, the control of the second embodiment is executed along the control flow of FIG. 3 by the control device 60 used in the first embodiment.
- step S7 the method of the calculation method (1) in step S7 is different from that of the first embodiment, and the following method (B) is used instead of (A) of the first embodiment.
- the controller 60 determines that the difference between the detected temperature of the temperature sensor 68 on the inlet side of the supercooling heat exchanger 28 in the return circuit 29 and the detected temperature of the temperature sensor 69 on the outlet side of the subcooler heat exchanger 28 is The valve opening degree of the supercooling throttle valve 49 is controlled so that a predetermined temperature difference (for example, 5K) is obtained.
- a predetermined temperature difference for example, 5K
- the dryness Xmo is brought close to 1. It is possible to control to calculate and output the degree change width ⁇ LEVsc. In the control as described above, the dryness Xmo is slightly larger than 1 (see FIG. 4 (b)). Therefore, although the refrigeration efficiency is somewhat lower than the control in (A), it does not hinder the operation.
- Embodiment 3 FIG.
- the refrigerator in which the three compressor side modules 2, 2, and 2 are connected to the upper surface of the liquid storage side module 1 is illustrated, but the present invention is not limited thereto.
- FIG. 5 (a) a refrigerator in which two compressor side modules 2 and 2 are connected to the upper surface of a liquid reservoir side module 1a that is smaller in the left-right direction than the liquid reservoir side module 1, It is included in the present invention.
- Embodiment 4 FIG.
- a refrigerator in which one compressor side module 2 is connected to the upper surface of a liquid side module 1b that is smaller than the liquid side module 1a is also included in the present invention. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
この冷凍機では、中間圧インジェクション回路の中間圧用絞り弁の開度を制御することにより、圧縮機の吐出ガス冷媒温度を制御するようになっている。また、吸入インジェクション回路の過冷却用絞り弁の開度を制御することにより、凝縮器下流側の冷媒を過冷却して冷媒の再蒸発を防止し、冷媒の過充填や冷凍能力低下を防止するようになっている。
また、過冷却用熱交換部で過冷却した冷媒を吸入インジェクション回路によって圧縮機の吸込側に戻しているため、効率の低い運転とならざるを得なかった。
また、運転容量の異なる機種ごとに過冷却用熱交換部の仕様が異なるため、生産ロット数が少なくなり、そのためにコスト高になるという問題もあった。特に生産ロット数の少ない大容量機種はその問題が顕著に生じる。
従来技術のように低圧側(圧縮機吸込側)に過冷却を付加する場合よりも冷媒回路の成績係数COPを改善することができる。また、従来技術と比べて、戻し回路(インジェクション回路)を構成する配管類や絞り弁およびその制御系統などの部品を一系統分削減できて、構成が簡素になるうえ製造コストの低減化が可能となる。
図1は本発明の実施形態1および実施形態2に係る冷凍機の冷媒回路構成図、図2は前記冷凍機の冷凍機凝縮ユニットを示す図であって、(a)は正面図、(b)は左側面図、(c)は右側面図、(d)は平面図である。
各図において、この実施形態に係る冷凍機は、1台の液溜側モジュール1と、液溜側モジュール1の上面40に設置されて連結される3台の圧縮機側モジュール2,2,2とから成る冷凍機凝縮ユニットを備えている。これら3台の圧縮機側モジュール2,2,2はいずれも互いに互換性のある共通の構造を有している。
均油配管51の途中には第4開閉弁52が配備されている。均油配管51における第4開閉弁52とオイルレギュレータ36との間には、均油配管51を分離可能に接続する第4接続部材53が配備されている。また、圧縮機3の中間圧室3Aには、後で詳述する液溜側モジュール1の過冷却用熱交換部28からの冷媒を流入させる戻し回路29が接続されている。戻し回路29の途中には、戻し回路29を分離可能に接続する第3接続部材35が配備されている。上記した第1接続部材33、第2接続部材34、第3接続部材35、および第4接続部材53の構成は特に限定されないが、ここでは例えばフレアナットで具現化してある。
この過冷却用熱交換部28では、戻し回路29の過冷却用絞り弁49で絞られた冷媒により並列配管13内の冷媒の過冷却度が大きくされるとともに、戻し回路29の冷媒は圧縮機3に戻される。そして、戻し回路29における並列配管13からの分岐部と過冷却用熱交換部28との間には、第3開閉弁32が設けられている。そうして、合流管部14からの冷媒配管15は冷媒配管17に接続される。
尚、図1では1つの圧縮機側モジュール2の詳細構成のみを示して残り2つの圧縮機側モジュール2の詳細構成を省略しているが、これら残り2つの圧縮機側モジュール2の詳細構成も、示した圧縮機側モジュール2のものと同じである。
まず、制御動作の開始により、制御装置60は、ステップS1で圧縮機3の起動後10秒経過したか否かを判断する。起動後10秒経過していなければ(同ステップのNO)、過冷却用絞り弁(LEV)49のドライバに向けて出力される指令開度として、過冷却用絞り弁49の最低開度を出力して(ステップS2)、制御動作開始に戻る。一方、起動後ちょうど10秒であれば(ステップS1のYES)、ステップS3で圧縮機3の起動後10秒間経過したか否かを判断する。起動後10秒以上経過していれば(NO)、ステップS4において、次回の演算により決定されるインバータ装置向けの運転周波数が現在適用されている運転周波数に対し20%を超えて増加されるか否かを判断する。次回の運転周波数を、現在の運転周波数に対し20%を超えて増加する予定であれば(YES)、処理はステップS5に至る。運転周波数が大幅に変わる場合は、追従性向上のために初期開度を再計算する。また、ステップS3において圧縮機3の起動後ちょうど10秒である場合も(同ステップのYES)、処理はステップS5に至る。
算出方法(1):「過冷却用熱交換器28出側の冷媒の乾き度による開度変化幅ΔLEVscの決定方法」.
(A)制御装置60は、検出された現在の開度LEV0、圧縮機3のインバータ装置の運転周波数、凝縮温度、蒸発温度、および液配管温度から、現在の乾き度Xmoを推測する。
この乾き度Xmoは、予め実験値から、運転周波数、凝縮温度、蒸発温度および液配管温度の関数として算出しておく。その計算方法は、例えば、
Xmo=α×運転周波数+β×凝縮温度+γ×蒸発温度+η×液配管温度
ただし、α、β、γ、ηは定数。
そして、開度変化幅ΔLEVscを例えば次式により求める。
ΔLEVsc = B×(Xmo-Xmom)
ここで、Bは実験などから求めた係数であり、Xmomは目標乾き度(=1)である。
上式から明らかなように、現在の乾き度Xmoが目標乾き度Xmomから離れた場合は開度変化幅ΔLEVscの絶対値が大きくなり、目標乾き度Xmomに近づいた場合は開度変化幅ΔLEVscの絶対値が小さくなる。
算出方法(2):「吐出温度の上昇を防ぐための開度変化幅ΔLEVTd決定方法」.
この方法では、超えてはならない吐出温度を120℃とした場合、開度変化幅ΔLEVTdを例えば次式により求める。
ΔLEVTd=C/(120-Td0)
ここで、Cは実験などから求めた係数であり、Td0は現在の吐出温度の検出値である。
上式から判るように、吐出温度Td0が120℃に近づくにつれて、開度ΔLEVTdは大きくなる。
LEV = LEV0 + ΔLEV
この実施形態2に係る冷凍機では、図1に示すように、各戻し回路29における過冷却用熱交換部28の冷媒入側に、その部位の冷媒温度を検出する温度センサ(過冷却入側冷媒温度検出手段の例)68がそれぞれ配備されている。また、各戻し回路29における過冷却用熱交換部28の冷媒出側に、その部位の冷媒温度を検出する温度センサ(過冷却出側冷媒温度検出手段の例)69がそれぞれ配備されている。
そこで、実施形態2の制御は実施形態1で用いた制御装置60により、図3の制御フローに沿って実行される。但し、ステップS7での算出方法(1)の手法が実施形態1とは異なっており、実施形態1の(A)の替わりに、次の(B)の手法が用いられる。
(B)制御装置60は、戻し回路29における過冷却用熱交換器28入側の温度センサ68の検出温度と、過冷却用熱交換器28出側の温度センサ69の検出温度との差が所定温度差(例えば5K)となるように、過冷却用絞り弁49の弁開度を制御する。すなわち、過冷却用熱交換器28入側の温度センサ68の検出温度と、過冷却用熱交換器28出側の温度センサ69の検出温度を用いて、乾き度Xmoを1に近づけるような開度変化幅ΔLEVscを算出して出力する制御を行なうことができるのである。尚、前記のような制御は乾き度Xmoが1よりも若干大きくなる(図4(b)参照)ため、(A)の制御よりはいくぶん冷凍効率が落ちるが運転に支障を来たすものでない。
尚、上記の実施形態1および実施形態2では、液溜側モジュール1の上面に、3台の圧縮機側モジュール2,2,2を連結した冷凍機を例示したが、本発明はそれに限定されない。例えば、図5(a)に示すように、液溜側モジュール1よりも左右方向に小型の液溜側モジュール1aの上面に、2台の圧縮機側モジュール2,2を連結した冷凍機も、本発明に含まれる。
あるいは、図5(b)に示すように、液溜側モジュール1aよりも更に小型の液溜側モジュール1bの上面に、1台の圧縮機側モジュール2を連結した冷凍機も、本発明に含まれる。
Claims (4)
- 圧縮機、凝縮器、液溜容器、過冷却用熱交換部、絞り弁および蒸発器を当該順に配管接続してなる冷媒回路と、
前記冷媒回路における過冷却用熱交換部の冷媒流通方向下流位置から分岐し前記過冷却用熱交換部を経て圧縮機の中間圧室につながる戻し回路と、
前記戻し回路における過冷却用熱交換部の冷媒入側に配備された弁開度可変の過冷却用絞り弁と、
前記冷媒回路における運転状態データを検出する運転状態検出手段とを有して成る冷凍機において、
前記運転状態検出手段により検出された運転状態データから前記戻し回路の過冷却用熱交換部出側における冷媒の乾き度を算出する乾き度算出手段と、
前記乾き度算出手段により算出された乾き度を1の値(所定値)に近づけるように前記過冷却用絞り弁の弁開度を制御する過冷却用絞り弁制御手段とを備えていることを特徴とする冷凍機。 - 運転状態検出手段が、
容量可変の圧縮機の運転容量を検出する運転容量検出手段、
凝縮器における冷媒凝縮温度を検出する凝縮温度検出手段、
蒸発器における冷媒蒸発温度を検出する蒸発温度検出手段、および
前記冷媒回路における過冷却用熱交換部の冷媒出側の冷媒温度を検出する液冷媒温度検出手段を含んでいることを特徴とする請求項1に記載の冷凍機。 - 運転状態検出手段が、
前記戻し回路における過冷却用熱交換部の冷媒入側の冷媒温度を検出する過冷却入側冷媒温度検出手段と、
前記戻し回路における過冷却用熱交換部の冷媒出側の冷媒温度を検出する過冷却出側冷媒温度検出手段とを含んでいることを特徴とする請求項1に記載の冷凍機。 - 圧縮機および凝縮器が配備された複数共通の圧縮機側モジュールと、
前記複数の圧縮機側モジュールのそれぞれが連結されるとともに、前記複数の圧縮機側モジュールの凝縮器からの液冷媒を収容する液溜容器が配備された液溜側モジュールと、
前記液溜容器からの液冷媒を前記圧縮機側モジュールに対応した数に並列に分配する複数の並列配管と、
前記並列配管のそれぞれに配備された、戻し回路、過冷却用熱交換部および過冷却用絞り弁から成る共通の組と、
前記複数の並列配管から合流した冷媒を絞る絞り弁と、
前記絞り弁からの冷媒を蒸発させる蒸発器とを当該順に配管接続して冷媒回路を構成して成ることを特徴とする請求項1から請求項3のいずれか一項に記載の冷凍機。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080013502.8A CN102365507B (zh) | 2009-03-26 | 2010-03-19 | 制冷机 |
US13/254,192 US20110314854A1 (en) | 2009-03-06 | 2010-03-19 | Refrigerator |
JP2011505861A JP5496182B2 (ja) | 2009-03-26 | 2010-03-19 | 冷凍機 |
EP10755635.9A EP2413065B1 (en) | 2009-03-26 | 2010-03-19 | Refrigerator |
HK12104826.8A HK1164428A1 (en) | 2009-03-26 | 2012-05-16 | Refrigerator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-076781 | 2009-03-06 | ||
JP2009076781 | 2009-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010109832A1 true WO2010109832A1 (ja) | 2010-09-30 |
Family
ID=42780531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001974 WO2010109832A1 (ja) | 2009-03-06 | 2010-03-19 | 冷凍機 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110314854A1 (ja) |
EP (1) | EP2413065B1 (ja) |
JP (1) | JP5496182B2 (ja) |
CN (1) | CN102365507B (ja) |
HK (1) | HK1164428A1 (ja) |
WO (1) | WO2010109832A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6012757B2 (ja) * | 2012-11-21 | 2016-10-25 | 三菱電機株式会社 | 空気調和装置 |
CN114608181A (zh) * | 2022-03-21 | 2022-06-10 | 青岛海尔空调电子有限公司 | 电子膨胀阀的控制方法、装置、介质及空气源热泵机组 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5183609B2 (ja) | 2009-10-23 | 2013-04-17 | 三菱電機株式会社 | 冷凍空調装置 |
EP2546588B1 (en) * | 2010-03-12 | 2021-01-13 | Mitsubishi Electric Corporation | Refrigeration and air conditioning device |
EP3023713A1 (en) * | 2014-11-19 | 2016-05-25 | Danfoss A/S | A method for controlling a vapour compression system with an ejector |
EP3334985B1 (en) | 2015-08-14 | 2019-05-01 | Danfoss A/S | A vapour compression system with at least two evaporator groups |
WO2017053596A1 (en) * | 2015-09-24 | 2017-03-30 | Carrier Corporation | System and method of controlling an oil flow within a refrigeration system |
ES2749161T3 (es) | 2015-10-20 | 2020-03-19 | Danfoss As | Un procedimiento de control de un sistema de compresión de vapor en modo eyector durante un tiempo prolongado |
CA2997658A1 (en) | 2015-10-20 | 2017-04-27 | Danfoss A/S | A method for controlling a vapour compression system with a variable receiver pressure setpoint |
JP2020041781A (ja) * | 2018-09-13 | 2020-03-19 | パナソニックIpマネジメント株式会社 | 冷却モジュール及び冷却装置 |
DK180146B1 (en) | 2018-10-15 | 2020-06-25 | Danfoss As Intellectual Property | Heat exchanger plate with strenghened diagonal area |
CN111043782A (zh) * | 2019-12-25 | 2020-04-21 | 中船重工(邯郸)派瑞特种气体有限公司 | 一种大型模块化冷冻液制冷系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243314A (ja) * | 2001-02-21 | 2002-08-28 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2005274085A (ja) | 2004-03-26 | 2005-10-06 | Mitsubishi Electric Corp | 冷凍装置 |
JP2007051841A (ja) * | 2005-08-19 | 2007-03-01 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置 |
JP2007255730A (ja) * | 2006-03-20 | 2007-10-04 | Mitsubishi Electric Corp | 空気調和機 |
JP2007263444A (ja) * | 2006-03-28 | 2007-10-11 | Mitsubishi Electric Corp | 空気調和装置 |
JP2008106738A (ja) * | 2006-09-29 | 2008-05-08 | Fujitsu General Ltd | ロータリ圧縮機およびヒートポンプシステム |
JP2009228978A (ja) * | 2008-03-24 | 2009-10-08 | Mitsubishi Electric Corp | 冷凍装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3858276B2 (ja) * | 1997-11-17 | 2006-12-13 | ダイキン工業株式会社 | 冷凍装置 |
JP2003185286A (ja) * | 2001-12-19 | 2003-07-03 | Hitachi Ltd | 空気調和機 |
JP3984489B2 (ja) * | 2002-03-25 | 2007-10-03 | 三菱電機株式会社 | 冷凍装置 |
JP4313083B2 (ja) * | 2003-05-13 | 2009-08-12 | 株式会社神戸製鋼所 | スクリュ冷凍装置 |
US20050271526A1 (en) * | 2004-06-04 | 2005-12-08 | Samsung Electronics Co., Ltd. | Reciprocating compressor, driving unit and control method for the same |
JP2006112708A (ja) * | 2004-10-14 | 2006-04-27 | Mitsubishi Electric Corp | 冷凍空調装置 |
JP2006329557A (ja) * | 2005-05-27 | 2006-12-07 | Kobe Steel Ltd | スクリュ冷凍装置 |
JP4596426B2 (ja) * | 2005-09-21 | 2010-12-08 | 日立アプライアンス株式会社 | 熱源装置 |
JP2007139225A (ja) * | 2005-11-15 | 2007-06-07 | Hitachi Ltd | 冷凍装置 |
JP4120682B2 (ja) * | 2006-02-20 | 2008-07-16 | ダイキン工業株式会社 | 空気調和装置および熱源ユニット |
JP4915250B2 (ja) * | 2007-02-23 | 2012-04-11 | 株式会社デンソー | エジェクタ式冷凍サイクル |
JP5144959B2 (ja) * | 2007-05-25 | 2013-02-13 | 三菱重工業株式会社 | 熱源機およびその制御方法 |
CN101542218B (zh) * | 2007-06-22 | 2012-06-27 | 松下电器产业株式会社 | 冷冻循环装置 |
-
2010
- 2010-03-19 US US13/254,192 patent/US20110314854A1/en not_active Abandoned
- 2010-03-19 EP EP10755635.9A patent/EP2413065B1/en active Active
- 2010-03-19 WO PCT/JP2010/001974 patent/WO2010109832A1/ja active Application Filing
- 2010-03-19 JP JP2011505861A patent/JP5496182B2/ja active Active
- 2010-03-19 CN CN201080013502.8A patent/CN102365507B/zh active Active
-
2012
- 2012-05-16 HK HK12104826.8A patent/HK1164428A1/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243314A (ja) * | 2001-02-21 | 2002-08-28 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2005274085A (ja) | 2004-03-26 | 2005-10-06 | Mitsubishi Electric Corp | 冷凍装置 |
JP2007051841A (ja) * | 2005-08-19 | 2007-03-01 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置 |
JP2007255730A (ja) * | 2006-03-20 | 2007-10-04 | Mitsubishi Electric Corp | 空気調和機 |
JP2007263444A (ja) * | 2006-03-28 | 2007-10-11 | Mitsubishi Electric Corp | 空気調和装置 |
JP2008106738A (ja) * | 2006-09-29 | 2008-05-08 | Fujitsu General Ltd | ロータリ圧縮機およびヒートポンプシステム |
JP2009228978A (ja) * | 2008-03-24 | 2009-10-08 | Mitsubishi Electric Corp | 冷凍装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6012757B2 (ja) * | 2012-11-21 | 2016-10-25 | 三菱電機株式会社 | 空気調和装置 |
JPWO2014080464A1 (ja) * | 2012-11-21 | 2017-01-05 | 三菱電機株式会社 | 空気調和装置 |
CN114608181A (zh) * | 2022-03-21 | 2022-06-10 | 青岛海尔空调电子有限公司 | 电子膨胀阀的控制方法、装置、介质及空气源热泵机组 |
CN114608181B (zh) * | 2022-03-21 | 2023-12-26 | 青岛海尔空调电子有限公司 | 电子膨胀阀的控制方法、装置、介质及空气源热泵机组 |
Also Published As
Publication number | Publication date |
---|---|
HK1164428A1 (en) | 2012-09-21 |
CN102365507A (zh) | 2012-02-29 |
JPWO2010109832A1 (ja) | 2012-09-27 |
EP2413065A4 (en) | 2016-04-27 |
CN102365507B (zh) | 2015-04-01 |
JP5496182B2 (ja) | 2014-05-21 |
EP2413065A1 (en) | 2012-02-01 |
US20110314854A1 (en) | 2011-12-29 |
EP2413065B1 (en) | 2019-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5496182B2 (ja) | 冷凍機 | |
US11300341B2 (en) | Method of control for economizer of transport refrigeration units | |
US9657978B2 (en) | Refrigerant control system for a flash tank | |
CN102042724B (zh) | 冷媒控制部件、空调制冷系统及冷媒循环控制方法 | |
EP3059521B1 (en) | Air conditioning device | |
JP6613759B2 (ja) | エンジン駆動式空気調和装置 | |
JP4978777B2 (ja) | 冷凍サイクル装置 | |
US20160231040A1 (en) | Refrigeration circuit with heat recovery module | |
US8069684B2 (en) | Control of a refrigeration circuit with an internal heat exchanger | |
US7395674B2 (en) | Air conditioner | |
US9500395B2 (en) | Refrigeration circuit, gas-liquid separator and heating and cooling system | |
CN107401849A (zh) | 多联机系统及其过冷回路阀体的控制方法和装置 | |
CN107559953A (zh) | 多联机系统及其过冷回路阀体的控制方法和装置 | |
CN107560215A (zh) | 多联机系统及其过冷回路阀体的控制方法和装置 | |
JP2007107859A (ja) | ガスヒートポンプ式空気調和装置 | |
JP6554903B2 (ja) | 空気調和装置 | |
CN111907301B (zh) | 组合式换热器、热交换系统及其优化方法 | |
JP6250428B2 (ja) | 冷凍サイクル装置 | |
KR101504003B1 (ko) | 히트 펌프식 공기 조화 장치 | |
JP2013217602A (ja) | 熱源機、冷凍空調装置、制御装置 | |
CN203629166U (zh) | 一种孔板节流装置 | |
CN104976711A (zh) | 制冷装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080013502.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10755635 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011505861 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13254192 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010755635 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |