WO2010104056A1 - Lifespan-extending agent - Google Patents
Lifespan-extending agent Download PDFInfo
- Publication number
- WO2010104056A1 WO2010104056A1 PCT/JP2010/053841 JP2010053841W WO2010104056A1 WO 2010104056 A1 WO2010104056 A1 WO 2010104056A1 JP 2010053841 W JP2010053841 W JP 2010053841W WO 2010104056 A1 WO2010104056 A1 WO 2010104056A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- activated carbon
- spherical activated
- spherical
- aging
- expression
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/44—Elemental carbon, e.g. charcoal, carbon black
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to a life extension agent, an anti-aging agent, and a Klotho protein expression promoter. According to the present invention, life can be extended by taking an orally-administered drug with substantially no side effects.
- aging In animals including humans, the function of an individual decreases with age, for example, a decrease in visual acuity or hearing, a decrease in motor ability, a decrease in immune function, memory impairment, and a decrease in function of each organ in a living body.
- age for example, a decrease in visual acuity or hearing, a decrease in motor ability, a decrease in immune function, memory impairment, and a decrease in function of each organ in a living body.
- aging is a multifaceted phenomenon that gradually progresses in various tissues and organs of the individual, and when aging progresses, it becomes impossible to maintain the homeostasis of the individual, Eventually it will be fatal.
- Non-Patent Document 1 resveratrol, which is a porphyrin contained in wine, can extend the lifespan of mice that have ingested a high-calorie diet.
- Non-Patent Document 1 apple-derived polyphenols prolong the life of model mice with congestive heart failure
- Patent Document 2 an oil or fat composition having specific physical properties containing ⁇ -linolenic acid and linoleic acid can prolong the life span of stroke-prone rats (Patent Document 2).
- Non-patent Document 2 a mouse with a mutation in this Kuroso gene exhibits symptoms similar to those of human aging, such as shortening of life and growth.
- Disorder infertility, decreased activity, thymus atrophy, skin atrophy, skeletal muscle atrophy, reduction of subcutaneous and visceral fat, arteriosclerosis (medial calcification), renal arteriole calcification, soft tissue calcification ( Stomach, choroid plexus, testis), emphysema, decreased bone density, glans, anterior horn cell degeneration, cognitive impairment, hearing loss, hypoglycemia, hyperphosphatemia, hypercalcemia, etc. It is reported that the homozygous mouse, deficient in the croso gene, shows remarkable aging symptoms after 3 weeks of life and leads to early death, but the lifespan is extended by the administration of Evans blue or trypan blue. (Patent Document 3).
- the life extension effect by the above-mentioned compound is in a mouse that has taken a high-calorie diet, a model mouse with a specific disease, or an aging model mouse having a genetic mutation.
- these compounds are thought to extend lifespan by preventing or treating a specific disease or pathological condition, and maintain normal homeostasis and prolong lifespan. It is not.
- Patent Document 4 chitosan (Patent Document 4) and peroxidase (Patent Document 5) have been reported as compounds capable of extending the life span in normal individuals. However, the life extension effect of these compounds was not remarkable.
- An object of the present invention is to provide a life extension agent that prevents aging due to aging in an individual, is effective in maintaining homeostasis of a living body, and can safely extend the life even when ingested continuously for a long period of time. It is to be.
- a life extending agent that can extend the life in a normal individual
- the present inventor has surprisingly found that an excellent life extension effect appears in a normal individual by oral administration of activated carbon. I found it.
- Activated charcoal preparation is conventionally used as an oral antidote for kidney diseases and the like, and it is known that it has substantially no side effects or toxicity, but the knowledge that it has an effect of extending lifespan in normal individuals, There is nothing in the past.
- the present invention is based on these findings.
- the present invention relates to a life extending agent containing activated carbon as an active ingredient.
- the activated carbon is a spherical activated carbon.
- the present invention relates to a life extending composition comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
- the present invention relates to a method for prolonging life comprising administering to a normal subject an effective amount of spherical activated carbon.
- the present invention relates to the use of spherical activated carbon to produce a composition for extending life.
- this invention relates to the anti-aging agent which uses activated carbon as an active ingredient.
- the activated carbon is a spherical activated carbon.
- the present invention relates to an anti-aging composition comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
- the present invention relates to a method for preventing aging, comprising administering spherical activated carbon to a normal subject in an effective amount.
- the present invention relates to the use of spherical activated carbon for producing an anti-aging composition.
- the present invention relates to a crosoprotein expression promoter containing activated carbon as an active ingredient.
- the activated carbon is a spherical activated carbon.
- the present invention relates to a pharmaceutical composition for expression of crosoprotein comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
- the present invention relates to a method for treating or preventing a disease related to decreased expression of crosoprotein, comprising administering spherical activated carbon in an effective amount to a subject in need of treatment or prevention of the disease related to decreased expression of crosoprotein.
- the present invention relates to the use of spherical activated carbon for the production of a pharmaceutical composition for expression of crosoprotein.
- the life extension agent of the present invention it is possible to maintain the homeostasis of a living body in a normal individual and to extend the life, and further to extend the life even in an individual having a disease.
- aging can be prevented in a normal individual or an individual having an aging-related disease.
- the agent for promoting the expression of crosoprotein of the present invention the expression of crosoprotein is promoted (or the decrease in expression is suppressed) in a normal individual or an individual having a disease associated with a decrease in expression of crosoprotein. Can do.
- the life extension agent, anti-aging agent, and Kurosoprotein expression promoter of the present invention are not a compound that is absorbed into the living body even when continuously administered orally, and therefore have no toxicity and no harmful side effects. Absent.
- the activated carbon that is an active ingredient of the pharmaceutical preparation of the present invention is not particularly limited as long as it can be used for medical purposes, but activated carbon for oral administration, that is, internal use for medical purposes.
- activated carbon capable of As the activated carbon for example, powdered activated carbon or spherical activated carbon can be used.
- powdered activated carbon known powdered activated carbon conventionally used in medicine as an antidote can be used, but it may cause constipation as a side effect, so it is preferable to use spherical activated carbon.
- the spherical activated carbon preferably has a particle size of 0.01 to 2 mm, more preferably 0.05 to 2 mm, and still more preferably 0.05 to 1 mm.
- spherical activated carbon for example, spherical activated carbon described in JP-A No. 11-292770 or JP-A No. 2002-308785 (Japanese Patent No. 3522708) can be used.
- JP-A-11-292770 will be described, and subsequently, the spherical activated carbon described in JP-A-2002-308785 (Japanese Patent No. 3522708) will be described.
- the spherical activated carbon described in JP-A-11-292770 is preferably a spherical activated carbon having a diameter of 0.05 to 2 mm, more preferably 0.1 to 1 mm. Further, spherical activated carbon having a specific surface area of 500 to 2000 m 2 / g, more preferably 700 to 1500 m 2 / g. Further, spherical activated carbon having a pore radius of 100 to 75000 angstrom and a void amount of 0.01 to 1 mL / g, more preferably 0.05 to 0.8 mL / g is preferable. In addition, said specific surface area is the value measured by the methanol adsorption method using the automatic adsorption amount measuring apparatus.
- the amount of voids is a value measured with a mercury intrusion porosimeter.
- the spherical activated carbon is advantageous compared to powdered activated carbon in that it does not scatter when taken and does not cause constipation even when used continuously.
- the shape of the spherical activated carbon is one of the important factors, and it is important that it is substantially spherical.
- spherical activated carbon derived from petroleum pitch described later is particularly preferable because it is close to a true sphere.
- any activated carbon raw material such as sawdust, coal, coconut shell, petroleum-based or coal-based pitches, or organic synthetic polymer may be used. It can.
- Spherical activated carbon can be manufactured by, for example, a method of activating after carbonizing a raw material. As the activation method, various methods such as steam activation, chemical activation, air activation, or carbon dioxide activation can be used, but it is necessary to maintain the purity acceptable for medical treatment.
- Examples of the spherical activated carbon described in JP-A-11-292770 include granulated activated carbon from carbonaceous powder, spherical activated carbon baked with organic polymer, and spherical activated carbon derived from petroleum hydrocarbon (petroleum pitch).
- granulated activated carbon from carbonaceous powder is carbonized by granulating the carbonaceous powder raw material into small spheres with a binder such as tar and pitch and then heating and firing to a temperature of 600 to 1000 ° C. in an inert atmosphere. Then, it can obtain by activating.
- the activation method various methods such as water vapor activation, chemical activation, air activation or carbon dioxide activation can be used.
- the steam activation is performed at a temperature of 800 to 1100 ° C. in a steam atmosphere, for example.
- Spherical activated carbon baked with organic polymer is disclosed in, for example, Japanese Patent Publication No. 61-1366 and can be produced as follows.
- a curing agent, a curing catalyst, an emulsifier, and the like are mixed with a condensation-type or polyaddition-type thermosetting prepolymer, emulsified in water with stirring, and reacted while continuing stirring at room temperature or warming.
- the reaction system is first in a suspended state, and the thermosetting resin spheres appear by further stirring. This can be recovered, heated to a temperature of 500 ° C. or higher in an inert atmosphere, carbonized, and activated by the above method to obtain a spherical activated carbon fired with an organic polymer.
- the spherical activated carbon derived from petroleum-based pitch preferably has a diameter of 0.05 to 2 mm, more preferably 0.1 to 1 mm, a specific surface area of preferably 500 to 2000 m 2 / g, more preferably 700 to 1500 m 2 / g,
- the void volume with a pore radius of 100 to 75000 angstroms is preferably 0.01 to 1 mL / g.
- the spherical activated carbon derived from petroleum pitch can be produced, for example, by the following two methods.
- the first method is described in, for example, Japanese Patent Publication No. 51-76 (US Pat. No. 3,917,806) and Japanese Patent Application Laid-Open No. 54-89010 (US Pat. No. 4,761,284).
- First, pitches in the form of small spheres in a molten state are infusible with oxygen, then heated and fired at a temperature of 600 to 1000 ° C. in an inert atmosphere, and then carbonized in a water vapor atmosphere at 850 to 1000 ° C. It is a method of activation by temperature.
- the second method for example, as described in Japanese Patent Publication No. 59-10930 (US Pat. No. 4,420,433), first, pitch-like pitches in a molten state are crushed, In this method, the mixture is spheroidized and then infusible with oxygen, and then carbonized and activated under the same conditions as in the first method.
- the active carbon of the active ingredient (1) spherical activated carbon subjected to ammonia treatment or the like, (2) spherical activated carbon subjected to oxidation and / or reduction treatment, or the like can also be used.
- the spherical activated carbon that can be subjected to these treatments may be any of the above-mentioned spherical activated carbon derived from petroleum pitch, granulated activated carbon of carbonaceous powder, and spherical activated carbon baked with organic polymer.
- the ammonia treatment is, for example, a spherical activated carbon with an aqueous ammonia solution containing 1 to 1000 ppm of ammonia, and a volume ratio of the aqueous ammonia solution to the spherical activated carbon of 2 to 10 at a temperature of 10 to 50 ° C. Processing for ⁇ 5 hours.
- Examples of the activated carbon obtained by applying ammonia treatment to the spherical activated carbon derived from petroleum pitch include spherical activated carbon described in JP-A-56-5313 (US Pat. No. 4,761,284).
- the spherical activated carbon subjected to ammonia treatment has a diameter of 0.05 to 2 mm, preferably 0.1 to 1 mm, a specific surface area of 500 to 2000 m 2 / g, preferably 700 to 1500 m 2 / g, a pore radius.
- a spherical activated carbon having a void volume of 100 to 75000 angstroms of 0.01 to 1 mL / g and a pH of 6 to 8 can be exemplified.
- the above-mentioned oxidation treatment means that high-temperature heat treatment is performed in an oxidizing atmosphere containing oxygen, and pure oxygen, nitrogen oxide, air, or the like can be used as the oxygen source.
- the reduction treatment means that high temperature heat treatment is performed in an atmosphere inert to carbon, and the atmosphere inert to carbon is formed using nitrogen, argon, helium, or a mixed gas thereof. be able to.
- the oxidation treatment is preferably performed in an atmosphere having an oxygen content of 0.5 to 25% by volume, more preferably an oxygen content of 3 to 10% by volume, preferably a temperature of 300 to 700 ° C., more preferably 400 to 600 ° C.
- Done in The reduction treatment is preferably performed in an inert atmosphere at a temperature of 700 to 1100 ° C., more preferably 800 to 1000 ° C.
- Examples of the above-mentioned spherical activated carbon derived from petroleum pitch include oxidation and / or reduction treatment include spherical activated carbon described in JP-B-62-11611 (US Pat. No. 4,681,764).
- the spherical activated carbon subjected to oxidation and / or reduction treatment has a diameter of 0.05 to 2 mm, preferably 0.1 to 1 mm, a specific surface area of 500 to 2000 m 2 / g, preferably 700 to 1500 m 2 / g, Spherical activated carbon having a pore radius of 100 to 75000 angstroms and a pore volume of 0.01 to 1 mL / g is preferred.
- the spherical activated carbon described in JP-A No. 2002-308785 has a diameter of 0.01 to 1 mm, a specific surface area determined by the BET method of 700 m 2 / g or more, and a pore volume of 20 to 15000 nm. Sphericity of 0.04 mL / g or more and less than 0.10 mL / g, total acidic groups of 0.30 to 1.20 meq / g, and total basic groups of 0.20 to 0.70 meq / g Activated carbon.
- the spherical activated carbon described in JP-A-2002-308785 has a pore volume in a specific range.
- the pore volume having a pore diameter of 20 to 15000 nm is 0.04 mL / g or more and less than 0.10 mL / g.
- spherical activated carbon having a total basic group of 0.20 to 1.00 meq / g can also be used.
- the spherical activated carbon described in JP-A-11-292770 has a pore volume with a pore radius of 100 to 75000 angstroms (that is, a pore volume with a pore diameter of 20 to 15000 nm) of 0.1 to 1 mL / g. is there.
- a pore volume with a pore diameter of 20 to 15000 nm is adjusted to 0.04 mL / g or more and less than 0.10 mL / g, it is against toxic ⁇ -aminoisobutyric acid.
- the adsorption characteristics for ⁇ -amylase which is a beneficial substance, are significantly reduced.
- adsorption of beneficial substances such as digestive enzymes is more likely to occur.
- the pore volume the smaller the pore volume, preferable.
- the amount of adsorption of the toxic substance also decreases.
- the ratio (T / U) of the adsorption amount (T) of the toxic substance to the adsorption amount (U) of the beneficial substance, that is, the selective adsorption rate is important.
- the selective adsorption rate of spherical activated carbon is evaluated as the ratio (Tb / Ua) of the adsorption amount (Tb) of DL- ⁇ -aminoisobutyric acid (toxic substance) to the adsorption amount (Ua) of ⁇ -amylase (beneficial substance). be able to.
- the spherical activated carbon described in JP-A-2002-308785 exhibits excellent selective adsorption rate when the pore volume with a pore diameter of 20 to 15000 nm is 0.04 mL / g or more and less than 0.10 mL / g, A more excellent selective adsorption rate is exhibited when the pore volume is 0.05 mL / g or more and less than 0.10 mL / g.
- the spherical activated carbon described in JP-A-2002-308785 has a diameter of 0.01 to 1 mm.
- the diameter is preferably 0.02 to 0.8 mm.
- the expression “diameter is D1 to Du” is a sieve in a particle size cumulative diagram prepared in accordance with JIS K 1474 (which will be described later in connection with the method of measuring the average particle size). This means that the sieve passing percentage (%) corresponding to the range of the openings Dl to Du is 90% or more.
- the spherical activated carbon described in JP-A-2002-308785 has a specific surface area (hereinafter sometimes abbreviated as “SSA”) determined by the BET method of 700 m 2 / g or more.
- Spherical activated carbon having an SSA of less than 700 m 2 / g is not preferable because the adsorption performance of toxic substances is lowered.
- SSA is preferably 800 m 2 / g or more.
- the upper limit of SSA is not particularly limited, but SSA is preferably 2500 m 2 / g or less from the viewpoint of bulk density and strength.
- the total acidic group is 0.30 to 1.20 meq / g and the total basic group is 0.20 to 0.70 meq in the functional group structure. / G.
- the total acidic group is 0.30 to 1.20 meq / g
- the total acidic group is preferably 0.30 to 1.00 meq / g, and the total basic group is preferably 0.30 to 0.60 meq / g.
- the structure of the functional group is 0.30 to 1.20 meq / g for all acidic groups, 0.20 to 0.70 meq / g for all basic groups, 0.20 to 0.70 meq / g for phenolic hydroxyl groups, And the carboxy group is in the range of 0.15 meq / g or less, and the ratio (a / b) of the total acidic group (a) to the total basic group (b) is 0.40 to 2.5,
- the relationship [(b + c) -d] of the basic group (b), phenolic hydroxyl group (c) and carboxy group (d) is preferably 0.60 or more.
- the spherical activated carbon described in JP-A-2002-308785 can be produced, for example, by the following method. First, after adding a bicyclic or tricyclic aromatic compound or a mixture thereof having a boiling point of 200 ° C. or higher as an additive to a pitch such as petroleum pitch or coal pitch, the mixture is heated and mixed, and then molded to form a pitch. Get the body.
- a pitch such as petroleum pitch or coal pitch
- the pitch compact is dispersed and granulated in hot water at 70 to 180 ° C. with stirring to form microspheres.
- the additive having a low solubility with respect to pitch and having a high solubility with respect to the additive is extracted and removed from the pitch molded product, and the resulting porous pitch is removed using an oxidizing agent.
- an oxidizing agent When oxidized, a porous pitch that is infusible to heat is obtained.
- the infusible porous pitch obtained in this way is further treated at a temperature of 800 to 1000 ° C. in an air stream reactive with carbon (for example, steam or carbon dioxide), a porous carbonaceous material can be obtained. it can.
- the porous carbonaceous material thus obtained is subsequently heated to 300 to 800 ° C. (preferably in an atmosphere having an oxygen content of 0.1 to 50 vol% (preferably 1 to 30 vol%, particularly preferably 3 to 20 vol%).
- an atmosphere having an oxygen content of 0.1 to 50 vol% preferably 1 to 30 vol%, particularly preferably 3 to 20 vol%.
- atmosphere containing a specific amount of oxygen pure oxygen, nitrogen oxide, air, or the like can be used as an oxygen source.
- an atmosphere inert to carbon for example, nitrogen, argon, helium, or the like can be used alone, or a mixture thereof can be used.
- the purpose of adding an aromatic compound to the raw material pitch is to improve the fluidity by lowering the softening point of the raw material pitch to facilitate microsphere formation and from the pitch formed body after molding.
- the object is to make the molded body porous by extracting and removing the additive, and to facilitate structure control and firing of the carbonaceous material by oxidation in the subsequent steps.
- an additive for example, naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl can be used alone, or a mixture of two or more thereof can be used.
- the amount added to the pitch is preferably in the range of 10 to 50 parts by weight of the aromatic compound per 100 parts by weight of the pitch.
- the mixture of pitch and additive is preferably formed into particles having a particle size of about 0.01 to 1 mm in order to control the particle size (diameter) of the obtained porous spherical carbonaceous material. Molding may be performed in a molten state, or may be performed by a method such as grinding the mixture after cooling.
- the solvent for extracting and removing the additive from the mixture of pitch and additive include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, and aliphatic hydrocarbons such as naphtha or kerosene. Or a mixture of aliphatic alcohols such as methanol, ethanol, propanol, or butanol.
- the additive By extracting the additive from the mixture molded product of pitch and additive with such a solvent, the additive can be removed from the molded product while maintaining the shape of the molded product. At this time, it is presumed that an additive loophole is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
- the control of the hole size (that is, pore volume) of the additive is to control the additive precipitation temperature (cooling temperature) in the conventional method, for example, the amount of the additive and the microsphere formation process of the pitch formed body. Can be implemented.
- generated by extraction of an additive is also influenced by infusibilization conditions. For example, if the infusibilization treatment is strong, the thermal shrinkage due to the heat treatment becomes small, and the pores obtained by extraction of the additive tend to be maintained.
- the porous pitch molded body thus obtained is then infusibilized, that is, oxidized using an oxidizing agent, preferably at a temperature from room temperature to 300 ° C.
- an oxidizing agent preferably at a temperature from room temperature to 300 ° C.
- a fusible pitch compact can be obtained.
- the oxidizing agent used here include oxygen gas (O 2 ) or a mixed gas obtained by diluting oxygen gas (O 2 ) with air, nitrogen, or the like.
- Each physical property value possessed by the spherical activated carbon described in JP-A-2002-308785, that is, average particle diameter, specific surface area, pore volume, total acidic group, and total basic group is measured by the following method.
- a particle size cumulative diagram is prepared according to JIS K1474.
- the horizontal line is drawn on the horizontal axis from the intersection of the vertical line at the 50% point on the horizontal axis and the particle size cumulative line to obtain the mesh size (mm) of the sieve indicated by the intersection. The average particle size.
- the amount of nitrogen desorbed from the spherical activated carbon sample is measured with a thermal conductivity detector, and is defined as the amount of adsorbed gas (v).
- v m is an adsorption amount necessary to form a monomolecular layer on the surface of the sample (cm 3 / g)
- v is an adsorption amount is measured (cm 3 / g)
- x is a relative pressure.
- Pore volume by mercury porosimetry The pore volume can be measured using a mercury porosimeter (for example, “AUTOPORE 9200” manufactured by MICROMERITICS).
- Spherical activated carbon as a sample is put in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes.
- the volume of mercury injected into the spherical activated carbon sample from a pressure corresponding to a pore diameter of 15 ⁇ m (0.07 MPa) to a maximum pressure (414 MPa: corresponding to a pore diameter of 3 nm) is measured.
- D ( ⁇ 4 ⁇ cos ⁇ ) / P It becomes.
- the surface tension of mercury is 484 dyne / cm
- the contact angle between mercury and carbon is 130 degrees
- the pressure P is MPa
- the pore diameter D is expressed in ⁇ m.
- D 1.27 / P
- the pore volume in the range of the pore diameter of 20 to 15000 nm in the present invention corresponds to the volume of mercury that is injected from a mercury intrusion pressure of 0.07 MPa to 63.5 MPa.
- spherical activated carbon which is an active ingredient of the life extending agent of the present invention
- spherical activated carbon having a small average particle diameter described in JP-A-2005-314415 that is, the average particle diameter is 50 to 200 ⁇ m
- Spherical activated carbon having a specific surface area determined by the BET method of 700 m 2 / g or more or surface-modified spherical activated carbon having a small average particle size described in JP-A-2005-314416, that is, an average particle size of 50 to 200 ⁇ m.
- the specific surface area determined by the BET method is 700 m 2 / g or more, the total acidic groups are 0.30 meq / g to 1.20 meq / g, and the total basic groups are 0.20 meq / g to 0. It is also possible to use surface-modified spherical activated carbon that is 9 meq / g.
- the spherical activated carbon which is an active ingredient of the life extension agent of the present invention the spherical activated carbon described in WO2004 / 39381 or its surface modified spherical activated carbon, that is, a thermosetting resin is produced as a carbon source, Spherical activated carbon having a specific surface area of 1000 m 2 / g or more, or a surface-modified spherical activated carbon, can be used.
- spherical activated carbon which is an active ingredient of the life extension agent of the present invention
- I 15 is the diffraction intensity at a diffraction angle (2 ⁇ ) of 15 ° by X-ray diffraction method
- I 35 is the diffraction intensity at a diffraction angle (2 ⁇ ) of 35 ° by X-ray diffraction method
- I 24 is the diffraction intensity when the diffraction angle (2 ⁇ ) according to the X-ray diffraction method is 24 °.
- the life extension agent of the present invention maintains normal homeostasis in various tissues and organs of an individual and extends the life of the individual by administering it to a normal individual (animal, particularly human). Can do.
- administration to an individual having a disease can improve the function of the individual's tissues and organs, delay the progression of the individual's disease, and consequently extend the lifespan.
- the life extension agent of the present invention maintains the homeostasis of various tissues and organs of an individual in a normal state by being administered to a normal individual (animal, particularly a human) that has matured and begins aging. Can be prevented from aging.
- administration to an individual having aging-related diseases such as stroke or arteriosclerosis improves the function of the individual's tissues and organs, prevents aging of the individual, and as a result Can be prevented or treated.
- the agent for promoting expression of crosoprotein of the present invention promotes the expression of crosoprotein in the brain or kidney (or suppresses the decrease in the expression of crosoprotein) by administering to a normal individual (animal, particularly human). Can do.
- diseases or pathological conditions related to decreased expression of crosoprotein such as shortened life span, growth disorder, infertility, decreased activity, thymic atrophy, skin atrophy, skeletal muscle atrophy, subcutaneous fat and viscera Fat loss, arteriosclerosis (medial calcification), renal arteriole calcification, soft tissue calcification (stomach, choroid plexus, testis), emphysema, bone density reduction, dorsum, spinal cord anterior horn cell degeneration, cognitive impairment
- arteriosclerosis medial calcification
- renal arteriole calcification soft tissue calcification (stomach, choroid plexus, testis), emphysema, bone density reduction, dorsum, spinal cord anterior horn cell degeneration
- cognitive impairment By administering to individuals with hearing impairment, hypoglycemia, hyperphosphatemia, or hypercalcemia, it promotes the expression of crosoprotein in the tissues and organs of the individual (or suppresses the decrease in the expression of cros
- Spherical activated carbon (preferably a spherical activated carbon having a particle size of 0.01 to 2 mm), which is an active ingredient in the life extension agent, anti-aging agent, or Kuroso protein expression promoter of the present invention, is used alone or as desired.
- An effective amount can be administered to a subject [animal, preferably a mammal (particularly human)] together with a pharmaceutically or veterinarily acceptable conventional carrier or diluent.
- the life extension agent, anti-aging agent, or crosoprotein expression promoter of the present invention is preferably administered orally. The dose depends on, for example, the subject (mammals, particularly humans), age, individual differences, and / or medical conditions.
- the daily dose for humans is usually 2 to 9 g as the amount of spherical activated carbon, but the dose may be appropriately increased or decreased depending on the symptoms. Further, administration may be performed once or divided into several times.
- Spherical activated carbon may be administered as it is or as an activated carbon preparation. When the spherical activated carbon is administered as it is, it can be administered as a slurry in which the spherical activated carbon is suspended in drinking water or the like.
- any dosage form such as granules, tablets, dragees, capsules, sticks, sachets or suspensions can be adopted.
- enteric capsules can be used as required in addition to ordinary gelatin capsules.
- the content of spherical activated carbon in the activated carbon preparation is usually 1 to 100%.
- a preferred activated carbon preparation is a capsule, a stick, or a packaged package. In the case of these preparations, the spherical activated carbon is enclosed in a container as it is.
- the life extension agent, anti-aging agent, or crosoprotein expression promoter of the present invention is, for example, non-toxic even when continuously administered orally, and has no harmful side effects such as constipation. It is also possible to mix and ingest with drinks.
- the string-like molded body was crushed so that the ratio of diameter to length was about 1-2.
- naphthalene in the pitch formed body was extracted and removed with n-hexane, which was about 6 times the weight of the spherical pitch formed body.
- the porous spherical pitch obtained in this way was heated to 235 ° C. through heated air using a fluidized bed, and then oxidized by holding at 235 ° C. for 1 hour, so that it was infusible to heat.
- a porous spherical oxide pitch was obtained.
- the porous spherical oxidized pitch was activated at 900 ° C.
- porous spherical activated carbon for 170 minutes in a nitrogen gas atmosphere containing 50 vol% of water vapor using a fluidized bed to obtain porous spherical activated carbon. Then, oxidation treatment is performed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then reduction treatment is performed at 900 ° C. for 17 minutes in a fluidized bed under nitrogen gas atmosphere A porous spherical carbonaceous material was obtained. The porous spherical carbonaceous material thus obtained was used as spherical activated carbon in the following pharmacological test examples. The main characteristics of the obtained carbonaceous material are as follows.
- a porous spherical carbonaceous material (surface-modified spherical activated carbon) was obtained in the same manner as in the method described in Example 1 of JP-A-2005-314416.
- the specific operation is as follows. 220 g of deionized water and 58 g of methylcellulose were placed in a 1 L separable flask, and 105 g of styrene, 184 g of 57% divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene), 2,2′-azobis.
- the infusibilizing condition is that a spherical porous oxide resin is obtained by flowing dry air from the lower part of the reaction tube to the upper part at 3 L / min, raising the temperature to 260 ° C. at 5 ° C./h, and holding at 260 ° C. for 4 hours.
- spherical porous oxidized resin After heat treatment of spherical porous oxidized resin at 600 ° C. for 1 hour in a nitrogen atmosphere, activation treatment was performed at 820 ° C.
- the obtained spherical activated carbon was further oxidized in a fluidized bed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then in a fluidized bed under a nitrogen gas atmosphere 900 Reduction treatment was carried out at 17 ° C. for 17 minutes to obtain surface-modified spherical activated carbon.
- the main characteristics of the obtained surface-modified spherical activated carbon are as follows.
- ⁇ Pharmacological Test Example 1 Male Sprague-Dawley (SD) rats (Claire Japan) were purchased and randomly administered at 6 weeks of age for an oral administration adsorbent group (5 animals; hereinafter referred to as normal rat administration group) and a control group (6 animals) ).
- the control group was given a powdered feed (CE-2; Nippon Clare), and the normal rat-administered group was allowed to freely ingest 5% of the spherical activated carbon prepared in Production Example 1 into the powdered feed and fed the rat feeding gauge for 2 years. I kept it alone.
- the change in the survival rate of the normal rat administration group and the control group is shown in FIG. The survival rate after 2 years of the control group was 50%, whereas the normal rat-administered group survived 100% after 2 years of breeding. Therefore, it was clarified that the adsorbent for oral administration has an effect of extending the life span of normal rats.
- closoprotein a protein encoded by the Kuroso gene, which is considered to be an aging suppressor gene (hereinafter referred to as “closoprotein”), was examined in the kidneys of each rat. Specifically, a kidney pathological section was prepared from the kidney, and the expression of crosoprotein in the kidney pathological tissue was immunostained with an anti-closo antibody (Everest Biotech, UK).
- renal function test values serum creatinine, blood urea nitrogen, creatinine clearance, urinary protein excretion
- serum indoxyl sulfate concentration serum indoxyl sulfate concentration at 4 weeks (11 weeks of age) when the effects of nephrectomy become stable
- the urinary indoxyl sulfate concentration and blood pressure parameters were measured, and the surgical group was divided into 9 groups of renal failure control group and oral administration adsorbent administration group (hereinafter referred to as renal failure administration group) so that there was no separation between the groups.
- the sham operation group was used as a normal control group.
- Each group was fed a powdered feed (CE-2; Japan Claire), and the renal failure administration group was administered 5% of the spherical activated carbon prepared in Production Example 1 to the powdered feed.
- the amount of food intake was measured, and when the spherical activated carbon was less than the required dose (4 g / kg / day), the shortage was additionally administered every day except for Saturdays and Sundays by mixing the liquid food.
- Preparation of stick preparation >> 2 g of the spherical activated carbon obtained in Production Example 1 was filled in a stick made of laminated film, and then heat-sealed to obtain a stick agent.
- the life extension agent of the present invention can extend the life by maintaining the homeostasis of a normal individual or an individual having a disease and preventing aging.
- the anti-aging agent of this invention can prevent aging in a normal individual or an individual having an aging-related disease.
- the crosoprotein expression promoter of the present invention can promote (or suppress) the expression of crosoprotein in a normal individual or an individual having a disease associated with a decrease in expression of crosoprotein. .
- the life extension agent, anti-aging agent, and crosoprotein expression promoter of the present invention can be continuously administered orally because there are no toxicity and harmful side effects.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Disclosed is a lifespan-extending agent which can inhibit senility caused by aging in individuals, is effective on the maintenance of homeostasis in living bodies, and can extend a lifespan in a safe manner even when ingested continuously for a long period. Specifically disclosed is a lifespan-extending agent, an anti-aging agent, or a Klotho protein expression enhancer comprising activated charcoal as an active ingredient. The lifespan-extending agent, the anti-aging agent or the Klotho protein expression enhancer has substantially no adverse side effect and can extend a lifespan when administered in the form of an oral preparation.
Description
本発明は、寿命延長剤、抗加齢剤、及びクロソ(Klotho)タンパク質発現促進剤に関する。本発明によれば、実質的に副作用のない経口投与剤の服用によって、寿命を延長することができる。
The present invention relates to a life extension agent, an anti-aging agent, and a Klotho protein expression promoter. According to the present invention, life can be extended by taking an orally-administered drug with substantially no side effects.
ヒトを含む動物においては、加齢とともに個体の機能低下、例えば、視力又は聴力の低下、運動能力の低下、免疫機能の低下、記憶障害、及び生体内の各臓器の機能低下などが引き起こされる。このような個体の機能低下を老化と称するが、老化は個体の様々な組織や臓器で徐々に進行する多面的な現象であり、老化が進行すると個体の恒常性を維持することができなくなり、最終的には死に到るものである。
In animals including humans, the function of an individual decreases with age, for example, a decrease in visual acuity or hearing, a decrease in motor ability, a decrease in immune function, memory impairment, and a decrease in function of each organ in a living body. Such functional deterioration of an individual is called aging, but aging is a multifaceted phenomenon that gradually progresses in various tissues and organs of the individual, and when aging progresses, it becomes impossible to maintain the homeostasis of the individual, Eventually it will be fatal.
現在、先進諸国では、寿命の延長が顕著であるが、それに伴い老化による個体の機能低下が起こり、そして更には様々な疾患が発生し、その治療のための医療費の増加が問題となっている。このような中で、個体の恒常性を維持し、老化に伴う疾患を引き起こすことなく、寿命を延長させることが可能であれば、医療費の抑制にもつながり、更には個人のウエルネスの観点からも有用であると考えられる。
In developed countries, the prolongation of lifespan is remarkable at present, but the function of the individual declines due to aging, and various diseases occur, and the increase in medical expenses for the treatment becomes a problem. Yes. Under such circumstances, if it is possible to maintain the homeostasis of an individual and prolong the life without causing a disease associated with aging, it will lead to a reduction in medical expenses, and from the viewpoint of individual wellness. Is also considered useful.
さて、このような寿命を延長する効果を有する薬剤について、いくつかの化合物が報告されている。例えば、ワインに含まれているポルフィリンであるレスベラトロルは、高カロリー食を摂取したマウスの寿命を延長させることができる(非特許文献1)。また、りんご由来ポリフェノールは、鬱血性心不全のモデルマウスの寿命を延長させることが報告されている(特許文献1)。更に、α-リノレン酸及びリノール酸を含む特定の物性の油脂組成物は、脳卒中易発生ラットの寿命を延長させることができる(特許文献2)。
また、老化抑制遺伝子としてクロソ(Klotho)遺伝子が発見されたが(非特許文献2)、このクロソ遺伝子が変異したマウスは、ヒトの老化症状に似た症状を示し、例えば、寿命の短縮、成長障害、不妊、活動量の低下、胸腺の萎縮、皮膚の萎縮、骨格筋の萎縮、皮下脂肪・内臓脂肪の減少、動脈硬化(中膜石灰化)、腎細動脈石灰化、軟部組織石灰化(胃、脈絡叢、精巣)、肺気腫、骨密度減少、亀背、脊髄前角細胞の変性、認知障害、聴力障害、低血糖、高リン血症、高カルシウム血症などの老化症状を示す。このクロソ遺伝子が欠損した、クロソ遺伝子欠損ホモマウスは、生後3週以降に顕著な老化症状を示し、早期に死に至るが、エバンスブルー又はトリパンブルーの投与により、寿命が延長することが報告されている(特許文献3)。 Now, several compounds have been reported for drugs having the effect of extending the life span. For example, resveratrol, which is a porphyrin contained in wine, can extend the lifespan of mice that have ingested a high-calorie diet (Non-Patent Document 1). In addition, it has been reported that apple-derived polyphenols prolong the life of model mice with congestive heart failure (Patent Document 1). Furthermore, an oil or fat composition having specific physical properties containing α-linolenic acid and linoleic acid can prolong the life span of stroke-prone rats (Patent Document 2).
In addition, a Klotho gene has been discovered as an aging suppressor gene (Non-patent Document 2), but a mouse with a mutation in this Kuroso gene exhibits symptoms similar to those of human aging, such as shortening of life and growth. Disorder, infertility, decreased activity, thymus atrophy, skin atrophy, skeletal muscle atrophy, reduction of subcutaneous and visceral fat, arteriosclerosis (medial calcification), renal arteriole calcification, soft tissue calcification ( Stomach, choroid plexus, testis), emphysema, decreased bone density, glans, anterior horn cell degeneration, cognitive impairment, hearing loss, hypoglycemia, hyperphosphatemia, hypercalcemia, etc. It is reported that the homozygous mouse, deficient in the croso gene, shows remarkable aging symptoms after 3 weeks of life and leads to early death, but the lifespan is extended by the administration of Evans blue or trypan blue. (Patent Document 3).
また、老化抑制遺伝子としてクロソ(Klotho)遺伝子が発見されたが(非特許文献2)、このクロソ遺伝子が変異したマウスは、ヒトの老化症状に似た症状を示し、例えば、寿命の短縮、成長障害、不妊、活動量の低下、胸腺の萎縮、皮膚の萎縮、骨格筋の萎縮、皮下脂肪・内臓脂肪の減少、動脈硬化(中膜石灰化)、腎細動脈石灰化、軟部組織石灰化(胃、脈絡叢、精巣)、肺気腫、骨密度減少、亀背、脊髄前角細胞の変性、認知障害、聴力障害、低血糖、高リン血症、高カルシウム血症などの老化症状を示す。このクロソ遺伝子が欠損した、クロソ遺伝子欠損ホモマウスは、生後3週以降に顕著な老化症状を示し、早期に死に至るが、エバンスブルー又はトリパンブルーの投与により、寿命が延長することが報告されている(特許文献3)。 Now, several compounds have been reported for drugs having the effect of extending the life span. For example, resveratrol, which is a porphyrin contained in wine, can extend the lifespan of mice that have ingested a high-calorie diet (Non-Patent Document 1). In addition, it has been reported that apple-derived polyphenols prolong the life of model mice with congestive heart failure (Patent Document 1). Furthermore, an oil or fat composition having specific physical properties containing α-linolenic acid and linoleic acid can prolong the life span of stroke-prone rats (Patent Document 2).
In addition, a Klotho gene has been discovered as an aging suppressor gene (Non-patent Document 2), but a mouse with a mutation in this Kuroso gene exhibits symptoms similar to those of human aging, such as shortening of life and growth. Disorder, infertility, decreased activity, thymus atrophy, skin atrophy, skeletal muscle atrophy, reduction of subcutaneous and visceral fat, arteriosclerosis (medial calcification), renal arteriole calcification, soft tissue calcification ( Stomach, choroid plexus, testis), emphysema, decreased bone density, glans, anterior horn cell degeneration, cognitive impairment, hearing loss, hypoglycemia, hyperphosphatemia, hypercalcemia, etc. It is reported that the homozygous mouse, deficient in the croso gene, shows remarkable aging symptoms after 3 weeks of life and leads to early death, but the lifespan is extended by the administration of Evans blue or trypan blue. (Patent Document 3).
しかしながら、前記の化合物による寿命延長効果は、高カロリー食を摂取したマウス、特定の疾患のモデルマウス、又は遺伝子変異のある老化モデルマウスにおけるものである。すなわち、これらの化合物は特定の疾患又は病的な状態を予防又は治療することにより、寿命を延長させているものであると考えられ、正常な個体の恒常性を維持させ、寿命を延長させているものではない。
However, the life extension effect by the above-mentioned compound is in a mouse that has taken a high-calorie diet, a model mouse with a specific disease, or an aging model mouse having a genetic mutation. In other words, these compounds are thought to extend lifespan by preventing or treating a specific disease or pathological condition, and maintain normal homeostasis and prolong lifespan. It is not.
一方、正常な個体における寿命を延長させることができる化合物としては、キトサン(特許文献4)及びパーオキシダーゼ(特許文献5)が報告されている。しかしながら、これらの化合物の寿命延長効果は、顕著なものではなかった。
On the other hand, chitosan (Patent Document 4) and peroxidase (Patent Document 5) have been reported as compounds capable of extending the life span in normal individuals. However, the life extension effect of these compounds was not remarkable.
本発明の目的は、個体における加齢による老化を防止し、生体の恒常性維持に有効であり、長期間継続的に摂取しても、安全に寿命を延長することのできる寿命延長剤を提供することである。
本発明者は、正常の個体において寿命を延長させることのできる寿命延長剤について、鋭意研究した結果、驚くべきことに、活性炭の経口投与により、正常な個体において優れた寿命延長効果が現れることを見出した。活性炭製剤は、従来、腎臓疾患などに対する経口解毒剤として使われており、副作用や毒性が実質的にないことも知られているが、正常個体において寿命を延長する作用を有するとの知見は、従来は全く無い。
本発明は、こうした知見に基づくものである。 An object of the present invention is to provide a life extension agent that prevents aging due to aging in an individual, is effective in maintaining homeostasis of a living body, and can safely extend the life even when ingested continuously for a long period of time. It is to be.
As a result of intensive studies on a life extending agent that can extend the life in a normal individual, the present inventor has surprisingly found that an excellent life extension effect appears in a normal individual by oral administration of activated carbon. I found it. Activated charcoal preparation is conventionally used as an oral antidote for kidney diseases and the like, and it is known that it has substantially no side effects or toxicity, but the knowledge that it has an effect of extending lifespan in normal individuals, There is nothing in the past.
The present invention is based on these findings.
本発明者は、正常の個体において寿命を延長させることのできる寿命延長剤について、鋭意研究した結果、驚くべきことに、活性炭の経口投与により、正常な個体において優れた寿命延長効果が現れることを見出した。活性炭製剤は、従来、腎臓疾患などに対する経口解毒剤として使われており、副作用や毒性が実質的にないことも知られているが、正常個体において寿命を延長する作用を有するとの知見は、従来は全く無い。
本発明は、こうした知見に基づくものである。 An object of the present invention is to provide a life extension agent that prevents aging due to aging in an individual, is effective in maintaining homeostasis of a living body, and can safely extend the life even when ingested continuously for a long period of time. It is to be.
As a result of intensive studies on a life extending agent that can extend the life in a normal individual, the present inventor has surprisingly found that an excellent life extension effect appears in a normal individual by oral administration of activated carbon. I found it. Activated charcoal preparation is conventionally used as an oral antidote for kidney diseases and the like, and it is known that it has substantially no side effects or toxicity, but the knowledge that it has an effect of extending lifespan in normal individuals, There is nothing in the past.
The present invention is based on these findings.
従って、本発明は活性炭を有効成分とする寿命延長剤に関する。
本発明の寿命延長剤の好ましい態様においては、前記活性炭が球状活性炭である。
本発明は、球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、寿命延長用組成物に関する。
本発明は、球形活性炭を、正常な対象に、有効量で投与することを含む、寿命を延長する方法に関する。
本発明は、球形活性炭の、寿命延長用組成物を製造するための使用に関する。
また、本発明は活性炭を有効成分とする抗加齢剤に関する。
本発明の抗加齢剤の好ましい態様においては、前記活性炭が球状活性炭である。
本発明は、球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、抗加齢用組成物に関する。
本発明は、球形活性炭を、正常な対象に、有効量で投与することを含む、加齢を予防する方法に関する。
本発明は、球形活性炭の、抗加齢用組成物を製造するための使用に関する。
更に、本発明は活性炭を有効成分とするクロソタンパク質発現促進剤に関する。
本発明のクロソタンパク質発現促進剤の好ましい態様においては、前記活性炭が球状活性炭である。
本発明は、球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、クロソタンパク質発現用医薬組成物に関する。
本発明は、球形活性炭を、クロソタンパク質発現の低下に関する疾患の治療又は予防が必要な対象に、有効量で投与することを含む、クロソタンパク質発現の低下に関する疾患を治療又は予防する方法に関する。
本発明は、球形活性炭の、クロソタンパク質発現用医薬組成物を製造するための使用に関する。 Accordingly, the present invention relates to a life extending agent containing activated carbon as an active ingredient.
In a preferred embodiment of the life extending agent of the present invention, the activated carbon is a spherical activated carbon.
The present invention relates to a life extending composition comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
The present invention relates to a method for prolonging life comprising administering to a normal subject an effective amount of spherical activated carbon.
The present invention relates to the use of spherical activated carbon to produce a composition for extending life.
Moreover, this invention relates to the anti-aging agent which uses activated carbon as an active ingredient.
In a preferred embodiment of the anti-aging agent of the present invention, the activated carbon is a spherical activated carbon.
The present invention relates to an anti-aging composition comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
The present invention relates to a method for preventing aging, comprising administering spherical activated carbon to a normal subject in an effective amount.
The present invention relates to the use of spherical activated carbon for producing an anti-aging composition.
Furthermore, the present invention relates to a crosoprotein expression promoter containing activated carbon as an active ingredient.
In a preferred embodiment of the Kuroprotein expression promoter of the present invention, the activated carbon is a spherical activated carbon.
The present invention relates to a pharmaceutical composition for expression of crosoprotein comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
The present invention relates to a method for treating or preventing a disease related to decreased expression of crosoprotein, comprising administering spherical activated carbon in an effective amount to a subject in need of treatment or prevention of the disease related to decreased expression of crosoprotein.
The present invention relates to the use of spherical activated carbon for the production of a pharmaceutical composition for expression of crosoprotein.
本発明の寿命延長剤の好ましい態様においては、前記活性炭が球状活性炭である。
本発明は、球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、寿命延長用組成物に関する。
本発明は、球形活性炭を、正常な対象に、有効量で投与することを含む、寿命を延長する方法に関する。
本発明は、球形活性炭の、寿命延長用組成物を製造するための使用に関する。
また、本発明は活性炭を有効成分とする抗加齢剤に関する。
本発明の抗加齢剤の好ましい態様においては、前記活性炭が球状活性炭である。
本発明は、球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、抗加齢用組成物に関する。
本発明は、球形活性炭を、正常な対象に、有効量で投与することを含む、加齢を予防する方法に関する。
本発明は、球形活性炭の、抗加齢用組成物を製造するための使用に関する。
更に、本発明は活性炭を有効成分とするクロソタンパク質発現促進剤に関する。
本発明のクロソタンパク質発現促進剤の好ましい態様においては、前記活性炭が球状活性炭である。
本発明は、球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、クロソタンパク質発現用医薬組成物に関する。
本発明は、球形活性炭を、クロソタンパク質発現の低下に関する疾患の治療又は予防が必要な対象に、有効量で投与することを含む、クロソタンパク質発現の低下に関する疾患を治療又は予防する方法に関する。
本発明は、球形活性炭の、クロソタンパク質発現用医薬組成物を製造するための使用に関する。 Accordingly, the present invention relates to a life extending agent containing activated carbon as an active ingredient.
In a preferred embodiment of the life extending agent of the present invention, the activated carbon is a spherical activated carbon.
The present invention relates to a life extending composition comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
The present invention relates to a method for prolonging life comprising administering to a normal subject an effective amount of spherical activated carbon.
The present invention relates to the use of spherical activated carbon to produce a composition for extending life.
Moreover, this invention relates to the anti-aging agent which uses activated carbon as an active ingredient.
In a preferred embodiment of the anti-aging agent of the present invention, the activated carbon is a spherical activated carbon.
The present invention relates to an anti-aging composition comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
The present invention relates to a method for preventing aging, comprising administering spherical activated carbon to a normal subject in an effective amount.
The present invention relates to the use of spherical activated carbon for producing an anti-aging composition.
Furthermore, the present invention relates to a crosoprotein expression promoter containing activated carbon as an active ingredient.
In a preferred embodiment of the Kuroprotein expression promoter of the present invention, the activated carbon is a spherical activated carbon.
The present invention relates to a pharmaceutical composition for expression of crosoprotein comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
The present invention relates to a method for treating or preventing a disease related to decreased expression of crosoprotein, comprising administering spherical activated carbon in an effective amount to a subject in need of treatment or prevention of the disease related to decreased expression of crosoprotein.
The present invention relates to the use of spherical activated carbon for the production of a pharmaceutical composition for expression of crosoprotein.
本発明の寿命延長剤によれば、正常な個体において、生体の恒常性を維持させ、寿命を延長させることができ、更に、疾患を有する個体においても寿命を延長させることができる。また、本発明の抗加齢剤によれば、正常な個体又は加齢に関連する疾患を有する個体において、老化を防止することができる。更に、本発明のクロソタンパク質発現促進剤によれば、正常な個体又はクロソタンパク質の発現の低下に関連する疾患を有する個体において、クロソタンパク質の発現を促進(又は、発現の低下を抑制)することができる。また、本発明の寿命延長剤、抗加齢剤、及びクロソタンパク質発現促進剤は、連続的に経口投与しても、生体内に吸収される化合物ではないため、毒性がなく、有害な副作用がない。
According to the life extension agent of the present invention, it is possible to maintain the homeostasis of a living body in a normal individual and to extend the life, and further to extend the life even in an individual having a disease. Moreover, according to the anti-aging agent of this invention, aging can be prevented in a normal individual or an individual having an aging-related disease. Furthermore, according to the agent for promoting the expression of crosoprotein of the present invention, the expression of crosoprotein is promoted (or the decrease in expression is suppressed) in a normal individual or an individual having a disease associated with a decrease in expression of crosoprotein. Can do. In addition, the life extension agent, anti-aging agent, and Kurosoprotein expression promoter of the present invention are not a compound that is absorbed into the living body even when continuously administered orally, and therefore have no toxicity and no harmful side effects. Absent.
本発明の医薬製剤の有効成分である活性炭としては、医療用に使用することが可能な活性炭であれば特に限定されるものではないが、経口投与用活性炭、すなわち、医療用に内服使用することが可能な活性炭が好ましい。前記活性炭としては、例えば、粉末状活性炭又は球状活性炭を用いることができる。粉末状活性炭としては、従来から解毒剤として医療に用いられている公知の粉末状活性炭を用いることができるが、副作用として便秘を引き起こす場合があるので、球状活性炭を用いるのが好ましい。
The activated carbon that is an active ingredient of the pharmaceutical preparation of the present invention is not particularly limited as long as it can be used for medical purposes, but activated carbon for oral administration, that is, internal use for medical purposes. Preferred is activated carbon capable of As the activated carbon, for example, powdered activated carbon or spherical activated carbon can be used. As the powdered activated carbon, known powdered activated carbon conventionally used in medicine as an antidote can be used, but it may cause constipation as a side effect, so it is preferable to use spherical activated carbon.
前記球状活性炭の粒径は、0.01~2mmであることが好ましく、0.05~2mmであることがより好ましく、0.05~1mmであることが更に好ましい。
前記球状活性炭としては、例えば、特開平11-292770号公報又は特開2002-308785号公報(特許第3522708号公報)に記載の球状活性炭を用いることができる。以下、特開平11-292770号公報に記載の球状活性炭について説明し、続いて、特開2002-308785号公報(特許第3522708号公報)に記載の球状活性炭について説明する。 The spherical activated carbon preferably has a particle size of 0.01 to 2 mm, more preferably 0.05 to 2 mm, and still more preferably 0.05 to 1 mm.
As the spherical activated carbon, for example, spherical activated carbon described in JP-A No. 11-292770 or JP-A No. 2002-308785 (Japanese Patent No. 3522708) can be used. Hereinafter, the spherical activated carbon described in JP-A-11-292770 will be described, and subsequently, the spherical activated carbon described in JP-A-2002-308785 (Japanese Patent No. 3522708) will be described.
前記球状活性炭としては、例えば、特開平11-292770号公報又は特開2002-308785号公報(特許第3522708号公報)に記載の球状活性炭を用いることができる。以下、特開平11-292770号公報に記載の球状活性炭について説明し、続いて、特開2002-308785号公報(特許第3522708号公報)に記載の球状活性炭について説明する。 The spherical activated carbon preferably has a particle size of 0.01 to 2 mm, more preferably 0.05 to 2 mm, and still more preferably 0.05 to 1 mm.
As the spherical activated carbon, for example, spherical activated carbon described in JP-A No. 11-292770 or JP-A No. 2002-308785 (Japanese Patent No. 3522708) can be used. Hereinafter, the spherical activated carbon described in JP-A-11-292770 will be described, and subsequently, the spherical activated carbon described in JP-A-2002-308785 (Japanese Patent No. 3522708) will be described.
特開平11-292770号公報に記載の球状活性炭は、好ましくは直径0.05~2mm、より好ましくは0.1~1mmの球状活性炭である。また、好ましくは比表面積が500~2000m2/g、より好ましくは700~1500m2/gの球状活性炭である。また、好ましくは細孔半径100~75000オングストロームの空隙量が0.01~1mL/g、より好ましくは0.05~0.8mL/gの球状活性炭である。なお、上記の比表面積は、自動吸着量測定装置を用いたメタノール吸着法により測定した値である。空隙量は、水銀圧入ポロシメータにより測定した値である。前記の球状活性炭は、粉末活性炭に比べ、服用時に飛散せず、しかも、連続使用しても便秘を惹起しない点で有利である。
球状活性炭の形状は、重要な因子の1つであり、実質的に球状であることが重要である。球状活性炭の中では、後述の石油系ピッチ由来の球状活性炭が真球に近いため、特に好ましい。 The spherical activated carbon described in JP-A-11-292770 is preferably a spherical activated carbon having a diameter of 0.05 to 2 mm, more preferably 0.1 to 1 mm. Further, spherical activated carbon having a specific surface area of 500 to 2000 m 2 / g, more preferably 700 to 1500 m 2 / g. Further, spherical activated carbon having a pore radius of 100 to 75000 angstrom and a void amount of 0.01 to 1 mL / g, more preferably 0.05 to 0.8 mL / g is preferable. In addition, said specific surface area is the value measured by the methanol adsorption method using the automatic adsorption amount measuring apparatus. The amount of voids is a value measured with a mercury intrusion porosimeter. The spherical activated carbon is advantageous compared to powdered activated carbon in that it does not scatter when taken and does not cause constipation even when used continuously.
The shape of the spherical activated carbon is one of the important factors, and it is important that it is substantially spherical. Among the spherical activated carbons, spherical activated carbon derived from petroleum pitch described later is particularly preferable because it is close to a true sphere.
球状活性炭の形状は、重要な因子の1つであり、実質的に球状であることが重要である。球状活性炭の中では、後述の石油系ピッチ由来の球状活性炭が真球に近いため、特に好ましい。 The spherical activated carbon described in JP-A-11-292770 is preferably a spherical activated carbon having a diameter of 0.05 to 2 mm, more preferably 0.1 to 1 mm. Further, spherical activated carbon having a specific surface area of 500 to 2000 m 2 / g, more preferably 700 to 1500 m 2 / g. Further, spherical activated carbon having a pore radius of 100 to 75000 angstrom and a void amount of 0.01 to 1 mL / g, more preferably 0.05 to 0.8 mL / g is preferable. In addition, said specific surface area is the value measured by the methanol adsorption method using the automatic adsorption amount measuring apparatus. The amount of voids is a value measured with a mercury intrusion porosimeter. The spherical activated carbon is advantageous compared to powdered activated carbon in that it does not scatter when taken and does not cause constipation even when used continuously.
The shape of the spherical activated carbon is one of the important factors, and it is important that it is substantially spherical. Among the spherical activated carbons, spherical activated carbon derived from petroleum pitch described later is particularly preferable because it is close to a true sphere.
特開平11-292770号公報に記載の球状活性炭の製造には、任意の活性炭原料、例えば、オガ屑、石炭、ヤシ殻、石油系若しくは石炭系の各種ピッチ類又は有機合成高分子を用いることができる。球状活性炭は、例えば、原料を炭化した後に活性化する方法によって製造することができる。活性化の方法としては、水蒸気賦活、薬品賦活、空気賦活又は炭酸ガス賦活などの種々の方法を用いることができるが、医療に許容される純度を維持することが必要である。
For the production of the spherical activated carbon described in JP-A-11-292770, any activated carbon raw material such as sawdust, coal, coconut shell, petroleum-based or coal-based pitches, or organic synthetic polymer may be used. it can. Spherical activated carbon can be manufactured by, for example, a method of activating after carbonizing a raw material. As the activation method, various methods such as steam activation, chemical activation, air activation, or carbon dioxide activation can be used, but it is necessary to maintain the purity acceptable for medical treatment.
特開平11-292770号公報に記載の球状活性炭としては、炭素質粉末からの造粒活性炭、有機高分子焼成の球状活性炭及び石油系炭化水素(石油系ピッチ)由来の球状活性炭などがある。
炭素質粉末からの造粒活性炭は、例えば、タール、ピッチ等のバインダーで炭素質粉末原料を小粒球形に造粒した後、不活性雰囲気中で600~1000℃の温度に加熱焼成して炭化し、次いで、賦活することにより得ることができる。賦活方法としては、水蒸気賦活、薬品賦活、空気賦活又は炭酸ガス賦活などの種々の方法を用いることができる。水蒸気賦活は、例えば、水蒸気雰囲気中、800~1100℃の温度で行われる。 Examples of the spherical activated carbon described in JP-A-11-292770 include granulated activated carbon from carbonaceous powder, spherical activated carbon baked with organic polymer, and spherical activated carbon derived from petroleum hydrocarbon (petroleum pitch).
For example, granulated activated carbon from carbonaceous powder is carbonized by granulating the carbonaceous powder raw material into small spheres with a binder such as tar and pitch and then heating and firing to a temperature of 600 to 1000 ° C. in an inert atmosphere. Then, it can obtain by activating. As the activation method, various methods such as water vapor activation, chemical activation, air activation or carbon dioxide activation can be used. The steam activation is performed at a temperature of 800 to 1100 ° C. in a steam atmosphere, for example.
炭素質粉末からの造粒活性炭は、例えば、タール、ピッチ等のバインダーで炭素質粉末原料を小粒球形に造粒した後、不活性雰囲気中で600~1000℃の温度に加熱焼成して炭化し、次いで、賦活することにより得ることができる。賦活方法としては、水蒸気賦活、薬品賦活、空気賦活又は炭酸ガス賦活などの種々の方法を用いることができる。水蒸気賦活は、例えば、水蒸気雰囲気中、800~1100℃の温度で行われる。 Examples of the spherical activated carbon described in JP-A-11-292770 include granulated activated carbon from carbonaceous powder, spherical activated carbon baked with organic polymer, and spherical activated carbon derived from petroleum hydrocarbon (petroleum pitch).
For example, granulated activated carbon from carbonaceous powder is carbonized by granulating the carbonaceous powder raw material into small spheres with a binder such as tar and pitch and then heating and firing to a temperature of 600 to 1000 ° C. in an inert atmosphere. Then, it can obtain by activating. As the activation method, various methods such as water vapor activation, chemical activation, air activation or carbon dioxide activation can be used. The steam activation is performed at a temperature of 800 to 1100 ° C. in a steam atmosphere, for example.
有機高分子焼成の球状活性炭は、例えば、特公昭61-1366号公報に開示されており、次のようにして製造することが可能である。縮合型又は重付加型の熱硬化性プレポリマーに、硬化剤、硬化触媒、乳化剤などを混合し、攪拌下で水中に乳化させ、室温又は加温下に攪拌を続けながら反応させる。反応系は、まず懸濁状態になり、更に攪拌することにより熱硬化性樹脂球状物が出現する。これを回収し、不活性雰囲気中で500℃以上の温度に加熱して炭化し、前記の方法により賦活して有機高分子焼成の球状活性炭を得ることができる。
石油系ピッチ由来の球状活性炭は、直径が好ましくは0.05~2mm、より好ましくは0.1~1mm、比表面積が好ましくは500~2000m2/g、より好ましくは700~1500m2/g、細孔半径100~75000オングストロームの空隙量が好ましくは0.01~1mL/gである。この石油系ピッチ由来の球状活性炭は、例えば、以下の2種の方法で製造することができる。 Spherical activated carbon baked with organic polymer is disclosed in, for example, Japanese Patent Publication No. 61-1366 and can be produced as follows. A curing agent, a curing catalyst, an emulsifier, and the like are mixed with a condensation-type or polyaddition-type thermosetting prepolymer, emulsified in water with stirring, and reacted while continuing stirring at room temperature or warming. The reaction system is first in a suspended state, and the thermosetting resin spheres appear by further stirring. This can be recovered, heated to a temperature of 500 ° C. or higher in an inert atmosphere, carbonized, and activated by the above method to obtain a spherical activated carbon fired with an organic polymer.
The spherical activated carbon derived from petroleum-based pitch preferably has a diameter of 0.05 to 2 mm, more preferably 0.1 to 1 mm, a specific surface area of preferably 500 to 2000 m 2 / g, more preferably 700 to 1500 m 2 / g, The void volume with a pore radius of 100 to 75000 angstroms is preferably 0.01 to 1 mL / g. The spherical activated carbon derived from petroleum pitch can be produced, for example, by the following two methods.
石油系ピッチ由来の球状活性炭は、直径が好ましくは0.05~2mm、より好ましくは0.1~1mm、比表面積が好ましくは500~2000m2/g、より好ましくは700~1500m2/g、細孔半径100~75000オングストロームの空隙量が好ましくは0.01~1mL/gである。この石油系ピッチ由来の球状活性炭は、例えば、以下の2種の方法で製造することができる。 Spherical activated carbon baked with organic polymer is disclosed in, for example, Japanese Patent Publication No. 61-1366 and can be produced as follows. A curing agent, a curing catalyst, an emulsifier, and the like are mixed with a condensation-type or polyaddition-type thermosetting prepolymer, emulsified in water with stirring, and reacted while continuing stirring at room temperature or warming. The reaction system is first in a suspended state, and the thermosetting resin spheres appear by further stirring. This can be recovered, heated to a temperature of 500 ° C. or higher in an inert atmosphere, carbonized, and activated by the above method to obtain a spherical activated carbon fired with an organic polymer.
The spherical activated carbon derived from petroleum-based pitch preferably has a diameter of 0.05 to 2 mm, more preferably 0.1 to 1 mm, a specific surface area of preferably 500 to 2000 m 2 / g, more preferably 700 to 1500 m 2 / g, The void volume with a pore radius of 100 to 75000 angstroms is preferably 0.01 to 1 mL / g. The spherical activated carbon derived from petroleum pitch can be produced, for example, by the following two methods.
第1の方法は、例えば、特公昭51-76号公報(米国特許第3917806号明細書)及び特開昭54-89010号公報(米国特許第4761284号明細書)に記載されているように、まず、溶融状態で小粒球形状としたピッチ類を酸素により不融化した後、不活性雰囲気中で600~1000℃の温度に加熱焼成して炭化し、次いで、水蒸気雰囲気中で850~1000℃の温度で賦活する方法である。第2の方法は、例えば、特公昭59-10930号公報(米国特許第4420433号明細書)に記載されているように、まず、溶融状態で紐状としたピッチ類を破砕した後、熱水中に投入して球状化し、次いで、酸素により不融化した後、上記の第1の方法と同様の条件で炭化、賦活する方法である。
The first method is described in, for example, Japanese Patent Publication No. 51-76 (US Pat. No. 3,917,806) and Japanese Patent Application Laid-Open No. 54-89010 (US Pat. No. 4,761,284). First, pitches in the form of small spheres in a molten state are infusible with oxygen, then heated and fired at a temperature of 600 to 1000 ° C. in an inert atmosphere, and then carbonized in a water vapor atmosphere at 850 to 1000 ° C. It is a method of activation by temperature. In the second method, for example, as described in Japanese Patent Publication No. 59-10930 (US Pat. No. 4,420,433), first, pitch-like pitches in a molten state are crushed, In this method, the mixture is spheroidized and then infusible with oxygen, and then carbonized and activated under the same conditions as in the first method.
本発明において有効成分の球状活性炭としては、(1)アンモニア処理などを施した球状活性炭、(2)酸化及び/又は還元処理を施した球状活性炭なども使用することができる。これらの処理を施すことのできる球状活性炭は、前記の石油系ピッチ由来の球状活性炭、炭素質粉末の造粒活性炭、有機高分子焼成の球状活性炭の何れであってもよい。
In the present invention, as the active carbon of the active ingredient, (1) spherical activated carbon subjected to ammonia treatment or the like, (2) spherical activated carbon subjected to oxidation and / or reduction treatment, or the like can also be used. The spherical activated carbon that can be subjected to these treatments may be any of the above-mentioned spherical activated carbon derived from petroleum pitch, granulated activated carbon of carbonaceous powder, and spherical activated carbon baked with organic polymer.
前記のアンモニア処理とは、例えば、球状活性炭を、1~1000ppmのアンモニアを含有するアンモニア水溶液で、アンモニア水溶液と球状活性炭の容量比を2~10として、10~50℃の温度で、0.5~5時間処理することからなる。前述の石油系ピッチ由来の球状活性炭にアンモニア処理を施した活性炭としては、特開昭56-5313号公報(米国特許第4761284号明細書)に記載の球状活性炭を挙げることができる。例えば、アンモニア処理が施された球状活性炭としては直径が0.05~2mm、好ましくは0.1~1mm、比表面積が500~2000m2/g、好ましくは700~1500m2/g、細孔半径100~75000オングストロームの空隙量が0.01~1mL/g、pHが6~8の球状活性炭を例示することができる。
The ammonia treatment is, for example, a spherical activated carbon with an aqueous ammonia solution containing 1 to 1000 ppm of ammonia, and a volume ratio of the aqueous ammonia solution to the spherical activated carbon of 2 to 10 at a temperature of 10 to 50 ° C. Processing for ~ 5 hours. Examples of the activated carbon obtained by applying ammonia treatment to the spherical activated carbon derived from petroleum pitch include spherical activated carbon described in JP-A-56-5313 (US Pat. No. 4,761,284). For example, the spherical activated carbon subjected to ammonia treatment has a diameter of 0.05 to 2 mm, preferably 0.1 to 1 mm, a specific surface area of 500 to 2000 m 2 / g, preferably 700 to 1500 m 2 / g, a pore radius. A spherical activated carbon having a void volume of 100 to 75000 angstroms of 0.01 to 1 mL / g and a pH of 6 to 8 can be exemplified.
前記の酸化処理とは、酸素を含む酸化雰囲気で高温熱処理を行うことを意味し、酸素源としては、純粋な酸素、酸化窒素又は空気などを用いることができる。また、還元処理とは、炭素に対して不活性な雰囲気で高温熱処理を行うことを意味し、炭素に対して不活性な雰囲気は、窒素、アルゴン若しくはヘリウム又はそれらの混合ガスを用いて形成することができる。
The above-mentioned oxidation treatment means that high-temperature heat treatment is performed in an oxidizing atmosphere containing oxygen, and pure oxygen, nitrogen oxide, air, or the like can be used as the oxygen source. The reduction treatment means that high temperature heat treatment is performed in an atmosphere inert to carbon, and the atmosphere inert to carbon is formed using nitrogen, argon, helium, or a mixed gas thereof. be able to.
前記の酸化処理は、好ましくは酸素含有量0.5~25容量%、より好ましくは酸素含有量3~10容量%の雰囲気中、好ましくは300~700℃、より好ましくは400~600℃の温度で行われる。前記の還元処理は、好ましくは700~1100℃、より好ましくは800~1000℃の温度で不活性雰囲気中で行われる。
The oxidation treatment is preferably performed in an atmosphere having an oxygen content of 0.5 to 25% by volume, more preferably an oxygen content of 3 to 10% by volume, preferably a temperature of 300 to 700 ° C., more preferably 400 to 600 ° C. Done in The reduction treatment is preferably performed in an inert atmosphere at a temperature of 700 to 1100 ° C., more preferably 800 to 1000 ° C.
前述の石油系ピッチ由来の球状活性炭に酸化及び/又は還元処理を施した例としては、特公昭62-11611号公報(米国特許第4681764号明細書)に記載の球状活性炭を挙げることができる。
酸化及び/又は還元処理が施された球状活性炭としては、直径が0.05~2mm、好ましくは0.1~1mm、比表面積が500~2000m2/g、好ましくは700~1500m2/g、細孔半径100~75000オングストロームの空隙量が0.01~1mL/gである球状活性炭が好ましい。 Examples of the above-mentioned spherical activated carbon derived from petroleum pitch include oxidation and / or reduction treatment include spherical activated carbon described in JP-B-62-11611 (US Pat. No. 4,681,764).
The spherical activated carbon subjected to oxidation and / or reduction treatment has a diameter of 0.05 to 2 mm, preferably 0.1 to 1 mm, a specific surface area of 500 to 2000 m 2 / g, preferably 700 to 1500 m 2 / g, Spherical activated carbon having a pore radius of 100 to 75000 angstroms and a pore volume of 0.01 to 1 mL / g is preferred.
酸化及び/又は還元処理が施された球状活性炭としては、直径が0.05~2mm、好ましくは0.1~1mm、比表面積が500~2000m2/g、好ましくは700~1500m2/g、細孔半径100~75000オングストロームの空隙量が0.01~1mL/gである球状活性炭が好ましい。 Examples of the above-mentioned spherical activated carbon derived from petroleum pitch include oxidation and / or reduction treatment include spherical activated carbon described in JP-B-62-11611 (US Pat. No. 4,681,764).
The spherical activated carbon subjected to oxidation and / or reduction treatment has a diameter of 0.05 to 2 mm, preferably 0.1 to 1 mm, a specific surface area of 500 to 2000 m 2 / g, preferably 700 to 1500 m 2 / g, Spherical activated carbon having a pore radius of 100 to 75000 angstroms and a pore volume of 0.01 to 1 mL / g is preferred.
特開2002-308785号公報に記載の球状活性炭は、直径が0.01~1mmであり、BET法により求められる比表面積が700m2/g以上であり、細孔直径20~15000nmの細孔容積が0.04mL/g以上で0.10mL/g未満であり、全酸性基が0.30~1.20meq/gであり、全塩基性基が0.20~0.70meq/gである球状活性炭である。特開2002-308785号公報に記載の球状活性炭は、特定範囲の細孔容積を有する。すなわち、細孔直径20~15000nmの細孔容積が0.04mL/g以上で0.10mL/g未満である。また、本発明においては、全塩基性基が0.20~1.00meq/gである球状活性炭(特願2002-293906号又は特願2002-293907号参照)も使用することができる。
The spherical activated carbon described in JP-A No. 2002-308785 has a diameter of 0.01 to 1 mm, a specific surface area determined by the BET method of 700 m 2 / g or more, and a pore volume of 20 to 15000 nm. Sphericity of 0.04 mL / g or more and less than 0.10 mL / g, total acidic groups of 0.30 to 1.20 meq / g, and total basic groups of 0.20 to 0.70 meq / g Activated carbon. The spherical activated carbon described in JP-A-2002-308785 has a pore volume in a specific range. That is, the pore volume having a pore diameter of 20 to 15000 nm is 0.04 mL / g or more and less than 0.10 mL / g. In the present invention, spherical activated carbon having a total basic group of 0.20 to 1.00 meq / g (see Japanese Patent Application No. 2002-293906 or Japanese Patent Application No. 2002-293907) can also be used.
一方、前記特開平11-292770号公報に記載の球状活性炭は、細孔半径100~75000オングストロームの空隙容積(すなわち、細孔直径20~15000nmの細孔容積)が0.1~1mL/gである。特開2002-308785号公報の記載によれば、細孔直径20~15000nmの細孔容積を0.04mL/g以上で0.10mL/g未満に調整すると、毒性物質であるβ-アミノイソ酪酸に対する高い吸着特性を維持しつつ、有益物質であるα-アミラーゼに対する吸着特性が有意に低下する。球状活性炭の細孔直径20~15000nmの細孔容積が大きくなればなるほど消化酵素等の有益物質の吸着が起こりやすくなるため、有益物質の吸着を少なくする観点からは、前記細孔容積は小さいほど好ましい。しかしながら、一方で、細孔容積が小さすぎると毒性物質の吸着量も低下する。従って、経口投与用吸着剤においては、毒性物質の吸着量(T)の有益物質の吸着量(U)に対する比(T/U)、すなわち、選択吸着率が重要である。例えば、球状活性炭の選択吸着率を、DL-β-アミノイソ酪酸(毒性物質)の吸着量(Tb)のα-アミラーゼ(有益物質)の吸着量(Ua)に対する比(Tb/Ua)として評価することができる。すなわち、選択吸着率は、例えば、以下の式:
A=Tb/Ua
(ここで、Aは選択吸着率であり、TbはDL-β-アミノイソ酪酸の吸着量であり、Uaはα-アミラーゼの吸着量である)
によって評価することができる。 On the other hand, the spherical activated carbon described in JP-A-11-292770 has a pore volume with a pore radius of 100 to 75000 angstroms (that is, a pore volume with a pore diameter of 20 to 15000 nm) of 0.1 to 1 mL / g. is there. According to the description in Japanese Patent Application Laid-Open No. 2002-308785, when the pore volume with a pore diameter of 20 to 15000 nm is adjusted to 0.04 mL / g or more and less than 0.10 mL / g, it is against toxic β-aminoisobutyric acid. While maintaining high adsorption characteristics, the adsorption characteristics for α-amylase, which is a beneficial substance, are significantly reduced. As the pore volume of the spherical activated carbon having a pore diameter of 20 to 15000 nm increases, adsorption of beneficial substances such as digestive enzymes is more likely to occur. From the viewpoint of reducing the adsorption of beneficial substances, the smaller the pore volume, preferable. However, on the other hand, if the pore volume is too small, the amount of adsorption of the toxic substance also decreases. Therefore, in the adsorbent for oral administration, the ratio (T / U) of the adsorption amount (T) of the toxic substance to the adsorption amount (U) of the beneficial substance, that is, the selective adsorption rate is important. For example, the selective adsorption rate of spherical activated carbon is evaluated as the ratio (Tb / Ua) of the adsorption amount (Tb) of DL-β-aminoisobutyric acid (toxic substance) to the adsorption amount (Ua) of α-amylase (beneficial substance). be able to. That is, the selective adsorption rate is, for example, the following formula:
A = Tb / Ua
(Here, A is the selective adsorption rate, Tb is the adsorption amount of DL-β-aminoisobutyric acid, and Ua is the adsorption amount of α-amylase)
Can be evaluated.
A=Tb/Ua
(ここで、Aは選択吸着率であり、TbはDL-β-アミノイソ酪酸の吸着量であり、Uaはα-アミラーゼの吸着量である)
によって評価することができる。 On the other hand, the spherical activated carbon described in JP-A-11-292770 has a pore volume with a pore radius of 100 to 75000 angstroms (that is, a pore volume with a pore diameter of 20 to 15000 nm) of 0.1 to 1 mL / g. is there. According to the description in Japanese Patent Application Laid-Open No. 2002-308785, when the pore volume with a pore diameter of 20 to 15000 nm is adjusted to 0.04 mL / g or more and less than 0.10 mL / g, it is against toxic β-aminoisobutyric acid. While maintaining high adsorption characteristics, the adsorption characteristics for α-amylase, which is a beneficial substance, are significantly reduced. As the pore volume of the spherical activated carbon having a pore diameter of 20 to 15000 nm increases, adsorption of beneficial substances such as digestive enzymes is more likely to occur. From the viewpoint of reducing the adsorption of beneficial substances, the smaller the pore volume, preferable. However, on the other hand, if the pore volume is too small, the amount of adsorption of the toxic substance also decreases. Therefore, in the adsorbent for oral administration, the ratio (T / U) of the adsorption amount (T) of the toxic substance to the adsorption amount (U) of the beneficial substance, that is, the selective adsorption rate is important. For example, the selective adsorption rate of spherical activated carbon is evaluated as the ratio (Tb / Ua) of the adsorption amount (Tb) of DL-β-aminoisobutyric acid (toxic substance) to the adsorption amount (Ua) of α-amylase (beneficial substance). be able to. That is, the selective adsorption rate is, for example, the following formula:
A = Tb / Ua
(Here, A is the selective adsorption rate, Tb is the adsorption amount of DL-β-aminoisobutyric acid, and Ua is the adsorption amount of α-amylase)
Can be evaluated.
特開2002-308785号公報に記載の球状活性炭は、細孔直径20~15000nmの細孔容積が0.04mL/g以上で0.10mL/g未満の範囲内で優れた選択吸着率を示し、前記細孔容積が0.05mL/g以上で0.10mL/g未満の範囲内で一層優れた選択吸着率を示す。
The spherical activated carbon described in JP-A-2002-308785 exhibits excellent selective adsorption rate when the pore volume with a pore diameter of 20 to 15000 nm is 0.04 mL / g or more and less than 0.10 mL / g, A more excellent selective adsorption rate is exhibited when the pore volume is 0.05 mL / g or more and less than 0.10 mL / g.
特開2002-308785号公報に記載の球状活性炭は、直径が0.01~1mmである。直径は、好ましくは0.02~0.8mmである。なお、本明細書で「直径がDl~Duである」という表現は、JIS K 1474に準じて作成した粒度累積線図(平均粒子径の測定方法に関連して後で説明する)において、ふるいの目開きDl~Duの範囲に対応するふるい通過百分率(%)が90%以上であることを意味する。
特開2002-308785号公報に記載の球状活性炭は、BET法により求められる比表面積(以下「SSA」と省略することがある)が700m2/g以上である。SSAが700m2/gより小さい球状活性炭では、毒性物質の吸着性能が低くなるので好ましくない。SSAは、好ましくは800m2/g以上である。SSAの上限は特に限定されるものではないが、嵩密度及び強度の観点から、SSAは、2500m2/g以下であることが好ましい。 The spherical activated carbon described in JP-A-2002-308785 has a diameter of 0.01 to 1 mm. The diameter is preferably 0.02 to 0.8 mm. In the present specification, the expression “diameter is D1 to Du” is a sieve in a particle size cumulative diagram prepared in accordance with JIS K 1474 (which will be described later in connection with the method of measuring the average particle size). This means that the sieve passing percentage (%) corresponding to the range of the openings Dl to Du is 90% or more.
The spherical activated carbon described in JP-A-2002-308785 has a specific surface area (hereinafter sometimes abbreviated as “SSA”) determined by the BET method of 700 m 2 / g or more. Spherical activated carbon having an SSA of less than 700 m 2 / g is not preferable because the adsorption performance of toxic substances is lowered. SSA is preferably 800 m 2 / g or more. The upper limit of SSA is not particularly limited, but SSA is preferably 2500 m 2 / g or less from the viewpoint of bulk density and strength.
特開2002-308785号公報に記載の球状活性炭は、BET法により求められる比表面積(以下「SSA」と省略することがある)が700m2/g以上である。SSAが700m2/gより小さい球状活性炭では、毒性物質の吸着性能が低くなるので好ましくない。SSAは、好ましくは800m2/g以上である。SSAの上限は特に限定されるものではないが、嵩密度及び強度の観点から、SSAは、2500m2/g以下であることが好ましい。 The spherical activated carbon described in JP-A-2002-308785 has a diameter of 0.01 to 1 mm. The diameter is preferably 0.02 to 0.8 mm. In the present specification, the expression “diameter is D1 to Du” is a sieve in a particle size cumulative diagram prepared in accordance with JIS K 1474 (which will be described later in connection with the method of measuring the average particle size). This means that the sieve passing percentage (%) corresponding to the range of the openings Dl to Du is 90% or more.
The spherical activated carbon described in JP-A-2002-308785 has a specific surface area (hereinafter sometimes abbreviated as “SSA”) determined by the BET method of 700 m 2 / g or more. Spherical activated carbon having an SSA of less than 700 m 2 / g is not preferable because the adsorption performance of toxic substances is lowered. SSA is preferably 800 m 2 / g or more. The upper limit of SSA is not particularly limited, but SSA is preferably 2500 m 2 / g or less from the viewpoint of bulk density and strength.
更に、特開2002-308785号公報に記載の球状活性炭では、官能基の構成において、全酸性基が0.30~1.20meq/gであり、全塩基性基が0.20~0.70meq/gである。官能基の構成において、全酸性基が0.30~1.20meq/gであり、全塩基性基が0.20~0.70meq/gの条件を満足しない球状活性炭では、上述した有毒物質の吸着能が低くなるので好ましくない。官能基の構成において、全酸性基は0.30~1.00meq/gであることが好ましく、全塩基性基は0.30~0.60meq/gであることが好ましい。その官能基の構成は、全酸性基が0.30~1.20meq/g、全塩基性基が0.20~0.70meq/g、フェノール性水酸基が0.20~0.70meq/g、及びカルボキシ基が0.15meq/g以下の範囲にあり、且つ全酸性基(a)と全塩基性基(b)との比(a/b)が0.40~2.5であり、全塩基性基(b)とフェノール性水酸基(c)とカルボキシ基(d)との関係〔(b+c)-d〕が0.60以上であることが好ましい。
Further, in the spherical activated carbon described in JP-A-2002-308785, the total acidic group is 0.30 to 1.20 meq / g and the total basic group is 0.20 to 0.70 meq in the functional group structure. / G. In the structure of the functional group, the total acidic group is 0.30 to 1.20 meq / g, and the spherical activated carbon in which the total basic group does not satisfy the condition of 0.20 to 0.70 meq / g, Since the adsorptive capacity becomes low, it is not preferable. In the constitution of the functional group, the total acidic group is preferably 0.30 to 1.00 meq / g, and the total basic group is preferably 0.30 to 0.60 meq / g. The structure of the functional group is 0.30 to 1.20 meq / g for all acidic groups, 0.20 to 0.70 meq / g for all basic groups, 0.20 to 0.70 meq / g for phenolic hydroxyl groups, And the carboxy group is in the range of 0.15 meq / g or less, and the ratio (a / b) of the total acidic group (a) to the total basic group (b) is 0.40 to 2.5, The relationship [(b + c) -d] of the basic group (b), phenolic hydroxyl group (c) and carboxy group (d) is preferably 0.60 or more.
特開2002-308785号公報に記載の球状活性炭は、例えば、以下の方法によって製造することができる。
最初に、石油ピッチ又は石炭ピッチ等のピッチに対し、添加剤として、沸点200℃以上の2環式又は3環式の芳香族化合物又はその混合物を加えて加熱混合した後、成形してピッチ成形体を得る。なお、前記の球状活性炭は経口投与用であるので、その原料も、安全上充分な純度を有し、且つ品質的に安定であることが必要である。 The spherical activated carbon described in JP-A-2002-308785 can be produced, for example, by the following method.
First, after adding a bicyclic or tricyclic aromatic compound or a mixture thereof having a boiling point of 200 ° C. or higher as an additive to a pitch such as petroleum pitch or coal pitch, the mixture is heated and mixed, and then molded to form a pitch. Get the body. In addition, since the above-mentioned spherical activated carbon is for oral administration, it is necessary that the raw material also has a sufficient safety purity and is stable in quality.
最初に、石油ピッチ又は石炭ピッチ等のピッチに対し、添加剤として、沸点200℃以上の2環式又は3環式の芳香族化合物又はその混合物を加えて加熱混合した後、成形してピッチ成形体を得る。なお、前記の球状活性炭は経口投与用であるので、その原料も、安全上充分な純度を有し、且つ品質的に安定であることが必要である。 The spherical activated carbon described in JP-A-2002-308785 can be produced, for example, by the following method.
First, after adding a bicyclic or tricyclic aromatic compound or a mixture thereof having a boiling point of 200 ° C. or higher as an additive to a pitch such as petroleum pitch or coal pitch, the mixture is heated and mixed, and then molded to form a pitch. Get the body. In addition, since the above-mentioned spherical activated carbon is for oral administration, it is necessary that the raw material also has a sufficient safety purity and is stable in quality.
次に、70~180℃の熱水中で、前記のピッチ成形体を撹拌下に分散造粒して微小球体化する。更に、ピッチに対して低溶解度を有し、かつ前記添加剤に対して高溶解度を有する溶剤で、ピッチ成形体から添加剤を抽出除去し、得られた多孔性ピッチを、酸化剤を用いて酸化すると、熱に対して不融性の多孔性ピッチが得られる。こうして得られた不融性多孔性ピッチを、更に炭素と反応性を有する気流(例えば、スチーム又は炭酸ガス)中で、800~1000℃の温度で処理すると、多孔性炭素質物質を得ることができる。
Next, the pitch compact is dispersed and granulated in hot water at 70 to 180 ° C. with stirring to form microspheres. Further, the additive having a low solubility with respect to pitch and having a high solubility with respect to the additive is extracted and removed from the pitch molded product, and the resulting porous pitch is removed using an oxidizing agent. When oxidized, a porous pitch that is infusible to heat is obtained. When the infusible porous pitch obtained in this way is further treated at a temperature of 800 to 1000 ° C. in an air stream reactive with carbon (for example, steam or carbon dioxide), a porous carbonaceous material can be obtained. it can.
こうして得られた多孔性炭素質物質を、続いて、酸素含有量0.1~50vol%(好ましくは1~30vol%、特に好ましくは3~20vol%)の雰囲気下、300~800℃(好ましくは320~600℃)の温度で酸化処理し、更に800~1200℃(好ましくは800~1000℃)の温度下、非酸化性ガス雰囲気下で加熱反応による還元処理をすることにより、特開2002-308785号公報に記載の球状活性炭を得ることができる。
The porous carbonaceous material thus obtained is subsequently heated to 300 to 800 ° C. (preferably in an atmosphere having an oxygen content of 0.1 to 50 vol% (preferably 1 to 30 vol%, particularly preferably 3 to 20 vol%). By performing oxidation treatment at a temperature of 320 to 600 ° C. and further performing reduction treatment by a heating reaction in a non-oxidizing gas atmosphere at a temperature of 800 to 1200 ° C. (preferably 800 to 1000 ° C.), Spherical activated carbon described in Japanese Patent No. 308785 can be obtained.
前記の製造方法において、特定量の酸素を含有する雰囲気としては、純粋な酸素、酸化窒素又は空気等を酸素源として用いることができる。また、炭素に対して不活性な雰囲気としては、例えば、窒素、アルゴン、又はヘリウム等を単独で用いるか、あるいはそれらの混合物を用いることができる。
In the production method described above, as the atmosphere containing a specific amount of oxygen, pure oxygen, nitrogen oxide, air, or the like can be used as an oxygen source. In addition, as an atmosphere inert to carbon, for example, nitrogen, argon, helium, or the like can be used alone, or a mixture thereof can be used.
前記の原料ピッチに対して、芳香族化合物を添加する目的は、原料ピッチの軟化点を降下させることにより流動性を向上させて微小球体化を容易にすること及び成形後のピッチ成形体からその添加剤を抽出除去させることにより成形体を多孔質とし、その後の工程の酸化による炭素質材料の構造制御並びに焼成を容易にすることにある。このような添加剤としては、例えば、ナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、又はビフェニル等を単独で、又はそれらの2種以上の混合物を用いることができる。ピッチに対する添加量は、ピッチ100重量部に対し芳香族化合物10~50重量部の範囲が好ましい。
The purpose of adding an aromatic compound to the raw material pitch is to improve the fluidity by lowering the softening point of the raw material pitch to facilitate microsphere formation and from the pitch formed body after molding. The object is to make the molded body porous by extracting and removing the additive, and to facilitate structure control and firing of the carbonaceous material by oxidation in the subsequent steps. As such an additive, for example, naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl can be used alone, or a mixture of two or more thereof can be used. The amount added to the pitch is preferably in the range of 10 to 50 parts by weight of the aromatic compound per 100 parts by weight of the pitch.
ピッチと添加剤との混合は、均一な混合を達成するために、加熱して溶融状態で行うのが好ましい。ピッチと添加剤との混合物は、得られる多孔性球状炭素質の粒径(直径)を制御するため、粒径約0.01~1mmの粒子に成形することが好ましい。成形は溶融状態で行ってもよく、また混合物を冷却後に粉砕する等の方法によってもよい。
ピッチと添加剤との混合物から添加剤を抽出除去するための溶剤としては、例えば、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素を主成分とする混合物、あるいはメタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類等が好適である。 In order to achieve uniform mixing, it is preferable to mix the pitch and the additive in a molten state by heating. The mixture of pitch and additive is preferably formed into particles having a particle size of about 0.01 to 1 mm in order to control the particle size (diameter) of the obtained porous spherical carbonaceous material. Molding may be performed in a molten state, or may be performed by a method such as grinding the mixture after cooling.
Examples of the solvent for extracting and removing the additive from the mixture of pitch and additive include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, and aliphatic hydrocarbons such as naphtha or kerosene. Or a mixture of aliphatic alcohols such as methanol, ethanol, propanol, or butanol.
ピッチと添加剤との混合物から添加剤を抽出除去するための溶剤としては、例えば、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素を主成分とする混合物、あるいはメタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類等が好適である。 In order to achieve uniform mixing, it is preferable to mix the pitch and the additive in a molten state by heating. The mixture of pitch and additive is preferably formed into particles having a particle size of about 0.01 to 1 mm in order to control the particle size (diameter) of the obtained porous spherical carbonaceous material. Molding may be performed in a molten state, or may be performed by a method such as grinding the mixture after cooling.
Examples of the solvent for extracting and removing the additive from the mixture of pitch and additive include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, and aliphatic hydrocarbons such as naphtha or kerosene. Or a mixture of aliphatic alcohols such as methanol, ethanol, propanol, or butanol.
このような溶剤でピッチと添加剤との混合物成形体から添加剤を抽出することによって、成形体の形状を維持したまま、添加剤を成形体から除去することができる。この際に、成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が得られるものと推定される。
なお、添加剤の抜け穴サイズ(すなわち、細孔容積)の制御は、常法、例えば、添加剤の量、ピッチ成形体の微小球体化工程における添加剤の析出温度(冷却温度)を制御することによって実施することができる。また、添加剤の抽出により生成した細孔容積は不融化条件によっても影響を受ける。例えば、不融化処理が強ければ熱処理による熱収縮が小さくなり、添加剤の抽出により得られた細孔が維持されやすい傾向にある。 By extracting the additive from the mixture molded product of pitch and additive with such a solvent, the additive can be removed from the molded product while maintaining the shape of the molded product. At this time, it is presumed that an additive loophole is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
In addition, the control of the hole size (that is, pore volume) of the additive is to control the additive precipitation temperature (cooling temperature) in the conventional method, for example, the amount of the additive and the microsphere formation process of the pitch formed body. Can be implemented. Moreover, the pore volume produced | generated by extraction of an additive is also influenced by infusibilization conditions. For example, if the infusibilization treatment is strong, the thermal shrinkage due to the heat treatment becomes small, and the pores obtained by extraction of the additive tend to be maintained.
なお、添加剤の抜け穴サイズ(すなわち、細孔容積)の制御は、常法、例えば、添加剤の量、ピッチ成形体の微小球体化工程における添加剤の析出温度(冷却温度)を制御することによって実施することができる。また、添加剤の抽出により生成した細孔容積は不融化条件によっても影響を受ける。例えば、不融化処理が強ければ熱処理による熱収縮が小さくなり、添加剤の抽出により得られた細孔が維持されやすい傾向にある。 By extracting the additive from the mixture molded product of pitch and additive with such a solvent, the additive can be removed from the molded product while maintaining the shape of the molded product. At this time, it is presumed that an additive loophole is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
In addition, the control of the hole size (that is, pore volume) of the additive is to control the additive precipitation temperature (cooling temperature) in the conventional method, for example, the amount of the additive and the microsphere formation process of the pitch formed body. Can be implemented. Moreover, the pore volume produced | generated by extraction of an additive is also influenced by infusibilization conditions. For example, if the infusibilization treatment is strong, the thermal shrinkage due to the heat treatment becomes small, and the pores obtained by extraction of the additive tend to be maintained.
こうして得られた多孔性ピッチ成形体を、次いで不融化処理、すなわち酸化剤を用いて、好ましくは常温から300℃までの温度で酸化処理することにより、熱に対して不融性の多孔性不融性ピッチ成形体を得ることができる。ここで用いる酸化剤としては、例えば、酸素ガス(O2)、あるいは酸素ガス(O2)を空気や窒素等で希釈した混合ガスを挙げることができる。
The porous pitch molded body thus obtained is then infusibilized, that is, oxidized using an oxidizing agent, preferably at a temperature from room temperature to 300 ° C. A fusible pitch compact can be obtained. Examples of the oxidizing agent used here include oxygen gas (O 2 ) or a mixed gas obtained by diluting oxygen gas (O 2 ) with air, nitrogen, or the like.
特開2002-308785号公報に記載の球状活性炭が有する各物性値、すなわち、平均粒子径、比表面積、細孔容積、全酸性基、及び全塩基性基は、以下の方法によって測定する。
(1)平均粒子径
球状活性炭についてJIS K 1474に準じて粒度累積線図を作成する。平均粒子径は、粒度累積線図において、横軸の50%の点の垂直線と粒度累積線との交点から、横軸に水平線を引いて交点の示すふるいの目開き(mm)を求めて、平均粒子径とする。 Each physical property value possessed by the spherical activated carbon described in JP-A-2002-308785, that is, average particle diameter, specific surface area, pore volume, total acidic group, and total basic group is measured by the following method.
(1) Average particle diameter For spherical activated carbon, a particle size cumulative diagram is prepared according to JIS K1474. For the average particle diameter, in the particle size cumulative diagram, the horizontal line is drawn on the horizontal axis from the intersection of the vertical line at the 50% point on the horizontal axis and the particle size cumulative line to obtain the mesh size (mm) of the sieve indicated by the intersection. The average particle size.
(1)平均粒子径
球状活性炭についてJIS K 1474に準じて粒度累積線図を作成する。平均粒子径は、粒度累積線図において、横軸の50%の点の垂直線と粒度累積線との交点から、横軸に水平線を引いて交点の示すふるいの目開き(mm)を求めて、平均粒子径とする。 Each physical property value possessed by the spherical activated carbon described in JP-A-2002-308785, that is, average particle diameter, specific surface area, pore volume, total acidic group, and total basic group is measured by the following method.
(1) Average particle diameter For spherical activated carbon, a particle size cumulative diagram is prepared according to JIS K1474. For the average particle diameter, in the particle size cumulative diagram, the horizontal line is drawn on the horizontal axis from the intersection of the vertical line at the 50% point on the horizontal axis and the particle size cumulative line to obtain the mesh size (mm) of the sieve indicated by the intersection. The average particle size.
(2)比表面積
連続流通式のガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「Flow Sorb II 2300」)を用いて、球状活性炭試料のガス吸着量を測定し、BETの式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、その試料管に窒素30vol%を含有するヘリウムガスを流しながら以下の操作を行い、球状活性炭試料への窒素吸着量を求める。すなわち、試料管を-196℃に冷却し、球状活性炭試料に窒素を吸着させる。次に、試料管を室温に戻す。このとき球状活性炭試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量(v)とする。
BETの式から誘導された近似式:
vm=1/(v・(1-x))
を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.3)によりvmを求め、次式:
比表面積=4.35×vm(m2/g)
により試料の比表面積を計算する。前記の各計算式で、vmは試料表面に単分子層を形成するのに必要な吸着量(cm3/g)であり、vは実測される吸着量(cm3/g)であり、xは相対圧力である。 (2) Specific surface area Using a continuous surface gas adsorption method specific surface area measuring instrument (for example, “Flow Sorb II 2300” manufactured by MICROMERITICS), the amount of gas adsorbed on the spherical activated carbon sample is measured. The surface area can be calculated. Specifically, a spherical activated carbon as a sample is filled in a sample tube, and the following operation is performed while flowing a helium gas containing 30 vol% nitrogen into the sample tube, thereby obtaining the nitrogen adsorption amount on the spherical activated carbon sample. That is, the sample tube is cooled to −196 ° C., and nitrogen is adsorbed on the spherical activated carbon sample. The sample tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the spherical activated carbon sample is measured with a thermal conductivity detector, and is defined as the amount of adsorbed gas (v).
Approximate expression derived from BET equation:
v m = 1 / (v · (1-x))
Is used to determine v m by the one-point method (relative pressure x = 0.3) by nitrogen adsorption at liquid nitrogen temperature, and the following formula:
Specific surface area = 4.35 × v m (m 2 / g)
To calculate the specific surface area of the sample. In each formula of the, v m is an adsorption amount necessary to form a monomolecular layer on the surface of the sample (cm 3 / g), v is an adsorption amount is measured (cm 3 / g), x is a relative pressure.
連続流通式のガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「Flow Sorb II 2300」)を用いて、球状活性炭試料のガス吸着量を測定し、BETの式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、その試料管に窒素30vol%を含有するヘリウムガスを流しながら以下の操作を行い、球状活性炭試料への窒素吸着量を求める。すなわち、試料管を-196℃に冷却し、球状活性炭試料に窒素を吸着させる。次に、試料管を室温に戻す。このとき球状活性炭試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量(v)とする。
BETの式から誘導された近似式:
vm=1/(v・(1-x))
を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.3)によりvmを求め、次式:
比表面積=4.35×vm(m2/g)
により試料の比表面積を計算する。前記の各計算式で、vmは試料表面に単分子層を形成するのに必要な吸着量(cm3/g)であり、vは実測される吸着量(cm3/g)であり、xは相対圧力である。 (2) Specific surface area Using a continuous surface gas adsorption method specific surface area measuring instrument (for example, “Flow Sorb II 2300” manufactured by MICROMERITICS), the amount of gas adsorbed on the spherical activated carbon sample is measured. The surface area can be calculated. Specifically, a spherical activated carbon as a sample is filled in a sample tube, and the following operation is performed while flowing a helium gas containing 30 vol% nitrogen into the sample tube, thereby obtaining the nitrogen adsorption amount on the spherical activated carbon sample. That is, the sample tube is cooled to −196 ° C., and nitrogen is adsorbed on the spherical activated carbon sample. The sample tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the spherical activated carbon sample is measured with a thermal conductivity detector, and is defined as the amount of adsorbed gas (v).
Approximate expression derived from BET equation:
v m = 1 / (v · (1-x))
Is used to determine v m by the one-point method (relative pressure x = 0.3) by nitrogen adsorption at liquid nitrogen temperature, and the following formula:
Specific surface area = 4.35 × v m (m 2 / g)
To calculate the specific surface area of the sample. In each formula of the, v m is an adsorption amount necessary to form a monomolecular layer on the surface of the sample (cm 3 / g), v is an adsorption amount is measured (cm 3 / g), x is a relative pressure.
(3)水銀圧入法による細孔容積
水銀ポロシメータ(例えば、MICROMERITICS社製「AUTOPORE 9200」)を用いて細孔容積を測定することができる。試料である球状活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を球状活性炭試料の細孔へ圧入する(最高圧力=414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式を用いて球状活性炭試料の細孔容積分布を測定する。
具体的には、細孔直径15μmに相当する圧力(0.07MPa)から最高圧力(414MPa:細孔直径3nm相当)までに球状活性炭試料に圧入された水銀の体積を測定する。細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力の釣り合いから、次式:
-πDγcosθ=π(D/2)2・P
が成り立つ。従って
D=(-4γcosθ)/P
となる。
本明細書においては、水銀の表面張力を484dyne/cmとし、水銀と炭素との接触角を130度とし、圧力PをMPaとし、そして細孔直径Dをμmで表示し、下記式:
D=1.27/P
により圧力Pと細孔直径Dの関係を求める。本発明における細孔直径20~15000nmの範囲の細孔容積とは、水銀圧入圧0.07MPaから63.5MPaまでに圧入された水銀の体積に相当する。 (3) Pore volume by mercury porosimetry The pore volume can be measured using a mercury porosimeter (for example, “AUTOPORE 9200” manufactured by MICROMERITICS). Spherical activated carbon as a sample is put in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes. Next, mercury is introduced into the sample container and gradually pressurized to press the mercury into the pores of the spherical activated carbon sample (maximum pressure = 414 MPa). From the relationship between the pressure at this time and the amount of mercury injected, the pore volume distribution of the spherical activated carbon sample is measured using the following equations.
Specifically, the volume of mercury injected into the spherical activated carbon sample from a pressure corresponding to a pore diameter of 15 μm (0.07 MPa) to a maximum pressure (414 MPa: corresponding to a pore diameter of 3 nm) is measured. The pore diameter is calculated when mercury is pressed into a cylindrical pore having a diameter (D) at a pressure (P), where the surface tension of mercury is “γ” and the contact angle between the mercury and the pore wall is “ θ ”, from the balance between the surface tension and the pressure acting on the pore cross section, the following formula:
−πDγcos θ = π (D / 2) 2 · P
Holds. Therefore, D = (− 4γcos θ) / P
It becomes.
In this specification, the surface tension of mercury is 484 dyne / cm, the contact angle between mercury and carbon is 130 degrees, the pressure P is MPa, and the pore diameter D is expressed in μm.
D = 1.27 / P
To obtain the relationship between the pressure P and the pore diameter D. The pore volume in the range of the pore diameter of 20 to 15000 nm in the present invention corresponds to the volume of mercury that is injected from a mercury intrusion pressure of 0.07 MPa to 63.5 MPa.
水銀ポロシメータ(例えば、MICROMERITICS社製「AUTOPORE 9200」)を用いて細孔容積を測定することができる。試料である球状活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を球状活性炭試料の細孔へ圧入する(最高圧力=414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式を用いて球状活性炭試料の細孔容積分布を測定する。
具体的には、細孔直径15μmに相当する圧力(0.07MPa)から最高圧力(414MPa:細孔直径3nm相当)までに球状活性炭試料に圧入された水銀の体積を測定する。細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力の釣り合いから、次式:
-πDγcosθ=π(D/2)2・P
が成り立つ。従って
D=(-4γcosθ)/P
となる。
本明細書においては、水銀の表面張力を484dyne/cmとし、水銀と炭素との接触角を130度とし、圧力PをMPaとし、そして細孔直径Dをμmで表示し、下記式:
D=1.27/P
により圧力Pと細孔直径Dの関係を求める。本発明における細孔直径20~15000nmの範囲の細孔容積とは、水銀圧入圧0.07MPaから63.5MPaまでに圧入された水銀の体積に相当する。 (3) Pore volume by mercury porosimetry The pore volume can be measured using a mercury porosimeter (for example, “AUTOPORE 9200” manufactured by MICROMERITICS). Spherical activated carbon as a sample is put in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes. Next, mercury is introduced into the sample container and gradually pressurized to press the mercury into the pores of the spherical activated carbon sample (maximum pressure = 414 MPa). From the relationship between the pressure at this time and the amount of mercury injected, the pore volume distribution of the spherical activated carbon sample is measured using the following equations.
Specifically, the volume of mercury injected into the spherical activated carbon sample from a pressure corresponding to a pore diameter of 15 μm (0.07 MPa) to a maximum pressure (414 MPa: corresponding to a pore diameter of 3 nm) is measured. The pore diameter is calculated when mercury is pressed into a cylindrical pore having a diameter (D) at a pressure (P), where the surface tension of mercury is “γ” and the contact angle between the mercury and the pore wall is “ θ ”, from the balance between the surface tension and the pressure acting on the pore cross section, the following formula:
−πDγcos θ = π (D / 2) 2 · P
Holds. Therefore, D = (− 4γcos θ) / P
It becomes.
In this specification, the surface tension of mercury is 484 dyne / cm, the contact angle between mercury and carbon is 130 degrees, the pressure P is MPa, and the pore diameter D is expressed in μm.
D = 1.27 / P
To obtain the relationship between the pressure P and the pore diameter D. The pore volume in the range of the pore diameter of 20 to 15000 nm in the present invention corresponds to the volume of mercury that is injected from a mercury intrusion pressure of 0.07 MPa to 63.5 MPa.
(4)全酸性基
0.05規定のNaOH溶液50mL中に、200メッシュ以下に粉砕した球状活性炭試料1gを添加し、48時間振とうした後、球状活性炭試料をろ別し、中和滴定により求められるNaOHの消費量である。 (4) Total acidic groups Add 1 g of spherical activated carbon sample ground to 200 mesh or less in 50 mL of 0.05N NaOH solution, shake for 48 hours, filter off the spherical activated carbon sample, and perform neutralization titration. This is the required consumption of NaOH.
0.05規定のNaOH溶液50mL中に、200メッシュ以下に粉砕した球状活性炭試料1gを添加し、48時間振とうした後、球状活性炭試料をろ別し、中和滴定により求められるNaOHの消費量である。 (4) Total acidic groups Add 1 g of spherical activated carbon sample ground to 200 mesh or less in 50 mL of 0.05N NaOH solution, shake for 48 hours, filter off the spherical activated carbon sample, and perform neutralization titration. This is the required consumption of NaOH.
(5)全塩基性基
0.05規定のHCl溶液50mL中に、200メッシュ以下に粉砕した球状活性炭試料1gを添加し、24時間振とうした後、球状活性炭試料をろ別し、中和滴定により求められるHClの消費量である。 (5) Total basic groups 1 g of spherical activated carbon sample pulverized to 200 mesh or less is added to 50 mL of 0.05 normal HCl solution, shaken for 24 hours, and then the spherical activated carbon sample is filtered and neutralized titration. It is the consumption of HCl calculated | required by.
0.05規定のHCl溶液50mL中に、200メッシュ以下に粉砕した球状活性炭試料1gを添加し、24時間振とうした後、球状活性炭試料をろ別し、中和滴定により求められるHClの消費量である。 (5) Total basic groups 1 g of spherical activated carbon sample pulverized to 200 mesh or less is added to 50 mL of 0.05 normal HCl solution, shaken for 24 hours, and then the spherical activated carbon sample is filtered and neutralized titration. It is the consumption of HCl calculated | required by.
なお、本発明の寿命延長剤の有効成分である球状活性炭としては、更に、特開2005-314415号公報に記載の平均粒子径が小さい球状活性炭、すなわち、平均粒子径が50~200μmであり、BET法により求められる比表面積が700m2/g以上である球状活性炭、あるいは特開2005-314416号公報に記載の平均粒子径が小さい表面改質球状活性炭、すなわち、平均粒子径が50~200μmであり、BET法により求められる比表面積が700m2/g以上であり、全酸性基が0.30meq/g~1.20meq/gであり、そして全塩基性基が0.20meq/g~0.9meq/gである表面改質球状活性炭を用いることもできる。
In addition, as the spherical activated carbon which is an active ingredient of the life extending agent of the present invention, spherical activated carbon having a small average particle diameter described in JP-A-2005-314415, that is, the average particle diameter is 50 to 200 μm, Spherical activated carbon having a specific surface area determined by the BET method of 700 m 2 / g or more, or surface-modified spherical activated carbon having a small average particle size described in JP-A-2005-314416, that is, an average particle size of 50 to 200 μm. The specific surface area determined by the BET method is 700 m 2 / g or more, the total acidic groups are 0.30 meq / g to 1.20 meq / g, and the total basic groups are 0.20 meq / g to 0. It is also possible to use surface-modified spherical activated carbon that is 9 meq / g.
更に、本発明の寿命延長剤の有効成分である球状活性炭としては、WO2004/39381号公報に記載の球状活性炭あるいはその表面改質球状活性炭、すなわち、熱硬化性樹脂を炭素源として製造され、直径が0.01~1mmであり、そしてラングミュアの吸着式により求められる比表面積が1000m2/g以上である球状活性炭、あるいはその表面改質球状活性炭を用いることができる。
Furthermore, as the spherical activated carbon which is an active ingredient of the life extension agent of the present invention, the spherical activated carbon described in WO2004 / 39381 or its surface modified spherical activated carbon, that is, a thermosetting resin is produced as a carbon source, Spherical activated carbon having a specific surface area of 1000 m 2 / g or more, or a surface-modified spherical activated carbon, can be used.
更に、本発明の寿命延長剤の有効成分である球状活性炭としては、WO2004/39380号公報に記載の球状活性炭あるいはその表面改質球状活性炭、すなわち、直径が0.01~1mmであり、ラングミュアの吸着式により求められる比表面積が1000m2/g以上であり、そして式(1):
R=(I15-I35)/(I24-I35) (1)
〔式中、I15は、X線回折法による回折角(2θ)が15°における回折強度であり、I35は、X線回折法による回折角(2θ)が35°における回折強度であり、I24は、X線回折法による回折角(2θ)が24°における回折強度である〕
で求められる回折強度比(R値)が1.4以上である球状活性炭あるいはその表面改質球状活性炭を用いることができる。 Further, as the spherical activated carbon which is an active ingredient of the life extension agent of the present invention, spherical activated carbon described in WO 2004/39380 or its surface modified spherical activated carbon, ie, having a diameter of 0.01 to 1 mm, Langmuir's The specific surface area determined by the adsorption formula is 1000 m 2 / g or more, and formula (1):
R = (I 15 -I 35 ) / (I 24 -I 35 ) (1)
[Wherein I 15 is the diffraction intensity at a diffraction angle (2θ) of 15 ° by X-ray diffraction method, and I 35 is the diffraction intensity at a diffraction angle (2θ) of 35 ° by X-ray diffraction method, I 24 is the diffraction intensity when the diffraction angle (2θ) according to the X-ray diffraction method is 24 °.]
Spherical activated carbon having a diffraction intensity ratio (R value) of 1.4 or more or a surface-modified spherical activated carbon thereof can be used.
R=(I15-I35)/(I24-I35) (1)
〔式中、I15は、X線回折法による回折角(2θ)が15°における回折強度であり、I35は、X線回折法による回折角(2θ)が35°における回折強度であり、I24は、X線回折法による回折角(2θ)が24°における回折強度である〕
で求められる回折強度比(R値)が1.4以上である球状活性炭あるいはその表面改質球状活性炭を用いることができる。 Further, as the spherical activated carbon which is an active ingredient of the life extension agent of the present invention, spherical activated carbon described in WO 2004/39380 or its surface modified spherical activated carbon, ie, having a diameter of 0.01 to 1 mm, Langmuir's The specific surface area determined by the adsorption formula is 1000 m 2 / g or more, and formula (1):
R = (I 15 -I 35 ) / (I 24 -I 35 ) (1)
[Wherein I 15 is the diffraction intensity at a diffraction angle (2θ) of 15 ° by X-ray diffraction method, and I 35 is the diffraction intensity at a diffraction angle (2θ) of 35 ° by X-ray diffraction method, I 24 is the diffraction intensity when the diffraction angle (2θ) according to the X-ray diffraction method is 24 °.]
Spherical activated carbon having a diffraction intensity ratio (R value) of 1.4 or more or a surface-modified spherical activated carbon thereof can be used.
本発明の寿命延長剤は、正常の個体(動物、特にはヒト)に投与することによって、個体の様々な組織や臓器における恒常性を正常な状態に維持し、その個体の寿命を延長させることができる。また、疾患を有する個体に対して投与することによって、個体の組織や臓器における機能を改善させ、その個体の疾患の進行を遅らせ、結果的に寿命を延長させることができる。
The life extension agent of the present invention maintains normal homeostasis in various tissues and organs of an individual and extends the life of the individual by administering it to a normal individual (animal, particularly human). Can do. In addition, administration to an individual having a disease can improve the function of the individual's tissues and organs, delay the progression of the individual's disease, and consequently extend the lifespan.
本発明の寿命延長剤は、成熟し老化の始まった正常の個体(動物、特にはヒト)に投与することによって、個体の様々な組織や臓器の恒常性を正常な状態に維持し、その個体の加齢を防止することができる。また、老化に関連する疾患、例えば脳卒中、動脈硬化を有する個体に対して投与することによって、個体の組織や臓器における機能を改善させ、その個体の加齢を防止し、結果的に前記疾患を予防又は治療することができる。
The life extension agent of the present invention maintains the homeostasis of various tissues and organs of an individual in a normal state by being administered to a normal individual (animal, particularly a human) that has matured and begins aging. Can be prevented from aging. In addition, administration to an individual having aging-related diseases such as stroke or arteriosclerosis improves the function of the individual's tissues and organs, prevents aging of the individual, and as a result Can be prevented or treated.
本発明のクロソタンパク質発現促進剤は、正常の個体(動物、特にはヒト)に投与することによって、脳又は腎臓におけるクロソタンパク質の発現を促進(又は、クロソタンパク質の発現の低下を抑制)することができる。また、クロソタンパク質の発現の低下に関連する疾患又は病的な状態、例えば寿命の短縮、成長障害、不妊、活動量の低下、胸腺の萎縮、皮膚の萎縮、骨格筋の萎縮、皮下脂肪・内臓脂肪の減少、動脈硬化(中膜石灰化)、腎細動脈石灰化、軟部組織石灰化(胃、脈絡叢、精巣)、肺気腫、骨密度減少、亀背、脊髄前角細胞の変性、認知障害、聴力障害、低血糖、高リン血症、高カルシウム血を示す個体に対して投与することによって、個体の組織や臓器におけるクロソタンパク質発現を促進し(又は、クロソタンパク質の発現の低下を抑制し)、結果的にそれらの疾患又は病的な状態を予防又は治療することができる。
The agent for promoting expression of crosoprotein of the present invention promotes the expression of crosoprotein in the brain or kidney (or suppresses the decrease in the expression of crosoprotein) by administering to a normal individual (animal, particularly human). Can do. Also, diseases or pathological conditions related to decreased expression of crosoprotein, such as shortened life span, growth disorder, infertility, decreased activity, thymic atrophy, skin atrophy, skeletal muscle atrophy, subcutaneous fat and viscera Fat loss, arteriosclerosis (medial calcification), renal arteriole calcification, soft tissue calcification (stomach, choroid plexus, testis), emphysema, bone density reduction, dorsum, spinal cord anterior horn cell degeneration, cognitive impairment By administering to individuals with hearing impairment, hypoglycemia, hyperphosphatemia, or hypercalcemia, it promotes the expression of crosoprotein in the tissues and organs of the individual (or suppresses the decrease in the expression of crosoprotein) ) As a result, those diseases or pathological conditions can be prevented or treated.
本発明の寿命延長剤、抗加齢剤、又はクロソタンパク質発現促進剤における有効成分である、球状活性炭(好ましくは粒径0.01~2mmの球状活性炭)は、それ単独で、あるいは、所望により薬剤学的又は獣医学的に許容することのできる通常の担体又は希釈剤と共に、対象[動物、好ましくは哺乳動物(特にはヒト)]に、有効量で投与することができる。本発明の寿命延長剤、抗加齢剤、又はクロソタンパク質発現促進剤は、好ましくは経口的に投与される。その投与量は、例えば、対象(哺乳動物、特にはヒト)、年齢、個人差、及び/又は病状などに依存する。例えば、ヒトの場合の1日当たりの投与量は、通常、球状活性炭量として2~9gであるが、症状により、投与量を適宜増減してもよい。また、投与は1回又は数回に分けて行ってもよい。球状活性炭は、そのまま投与してもよいし、活性炭製剤として投与してもよい。球状活性炭をそのまま投与する場合、球状活性炭を飲料水などに懸濁したスラリーとして投与することもできる。
Spherical activated carbon (preferably a spherical activated carbon having a particle size of 0.01 to 2 mm), which is an active ingredient in the life extension agent, anti-aging agent, or Kuroso protein expression promoter of the present invention, is used alone or as desired. An effective amount can be administered to a subject [animal, preferably a mammal (particularly human)] together with a pharmaceutically or veterinarily acceptable conventional carrier or diluent. The life extension agent, anti-aging agent, or crosoprotein expression promoter of the present invention is preferably administered orally. The dose depends on, for example, the subject (mammals, particularly humans), age, individual differences, and / or medical conditions. For example, the daily dose for humans is usually 2 to 9 g as the amount of spherical activated carbon, but the dose may be appropriately increased or decreased depending on the symptoms. Further, administration may be performed once or divided into several times. Spherical activated carbon may be administered as it is or as an activated carbon preparation. When the spherical activated carbon is administered as it is, it can be administered as a slurry in which the spherical activated carbon is suspended in drinking water or the like.
活性炭製剤における剤形としては、例えば、顆粒、錠剤、糖衣錠、カプセル剤、スティック剤、分包包装体、又は懸濁剤などの任意の剤形を採用することができる。カプセル剤の場合、通常のゼラチンカプセルの他、必要に応じ、腸溶性のカプセルを用いることもできる。顆粒、錠剤、又は糖衣錠として用いる場合は、体内で元の微小粒子に解錠されることが必要である。活性炭製剤中の球状活性炭の含有量は、通常1~100%である。本発明において、好ましい活性炭製剤は、カプセル剤、スティック剤、又は分包包装体である。これらの製剤の場合、球状活性炭は、そのまま容器に封入される。
As the dosage form in the activated carbon preparation, any dosage form such as granules, tablets, dragees, capsules, sticks, sachets or suspensions can be adopted. In the case of capsules, enteric capsules can be used as required in addition to ordinary gelatin capsules. When used as a granule, tablet, or sugar-coated tablet, it is necessary to be unlocked into the original microparticles in the body. The content of spherical activated carbon in the activated carbon preparation is usually 1 to 100%. In the present invention, a preferred activated carbon preparation is a capsule, a stick, or a packaged package. In the case of these preparations, the spherical activated carbon is enclosed in a container as it is.
本発明の寿命延長剤、抗加齢剤、又はクロソタンパク質発現促進剤は、例えば、連続的に経口投与しても、毒性がなく、便秘などの有害な副作用がなく、食品に混合して摂取することも可能であり、飲料に混合して摂取することも可能である。
The life extension agent, anti-aging agent, or crosoprotein expression promoter of the present invention is, for example, non-toxic even when continuously administered orally, and has no harmful side effects such as constipation. It is also possible to mix and ingest with drinks.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
《製造例1:多孔性球状炭素質物質の製造》
特許第3522708号(特開2002-308785号公報)の実施例1に記載の方法と同様にして多孔性球状炭素質物質を得た。具体的な操作は、以下の通りである。
石油系ピッチ(軟化点=210℃;キノリン不溶分=1重量%以下;H/C原子比=0.63)68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300Lの耐圧容器に仕込み、180℃で溶融混合を行った後、80~90℃に冷却して押し出し、紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1~2になるように破砕した。
0.23重量%のポリビニルアルコール(ケン化度=88%)を溶解して93℃に加熱した水溶液中に、前記の破砕物を投入し、攪拌分散により球状化した後、前記のポリビニルアルコール水溶液を水で置換することにより冷却し、20℃で3時間冷却し、ピッチの固化及びナフタレン結晶の析出を行い、球状ピッチ成形体スラリーを得た。
大部分の水をろ過により除いた後、球状ピッチ成形体の約6倍重量のn-ヘキサンでピッチ成形体中のナフタレンを抽出除去した。このようにして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、235℃まで昇温した後、235℃にて1時間保持して酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。
続いて、多孔性球状酸化ピッチを、流動床を用い、50vol%の水蒸気を含む窒素ガス雰囲気中で、900℃で170分間賦活処理して多孔性球状活性炭を得、更にこれを流動床にて、酸素濃度18.5vol%の窒素と酸素との混合ガス雰囲気下で470℃で3時間15分間、酸化処理し、次に流動床にて窒素ガス雰囲気下で900℃で17分間還元処理を行い、多孔性球状炭素質物質を得た。こうして得られた多孔性球状炭素質物質を、以下の薬理試験例において、球状活性炭として使用した。
得られた炭素質材料の主な特性は以下の通りである。
比表面積=1300m2/g(BET法);
細孔容積=0.08mL/g
(水銀圧入法により求めた細孔直径20~15000nmの範囲の細孔容積);
平均粒子径=350μm;
全酸性基=0.67meq/g;及び
全塩基性基=0.54meq/g。 << Production Example 1: Production of Porous Spherical Carbonaceous Material >>
A porous spherical carbonaceous material was obtained in the same manner as described in Example 1 of Japanese Patent No. 3522708 (Japanese Patent Laid-Open No. 2002-308785). The specific operation is as follows.
68 kg of petroleum-based pitch (softening point = 210 ° C .; quinoline insoluble content = 1 wt% or less; H / C atomic ratio = 0.63) and 32 kg of naphthalene are charged into a pressure-resistant container having an internal volume of 300 L with a stirring blade. After melt mixing at 180 ° C., the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body. Next, the string-like molded body was crushed so that the ratio of diameter to length was about 1-2.
The crushed material was put into an aqueous solution in which 0.23% by weight of polyvinyl alcohol (degree of saponification = 88%) was dissolved and heated to 93 ° C., and spheroidized by stirring and dispersing. Was replaced by water and cooled at 20 ° C. for 3 hours to solidify the pitch and precipitate naphthalene crystals to obtain a spherical pitch formed body slurry.
After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with n-hexane, which was about 6 times the weight of the spherical pitch formed body. The porous spherical pitch obtained in this way was heated to 235 ° C. through heated air using a fluidized bed, and then oxidized by holding at 235 ° C. for 1 hour, so that it was infusible to heat. A porous spherical oxide pitch was obtained.
Subsequently, the porous spherical oxidized pitch was activated at 900 ° C. for 170 minutes in a nitrogen gas atmosphere containing 50 vol% of water vapor using a fluidized bed to obtain porous spherical activated carbon. Then, oxidation treatment is performed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then reduction treatment is performed at 900 ° C. for 17 minutes in a fluidized bed under nitrogen gas atmosphere A porous spherical carbonaceous material was obtained. The porous spherical carbonaceous material thus obtained was used as spherical activated carbon in the following pharmacological test examples.
The main characteristics of the obtained carbonaceous material are as follows.
Specific surface area = 1300 m 2 / g (BET method);
Pore volume = 0.08 mL / g
(Pore volume in the range of 20 to 15000 nm pore diameter determined by mercury porosimetry);
Average particle size = 350 μm;
Total acidic groups = 0.67 meq / g; and Total basic groups = 0.54 meq / g.
特許第3522708号(特開2002-308785号公報)の実施例1に記載の方法と同様にして多孔性球状炭素質物質を得た。具体的な操作は、以下の通りである。
石油系ピッチ(軟化点=210℃;キノリン不溶分=1重量%以下;H/C原子比=0.63)68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300Lの耐圧容器に仕込み、180℃で溶融混合を行った後、80~90℃に冷却して押し出し、紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1~2になるように破砕した。
0.23重量%のポリビニルアルコール(ケン化度=88%)を溶解して93℃に加熱した水溶液中に、前記の破砕物を投入し、攪拌分散により球状化した後、前記のポリビニルアルコール水溶液を水で置換することにより冷却し、20℃で3時間冷却し、ピッチの固化及びナフタレン結晶の析出を行い、球状ピッチ成形体スラリーを得た。
大部分の水をろ過により除いた後、球状ピッチ成形体の約6倍重量のn-ヘキサンでピッチ成形体中のナフタレンを抽出除去した。このようにして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、235℃まで昇温した後、235℃にて1時間保持して酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。
続いて、多孔性球状酸化ピッチを、流動床を用い、50vol%の水蒸気を含む窒素ガス雰囲気中で、900℃で170分間賦活処理して多孔性球状活性炭を得、更にこれを流動床にて、酸素濃度18.5vol%の窒素と酸素との混合ガス雰囲気下で470℃で3時間15分間、酸化処理し、次に流動床にて窒素ガス雰囲気下で900℃で17分間還元処理を行い、多孔性球状炭素質物質を得た。こうして得られた多孔性球状炭素質物質を、以下の薬理試験例において、球状活性炭として使用した。
得られた炭素質材料の主な特性は以下の通りである。
比表面積=1300m2/g(BET法);
細孔容積=0.08mL/g
(水銀圧入法により求めた細孔直径20~15000nmの範囲の細孔容積);
平均粒子径=350μm;
全酸性基=0.67meq/g;及び
全塩基性基=0.54meq/g。 << Production Example 1: Production of Porous Spherical Carbonaceous Material >>
A porous spherical carbonaceous material was obtained in the same manner as described in Example 1 of Japanese Patent No. 3522708 (Japanese Patent Laid-Open No. 2002-308785). The specific operation is as follows.
68 kg of petroleum-based pitch (softening point = 210 ° C .; quinoline insoluble content = 1 wt% or less; H / C atomic ratio = 0.63) and 32 kg of naphthalene are charged into a pressure-resistant container having an internal volume of 300 L with a stirring blade. After melt mixing at 180 ° C., the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body. Next, the string-like molded body was crushed so that the ratio of diameter to length was about 1-2.
The crushed material was put into an aqueous solution in which 0.23% by weight of polyvinyl alcohol (degree of saponification = 88%) was dissolved and heated to 93 ° C., and spheroidized by stirring and dispersing. Was replaced by water and cooled at 20 ° C. for 3 hours to solidify the pitch and precipitate naphthalene crystals to obtain a spherical pitch formed body slurry.
After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with n-hexane, which was about 6 times the weight of the spherical pitch formed body. The porous spherical pitch obtained in this way was heated to 235 ° C. through heated air using a fluidized bed, and then oxidized by holding at 235 ° C. for 1 hour, so that it was infusible to heat. A porous spherical oxide pitch was obtained.
Subsequently, the porous spherical oxidized pitch was activated at 900 ° C. for 170 minutes in a nitrogen gas atmosphere containing 50 vol% of water vapor using a fluidized bed to obtain porous spherical activated carbon. Then, oxidation treatment is performed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then reduction treatment is performed at 900 ° C. for 17 minutes in a fluidized bed under nitrogen gas atmosphere A porous spherical carbonaceous material was obtained. The porous spherical carbonaceous material thus obtained was used as spherical activated carbon in the following pharmacological test examples.
The main characteristics of the obtained carbonaceous material are as follows.
Specific surface area = 1300 m 2 / g (BET method);
Pore volume = 0.08 mL / g
(Pore volume in the range of 20 to 15000 nm pore diameter determined by mercury porosimetry);
Average particle size = 350 μm;
Total acidic groups = 0.67 meq / g; and Total basic groups = 0.54 meq / g.
《製造例2:多孔性球状炭素質物質の製造》
特開2005-314416号公報の実施例1に記載の方法と同様にして多孔性球状炭素質物質(表面改質球状活性炭)を得た。具体的な操作は、以下の通りである。
脱イオン交換水220g、及びメチルセルロース58gを1Lのセパラブルフラスコに入れ、これにスチレン105g、純度57%ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)184g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.68g、及びポロゲンとして1-ブタノール63gを適宜加えたのち、窒素ガスで系内を置換し、この二相系を200rpmで攪拌し、55℃に加熱してからそのまま20時間保持した。得られた樹脂を濾過し、ロータリーエバポレーターで乾燥させたのち、減圧乾燥機にて1-ブタノールを樹脂から蒸留により除去してから、90℃において12時間減圧乾燥させ、平均粒子径180μmの球状の多孔性合成樹脂を得た。多孔性合成樹脂の比表面積は約90m2/gであった。
得られた球状の多孔性合成樹脂100gを目皿付き反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化条件は、3L/minで乾燥空気を反応管下部より上部に向かって流し、5℃/hで260℃まで昇温したのち、260℃で4時間保持することにより球状の多孔性酸化樹脂を得た。球状の多孔性酸化樹脂を窒素雰囲気中600℃で1時間熱処理したのち、流動床を用い、64.5vol%の水蒸気を含む窒素ガス雰囲気中、820℃で10時間賦活処理を行い、球状活性炭を得た。得られた球状活性炭を、更に流動床にて、酸素濃度18.5vol%の窒素と酸素の混合ガス雰囲気下470℃で3時間15分間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理を行い、表面改質球状活性炭を得た。
得られた表面改質球状活性炭の主な特性は以下の通りである。
比表面積=1763m2/g(BET法);
細孔容積=0.05mL/g
(水銀圧入法により求めた細孔直径20~15000nmの範囲の細孔容積);
平均粒子径=111μm(Dv50);
全酸性基=0.59meq/g;及び
全塩基性基=0.61meq/g。 << Production Example 2: Production of Porous Spherical Carbonaceous Material >>
A porous spherical carbonaceous material (surface-modified spherical activated carbon) was obtained in the same manner as in the method described in Example 1 of JP-A-2005-314416. The specific operation is as follows.
220 g of deionized water and 58 g of methylcellulose were placed in a 1 L separable flask, and 105 g of styrene, 184 g of 57% divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene), 2,2′-azobis. After adding 1.68 g of (2,4-dimethylvaleronitrile) and 63 g of 1-butanol as porogen, the inside of the system was replaced with nitrogen gas, and this two-phase system was stirred at 200 rpm and heated to 55 ° C. And then kept for 20 hours. The obtained resin was filtered and dried on a rotary evaporator. Then, 1-butanol was removed from the resin by distillation in a vacuum dryer, and then dried under reduced pressure at 90 ° C. for 12 hours. A spherical particle having an average particle size of 180 μm was obtained. A porous synthetic resin was obtained. The specific surface area of the porous synthetic resin was about 90 m 2 / g.
100 g of the obtained spherical porous synthetic resin was charged into a reaction tube with a mesh dish and subjected to infusibilization treatment in a vertical tubular furnace. The infusibilizing condition is that a spherical porous oxide resin is obtained by flowing dry air from the lower part of the reaction tube to the upper part at 3 L / min, raising the temperature to 260 ° C. at 5 ° C./h, and holding at 260 ° C. for 4 hours. Got. After heat treatment of spherical porous oxidized resin at 600 ° C. for 1 hour in a nitrogen atmosphere, activation treatment was performed at 820 ° C. for 10 hours in a nitrogen gas atmosphere containing 64.5 vol% of water vapor using a fluidized bed. Obtained. The obtained spherical activated carbon was further oxidized in a fluidized bed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then in a fluidized bed under a nitrogen gas atmosphere 900 Reduction treatment was carried out at 17 ° C. for 17 minutes to obtain surface-modified spherical activated carbon.
The main characteristics of the obtained surface-modified spherical activated carbon are as follows.
Specific surface area = 1763 m 2 / g (BET method);
Pore volume = 0.05 mL / g
(Pore volume in the range of 20 to 15000 nm pore diameter determined by mercury porosimetry);
Average particle size = 111 μm (Dv50);
Total acidic groups = 0.59 meq / g; and Total basic groups = 0.61 meq / g.
特開2005-314416号公報の実施例1に記載の方法と同様にして多孔性球状炭素質物質(表面改質球状活性炭)を得た。具体的な操作は、以下の通りである。
脱イオン交換水220g、及びメチルセルロース58gを1Lのセパラブルフラスコに入れ、これにスチレン105g、純度57%ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)184g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.68g、及びポロゲンとして1-ブタノール63gを適宜加えたのち、窒素ガスで系内を置換し、この二相系を200rpmで攪拌し、55℃に加熱してからそのまま20時間保持した。得られた樹脂を濾過し、ロータリーエバポレーターで乾燥させたのち、減圧乾燥機にて1-ブタノールを樹脂から蒸留により除去してから、90℃において12時間減圧乾燥させ、平均粒子径180μmの球状の多孔性合成樹脂を得た。多孔性合成樹脂の比表面積は約90m2/gであった。
得られた球状の多孔性合成樹脂100gを目皿付き反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化条件は、3L/minで乾燥空気を反応管下部より上部に向かって流し、5℃/hで260℃まで昇温したのち、260℃で4時間保持することにより球状の多孔性酸化樹脂を得た。球状の多孔性酸化樹脂を窒素雰囲気中600℃で1時間熱処理したのち、流動床を用い、64.5vol%の水蒸気を含む窒素ガス雰囲気中、820℃で10時間賦活処理を行い、球状活性炭を得た。得られた球状活性炭を、更に流動床にて、酸素濃度18.5vol%の窒素と酸素の混合ガス雰囲気下470℃で3時間15分間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理を行い、表面改質球状活性炭を得た。
得られた表面改質球状活性炭の主な特性は以下の通りである。
比表面積=1763m2/g(BET法);
細孔容積=0.05mL/g
(水銀圧入法により求めた細孔直径20~15000nmの範囲の細孔容積);
平均粒子径=111μm(Dv50);
全酸性基=0.59meq/g;及び
全塩基性基=0.61meq/g。 << Production Example 2: Production of Porous Spherical Carbonaceous Material >>
A porous spherical carbonaceous material (surface-modified spherical activated carbon) was obtained in the same manner as in the method described in Example 1 of JP-A-2005-314416. The specific operation is as follows.
220 g of deionized water and 58 g of methylcellulose were placed in a 1 L separable flask, and 105 g of styrene, 184 g of 57% divinylbenzene (57% divinylbenzene and 43% ethylvinylbenzene), 2,2′-azobis. After adding 1.68 g of (2,4-dimethylvaleronitrile) and 63 g of 1-butanol as porogen, the inside of the system was replaced with nitrogen gas, and this two-phase system was stirred at 200 rpm and heated to 55 ° C. And then kept for 20 hours. The obtained resin was filtered and dried on a rotary evaporator. Then, 1-butanol was removed from the resin by distillation in a vacuum dryer, and then dried under reduced pressure at 90 ° C. for 12 hours. A spherical particle having an average particle size of 180 μm was obtained. A porous synthetic resin was obtained. The specific surface area of the porous synthetic resin was about 90 m 2 / g.
100 g of the obtained spherical porous synthetic resin was charged into a reaction tube with a mesh dish and subjected to infusibilization treatment in a vertical tubular furnace. The infusibilizing condition is that a spherical porous oxide resin is obtained by flowing dry air from the lower part of the reaction tube to the upper part at 3 L / min, raising the temperature to 260 ° C. at 5 ° C./h, and holding at 260 ° C. for 4 hours. Got. After heat treatment of spherical porous oxidized resin at 600 ° C. for 1 hour in a nitrogen atmosphere, activation treatment was performed at 820 ° C. for 10 hours in a nitrogen gas atmosphere containing 64.5 vol% of water vapor using a fluidized bed. Obtained. The obtained spherical activated carbon was further oxidized in a fluidized bed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol%, and then in a fluidized bed under a nitrogen gas atmosphere 900 Reduction treatment was carried out at 17 ° C. for 17 minutes to obtain surface-modified spherical activated carbon.
The main characteristics of the obtained surface-modified spherical activated carbon are as follows.
Specific surface area = 1763 m 2 / g (BET method);
Pore volume = 0.05 mL / g
(Pore volume in the range of 20 to 15000 nm pore diameter determined by mercury porosimetry);
Average particle size = 111 μm (Dv50);
Total acidic groups = 0.59 meq / g; and Total basic groups = 0.61 meq / g.
《薬理試験例1》
オスのSprague-Dawley(SD)系ラット(日本クレア)を購入し、6週齢でランダムに経口投与用吸着剤投与群(5匹;以下、正常ラット投与群と称する)及び対照群(6匹)に分けた。対照群は、粉末飼料(CE-2;日本クレア)を与え、正常ラット投与群は、前記粉末飼料に製造例1で調製した球状活性炭を5%混餌して自由摂取させ、2年間ラット飼育ゲージで単飼した。正常ラット投与群及び対照群の生存率の変化を図1に示す。対照群の2年後の生存率は、50%であったのに対して、正常ラット投与群は2年間の飼育で100%生存した。
従って、経口投与用吸着剤は、正常ラットの寿命を延長する効果があることが明らかとなった。 << Pharmacological Test Example 1 >>
Male Sprague-Dawley (SD) rats (Claire Japan) were purchased and randomly administered at 6 weeks of age for an oral administration adsorbent group (5 animals; hereinafter referred to as normal rat administration group) and a control group (6 animals) ). The control group was given a powdered feed (CE-2; Nippon Clare), and the normal rat-administered group was allowed to freely ingest 5% of the spherical activated carbon prepared in Production Example 1 into the powdered feed and fed the rat feeding gauge for 2 years. I kept it alone. The change in the survival rate of the normal rat administration group and the control group is shown in FIG. The survival rate after 2 years of the control group was 50%, whereas the normal rat-administered group survived 100% after 2 years of breeding.
Therefore, it was clarified that the adsorbent for oral administration has an effect of extending the life span of normal rats.
オスのSprague-Dawley(SD)系ラット(日本クレア)を購入し、6週齢でランダムに経口投与用吸着剤投与群(5匹;以下、正常ラット投与群と称する)及び対照群(6匹)に分けた。対照群は、粉末飼料(CE-2;日本クレア)を与え、正常ラット投与群は、前記粉末飼料に製造例1で調製した球状活性炭を5%混餌して自由摂取させ、2年間ラット飼育ゲージで単飼した。正常ラット投与群及び対照群の生存率の変化を図1に示す。対照群の2年後の生存率は、50%であったのに対して、正常ラット投与群は2年間の飼育で100%生存した。
従って、経口投与用吸着剤は、正常ラットの寿命を延長する効果があることが明らかとなった。 << Pharmacological Test Example 1 >>
Male Sprague-Dawley (SD) rats (Claire Japan) were purchased and randomly administered at 6 weeks of age for an oral administration adsorbent group (5 animals; hereinafter referred to as normal rat administration group) and a control group (6 animals) ). The control group was given a powdered feed (CE-2; Nippon Clare), and the normal rat-administered group was allowed to freely ingest 5% of the spherical activated carbon prepared in Production Example 1 into the powdered feed and fed the rat feeding gauge for 2 years. I kept it alone. The change in the survival rate of the normal rat administration group and the control group is shown in FIG. The survival rate after 2 years of the control group was 50%, whereas the normal rat-administered group survived 100% after 2 years of breeding.
Therefore, it was clarified that the adsorbent for oral administration has an effect of extending the life span of normal rats.
また、2年間の投与試験期間終了後、対照群の生存した3匹のマウス及び正常ラット投与群の4匹のマウスを屠殺し、血清中のクレアチニン、血中尿素窒素、及びクレアチニン・クリアランスを測定した。
更に、老化抑制遺伝子と考えられているクロソ遺伝子のコードするタンパク質(以下、クロソタンパク質と称する)の発現を、それぞれのラットの腎臓において検討した。具体的には、腎臓から腎臓病理切片を作製し、腎臓病理組織中のクロソタンパク質の発現を抗クロソ抗体(EverestBiotech,UK)で免疫染色した。そして、顕微鏡下で、腎臓の断面上の染色部分を画像に取り込み、ニコンデジタルネットカメラDN100(ニコン社)を用いて、腎臓全体の面積に対する抗体で染色された面積を算出することによって、クロソタンパク質の発現を解析した。血清中のクレアチニン、血中尿素窒素、及びクレアチニン・クリアランスの結果を図2~4に、クロソタンパク質の発現を図5に示す。
血清中のクレアチニン、血中尿素窒素、及びクレアチニン・クリアランスは、正常ラット投与群と対照群との間で有意差がなかったが、クロソタンパク質の発現は、対照群に比して、正常ラット投与群において、有意に上昇していた。
従って、経口投与用吸着剤は、正常ラットの腎機能には特に影響を与えないが、クロソタンパク質の発現の低下を抑制、又は発現を亢進する効果があることが明らかとなった。 In addition, after the completion of the 2-year administration test period, 3 surviving mice in the control group and 4 mice in the normal rat administration group were sacrificed to measure serum creatinine, blood urea nitrogen, and creatinine clearance. did.
Furthermore, the expression of a protein encoded by the Kuroso gene, which is considered to be an aging suppressor gene (hereinafter referred to as “closoprotein”), was examined in the kidneys of each rat. Specifically, a kidney pathological section was prepared from the kidney, and the expression of crosoprotein in the kidney pathological tissue was immunostained with an anti-closo antibody (Everest Biotech, UK). Then, under the microscope, the stained portion on the cross section of the kidney is taken into an image, and the area stained with the antibody against the whole area of the kidney is calculated using a Nikon digital net camera DN100 (Nikon Corporation). The expression of was analyzed. The results of serum creatinine, blood urea nitrogen, and creatinine clearance are shown in FIGS. 2 to 4, and the expression of crosoprotein is shown in FIG.
Serum creatinine, blood urea nitrogen, and creatinine clearance were not significantly different between the normal rat administration group and the control group, but the expression of crosoprotein was normal rat administration compared to the control group There was a significant increase in the group.
Therefore, it has been clarified that the adsorbent for oral administration does not particularly affect the renal function of normal rats, but has an effect of suppressing or enhancing the expression of crosoprotein.
更に、老化抑制遺伝子と考えられているクロソ遺伝子のコードするタンパク質(以下、クロソタンパク質と称する)の発現を、それぞれのラットの腎臓において検討した。具体的には、腎臓から腎臓病理切片を作製し、腎臓病理組織中のクロソタンパク質の発現を抗クロソ抗体(EverestBiotech,UK)で免疫染色した。そして、顕微鏡下で、腎臓の断面上の染色部分を画像に取り込み、ニコンデジタルネットカメラDN100(ニコン社)を用いて、腎臓全体の面積に対する抗体で染色された面積を算出することによって、クロソタンパク質の発現を解析した。血清中のクレアチニン、血中尿素窒素、及びクレアチニン・クリアランスの結果を図2~4に、クロソタンパク質の発現を図5に示す。
血清中のクレアチニン、血中尿素窒素、及びクレアチニン・クリアランスは、正常ラット投与群と対照群との間で有意差がなかったが、クロソタンパク質の発現は、対照群に比して、正常ラット投与群において、有意に上昇していた。
従って、経口投与用吸着剤は、正常ラットの腎機能には特に影響を与えないが、クロソタンパク質の発現の低下を抑制、又は発現を亢進する効果があることが明らかとなった。 In addition, after the completion of the 2-year administration test period, 3 surviving mice in the control group and 4 mice in the normal rat administration group were sacrificed to measure serum creatinine, blood urea nitrogen, and creatinine clearance. did.
Furthermore, the expression of a protein encoded by the Kuroso gene, which is considered to be an aging suppressor gene (hereinafter referred to as “closoprotein”), was examined in the kidneys of each rat. Specifically, a kidney pathological section was prepared from the kidney, and the expression of crosoprotein in the kidney pathological tissue was immunostained with an anti-closo antibody (Everest Biotech, UK). Then, under the microscope, the stained portion on the cross section of the kidney is taken into an image, and the area stained with the antibody against the whole area of the kidney is calculated using a Nikon digital net camera DN100 (Nikon Corporation). The expression of was analyzed. The results of serum creatinine, blood urea nitrogen, and creatinine clearance are shown in FIGS. 2 to 4, and the expression of crosoprotein is shown in FIG.
Serum creatinine, blood urea nitrogen, and creatinine clearance were not significantly different between the normal rat administration group and the control group, but the expression of crosoprotein was normal rat administration compared to the control group There was a significant increase in the group.
Therefore, it has been clarified that the adsorbent for oral administration does not particularly affect the renal function of normal rats, but has an effect of suppressing or enhancing the expression of crosoprotein.
《薬理試験例2》
オスのSprague-Dawley(SD)系ラット(日本クレア)を購入し、1週間の馴化期間後の7週齢にて、手術群(計18匹)と擬似手術群(計9匹)とに分け、手術群は、右腎の摘出及び左腎の2/3の切除を行い、1/6の腎実質を残存させた慢性腎不全モデルを作製した。擬似手術群は、7週齢に、開腹手術を行うのみで、右腎の摘出及び左腎の2/3の切除を行わずに、そのまま開腹部を縫合した。腎摘出術による影響が安定してくる4週目(11週齢)に体重、腎機能検査値(血清クレアチニン、血中尿素窒素、クレアチニン・クリアランス、尿蛋白排雅量)及び血清インドキシル硫酸濃度と尿中インドキシル硫酸濃度及び血圧の各パラメータを測定し、手術群は、群間に隔たりのないように、9匹ずつ腎不全対照群及び経口投与用吸着剤投与群(以下、腎不全投与群と称する)の2群に分け、擬似手術群を正常対照群とした。
各群は、粉末飼料(CE-2;日本クレア)を給餌され、腎不全投与群は、前記粉末飼料に製造例1で調製した球状活性炭を5%混餌投与された。なお、摂餌量は測定し、球状活性炭が、必要投与量(4g/kg/day)に満たない場合は、不足分を流動食混合により原則として土日を除く毎日追加投与した。
12週間の飼育後、ラットを屠殺し、正常対照群(n=6)、腎不全対照群(n=5)、腎不全投与群(n=6)について、実施例1と同様のプロトコールに従い、クロソタンパク質の発現を検討した。結果を図6に示す。
腎不全対照群においては、クロソタンパク質の発現が低下しているのに対して、腎不全投与群においては、クロソタンパク質の発現が改善されていた。 << Pharmacological Test Example 2 >>
Male Sprague-Dawley (SD) rats (CLEA Japan) were purchased and separated into a surgical group (18 animals in total) and a sham-operated group (9 animals in total) at 7 weeks of age after a habituation period of 1 week. In the surgical group, the right kidney and 2/3 of the left kidney were removed, and a chronic renal failure model was prepared in which 1/6 renal parenchyma remained. In the sham operation group, only the laparotomy was performed at the age of 7 weeks, and the laparotomy was sutured without removing the right kidney and 2/3 of the left kidney. Body weight, renal function test values (serum creatinine, blood urea nitrogen, creatinine clearance, urinary protein excretion) and serum indoxyl sulfate concentration at 4 weeks (11 weeks of age) when the effects of nephrectomy become stable The urinary indoxyl sulfate concentration and blood pressure parameters were measured, and the surgical group was divided into 9 groups of renal failure control group and oral administration adsorbent administration group (hereinafter referred to as renal failure administration group) so that there was no separation between the groups. The sham operation group was used as a normal control group.
Each group was fed a powdered feed (CE-2; Japan Claire), and the renal failure administration group was administered 5% of the spherical activated carbon prepared in Production Example 1 to the powdered feed. In addition, the amount of food intake was measured, and when the spherical activated carbon was less than the required dose (4 g / kg / day), the shortage was additionally administered every day except for Saturdays and Sundays by mixing the liquid food.
After 12 weeks of breeding, the rats were sacrificed and the normal control group (n = 6), renal failure control group (n = 5), and renal failure administration group (n = 6) were subjected to the same protocol as in Example 1, The expression of Kuroso protein was examined. The results are shown in FIG.
In the renal failure control group, the expression of crosoprotein was reduced, whereas in the renal failure administration group, the expression of crosoprotein was improved.
オスのSprague-Dawley(SD)系ラット(日本クレア)を購入し、1週間の馴化期間後の7週齢にて、手術群(計18匹)と擬似手術群(計9匹)とに分け、手術群は、右腎の摘出及び左腎の2/3の切除を行い、1/6の腎実質を残存させた慢性腎不全モデルを作製した。擬似手術群は、7週齢に、開腹手術を行うのみで、右腎の摘出及び左腎の2/3の切除を行わずに、そのまま開腹部を縫合した。腎摘出術による影響が安定してくる4週目(11週齢)に体重、腎機能検査値(血清クレアチニン、血中尿素窒素、クレアチニン・クリアランス、尿蛋白排雅量)及び血清インドキシル硫酸濃度と尿中インドキシル硫酸濃度及び血圧の各パラメータを測定し、手術群は、群間に隔たりのないように、9匹ずつ腎不全対照群及び経口投与用吸着剤投与群(以下、腎不全投与群と称する)の2群に分け、擬似手術群を正常対照群とした。
各群は、粉末飼料(CE-2;日本クレア)を給餌され、腎不全投与群は、前記粉末飼料に製造例1で調製した球状活性炭を5%混餌投与された。なお、摂餌量は測定し、球状活性炭が、必要投与量(4g/kg/day)に満たない場合は、不足分を流動食混合により原則として土日を除く毎日追加投与した。
12週間の飼育後、ラットを屠殺し、正常対照群(n=6)、腎不全対照群(n=5)、腎不全投与群(n=6)について、実施例1と同様のプロトコールに従い、クロソタンパク質の発現を検討した。結果を図6に示す。
腎不全対照群においては、クロソタンパク質の発現が低下しているのに対して、腎不全投与群においては、クロソタンパク質の発現が改善されていた。 << Pharmacological Test Example 2 >>
Male Sprague-Dawley (SD) rats (CLEA Japan) were purchased and separated into a surgical group (18 animals in total) and a sham-operated group (9 animals in total) at 7 weeks of age after a habituation period of 1 week. In the surgical group, the right kidney and 2/3 of the left kidney were removed, and a chronic renal failure model was prepared in which 1/6 renal parenchyma remained. In the sham operation group, only the laparotomy was performed at the age of 7 weeks, and the laparotomy was sutured without removing the right kidney and 2/3 of the left kidney. Body weight, renal function test values (serum creatinine, blood urea nitrogen, creatinine clearance, urinary protein excretion) and serum indoxyl sulfate concentration at 4 weeks (11 weeks of age) when the effects of nephrectomy become stable The urinary indoxyl sulfate concentration and blood pressure parameters were measured, and the surgical group was divided into 9 groups of renal failure control group and oral administration adsorbent administration group (hereinafter referred to as renal failure administration group) so that there was no separation between the groups. The sham operation group was used as a normal control group.
Each group was fed a powdered feed (CE-2; Japan Claire), and the renal failure administration group was administered 5% of the spherical activated carbon prepared in Production Example 1 to the powdered feed. In addition, the amount of food intake was measured, and when the spherical activated carbon was less than the required dose (4 g / kg / day), the shortage was additionally administered every day except for Saturdays and Sundays by mixing the liquid food.
After 12 weeks of breeding, the rats were sacrificed and the normal control group (n = 6), renal failure control group (n = 5), and renal failure administration group (n = 6) were subjected to the same protocol as in Example 1, The expression of Kuroso protein was examined. The results are shown in FIG.
In the renal failure control group, the expression of crosoprotein was reduced, whereas in the renal failure administration group, the expression of crosoprotein was improved.
《製剤調製例1:カプセル剤の調製》
前記製造例1で得た球状活性炭200mgをゼラチンカプセルに封入してカプセル剤を調製した。 << Preparation Example 1: Preparation of capsules >>
Capsules were prepared by encapsulating 200 mg of spherical activated carbon obtained in Production Example 1 in gelatin capsules.
前記製造例1で得た球状活性炭200mgをゼラチンカプセルに封入してカプセル剤を調製した。 << Preparation Example 1: Preparation of capsules >>
Capsules were prepared by encapsulating 200 mg of spherical activated carbon obtained in Production Example 1 in gelatin capsules.
《製剤調製例2:スティック剤の調製》
前記製造例1で得た球状活性炭2gを積層フィルム製スティックに充填した後、ヒートシールしてスティック剤とした。 << Preparation Example 2: Preparation of stick preparation >>
2 g of the spherical activated carbon obtained in Production Example 1 was filled in a stick made of laminated film, and then heat-sealed to obtain a stick agent.
前記製造例1で得た球状活性炭2gを積層フィルム製スティックに充填した後、ヒートシールしてスティック剤とした。 << Preparation Example 2: Preparation of stick preparation >>
2 g of the spherical activated carbon obtained in Production Example 1 was filled in a stick made of laminated film, and then heat-sealed to obtain a stick agent.
本発明の寿命延長剤は、正常な個体又は疾患を有する個体の恒常性を維持し、老化を防止することによって、寿命を延長することができる。また、本発明の抗加齢剤は、正常な個体又は加齢に関連する疾患を有する個体において、老化を防止することができる。更に、本発明のクロソタンパク質発現促進剤は、正常な個体又はクロソタンパク質の発現の低下に関連する疾患を有する個体において、クロソタンパク質の発現を促進(又は、発現の低下を抑制)することができる。本発明の寿命延長剤、抗加齢剤、及びクロソタンパク質発現促進剤は、毒性及び有害な副作用がないため、連続的に経口投与することができる。従って、本発明によれば、正常な個体の老化等に関連する疾患を予防し、個人の健康管理に寄与することができ、更に、医療費の抑制にもつながることができる。
以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。 The life extension agent of the present invention can extend the life by maintaining the homeostasis of a normal individual or an individual having a disease and preventing aging. Moreover, the anti-aging agent of this invention can prevent aging in a normal individual or an individual having an aging-related disease. Furthermore, the crosoprotein expression promoter of the present invention can promote (or suppress) the expression of crosoprotein in a normal individual or an individual having a disease associated with a decrease in expression of crosoprotein. . The life extension agent, anti-aging agent, and crosoprotein expression promoter of the present invention can be continuously administered orally because there are no toxicity and harmful side effects. Therefore, according to the present invention, it is possible to prevent diseases related to aging of normal individuals, contribute to personal health management, and further reduce medical costs.
As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.
以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。 The life extension agent of the present invention can extend the life by maintaining the homeostasis of a normal individual or an individual having a disease and preventing aging. Moreover, the anti-aging agent of this invention can prevent aging in a normal individual or an individual having an aging-related disease. Furthermore, the crosoprotein expression promoter of the present invention can promote (or suppress) the expression of crosoprotein in a normal individual or an individual having a disease associated with a decrease in expression of crosoprotein. . The life extension agent, anti-aging agent, and crosoprotein expression promoter of the present invention can be continuously administered orally because there are no toxicity and harmful side effects. Therefore, according to the present invention, it is possible to prevent diseases related to aging of normal individuals, contribute to personal health management, and further reduce medical costs.
As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.
Claims (15)
- 活性炭を有効成分とする寿命延長剤。 Life extension agent with activated carbon as an active ingredient.
- 前記活性炭が球状活性炭である、請求項1に記載の寿命延長剤。 The life extending agent according to claim 1, wherein the activated carbon is a spherical activated carbon.
- 球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、寿命延長用組成物。 A composition for extending life, comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
- 球形活性炭を、正常な対象に、有効量で投与することを含む、寿命を延長する方法。 A method of prolonging lifespan, including administering spherical activated carbon to normal subjects in an effective amount.
- 球形活性炭の、寿命延長用組成物を製造するための使用。 Use of spherical activated carbon to produce a composition for extending life.
- 活性炭を有効成分とする抗加齢剤。 An anti-aging agent containing activated carbon as an active ingredient.
- 前記活性炭が球状活性炭である、請求項6に記載の抗加齢剤。 The anti-aging agent according to claim 6, wherein the activated carbon is spherical activated carbon.
- 球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、抗加齢用組成物。 An anti-aging composition comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
- 球形活性炭を、正常な対象に、有効量で投与することを含む、加齢を予防する方法。 A method for preventing aging, comprising administering spherical activated carbon to a normal subject in an effective amount.
- 球形活性炭の、抗加齢用組成物を製造するための使用。 Use of spherical activated carbon to produce an anti-aging composition.
- 活性炭を有効成分とするクロソタンパク質発現促進剤。 Clothoprotein expression promoter containing activated carbon as an active ingredient.
- 前記活性炭が球状活性炭である、請求項11に記載のクロソタンパク質発現促進剤。 The crosoprotein expression promoter according to claim 11, wherein the activated carbon is spherical activated carbon.
- 球形活性炭と、薬剤学的又は獣医学的に許容することのできる担体又は希釈剤とを含有する、クロソタンパク質発現用医薬組成物。 A pharmaceutical composition for expressing crosoprotein comprising spherical activated carbon and a pharmaceutically or veterinarily acceptable carrier or diluent.
- 球形活性炭を、クロソタンパク質発現の低下に関する疾患の治療又は予防が必要な対象に、有効量で投与することを含む、クロソタンパク質発現の低下に関する疾患を治療又は予防する方法。 A method of treating or preventing a disease related to a decrease in expression of crosoprotein, comprising administering spherical activated carbon in an effective amount to a subject in need of treatment or prevention of a disease related to decrease in expression of crosoprotein.
- 球形活性炭の、クロソタンパク質発現用医薬組成物を製造するための使用。 Use of spherical activated carbon for the production of a pharmaceutical composition for expression of crosoprotein.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-054991 | 2009-03-09 | ||
JP2009054991A JP2010208969A (en) | 2009-03-09 | 2009-03-09 | Lifespan-extending agent |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010104056A1 true WO2010104056A1 (en) | 2010-09-16 |
Family
ID=42728345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053841 WO2010104056A1 (en) | 2009-03-09 | 2010-03-09 | Lifespan-extending agent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010208969A (en) |
WO (1) | WO2010104056A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104968355A (en) * | 2013-02-22 | 2015-10-07 | 株式会社吴羽 | Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease |
EP2959907A4 (en) * | 2013-02-22 | 2016-08-03 | Kureha Corp | Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012184184A (en) * | 2011-03-04 | 2012-09-27 | Nara Medical Univ | Mistletoe extract having anti-aging action |
JP6216493B2 (en) | 2011-06-24 | 2017-10-18 | 国立大学法人 香川大学 | Life extender |
US10226441B2 (en) | 2014-12-09 | 2019-03-12 | Nihon Sizen Hakkoh Co., Ltd. | Aging inhibitor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06135841A (en) * | 1992-10-29 | 1994-05-17 | Kureha Chem Ind Co Ltd | Anti-nephrosis syndrome agent |
JPH1129485A (en) * | 1997-07-10 | 1999-02-02 | Kureha Chem Ind Co Ltd | Antiobestic medicine |
WO2004089384A1 (en) * | 2003-04-03 | 2004-10-21 | Kureha Chemical Industry Co. Ltd. | Remedy or preventive for low turnover bone diseases |
JP2005314415A (en) * | 2004-04-02 | 2005-11-10 | Kureha Chem Ind Co Ltd | Adsorbent for oral administration and therapeutic agent or prophylactic agent for kidney disease and therapeutic agent or prophylactic agent for liver disease |
WO2006123618A1 (en) * | 2005-05-16 | 2006-11-23 | Kureha Corporation | Oxidative stress inhibitor |
JP2008174473A (en) * | 2007-01-17 | 2008-07-31 | Yasuyoshi Uchida | Senile decay-preventing agent |
-
2009
- 2009-03-09 JP JP2009054991A patent/JP2010208969A/en active Pending
-
2010
- 2010-03-09 WO PCT/JP2010/053841 patent/WO2010104056A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06135841A (en) * | 1992-10-29 | 1994-05-17 | Kureha Chem Ind Co Ltd | Anti-nephrosis syndrome agent |
JPH1129485A (en) * | 1997-07-10 | 1999-02-02 | Kureha Chem Ind Co Ltd | Antiobestic medicine |
WO2004089384A1 (en) * | 2003-04-03 | 2004-10-21 | Kureha Chemical Industry Co. Ltd. | Remedy or preventive for low turnover bone diseases |
JP2005314415A (en) * | 2004-04-02 | 2005-11-10 | Kureha Chem Ind Co Ltd | Adsorbent for oral administration and therapeutic agent or prophylactic agent for kidney disease and therapeutic agent or prophylactic agent for liver disease |
WO2006123618A1 (en) * | 2005-05-16 | 2006-11-23 | Kureha Corporation | Oxidative stress inhibitor |
JP2008174473A (en) * | 2007-01-17 | 2008-07-31 | Yasuyoshi Uchida | Senile decay-preventing agent |
Non-Patent Citations (3)
Title |
---|
HIROTAKA CHIKUDA ET AL.: "Klotho Idenshi ni yoru Kotsutaisha Chosetsu", THE BONE, vol. 20, no. 5, 2006, pages 77-637 - 81-641 * |
TOMOHIRO KATSUYA ET AL.: "Roka Kanren Idenshi to Kokarei Igaku", JAPANESE JOURNAL OF GERIATRICS, vol. 45, no. 2, 2008, pages 141 - 144 * |
URAKAWA,I ET AL.: "Klotho converts canonical FGF receptor into a specific receptor for FGF23", NATURE, vol. 444, no. 7120, 2006, pages 770 - 774 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104968355A (en) * | 2013-02-22 | 2015-10-07 | 株式会社吴羽 | Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease |
EP2959908A4 (en) * | 2013-02-22 | 2016-08-03 | Kureha Corp | Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease |
EP2959907A4 (en) * | 2013-02-22 | 2016-08-03 | Kureha Corp | Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease |
US9877987B2 (en) | 2013-02-22 | 2018-01-30 | Kureha Corporation | Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease |
Also Published As
Publication number | Publication date |
---|---|
JP2010208969A (en) | 2010-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8518447B2 (en) | Method for treating or preventing renal or liver disease | |
US8865161B2 (en) | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease | |
JP2002308785A (en) | Oral administration adsorbent | |
JPWO2006123618A1 (en) | Oxidative stress inhibitor | |
WO2010104056A1 (en) | Lifespan-extending agent | |
JP3672200B2 (en) | Adsorbent for oral administration | |
WO2014129618A1 (en) | Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease | |
JPH11292770A (en) | Matrix formation sthenia inhibitor | |
JP6431475B2 (en) | Adsorbent for oral administration, therapeutic agent for kidney disease and therapeutic agent for liver disease | |
JP2006111604A (en) | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease | |
JP3600901B2 (en) | Oral renal disease treatment or prevention agent | |
JP4311923B2 (en) | Treatment or prevention agent for liver disease for oral administration | |
JPWO2004089384A1 (en) | Therapeutic or preventive agent for hypometabolism | |
US20070231394A1 (en) | Agent for Removing Circulatory Dysfunction Factor | |
JP2011111414A (en) | Anti-anemia agent | |
WO2011059085A1 (en) | Prophylactic or therapeutic agent for dyslipidemia-related arteriosclerosis | |
JP2005162683A (en) | Therapeutic or prophylactic agent for hyperuricemia | |
JPWO2006033341A1 (en) | Treatment or prevention agent for diabetic neuropathy | |
KR100600635B1 (en) | Adsorbent for oral administration, and pharmaceutical composition containing same | |
JP2010120936A (en) | Vascular endothelial function-ameliorating agent | |
JPWO2005110444A1 (en) | Eye disease treatment or prevention agent | |
KR20070017184A (en) | Agent for removing factor causing circulatory dysfunction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10750809 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10750809 Country of ref document: EP Kind code of ref document: A1 |