WO2010101290A1 - 酸素吸収性溶剤可溶型樹脂及び酸素吸収性接着剤樹脂組成物 - Google Patents
酸素吸収性溶剤可溶型樹脂及び酸素吸収性接着剤樹脂組成物 Download PDFInfo
- Publication number
- WO2010101290A1 WO2010101290A1 PCT/JP2010/053792 JP2010053792W WO2010101290A1 WO 2010101290 A1 WO2010101290 A1 WO 2010101290A1 JP 2010053792 W JP2010053792 W JP 2010053792W WO 2010101290 A1 WO2010101290 A1 WO 2010101290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxygen
- acid
- acid component
- absorbing
- component
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J167/00—Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
- C09J167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J167/00—Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
- C09J167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C09J167/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl - and the hydroxy groups directly linked to aromatic rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to an oxygen-absorbing solvent-soluble resin and an oxygen-absorbing adhesive resin composition which are excellent in solubility in solvents, adhesion and oxygen absorption.
- Patent Document 1 proposes an oxygen-absorbing adhesive in which an inorganic oxide having oxygen-absorbing properties is blended with a polyol.
- the oxygen-absorbing adhesive has problems such as being opaque, having a low oxygen-absorbing performance, requiring water for expression of the oxygen-absorbing performance, and cannot be used in a dry atmosphere.
- Various oxygen-absorbing resins have been proposed (for example, Patent Document 2), but there is no example in which an oxygen-absorbing adhesive resin having both oxygen-absorbing properties and adhesive properties has been realized as a packaging film lamination application.
- an object of the present invention is to provide an oxygen-absorbing solvent-soluble resin having both oxygen absorbability and adhesiveness, and an oxygen-absorbing adhesive resin composition using the same.
- the present invention relates to a polyester comprising a structural unit derived from an acid component (A), an acid component (B) and a glycol component, wherein the ratio of the acid component (A) to the total acid component is 40 to 80 mol%, An oxygen-absorbing solvent-soluble resin in which the ratio of component (B) to the total acid component is 15 to 35 mol%: An acid component (A): tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof, and an acid component (B): terephthalic acid are provided.
- the present invention also provides a polyester comprising a structural unit derived from an acid component (A), succinic acid and ethylene glycol, wherein the ratio of the acid component (A) to the total acid component is 45 to 75 mol%, and the succinic acid
- An oxygen-absorbing solvent-soluble resin having a ratio of to total acid components of 25 to 55 mol%:
- Acid component (A): Tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof is provided.
- the present invention provides an oxygen-absorbing adhesive resin composition containing the oxygen-absorbing solvent-soluble resin and ethyl acetate as a solvent.
- an oxygen-absorbing solvent-soluble resin having both oxygen absorbability and adhesiveness.
- the first aspect of the oxygen-absorbing solvent-soluble resin of the present invention is a polyester containing a structural unit derived from an acid component (A), an acid component (B), and a glycol component.
- the acid component (A) is tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof.
- the acid component (A) is preferably methyltetrahydrophthalic acid or methyltetrahydrophthalic anhydride.
- the acid component (A) preferably contains 50 to 50 acid components having a structure selected from the group consisting of (i) and (ii).
- the carbonyl groups in the above structures (i) and (ii) are those contained in the dicarboxylic acid and dicarboxylic anhydride in the tetrahydrophthalic acid and tetrahydrophthalic anhydride structures, respectively.
- Examples of the acid component having the structure (i) include ⁇ 2 -tetrahydrophthalic acid derivatives, ⁇ 3 -tetrahydrophthalic acid derivatives, ⁇ 2 -tetrahydrophthalic anhydride derivatives, and ⁇ 3 -tetrahydrophthalic anhydride derivatives.
- Preferred is ⁇ 3 -tetrahydrophthalic acid derivative or ⁇ 3 -tetrahydrophthalic anhydride derivative, and particularly preferred is 4-methyl- ⁇ 3 -tetrahydrophthalic acid or 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride.
- 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride is an isomer containing 4-methyl- ⁇ 4 -tetrahydrophthalic anhydride obtained by reacting a C 5 fraction of naphtha containing isoprene as a main component with maleic anhydride.
- the body mixture can be obtained by structural isomerization and is industrially produced.
- the acid component having the structure (ii) is particularly preferably cis-3-methyl- ⁇ 4 -tetrahydrophthalic acid or cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride.
- Cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride can be obtained, for example, by reacting a naphtha C 5 fraction mainly composed of trans-piperylene with maleic anhydride, and is produced industrially. ing.
- tetrahydrophthalic acid or derivatives thereof or tetrahydrophthalic anhydride or derivatives thereof include many compounds.
- the acid component having the structure (i) and the acid component having the structure (ii) Since the reactivity with oxygen is very high, it can be suitably used as the raw material of the first aspect of the oxygen-absorbing solvent-soluble resin of the present invention.
- the acid component having the structure (i) and the acid component having the structure (ii) can be used alone, but it is also preferable to use two or more types in combination.
- a mixture of 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride suitable as the structure of (i) and cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride suitable as the structure of (ii) is trans-piperylene.
- a mixture of cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride and 4-methyl- ⁇ 4 -tetrahydrophthalic anhydride obtained by reacting a C 5 fraction of naphtha containing isoprene as a main component with maleic anhydride.
- the first aspect of the oxygen-absorbing solvent-soluble resin of the present invention obtained by polymerizing a raw material containing tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof includes an oxygen absorption reaction.
- an oxygen absorption reaction catalyst oxygen absorption catalyst
- the first aspect of the oxygen-absorbing solvent-soluble resin of the present invention obtainable by polymerizing a raw material containing the acid component having the structure (i) and the acid component having the structure (ii) described above. Has extremely high reactivity with oxygen, and can exhibit practical oxygen absorption performance in the absence of an oxygen absorption reaction catalyst.
- oxygen-absorbing solvent-soluble resin of the present invention when using the first aspect of the oxygen-absorbing solvent-soluble resin of the present invention to prepare an adhesive or process using an adhesive, excessive oxygen deterioration caused by an oxygen-absorbing reaction catalyst is caused.
- the oxygen absorption reaction catalyst include transition metal salts composed of a transition metal of manganese, iron, cobalt, nickel, and copper and an organic acid.
- not containing a catalytic amount of an oxygen-absorbing reaction catalyst generally means that the oxygen-absorbing reaction catalyst is less than 10 ppm in terms of the amount of transition metal, and preferably less than 1 ppm.
- the acid component (B) is terephthalic acid.
- terephthalic acid is esterified such as dimethyl terephthalate or bis-2-hydroxydiethyl terephthalate. Also good.
- the cohesion of the oxygen-absorbing solvent-soluble resin itself is improved by the cohesion of terephthalic acid.
- the adhesive strength of the adhesive is improved and delamination can be suppressed.
- the acid component (A) is liable to undergo a radical crosslinking reaction due to heat during polymerization, if the composition ratio of the acid component (A) contained in the resin is reduced by the acid component (B), gelation during polymerization may occur. Suppressed and high molecular weight resin can be obtained stably.
- glycol component examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 2-phenyl Propanediol, 2- (4-hydroxyphenyl) ethyl alcohol, ⁇ , ⁇ -dihydroxy-1,3-diisopropylbenzene, o-xylene glycol, m-xylene glycol, p-xylene glycol , ⁇ , ⁇ -dihydroxy-1,4-diis
- aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, and more preferred is 1,4-butanediol.
- 1,4-butanediol When 1,4-butanediol is used, the oxygen absorption performance of the resin is high, and the amount of decomposition products generated during the auto-oxidation process is small. These can be used alone or in combination of two or more.
- the ratio of the acid component (A) to the total acid component is 40 to 80 mol%, preferably 50 to 70 mol%, more preferably 60 to 70 mol%.
- the ratio of the acid component (B) to the total acid components is 15 to 35 mol%, preferably 20 to 35 mol%, more preferably 20 to 30 mol%.
- the oxygen absorption performance of the first aspect of the oxygen-absorbing solvent-soluble resin of the present invention depends on the glass transition temperature of the resin.
- the glass transition temperature range for obtaining sufficient oxygen absorption performance is preferably in the range of ⁇ 8 ° C. to 15 ° C., more preferably in the range of ⁇ 8 ° C. to 10 ° C., and further preferably in the range of ⁇ 5 ° C. to It is in the range of 8 ° C.
- the glass transition temperature is lower than the above range, the cohesive strength of the resin, that is, the creep resistance is lowered, and when it is high, the adhesion force to other materials, that is, the adhesive strength is lowered. It is not preferable when an absorbent solvent-soluble resin is applied.
- the composition of the acid component (A) and the acid component (B) is within the above range, and the oxygen absorption performance is excellent by controlling the type and composition ratio of the glycol component within the above glass transition temperature range.
- An oxygen-absorbing solvent-soluble resin can be obtained.
- 70 mol% of methyltetrahydrophthalic anhydride isomer mixture (Hitachi Chemical Co., Ltd .; HN-2200) is used as the acid component (A), and terephthalic acid is used as the acid component (B).
- An oxygen-absorbing polyester obtained by polycondensation of 30 mol% with 1,4-butanediol has a glass transition temperature of 5.3 ° C., which is an oxygen-absorbing solvent-soluble resin having excellent oxygen-absorbing performance. It is.
- aromatic dicarboxylic acid other than terephthalic acid aromatic dicarboxylic acid other than terephthalic acid
- aliphatic dicarboxylic acid aromatic dicarboxylic acid
- aliphatic hydroxycarboxylic acid polyhydric alcohol
- polycarboxylic acid or these
- copolymerize derivatives of these as monomers in addition to the acid component (A), acid component (B) and glycol component, other acids selected from the group consisting of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aliphatic hydroxycarboxylic acids and derivatives thereof It is preferred to copolymerize the components. These can be used alone or in combination of two or more.
- the glass transition temperature of the obtained oxygen-absorbing solvent-soluble resin can be easily controlled, and the oxygen absorption performance can be improved. Furthermore, the solubility in an organic solvent can be controlled. Moreover, the viscosity characteristic of the oxygen-absorbing adhesive composition dissolved in the solvent can be adjusted by controlling the branched structure of the resin by introducing a polyhydric alcohol and a polycarboxylic acid.
- Aromatic dicarboxylic acids other than terephthalic acid and their derivatives include benzene dicarboxylic acids such as phthalic anhydride and isophthalic acid, naphthalenedicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, anthracene dicarboxylic acid, sulfoisophthalic acid, sulfoisophthalic acid Sodium or a derivative thereof may be used.
- it is isophthalic acid.
- Isophthalic acid copolymerization is preferable because the solubility in the solvent is improved while ensuring the cohesive strength of the oxygen-absorbing solvent-soluble resin.
- Aliphatic dicarboxylic acids and their derivatives include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 3,3-dimethyl Pentanedioic acid or derivatives thereof may be mentioned.
- adipic acid and succinic acid are preferable, and succinic acid is particularly preferable.
- the glass transition temperatures of the oxygen-absorbing solvent-soluble resins in Examples 6 and 7 are ⁇ 4.0 ° C. and 0.8 ° C., respectively.
- Examples of the aliphatic hydroxycarboxylic acid and derivatives thereof include glycolic acid, lactic acid, hydroxypivalic acid, hydroxycaproic acid, hydroxyhexanoic acid, and derivatives thereof.
- Examples of polyhydric alcohols and their derivatives include 1,2,3-propanetriol, sorbitol, 1,3,5-pentanetriol, 1,5,8-heptanetriol, trimethylolpropane, pentaerythritol, 3,5-dihydroxy
- Examples include benzyl alcohol, glycerin, or derivatives thereof.
- polyvalent carboxylic acid and derivatives thereof examples include 1,2,3-propanetricarboxylic acid, meso-butane-1,2,3,4-tetracarboxylic acid, citric acid, trimellitic acid, pyromellitic acid, or these Derivatives.
- the first aspect of the oxygen-absorbing solvent-soluble resin of the present invention can be obtained as a polyester by copolymerizing the acid component (A), the acid component (B), the glycol component and the other acid components.
- the ratio of the structural unit derived from the other acid component in the resin to the total acid component is preferably 1 to 30 mol%, more preferably 5 to 20 mol%.
- copolymerizing the component which has trifunctional or more functional groups, such as a polyhydric alcohol and polyhydric carboxylic acid it is preferable to make it into 5 mol% or less with respect to all the acid components.
- the second aspect of the oxygen-absorbing solvent-soluble resin of the present invention is a polyester containing a structural unit derived from an acid component (A), succinic acid and ethylene glycol.
- the acid component (A) is as described above.
- the second aspect of the oxygen-absorbing solvent-soluble resin of the present invention includes a structural unit derived from succinic acid and ethylene glycol having a low molecular weight per repeating unit together with the acid component (A), so that the weight per resin weight It is preferable because the ratio of the acid component (A) is increased and the oxygen absorption performance is improved. Thereby, even when applied to an adhesive layer with a limited coating amount (layer thickness), an oxygen-absorbing container having excellent performance can be realized.
- the ratio of the acid component (A) to the total acid component is 45 to 75 mol%, preferably 50 to 70 mol%.
- the ratio of succinic acid to the total acid component is 25 to 55 mol%, preferably 30 to 50 mol%.
- the glass transition temperature of the resin is preferably ⁇ 8 to 15 ° C., more preferably 2 to 15 ° C., and further preferably 5 to 10 ° C. When the glass transition temperature is lower than the above range, the cohesive strength of the resin, that is, the creep resistance is lowered, and when it is high, the adhesion force to other materials, that is, the adhesive strength is lowered.
- the composition of the acid component (A) and succinic acid is within the above-mentioned range, and by using ethylene glycol within the above-mentioned glass transition temperature range, the oxygen-absorbing solvent-soluble type having excellent oxygen absorption performance Resin can be obtained.
- a more preferable glass transition temperature range is different between the first and second embodiments of the oxygen-absorbing solvent-soluble resin of the present invention, which is derived from the difference in the monomer composition of the resin. Is.
- the second aspect of the oxygen-absorbing solvent-soluble resin of the present invention can be obtained as a polyester using the acid component (A), succinic acid or succinic anhydride, and ethylene glycol as raw materials.
- the glass transition temperature of the obtained oxygen-absorbing solvent-soluble resin can be easily controlled, and the oxygen absorption performance can be improved. Furthermore, the solubility in an organic solvent can be controlled. Moreover, the viscosity characteristic of the oxygen-absorbing adhesive composition dissolved in the solvent can be adjusted by controlling the branched structure of the resin by introducing a polyhydric alcohol and a polycarboxylic acid.
- aromatic dicarboxylic acid aliphatic dicarboxylic acid other than succinic acid, aromatic hydroxycarboxylic acid, aliphatic hydroxycarboxylic acid, polyvalent carboxylic acid, glycol other than ethylene glycol, polyhydric alcohol, or derivatives thereof
- aromatic dicarboxylic acid aliphatic dicarboxylic acid other than succinic acid
- aromatic hydroxycarboxylic acid aromatic hydroxycarboxylic acid
- aliphatic hydroxycarboxylic acid polyvalent carboxylic acid
- glycol other than ethylene glycol, polyhydric alcohol, or derivatives thereof the above-mentioned book What was mentioned in the 1st aspect of the oxygen absorptive solvent soluble type resin of invention can be used conveniently. More preferable ones are isophthalic acid and terephthalic acid as aromatic dicarboxylic acids, and these are preferable for improving cohesion.
- An aliphatic dicarboxylic acid other than succinic acid is adipic acid, which is
- the second aspect of the oxygen-absorbing solvent-soluble resin of the present invention can be obtained as a polyester by copolymerizing the acid component (A), succinic acid, ethylene glycol and the other acid components.
- the ratio of the other acid components in the resin to the total acid components is preferably 1 to 25 mol%, more preferably 1 to 20 mol%.
- copolymerizing the component which has trifunctional or more functional groups, such as a polyhydric alcohol and polyhydric carboxylic acid it is preferable to make it into 5 mol% or less with respect to all the acid components.
- the oxygen-absorbing solvent-soluble resin of the present invention can be obtained by any polyester polycondensation method known to those skilled in the art. For example, interfacial polycondensation, solution polycondensation, melt polycondensation and solid phase polycondensation.
- a polymerization catalyst is not necessarily required.
- a normal polyester polymerization catalyst such as titanium-based, germanium-based, antimony-based, tin-based, or aluminum-based can be used. It can be used.
- known polymerization catalysts such as nitrogen-containing basic compounds, boric acid and boric acid esters, and organic sulfonic acid compounds can also be used.
- various additives, such as coloring inhibitors, such as a phosphorus compound, and antioxidant, can also be added in the case of superposition
- the number average molecular weight of the oxygen-absorbing solvent-soluble resin of the present invention is preferably 500 to 100,000, more preferably 1,000 to 20,000.
- the preferred weight average molecular weight is 5,000 to 200,000, more preferably 10,000 to 100,000, and still more preferably 20,000 to 90,000.
- the molecular weight is lower than the above range, the cohesive strength of the resin, that is, the creep resistance is lowered, and when it is high, the solubility in an organic solvent is lowered and the coating property is lowered due to an increase in the solution viscosity.
- the oxygen-absorbing solvent-soluble resin of the present invention is applied.
- the molecular weight is within the above range, an oxygen-absorbing adhesive resin composition having excellent cohesive strength, adhesiveness and solubility in an organic solvent and having viscosity characteristics suitable as an adhesive solution can be obtained.
- the oxygen-absorbing solvent-soluble resin of the present invention can be made high molecular weight by using a chain extender such as organic diisocyanate.
- organic diisocyanate chain extender various known aromatic, aliphatic or alicyclic diisocyanates can be used.
- aromatic diisocyanates include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
- aliphatic diisocyanates include hexamethylene diisocyanate, xylylene diisocyanate, and lysine diisocyanate.
- alicyclic diisocyanates examples include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dimerisocyanate obtained by converting a carboxyl group of dimer acid into an isocyanate group, and the like.
- these organic diisocyanates can also be used as trimethylolpropane adducts, isocyanurates, burettes and the like.
- the above organic isocyanates and organic isocyanate derivatives may be used alone or in combination of two or more.
- the oxygen-absorbing solvent-soluble resin of the present invention may be used alone or in combination of two or more.
- the oxygen-absorbing solvent-soluble resin of the present invention can be used as an oxygen-absorbing adhesive resin composition by being dissolved in a solvent such as an appropriate organic solvent.
- a solvent such as an appropriate organic solvent.
- the solvent include ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, isopropanol, and the like.
- ethyl acetate is a common solvent for soft packaging dry laminate adhesives because it has relatively few off-flavors caused by residual solvents.
- One solvent is preferably used as the solvent of the present invention.
- the oxygen-absorbing solvent-soluble resin of the present invention has practical adhesive strength and cohesive strength, and the oxygen-absorbing adhesive resin composition of the present invention is used as it is as a one-component adhesive. However, if necessary, it can also be used as a two-component mixed adhesive together with, for example, an organic isocyanate curing agent.
- an organic isocyanate curing agent when used as a two-component mixed adhesive, those described above as chain extenders can be suitably used.
- the oxygen absorption performance may be hindered because the mobility of the oxygen-absorbing solvent-soluble resin is reduced by curing with isocyanate. In order to develop high oxygen absorption performance, it is preferable to use the oxygen-absorbing adhesive resin composition as a one-component adhesive.
- the oxygen-absorbing adhesive resin composition of the present invention includes a silane coupling agent, an antioxidant, an ultraviolet absorber, an anti-hydrolysis agent, an antifungal agent, and a curing catalyst as necessary without departing from the object of the present invention.
- Various additives such as a thickener, a plasticizer, a pigment, a filler, a polyester resin, and an epoxy resin can be added.
- the oxygen-absorbing adhesive composition of the present invention can be used for the purpose of laminating a plurality of films in the same manner as an ordinary dry laminating adhesive.
- it can be suitably used for laminating a film substrate having oxygen barrier properties and a sealant film having heat sealability and oxygen gas permeability.
- the oxygen barrier substrate layer / oxygen-absorbing adhesive resin layer / sealant layer is laminated from the outer layer side, and the oxygen-permeable adhesive resin is blocked by blocking oxygen that permeates from the outside by the oxygen barrier substrate. While suppressing the fall of the oxygen absorption performance by oxygen outside a container, and an oxygen absorptive adhesive resin can absorb oxygen inside a container rapidly through an oxygen permeable sealant film, it is preferable.
- Each of the film base material and the sealant film having oxygen barrier properties may be a single layer or a laminate.
- a film substrate having oxygen barrier properties a metal oxide such as silica or alumina or a deposited thin film of metal, a polyvinyl alcohol resin, an ethylene-vinyl alcohol copolymer, a polyacrylic acid resin, or vinylidene chloride is used as a barrier layer.
- a biaxially stretched PET film, a biaxially stretched polyamide film, a biaxially stretched polypropylene film or the like having a barrier coating layer mainly composed of a gas barrier organic material such as a resin can be suitably used.
- metal foils such as ethylene-vinyl alcohol copolymer films, polymetaxylylene adipamide films, polyvinylidene chloride films and aluminum foils.
- film base materials having oxygen barrier properties can be used by laminating the same kind of base material or two or more different kinds of base materials, and also biaxially stretched PET film, biaxially stretched polyamide film, biaxially stretched polypropylene. It is also preferable to use a film, cellophane, paper or the like laminated.
- the material of the sealant film is low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, cyclic Polyolefins such as olefin polymers, cyclic olefin copolymers, or random or block copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene and 4-methyl-1-pentene, ethylene-vinyl acetate copolymers , Ethylene- (meth) acrylic acid copolymers and their ionic cross-linked products (ionomers), ethylene-vinyl compound copolymers such as ethylene-methyl methacrylate copolymers, heat-sealable PET, A-PET, PETG PBT and other polyesters and amorphous nylon are preferred It can be used for. These can be used by blending two or more kinds of materials, or can be used by
- a known dry laminator can be used. Using a dry laminator, a series of laminating steps are performed: application of the oxygen-absorbing adhesive resin composition to the barrier film substrate, volatilization of the solvent with a drying oven, and lamination with a sealant film with a nip roll heated to 50 to 120 ° C. Can be implemented.
- the coating amount of the oxygen-absorbing adhesive resin composition is 0.1 to 30 g / m 2 , preferably 1 to 15 g / m 2 , more preferably 2 to 10 g / m 2 .
- the oxygen-absorbing laminated film laminated using the oxygen-absorbing adhesive resin composition is also preferably aged in order to advance the curing reaction at a temperature near room temperature, for example, 10 to 60 ° C. Curing is preferable because crystallization of the oxygen-absorbing solvent-soluble resin or cross-linking reaction with a curing agent such as organic diisocyanate improves the adhesive strength and cohesion by curing.
- a curing agent such as organic diisocyanate
- the oxygen-absorbing solvent-soluble resin of the present invention can also be used as a useless adhesive without being dissolved in a solvent.
- an oxygen-absorbing laminated film can be obtained using a known non-sol laminator.
- the oxygen-absorbing solvent-soluble resin of the present invention can be used not only for adhesives but also for coatings, and can be applied as coating films such as various films.
- the oxygen-absorbing laminated film laminated using the oxygen-absorbing solvent-soluble resin of the present invention can be suitably used for various forms of bag-like containers and cup / tray container lids.
- the bag-like container include three-way or four-side sealed flat pouches, gusseted pouches, standing pouches, pillow packaging bags, and the like.
- An oxygen-absorbing container using at least a part of the oxygen-absorbing laminated film effectively blocks oxygen permeating from the outside of the container and absorbs oxygen remaining in the container. Therefore, it is useful as a container that keeps the oxygen concentration in the container at a low level for a long period of time, prevents the quality deterioration related to the oxygen in the contents, and improves the shelf life.
- content that easily deteriorates in the presence of oxygen for example, coffee beans, tea leaves, snacks, rice confectionery, raw and semi-fresh confectionery, fruits, nuts, vegetables, fish and meat products, kneaded products, dried fish, smoked products, Boiled rice, raw rice, cooked rice, infant food, jam, mayonnaise, ketchup, cooking oil, dressing, sauces, dairy products, beverages such as beer, wine, fruit juice, green tea, coffee, etc., pharmaceuticals, cosmetics, electronics Although parts etc. are mentioned, it is not limited to these examples.
- the solvent used was deuterated chloroform containing tetramethylsilane as a reference substance.
- the composition ratio of the acid component in the resin was almost equal to the charged amount (mol ratio) of each monomer used for the polymerization.
- Solubility evaluation When the resin is mixed with ethyl acetate at a concentration of 20 wt% at room temperature, the liquid phase exhibits a stable single and homogeneous system, and a transparent or translucent state is considered to have good solubility. did.
- Oxygen absorption amount A laminated film test piece cut out to 2 cm ⁇ 10 cm was charged into an oxygen-impermeable steel foil laminated cup having an internal volume of 85 cm 3 and heat-sealed with an aluminum foil laminated film lid, and the atmosphere was 22 ° C. Saved at. The oxygen concentration in the cup after storage for a fixed time was measured with a micro gas chromatograph (manufactured by Agilent Technologies; M200), and the amount of oxygen absorbed per 1 cm 2 of film was calculated. 7 days Ward, 0.015 ml / cm 2 or more was judged as good ones having 0.02 ml / cm 2 or more oxygen absorption amount and 14 days Ward.
- Creep resistance T-type peel creep test between aluminum foil and LDPE was performed at 23 ° C and 50% RH in a test piece width of 25 mm and a load of 50 g, and the peel distance (unit: mm) was measured after 2 hours. It was measured. A peeling distance of 10 mm or less was determined to be good.
- Example 1 In a 500 ml separable flask equipped with a stirrer, a nitrogen inlet tube, and a Dean-Stark type water separator, 45 mol% of 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and cis-3-methyl were added as the acid component (A).
- methyltetrahydrophthalic anhydride isomer mixture (Hitachi Chemical Co., Ltd .; HN-2200) containing 21 mol% of - ⁇ 4 -tetrahydrophthalic anhydride, and terephthalic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as the acid component (B) 50 g, 180 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.) as a glycol component, 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene as a polymerization catalyst, and 150 ° C.
- step (b) The reaction was carried out for about 6 hours while removing the water produced in step (b). Subsequently, toluene was removed from the reaction system, and then polymerization was performed at 200 to 220 ° C. under a reduced pressure of 0.1 kPa for about 3 hours to obtain an oxygen-absorbing polyester resin having a Tg of 5.3 ° C. At this time, Mn was about 6300 and Mw was 75000. The obtained oxygen-absorbing resin was dissolved in ethyl acetate at a concentration of 20 wt% at room temperature to prepare an adhesive solution.
- the prepared adhesive solution was applied to the aluminum foil surface of a biaxially stretched PET film (film thickness 12 ⁇ m) / aluminum foil (film thickness 7 ⁇ m) laminated film prepared by a dry laminating method using a # 18 bar coater. After the solvent contained in the adhesive was blown away with warm air from a hair dryer, the adhesive-coated surface of the laminated film and the corona-treated surface of the 30 ⁇ mL DPE film (manufactured by Tamapoly; AJ-3) were opposed to a 70 ° C. hot roll.
- an oxygen-absorbing laminated film composed of biaxially stretched PET film (film thickness 12 ⁇ m) / aluminum foil (film thickness 7 ⁇ m) / oxygen-absorbing resin (adhesive) (film thickness 4 ⁇ m) / 30 ⁇ mL DPE was obtained.
- the obtained oxygen-absorbing laminated film was subjected to oxygen absorption amount evaluation, laminate strength evaluation, and creep resistance evaluation. The results are shown in Table 1.
- Example 2 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) HN-2200) 133 g, acid component (B) terephthalic acid (Wako Pure Chemical Industries) 33 g, glycol component 1,4-butanediol (Wako Pure Chemical Industries) 180 g, polymerization catalyst Polymerization was performed in the same manner as in Example 1 except that 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene were used to obtain an oxygen-absorbing polyester resin having a Tg of 0.9 ° C. At this time, Mn was about 4300 and Mw was 37000. Further, an oxygen-absorbing film was
- Example 3 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) 125 g of HN-2200), 42 g of terephthalic acid (Wako Pure Chemical Industries) as the acid component (B), 180 g of 1,4-butanediol (Wako Pure Chemical Industries) as the glycol component, as a polymerization catalyst Polymerization was performed in the same manner as in Example 1 except that 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene were used to obtain an oxygen-absorbing polyester resin having a Tg of 4.0 ° C. At this time, Mn was about 5200 and Mw was 51000
- Example 4 Methyltetrahydrophthalic anhydride isomer mixture containing 2 mol% of 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 13 mol% of cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) HN-2000) 133g, acid component (B) terephthalic acid (Wako Pure Chemicals) 33g, glycol component 1,4-butanediol (Wako Pure Chemicals) 180g, polymerization catalyst Polymerization was performed in the same manner as in Example 1 except that 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene were used to obtain an oxygen-absorbing polyester resin having a Tg of 1.1 ° C. At this time, Mn was about 5000 and Mw was 48,000. Further, an oxygen-absorbing film was obtained in the same
- Example 5 133 g of cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) as the acid component (A), 33 g of terephthalic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as the acid component (B), 1 as the glycol component
- Polymerization was conducted in the same manner as in Example 1 except that 180 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene were used as the polymerization catalyst.
- An oxygen-absorbing polyester resin at 1.0 ° C. was obtained. At this time, Mn was about 4000 and Mw was 41000. Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.
- Example 6 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) 83 g of HN-2200), 50 g of terephthalic acid (Wako Pure Chemical Industries) as the acid component (B), 24 g of succinic acid (Wako Pure Chemical Industries) as the other acid component, 1,4 as the glycol component -Polymerization was conducted in the same manner as in Example 1 except that 180 g of butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene were used as the polymerization catalyst.
- Example 7 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) 100 g of HN-2200), 50 g of terephthalic acid (manufactured by Wako Pure Chemical Industries) as the acid component (B), 12 g of succinic acid (manufactured by Wako Pure Chemical Industries) as the other acid component, 1,4 as the glycol component Polymerization was carried out in the same manner as in Example 1 except that 180 g of butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 20 ml of toluene were used as the acid component (
- Example 8 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) 100 g of HN-2200), 33 g of terephthalic acid (manufactured by Wako Pure Chemical Industries) as the acid component (B), 33 g of isophthalic acid (manufactured by Wako Pure Chemical Industries) as the other acid component, 1,4 as the glycol component Polymerization was conducted in the same manner as in Example 1 except that 180 g of butanediol (Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate (Kishida Chemical Co., Ltd.) and 20 ml of toluene were used as the polymerization catalyst, and the Tg was 5.
- Example 1 Polymerization was conducted in the same manner as in Example 1 except that an oxygen-absorbing polyester resin having a Tg of ⁇ 3.3 ° C. was obtained. At this time, Mn was about 1700 and Mw was 8100. Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.
- Example 9 In a 500 ml separable flask equipped with a stirrer, a nitrogen inlet tube, and a Dean-Stark type water separator, 45 mol% of 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and cis-3-methyl were added as the acid component (A).
- the prepared adhesive solution was applied to the aluminum foil surface of a biaxially stretched PET film (film thickness 12 ⁇ m) / aluminum foil (film thickness 7 ⁇ m) laminated film prepared by a dry laminating method using a # 18 bar coater. After the solvent contained in the adhesive was blown away with warm air from a hair dryer, the adhesive-coated surface of the laminated film and the corona-treated surface of the 30 ⁇ mL DPE film (manufactured by Tamapoly; AJ-3) were opposed to a 70 ° C. hot roll.
- an oxygen-absorbing laminated film composed of biaxially stretched PET film (film thickness 12 ⁇ m) / aluminum foil (film thickness 7 ⁇ m) / oxygen-absorbing resin (adhesive) (film thickness 4 ⁇ m) / 30 ⁇ mL DPE was obtained.
- the obtained oxygen-absorbing laminated film was subjected to oxygen absorption amount evaluation, laminate strength evaluation, and creep resistance evaluation. The results are shown in Table 2.
- Example 10 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) Polymerized in the same manner as in Example 9 except that 99.7 g of HN-2200), 47.2 g of succinic acid, 93.1 g of ethylene glycol, 500 ppm of isopropyl titanate as a polymerization catalyst, and 10 ml of toluene were used. And a polyester resin having a Tg of 7.8 ° C. was obtained. At this time, Mn was about 2800 and Mw was 37800. Further, an oxygen-absorbing film was obtained in the same manner as in Example 9, and subjected to each evaluation. The results are shown in Table 2.
- Example 11 99.7 g of cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as acid component (A), 47.2 g of succinic acid, 93.1 g of ethylene glycol, 500 ppm of isopropyl titanate as a polymerization catalyst, and 10 ml of toluene Polymerization was carried out in the same manner as in Example 9 except that a polyester resin having a Tg of 8.3 ° C. was obtained. At this time, Mn was about 2900 and Mw was 42100. Further, an oxygen-absorbing film was obtained in the same manner as in Example 9, and subjected to each evaluation. The results are shown in Table 2.
- Example 12 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) HN-2200) 116.3 g, succinic acid 35.4 g, ethylene glycol 93.1 g, isopropyl titanate 500 ppm as a polymerization catalyst, and toluene 10 ml were used for polymerization in the same manner as in Example 9. And a polyester resin having a Tg of 13.3 ° C. was obtained. At this time, Mn was about 2900 and Mw was 49500. Further, an oxygen-absorbing film was obtained in the same manner as in Example 9, and subjected to each evaluation. The results are shown in Table 2.
- Example 13 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) 91.4 g of HN-2200), 47.2 g of succinic acid, 8.3 g of terephthalic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 93.1 g of ethylene glycol, 500 ppm of isopropyl titanate as a polymerization catalyst, and Polymerization was carried out in the same manner as in Example 9 except that 10 ml of toluene was used to obtain a polyester resin having a Tg of 10.2 ° C. At this time, Mn was about 3300 and Mw was 40300. Further, an oxygen-absorbing film was obtained in the same manner as in Example 9, and subjected to
- Example 14 Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride as the acid component (A) (Hitachi Chemical Co., Ltd.) HN-2200) 83.1 g, succinic acid 53.1 g, terephthalic acid (Wako Pure Chemical Industries, Ltd.) 8.3 g, ethylene glycol 93.1 g, isopropyl titanate 500 ppm as a polymerization catalyst, and Polymerization was carried out in the same manner as in Example 9 except that 10 ml of toluene was used to obtain a polyester resin having a Tg of 8.0 ° C. At this time, Mn was about 3400 and Mw was 47800. Further, an oxygen-absorbing film was obtained in the same manner as in Example 9, and subjected to each evaluation. The results are shown in Table
- the adhesive composition containing the oxygen-absorbing solvent-soluble resin of the present invention as an alternative to conventional adhesives for dry laminating, a soft packaging material having excellent deoxidation performance can be easily produced. Can do. With this oxygen-absorbing soft packaging material, it is possible to maintain the quality of foods, medicines, electronic parts, etc. sensitive to oxygen for a long period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Polyesters Or Polycarbonates (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
特許文献1には、ポリオールに酸素吸収性を有する無機酸化物を配合した酸素吸収性接着剤が提案されている。しかしながら、前記酸素吸収性接着剤は、不透明であり、酸素吸収性能が低く、酸素吸収性能の発現に水分が必要であり乾燥雰囲気では使用できないなどの問題があった。また、各種酸素吸収性樹脂が提案されている(例えば、特許文献2)が、包装用フィルムの積層用途として酸素吸収性と接着性を兼ね備えた酸素吸収性接着剤樹脂を実現した例はない。
酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体、及び
酸成分(B):テレフタル酸
を提供する。
また、本発明は、酸成分(A)、コハク酸及びエチレングリコールに由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が45~75mol%であり、コハク酸の全酸成分に対する割合が25~55mol%である、酸素吸収性溶剤可溶型樹脂:
酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体
を提供する。
さらに、本発明は、前記酸素吸収性溶剤可溶型樹脂と、溶媒として酢酸エチルを含有する酸素吸収性接着剤樹脂組成物を提供する。
本発明の酸素吸収性溶剤可溶型樹脂の第1の態様において、酸成分(A)は、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体である。酸成分(A)は、好ましくはメチルテトラヒドロフタル酸又はメチルテトラヒドロ無水フタル酸である。
また、本発明の酸素吸収性溶剤可溶型樹脂の第1の態様において、酸成分(A)は、好ましくは(i)及び(ii)からなる群より選ばれる構造を有する酸成分を50~100mol%、好ましくは60~100mol%含有する:
(i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個の水素原子と結合した炭素原子を有し、該炭素原子が脂環構造に含まれているジカルボン酸若しくはジカルボン酸無水物;
(a)炭素-炭素二重結合基、
(b)カルボニル基;及び
(ii)不飽和脂環構造内の炭素-炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子がカルボニル基と結合しており、該電子供与性置換基と該カルボニル基とがシス位に位置しているジカルボン酸若しくはジカルボン酸無水物。
テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を原料として、本発明の酸素吸収性溶剤可溶型樹脂の第1の態様である酸素吸収性ポリエステルを重合する際、ジカルボン酸およびジカルボン酸無水物はメチルエステル等にエステル化されていてもよい。
また、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を含む原料を重合して得ることができる本発明の酸素吸収性溶剤可溶型樹脂の第1の態様には、酸素吸収反応を促進させるために酸素吸収反応触媒(酸化触媒)を添加しても良い。しかしながら、前述の(i)の構造を有する酸成分及び(ii)の構造を有する酸成分を含む原料を重合して得ることができる本発明の酸素吸収性溶剤可溶型樹脂の第1の態様は酸素との反応性が極めて高いことから、酸素吸収反応触媒の不在下において、実用的な酸素吸収性能を発現することができる。また、本発明の酸素吸収性溶剤可溶型樹脂の第1の態様を用いて接着剤の調製や接着剤を用いた加工をする際に、酸素吸収反応触媒が原因となる過度の樹脂劣化に起因するゲル化等を防止するためにも、触媒量の酸素吸収反応触媒を含まないことが望ましい。ここで、酸素吸収反応触媒としては、マンガン、鉄、コバルト、ニッケル、銅の遷移金属と有機酸からなる遷移金属塩が挙げられる。また、「触媒量の酸素吸収反応触媒を含まない」とは、一般に酸素吸収反応触媒が遷移金属量で10ppm未満であることを意味し、好ましくは1ppm未満である。
テレフタル酸以外の芳香族ジカルボン酸及びその誘導体としては、無水フタル酸、イソフタル酸などのベンゼンジカルボン酸、2,6-ナフタレンジカルボン酸などのナフタレンジカルボン酸、アントラセンジカルボン酸、スルホイソフタル酸、スルホイソフタル酸ナトリウム、又はこれらの誘導体等が挙げられる。好ましくは、イソフタル酸である。イソフタル酸共重合により酸素吸収性溶剤可溶型樹脂の凝集力を確保しつつ溶剤への溶解性が向上するため好ましい。
実施例6および7に記載されているように、コハク酸共重合により酸素吸収性溶剤可溶型樹脂のガラス転移温度を制御することで、優れた酸素吸収性能を発現させることが出来る。実施例6および7における酸素吸収性溶剤可溶型樹脂のガラス転移温度はそれぞれ-4.0℃および0.8℃である。
多価アルコール及びその誘導体としては、1,2,3-プロパントリオール、ソルビトール、1,3,5-ペンタントリオール、1,5,8-ヘプタントリオール、トリメチロールプロパン、ペンタエリスリトール、3,5-ジヒドロキシベンジルアルコール、グリセリン、又はこれらの誘導体が挙げられる。
多価カルボン酸及びその誘導体としては、1,2,3-プロパントリカルボン酸、メソ-ブタン-1,2,3,4-テトラカルボン酸、クエン酸、トリメリット酸、ピロメリット酸、又はこれらの誘導体が挙げられる。
また、多価アルコールや多価カルボン酸等の3官能以上の官能基を有する成分を共重合させる場合は全酸成分に対し5mol%以内にすることが好ましい。
酸成分(A)については、上述したとおりである。
本発明の酸素吸収性溶剤可溶型樹脂の第2の態様は、酸成分(A)とともに繰返し単位あたりの分子量が低いコハク酸及びエチレングリコールに由来する構造単位を含むことにより、樹脂重量あたりの酸成分(A)の比率が高くなり、酸素吸収性能が向上することから好ましい。これにより、塗布量(層厚)に制限のある接着剤層に適用した場合においても優れた性能を有する酸素吸収性容器を実現することができる。
より好ましいガラス転移温度範囲が本発明の酸素吸収性溶剤可溶型樹脂の第1の態様と第2の態様の間で異なっているが、これは樹脂のモノマー組成が異なっていることに由来するものである。
また、多価アルコールや多価カルボン酸等の3官能以上の官能基を有する成分を共重合させる場合は全酸成分に対し5mol%以内にすることが好ましい。
さらに、重合の際にはリン化合物等の着色防止剤や酸化防止剤等の各種添加剤を添加することもできる。酸化防止剤を添加することにより、重合中やその後の加工中の酸素吸収を抑制できるため、酸素吸収性溶剤可溶型樹脂の性能低下やゲル化を抑えることができる。
本発明の酸素吸収性溶剤可溶型樹脂の数平均分子量は、好ましくは500~100000であり、より好ましくは1000~20000である。また好ましい重量平均分子量は5000~200000、より好ましくは10000~100000であり、さらに好ましくは20000~90000である。分子量が上記の範囲より低い場合は樹脂の凝集力すなわち耐クリープ性が低下し、高い場合は有機溶剤への溶解性の低下や溶液粘度の上昇による塗工性の低下が生じるため、接着剤として本発明の酸素吸収性溶剤可溶型樹脂を適用する場合好ましくない。上記範囲内の分子量の場合には、凝集力、接着性および有機溶剤への溶解性に優れ、接着剤溶液として好適な粘度特性を有する酸素吸収性接着剤樹脂組成物を得ることが出来る。
本発明の酸素吸収性溶剤可溶型樹脂は、単独で用いてもよく、また2種以上組み合わせて用いてもよい。
酸素バリア性を有するフィルム基材およびシーラントフィルムはそれぞれ単層でも積層体でもよい。酸素バリア性を有するフィルム基材としては、バリア層としてシリカ、アルミナ等の金属酸化物或いは金属の蒸着薄膜や、ポリビニルアルコール系樹脂、エチレン-ビニルアルコール共重合体、ポリアクリル酸系樹脂或いは塩化ビニリデン系樹脂等のガスバリア性有機材料を主剤とするバリアコーティング層を有する、二軸延伸PETフィルム、二軸延伸ポリアミドフィルム或いは二軸延伸ポリプロピレンフィルム等を好適に使用できる。またエチレン-ビニルアルコール共重合体フィルム、ポリメタキシリレンアジパミドフィルム、ポリ塩化ビニリデン系フィルムやアルミ箔等の金属箔も好ましい。これらの酸素バリア性を有するフィルム基材は同種基材や2種以上の異種基材を積層して使用することも出来、また、二軸延伸PETフィルム、二軸延伸ポリアミドフィルム、二軸延伸ポリプロピレンフィルム、セロファン、紙等を積層して使用することも好ましい。
シーラントフィルムの材料としては低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン、環状オレフィン重合体、環状オレフィン共重合体、或いはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダム又はブロック共重合体等のポリオレフィン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン-メタクリル酸メチル共重合体等のエチレン-ビニル化合物共重合体、ヒートシール性を有するPET、A-PET、PETG、PBT等のポリエステルやアモルファスナイロン等を好適に使用できる。これらは二種以上の材料をブレンドして使用することも出来、同種材料や異種材料を積層して用いることも出来る。
また、本発明の酸素吸収性溶剤可溶型樹脂は、溶剤に溶解させることなく、無用剤型接着剤として使用することもできる。この場合、公知のノンソルラミネーターを用いて酸素吸収性積層フィルムを得ることが出来る。
さらに、本発明の酸素吸収性溶剤可溶型樹脂は、接着剤用途に限らず塗料用途にも使用することができ、各種フィルム等のコーティング膜として塗工することができる。
特に、酸素存在下で劣化しやすい内容品として、例えば、食品ではコーヒー豆、茶葉、スナック類、米菓、生・半生菓子、果物、ナッツ、野菜、魚・肉製品、練り製品、干物、薫製、佃煮、生米、米飯類、幼児食品、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、乳製品等、飲料ではビール、ワイン、フルーツジュース、緑茶、コーヒー等、その他では医薬品、化粧品、電子部品等が挙げられるが、これらの例に限定されない。
(1)数平均分子量(Mn)及び重量平均分子量(Mw)
ゲルパーミエーションクロマトグラフィー(GPC、東ソー社製;HLC-8120型GPC)により、ポリスチレン換算で測定した。溶媒にはクロロホルムを使用した。
(2)酸素吸収性ポリエステル樹脂中の各モノマー単位の組成比
核磁気共鳴分光法(1H-NMR、日本電子データム社製;EX270)により、テレフタル酸由来のベンゼン環プロトン(8.1ppm)、イソフタル酸由来のベンゼン環プロトン(8.7ppm)、コハク酸由来のメチレンプロトン(2.6ppm)、アジピン酸由来のメチレンプロトン(2.3ppm)、テレフタル酸及びイソフタル酸から誘導されたエステル基に隣接するメチレンプロトン(4.3~4.4ppm)、メチルテトラヒドロ無水フタル酸およびコハク酸及びアジピン酸から誘導されたエステル基に隣接するメチレンプロトン(4.1~4.2ppm)のシグナルの面積比から樹脂中の酸成分の組成比をそれぞれ算出した。溶媒には基準物質としてテトラメチルシランを含む重クロロホルムを使用した。
このとき、樹脂中の酸成分の組成比は、重合に使用した各モノマーの仕込み量(mol比)とほぼ同等であった。
(3)ガラス転移温度;Tg
示差走査熱量測定器(セイコーインスツルメンツ社製DSC6220)を用いて、窒素気流中、昇温速度10℃/分で測定した。
(4)溶解性評価
樹脂を酢酸エチルに20wt%の濃度で室温にて混合した際、液相が安定な単一かつ均一系を呈し、透明あるいは半透明の状態になるものを溶解性良好とした。
(5)酸素吸収量
2cm×10cmに切り出した積層フィルム試験片を、内容積85cm3の酸素不透過性のスチール箔積層カップに仕込んでアルミ箔積層フィルム蓋でヒートシール密封し、22℃雰囲気下にて保存した。一定時間保存後のカップ内酸素濃度をマイクロガスクロマトグラフ装置(アジレント・テクノロジー社製;M200)にて測定し、フィルム1cm2当たりの酸素吸収量を算出した。7日区で0.015ml/cm2以上、且つ14日区で0.02ml/cm2以上の酸素吸収量を有するものを良好と判定した。
(6)ラミネート強度
23℃、50%RHの雰囲気下において、T型剥離試験により試験片幅15mm、剥離速度300mm/minの測定条件で酸素吸収性接着剤によるアルミ箔-LDPE間のラミネート強度(単位:N/15mm)を測定した。2.0N/15mm以上のラミネート強度を有するものを良好と判定した。
(7)耐クリープ性
23℃、50%RHの雰囲気下において、試験片幅25mm、荷重50gでアルミ箔-LDPE間のT型剥離クリープ試験を行い、2時間後に剥離距離(単位:mm)を測定した。剥離距離が10mm以下のものを良好と判定した。
攪拌装置、窒素導入管、Dean-Stark型水分離器を備えた500mlのセパラブルフラスコに、酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を116g、酸成分(B)としてテレフタル酸(和光純薬社製)を50g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを仕込み、窒素雰囲気中150℃~200℃で生成する水を除きながら約6時間反応させた。引き続いて反応系よりトルエンを除いた後、0.1kPaの減圧下、200~220℃で約3時間重合を行い、Tgが5.3℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約6300で、Mwは75000であった。
得られた酸素吸収性樹脂を酢酸エチルに20wt%の濃度で室温にて溶解し、接着剤溶液を調製した。調製した接着剤溶液を、ドライラミネート法により作成した二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)の積層フィルムのアルミ箔面に、#18のバーコーターにて塗布した。ヘアドライヤーの温風にて接着剤に含まれる溶剤を飛ばした後、積層フィルムの接着剤塗布面と30μmLDPEフィルム(タマポリ製;AJ-3)のコロナ処理面を対向させて70℃の熱ロールに通し、二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)/酸素吸収性樹脂(接着剤)(膜厚4μm)/30μmLDPEからなる酸素吸収性積層フィルムを得た。
得られた酸素吸収性積層フィルムを、酸素吸収量評価、ラミネート強度評価及び耐クリープ性評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を133g、酸成分(B)としてテレフタル酸(和光純薬社製)を33g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが0.9℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約4300で、Mwは37000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を125g、酸成分(B)としてテレフタル酸(和光純薬社製)を42g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが4.0℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約5200で、Mwは51000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を2mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を13mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2000)を133g、酸成分(B)としてテレフタル酸(和光純薬社製)を33g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが1.1℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約5000で、Mwは48000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)としてcis-3-メチル-Δ4-テトラヒドロ無水フタル酸(東京化成社製)を133g、酸成分(B)としてテレフタル酸(和光純薬社製)を33g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが1.0℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約4000で、Mwは41000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を83g、酸成分(B)としてテレフタル酸(和光純薬社製)を50g、その他の酸成分としてコハク酸(和光純薬社製)24g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが-4.0℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約6600で、Mwは60000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を100g、酸成分(B)としてテレフタル酸(和光純薬社製)を50g、その他の酸成分としてコハク酸(和光純薬社製)12g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが0.8℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約6700で、Mwは80000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を100g、酸成分(B)としてテレフタル酸(和光純薬社製)を33g、その他の酸成分としてイソフタル酸(和光純薬社製)33g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが5.8℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約6800で、Mwは82000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を166g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが-3.3℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約1700で、Mwは8100であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を150g、酸成分(B)としてテレフタル酸(和光純薬社製)を17g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが-1.5℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約3400で、Mwは26000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を100g、酸成分(B)としてテレフタル酸(和光純薬社製)を66g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが6.1℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約7000で、Mwは81000であった。
得られた酸素吸収性樹脂を酢酸エチルに20wt%の濃度で室温にて混合したが、溶解しなかった。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を50g、酸成分(B)としてテレフタル酸(和光純薬社製)を50g、その他の酸成分としてコハク酸(和光純薬社製)47g、グリコール成分として1,4-ブタンジオール(和光純薬社製)を180g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を300ppm、及びトルエン20mlを用いた以外は実施例1と同様に重合を行い、Tgが-13.1℃の酸素吸収性ポリエステル樹脂を得た。このときMnは約4900で、Mwは28000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
攪拌装置、窒素導入管、Dean-Stark型水分離器を備えた500mlのセパラブルフラスコに、酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を83.1g、コハク酸(和光純薬社製)を59.0g、エチレングリコール(和光純薬社製)を93.1g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を500ppm、及びトルエン10mlを仕込み、窒素雰囲気中150℃~200℃で生成する水を除きながら約6時間反応させた。引き続いて反応系よりトルエンを除いた後、0.1kPaの減圧下、200~220℃で約3時間重合を行い、Tgが3.8℃のポリエステル樹脂を得た。このときMnは約3100で、Mwは44500であった。
得られた酸素吸収性樹脂を酢酸エチルに20wt%の濃度で室温にて溶解し、接着剤溶液を調製した。調製した接着剤溶液を、ドライラミネート法により作成した二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)の積層フィルムのアルミ箔面に、#18のバーコーターにて塗布した。ヘアドライヤーの温風にて接着剤に含まれる溶剤を飛ばした後、積層フィルムの接着剤塗布面と30μmLDPEフィルム(タマポリ製;AJ-3)のコロナ処理面を対向させて70℃の熱ロールに通し、二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)/酸素吸収性樹脂(接着剤)(膜厚4μm)/30μmLDPEからなる酸素吸収性積層フィルムを得た。
得られた酸素吸収性積層フィルムを、酸素吸収量評価、ラミネート強度評価及び耐クリープ性評価に供した。結果を表2に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を99.7g、コハク酸を47.2g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが7.8℃のポリエステル樹脂を得た。このときMnは約2800で、Mwは37800であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
酸成分(A)としてcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を99.7g、コハク酸を47.2g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが8.3℃のポリエステル樹脂を得た。このときMnは約2900で、Mwは42100であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を116.3g、コハク酸を35.4g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが13.3℃のポリエステル樹脂を得た。このときMnは約2900で、Mwは49500であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を91.4g、コハク酸を47.2g、テレフタル酸(和光純薬社製)を8.3g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが10.2℃のポリエステル樹脂を得た。このときMnは約3300で、Mwは40300であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を83.1g、コハク酸を53.1g、テレフタル酸(和光純薬社製)を8.3g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが8.0℃のポリエステル樹脂を得た。このときMnは約3400で、Mwは47800であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を66.5g、コハク酸を70.9g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが-0.8℃のポリエステル樹脂を得た。このときMnは約3200で、Mwは39400であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を133.0g、コハク酸を23.6g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが17.7℃のポリエステル樹脂を得た。このときMnは約2800で、Mwは42700であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
酸成分(A)として4-メチル-Δ3-テトラヒドロ無水フタル酸を45mol%及びcis-3-メチル-Δ4-テトラヒドロ無水フタル酸を21mol%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)を99.7g、アジピン酸(和光純薬社製)を58.5g、ネオペンチルグリコール(東京化成工業)を125.0g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例9と同様に重合を行い、Tgが-6.3℃のポリエステル樹脂を得た。このときMnは約3500で、Mwは27500であった。
さらに、実施例9と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表2に示す。
Claims (8)
- 酸成分(A)、酸成分(B)及びグリコール成分に由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が40~80mol%であり、酸成分(B)の全酸成分に対する割合が15~35mol%である、酸素吸収性溶剤可溶型樹脂:
酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体、及び
酸成分(B):テレフタル酸。 - グリコール成分が1,4-ブタンジオールである、請求項1に記載の酸素吸収性溶剤可溶型樹脂。
- さらにその他の酸成分としてコハク酸に由来する構造単位を含む請求項1又は2に記載の酸素吸収性溶剤可溶型樹脂。
- 酸成分(A)、コハク酸及びエチレングリコールに由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が45~75mol%であり、コハク酸の全酸成分に対する割合が25~55mol%である、酸素吸収性溶剤可溶型樹脂:
酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体。 - 酸成分(A)がメチルテトラヒドロフタル酸又はメチルテトラヒドロ無水フタル酸である、請求項1~4のいずれか1項に記載の酸素吸収性溶剤可溶型樹脂。
- 酸成分(A)が(i)及び(ii)からなる群より選ばれる構造を有する酸成分を50~100mol%含有する、請求項1~5のいずれか1項に記載の酸素吸収性溶剤可溶型樹脂:
(i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個の水素原子と結合した炭素原子を有し、該炭素原子が脂環構造に含まれているジカルボン酸若しくはジカルボン酸無水物;
(a)炭素-炭素二重結合基、
(b)カルボニル基;及び
(ii)不飽和脂環構造内の炭素-炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子がカルボニル基と結合しており、該電子供与性置換基と該カルボニル基とがシス位に位置しているジカルボン酸若しくはジカルボン酸無水物。 - (i)の構造を有する酸成分が4-メチル-Δ3-テトラヒドロフタル酸又は4-メチル-Δ3-テトラヒドロ無水フタル酸であり、(ii)の構造を有する酸成分がcis-3-メチル-Δ4-テトラヒドロフタル酸又はcis-3-メチル-Δ4-テトラヒドロ無水フタル酸である、請求項6に記載の酸素吸収性溶剤可溶型樹脂。
- 請求項1~7に記載の酸素吸収性溶剤可溶型樹脂と、溶媒として酢酸エチルを含有する酸素吸収性接着剤樹脂組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10748881.9A EP2404948B1 (en) | 2009-03-06 | 2010-03-08 | Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition |
CN2010800196784A CN102414246B (zh) | 2009-03-06 | 2010-03-08 | 吸氧性溶剂可溶型树脂以及吸氧性粘接剂树脂组合物 |
KR1020117023356A KR101312669B1 (ko) | 2009-03-06 | 2010-03-08 | 산소 흡수성 용제 가용형 수지 및 산소 흡수성 접착제 수지 조성물 |
US13/255,057 US8673173B2 (en) | 2009-03-06 | 2010-03-08 | Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-054081 | 2009-03-06 | ||
JP2009054081 | 2009-03-06 | ||
JP2010006832A JP5671802B2 (ja) | 2010-01-15 | 2010-01-15 | 酸素吸収性樹脂及び酸素吸収性接着剤樹脂組成物 |
JP2010-006832 | 2010-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010101290A1 true WO2010101290A1 (ja) | 2010-09-10 |
Family
ID=42709832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053792 WO2010101290A1 (ja) | 2009-03-06 | 2010-03-08 | 酸素吸収性溶剤可溶型樹脂及び酸素吸収性接着剤樹脂組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8673173B2 (ja) |
EP (1) | EP2404948B1 (ja) |
KR (1) | KR101312669B1 (ja) |
CN (1) | CN102414246B (ja) |
WO (1) | WO2010101290A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012090900A1 (ja) * | 2010-12-28 | 2012-07-05 | 東洋製罐株式会社 | 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤 |
US20130143734A1 (en) * | 2010-08-19 | 2013-06-06 | Toyo Seikan Kaisha Ltd. | Resin for Oxygen-absorbing Adhesive and Oxygen-absorbing Adhesive |
WO2014112621A1 (ja) * | 2013-01-18 | 2014-07-24 | 東洋製罐グループホールディングス株式会社 | 酸素吸収性フィルム及び酸素吸収性接着剤樹脂組成物 |
JP2014136788A (ja) * | 2013-01-18 | 2014-07-28 | Toyo Seikan Kaisha Ltd | 酸素吸収性接着剤樹脂組成物 |
JPWO2014057991A1 (ja) * | 2012-10-10 | 2016-09-05 | 三菱瓦斯化学株式会社 | 酸素吸収性樹脂組成物 |
JP2017124628A (ja) * | 2017-02-10 | 2017-07-20 | 東洋製罐株式会社 | 酸素吸収性フィルム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136811A1 (ja) | 2013-03-05 | 2014-09-12 | 三菱瓦斯化学株式会社 | 酸素吸収性樹脂組成物 |
JP6410213B2 (ja) | 2013-03-06 | 2018-10-24 | 三菱瓦斯化学株式会社 | 酸素吸収剤組成物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11209731A (ja) * | 1998-01-23 | 1999-08-03 | Toyobo Co Ltd | ラミネート缶用接着剤組成物およびラミネート金属板および金属缶 |
JP2006131699A (ja) | 2004-11-04 | 2006-05-25 | Toppan Printing Co Ltd | 酸素吸収能を有する接着剤組成物およびそれを用いた積層体 |
JP2006160787A (ja) * | 2004-12-02 | 2006-06-22 | Unitika Ltd | 生分解性ポリエステル樹脂およびこれを用いた接着剤 |
WO2006080500A1 (ja) | 2005-01-31 | 2006-08-03 | Zeon Corporation | 接着剤および発光素子 |
JP2007302874A (ja) * | 2006-04-12 | 2007-11-22 | Toyo Seikan Kaisha Ltd | 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器 |
JP2008038126A (ja) * | 2006-07-11 | 2008-02-21 | Toyo Seikan Kaisha Ltd | 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4133687A1 (de) * | 1991-10-11 | 1993-04-15 | Basf Ag | Schwundarm haertbare polyester-formmassen |
US7078100B2 (en) * | 2003-08-28 | 2006-07-18 | Cryovac, Inc. | Oxygen scavenger compositions derived from isophthalic acid and/or terephthalic acid monomer or derivatives thereof |
EP1953180B1 (en) | 2005-11-21 | 2016-04-06 | Toyo Seikan Kaisha, Ltd. | Oxygen-absorbing resin, oxygen-absorbing resin composition and oxygen-absorbing container |
EP2036936B1 (en) * | 2006-04-12 | 2018-06-06 | Toyo Seikan Group Holdings, Ltd. | Oxygen-absorbing resin, oxygen-absorbing resin compositions and oxygen-absorbing containers |
-
2010
- 2010-03-08 CN CN2010800196784A patent/CN102414246B/zh active Active
- 2010-03-08 US US13/255,057 patent/US8673173B2/en active Active
- 2010-03-08 KR KR1020117023356A patent/KR101312669B1/ko active IP Right Grant
- 2010-03-08 WO PCT/JP2010/053792 patent/WO2010101290A1/ja active Application Filing
- 2010-03-08 EP EP10748881.9A patent/EP2404948B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11209731A (ja) * | 1998-01-23 | 1999-08-03 | Toyobo Co Ltd | ラミネート缶用接着剤組成物およびラミネート金属板および金属缶 |
JP2006131699A (ja) | 2004-11-04 | 2006-05-25 | Toppan Printing Co Ltd | 酸素吸収能を有する接着剤組成物およびそれを用いた積層体 |
JP2006160787A (ja) * | 2004-12-02 | 2006-06-22 | Unitika Ltd | 生分解性ポリエステル樹脂およびこれを用いた接着剤 |
WO2006080500A1 (ja) | 2005-01-31 | 2006-08-03 | Zeon Corporation | 接着剤および発光素子 |
JP2007302874A (ja) * | 2006-04-12 | 2007-11-22 | Toyo Seikan Kaisha Ltd | 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器 |
JP2008038126A (ja) * | 2006-07-11 | 2008-02-21 | Toyo Seikan Kaisha Ltd | 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2404948A4 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9428316B2 (en) | 2010-08-19 | 2016-08-30 | Toyo Seikan Group Holdings, Ltd. | Resin for oxygen-absorbing adhesive and oxygen-absorbing adhesive |
US20130143734A1 (en) * | 2010-08-19 | 2013-06-06 | Toyo Seikan Kaisha Ltd. | Resin for Oxygen-absorbing Adhesive and Oxygen-absorbing Adhesive |
EP2660261A4 (en) * | 2010-12-28 | 2016-10-05 | Toyo Seikan Group Holdings Ltd | TWIN COMPONENT HARDENABLE OXYGEN ABSORBABLE RESIN COMPOSITION AND OXYGEN ABSORBENT ADHESIVE |
US9102853B2 (en) | 2010-12-28 | 2015-08-11 | Toyo Seikan Group Holdings, Ltd. | Two-part curable oxygen-absorbable resin composition, and oxygen-absorbable adhesive agent |
KR101553268B1 (ko) * | 2010-12-28 | 2015-09-15 | 도요세이칸 그룹 홀딩스 가부시키가이샤 | 2액 경화형 산소 흡수성 수지 조성물 및 산소 흡수성 접착제 |
JP5920591B2 (ja) * | 2010-12-28 | 2016-05-18 | 東洋製罐株式会社 | 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤 |
WO2012090900A1 (ja) * | 2010-12-28 | 2012-07-05 | 東洋製罐株式会社 | 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤 |
JPWO2014057991A1 (ja) * | 2012-10-10 | 2016-09-05 | 三菱瓦斯化学株式会社 | 酸素吸収性樹脂組成物 |
JP2014136788A (ja) * | 2013-01-18 | 2014-07-28 | Toyo Seikan Kaisha Ltd | 酸素吸収性接着剤樹脂組成物 |
WO2014112621A1 (ja) * | 2013-01-18 | 2014-07-24 | 東洋製罐グループホールディングス株式会社 | 酸素吸収性フィルム及び酸素吸収性接着剤樹脂組成物 |
US10774248B2 (en) | 2013-01-18 | 2020-09-15 | Toyo Seikan Group Holdings, Ltd. | Oxygen-absorbing film and oxygen-absorbing adhesive agent resin composition |
US11939495B2 (en) | 2013-01-18 | 2024-03-26 | Toyo Seikan Group Holdings, Ltd. | Oxygen-absorbing film |
JP2017124628A (ja) * | 2017-02-10 | 2017-07-20 | 東洋製罐株式会社 | 酸素吸収性フィルム |
Also Published As
Publication number | Publication date |
---|---|
US20120001121A1 (en) | 2012-01-05 |
EP2404948A4 (en) | 2013-09-11 |
CN102414246A (zh) | 2012-04-11 |
KR101312669B1 (ko) | 2013-09-27 |
EP2404948B1 (en) | 2016-08-24 |
US8673173B2 (en) | 2014-03-18 |
EP2404948A1 (en) | 2012-01-11 |
CN102414246B (zh) | 2013-09-18 |
KR20110132438A (ko) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920591B2 (ja) | 2液硬化型酸素吸収性樹脂組成物及び酸素吸収性接着剤 | |
JP5910998B2 (ja) | 酸素吸収性接着剤用樹脂及び酸素吸収性接着剤 | |
WO2010101290A1 (ja) | 酸素吸収性溶剤可溶型樹脂及び酸素吸収性接着剤樹脂組成物 | |
JP5403272B2 (ja) | 2液硬化型酸素吸収性樹脂組成物 | |
JP5671816B2 (ja) | 酸素吸収性溶剤可溶型樹脂及び酸素吸収性接着剤樹脂組成物 | |
JP5671802B2 (ja) | 酸素吸収性樹脂及び酸素吸収性接着剤樹脂組成物 | |
US11939495B2 (en) | Oxygen-absorbing film | |
JP2024138446A (ja) | 酸素吸収性樹脂組成物及びそれを含む酸素吸収性フィルム | |
JP2021074969A (ja) | 酸素吸収性積層体又はその製造方法 | |
JP6115708B2 (ja) | 酸素吸収性フィルム | |
JP6443823B2 (ja) | 酸素吸収性フィルム | |
JP6075710B2 (ja) | 酸素吸収性接着剤樹脂組成物 | |
JP6090566B2 (ja) | 酸素吸収性樹脂組成物及び酸素吸収性接着剤樹脂組成物 | |
JP6024892B2 (ja) | 酸素吸収性樹脂組成物及び酸素吸収性接着剤樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080019678.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10748881 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13255057 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2010748881 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010748881 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117023356 Country of ref document: KR Kind code of ref document: A |