[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010109620A1 - Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon - Google Patents

Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon Download PDF

Info

Publication number
WO2010109620A1
WO2010109620A1 PCT/JP2009/056054 JP2009056054W WO2010109620A1 WO 2010109620 A1 WO2010109620 A1 WO 2010109620A1 JP 2009056054 W JP2009056054 W JP 2009056054W WO 2010109620 A1 WO2010109620 A1 WO 2010109620A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
hot water
load
water supply
Prior art date
Application number
PCT/JP2009/056054
Other languages
French (fr)
Japanese (ja)
Inventor
宏典 薮内
純一 亀山
博文 ▲高▼下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/056054 priority Critical patent/WO2010109620A1/en
Priority to JP2011505743A priority patent/JP5202726B2/en
Publication of WO2010109620A1 publication Critical patent/WO2010109620A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to a load-side relay unit that houses a plurality of heat exchangers and an air-conditioning and hot-water supply complex system equipped with the same.
  • a heat source unit equipped with a first compressor, a flow path switching valve, a heat source side heat exchanger, a first flow control device, a first load side heat exchanger, A first load-side unit including a two-compressor, a second load-side heat exchanger, and a second flow rate control device, the first compressor, the flow path switching valve, and the heat source-side heat.
  • the exchanger, the first flow control device, and the first load-side heat exchanger are sequentially connected by a refrigerant pipe to form a main circuit, and the second compressor and the second load-side heat exchange.
  • a heat pump device is proposed in which a load-side refrigerant circuit is configured by sequentially connecting a condenser, the second flow rate control device, and the first load-side heat exchanger with refrigerant piping (see, for example, Patent Document 1). ).
  • the heat pump device described in Patent Document 1 is provided with a load-side refrigerant circuit, whereby the capacity of the main circuit can be enhanced and the operation efficiency is improved.
  • various refrigeration devices constituting the load-side refrigerant circuit are mounted on a load-side unit (conceived by the load-side relay unit according to the present invention). Since a plurality of heat exchangers (first load side heat exchanger and second load side heat exchanger) are connected to the load side refrigerant circuit, the size (size) of the load side unit (housing) is determined. It is expected to grow. If it does so, installation space will be restrict
  • the present invention has been made in order to solve the above-described problems, and accommodates a plurality of heat exchangers, and is designed to reduce the size and simplify the piping work, and an air conditioner equipped with the load-side relay unit. It aims to provide a hot water supply complex system.
  • the load-side relay unit according to the present invention is a load-side relay unit of a refrigeration cycle apparatus in which at least two heat exchangers are mounted, and the two or more heat exchangers are configured in substantially the same shape. It is characterized by being arranged so that the joint formation surfaces of the pipes connecting each other face each other.
  • an air conditioning compressor, a flow path switching unit, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle unit are connected in series and connected in series.
  • the refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means include a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit.
  • An air conditioning refrigeration cycle for circulating hot water supply refrigerant in the refrigerant circuit, a water circulation pump, the heat medium-refrigerant heat exchanger, and a water circuit in which a hot water storage tank is connected in series, the hot water supply water in the water circuit Hot water supply load that circulates
  • the heat exchangers having substantially the same shape are arranged so that the joint forming surfaces of the pipes connecting each other face each other. It can be shortened, and simplification of piping construction and reduction in unit size can be realized.
  • the piping can be shortened accordingly, and simplification and downsizing of the piping work can be realized.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air-conditioning and hot water supply combined system 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described.
  • This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates refrigerant (air conditioning refrigerant). is there.
  • a refrigeration cycle heat pump cycle
  • refrigerant air conditioning refrigerant
  • An air conditioning and hot water supply combined system 100 includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3, and includes an air conditioning refrigeration cycle 1 and a hot water supply refrigeration cycle 2.
  • a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant or water mixing.
  • a load-side relay unit F is mounted on the air conditioning and hot water supply complex system 100 (described in detail in FIG. 2). In FIG.
  • the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator.
  • the state of the cycle when working (for convenience, referred to as heating main operation) is shown.
  • the air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A.
  • the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
  • the heat source machine A is configured by connecting a compressor 101 for air conditioning, a four-way valve 102 that is a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series. It has the function of supplying cold heat to the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D.
  • a blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103.
  • the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E.
  • the reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
  • the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a.
  • the second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a.
  • the connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
  • the first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
  • the air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state.
  • the four-way valve 102 switches the flow of the air conditioning refrigerant.
  • the outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid.
  • the accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant.
  • the accumulator 104 may be any container that can store excess air-conditioning refrigerant.
  • the cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
  • the cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load
  • the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
  • connection pipe 133 the connection pipe connected from the relay E to the indoor heat exchanger 118
  • connection pipe 134 the connection pipe connected from the relay E to the air conditioning throttle means 117
  • the air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant.
  • the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification.
  • the air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
  • the hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41.
  • the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
  • the hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant.
  • the hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
  • the relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do.
  • the relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat.
  • the exchanger 113 and the second relay stop means 114 are configured.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe).
  • the pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108.
  • the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant.
  • Valve means 109b that may or may not be provided is provided.
  • the open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
  • connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe).
  • a pipe 136b) is connected at the second meeting part 116.
  • the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b.
  • a stop valve 110b is provided.
  • the open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
  • the first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113.
  • the second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
  • the gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other.
  • the first distributor 115 is connected to the second distributor 110.
  • the first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes.
  • the 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
  • the first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched.
  • the first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. .
  • the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted.
  • the second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure.
  • the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
  • the refrigerant flow rate adjusting means may be used.
  • the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle.
  • Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
  • the air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the air-conditioning compressor 101 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed.
  • the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited.
  • natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A
  • HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
  • the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state.
  • the superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115.
  • the air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115.
  • a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111.
  • the degree of supercooling is obtained by heat exchange.
  • the air-conditioning refrigerant used for air-conditioning flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins.
  • the air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107.
  • the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, the accumulator The process returns to the air conditioning compressor 101 via 104.
  • the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
  • the hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state.
  • the hot water supply compressor 21 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51.
  • the hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it.
  • the hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.
  • the type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
  • the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51.
  • the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3.
  • This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1.
  • the expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
  • the hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit.
  • the operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed.
  • the hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3.
  • the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure.
  • the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do.
  • the hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1).
  • the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
  • a refrigerant having a low critical temperature when used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. .
  • the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP.
  • a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
  • the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done.
  • a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost.
  • the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
  • FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or one or more is connected. And the capacity
  • the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high temperature (for example, condensing temperature 85 degreeC), and when there is another heating load, it does not increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. Energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
  • high-temperature hot water supply demand for example, 80 ° C.
  • the load-side relay unit F includes a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22. Contained. In other words, the load-side relay unit F has a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, the whole hot water supply refrigeration cycle 2, and the heat medium-refrigerant heat exchanger 51. A part of the hot water supply load 3 is accommodated. This load-side relay unit F tends to be large because a plurality of heat exchangers are accommodated. Therefore, in the present embodiment, as described below, the load-side relay unit F is miniaturized and piping construction is simplified.
  • FIG. 2 is an enlarged circuit diagram showing an enlarged portion of the load side relay unit F according to the embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view showing a lower portion of the load side relay unit F in an enlarged manner.
  • FIG. 4 is an enlarged perspective view showing the heat exchanger support member 25 installed above the load-side relay unit F.
  • the load-side relay unit F which is a feature of the present embodiment, will be described in detail.
  • the load-side relay unit F includes a hot water supply compressor 21, a refrigerant-refrigerant heat exchanger 41, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a hot water supply heat source throttle.
  • a means 119 is accommodated.
  • the load-side relay unit F houses the refrigerant-refrigerant heat exchanger 41, the hot water supply heat source throttle means 119, the heat medium-refrigerant heat exchanger 51, the hot water supply compressor 21, and the hot water supply throttle means 22. It has a function as a housing. Then, the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 have substantially the same shape, the area occupied in the load-side relay unit F is reduced, and the dimensions of the load-side relay unit F are reduced. .
  • the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are configured by plate heat exchangers, and the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 themselves are downsized. .
  • the size of the load-side relay unit F is further reduced by minimizing the piping path that is arranged in the unit F and connects the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51.
  • positioning both heat exchangers in series facing the distance between piping junction parts can be shortened, and joining piping which connects both heat exchangers can be minimized. Therefore, the cost can be reduced by shortening the connecting piping.
  • the heat medium-refrigerant heat exchanger 51 is for exchanging heat between the heat medium circulating in the hot water supply load 3 and the refrigerant circulating in the hot water supply refrigeration cycle 2, and the heat medium is contained in the heat exchanger. Flowing. For safety, it is required to prevent the heat medium from leaking to the outside even when damage such as a crack occurs in the heat medium-refrigerant heat exchanger 51.
  • a drain receiver may be installed in order to discharge water condensed on the surface to the outside. In such a drain receiver, heat leaked from the heat medium-refrigerant heat exchanger 51 may be used. The entire amount of media cannot be received.
  • a drain pan 10 having a volume for receiving the volume of the heat medium-refrigerant heat exchanger 51 is installed below the heat medium-refrigerant heat exchanger 51.
  • the drain pan 10 is preferably subjected to at least one of a coating process, an antirust process, and an anticorrosion process. If such a process is performed, even when a heat medium is dripped onto the drain pan 10, it becomes possible to prevent the occurrence of rust and erosion corrosion due to the heat medium.
  • an inclination may be provided on the bottom surface of the drain pan 10.
  • the heat medium-refrigerant heat exchanger 51 When the heat medium-refrigerant heat exchanger 51 is directly installed on the drain pan 10, no gap is formed between the drain pan 10 and the heat medium-refrigerant heat exchanger 51. Therefore, when receiving an impact due to the drop of the load-side relay unit F or vibration during transportation, the impact is directly transmitted to the drain pan 10 and the drain pan 10 may be damaged. In particular, when the load-side relay unit F is transported over a long distance, the possibility of receiving an impact increases. In order to absorb such an impact, an impact absorbing member 20 is provided between the drain pan 10 and the heat medium-refrigerant heat exchanger 51.
  • the shock absorbing member 20 may be formed by bending a sheet metal as shown in FIG. 3, for example, and provided at a predetermined interval from the drain pan 10. Then, a predetermined space is created between the drain pan 10 and the impact absorbing member 20, and even when the load-side relay unit F receives an impact, the impact is not directly transmitted to the drain pan 10. In other words, the impact absorbing member 20 disperses the impact received by the load-side relay unit F and reduces the impact transmitted to the drain pan 10. As a result, even when the load-side relay unit F receives an impact, the drain pan 10 can be prevented from being damaged by the impact.
  • the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are configured by plate heat exchangers
  • the present invention is not limited thereto.
  • the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are replaced with a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, or a double tube heat exchanger. Or the like.
  • the shock absorbing member 20 is formed of a sheet metal has been described as an example, it is not limited thereto.
  • the impact-absorbing member 20 may be formed of a curable plastic with a raised bottom plate, other resin, or polystyrene foam.
  • the heat exchanger support member 25 installed above the load side relay unit F will be described.
  • the heat exchanger support member 25 is provided above the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51, and supports both heat exchangers from above.
  • the heat exchanger support member 25 is configured by bending four sides of a sheet metal at a substantially right angle.
  • the heat exchanger support member 25 has two protrusions (an X-axis direction misalignment prevention protrusion 26 and a Y-axis direction misalignment prevention protrusion 27) on one surface (the surface on the side in contact with the heat exchanger). Is formed.
  • the heat exchanger support member 25 has the four sides and two protrusions on the refrigerant-refrigerant heat exchanger 41 and heat medium-refrigerant heat exchanger 51 side so that the refrigerant-refrigerant heat exchanger 41 and the heat medium- Installed above the refrigerant heat exchanger 51.
  • the hot water circulating pipe 203 such as a water pipe is installed in the load side relay unit F, that is, when the hot water circulating pipe 203 is attached to the load side relay unit F, the screw is attached in the same manner as the pipe is attached to the normal unit.
  • the pipe is screwed into the load side relay unit F, and the hot water storage water circulation pipe 203 is constructed.
  • the X-axis direction misalignment preventing projection 26 and the Y-axis direction misalignment preventing projection 27 are formed on the heat exchanger support member 25, and refrigerant-refrigerant heat exchange is performed by these two projections.
  • the movement of the heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 is suppressed. That is, the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are locked by the X-axis direction misalignment preventing projection 26 and the Y-axis direction misalignment preventing projection 27, and are tightened at the time of screw pipe construction. There is no deviation even with torque.
  • a control box or the like in which a control board is disposed above the heat exchanger support member 25 (not on the side of the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51) is installed.
  • a part of the control box may be placed on the upper surface of the heat exchanger support member 25. By doing so, the strength of the heat exchanger support member 25 can be reinforced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A load-side relay unit which houses a plurality of heat exchangers, and is designed for downsizing and simplified piping work; and a compound air conditioning/hot water supply system mounting the load-side relay unit thereon. The load-side relay unit (F) has mounted thereon two or more heat exchangers (a refrigerant-refrigerant heat exchanger (41) and a heat carrier-refrigerant heat exchanger (51)), wherein the two or more heat exchangers are configured in a substantially identical shape, and arranged such that the joint-forming surfaces of refrigerant piping (45) interconnecting the heat exchangers face each other.

Description

負荷側中継ユニット及びそれを搭載した空調給湯複合システムLoad-side relay unit and combined air conditioning and hot water supply system
 本発明は、複数台の熱交換器を収容した負荷側中継ユニット及びそれを搭載した空調給湯複合システムに関するものである。 The present invention relates to a load-side relay unit that houses a plurality of heat exchangers and an air-conditioning and hot-water supply complex system equipped with the same.
 従来から、冷房負荷、暖房負荷及び給湯負荷を同時に供給できる空調給湯複合システムも存在している。そのようなものとして、「第1圧縮機と、流路切替弁と、熱源側熱交換器とを搭載した熱源側ユニットと、第1流量制御装置と、第1負荷側熱交換器と、第2圧縮機と、第2負荷側熱交換器と、第2流量制御装置とを搭載した第1負荷側ユニットとを備え、前記第1圧縮機と、前記流路切替弁と、前記熱源側熱交換器と、前記第1流量制御装置と、前記第1負荷側熱交換器とを冷媒配管で順次接続し、主回路を構成するとともに、前記第2圧縮機と、前記第2負荷側熱交換器と、前記第2流量制御装置と、前記第1負荷側熱交換器とを冷媒配管で順次接続し、負荷側冷媒回路を構成した」ヒートポンプ装置が提案されている(たとえば、特許文献1参照)。 Conventionally, there are air-conditioning and hot-water supply complex systems that can simultaneously supply a cooling load, a heating load, and a hot water supply load. As such, “a heat source unit equipped with a first compressor, a flow path switching valve, a heat source side heat exchanger, a first flow control device, a first load side heat exchanger, A first load-side unit including a two-compressor, a second load-side heat exchanger, and a second flow rate control device, the first compressor, the flow path switching valve, and the heat source-side heat. The exchanger, the first flow control device, and the first load-side heat exchanger are sequentially connected by a refrigerant pipe to form a main circuit, and the second compressor and the second load-side heat exchange. A heat pump device is proposed in which a load-side refrigerant circuit is configured by sequentially connecting a condenser, the second flow rate control device, and the first load-side heat exchanger with refrigerant piping (see, for example, Patent Document 1). ).
国際公開WO2008/117408号公報(図1等)International Publication WO2008 / 117408 (FIG. 1 etc.)
 特許文献1に記載のヒートポンプ装置は、負荷側冷媒回路を備えることによって、主回路の能力を増強することができ、運転効率を向上させるようにしたものである。このようなヒートポンプ装置において、負荷側冷媒回路を構成する各種冷凍機器を負荷側ユニット(本発明に係る負荷側中継ユニットに想到する)に搭載するようになっている。この負荷側冷媒回路には、複数の熱交換器(第1負荷側熱交換器及び第2負荷側熱交換器)が接続されているため、負荷側ユニット(筐体)の寸法(サイズ)が大きくなってしまうことが予想される。そうすると、設置スペースが制限されたり、制作上の配管施工が複雑となってしまったりすることが課題として残る。 The heat pump device described in Patent Document 1 is provided with a load-side refrigerant circuit, whereby the capacity of the main circuit can be enhanced and the operation efficiency is improved. In such a heat pump device, various refrigeration devices constituting the load-side refrigerant circuit are mounted on a load-side unit (conceived by the load-side relay unit according to the present invention). Since a plurality of heat exchangers (first load side heat exchanger and second load side heat exchanger) are connected to the load side refrigerant circuit, the size (size) of the load side unit (housing) is determined. It is expected to grow. If it does so, installation space will be restrict | limited and piping construction on production will become complicated.
 本発明は、上記の課題を解決するためになされたもので、複数の熱交換器を収容するとともに、小型化及び配管施工の簡素化を図るようにした負荷側中継ユニット及びそれを搭載した空調給湯複合システムを提供することを目的としている。 The present invention has been made in order to solve the above-described problems, and accommodates a plurality of heat exchangers, and is designed to reduce the size and simplify the piping work, and an air conditioner equipped with the load-side relay unit. It aims to provide a hot water supply complex system.
 本発明に係る負荷側中継ユニットは、2台以上の熱交換器が少なくとも搭載される冷凍サイクル装置の負荷側中継ユニットであって、前記2台以上の熱交換器は、略同一形状で構成されており、互いを接続する配管の接合部形成面が向かい合わせとなるように配置されていることを特徴とする。 The load-side relay unit according to the present invention is a load-side relay unit of a refrigeration cycle apparatus in which at least two heat exchangers are mounted, and the two or more heat exchangers are configured in substantially the same shape. It is characterized by being arranged so that the joint formation surfaces of the pipes connecting each other face each other.
 本発明に係る空調給湯複合システムは、空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、前記冷媒-冷媒熱交換器、前記給湯熱源用絞り手段、前記熱媒体-冷媒熱交換器、前記給湯用圧縮機、及び、前記給湯用絞り手段は、前記請求項1~6のいずれか一項に記載の負荷側中継ユニットに収容されていることを特徴とする。 In the combined air conditioning and hot water supply system according to the present invention, an air conditioning compressor, a flow path switching unit, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle unit are connected in series and connected in series. The refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means include a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit. An air conditioning refrigeration cycle, a hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttle means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series, A hot water supply refrigeration cycle for circulating hot water supply refrigerant in the refrigerant circuit, a water circulation pump, the heat medium-refrigerant heat exchanger, and a water circuit in which a hot water storage tank is connected in series, the hot water supply water in the water circuit Hot water supply load that circulates The refrigerant-refrigerant heat exchanger, the hot water supply heat source throttle means, the heat medium-refrigerant heat exchanger, the hot water supply compressor, and the hot water supply throttle means according to claim 1 to 6. It is accommodated in the load side relay unit as described in any one of the items.
 本発明に係る負荷側中継ユニットによれば、略同一形状の熱交換器を、互いを接続する配管の接合部形成面が向かい合わせとなるように配置するので、互いを接続している配管を短くでき、配管施工の簡素化、及び、ユニットサイズの小型化を実現できる。 According to the load-side relay unit according to the present invention, the heat exchangers having substantially the same shape are arranged so that the joint forming surfaces of the pipes connecting each other face each other. It can be shortened, and simplification of piping construction and reduction in unit size can be realized.
 本発明に係る空調給湯複合システムによれば、上記の負荷側中継ユニットを搭載しているので、その分、配管を短くでき、配管施工の簡素化及び小型化を実現することが可能になる。 According to the air conditioning and hot water supply complex system according to the present invention, since the load-side relay unit is mounted, the piping can be shortened accordingly, and simplification and downsizing of the piping work can be realized.
実施の形態に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerant circuit structure of the air-conditioning / hot-water supply complex system which concerns on embodiment. 実施の形態に係る負荷側中継ユニット部分を拡大して示す拡大回路図である。It is an enlarged circuit diagram which expands and shows the load side relay unit part which concerns on embodiment. 負荷側中継ユニットの下部を拡大して示す拡大斜視図である。It is an expansion perspective view which expands and shows the lower part of a load side relay unit. 負荷側中継ユニットの上方に設置される熱交換器支持部材を拡大して示す斜視図である。It is a perspective view which expands and shows the heat exchanger support member installed above a load side relay unit.
符号の説明Explanation of symbols
 1 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯用負荷、10 ドレンパン、20 衝撃吸収部材、21 給湯用圧縮機、22 給湯用絞り手段、25 熱交換器支持部材、26 Y軸方向ズレ防止用突起部、27 X軸方向ズレ防止用突起部、31 水循環用ポンプ、32 貯湯タンク、41 冷媒-冷媒熱交換器、45 冷媒配管、51 熱媒体-冷媒熱交換器、100 空調給湯複合システム、101 空調用圧縮機、102 四方弁、103 室外熱交換器、103a 分割熱交換器、104 アキュムレータ、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、107 低圧側接続配管、108 気液分離器、109 分配部、109a 弁手段、109b 弁手段、110 分配部、110a 逆止弁、110b 逆止弁、111 内部熱交換器、112 第1中継機用絞り手段、113 内部熱交換器、114 第2中継機用絞り手段、115 会合部、116 会合部、116a 第2会合部、117 空調用絞り手段、118 室内熱交換器、119 給湯熱源用絞り手段、130 接続配管、131 接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、135 接続配管、135a 接続配管、135b 接続配管、136 接続配管、136a 接続配管、136b 接続配管、203 貯湯水循環用配管、A 熱源機、B 冷房室内機、C 暖房室内機、D 給湯熱源用回路、E 中継機、F 負荷側中継ユニット、a 接続部分、b 接続部分、c 接続部分、d 接続部分。 1 Refrigeration cycle for air conditioning, 2 Refrigeration cycle for hot water supply, 3 Load for hot water supply, 10 Drain pan, 20 Shock absorbing member, 21 Compressor for hot water supply, 22 Throttle means for hot water supply, 25 Heat exchanger support member, 26 Prevention of Y axis misalignment Protrusion part, 27 X-axis misalignment prevention protrusion part, 31 Water circulation pump, 32 Hot water storage tank, 41 Refrigerant-refrigerant heat exchanger, 45 Refrigerant pipe, 51 Heat medium-refrigerant heat exchanger, 100 Air conditioning hot water supply combined system, 101 compressor for air conditioning, 102 four-way valve, 103 outdoor heat exchanger, 103a split heat exchanger, 104 accumulator, 105a check valve, 105b check valve, 105c check valve, 105d check valve, 106 high-pressure side connection piping 107 Low-pressure side connection pipe, 108 Gas-liquid separator, 109 Distributor, 109a Valve means, 109b Means, 110 distributing section, 110a check valve, 110b check valve, 111 internal heat exchanger, 112 first relay throttle means, 113 internal heat exchanger, 114 second relay throttle means, 115 meeting section, 116 meeting part, 116a second meeting part, 117 air conditioning throttle means, 118 indoor heat exchanger, 119 hot water heat source throttle means, 130 connection pipe, 131 connection pipe, 132 connection pipe, 133 connection pipe, 133a connection pipe, 133b Connecting piping, 134 connecting piping, 134a connecting piping, 134b connecting piping, 135 connecting piping, 135a connecting piping, 135b connecting piping, 136 connecting piping, 136a connecting piping, 136b connecting piping, 203 hot water circulation piping, A heat source machine, B Cooling indoor unit, C heating indoor unit, D hot water supply heat source circuit E repeater, F load relay unit, a connection portion, b connecting portion, c connecting portion, d connecting portion.
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る空調給湯複合システム100の冷媒回路構成(特に、暖房主体運転時の冷媒回路構成)を示す冷媒回路図である。図1に基づいて、空調給湯複合システム100の冷媒回路構成、特に暖房主体運転時の冷媒回路構成について説明する。この空調給湯複合システム100は、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air-conditioning and hot water supply combined system 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described. This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates refrigerant (air conditioning refrigerant). is there. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 この実施の形態に係る空調給湯複合システム100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用負荷3とで構成されており、空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒-冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用負荷3とは熱媒体-冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。また、空調給湯複合システム100には、負荷側中継ユニットFが搭載されている(図2で詳細に説明する)。なお、図1では、空調用冷凍サイクル1において、暖房室内機Cと給湯熱源用回路Dとに対する負荷の合計よりも冷房室内機Bに対する負荷の方が小さく、室外熱交換器103が蒸発器として働く場合のサイクルの状態(便宜上、暖房主体運転と称する)を示している。 An air conditioning and hot water supply combined system 100 according to this embodiment includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3, and includes an air conditioning refrigeration cycle 1 and a hot water supply refrigeration cycle 2. Is a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant or water mixing. Yes. In addition, a load-side relay unit F is mounted on the air conditioning and hot water supply complex system 100 (described in detail in FIG. 2). In FIG. 1, in the air-conditioning refrigeration cycle 1, the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator. The state of the cycle when working (for convenience, referred to as heating main operation) is shown.
[空調用冷凍サイクル1]
 空調用冷凍サイクル1は、熱源機Aと、冷房負荷を担当する冷房室内機Bと、暖房負荷を担当する暖房室内機Cと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Dと、中継機Eと、によって構成されている。このうち、冷房室内機B、暖房室内機C及び給湯熱源用回路Dは、熱源機Aに対して並列となるように接続されて搭載されている。そして、熱源機Aと、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとの、間に設置される中継機Eが冷媒の流れを切り換えることで、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとしての機能を発揮させるようになっている。
[Refrigeration cycle 1 for air conditioning]
The air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E. Among these, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A. And the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
{熱源機A}
 熱源機Aは、空調用圧縮機101と、流路切替手段である四方弁102と、室外熱交換器103と、アキュムレータ104とが直列に接続されて構成されており、この熱源機Aは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dに冷熱を供給する機能を有している。なお、室外熱交換器103の近傍に、この室外熱交換器103に空気を供給するためのファン等の送風機を設けるとよい。また、熱源機Aでは、室外熱交換器103と中継機Eとの間における高圧側接続配管106に所定の方向(熱源機Aから中継機Eへの方向)のみに空調用冷媒の流れを許容する逆止弁105aが、四方弁102と中継機Eとの間における低圧側接続配管107に所定の方向(中継機Eから熱源機Aへの方向)のみに空調用冷媒の流れを許容する逆止弁105bが、それぞれ設けられている。
{Heat source machine A}
The heat source machine A is configured by connecting a compressor 101 for air conditioning, a four-way valve 102 that is a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series. It has the function of supplying cold heat to the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D. A blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103. Further, in the heat source unit A, the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E. The reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
 そして、高圧側接続配管106と低圧側接続配管107とは、逆止弁105aの上流側と逆止弁105bの上流側を接続する第1接続配管130と、逆止弁105aの下流側と逆止弁105bの下流側を接続する第2接続配管131とで接続されている。つまり、高圧側接続配管106と第1接続配管130との接続部分aは、逆止弁105aを挟んで高圧側接続配管106と第2接続配管131との接続部分bよりも上流側になっており、低圧側接続配管107と第1接続配管130との接続部分cも、逆止弁105bを挟んで低圧側接続配管107と第2接続配管131との接続部分dよりも上流側になっている。 The high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a. The second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a. The connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
 第1接続配管130には、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管131にも、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105dが設けられている。なお、図1では、暖房主体運転時における冷媒回路構成を示しているため、逆止弁105a及び逆止弁105bが閉状態(黒塗りで示している)、逆止弁105b及び逆止弁105cが開状態(白抜きで示している)となっている。 The first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. The second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. In addition, since the refrigerant circuit structure at the time of heating main operation is shown in FIG. 1, the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
 空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、空調用冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレータ104は、暖房主体運転時において、四方弁102と空調用圧縮機101との間に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレータ104は、過剰な空調用冷媒を貯留できる容器であればよい。 The air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state. The four-way valve 102 switches the flow of the air conditioning refrigerant. The outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid. The accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant. The accumulator 104 may be any container that can store excess air-conditioning refrigerant.
{冷房室内機B及び暖房室内機C}
 冷房室内機B及び暖房室内機Cには、空調用絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。また、冷房室内機B及び暖房室内機Cには、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。冷房室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当し、暖房室内機Cは、熱源機Aからの冷熱の供給を受けて暖房負荷を担当する機能を有している。
{Cooling indoor unit B and heating indoor unit C}
The cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel. The cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load, and the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
 つまり、実施の形態では、中継機Eによって、冷房室内機Bが冷房負荷を担当するように決定され、暖房室内機Cが暖房負荷を担当するように決定された状態を示しているのである。なお、室内熱交換器118の近傍に、この室内熱交換器118に空気を供給するためのファン等の送風機を設けるとよい。また、便宜的に、中継機Eから室内熱交換器118に接続している接続配管を接続配管133と、中継機Eから空調用絞り手段117に接続している接続配管を接続配管134と称して説明するものとする。 That is, in the embodiment, a state is shown in which the air conditioner indoor unit B is determined to be in charge of the cooling load and the heating indoor unit C is determined to be in charge of the heating load by the relay device E. A blower such as a fan for supplying air to the indoor heat exchanger 118 may be provided in the vicinity of the indoor heat exchanger 118. For convenience, the connection pipe connected from the relay E to the indoor heat exchanger 118 is referred to as a connection pipe 133, and the connection pipe connected from the relay E to the air conditioning throttle means 117 is referred to as a connection pipe 134. Shall be explained.
 空調用絞り手段117は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風手段から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び室内熱交換器118は、直列に接続されている。 The air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant. The air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification. The air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
{給湯熱源用回路D}
 給湯熱源用回路Dは、給湯熱源用絞り手段119と、冷媒-冷媒熱交換器41とが、直列に接続されて構成されており、熱源機Aからの冷熱を冷媒-冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒-冷媒熱交換器41でカスケード接続されているのである。なお、便宜的に、中継機Eから冷媒-冷媒熱交換器41に接続している接続配管を接続配管135と、中継機Eから給湯熱源用絞り手段119に接続している接続配管を接続配管136と称して説明するものとする。
{Circuit D for hot water supply heat source}
The hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41. For convenience, the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
 給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2の冷凍サイクルを循環する給湯用冷媒と、空調用冷凍サイクル1の冷凍サイクルを循環する空調用冷媒との、間で熱交換を行なうようになっている。 The hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant. The hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary. The refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
{中継機E}
 中継機Eは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dのそれぞれと、熱源機Aとを、接続する機能を有すると共に、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内熱交換器118を放熱器とするか蒸発器とするか、冷媒-冷媒熱交換器41を冷水器とするか給湯機とするかを決定する機能を有している。この中継機Eは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とで、構成されている。
{Repeater E}
The relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do. The relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat. The exchanger 113 and the second relay stop means 114 are configured.
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が低圧側接続配管107に接続し、他方(接続配管133a及び接続配管135a)が気液分離器108に接続している接続配管(接続配管132と称する)に接続するようになっている。また、第1分配部109では、接続配管133a及び接続配管135aに開閉制御されて冷媒を導通したりしなかったりする弁手段109aが、接続配管133b及び接続配管135bに開閉制御されて冷媒を導通したりしなかったりする弁手段109bがそれぞれ設けられている。なお、弁手段109a及び弁手段109bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。 In the first distribution unit 109, the connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe). The pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108. Further, in the first distribution unit 109, the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant. Valve means 109b that may or may not be provided is provided. The open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
 第2分配部110では、接続配管134及び接続配管136が2つに分岐されており、一方(接続配管134a及び接続配管136a)が第1会合部115で接続され、他方(接続配管134b及び接続配管136b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管134a及び接続配管136aに冷媒の流通を一方のみに許容する逆止弁110aが、接続配管134b及び接続配管136bに冷媒の流通を一方のみに許容する逆止弁110bがそれぞれ設けられている。なお、逆止弁110a及び逆止弁110bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。 In the second distribution unit 110, the connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe). A pipe 136b) is connected at the second meeting part 116. In the second distribution unit 110, the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b. A stop valve 110b is provided. The open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
 第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。 The first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111. The second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113. The second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111. To the low-pressure side connection pipe 107.
 気液分離器108は、空調用冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒-冷媒熱交換器41に空調用冷媒を流入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、空調用冷媒の流れをいずれか一方に許容する機能を有している。 The gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant. The gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other. The first distributor 115 is connected to the second distributor 110. The first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes. The 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
 第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、空調用冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched. The first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. . The first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
 第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted. The second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure. As with the first relay unit throttle unit 112, the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube. The refrigerant flow rate adjusting means may be used.
 以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、室内熱交換器118、空調用絞り手段117及び室外熱交換器103が直列に接続されるとともに、空調用圧縮機101、四方弁102、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119及び室外熱交換器103が直列に接続されており、中継機Eを介して室内熱交換器118と冷媒-冷媒熱交換器41とが並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。 As described above, the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle. Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
 なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバータにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO)や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw. The air-conditioning compressor 101 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited. For example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
 ここで、空調用冷凍サイクル1の暖房主体運転動作について説明する。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cを導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継機Eの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の空調用冷媒は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、過熱ガス状態の空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。
Here, the heating main operation of the air-conditioning refrigeration cycle 1 will be described.
First, the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state. The superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open. Here, the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
 暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と第1会合部115で合流する。一方、気液分離器108に流入した過熱ガス状態の空調用冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。 The air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115. The air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119. The air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115. On the other hand, a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111. The degree of supercooling is obtained by heat exchange.
 それから、第1中継機用絞り手段112を通過して、空調用として利用された空調用冷媒(暖房室内機Cや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の空調用冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。その後、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。 Then, the air-conditioning refrigerant used for air-conditioning (flowing into the heating indoor unit C or the hot water supply heat source circuit D through the first repeater throttle means 112 flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、冷房室内機Bに流入し、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機Bを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレータ104を経て空調用圧縮機101へ戻る。 The air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open. Here, the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins. The air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107. It merges with the air conditioning refrigerant that has flowed out of the machine B. The air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, the accumulator The process returns to the air conditioning compressor 101 via 104.
[給湯用冷凍サイクル2]
 給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体-冷媒熱交換器51と、給湯用絞り手段22と、冷媒-冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、冷媒-冷媒熱交換器41が冷媒配管45で直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。なお、給湯用冷凍サイクル2の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。
[Refrigeration cycle 2 for hot water supply]
The hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
 給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機21は、インバータにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機21は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機21を構成することができる。 The hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state. The hot water supply compressor 21 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
 熱媒体-冷媒熱交換器51は、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル2と給湯用負荷3とは、熱媒体-冷媒熱交換器51でカスケード接続されている。給湯用絞り手段22は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51. The hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it. The hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
 冷媒-冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。なお、給湯用冷凍サイクル2を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1. The type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited. For example, natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
 ここで、給湯用冷凍サイクル2の運転動作について説明する。
 まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体-冷媒熱交換器51に流入する。この熱媒体-冷媒熱交換器51では、流入した給湯用冷媒が、給湯用負荷3を循環している水を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Dにおける冷媒-冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒-冷媒熱交換器41で、空調用冷凍サイクル1を構成する給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
Here, the operation of the hot water supply refrigeration cycle 2 will be described.
First, the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51. In the heat medium-refrigerant heat exchanger 51, the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3. This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1. The expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
[給湯用負荷3]
 給湯用負荷3は、水循環用ポンプ31と、熱媒体-冷媒熱交換器51と、貯湯タンク32と、によって構成されている。つまり、給湯用負荷3は、水循環用ポンプ31、熱媒体-冷媒熱交換器51、及び、貯湯タンク32が貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)を構成し、この水回路に給湯用水を循環させることで成立している。なお、給湯用負荷3の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。また、水回路を構成する貯湯水循環用配管203は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
[Load 3 for hot water supply]
The hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit. The operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed. The hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
 水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用負荷3内を循環させるものであり、たとえばインバータにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、上述したように、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。 The water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3. For example, the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure. As described above, the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do. The hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、熱媒体-冷媒熱交換器51に流入し、この熱媒体-冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体-冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。 First, the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31. The water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
 なお、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1を構成する第1冷媒回路及び給湯用冷凍サイクル2を構成する第2冷媒回路)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51にて互いに熱交換するように流れている。 Note that, as described above, the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1). 2 refrigerant circuits), the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
 また、給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行なう際に熱媒体-冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行なうためには、より高度な制御が要求される。一方、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。 In addition, when a refrigerant having a low critical temperature is used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. . However, generally, when the refrigerant in the heat dissipation process is in a supercritical state, the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP. The On the other hand, in general, a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
 さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が60℃以上であることを鑑みると、給湯の目標温度が最低でも60℃以上となることが多いと想定される。以上のことを踏まえ、給湯用冷媒には、最低でも60℃以上の臨界温度を持つ冷媒を採用している。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができるからである。冷媒を臨界温度付近で常用する場合、冷媒回路内が高温・高圧になることが想定されるため、給湯用圧縮機21は、高圧シェルを用いたタイプの圧縮機を使用することで、安定した運転が可能となる。 Furthermore, considering that the recommended temperature of water stored in the hot water storage tank 32 for suppressing the growth of Legionella bacteria and the like is 60 ° C. or higher, it is assumed that the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done. Based on the above, a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost. When the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
 また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレータ104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレータ104を取り除いてもよい。さらに、図1では、冷房室内機Bと暖房室内機Cとが2台以上接続されている場合を例に示しているが、接続台数を特に限定するものではなく、たとえば冷房室内機Bが1台以上、暖房室内機Cがないか若しくは1台以上を接続されていればよい。そして、空調用冷凍サイクル1を構成している各室内機の容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。 Moreover, although the case where the surplus refrigerant | coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It should be stored with the heat exchanger used as a heat radiator in a refrigerating cycle. If so, the accumulator 104 may be removed. Further, FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or one or more is connected. And the capacity | capacitance of each indoor unit which comprises the refrigerating cycle 1 for an air conditioning may be made all the same, and you may make it differ from large to small.
 以上のように、この実施の形態に係る空調給湯複合システム100では、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル2の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーなどによって提供する必要があったが、従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。 As described above, in the combined air conditioning and hot water supply system 100 according to this embodiment, the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high temperature (for example, condensing temperature 85 degreeC), and when there is another heating load, it does not increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. Energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
[負荷側中継ユニットF]
 負荷側中継ユニットFには、冷媒-冷媒熱交換器41と、給湯熱源用絞り手段119と、熱媒体-冷媒熱交換器51と、給湯用圧縮機21と、給湯用絞り手段22と、が収容されている。つまり、負荷側中継ユニットFには、冷媒-冷媒熱交換器41を介して空調用冷凍サイクル1の一部、給湯用冷凍サイクル2の全部、及び、熱媒体-冷媒熱交換器51を介して給湯用負荷3の一部が収容されているのである。この負荷側中継ユニットFは、複数の熱交換器が収容されるために大型化してしまう傾向にある。そこで、本実施の形態では、以下に説明するようにして負荷側中継ユニットFの小型化及び配管施工の簡素化を図るようにしている。
[Load side relay unit F]
The load-side relay unit F includes a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22. Contained. In other words, the load-side relay unit F has a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, the whole hot water supply refrigeration cycle 2, and the heat medium-refrigerant heat exchanger 51. A part of the hot water supply load 3 is accommodated. This load-side relay unit F tends to be large because a plurality of heat exchangers are accommodated. Therefore, in the present embodiment, as described below, the load-side relay unit F is miniaturized and piping construction is simplified.
 図2は、本発明の実施の形態に係る負荷側中継ユニットF部分を拡大して示す拡大回路図である。図3は、負荷側中継ユニットFの下部を拡大して示す拡大斜視図である。図4は、負荷側中継ユニットFの上方に設置される熱交換器支持部材25を拡大して示す斜視図である。図2~図4に基づいて、本実施の形態の特徴事項である負荷側中継ユニットFについて詳細に説明する。図2に示すように、負荷側中継ユニットFには、給湯用圧縮機21、冷媒-冷媒熱交換器41、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、給湯熱源用絞り手段119が収容されている。 FIG. 2 is an enlarged circuit diagram showing an enlarged portion of the load side relay unit F according to the embodiment of the present invention. FIG. 3 is an enlarged perspective view showing a lower portion of the load side relay unit F in an enlarged manner. FIG. 4 is an enlarged perspective view showing the heat exchanger support member 25 installed above the load-side relay unit F. FIG. Based on FIGS. 2 to 4, the load-side relay unit F, which is a feature of the present embodiment, will be described in detail. As shown in FIG. 2, the load-side relay unit F includes a hot water supply compressor 21, a refrigerant-refrigerant heat exchanger 41, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a hot water supply heat source throttle. A means 119 is accommodated.
 すなわち、負荷側中継ユニットFは、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119、熱媒体-冷媒熱交換器51、給湯用圧縮機21、及び、給湯用絞り手段22、を収容する筐体としての機能を有している。そして、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51を略同一形状とし、負荷側中継ユニットF内部での占有面積を縮小し、負荷側中継ユニットFの寸法を小型化している。加えて、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51をプレート熱交換器で構成し、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51自体を小型化している。 That is, the load-side relay unit F houses the refrigerant-refrigerant heat exchanger 41, the hot water supply heat source throttle means 119, the heat medium-refrigerant heat exchanger 51, the hot water supply compressor 21, and the hot water supply throttle means 22. It has a function as a housing. Then, the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 have substantially the same shape, the area occupied in the load-side relay unit F is reduced, and the dimensions of the load-side relay unit F are reduced. . In addition, the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are configured by plate heat exchangers, and the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 themselves are downsized. .
 冷媒-冷媒熱交換器41の正面(冷媒配管45の接合部形成面)と、熱媒体-冷媒熱交換器51の正面(冷媒配管45の接合部形成面)と、を向かい合わせで負荷側中継ユニットF内に配置し、冷媒-冷媒熱交換器41と熱媒体-冷媒熱交換器51とを接続する配管経路を最小限にして負荷側中継ユニットFの寸法の更なる小型化を実現している。このように両熱交換器を直列対面式に配置することで、配管接合部間の距離を短くすることができ、両熱交換器を接続する接合配管を最小限にすることができる。したがって、接続配管を短くした分のコスト削減を実現できる。 Load side relay with the front of the refrigerant-refrigerant heat exchanger 41 (joint forming surface of the refrigerant pipe 45) and the front of the heat medium-refrigerant heat exchanger 51 (joint forming surface of the refrigerant pipe 45) facing each other The size of the load-side relay unit F is further reduced by minimizing the piping path that is arranged in the unit F and connects the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51. Yes. Thus, by arrange | positioning both heat exchangers in series facing, the distance between piping junction parts can be shortened, and joining piping which connects both heat exchangers can be minimized. Therefore, the cost can be reduced by shortening the connecting piping.
 ところで、熱媒体-冷媒熱交換器51は、給湯用負荷3を循環する熱媒体と給湯用冷凍サイクル2を循環する冷媒とを熱交換させるためのものであり、熱交換器内に熱媒体が流れている。安全性のため、熱媒体-冷媒熱交換器51に亀裂等の損傷が発生した場合でも、熱媒体を外部へ漏洩しないようにすることが求められる。熱媒体が流れていない熱交換器では表面に結露した水を外部へ排出するためにドレン受けを設置すればよいが、そのようなドレン受けでは、熱媒体-冷媒熱交換器51から漏れた熱媒体の全量を受けることができない。 Incidentally, the heat medium-refrigerant heat exchanger 51 is for exchanging heat between the heat medium circulating in the hot water supply load 3 and the refrigerant circulating in the hot water supply refrigeration cycle 2, and the heat medium is contained in the heat exchanger. Flowing. For safety, it is required to prevent the heat medium from leaking to the outside even when damage such as a crack occurs in the heat medium-refrigerant heat exchanger 51. In a heat exchanger in which no heat medium flows, a drain receiver may be installed in order to discharge water condensed on the surface to the outside. In such a drain receiver, heat leaked from the heat medium-refrigerant heat exchanger 51 may be used. The entire amount of media cannot be received.
 そこで、この実施の形態では、図3に示すように熱媒体―冷媒熱交換器51の下方に熱媒体―冷媒熱交換器51の容積分を受け入れる容積を持ったドレンパン10を設置するようにしている。このドレンパン10には、塗装処理、防錆処理、及び、防腐食処理の少なくとも1つを施しておくことが望ましい。そのような処理を施しておけば、ドレンパン10には熱媒体が滴下した際でも、熱媒体による錆や侵食腐食の発生を防ぐことが可能になる。また、ドレンパン10に溜まった熱媒体を排出するために、ドレンパン10の底面に傾斜を設けておくとよい。 Therefore, in this embodiment, as shown in FIG. 3, a drain pan 10 having a volume for receiving the volume of the heat medium-refrigerant heat exchanger 51 is installed below the heat medium-refrigerant heat exchanger 51. Yes. The drain pan 10 is preferably subjected to at least one of a coating process, an antirust process, and an anticorrosion process. If such a process is performed, even when a heat medium is dripped onto the drain pan 10, it becomes possible to prevent the occurrence of rust and erosion corrosion due to the heat medium. In addition, in order to discharge the heat medium accumulated in the drain pan 10, an inclination may be provided on the bottom surface of the drain pan 10.
 ドレンパン10の上に熱媒体―冷媒熱交換器51を直接設置した場合、ドレンパン10と熱媒体―冷媒熱交換器51との間に隙間が形成されない。そのため、負荷側中継ユニットFの落下や運搬時の振動等による衝撃を受けた際、直接ドレンパン10に衝撃が伝わり、ドレンパン10が破損してしまう可能性がある。特に、負荷側中継ユニットFを長距離輸送する場合には、衝撃を受ける可能性が高くなる。そのような衝撃を吸収するために、ドレンパン10と熱媒体-冷媒熱交換器51との間に衝撃吸収部材20を設けるようにしている。 When the heat medium-refrigerant heat exchanger 51 is directly installed on the drain pan 10, no gap is formed between the drain pan 10 and the heat medium-refrigerant heat exchanger 51. Therefore, when receiving an impact due to the drop of the load-side relay unit F or vibration during transportation, the impact is directly transmitted to the drain pan 10 and the drain pan 10 may be damaged. In particular, when the load-side relay unit F is transported over a long distance, the possibility of receiving an impact increases. In order to absorb such an impact, an impact absorbing member 20 is provided between the drain pan 10 and the heat medium-refrigerant heat exchanger 51.
 この衝撃吸収部材20は、たとえば図3に示すような板金を折り曲げて形成し、ドレンパン10から所定の間隔をもって設けるようにするとよい。そうすれば、ドレンパン10と衝撃吸収部材20との間に所定の空間ができ、負荷側中継ユニットFが衝撃を受けた場合でも、衝撃がドレンパン10に直接伝わることがない。つまり、衝撃吸収部材20によって、負荷側中継ユニットFが受けた衝撃を分散し、ドレンパン10に伝達される衝撃を軽減するようにしているのである。その結果、負荷側中継ユニットFが衝撃を受けた場合でも、その衝撃によってドレンパン10が破損してしまうのを防止することができる。 The shock absorbing member 20 may be formed by bending a sheet metal as shown in FIG. 3, for example, and provided at a predetermined interval from the drain pan 10. Then, a predetermined space is created between the drain pan 10 and the impact absorbing member 20, and even when the load-side relay unit F receives an impact, the impact is not directly transmitted to the drain pan 10. In other words, the impact absorbing member 20 disperses the impact received by the load-side relay unit F and reduces the impact transmitted to the drain pan 10. As a result, even when the load-side relay unit F receives an impact, the drain pan 10 can be prevented from being damaged by the impact.
 なお、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51をプレート熱交換器で構成した場合を例に説明したが、これに限定するものではない。たとえば、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51を、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、あるいは、二重管式熱交換器等で構成してもよい。また、衝撃吸収部材20を板金で形成した場合を例に説明したが、これに限定するものではない。たとえば、衝撃吸収部材20を底板下部を盛り上げた硬化質プラスティック、その他の樹脂、発泡スチロール等で形成してもよい。 In addition, although the case where the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are configured by plate heat exchangers has been described as an example, the present invention is not limited thereto. For example, the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are replaced with a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, or a double tube heat exchanger. Or the like. Moreover, although the case where the shock absorbing member 20 is formed of a sheet metal has been described as an example, it is not limited thereto. For example, the impact-absorbing member 20 may be formed of a curable plastic with a raised bottom plate, other resin, or polystyrene foam.
 負荷側中継ユニットFの上方に設置する熱交換器支持部材25について説明する。
 この熱交換器支持部材25は、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51の上方に設けられ、両熱交換器を上方から支持するものである。図4に示すように、熱交換器支持部材25は、板金の四辺が略直角に折り曲げられて構成されている。また、熱交換器支持部材25には、2つの突起部(X軸方向ズレ防止用突起部26及びY軸方向ズレ防止用突起部27)が一方の面(熱交換器に接する側の面)に形成されている。
The heat exchanger support member 25 installed above the load side relay unit F will be described.
The heat exchanger support member 25 is provided above the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51, and supports both heat exchangers from above. As shown in FIG. 4, the heat exchanger support member 25 is configured by bending four sides of a sheet metal at a substantially right angle. The heat exchanger support member 25 has two protrusions (an X-axis direction misalignment prevention protrusion 26 and a Y-axis direction misalignment prevention protrusion 27) on one surface (the surface on the side in contact with the heat exchanger). Is formed.
 そして、熱交換器支持部材25は、四辺と2つの突起部が冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51側となるように、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51の上方に設置される。負荷側中継ユニットF内に水配管等の貯湯水循環用配管203を施工する際、つまり負荷側中継ユニットFに貯湯水循環用配管203を取り付ける際は、通常のユニットに配管を取り付けるのと同様にネジ配管を負荷側中継ユニットFにねじ込み、貯湯水循環用配管203を施工する。 The heat exchanger support member 25 has the four sides and two protrusions on the refrigerant-refrigerant heat exchanger 41 and heat medium-refrigerant heat exchanger 51 side so that the refrigerant-refrigerant heat exchanger 41 and the heat medium- Installed above the refrigerant heat exchanger 51. When the hot water circulating pipe 203 such as a water pipe is installed in the load side relay unit F, that is, when the hot water circulating pipe 203 is attached to the load side relay unit F, the screw is attached in the same manner as the pipe is attached to the normal unit. The pipe is screwed into the load side relay unit F, and the hot water storage water circulation pipe 203 is constructed.
 そうすると、負荷側中継ユニットFに設置されている図示省略のネジ継ぎ手部にネジ配管をねじ込む際、このネジ配管がねじ込まれる箇所に、大きな締め付けトルクが発生することになる。その結果、負荷側中継ユニットF内に設置された冷媒-冷媒熱交換器41及び/又は熱媒体-冷媒熱交換器51が負荷側中継ユニットF内で移動してしまう可能性が発生する。冷媒-冷媒熱交換器41及び/又は熱媒体-冷媒熱交換器51が移動すると、負荷側中継ユニットF内の配管(冷媒配管45、接続配管135及び貯湯水循環用配管203)が曲がったり、配管接合部にクラックが入ったりすることに繋がり、負荷側中継ユニットF内で冷媒及び/又は熱媒体の漏れが発生する恐れがある。 Then, when screw piping is screwed into a screw joint (not shown) installed in the load-side relay unit F, a large tightening torque is generated at a position where the screw piping is screwed. As a result, the refrigerant-refrigerant heat exchanger 41 and / or the heat medium-refrigerant heat exchanger 51 installed in the load-side relay unit F may move in the load-side relay unit F. When the refrigerant-refrigerant heat exchanger 41 and / or the heat medium-refrigerant heat exchanger 51 move, the piping (the refrigerant piping 45, the connecting piping 135, and the hot water circulation piping 203) in the load-side relay unit F bends or piping. This may lead to cracks in the joint, and may cause leakage of refrigerant and / or heat medium in the load-side relay unit F.
 そこで、負荷側中継ユニットFでは、熱交換器支持部材25にX軸方向ズレ防止用突起部26及びY軸方向ズレ防止用突起部27を形成し、この2つの突起部によって冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51の移動を抑止するようにしている。すなわち、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51は、X軸方向ズレ防止用突起部26及びY軸方向ズレ防止用突起部27によって係止され、ネジ配管施工時の締め付けトルクによってもズレることがないのである。 Therefore, in the load-side relay unit F, the X-axis direction misalignment preventing projection 26 and the Y-axis direction misalignment preventing projection 27 are formed on the heat exchanger support member 25, and refrigerant-refrigerant heat exchange is performed by these two projections. The movement of the heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 is suppressed. That is, the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 are locked by the X-axis direction misalignment preventing projection 26 and the Y-axis direction misalignment preventing projection 27, and are tightened at the time of screw pipe construction. There is no deviation even with torque.
 また、熱交換器支持部材25を設置し、冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51にネジを締め付ける際に、設計上耐えうるトルク(たとえばネジ径がR3/4の場合では60N・m以上の力)が加わった場合、冷媒-冷媒熱交換器41及び/又は熱媒体-冷媒熱交換器51が動く可能性がある。そのため、熱交換器支持部材25の上方(冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51側ではない方)に制御基板等が配設されている制御ボックス等を設置するようにし、熱交換器支持部材25の上面に制御ボックスの一部が載置するとよい。そうすることによって、熱交換器支持部材25の強度を補強することができる。 Further, when the heat exchanger support member 25 is installed and the screws are fastened to the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51, a torque that can be withstood by design (for example, when the screw diameter is R3 / 4) If a force of 60 N · m or more is applied, the refrigerant-refrigerant heat exchanger 41 and / or the heat medium-refrigerant heat exchanger 51 may move. For this reason, a control box or the like in which a control board is disposed above the heat exchanger support member 25 (not on the side of the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51) is installed. A part of the control box may be placed on the upper surface of the heat exchanger support member 25. By doing so, the strength of the heat exchanger support member 25 can be reinforced.

Claims (9)

  1.  2台以上の熱交換器が少なくとも搭載される冷凍サイクル装置の負荷側中継ユニットであって、
     前記2台以上の熱交換器は、
     略同一形状で構成されており、互いを接続する配管の接合部形成面が向かい合わせとなるように配置されている
     ことを特徴とする負荷側中継ユニット。
    A load-side relay unit of a refrigeration cycle apparatus in which at least two heat exchangers are mounted,
    The two or more heat exchangers are
    A load-side relay unit, characterized by being configured in substantially the same shape and arranged so that the joint forming surfaces of the pipes connecting each other face each other.
  2.  前記2台以上の熱交換器は、
     少なくともその1つとしてプレート熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、または、二重管式熱交換器を備えている
     ことを特徴とする請求項1に記載の負荷側中継ユニット。
    The two or more heat exchangers are
    A plate heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, or a double pipe heat exchanger is provided as at least one of them. Item 2. The load-side relay unit according to Item 1.
  3.  前記熱交換器のうちの少なくとも1台を熱媒体と前記熱媒体とは異なる冷媒との間で熱交換を行なう熱媒体-冷媒熱交換器としたものにおいて、
     前記熱媒体-冷媒熱交換器の熱媒体容積分と略同等の容積を有するドレンパンを前記熱媒体-冷媒熱交換器の下方に設置している
     ことを特徴とする請求項1又は2に記載の負荷側中継ユニット。
    At least one of the heat exchangers is a heat medium-refrigerant heat exchanger that performs heat exchange between a heat medium and a refrigerant different from the heat medium.
    The drain pan having a volume substantially equal to the heat medium volume of the heat medium-refrigerant heat exchanger is installed below the heat medium-refrigerant heat exchanger. Load side relay unit.
  4.  前記ドレンパンに、塗装処理、防錆処理、及び、防腐食処理の少なくとも1つを施している
     ことを特徴とする請求項3に記載の負荷側中継ユニット。
    The load-side relay unit according to claim 3, wherein the drain pan is subjected to at least one of painting treatment, rust prevention treatment, and corrosion prevention treatment.
  5.  前記ドレンパンと前記熱媒体-冷媒熱交換器との間に衝撃吸収部材を設けている
     ことを特徴とする請求項3又は4に記載の負荷側中継ユニット。
    The load-side relay unit according to claim 3 or 4, wherein an impact absorbing member is provided between the drain pan and the heat medium-refrigerant heat exchanger.
  6.  前記衝撃吸収部材は、
     板金、樹脂、又は、発泡スチロールで形成されている
     ことを特徴とする請求項5に記載の負荷側中継ユニット。
    The shock absorbing member is
    The load-side relay unit according to claim 5, wherein the load-side relay unit is made of sheet metal, resin, or polystyrene foam.
  7.  前記2台以上の熱交換器の上方は、
     板金で構成されている熱交換器支持部材で支持されている
     ことを特徴とする請求項1~6のいずれか一項に記載の負荷側中継ユニット。
    Above the two or more heat exchangers,
    The load-side relay unit according to any one of claims 1 to 6, wherein the load-side relay unit is supported by a heat exchanger support member made of sheet metal.
  8.  前記熱交換器支持部材の熱交換器側面には、
     前記2台以上の熱交換器のX軸方向のズレを防止する突起部、及び、Y軸方向のズレを防止する突起部が形成されている
     ことを特徴とする請求項7に記載の負荷側中継ユニット。
    On the heat exchanger side surface of the heat exchanger support member,
    8. The load side according to claim 7, wherein a protrusion that prevents a shift in the X-axis direction of the two or more heat exchangers and a protrusion that prevents a shift in the Y-axis direction are formed. Relay unit.
  9.  空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、
     給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、
     水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、
     前記冷媒-冷媒熱交換器、前記給湯熱源用絞り手段、前記熱媒体-冷媒熱交換器、前記給湯用圧縮機、及び、前記給湯用絞り手段は、前記請求項1~8のいずれか一項に記載の負荷側中継ユニットに収容されている
     ことを特徴とする空調給湯複合システム。


     
    The compressor for air conditioning, the flow path switching means, the outdoor heat exchanger, the indoor heat exchanger, and the throttle means for air conditioning are connected in series, and for the refrigerant-refrigerant heat exchanger and hot water supply heat source connected in series. An air-conditioning refrigeration cycle, wherein the throttle means comprises a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air-conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit;
    A hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttling means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series, and the second refrigerant circuit has a hot water supply refrigerant Refrigeration cycle for hot water supply that circulates
    A water circulation pump, a water circuit in which the heat medium-refrigerant heat exchanger, and a hot water storage tank are connected in series, and a hot water supply load for circulating hot water in the water circuit,
    The refrigerant-refrigerant heat exchanger, the hot water supply heat source throttle means, the heat medium-refrigerant heat exchanger, the hot water supply compressor, and the hot water supply throttle means are any one of the above items 1 to 8. It is housed in the load side relay unit described in 1.


PCT/JP2009/056054 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon WO2010109620A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/056054 WO2010109620A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
JP2011505743A JP5202726B2 (en) 2009-03-26 2009-03-26 Load-side relay unit and combined air conditioning and hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056054 WO2010109620A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Publications (1)

Publication Number Publication Date
WO2010109620A1 true WO2010109620A1 (en) 2010-09-30

Family

ID=42780329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056054 WO2010109620A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Country Status (2)

Country Link
JP (1) JP5202726B2 (en)
WO (1) WO2010109620A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166714A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Heat generation unit
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system
JP2016223740A (en) * 2015-06-03 2016-12-28 株式会社コロナ Heat pump cold/hot water machine
EP3124890A1 (en) 2015-07-30 2017-02-01 Panasonic Intellectual Property Management Co., Ltd. Heat-generating unit
EP3217117A1 (en) * 2016-03-09 2017-09-13 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning/hot-water supply system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220085U (en) * 1988-07-27 1990-02-09
JPH10267427A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooling device
JPH11148730A (en) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd Laminated heat exchanger
JP2000121173A (en) * 1998-10-21 2000-04-28 Sanyo Electric Co Ltd Refrigerator
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2005538338A (en) * 2002-09-10 2005-12-15 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
JP2008267721A (en) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp Refrigerating air conditioner
JP2009002551A (en) * 2007-06-20 2009-01-08 Takahashi Kogyo Kk Conveyor-type freezing device with frost receiving device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656616U (en) * 1992-02-24 1994-08-05 株式会社富士通ゼネラル Outdoor unit of air conditioner
JPH10281692A (en) * 1997-03-31 1998-10-23 Zexel Corp Parallel and integral heat-exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220085U (en) * 1988-07-27 1990-02-09
JPH10267427A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooling device
JPH11148730A (en) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd Laminated heat exchanger
JP2000121173A (en) * 1998-10-21 2000-04-28 Sanyo Electric Co Ltd Refrigerator
JP2005538338A (en) * 2002-09-10 2005-12-15 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2008267721A (en) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp Refrigerating air conditioner
JP2009002551A (en) * 2007-06-20 2009-01-08 Takahashi Kogyo Kk Conveyor-type freezing device with frost receiving device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166714A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Heat generation unit
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system
JP2016223740A (en) * 2015-06-03 2016-12-28 株式会社コロナ Heat pump cold/hot water machine
EP3124890A1 (en) 2015-07-30 2017-02-01 Panasonic Intellectual Property Management Co., Ltd. Heat-generating unit
EP3217117A1 (en) * 2016-03-09 2017-09-13 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning/hot-water supply system

Also Published As

Publication number Publication date
JPWO2010109620A1 (en) 2012-09-20
JP5202726B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5121922B2 (en) Air conditioning and hot water supply complex system
JP5084903B2 (en) Air conditioning and hot water supply complex system
JP5752148B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
WO2009098751A1 (en) Air-conditioning and water-heating complex system
JP5518101B2 (en) Air conditioning and hot water supply complex system
CN103221759B (en) Air conditioner
JP5328933B2 (en) Air conditioner
WO2011061792A1 (en) Refrigeration cycle device and information propagation method adapted thereto
WO2011108068A1 (en) Air-conditioning hot-water-supplying system
JP5523470B2 (en) Air conditioner
WO2008113121A1 (en) A thermal transfer, recovery and management system
JP5202726B2 (en) Load-side relay unit and combined air conditioning and hot water supply system
WO2010082324A1 (en) Complex system for air conditioning and hot water supplying
WO2012164608A1 (en) Combined air-conditioning/hot water supply system
CN104797887A (en) Air conditioning device, and design method therefor
CN113439188B (en) Air conditioner
JP2007218466A (en) Secondary refrigerant type refrigerating device
WO2010109619A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
JP6643627B2 (en) Heat generation unit
CN102753908B (en) Air conditioning device
JP4981411B2 (en) Air conditioner
JP6242289B2 (en) Refrigeration cycle equipment
KR20050099935A (en) Air conditioner
WO2010109618A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011505743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842234

Country of ref document: EP

Kind code of ref document: A1