[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010106257A1 - Systeme de recharge de batteries - Google Patents

Systeme de recharge de batteries Download PDF

Info

Publication number
WO2010106257A1
WO2010106257A1 PCT/FR2010/050233 FR2010050233W WO2010106257A1 WO 2010106257 A1 WO2010106257 A1 WO 2010106257A1 FR 2010050233 W FR2010050233 W FR 2010050233W WO 2010106257 A1 WO2010106257 A1 WO 2010106257A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
voltage
cell
battery
charging
Prior art date
Application number
PCT/FR2010/050233
Other languages
English (en)
Inventor
Francis Roy
Jean-Claude Dolhagaray
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Publication of WO2010106257A1 publication Critical patent/WO2010106257A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to electric energy storage batteries, and in particular battery charging systems having several contiguous cells.
  • batteries to power an electric motor of a motor vehicle.
  • Such batteries typically include Li-ion cells connected in series. Due to manufacturing dispersions, these cells have in practice different characteristics. These differences, relatively minor when the battery is new, increase with the wear of the battery.
  • the charge of the battery is supervised by a control device from voltage measurements on the different cells.
  • Figure 1 illustrates the voltage of different cells of a battery at the end of a conventional charging method of the state of the art.
  • the voltage across the different cells is representative of the charge of these cells.
  • the operating range of a Li-ion type cell is typically between 2.7 V and 4.2 V. Use outside this range induces irreversible damage to the cells of the battery. Since an overload can lead to cell destruction, the load of all cells is interrupted when the most charged cell reaches the high limit Vmax of the operating range. The voltage of the least charged cell is then equal to a voltage Vinf which is less than Vmax.
  • the control device also interrupts the discharge of the battery when the least charged cell reaches the low limit Vmin of the operating range.
  • the useful capacity of the battery is defined by the difference of the capacitance values corresponding to the voltages Vinf and Vmin. Therefore, the larger the dispersions between cells, the lower the capacity of the battery. With a reduced operating range, the capacity of the battery can be relatively limited in the presence of strong dispersions between the cells. This decrease in capacity multiplies the number of charge / discharge cycles to restore a given amount of energy.
  • Patent Application US6157165 describes a method of recharging a battery. Prior to recharging all the cells, the method comprises a phase of balancing the voltage of the different cells. The charge of each of the cells is sequentially measured by transiently connecting them to a capacitor. After disconnecting the capacitor cell, the voltage across this capacitor is measured.
  • a charging phase of all the cells is then initiated. During this charging phase, resistors are connected in parallel on some cells whose charging speed is higher than the others. Thus, when a resistor is connected in parallel, the charging speed of the corresponding cell is reduced. The voltage across the different cells is therefore regularly measured to connect or not a resistance in parallel with a cell.
  • the invention aims to solve one or more of these disadvantages.
  • the invention thus relates to a method of recharging an electric battery comprising a set of cells, comprising the steps of measuring the voltage across each of said cells and determining the voltage across the most charged cell; and successively charging less charged cells until the voltage reaches the terminals of the most charged cell.
  • the order of the successive charges is defined by loading the least charged cell.
  • light energy is converted into electrical energy, wherein this electrical energy is applied to said cells during successive charges.
  • all the cells are charged simultaneously until the voltage across a cell exceeds a maximum threshold.
  • the electrical energy used for the simultaneous charging comes from the sector or an alternator driven by an internal combustion engine.
  • the voltage measurement and the successive charges are carried out when the battery is at rest.
  • the invention also relates to a charging system of an electric battery comprising a set of cells and, the system comprising means for measuring the voltage across the cells; means for determining the voltage across the most heavily loaded cell; and, charging means successively charging less charged cells to reach the voltage across the most charged cell.
  • the charging means successively charge the cells by charging the least charged cell.
  • the system comprises photovoltaic cells supplying the measuring means, determining and charging system of the cell or cells to recharge when the current generated by the photovoltaic cells is sufficient.
  • the invention also relates to a motor vehicle comprising a battery and a battery charging system as described above and further comprising photovoltaic cells applying a voltage across a cell of the battery during successive charges.
  • FIG. 1 is a representation of the charge of different cells of a battery at the end of a charging process according to the prior art
  • FIG. 2 is a representation of the charge of different cells at the beginning of a balancing phase
  • FIG. 3 is a schematic representation of a battery charging system according to the invention
  • FIG. 4 is a representation of the electrical circuit of the system of FIG.
  • the invention provides a method and a battery charging system.
  • the voltages across the individual cells of a set of cells are measured. In particular, the voltage across the terminals of the most charged cell is determined. Less charged cells are then successively charged until the voltage reaches the terminals of the most charged cell.
  • the voltage across the cells is balanced before starting a recharge or discharge of all cells.
  • the recharge is interrupted when one of the cells will have reached its maximum charge. Because of the balancing, all the cells will have almost reached their maximum load at the time of the interruption of charge. As a result, the overall capacity of the battery will be increased.
  • the discharge is interrupted when one of the cells has reached its minimum load. Due to the balancing, all the cells will also have almost reached their minimum load. As a result, the overall capacity of the battery will be increased. The battery life is also increased since the number of charge / discharge cycles of the battery is decreased by this increase in capacity.
  • FIG. 3 schematically shows a charging system 1 of a battery 2 comprising a set of cells 3 of electrical energy accumulation.
  • the cells 3 may be of the electrochemical type, for example of the Li-ion, NiMH, NiCD or Pb type, or electrical energy storage for example by supercapacities.
  • the charging system 1 also includes a supervision module 4 of the battery charge.
  • the supervision module 4 comprises a module 5 for measuring the voltage at the terminals of each of the cells 3.
  • the charging system 1 also advantageously comprises a protection module 6 of the battery 2.
  • the battery 2 is connected to the electrical consumers 1 1 and to a charger 12 powered by the mains via the protection module 6.
  • the charging system 1 comprises an annex 8 electrical source and a main power source 7.
  • the electrical source annex 8 may in particular be made of photovoltaic cells.
  • the electrical source annex 8 may also be constituted by a wind turbine.
  • Figure 4 shows more precisely the circuit diagram of the charging system 1.
  • the battery 2 comprises a set of cells 3 connected in series.
  • the supervision module 4 can control the measurement module 5 to individually measure the voltage across each of the cells 3.
  • the supervision module 4 is connected to the electrical source 7 and to the electrical source 8 via diodes 13
  • the electrical sources 7 and 8 can apply to the module 4 a voltage of between 12 and 14 V.
  • the supervision module 4 can recover from the measurement module 5 the voltage level of the most charged cell and identify the least cell. loaded.
  • the supervision module 4 controls a multiplexing module 10 for selecting the cell to be loaded or whose voltage is to be measured.
  • the recharging system 1 comprises a charging module 9.
  • the supervision module 4 selectively applies the voltage supplied by the electrical source 7 or the voltage supplied by the electrical source 8 via the charging module 9 to adapt the voltage.
  • the load module comprises a DC / DC converter for adapting the voltage received from the module 4 to the voltage level required for the load of a cell.
  • the charging voltage supplied by the module 9 is selectively applied by the multiplexing module 10 to the terminals of a selected cell.
  • the charging current and the voltage of the load cell can be measured to determine the energy transferred by the module 9 to a cell.
  • the diagram of Figure 2 shows the load of different cells 31 to 39 at the beginning of a balancing phase.
  • the voltage C max at the terminals of the most heavily loaded cell is determined. In this case, it is the Voltage at the terminals of the cell 33.
  • the less charged cells are then successively charged until these reach the voltage Cmax.
  • the successive charges are interrupted when the cells reach this voltage Cmax.
  • the balancing phase ends when all the cells have reached the voltage. Only one cell at a time is loaded during successive loads.
  • the least charged cell is initially the cell 34 with a voltage Cmin.
  • the cell 34 is thus charged up to Cmax as illustrated by the shaded area.
  • the voltage of the cell can be measured at regular intervals during charging.
  • the cell 31 becomes the least charged cell and therefore undergoes a load up to Cmax.
  • the Cmin value will be raised.
  • the balancing refill is interrupted by the user who solicits the battery charging by the sector or discharges to feed for example the power train, the balancing phase has benefited the capacity of the battery.
  • the supervision module 4 can control the charge current of the cell and adapt it according to the state of charge of the cell or the electric power supplied by the source 8.
  • the supervision module 4 advantageously uses the voltage supplied by the source 8 to perform the successive charges of the cells 3. Indeed, a relatively small amount of energy is sufficient to enable the cells to be balanced 3
  • the voltage measurement and the successive charges of the cells 3 are advantageously performed when the battery is at rest. We will consider that the battery is at rest when it will not feed a charge connected to its terminals. Thus, the measurements of the voltages at the terminals of the cells will not be disturbed by a current draw, which will allow accurate balancing of the voltages of the different cells 3. In addition, a rest recharge can be performed in masked time for the user. .
  • the battery 2 can be integrated in a vehicle. This battery 2 can power an electric motor 1 1 of an electric vehicle or a hybrid vehicle. Simultaneous recharging of the cells 3 up to their maximum capacity Vmax will advantageously be performed via the electrical source 12. The simultaneous recharging of the cells 3 will be interrupted when one of the cells reaches the maximum capacity Vmax.
  • Simultaneous charging of the cells 3 can be started following a balancing phase or when one of the cells 3 reaches the minimum capacity Vmin.
  • the electrical source 12 may be constituted by an internal combustion engine driving an alternator. In the case of an electric vehicle, the electrical source 12 may be constituted by a charger powered by the sector.
  • the supervision module 4 is advantageously powered by the auxiliary power source 8 when the battery 2 is at rest.
  • the supervision module 4 can be activated when the power produced by the source 8 is greater than the power consumed by the supervision module 4.
  • the supervision module 4 will only be activated when the power supplied by the source 8 is sufficient to carry out the successive charges of the different cells 3.
  • the power supplied by photovoltaic cells may in particular be measured to determine whether the power generated by the source 8 is sufficient. It is also possible for the supervision module 4 to be powered by the source 7 and for the source 7 to provide the necessary electrical power during the balancing phase, when the electric power supplied by the source 8 is insufficient.
  • the supervision module 4 may be powered by the battery 7, by a voltage converter connected to a high voltage output powered by the battery 2, or by the source of energy 8.
  • a discharge of the battery 2 may also occur, for example to power an electric motor 1 1 of the vehicle. This discharge may continue until one of the cells reaches the minimum capacity. Following balancing, this minimum capacity will be reached later, which corresponds to an overall increase in the capacity of the battery 2.
  • the set of cells 3 is connected in series. However, the mention also applies to a battery in which all the cells are connected in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un procédé de recharge d'une batterie électrique (2) comprenant un ensemble de cellules (3), comprenant une étape de mesure de la tension aux bornes de chacune desdites cellules (3) et déterminer la tension aux bornes de la cellule la plus chargée et la charge successive des cellules moins chargées jusqu'à atteindre la tension aux bornes de la cellule la plus chargée.

Description

SYSTEME DE RECHARGE DE BATTERIES
[0001] La présente invention revendique la priorité de la demande française 0951667 déposée le 17 mars 2009 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[0002] L'invention concerne les batteries d'accumulation d'énergie électrique, et en particulier les systèmes de recharge de batteries présentant plusieurs cellules accolées.
[0003] L'utilisation de batteries pour alimenter un moteur électrique d'un véhicule automobile est connue. De telles batteries comprennent typiquement des cellules de type Li-ion connectées en série. Du fait de dispersions de fabrication, ces cellules présentent en pratique des caractéristiques différentes. Ces différences, relativement mineures lorsque la batterie est neuve, s'accentuent avec l'usure de la batterie. La charge de la batterie est supervisée par un dispositif de contrôle à partir de mesures de tension sur les différentes cellules.
[ooo4] La figure 1 illustre la tension de différentes cellules d'une batterie à la fin d'un procédé de charge usuel de l'état de la technique. La tension aux bornes des différentes cellules est représentative de la charge de ces cellules. La plage de fonctionnement d'une cellule de type Li-ion est typiquement comprise entre 2,7 V et 4,2 V. Une utilisation hors de cette plage induit une détérioration irréversible des cellules de la batterie. Comme une surcharge peut conduire à une destruction d'une cellule, la charge de l'ensemble des cellules est interrompue lorsque la cellule la plus chargée atteint la limite haute Vmax de la plage de fonctionnement. La tension de la cellule la moins chargée est alors égale à une tension Vinf qui est inférieure à Vmax. Le dispositif de contrôle interrompt également la décharge de la batterie lorsque la cellule la moins chargée atteint la limite basse Vmin de la plage de fonctionnement. La capacité utile de la batterie est définie par la différence des valeurs des capacités correspondant aux tensions Vinf et Vmin. Par conséquent, plus les dispersions entre les cellules sont importantes, plus la capacité de la batterie est en pratique réduite. Avec une plage de fonctionnement réduite, la capacité de la batterie peut s'avérer relativement limitée en présence de fortes dispersions entre les cellules. Cette baisse de capacité multiplie le nombre de cycles de charge/décharge pour restituer une quantité d'énergie donnée. [oooδ] La demande de brevet US6157165 décrit un procédé de recharge d'une batterie. Préalablement à la recharge de l'ensemble des cellules, le procédé comprend une phase d'équilibrage de la tension des différentes cellules. On mesure séquentiellement la charge de chacune des cellules en les connectant transitoirement à un condensateur. Après avoir déconnecté la cellule du condensateur, la tension aux bornes de ce condensateur est mesurée. Ensuite, lorsqu'une cellule moins chargée est connectée au condensateur, de l'énergie est transférée du condensateur vers la cellule jusqu'à ce que leurs tensions s'équilibrent. Ensuite, lorsqu'une cellule plus chargée est connectée au condensateur, de l'énergie est transférée de la cellule vers le condensateur jusqu'à ce que leurs tensions s'équilibrent. L'étape de mesure des tensions induit ainsi un équilibrage des charges. Une phase de charge de l'ensemble des cellules est ensuite initiée. Durant cette phase de charge, des résistances sont connectées en parallèle sur certaines cellules dont la vitesse de charge est supérieure à celle des autres. Ainsi, lorsqu'une résistance est connectée en parallèle, la vitesse de charge de la cellule correspondante est réduite. La tension aux bornes des différentes cellules est donc régulièrement mesurée afin de connecter ou non une résistance en parallèle d'une cellule.
[0006] Un tel procédé présente cependant des inconvénients. En pratique, la phase d'équilibrage et de mesure occupe une durée non négligeable. De plus, de l'énergie est perdue par effet Joule lors des transferts successifs entre le condensateur et les différentes cellules, ainsi que lors de la connexion de résistances en parallèle.
[0007] L'invention vise à résoudre un ou plusieurs de ces inconvénients. L'invention porte ainsi sur un procédé de recharge d'une batterie électrique comprenant un ensemble de cellules, comprenant les étapes de mesure de la tension aux bornes de chacune desdites cellules et déterminer la tension aux bornes de la cellule la plus chargée ; et de charge successivement des cellules moins chargées jusqu'à atteindre la tension aux bornes de la cellule la plus chargée.
[oooδ] Selon une variante, l'ordre des charges successives est défini en chargeant la cellule la moins chargée. [0009] Selon encore une variante, de l'énergie lumineuse est transformée en énergie électrique, dans lequel cette énergie électrique est appliquée sur lesdites cellules durant les charges successives. [ooio] Selon une autre variante, l'ensemble des cellules est chargé simultanément jusqu'à ce que la tension aux bornes d'une cellule dépasse un seuil maximal.
[0011] Selon encore une autre variante, l'énergie électrique utilisée pour la charge simultanée provient du secteur ou d'un alternateur entraîné par un moteur à combustion interne.
[0012] Selon une variante, la mesure de tension et les charges successives sont réalisées lorsque la batterie est au repos.
[0013] L'invention porte également sur un système de recharge d'une batterie électrique comprenant un ensemble de cellules et, le système comprenant des moyens de mesure de la tension aux bornes des cellules ; des moyens de détermination de la tension aux bornes de la cellule la plus chargée ; et, des moyens de charge chargeant successivement des cellules moins chargées jusqu'à atteindre la tension aux bornes de la cellule la plus chargée.
[0014] Selon une variante, les moyens de charge chargent successivement les cellules en chargeant la cellule la moins chargée.
[0015] Selon une autre variante, le système comprend des cellules photovoltaïques alimentant les moyens de mesure, de détermination et le système de charge de la cellule ou des cellules à recharger lorsque le courant généré par les cellules photovoltaïques est suffisant. [0016] L'invention porte en outre sur un véhicule automobile comprenant une batterie et un système de recharge de la batterie tel que décrit ci-dessus et comprenant en outre des cellules photovoltaïques appliquant une tension aux bornes d'une cellule de la batterie durant les charges successives.
[0017] D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
• la figure 1 est une représentation de la charge de différentes cellules d'une batterie à la fin d'un processus de charge selon l'art antérieur ;
• la figure 2 est une représentation de la charge de différentes cellules au début d'une phase d'équilibrage ; • la figure 3 est une représentation schématique d'un système de recharge de batterie selon l'invention ;
• la figure 4 est une représentation du circuit électrique du système de la figure 3.
[0018] L'invention propose un procédé et un système de recharge de batteries. Les tensions aux bornes des cellules individuelles d'un ensemble de cellules sont mesurées. On détermine notamment la tension aux bornes de la cellule la plus chargée. Des cellules moins chargées sont alors successivement chargées jusqu'à atteindre la tension aux bornes de la cellule la plus chargée.
[0019] Ainsi, suite à ces charges successives, la tension aux bornes des différentes cellules est équilibrée avant d'entamer une recharge ou une décharge de l'ensemble des cellules. Lorsque les cellules sont ensuite rechargées, la recharge est interrompue lorsqu'une des cellules aura atteint sa charge maximale. Du fait de l'équilibrage, l'ensemble des cellules aura quasiment atteint sa charge maximale au moment de l'interruption de charge. Par conséquent, la capacité globale de la batterie sera ainsi accrue. Lorsque les cellules sont ensuite déchargées, la décharge est interrompue lorsqu'une des cellules aura atteint sa charge minimale. Du fait de l'équilibrage, l'ensemble des cellules aura également quasiment atteint sa charge minimale. Par conséquent, la capacité globale de la batterie sera accrue. La durée de vie de la batterie est également accrue puisque le nombre de cycles de charge/décharge de la batterie est diminué par cette augmentation de capacité. Par ailleurs, les charges d'équilibrage fréquentes selon l'invention permettent d'éviter l'utilisation de dérivations induisant des pertes par dissipations thermiques. La phase d'équilibrage selon l'invention est réalisable à partir de sources électriques basées sur des énergies renouvelables. [0020] La figure 3 représente schématiquement un système de recharge 1 d'une batterie 2 comprenant un ensemble de cellules 3 d'accumulation d'énergie électrique. Les cellules 3 pourront être de type électrochimique, par exemple du type Li-ion, NiMH, NiCD ou Pb, ou de stockage d'énergie électrique par exemple par des supercapacités. Le système de recharge 1 comprend également un module de supervision 4 de la charge de la batterie. Le module de supervision 4 comprend un module de mesure 5 de la tension aux bornes de chacune des cellules 3. Le système de recharge 1 comprend également avantageusement un module de protection 6 de la batterie 2. La batterie 2 est reliée aux consommateurs électrique 1 1 et à un chargeur 12 alimenté par le secteur via le module de protection 6.
[0021] De plus, le système de recharge 1 comprend une source électrique annexe 8, ainsi qu'une source électrique principale 7. La source électrique annexe 8 pourra en particulier être constituée de cellules photovoltaïques. La source électrique annexe 8 pourra également être constituée par une éolienne. Pour une application automobile du système de recharge, l'utilisation d'une telle source électrique annexe permet de réaliser l'équilibrage de la charge de la batterie 2 en bénéficiant d'une énergie renouvelable. [0022] La figure 4 représente plus précisément le schéma électrique du système de recharge 1. La batterie 2 comprend un ensemble de cellules 3 connectées en série. Le module de supervision 4 peut commander le module de mesure 5 pour mesurer individuellement la tension aux bornes de chacune des cellules 3. Le module de supervision 4 est connecté à la source électrique 7 et à la source électrique 8 par l'intermédiaire de diodes 13. Les sources électriques 7 et 8 pourront appliquer sur le module 4 une tension comprise entre 12 et 14 V. Le module de supervision 4 peut récupérer du module de mesure 5 le niveau de tension de la cellule la plus chargée et identifier la cellule la moins chargée. Le module de supervision 4 commande un module de multiplexage 10 destiné à sélectionner la cellule devant être chargée ou dont la tension doit être mesurée. Le système de recharge 1 comprend un module de charge 9. Le module de supervision 4 applique sélectivement la tension fournie par la source électrique 7 ou la tension fournie par la source électrique 8 via le module de charge 9 pour adapter la tension. Le module de charge comprend un convertisseur continu/continu permettant d'adapter la tension reçue du module 4 au niveau de tension nécessaire à la charge d'une cellule. La tension de charge fournie par le module 9 est appliquée sélectivement par le module de multiplexage 10 aux bornes d'une cellule sélectionnée. Le courant de charge et la tension de la cellule en charge pourront être mesurés afin de déterminer l'énergie transférée par le module 9 sur une cellule. [0023] Le diagramme de la figure 2 représente la charge de différentes cellules 31 à 39 au début d'une phase d'équilibrage. Au début de la phase d'équilibrage, l'ensemble des tensions des cellules 31 à 39 est mesuré. La tension Cmax aux bornes de la cellule la plus chargée est déterminée. En l'occurrence, il s'agit de la tension aux bornes de la cellule 33. On charge ensuite successivement les cellules les moins chargées jusqu'à ce que celles-ci atteignent la tension Cmax. Les charges successives sont interrompues lorsque les cellules atteignent cette tension Cmax. La phase d'équilibrage se termine lorsque l'ensemble des cellules a atteint la tension. Une seule cellule à la fois est chargée durant les charges successives.
[0024] Pour définir l'ordre des charges successives, on charge de préférence systématiquement la cellule la moins chargée. Dans l'exemple illustré, la cellule la moins chargée est initialement la cellule 34 avec une tension Cmin. La cellule 34 est ainsi chargée jusqu'à Cmax comme illustré par la zone hachurée. La tension de la cellule pourra être mesurée à intervalles réguliers durant la charge. Ensuite, la cellule 31 devient la cellule la moins chargée et subit donc une charge jusqu'à Cmax. On peut noter que même lorsque les charges successives sont interrompues avant que l'ensemble des cellules ait atteint la charge Cmax, un équilibrage partiel des charges aura été réalisé puisque la cellule la moins chargée aura bénéficié d'une recharge. Même dans ce cas, la valeur Cmin sera relevée. Ainsi, même si la recharge d'équilibrage est interrompue par l'utilisateur qui sollicite la batterie en charge par le secteur ou décharge pour alimenter par exemple la chaîne de traction, la phase d'équilibrage aura bénéficié à la capacité de la batterie.
[0025] Plutôt que d'interrompre la charge d'une cellule en mesurant sa tension, on peut également définir au préalable une énergie électrique conduisant approximativement à une charge de cette cellule jusqu'à Cmax. Pour cela, on pourra appliquer une durée de charge de la cellule fonction de la puissance instantanée mesurée et délivrée par le convertisseur 9 à la cellule. Le module de supervision 4 pourra contrôler le courant de charge de la cellule et l'adapter en fonction de l'état de charge de la cellule ou de la puissance électrique fournie par la source 8.
[0026] Le module de supervision 4 utilise avantageusement la tension électrique fournie par la source annexe 8 pour réaliser les charges successives des cellules 3. En effet, une quantité d'énergie relativement réduite est suffisante pour permettre de réaliser l'équilibrage des cellules 3. [0027] La mesure de tension et les charges successives des cellules 3 sont avantageusement effectuées lorsque la batterie est au repos. On considérera que la batterie est au repos lorsque celle-ci n'alimentera pas de charge connectée à ses bornes. Ainsi, les mesures des tensions aux bornes des cellules ne seront pas perturbées par un appel de courant, ce qui permettra un équilibrage précis des tensions des différentes cellules 3. De plus, une recharge au repos peut être effectuée en temps masqué pour l'utilisateur. [0028] La batterie 2 peut être intégrée dans un véhicule. Cette batterie 2 peut alimenter un moteur électrique 1 1 d'un véhicule électrique ou d'un véhicule hybride. Une recharge simultanée des cellules 3 jusqu'à leur capacité maximale Vmax sera avantageusement réalisée par l'intermédiaire de la source électrique 12. La recharge simultanée des cellules 3 sera interrompue lorsque l'une des cellules atteindra la capacité maximale Vmax.
[0029] Une recharge simultanée des cellules 3 peut être lancée suite à une phase d'équilibrage ou lorsque l'une des cellules 3 atteint la capacité minimale Vmin.
[0030] Dans le cas d'un véhicule hybride, la source électrique 12 pourra être constituée par un moteur à combustion interne entraînant un alternateur. Dans le cas d'un véhicule électrique, la source électrique 12 pourra être constituée par un chargeur alimenté par le secteur.
[0031] Le module de supervision 4 sera avantageusement alimenté par la source électrique annexe 8 lorsque la batterie 2 est au repos. Lorsque la source électrique annexe 8 génère de l'électricité à partir d'une énergie renouvelable, le module de supervision 4 peut être activé lorsque que la puissance produite par la source 8 est supérieure à la puissance consommée par le module de supervision 4. Ainsi, le module de supervision 4 ne sera activé que lorsque la puissance fournie par la source 8 est suffisante pour réaliser les charges successives des différentes cellules 3. La puissance fournie par des cellules photovoltaïques pourra notamment être mesurée pour déterminer si la puissance générée par la source 8 est suffisante. On peut également prévoir que le module de supervision 4 soit alimenté par la source 7 et que la source 7 fournisse la puissance électrique nécessaire durant la phase d'équilibrage, lorsque la puissance électrique fournie par la source 8 est insuffisante.
[0032] En dehors de la phase d'équilibrage de la batterie 2, le module de supervision 4 pourra être alimenté par la batterie 7, par un convertisseur de tension raccordé à une sortie haute tension alimentée par la batterie 2, ou par la source d'énergie 8. [0033] Suite à la phase d'équilibrage, une décharge de la batterie 2 pourra également intervenir, par exemple pour alimenter un moteur électrique 1 1 de véhicule. Cette décharge pourra se poursuivre jusqu'à ce que l'une des cellules atteigne la capacité minimale. Suite à l'équilibrage, cette capacité minimale sera atteinte plus tardivement, ce qui correspond à une augmentation globale de la capacité de la batterie 2.
[0034] Dans le mode de réalisation illustrée, l'ensemble des cellules 3 est connecté en série. Cependant, la mention s'applique également à une batterie dans laquelle l'ensemble des cellules est connecté en parallèle.

Claims

REVENDICATIONS
1. Procédé de recharge d'une batterie électrique (2) comprenant un ensemble de cellules (3), comprenant une étape de mesure de la tension aux bornes de chacune desdites cellules et déterminer la tension aux bornes de la cellule la plus chargée et la charge successive des cellules moins chargées jusqu'à atteindre la tension aux bornes de la cellule la plus chargée.
2. Procédé de recharge d'une batterie électrique selon la revendication 1 , dans lequel l'ordre des charges successives est défini en chargeant la cellule la moins chargée.
3. Procédé de recharge d'une batterie électrique selon la revendication 1 ou la revendication 2, dans lequel de l'énergie lumineuse est transformée en énergie électrique, dans lequel cette énergique électrique est appliquée sur lesdites cellules durant les charges successives.
4. Procédé de recharge d'une batterie électrique selon l'une quelconque des revendications précédentes, dans lequel, l'ensemble des cellules est chargé simultanément jusqu'à ce que la tension aux bornes d'une cellule dépasse un seuil maximal.
5. Procédé de recharge d'une batterie selon la revendication 4, dans lequel l'énergie électrique utilisée pour la charge simultanée provient du secteur ou d'un alternateur entraîné par un moteur à combustion interne.
6. Procédé de recharge d'une batterie électrique selon l'une quelconque des revendications précédentes, dans lequel la mesure de tension et les charges d'équilibrage successives sont réalisées lorsque la batterie est au repos.
7. Système (1 ) de recharge d'une batterie électrique comprenant un ensemble de cellules (3) et, le système comprenant des moyens de mesure (5) de la tension aux bornes des cellules ; des moyens de détermination (4) de la tension aux bornes de la cellule la plus chargée ; caractérisé en ce qu'il comprend en outre des moyens de charge (4, 8) chargeant successivement des cellules moins chargées jusqu'à atteindre la tension aux bornes de la cellule la plus chargée.
8. Système de recharge selon la revendication 7, dans lequel les moyens de charge chargent successivement les cellules (3) en chargeant la cellule la moins chargée.
9. Système de recharge selon la revendication 7 ou la revendication 8, comprenant des cellules photovoltaïques (8) alimentant les moyens de mesure et de détermination lorsque le courant généré par les cellules photovoltaïques est suffisant.
10. Véhicule automobile comprenant une batterie et un système de recharge de la batterie selon l'une quelconque des revendications 7 à 9, comprenant en outre des cellules photovoltaïques (8) appliquant une tension aux bornes d'une cellule (3) de la batterie (2) durant les charges successives.
PCT/FR2010/050233 2009-03-17 2010-02-11 Systeme de recharge de batteries WO2010106257A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951667 2009-03-17
FR0951667A FR2943473B1 (fr) 2009-03-17 2009-03-17 Systeme de recharge de batteries

Publications (1)

Publication Number Publication Date
WO2010106257A1 true WO2010106257A1 (fr) 2010-09-23

Family

ID=41203671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050233 WO2010106257A1 (fr) 2009-03-17 2010-02-11 Systeme de recharge de batteries

Country Status (2)

Country Link
FR (1) FR2943473B1 (fr)
WO (1) WO2010106257A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787108B2 (en) 2012-11-05 2017-10-10 Tws (Macau Commercial Offshore) Limited Enhanced battery management system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021128766B3 (de) 2021-11-04 2023-02-02 Tkr Spezialwerkzeuge Gmbh Verfahren zum Analysieren der Kontaktbelegung eines Kontaktelements eines Zellmoduls für einen Fahrzeugakku sowie Modulladegerät mit einer Diagnosefunktion der Kontaktbelegung eines Kontaktelements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR951667A (fr) 1946-01-03 1949-11-02 Int Standard Electric Corp Systèmes de balises radioélectriques et de stations répétrices
US5438250A (en) * 1992-09-22 1995-08-01 Mentzer Electronic Gmbh Process and apparatus for charging a multi-cell battery
US5982143A (en) * 1996-08-27 1999-11-09 The University Of Toledo Battery equalization circuit with ramp converter and selective outputs
US6157165A (en) 1998-10-06 2000-12-05 Hitachi, Ltd. Battery apparatus and control system therefor
US20050083722A1 (en) * 2001-11-22 2005-04-21 Hitachi, Ltd. Power supply unit, distributed power supply system and electric vehicle loaded therewith
DE102005003724A1 (de) * 2005-01-26 2006-07-27 Höbel, Rudolf Elektrofahrzeug mit wiederaufladbarer Batterie
US7400113B2 (en) * 2001-03-30 2008-07-15 Designline International Holdings, Llc Battery management unit, system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR951667A (fr) 1946-01-03 1949-11-02 Int Standard Electric Corp Systèmes de balises radioélectriques et de stations répétrices
US5438250A (en) * 1992-09-22 1995-08-01 Mentzer Electronic Gmbh Process and apparatus for charging a multi-cell battery
US5982143A (en) * 1996-08-27 1999-11-09 The University Of Toledo Battery equalization circuit with ramp converter and selective outputs
US6157165A (en) 1998-10-06 2000-12-05 Hitachi, Ltd. Battery apparatus and control system therefor
US7400113B2 (en) * 2001-03-30 2008-07-15 Designline International Holdings, Llc Battery management unit, system and method
US20050083722A1 (en) * 2001-11-22 2005-04-21 Hitachi, Ltd. Power supply unit, distributed power supply system and electric vehicle loaded therewith
DE102005003724A1 (de) * 2005-01-26 2006-07-27 Höbel, Rudolf Elektrofahrzeug mit wiederaufladbarer Batterie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOORE S W SCHNEIDER P J: "A review of cell equalization methods for lithium ion and lithium polymer battery systems", 5 March 2001, SAE WORLD CONGRESS, XX, XX, PAGE(S) 1 - 5, XP002954937 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787108B2 (en) 2012-11-05 2017-10-10 Tws (Macau Commercial Offshore) Limited Enhanced battery management system

Also Published As

Publication number Publication date
FR2943473B1 (fr) 2012-11-16
FR2943473A1 (fr) 2010-09-24

Similar Documents

Publication Publication Date Title
EP2715909B1 (fr) Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe
EP2164152B1 (fr) Procédé de charge pulsée d'une batterie dans un système autonome comportant une supercacité
EP2137801B1 (fr) Dispositif de stockage d'energie, notamment pour vehicule automobile
EP2774240B1 (fr) Dispositif d'equilibrage de charge des elements d'une batterie de puissance
EP2878034B1 (fr) Véhicule comprenant une batterie et des moyens de détermination d'une puissance maximale admissible pour la batterie, et procédé correspondant
EP2665120B1 (fr) Procédé et système d'équilibrage de cellules constitutives d'une batterie
EP1774353A1 (fr) Procédé de gestion d'un parc de batteries rechargeables
EP2416468A2 (fr) Procédé d'équilibrage pour batterie électrique et système de gestion pour batterie mettant en ouvre un tel procédé
WO2013064759A2 (fr) Procede et systeme de gestion de charges electriques de cellules de batterie
EP2788221A2 (fr) Procede de gestion d'un alternateur associe a au moins une batterie d'alimentation et entraine par un moteur thermique
WO2013144488A2 (fr) Procede et systeme d'alimentation electrique d'un vehicule automobile hybride a double stockeurs d'energie electrique
FR2970442A1 (fr) Regulation de tension dans un engin ferroviaire hybride
EP2945817A1 (fr) Gestion de la charge d'une batterie
WO2016113481A1 (fr) Procede d'identification de la courbe de tension a vide d'une cellule electrique en vieillissement
EP3324197B1 (fr) Procédé de détermination de l'état de santé d'une cellule de batterie
WO2010106257A1 (fr) Systeme de recharge de batteries
WO2021130068A1 (fr) Procédé d'identification du début de l'accélération de la dégradation de l'état de santé de batteries d'accumulateurs électriques
EP4101047B1 (fr) Procede de charge impulsionnel en regulation de tension a palier d'amplitude variable
FR3010250A1 (fr) Systeme de gestion electrique des blocs d'une batterie en fonction de la puissance requise de la batterie et de la charge des blocs
WO2011121235A1 (fr) Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en œuvre le procede
EP3983267B1 (fr) Procédé de régulation de réseau de bord d'un véhicule
WO2024213559A1 (fr) Système électrique d'alimentation pour véhicule
FR3112904A1 (fr) Système d’alimentation d’un moteur de traction
FR3036866A1 (fr) Optimisation de la recuperation energetique solaire photovoltaique
FR3000850A1 (fr) Procede et dispositif de controle d'une consigne interne de courant d'un producteur d'energie electrique pendant un mode de fonctionnement degrade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10708330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10708330

Country of ref document: EP

Kind code of ref document: A1