[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010147123A1 - 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法 - Google Patents

溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法 Download PDF

Info

Publication number
WO2010147123A1
WO2010147123A1 PCT/JP2010/060143 JP2010060143W WO2010147123A1 WO 2010147123 A1 WO2010147123 A1 WO 2010147123A1 JP 2010060143 W JP2010060143 W JP 2010060143W WO 2010147123 A1 WO2010147123 A1 WO 2010147123A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum degassing
tank
vacuum
housing
molten glass
Prior art date
Application number
PCT/JP2010/060143
Other languages
English (en)
French (fr)
Inventor
元之 広瀬
信治 竹下
剛 橋本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201080025416.9A priority Critical patent/CN102803161B/zh
Priority to JP2011519800A priority patent/JPWO2010147123A1/ja
Publication of WO2010147123A1 publication Critical patent/WO2010147123A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass, and a method for clarifying molten glass using the apparatus.
  • a clarification process for removing bubbles generated in the molten glass is provided before the molten glass in which the raw material is melted in the melting furnace is molded by the molding apparatus. Yes.
  • molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that flows continuously under this reduced-pressure atmosphere are greatly grown to float up the bubbles contained in the molten glass.
  • a vacuum defoaming method is known in which bubbles are removed by breaking bubbles and then discharged from a reduced-pressure atmosphere (see Patent Document 1).
  • FIG. 5 shows a general configuration of a conventional vacuum degassing apparatus used in carrying out the vacuum degassing method.
  • the cylindrical vacuum degassing tank 120 is housed and disposed in the vacuum housing 110 such that its long axis is oriented in the horizontal direction.
  • a rising pipe 130 oriented in the vertical direction is attached to the lower surface on the upstream side of the vacuum degassing tank 120, and a lowering pipe 140 is attached to the lower surface on the downstream side.
  • the upstream side and the downstream side of the vacuum degassing tank 120 mean the upstream side and the downstream side in the flow direction of the molten glass G flowing in the vacuum degassing tank 120.
  • a part of the ascending pipe 130 and the descending pipe 140 is located in the decompression housing 110.
  • the ascending pipe 130 communicates with the vacuum degassing tank 120 and is an introduction means for introducing the molten glass G from the melting tank 300 into the vacuum degassing tank 120. For this reason, the lower end portion of the ascending pipe 130 is inserted into the opening end of the upstream pit 320 and immersed in the molten glass G in the upstream pit 320.
  • the downcomer 140 communicates with the vacuum degassing tank 120 and is a derivation means for lowering the molten glass G after the vacuum degassing from the vacuum degassing tank 120 and leading it to a processing tank (not shown) in a subsequent process. is there.
  • a heat insulating material 150 such as a heat insulating brick is provided around the decompression defoaming tank 120, the ascending pipe 130, and the descending pipe 140.
  • An opening 200 is provided.
  • Tank openings 160 a and 160 b for holding the inside of the vacuum degassing tank 120 in a reduced pressure state are also provided in the ceiling of the vacuum degassing tank 120 accommodated in the vacuum housing 110.
  • the tank opening 160 a is located above the ascending pipe 130, and the tank opening 160 b is located above the descending pipe 140.
  • FIG. 6 is a diagram showing a configuration of a vacuum degassing apparatus provided with a window.
  • windows 170 a and 170 b for monitoring the inside of the vacuum degassing tank 120 are provided on the ceiling of the vacuum housing 110.
  • the windows 170a and 170b are provided on the ceiling of the decompression housing 110 above the tank openings 160a and 160b, and include housing openings 180a and 180b provided on the ceiling of the decompression housing 110.
  • Transparent windows 190a and 190b are fitted into the housing openings 180a and 180b provided on the ceiling of the vacuum housing 110 so that the inside of the vacuum degassing tank 120 can be observed through the tank openings 160a and 160b.
  • the windows 170a and 170b include housing openings 180a and 180b provided on the ceiling of the decompression housing 110, and transparent windows 190a and 190b fitted in the housing openings 180a and 180b. Refers to the structure.
  • gas components (hereinafter referred to as “gas component from molten glass”) are generated by bubbles breaking on the surface of the molten glass.
  • gas components from the molten glass may adhere to the ceiling portions of the window portions 170a and 170b and the decompression housing 110 in the vicinity thereof as aggregates.
  • products produced by the reaction between the windows 170a and 170b and the members of the decompression housing 110 in the vicinity thereof and the gas component from the molten glass, and aggregates of the gas component from the product or the molten glass are heated.
  • the product denatured by the above may adhere to the ceiling portion of the decompression housing 110.
  • the present invention is such that agglomerates of gas components from molten glass adhere to the window portion provided in the ceiling portion of the decompression housing and the ceiling portion of the decompression housing in the vicinity thereof.
  • An object of the present invention is to provide a vacuum degassing apparatus in which the above is prevented.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum deaeration tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and communicates with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having a deriving means for deriving, At least one tank opening is provided on the ceiling of the vacuum degassing tank, The ceiling of the decompression housing is provided with at least one window for monitoring the inside of the decompression defoaming tank paired with the tank opening.
  • the window portion is composed of a housing opening provided in a ceiling portion of the decompression housing, and a transparent window fitted in the housing opening,
  • a vacuum degassing apparatus for molten glass characterized by having gas supply means for supplying gas to the inside of the window.
  • being paired with the tank opening means that the horizontal position of the tank opening corresponds to the horizontal position of the window. In this case, the horizontal position of the tank opening and the horizontal position of the window part do not coincide, and the inside of the vacuum degassing tank is monitored from an oblique direction. Even when monitoring from an oblique direction, the inside of the vacuum degassing tank can be observed.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and is provided in communication with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having At least one tank opening is provided on the ceiling of the vacuum degassing tank,
  • the ceiling of the decompression housing is provided with at least one window for monitoring the inside of the decompression defoaming tank paired with the tank opening.
  • the window is composed of a housing opening provided in the ceiling of the decompression housing, and a transparent window attached to the housing opening,
  • a vacuum degassing apparatus for molten glass comprising heating means for heating the periphery of the tank opening provided in the vacuum degassing tank.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and is provided in communication with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having At least one tank opening is provided on the ceiling of the vacuum degassing tank,
  • the ceiling of the decompression housing is provided with at least one window for monitoring the inside of the decompression defoaming tank paired with the tank opening.
  • the window is composed of a housing opening provided in the ceiling of the decompression housing, and a transparent window attached to the housing opening,
  • a molten glass comprising gas supply means for supplying gas to the inside of the window, and heating means for heating the periphery of the tank opening provided in the vacuum degassing tank.
  • a vacuum degassing apparatus is provided.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and is provided in communication with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having At least one tank opening is provided on the ceiling of the vacuum degassing tank,
  • the ceiling of the decompression housing is provided with at least one window for monitoring the inside of the decompression defoaming tank at a position corresponding to the horizontal position of the tank opening.
  • the window portion is composed of a housing opening provided in a ceiling portion of the decompression housing, and a transparent window fitted in the housing opening,
  • a vacuum degassing apparatus for molten glass characterized by having gas supply means for supplying gas to the inside of the window.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and is provided in communication with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having At least one tank opening is provided on the ceiling of the vacuum degassing tank,
  • the ceiling of the decompression housing is provided with at least one window for monitoring the inside of the decompression defoaming tank at a position corresponding to the horizontal position of the tank opening.
  • the window is composed of a housing opening provided in the ceiling of the decompression housing, and a transparent window attached to the housing opening,
  • a vacuum degassing apparatus for molten glass comprising heating means for heating the periphery of the tank opening provided in the vacuum degassing tank.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and is provided in communication with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having At least one tank opening is provided on the ceiling of the vacuum degassing tank,
  • the ceiling of the decompression housing is provided with at least one window for monitoring the inside of the decompression defoaming tank at a position that matches the horizontal position of the housing opening.
  • the window is composed of a housing opening provided in the ceiling of the decompression housing, and a transparent window attached to the housing opening,
  • a molten glass comprising gas supply means for supplying gas to the inside of the window, and heating means for heating the periphery of the tank opening provided in the vacuum degassing tank.
  • a vacuum degassing apparatus is provided.
  • this invention provides the vacuum degassing method of a molten glass using the above-mentioned vacuum degassing apparatus.
  • the present invention is a method for vacuum degassing a molten glass using the above-described vacuum degassing apparatus, comprising at least one of the following steps (1) and (2):
  • a vacuum degassing method is provided.
  • (1) A step of supplying gas to the inside of the window portion.
  • (2) A step of heating the periphery of the tank opening.
  • this invention provides the molten glass manufacturing method using the above-mentioned vacuum degassing method.
  • the present invention provides a vacuum degassing step by the vacuum degassing method described above, a raw material melting step as a pre-step of the vacuum defoaming step, a molding step as a post-step of the vacuum defoaming step, and a step of the molding step.
  • a method for producing a glass product having a slow cooling step as a subsequent step is provided.
  • gas is supplied to the inside of the window provided in the ceiling of the vacuum housing, that is, to the tank opening side of the window and / or the pressure is reduced by the heating means.
  • the heating means By heating the vicinity of the opening of the defoaming tank, agglomerates of gas components from the molten glass are prevented from adhering to the window and the ceiling of the decompression housing around the window.
  • the quality of the glass product to be manufactured without agglomerates adhering to the ceiling portion of the decompression housing in the window and its surroundings mixed into the molten glass flowing in the decompression defoaming tank and becoming a foreign substance of the molten glass Is excellent.
  • FIG. 1 is a cross-sectional view showing a configuration example of the vacuum degassing apparatus of the present invention.
  • FIG. 2 is a partially enlarged view of the vicinity of the window portion 17a of the vacuum degassing apparatus 10 shown in FIG.
  • FIG. 3 is a cross-sectional view showing another configuration example of the vacuum degassing apparatus of the present invention.
  • FIG. 4 is a partially enlarged view of the vicinity of the tank opening 16a of the vacuum degassing apparatus 10 ′ shown in FIG.
  • FIG. 5 is a cross-sectional view showing a configuration example of a conventional vacuum degassing apparatus.
  • FIG. 6 is a cross-sectional view illustrating a configuration example of a vacuum degassing apparatus provided with a window portion of a conventional example.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention.
  • a cylindrical vacuum vacuum degassing tank 12 is housed and disposed in the vacuum housing 11 such that its long axis is oriented in the horizontal direction.
  • a rising pipe 13 oriented in the vertical direction is attached to the lower surface on the upstream side of the vacuum degassing tank 12, and a lowering pipe 14 is attached to the lower surface on the downstream side.
  • the upstream side and the downstream side of the vacuum degassing tank 12 mean the upstream side and the downstream side in the flow direction of the molten glass G flowing in the vacuum degassing tank 12.
  • a part of the ascending pipe 13 and the descending pipe 14 is located in the decompression housing 11.
  • the ascending pipe 13 communicates with the vacuum degassing tank 12 and is an introducing means for introducing the molten glass G from the melting tank 300 into the vacuum degassing tank 12. For this reason, the lower end portion of the rising pipe 13 is inserted into the opening end of the upstream pit 320 and is immersed in the molten glass G in the upstream pit 320.
  • the downcomer 14 communicates with the vacuum degassing tank 12 and is a lead-out means for lowering the molten glass G after the vacuum degassing from the vacuum degassing tank 12 and leading it to a processing tank (not shown) in a subsequent process. is there.
  • the lower end portion of the downcomer pipe 14 is inserted into the open end of the downstream pit 340 and is immersed in the molten glass G in the downstream pit 340.
  • a heat insulating material 15 such as a heat insulating brick is provided around the decompression defoaming tank 12, the ascending pipe 13 and the descending pipe 14 to insulate these.
  • An opening 20 is provided.
  • Tank openings 16 a and 16 b for holding the inside of the vacuum degassing tank 12 in a decompressed state are also provided at the ceiling of the vacuum degassing tank 12 accommodated in the vacuum housing 11.
  • the tank openings 16 a and 16 b are also openings for monitoring the inside of the vacuum degassing tank 12.
  • the tank opening 16 a is located above the ascending pipe 13
  • the tank opening 16 b is located above the descending pipe 14.
  • the vacuum degassing apparatus of the present invention it is sufficient that at least one tank opening is provided in the ceiling of the vacuum degassing tank, and the number of tank openings provided in the ceiling of the vacuum degassing tank, and The position of the tank opening is not limited to the embodiment shown in FIG. Therefore, only one of the tank openings 16a and 16b may be provided. Further, instead of the tank openings 16a and 16b, one tank opening may be provided in a portion other than these (for example, an intermediate portion of the vacuum degassing tank 12).
  • the third tank opening (further, the fourth and fifth tank openings) is replaced with a portion other than the tank openings 16a and 16b (for example, the vacuum degassing tank 12). It may be provided in the middle part).
  • the communicating portion between the downcomer 14 led to the tank and the vacuum degassing tank 12 is particularly important in confirming the state of the molten glass in the vacuum degassing tank 12, more specifically, the surface of the molten glass. Therefore, the tank openings provided in the ceiling of the vacuum degassing tank 12 for the purpose of monitoring by observation both upstream and downstream of the vacuum degassing tank 12 are the tank openings 16a and 16b shown in FIG. It is preferable to provide at least above the ascending pipe 13 and the descending pipe 14.
  • the shape of the tank openings 16a and 16b provided on the ceiling of the vacuum degassing tank 12 is not particularly inconvenient in monitoring the inside of the vacuum degassing tank 12, and is not particularly limited as long as the strength of the vacuum degassing tank 12 is not reduced.
  • various shapes such as a circle, an ellipse, and a rectangle can be selected.
  • the dimensions of the tank openings 16a and 16b provided in the ceiling of the vacuum degassing tank 12 are not particularly limited as long as the inside of the vacuum degassing tank 12 is not inferior, and the strength of the vacuum degassing tank 12 is not reduced.
  • the outer diameter may be 30 to 400 mm, more preferably 40 to 350 mm, and still more preferably 50 to 300 mm.
  • windows 17a and 17b for monitoring the inside of the vacuum degassing tank 12 are provided on the ceiling of the vacuum housing 11.
  • the positions of the windows 17a and 17b coincide with the horizontal positions of the tank openings 16a and 16b provided in the ceiling of the vacuum degassing tank 12.
  • the windows 17a and 17b are constituted by housing openings 18a and 18b provided in the ceiling of the decompression housing 11, and transparent windows 19a and 19b fitted in the housing openings 18a and 18b.
  • the transparent windows 19a and 19b fitted into the openings 18a and 18b desirably have heat resistance, pressure resistance, acid resistance, and the like.
  • the ceiling of the vacuum housing is provided with at least one window at a position corresponding to the tank opening provided in the ceiling of the vacuum degassing tank in the horizontal direction. What is necessary is just to provide the window part of the same number as the tank opening part provided in the ceiling part of the pressure reduction degassing tank in the ceiling part of a pressure reduction housing. Therefore, only one of the windows 17a and 17b may be provided. However, considering that the purpose of providing the tank openings 16a and 16b in the ceiling of the vacuum degassing tank 12 is to monitor the inside of the vacuum degassing tank 12, as shown in FIG.
  • the horizontal position of the window portion does not necessarily coincide with the horizontal position of the tank opening portion, and the horizontal position of the tank opening portion is the window position. It suffices if they are paired corresponding to the horizontal position of the parts, and the horizontal positions of both parts may be shifted so that the inside of the vacuum degassing tank can be monitored from an oblique direction. However, since the optical path is shorter when the distance from the tank opening to the window is shorter, it is preferable that the position of the window coincides with the position of the tank opening in the substantially horizontal direction.
  • the shape of the windows 17a and 17b provided in the ceiling of the decompression housing 11, more specifically, the shape of the housing openings 18a and 18b provided in the ceiling of the decompression housing 11 as the windows 17a and 17b is the decompression release.
  • the shape of the tank openings 16a, 16b provided in the ceiling of the vacuum degassing tank 12 and the shape of the housing openings 18a, 18b provided in the ceiling of the vacuum housing 11 as the windows 17a, 17b, are consistent or similar in order to monitor the inside of the vacuum degassing tank 12.
  • the dimensions of the windows 17a and 17b provided on the ceiling of the decompression housing 11, more specifically, the dimensions of the housing openings 18a and 18b provided on the ceiling of the decompression housing 11 as the windows 17a and 17b are also decompressed and degassed. There is no inconvenience in monitoring the inside of the tank 12 by observation, and there is no particular limitation as long as the strength of the vacuum degassing tank 12 is not reduced. However, the dimensions of the tank openings 16a and 16b provided in the ceiling of the vacuum degassing tank 12, and the dimensions of the housing openings 18a and 18b provided in the ceiling of the vacuum housing 11 as the windows 17a and 17b, Are preferably the same when monitoring the inside of the vacuum degassing vessel 12.
  • the dimensions of the housing openings 18a and 18b provided in the ceiling of the decompression housing 11 as the windows 17a and 17b are described with respect to the dimensions of the tank openings 16a and 16b provided in the ceiling of the decompression defoaming tank 12. It is preferable to be in the range.
  • a window 17a provided in the ceiling and a tank opening 16a provided in the ceiling of the vacuum degassing tank 12 are provided on the window 17b provided in the ceiling of the vacuum housing 11 and the ceiling of the vacuum degassing tank 12.
  • the window portion 17a is formed on the ceiling portion of the vacuum housing 11 at the desired location.
  • a tank opening 16a may be provided in the ceiling portion of the vacuum degassing tank 12 vertically or obliquely below, and the window 17a and the tank opening 16a may be communicated with each other.
  • the vacuum degassing apparatus 10 of the present invention shown in FIG. 1 has gas supply means 21a and 21b for supplying gas to the window portions 17a and 17b.
  • the gas supply means will be described with reference to FIG. 2 which is a partially enlarged view near the window portion 17a of the vacuum degassing apparatus 10 of the present invention shown in FIG.
  • the gas supply means 21a for supplying gas to the window part 17a is demonstrated with reference to FIG. 2
  • the gas supply means 21b for supplying gas to the window 17b is also substantially the same structure.
  • the gas supply means 21a is a hollow tube made of metal, for example, stainless steel, brass, copper, aluminum, etc., one end of which is inside the window portion 17a, more specifically, the window portion 17a. The other end is located below the transparent window 19 a, and the other end passes through the wall surface of the decompression housing 11 and is located outside the decompression housing 11.
  • the gas g is supplied from the gas supply means 21a to the inside of the window portion 17a, that is, to the tank opening portion 16a side of the window portion 17a. More specifically, the gas g is supplied below the transparent window 19a that constitutes the window portion 17a.
  • gas g is supplied from the gas supply means 21a to the window portion 17a (below the transparent window 19a constituting the window portion 17a)
  • agglomerates of gas components from the molten glass present in the atmosphere near the window portion 17a are diluted. This prevents the window portion 17a and the ceiling portion of the decompression housing 11 around the window portion 17a from adhering.
  • the portion to which the gas g is supplied is compared with other portions in the decompression housing 11. Pressure increases. This pressure difference also prevents the window portion 17a and the surrounding ceiling portion of the decompression housing 11 from being attached.
  • the structure of the gas supply means in the vacuum degassing apparatus of the present invention is not particularly limited as long as the gas can be supplied to the window provided in the ceiling of the vacuum housing, and the structure other than that shown in the figure may be used. Good.
  • a structure in which a gas supply unit is connected to the window portion 17a and the like can be cited.
  • various gases can be used as the gas supplied from the gas supply means to the window, as long as the gas does not adversely affect the vacuum degassing apparatus, particularly the vacuum housing.
  • gases include hydrogen (H 2 ), nitrogen (N 2 ), oxygen (O 2 ), air, carbon monoxide (CO), carbon dioxide (CO 2 ), argon (Ar), and helium.
  • He hydrogen
  • Ne nitrogen
  • Kr krypton
  • Xe xenon
  • hydrocarbon gas fluorocarbon gas
  • ammonia NH 3
  • nitrogen and air are preferable because they are inexpensive.
  • the amount of gas supplied from the gas supply means to the window and the flow rate of the supplied gas are such that the aggregate of gas components from the molten glass is the ceiling of the decompression housing 11 around the window 17a and the surrounding area. It is not particularly limited as long as it can be prevented from adhering to the surface.
  • An example of the supply amount of the gas g supplied from the gas supply means 21a to the window portion 17a is 0.5 to 100 liters / minute, preferably 0.5 to 80 liters / minute, more preferably 1 ⁇ 50 l / min.
  • An example of the flow rate of the gas g supplied from the gas supply means 21a to the window portion 17a is 0.1 m / min to 10 m / min, preferably 0.1 m / min to 8 m / min.
  • FIG. 3 is a cross-sectional view showing another configuration example of the vacuum degassing apparatus of the present invention.
  • 3 does not have gas supply means 21a and 21b for supplying gas to the windows 17a and 17b, but is provided at the ceiling of the vacuum degassing tank 12 instead.
  • the vacuum degassing apparatus 10 shown in FIG. 1 is the same.
  • 3 shows the heating means 22a, 22b, 22c and 22d when the constituent material of the vacuum degassing tank 12 is platinum or a platinum alloy. The heating means will be described with reference to FIG.
  • FIG. 4 which is a partially enlarged view near the tank opening 16a of the vacuum degassing apparatus 10 ′ of the present invention shown in FIG. 4 illustrates the heating means 22a and 22b for heating the periphery of the tank opening 16a, the heating means 22c and 22d for heating the periphery of the tank opening 16b shown in FIG. It has substantially the same structure as the heating means 22a and 22b.
  • the heating means 22 a and 22 b are arranged on the ceiling of the vacuum degassing tank 12 so as to surround the entrance portions of the tank openings 16 a and 16 b provided so as to communicate with the windows 17 a and 17 b. It is an energizing electrode attached to the outer periphery of the entrance peripheral part (hereinafter simply referred to as a convex part) that is convex. By energizing between the electrodes (heating means) 22a and 22b, a convex portion formed around the tank opening 16a, more specifically, on the ceiling of the vacuum degassing tank 12 in order to provide the tank opening 16a. Heated.
  • the gas component from the molten glass G flowing through the vacuum degassing tank 12 is discharged from the tank opening 16a to the outside of the vacuum degassing tank 12, and a window 17a located above the tank opening 16a, and Since it aggregates in the ceiling part of the decompression housing 11 around the window part 17a, the gas component from the molten glass is heated in the vicinity of the tank opening part 16a, so that the window part 17a and the decompression housing 11 around the window part 17a are heated. Aggregation at the ceiling can be prevented. Thereby, the aggregate of the gas component from molten glass is prevented from adhering to the window portion 17a and the ceiling portion of the decompression housing 11 in the vicinity thereof.
  • the heating means 22a and 22b which are energization electrodes, are required to have excellent heat resistance and excellent conductivity.
  • Examples of the material that satisfies this condition include platinum, or platinum alloys such as platinum-gold alloys and platinum-rhodium alloys.
  • the gas component from the molten glass differs depending on the composition of the molten glass, and the aggregation temperature varies depending on the gas component. Therefore, the heating temperature around the tank opening 16a required to exhibit the effect of preventing the gas component from the molten glass from aggregating at the window 17a and the ceiling of the decompression housing 11 around the window 17a is as follows. Depending on the composition of the molten glass G flowing through the vacuum degassing tank 12, it is appropriately selected.
  • the gas component from the molten glass is converted into a window by heating the periphery of the tank opening 16a to a temperature of 1000 to 1300 ° C.
  • the effect of preventing aggregation at the ceiling portion of the decompression housing 11 around the portion 17a and its periphery is exhibited.
  • the heating means in the vacuum degassing apparatus of the present invention is not particularly limited as long as it can heat the periphery of the tank opening provided in the ceiling part of the vacuum degassing tank, and is a structure other than illustrated. Also good.
  • the convex portion is formed by energizing between the electrodes (heating means) 22a and 22b attached to the outer periphery of the convex portion formed on the ceiling portion of the vacuum degassing tank 12 in order to provide the tank opening 16a. Is heating up.
  • the electrode (heating means) 22a is attached to the convex part, and the electrode (heating means) corresponding to the electrode (heating means) 22b is a part other than the convex part, for example, the vacuum defoaming tank 12
  • the periphery of the tank opening 16a may be heated by providing an electrode (heating means) at the upstream end and energizing between the electrode (heating means) and the electrode (heating means) 22a.
  • the upstream side said here points out the upstream in the flow direction of the molten glass G which distribute
  • the pressure reduction degassing tank in this invention is mentioned later.
  • a dense refractory may be used as a constituent material.
  • the tank opening What is necessary is just to heat the 16a periphery.
  • the constituent material of the vacuum degassing tank is platinum or a platinum alloy
  • the vicinity of the tank opening 16a may be heated by attaching a heater (heating means) to the outer periphery of the convex part.
  • gas supply means for supplying gas to the window portion As means for preventing aggregates of gas components from the molten glass from adhering to the window portion 17a and the ceiling portion of the decompression housing 11 around the window portion 17a, gas supply means for supplying gas to the window portion is provided.
  • the vacuum degassing apparatus and the vacuum degassing apparatus having heating means for heating the vicinity of the tank opening provided in the ceiling of the vacuum degassing tank have been described.
  • the vacuum degassing apparatus of the present invention may have only one of the gas supply means and the heating means, or may have both.
  • both of the gas supply means and the heating means are provided. It is more preferable.
  • the vacuum degassing tank 12, the ascending pipe 13 and the descending pipe 14 are conduits for the molten glass G, and thus have excellent heat resistance and corrosion resistance against the molten glass. It is made using materials.
  • Another example is a hollow tube made of a ceramic-based non-metallic inorganic material, that is, a dense refractory material, a cylindrical tube, and other types of cylindrical tubes.
  • dense refractories include, for example, electrocast refractories such as alumina electrocast refractories, zirconia electrocast refractories, alumina-zirconia-silica electrocast refractories, and dense alumina refractories.
  • dense fired refractories such as dense zirconia-silica refractory and dense alumina-zirconia-silica refractory.
  • the decompression housing 11 that accommodates the decompression defoaming tank 12 and accommodates part of the ascending pipe 13 and the descending pipe 14 is made of metal, for example, stainless steel.
  • each component of the vacuum degassing apparatus 10, 10 'of the present invention can be appropriately selected as necessary.
  • the dimensions of the vacuum degassing tank 12 are the same as the vacuum degassing apparatus used or the shape of the vacuum degassing tank 12 regardless of whether the vacuum degassing tank 12 is made of platinum, a platinum alloy, or a dense refractory. It can be selected as appropriate according to the conditions.
  • an example of the dimensions is as follows.
  • the vacuum degassing tank 12 is made of platinum or a platinum alloy, the wall thickness is preferably 4 mm or less, more preferably 0.5 to 1.2 mm.
  • the vacuum degassing tank is not limited to a cylindrical shape having a circular cross section, and may be a substantially cylindrical shape having an elliptical shape or a semicircular cross sectional shape, or a cylindrical shape having a rectangular cross section.
  • the riser pipe 13 and the downfall pipe 14 are made of platinum, a platinum alloy, or a dense refractory, they can be appropriately selected according to the vacuum degassing apparatus to be used.
  • the vacuum degassing apparatus 10 10 ′ shown in FIGS.
  • Inner diameter 0.05 to 0.8 m, more preferably 0.1 to 0.6 m -Length: 0.2-6m, more preferably 0.4-4m
  • the wall thickness is preferably 0.4 to 5 mm, more preferably 0.6 to 4 mm.
  • the vacuum degassing method for molten glass using the vacuum degassing apparatus of the present invention can be carried out under the same conditions as the conventional vacuum degassing method for molten glass.
  • the vacuum degassing tank 12 is preferably heated so that the inside thereof is in a temperature range of 1100 ° C. to 1600 ° C., particularly 1150 ° C. to 1500 ° C.
  • the inside of the vacuum degassing tank 12 is preferably decompressed to 38 to 460 mmHg (51 to 613 hPa) in absolute pressure, more preferably 60 to 350 mmHg (80 to 467 hPa). preferable.
  • the flow rate of the molten glass G flowing through the vacuum degassing tank 12 is preferably 1 to 2000 tons / day from the viewpoint of productivity.
  • the molten glass production method using the vacuum degassing method of the present invention preferably includes a raw material melting step as a pre-process of the vacuum degassing method of the present invention and a molding step as a post-process.
  • This raw material melting step may be, for example, a conventionally known one.
  • the raw material is melted by heating to about 1400 ° C. or higher according to the type of glass.
  • the raw material to be used is not particularly limited as long as it is compatible with the glass to be produced.
  • raw materials prepared by mixing conventionally known materials such as cinnabar, boric acid, limestone in accordance with the composition of the final glass product can be used. It may contain a refining agent.
  • molding process may be a conventionally well-known thing, for example, a float shaping
  • the glass after molding is slowly cooled by a slow cooling means (gradual cooling process) so that no residual stress remains in the solidified glass after molding (further cooling process), and further cut (cutting process) as necessary. Through a polishing process or the like, it becomes a glass product.
  • the slow cooling step, the cutting step, and the polishing step are known publicly known techniques.
  • the molten glass produced by the present invention is not limited in terms of composition as long as it is a glass produced by a heat melting method. Therefore, it may be non-alkali glass, or may be alkali glass such as soda lime silica glass represented by soda lime glass or alkali borosilicate glass.
  • the present invention is particularly suitable for the production of alkali-free glass and further alkali-free glass for liquid crystal display substrates.
  • the glass product excellent in foam quality can be obtained, it is suitable as a manufacturing method of glass products, such as a glass substrate for FPD.
  • the vacuum degassing apparatus for producing glass of the present invention it is possible to prevent the condensate of the gas component from the molten glass from adhering to the window portion provided in the ceiling portion of the vacuum housing and the peripheral portion thereof. Therefore, by observing and monitoring the state of the molten glass in the vacuum degassing tank from the window as needed, it is possible to accurately grasp the operating status of the vacuum degassing apparatus and contribute to the improvement of the production yield. Can do. Further, according to the present invention, as in the conventional apparatus, the condensate adhering to the window portion of the decompression housing and the periphery thereof may fall on the surface of the molten glass flowing in the decompression housing and become a foreign substance of the molten glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 溶融ガラスからのガス成分の凝集物が、減圧ハウジングの天井部に設けられた窓部、および、その周辺の減圧ハウジングの天井部に付着することが防止された減圧脱泡装置の提供。 減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、前記窓部の内側にガスを供給するためのガス供給手段と、さらに必要に応じて前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段と、を有することを特徴とする溶融ガラスの減圧脱泡装置。

Description

溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法
 本発明は、連続的に供給される溶融ガラスから気泡を除去する溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラスの清澄方法に関する。
 従来より、成形されたガラス製品の品質を向上させるために、溶解炉で原料を溶解した溶融ガラスを成形装置で成形する前に、溶融ガラス内に発生した気泡を除去する清澄工程が設けられている。
 この清澄工程では、減圧雰囲気内に溶融ガラスを導入し、この減圧雰囲気下、連続的に流れる溶融ガラス流内の気泡を大きく成長させて溶融ガラス内に含まれる気泡を浮上させ、溶融ガラス表面で気泡を破泡させて除去し、その後減圧雰囲気から排出する減圧脱泡方法が知られている(特許文献1参照)。
 減圧脱泡方法を実施する際に使用される従来の減圧脱泡装置の一般的構成を図5に示した。
 図5に示す減圧脱泡装置100において、円筒形状をした減圧脱泡槽120は、その長軸が水平方向に配向するように減圧ハウジング110内に収納配置されている。減圧脱泡槽120の上流側の下面には垂直方向に配向する上昇管130が、下流側の下面には下降管140が取り付けられている。なお、減圧脱泡槽120の上流側および下流側とは、減圧脱泡槽120を流動する溶融ガラスGの流動方向における上流側および下流側を意味する。上昇管130及び下降管140は、その一部が減圧ハウジング110内に位置している。
 上昇管130は減圧脱泡槽120と連通しており、溶解槽300からの溶融ガラスGを減圧脱泡槽120に導入する導入手段である。このため、上昇管130の下端部は、上流ピット320の開口端に挿入され、この上流ピット320内の溶融ガラスGに浸漬されている。
 下降管140は、減圧脱泡槽120に連通しており、減圧脱泡後の溶融ガラスGを減圧脱泡槽120から下降させて後工程の処理槽(図示せず)に導出する導出手段である。このため、下降管140の下端部は、下流ピット340の開口端に挿入され、この下流ピット340内の溶融ガラスGに浸漬されている。
 減圧ハウジング110内において、減圧脱泡槽120、上昇管130及び下降管140の周囲には、これらを断熱被覆する断熱用レンガ等の断熱材150が配設されている。
 図5に示す減圧脱泡装置100において、減圧ハウジング110の天井部には、真空ポンプ(図示せず)等によって真空吸引することにより、該減圧ハウジング110の内部を減圧状態に保持するための吸引開口部200が設けられている。
 該減圧ハウジング110内に収容配置された減圧脱泡槽120の天井部にも、該減圧脱泡槽120の内部を減圧状態に保持するための槽開口部160a,160bが設けられている。槽開口部160aは上昇管130の上方に位置しており、槽開口部160bは下降管140の上方に位置している。
特開平11-130442号公報
 減圧脱泡装置において、減圧ハウジングの天井部には減圧脱泡槽の内部をモニタするための窓部が設けられていることが好ましい。図6は、窓部が設けられた減圧脱泡装置の構成を示した図である。
 図6に示す減圧脱泡装置100´では、減圧ハウジング110の天井部に減圧脱泡槽120の内部をモニタするための窓部170a,170bが設けられている。
 窓部170a,170bは、槽開口部160a,160b上方の減圧ハウジング110の天井部に設けられており、該減圧ハウジング110の天井部に設けられたハウジング開口部180a,180bを含む。槽開口部160a,160bを介して減圧脱泡槽120の内部を観察できるように、該減圧ハウジング110の天井部に設けられたハウジング開口部180a,180bには透明な窓190a,190bがはめ込まれている。なお、窓部170a,170bとは、減圧ハウジング110の天井部に設けられたハウジング開口部180a,180bと、該ハウジング開口部180a,180bにはめ込まれた透明な窓190a,190bと、を含んだ構造を指す。
 図6に示す減圧脱泡装置100´を用いて減圧脱泡を実施する際、溶融ガラス表面で気泡が破泡することによってガス成分(以下、「溶融ガラスからのガス成分」という。)が発生するが、溶融ガラスからのガス成分が凝集物として、窓部170a,170bやその周辺の減圧ハウジング110の天井部に付着する場合がある。また、窓部170a,170bやその周辺の減圧ハウジング110の部材と、溶融ガラスからのガス成分と、が反応することによる生成物や、該生成物もしくは溶融ガラスからのガス成分の凝集物が熱によって変性した生成物が減圧ハウジング110の天井部に付着する場合がある。
 以下、本明細書において、凝集物が窓部170a,170b,17a,17bやその周辺の減圧ハウジング110,11の天井部に付着するといった場合、溶融ガラスからのガス成分の凝集物が窓部170a,170b,17a,17bやその周辺の減圧ハウジング110,11の天井部に付着することに加えて、上記の反応生成物や熱変性による生成物が窓部170a,170b,17a,17bやその周辺の減圧ハウジング110,11の天井部に付着することも包含する。
 このような凝集物が窓部170a,170b、特に、窓190a,190bに付着すると減圧脱泡槽120内部をモニタするのが困難となる。
 また、窓部170a,170bやその周辺の減圧ハウジング110の天井部に付着した凝集物が減圧脱泡槽120内に落下して、該減圧脱泡槽120を流通する溶融ガラスに混入すると、溶融ガラスの異物となる。
 このため、窓部170a,170bやその周辺の減圧ハウジング110の天井部に付着した凝集物を定期的に除去する必要があるが、この作業は減圧脱泡装置の運転を停止して実施することが必要となることから、生産性やガラス製品の歩留まりを低下させる。
 上記した問題点を解決するため、本発明は、溶融ガラスからのガス成分の凝集物が、減圧ハウジングの天井部に設けられた窓部、および、その周辺の減圧ハウジングの天井部に付着することが防止された減圧脱泡装置を提供することを目的とする。
 上記の目的を達成するため、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
 前記窓部の内側にガスを供給するためのガス供給手段を有することを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 なお、前記槽開口部と対となるとは、前記槽開口部の水平方向位置が前記窓部の水平方向位置に対応していることをいう。この場合は、前記槽開口部の水平方向位置と前記窓部の水平方向位置が一致せず、前記減圧脱泡槽内部を斜め方向からモニタする場合を含む。斜め方向からモニタする場合でも、前記減圧脱泡槽内部を観察できる。
 また、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
 前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段を有することを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 また、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
 前記窓部の内側にガスを供給するためのガス供給手段と、前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段と、を有することを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 また、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
 前記窓部の内側にガスを供給するためのガス供給手段を有することを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 また、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
 前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段を有することを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 また、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記ハウジング開口部の水平方向の位置に一致する位置に、前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
 前記窓部の内側にガスを供給するためのガス供給手段と、前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段と、を有することを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 また、本発明は、上記した減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法を提供する。
 また、本発明は、上記した減圧脱泡装置を用いて溶融ガラスを減圧脱法する方法であって、少なくとも下記(1)および(2)のいずれかの工程を含むことを特徴とする溶融ガラスの減圧脱泡方法を提供する。
 (1)前記窓部の内側にガスを供給する工程。
 (2)前記槽開口部周辺を加熱する工程。
 また、本発明は、上記した減圧脱泡方法を用いた溶融ガラス製造方法を提供する。
 さらに、本発明は、上記した減圧脱泡方法による減圧脱泡工程と、該減圧脱泡工程の前工程として原料溶融工程と、該減圧脱泡工程の後工程として成形工程と、該成形工程の後工程として徐冷工程と、を有するガラス製品の製造方法を提供する。
 本発明の減圧脱泡装置では、減圧ハウジングの天井部に設けられた窓部の内側に、すなわち窓部の槽開口部側に、にガスを供給することにより、および/または、加熱手段で減圧脱泡槽の槽開口部周辺を加熱することにより、溶融ガラスからのガス成分の凝集物が、該窓部、および、その周辺の減圧ハウジングの天井部に付着することが防止される。
 この結果、窓部やその周辺の減圧ハウジングの天井部に付着した凝集物を除去するために、減圧脱泡装置の運転を停止する必要がなくなり、生産性やガラス製品の歩留まりが向上する。
 また、窓部やその周辺の減圧ハウジングの天井部に付着した凝集物が減圧脱泡槽を流動する溶融ガラスに混入して、溶融ガラスの異物となることがなく、製造されるガラス製品の品質が優れている。
図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。 図2は、図1に示す減圧脱泡装置10の窓部17a付近の部分拡大図である。 図3は、本発明の減圧脱泡装置の別の一構成例を示す断面図である。 図4は、図3に示す減圧脱泡装置10´の槽開口部16a付近の部分拡大図である。 図5は、従来例の減圧脱泡装置の一構成例を示す断面図である。 図6は、従来例の窓部が設けられた減圧脱泡装置の構成例を示す断面図である。
 以下、図面を参照して本発明を説明する。
 図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。図1に示す減圧脱泡装置10において、円筒形状をした減圧脱泡槽12は、その長軸が水平方向に配向するように減圧ハウジング11内に収納配置されている。減圧脱泡槽12の上流側の下面には垂直方向に配向する上昇管13が、下流側の下面には下降管14が取り付けられている。なお、減圧脱泡槽12の上流側および下流側とは、減圧脱泡槽12を流動する溶融ガラスGの流動方向における上流側および下流側を意味する。上昇管13及び下降管14は、その一部が減圧ハウジング11内に位置している。
 図1に示すように、上昇管13は減圧脱泡槽12と連通しており、溶解槽300からの溶融ガラスGを減圧脱泡槽12に導入する導入手段である。このため、上昇管13の下端部は、上流ピット320の開口端に挿入され、この上流ピット320内の溶融ガラスGに浸漬されている。
 下降管14は、減圧脱泡槽12に連通しており、減圧脱泡後の溶融ガラスGを減圧脱泡槽12から下降させて後工程の処理槽(図示せず)に導出する導出手段である。このため、下降管14の下端部は、下流ピット340の開口端に挿入され、この下流ピット340内の溶融ガラスGに浸漬されている。
 減圧ハウジング11内において、減圧脱泡槽12、上昇管13及び下降管14の周囲には、これらを断熱被覆する断熱用レンガ等の断熱材15が配設されている。
 図1に示す減圧脱泡装置10において、減圧ハウジング11の天井部には、真空ポンプ(図示せず)等によって真空吸引することにより、該減圧ハウジング11の内部を減圧状態に保持するための吸引開口部20が設けられている。
 該減圧ハウジング11内に収容配置された減圧脱泡槽12の天井部にも、該減圧脱泡槽12の内部を減圧状態に保持するための槽開口部16a,16bが設けられている。槽開口部16a,16bは、減圧脱泡槽12の内部をモニタするための開口部でもある。
 図1に示す減圧脱泡装置10において、槽開口部16aは上昇管13の上方に位置しており、槽開口部16bは下降管14の上方に位置している。
 但し、本発明の減圧脱泡装置において、減圧脱泡槽の天井部には少なくとも1つの槽開口部が設けられていればよく、減圧脱泡槽の天井部に設ける槽開口部の数、および槽開口部の位置は、図1に示す態様に限定されない。
 したがって、槽開口部16a,16bのうち、いずれか一方のみを設けたのでもよい。
 また、槽開口部16a,16bの代わりに、これら以外の部位(例えば、減圧脱泡槽12の中間部分)に槽開口部を1つ設けたのでもよい。
 また、槽開口部16a,16bに加えて、第3の槽開口部(さらには、第4、第5の槽開口部)を槽開口部16a,16b以外の部位(例えば、減圧脱泡槽12の中間部分)に設けたのでもよい。
 但し、減圧脱泡槽12において、溶解槽300からの溶融ガラスGが導入される上昇管13と減圧脱泡槽12との連通部分、および、減圧脱泡後の溶融ガラスGが後工程の処理槽へと導出される下降管14と減圧脱泡槽12との連通部分は、減圧脱泡槽12内の溶融ガラスの状態、より具体的には、溶融ガラス表面を確認するうえで特に重要であるので、減圧脱泡槽12の上流と下流の両方で観察によりモニタする目的で該減圧脱泡槽12の天井部に設ける槽開口部は、図1に示す槽開口部16a,16bのように、上昇管13および下降管14の上方に少なくとも設けることが好ましい。
 減圧脱泡槽12の天井部に設ける槽開口部16a,16bの形状は、減圧脱泡槽12の内部をモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されず、円形、楕円形、矩形等、各種形状を選択することができる。
 減圧脱泡槽12の天井部に設ける槽開口部16a,16bの寸法も減圧脱泡槽12の内部をモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されない。円径または多角形の外径としてみた場合、例えば、30~400mmとすることができ、より好ましくは40~350mmであり、さらに好ましくは50~300mmである。
 本発明の減圧脱泡装置10において、減圧ハウジング11の天井部には減圧脱泡槽12の内部をモニタするための窓部17a,17bが設けられている。該窓部17a,17bの位置は、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの水平方向の位置と一致している。
 窓部17a,17bは、減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bと、該ハウジング開口部18a,18bに嵌め込まれた透明な窓19a,19bと、で構成される。なお、該開口部18a,18bに嵌め込まれる透明な窓19a,19bは、耐熱性、耐圧性、耐酸性などを有することが望ましい。これらを満たす材料としては、例えば、石英ガラス、サファイアガラス、透明結晶化ガラスなどが挙げられる。
 本発明の減圧脱泡装置において、減圧ハウジングの天井部には、減圧脱泡槽の天井部に設けられた槽開口部に水平方向で対応する位置に、少なくとも1つの窓部が設けられていればよく、減圧脱泡槽の天井部に設けられた槽開口部と同数の窓部を減圧ハウジングの天井部に設けることは必ずしも要求されない。したがって、窓部17a,17bのうち、いずれか一方のみを設けたのでもよい。
 但し、減圧脱泡槽12の天井部に槽開口部16a,16bを設ける目的の1つが、該減圧脱泡槽12の内部をモニタすることである点を考慮すると、図1に示すように、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bに対して、同数の窓部17a,17bを減圧ハウジング11の天井部に設けることが好ましい。
 また、減圧脱泡槽12の内部をモニタするにあたり、窓部の水平方向の位置が槽開口部の水平方向の位置と必ずしも一致している必要はなく、槽開口部の水平方向の位置が窓部の水平方向位置に対応して対になっていればよく、減圧脱泡槽内部を斜めからモニタできるように両部の水平方向位置がずれていてもよい。ただし、槽開口部から窓部までの距離が短い方が光路が短くなるので、構造的にも窓部の位置が槽開口部の略水平方向の位置と一致している方が好ましい。
 減圧ハウジング11の天井部に設ける窓部17a,17bの形状、より具体的には、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの形状は、減圧脱泡槽12の内部をモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されず、円形、楕円形、矩形等、各種形状を選択することができる。但し、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの形状と、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの形状と、が一致若しく類似していることが、減圧脱泡槽12の内部をモニタするうえで好ましい。
 減圧ハウジング11の天井部に設ける窓部17a,17bの寸法、より具体的には、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの寸法も減圧脱泡槽12の内部を観察によりモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されない。但し、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの寸法と、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの寸法と、が略同一であることが、減圧脱泡槽12の内部をモニタするうえで好ましい。
 したがって、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの寸法は、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの寸法について記載した範囲であることが好ましい。
 また、本発明の減圧脱泡装置10の上昇管13、下降管14の上方における溶融ガラスの状態を観察し、その状態をモニターしたい場合には、図1、3のように、減圧ハウジング11の天井部に設けられる窓部17aと減圧脱泡槽12の天井部に設けられる槽開口部16aとを、また減圧ハウジング11の天井部に設けられる窓部17bと減圧脱泡槽12の天井部に設けられる槽開口部16bとを、窓部17a、17bから覗き込んで観察できるように、筒状体等を介して縦方向に連通する構造とするのが好ましい。また、減圧脱泡装置10の減圧脱泡槽12中を横方向に流れている溶融ガラスの状態を観察し、モニターしたい場合には、観察したい場所において、減圧ハウジング11の天井部に窓部17aと、その垂直下方あるいは斜め下方の減圧脱泡槽12の天井部に槽開口部16aとを設け、窓17aと槽開口部16aとを連通させるような構造としてもよい。
 図1に示す本発明の減圧脱泡装置10は、窓部17a,17bにガスを供給するためのガス供給手段21a,21bを有している。ガス供給手段について、図1に示す本発明の減圧脱泡装置10の窓部17a付近の部分拡大図である図2を参照して説明する。なお、窓部17aにガスを供給するためのガス供給手段21aについて図2を参照して説明するが、窓17bにガスを供給するためのガス供給手段21bも実質的に同じ構造である。
 図2において、ガス供給手段21aは、金属製、例えばステンレス製、真鍮製、銅製、アルミニウム製等の中空管であり、一端が窓部17aの内側、より具体的には、窓部17aを構成する透明な窓19aの下方に位置しており、他端は減圧ハウジング11の壁面を貫通して減圧ハウジング11の外部に位置している。
 図2に示すように、本発明の減圧脱泡装置では、ガス供給手段21aから窓部17aの内側に、すなわち窓部17aの槽開口部16a側に、ガスgを供給する。より具体的には、窓部17aを構成する透明な窓19aの下方にガスgを供給する。
 ガス供給手段21aから窓部17a(窓部17aを構成する透明な窓19aの下方)にガスgを供給すると、窓部17a付近の雰囲気中に存在する溶融ガラスからのガス成分の凝集物が希釈されることで、窓部17a、および、その周辺の減圧ハウジング11の天井部に付着することが防止される。
 また、ガス供給手段21aから窓部17a(窓部17aを構成する透明な窓19aの下方)にガスgを供給すると、ガスgが供給された部位が減圧ハウジング11内の他の部位に比べて圧力が高くなる。この圧力差によっても、窓部17a、および、その周辺の減圧ハウジング11の天井部に付着することが防止される。
 本発明の減圧脱泡装置におけるガス供給手段は、減圧ハウジングの天井部に設けられた窓部にガスを供給することができる限りその構造は特に限定されず、図示した以外の構造であってもよい。図示した以外の構造の具体例としては、例えば、窓部17aにガス供給手段を連結させた構造等が挙げられる。また、必要に応じて窓部の内側に供給されたガスを排出するガス排出手段を窓部あるいは窓部近傍に設けてもよい。
 本発明の減圧脱泡装置において、ガス供給手段から窓部に供給するガスは、特に減圧脱泡装置、特に、減圧ハウジングに悪影響を及ぼさない限り、各種ガスを使用することができる。このようなガスの具体例としては、水素(H2)、窒素(N2)、酸素(O2)、空気、一酸化炭素(CO)、二酸化炭素(CO2)、アルゴン(Ar)、ヘリウム(He)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)、炭化水素系ガス、炭化フッ素系ガス、アンモニア(NH3)等が挙げられる。これらの中でも、安価であることから、窒素、空気等が好ましい。
 また、ガス供給手段から窓部に供給するガスの供給量や、供給するガスの流速は、溶融ガラスからのガス成分の凝集物が、窓部17a、および、その周辺の減圧ハウジング11の天井部に付着することを防止できる限り特に限定されない。
 ガス供給手段21aから窓部17aに供給するガスgの供給量の一例を挙げると、0.5~100リットル/分であり、好ましくは0.5~80リットル/分であり、より好ましくは1~50リットル/分である。
 また、ガス供給手段21aから窓部17aに供給するガスgの流速の一例を挙げると、0.1m/分~10m/分であり、好ましくは0.1m/分~8m/分である。
 図3は、本発明の減圧脱泡装置の別の一構成例を示す断面図である。図3に示す減圧脱泡装置10´は、窓17a,17bにガスを供給するためのガス供給手段21a,21bを有しておらず、その代わりに、減圧脱泡槽12の天井部に設けられた槽開口部16a,16b周辺を加熱するための加熱手段22a,22b,22c,22dを有している点を除いて、図1に示す減圧脱泡装置10と同様である。
 なお、図3に示す減圧脱泡装置10´は、減圧脱泡槽12の構成材料が白金または白金合金である場合の加熱手段22a,22b,22c,22dを示したものである。
 加熱手段について、図3に示す本発明の減圧脱泡装置10´の槽開口部16a付近の部分拡大図である図4を参照して説明する。なお、図4は、槽開口部16a周辺を加熱するための加熱手段22a,22bについて説明するが、図3に示された槽開口部16b周辺を加熱するための加熱手段22c,22dも、上記加熱手段22a,22bと実質的に同じ構造である。
 図4において、加熱手段22a,22bは、減圧脱泡槽12の天井部に、窓部17a,17bと連通するように設けられた槽開口部16a、16bの入り口部分を囲むように、上方に凸状となっている入口周辺部(以下単に凸部と略す)の外周に取り付けられた通電用電極である。電極(加熱手段)22a,22b間で通電することにより、槽開口部16a周辺、より具体的には、槽開口部16aを設けるために減圧脱泡槽12の天井部に形成された凸部が加熱される。減圧脱泡槽12を流通する溶融ガラスGからのガス成分は、槽開口部16aから減圧脱泡槽12の外部へと放出され、該槽開口部16aの上方に位置する窓部17a、および、窓部17a周辺の減圧ハウジング11の天井部で凝集することから、該槽開口部16a周辺を加熱することにより、溶融ガラスからのガス成分が、窓部17a、および、その周辺の減圧ハウジング11の天井部で凝集するのを防止できる。これにより、溶融ガラスからのガス成分の凝集物が、窓部17a、および、その周辺の減圧ハウジング11の天井部に付着することが防止される。
 通電用電極である加熱手段22a,22bは、耐熱性に優れること、及び、導電性に優れることが要求される。これを満たす材料としては、白金、又は、白金-金合金、白金-ロジウム合金等の白金合金が例示される。
 溶融ガラスの組成によって、溶融ガラスからのガス成分が異なり、また該ガス成分によって凝集する温度が異なる。よって、溶融ガラスからのガス成分が、窓部17a、および、その周辺の減圧ハウジング11の天井部で凝集するのを防止する効果を発揮するために必要となる槽開口部16a周辺の加熱温度は、減圧脱泡槽12を流通する溶融ガラスGの組成に応じて適宜選択することになる。例えば、フラットパネルディスプレイ(FPD)用のガラス基板の製造に用いられる無アルカリガラスの場合、槽開口部16a周辺を1000~1300℃の温度に加熱することで、溶融ガラスからのガス成分が、窓部17a、および、その周辺の減圧ハウジング11の天井部で凝集するのを防止する効果が発揮される。
 本発明の減圧脱泡装置における加熱手段は、減圧脱泡槽の天井部に設けられた槽開口部周辺を加熱することができる限りその構造は特に限定されず、図示した以外の構造であってもよい。図示した態様では、槽開口部16aを設けるために減圧脱泡槽12の天井部に形成された凸部の外周に取り付けられた電極(加熱手段)22a,22b間で通電することで該凸部を加熱している。他の例としては、該凸部には電極(加熱手段)22aのみを取り付け、電極(加熱手段)22bに相当する電極(加熱手段)は凸部以外の部位、例えば、減圧脱泡槽12の上流側の端部に電極(加熱手段)を設け、該電極(加熱手段)と、電極(加熱手段)22aと、の間で通電することで、槽開口部16a周辺を加熱してもよい。なお、ここで言う、上流側とは、減圧脱泡槽12を流通する溶融ガラスGの流動方向における上流側を指す。
 また、上記では減圧脱泡槽の構成材料が白金または白金合金である場合について、通電加熱により槽開口部周辺を加熱する態様を示したが、本発明における減圧脱泡槽は、後述するように、緻密質耐火物を構成材料とするものであってもよい。この場合、通電加熱することができないので、槽開口部16aを設けるために減圧脱泡槽12の天井部に形成された凸部の外周にヒータ(加熱手段)を取り付けることによって、該槽開口部16a周辺を加熱すればよい。もちろん、減圧脱泡槽の構成材料が白金または白金合金である場合にも、該凸部の外周にヒータ(加熱手段)を取り付けることによって、該槽開口部16a周辺を加熱してもよい。
 溶融ガラスからのガス成分の凝集物が、窓部17a、および、その周辺の減圧ハウジング11の天井部に付着するのを防止する手段として、窓部にガスを供給するためのガス供給手段を有する減圧脱泡装置と、減圧脱泡槽の天井部に設けた槽開口部周辺を加熱するための加熱手段を有する減圧脱泡装置について説明した。本発明の減圧脱泡装置は、上記ガス供給手段と、上記加熱手段とのいずれか一方のみを有するものであってもよく、また両方を有するものであってもよい。溶融ガラスからのガス成分の凝集物が、窓部17a、および、その周辺の減圧ハウジング11の天井部に付着するのを防止するためには、上記ガス供給手段と、上記加熱手段の両方を有することがより好ましい。
 以下、ガス供給手段および加熱手段以外の本発明の減圧脱泡装置の構成要素について述べる。
 図1、3に示す減圧脱泡装置10,10´において、減圧脱泡槽12、上昇管13及び下降管14は、溶融ガラスGの導管であるため、耐熱性及び溶融ガラスに対する耐食性に優れた材料を用いて作製されている。一例を挙げると、白金又は白金合金製の中空管、円筒状管、その他各形状の筒状管である。白金合金の具体例としては、白金-金合金、白金-ロジウム合金が挙げられる。また、他の一例を挙げると、セラミックス系の非金属無機材料製、すなわち、緻密質耐火物製の中空管、円筒状管、その他各形状の筒状管である。緻密質耐火物の具体例としては、例えば、アルミナ系電鋳耐火物、ジルコニア系電鋳耐火物、アルミナ-ジルコニア-シリカ系電鋳耐火物等の電鋳耐火物、並びに緻密質アルミナ系耐火物、緻密質ジルコニア-シリカ系耐火物及び緻密質アルミナ-ジルコニア-シリカ系耐火物等の緻密質焼成耐火物が挙げられる。減圧脱泡槽12を収容し、上昇管13及び下降管14の一部を収容する減圧ハウジング11は、金属製、例えばステンレス製である。
 本発明の減圧脱泡装置10,10´の各構成要素の寸法は、必要に応じて適宜選択することができる。減圧脱泡槽12の寸法は、減圧脱泡槽12が白金製若しくは白金合金製、又は緻密質耐火物製であるかによらず、使用する減圧脱泡装置や、減圧脱泡槽12の形状に応じて適宜選択することができる。図1,3に示すような円筒形状の減圧脱泡槽12の場合、その寸法の一例は以下の通りである。
 ・水平方向における長さ:1~20m
 ・内径:0.2~3m(断面円形)
 減圧脱泡槽12が白金製若しくは白金合金製である場合、肉厚は4mm以下であることが好ましく、より好ましくは0.5~1.2mmである。
 減圧脱泡槽は、断面円形の円筒形状のものに限定されず、断面形状が楕円形や半円形状の略円筒形状のものや、断面が矩形の筒形状のものであってもよい。
 上昇管13及び下降管14は、白金製若しくは白金合金製、又は緻密質耐火物製であるかによらず、使用する減圧脱泡装置に応じて適宜選択することができる。例えば、図1,3に示す減圧脱泡装置10,10´の場合、上昇管13及び下降管14の寸法の一例は以下の通りである。
 ・内径:0.05~0.8m、より好ましくは0.1~0.6m
 ・長さ:0.2~6m、より好ましくは0.4~4m
 上昇管13及び下降管14が白金製若しくは白金合金製である場合、肉厚は0.4~5mmであることが好ましく、より好ましくは0.6~4mmである。
 本発明の減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法は、従来の溶融ガラスの減圧脱泡方法と同様の条件で実施することができる。例えば、減圧脱泡の実施時、減圧脱泡槽12は、その内部が1100℃~1600℃、特に1150℃~1500℃の温度範囲になるように加熱されていることが好ましい。また、減圧脱泡槽12の内部は、絶対圧で38~460mmHg(51~613hPa)に減圧されていることが好ましく、より好ましくは、60~350mmHg(80~467hPa)に減圧されていることが好ましい。
 また、減圧脱泡槽12を流動する溶融ガラスGの流量が1~2000トン/日であることが生産性の点から好ましい。
 本発明の減圧脱泡方法を用いた溶融ガラス製造方法は、本発明の減圧脱泡方法の前工程として原料溶融工程、後工程として成形工程を具備することが好ましい。この原料溶融工程は、例えば従来公知のものでよく、例えばガラスの種類に応じて約1400℃以上に加熱することによって原料を溶融する工程である。用いる原材料も製造するガラスに適合させる原材料であれば特に限定されず、例えば硅砂、ホウ酸、石灰石等の従来公知のものを最終ガラス製品の組成に合わせて調合した原材料を用いることができ、所望の清澄剤を含んでもよい。また、この成形工程は、例えば従来公知のものでよく、例えばフロート成形工程、ロールアウト成形工程、フュージョン成形工程等が挙げられる。成形後のガラスは、成形後に固化したガラスの内部に残留応力が残らないように徐冷手段によって徐冷され(徐冷工程)、さらに必要に応じて切断され(切断工程)、その他必要に応じて研磨工程等を経て、ガラス製品となる。なお、徐冷工程、切断工程、及び研磨工程は、公知の公知の技術である。
 本発明によって製造される溶融ガラスは、加熱溶融法により製造されるガラスである限り、組成的には制約されない。したがって、無アルカリガラスであってもよいし、ソーダライムガラスに代表されるソーダライムシリカ系ガラスやアルカリホウケイ酸ガラスのようなアルカリガラスであってもよい。本発明は、特に無アルカリガラス、さらには液晶ディスプレイ基板用無アルカリガラスの製造に適している。
 なお、本発明によれば、泡品質にきわめて優れたガラス製品を得ることができるため、FPD用のガラス基板等のガラス製品の製造方法として好適である。
 本発明のガラス製造用の減圧脱泡装置によれば、減圧ハウジングの天井部に設けられた窓部やその周辺部に溶融ガラスからのガス成分の凝縮物が付着することを防止することができるので、減圧脱泡槽内の溶融ガラスの状態を上記窓部から随時観察し、モニタリングすることにより、減圧脱泡装置の運転状況を的確に把握することができ、生産歩留まりの向上に寄与することができる。
 また、本発明によれば、従来の装置のように、減圧ハウジングの上記窓部やその周辺に付着した凝縮物が減圧ハウジング内を流れる溶融ガラス面に落下し、溶融ガラスの異物となることがないので、製造されるガラスの上記異物による欠点の発生を抑制することができ、品質の向上に役立させることができる。
 なお、2009年6月19日に出願された日本特許出願2009-146254号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 10,10´,100,100´:減圧脱泡装置
 11,110:減圧ハウジング
 12,120:減圧脱泡槽
 13,130:上昇管
 14,140:下降管
 15,150:断熱材
 16a,16b,160a,160b:槽開口部
 17a,17b,170a,170b:窓部
 18a,18b,180a,180b:ハウジング開口部
 19a,19b,190a,190b:透明な窓
 20,200:吸引開口部
 21a,21b:ガス供給手段
 22a,22b,22c,22d:加熱手段(通電加熱用の電極)
 300:溶解槽
 320:上流ピット
 340:下流ピット
 G:溶融ガラス
 g:ガス

Claims (10)

  1.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
     前記窓部の内側にガスを供給するためのガス供給手段を有することを特徴とする溶融ガラスの減圧脱泡装置。
  2.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
     前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段を有することを特徴とする溶融ガラスの減圧脱泡装置。
  3.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
     前記窓部の内側にガスを供給するためのガス供給手段と、前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段と、を有することを特徴とする溶融ガラスの減圧脱泡装置。
  4.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
     前記窓部の内側にガスを供給するためのガス供給手段を有することを特徴とする溶融ガラスの減圧脱泡装置。
  5.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
     前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段を有することを特徴とする溶融ガラスの減圧脱泡装置。
  6.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部に取り付けられた透明な窓と、で構成され、
     前記窓部の内側にガスを供給するためのガス供給手段と、前記減圧脱泡槽に設けられた前記槽開口部周辺を加熱するための加熱手段と、を有することを特徴とする溶融ガラスの減圧脱泡装置。
  7.  請求項1~6のいずれかに記載の溶融ガラスの減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法。
  8.  請求項1~6のいずれかに記載の溶融ガラスの減圧脱泡装置を用いて溶融ガラスを減圧脱法する方法であって、少なくとも下記(1)および(2)のいずれかの工程を含むことを特徴とする溶融ガラスの減圧脱泡方法。
     (1)前記窓部の内側にガスを供給する工程。
     (2)前記槽開口部周辺を加熱する工程。
  9.  請求項7または8に記載の減圧脱泡方法を用いた溶融ガラス製造方法。
  10.  請求項7または8に記載の減圧脱泡方法による減圧脱泡工程と、該減圧脱泡工程の前工程として原料溶融工程と、該減圧脱泡工程の後工程として成形工程と、該成形工程の後工程として徐冷工程と、を有するガラス製品の製造方法。
PCT/JP2010/060143 2009-06-19 2010-06-15 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法 WO2010147123A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080025416.9A CN102803161B (zh) 2009-06-19 2010-06-15 熔融玻璃的减压脱泡装置及采用该装置的熔融玻璃制造方法
JP2011519800A JPWO2010147123A1 (ja) 2009-06-19 2010-06-15 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146254 2009-06-19
JP2009-146254 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147123A1 true WO2010147123A1 (ja) 2010-12-23

Family

ID=43356440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060143 WO2010147123A1 (ja) 2009-06-19 2010-06-15 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法

Country Status (5)

Country Link
JP (1) JPWO2010147123A1 (ja)
KR (1) KR20120038921A (ja)
CN (1) CN102803161B (ja)
TW (1) TWI403474B (ja)
WO (1) WO2010147123A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571448B (zh) * 2012-09-04 2017-02-21 Avanstrate Inc A method for manufacturing a glass substrate, and a manufacturing apparatus for a glass substrate
CN203625224U (zh) * 2013-09-17 2014-06-04 安瀚视特控股株式会社 熔融玻璃处理装置及玻璃基板的制造装置
CN203513469U (zh) * 2013-09-25 2014-04-02 安瀚视特控股株式会社 熔融玻璃的澄清槽及玻璃基板的制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178028A (ja) * 1998-12-15 2000-06-27 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡装置
JP2002286892A (ja) * 2001-03-27 2002-10-03 Ishikawajima Harima Heavy Ind Co Ltd ガラス溶融炉の間接加熱装置
JP2003137556A (ja) * 2001-10-31 2003-05-14 Asahi Glass Co Ltd 減圧脱泡装置
JP2006143549A (ja) * 2004-11-24 2006-06-08 Hoya Corp ガラスの製造方法およびガラス熔融装置
JP2006306662A (ja) * 2005-04-28 2006-11-09 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119484A (en) * 1997-10-06 2000-09-19 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178028A (ja) * 1998-12-15 2000-06-27 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡装置
JP2002286892A (ja) * 2001-03-27 2002-10-03 Ishikawajima Harima Heavy Ind Co Ltd ガラス溶融炉の間接加熱装置
JP2003137556A (ja) * 2001-10-31 2003-05-14 Asahi Glass Co Ltd 減圧脱泡装置
JP2006143549A (ja) * 2004-11-24 2006-06-08 Hoya Corp ガラスの製造方法およびガラス熔融装置
JP2006306662A (ja) * 2005-04-28 2006-11-09 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡方法

Also Published As

Publication number Publication date
JPWO2010147123A1 (ja) 2012-12-06
TWI403474B (zh) 2013-08-01
KR20120038921A (ko) 2012-04-24
CN102803161A (zh) 2012-11-28
CN102803161B (zh) 2015-05-06
TW201114709A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
WO2010147188A1 (ja) 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法
JP5470853B2 (ja) ガラス製造方法および減圧脱泡装置
JP5365630B2 (ja) 減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法
JP5434077B2 (ja) ガラス製造方法
JP6821603B2 (ja) 溶融ガラスを調整するための装置及び方法
JP5387678B2 (ja) 溶融ガラス製造方法および減圧脱泡装置、ならびにガラス製品の製造方法
JPWO2011010624A1 (ja) ガラス製造装置及びガラス製造方法
KR101900111B1 (ko) 용융 유리의 감압 탈포 방법
WO2010147123A1 (ja) 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法
JP2020152602A (ja) 無アルカリガラス基板
EP3173384B1 (en) Glass melt production device and glass melt production method
JP2000247647A (ja) 溶融ガラスの減圧脱泡装置用炉材および減圧脱泡装置
JP2012121740A (ja) ガラス製造装置及びそれを用いたガラス製造方法
JPH11240725A (ja) 溶融ガラスの減圧脱泡装置
WO2011083736A1 (ja) 溶融ガラスの減圧脱泡装置、それを用いた溶融ガラス製造方法、およびガラス物品の製造方法
JP4821165B2 (ja) 溶融ガラスの減圧脱泡装置、および該減圧脱泡装置を用いた溶融ガラスの清澄方法
JP2024023627A (ja) 無アルカリガラス基板
JP2020158382A (ja) 無アルカリガラス基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025416.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519800

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117024433

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789498

Country of ref document: EP

Kind code of ref document: A1