WO2010147158A1 - Gel enclosing a compound by means of low-molecular weight gelling agent - Google Patents
Gel enclosing a compound by means of low-molecular weight gelling agent Download PDFInfo
- Publication number
- WO2010147158A1 WO2010147158A1 PCT/JP2010/060226 JP2010060226W WO2010147158A1 WO 2010147158 A1 WO2010147158 A1 WO 2010147158A1 JP 2010060226 W JP2010060226 W JP 2010060226W WO 2010147158 A1 WO2010147158 A1 WO 2010147158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- gly
- gel
- compound
- gel according
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/1008—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
Definitions
- the present invention relates to a gel in which a compound is encapsulated by a low molecular gelling agent. More specifically, the present invention relates to a gel in which a hydrophobic compound or a hydrophilic compound, or both compounds, and a protein such as an enzyme are encapsulated as the compound.
- the inclusion gel of the present invention is a skin care product, external medicine, wound dressing, anti-adhesion film, drug delivery system, fragrance, deodorant, insect repellent, insecticide, agricultural chemical base, diagnostic base, chemical reaction It can be suitably used as an enzyme reaction solution, a chemical sensor substrate, a biosensor substrate, and the like.
- Gel agents for gelling aqueous solutions or organic solvents and aqueous solutions include polymers obtained by polymerization cross-linking reactions, natural polymers such as polysaccharides, and low gels that form self-organized low molecular compounds.
- Molecular gelling agents are known.
- the solution in which the natural polymer is dissolved is put into a sheet-shaped mold and gelled.
- the gel sheet prepared in this way is immersed in water, the natural polymer gradually falls from the gel sheet to the water and collapses.
- it was extremely difficult to produce a gel sheet using only a physical gel Non-Patent Document 1).
- preparation of the gel sheet by a low molecular gel was not known.
- a gel in which vitamin C and vitamin E are encapsulated simultaneously by the low molecular gelling agent is Although it is expected to be useful as a whitening cosmetic material (Patent Documents 1 and 2), it is extremely difficult to form a gel that encapsulates both a hydrophilic low-molecular compound and a hydrophobic low-molecular compound at the same time. .
- an enzyme such as cytochrome c
- the enzyme reaction can proceed in the gel if the enzyme incorporated in the gel can be maintained without impairing its activity. It is considered that the reaction can be observed in the gel, and the gel containing the enzyme can be used as a biosensor, a test / diagnostic agent or the like (Patent Documents 3 to 6).
- the present invention has been made based on the above circumstances, and the problem to be solved is a hydrophilic physiologically active substance such as vitamin C or a hydrophobic physiologically active substance such as vitamin E, or It is an object of the present invention to provide a gel in which these compounds are encapsulated and a gel in which an enzyme such as cytochrome c is encapsulated. It is another object of the present invention to provide a method of using a gel encapsulating the compound of the present invention for a chemical reaction or an enzyme reaction. Moreover, the objective of this invention is providing the method of using this inclusion gel as a biosensor by using the gel which included the compound of this invention for a chemical reaction or an enzyme reaction.
- gel sheet prepared by the polymerization crosslinking reaction if an unreacted crosslinking agent or the like remains in the gel, it interferes with the chemical reaction or enzyme reaction performed in the gel.
- gel sheets made of natural polymers are unstable and dissolve and disintegrate when immersed in water. Providing a stable and safe gel sheet that does not disturb chemical reactions and enzyme reactions in the gel, and does not collapse even when immersed in various water solutions so that the enzyme, substrate, and specimen to be tested can be taken into the gel. It is also a thing.
- R 1 represents an aliphatic group having 9 to 23 carbon atoms
- R 2 to R 5 are each independently a hydrogen atom or a carbon atom that may have a branched chain of 1 to 3 carbon atoms.
- N represents a number of 1 to 4
- X is composed of an amino group, a guanidino group, a —CONH 2 group, or a 5-membered ring or a 5-membered ring and a 6-membered ring which may have 1 to 3 nitrogen atoms.
- M represents 1 or 2), and a low molecular gelling agent comprising a lipid peptide represented by the following formula: An aqueous medium and at least one compound contained therein. An included gel.
- R 1 is a linear aliphatic group having 11 to 23 carbon atoms which may have 0 to 2 unsaturated bonds. The inclusion gel described in 1.
- R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms, A phenylmethyl group, or a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group, and n is a number from 1 to 4;
- X represents an amino group, a guanidino group, a -CONH 2 group, or a 5-membered ring having 1 to 2 nitrogen atoms or a condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring,
- R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms, A phenylmethyl group, or a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group, and n is a number from 1 to 4;
- X represents an amino group, a guanidino group, a -CONH 2 group, a pyrrole group, an imidazole group, a pyrazole group, or an indole group according to the third aspect.
- R 2 to R 5 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i- Butyl, sec-butyl, tert-butyl, phenylmethyl, aminomethyl, 2-aminoethyl, 3-aminopropyl, 4-aminobutyl, carbamoylmethyl, 2-carbamoylethyl, 3 -Represents a carbamoylpropyl group, 2-guanidinoethyl group, 3-guanidinopropyl group, pyrrolemethyl group, imidazolemethyl group, pyrazolemethyl group or 3-indolemethyl group, and one or two of R 2 to R 5 are Aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-
- R 2 to R 5 are each independently a hydrogen atom, a methyl group, an i-propyl group, an i-butyl group, a secondary butyl group, a phenylmethyl group, 4- Represents an aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolemethyl group or a 3-indolemethyl group, and one or two of R 2 to R 5 is a 4-aminobutyl group Or a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolemethyl group, or a 3-indolemethyl group.
- a method of using the inclusion gel according to the tenth aspect for an oxidation reaction of a target product with H 2 O 2 As a thirteenth aspect, a method of using the inclusion gel as a biosensor by using the inclusion gel according to the ninth aspect for an enzyme reaction. As a fourteenth aspect, a method of using the inclusion gel as a biosensor by using the inclusion gel according to the tenth aspect for an oxidation reaction with H 2 O 2 . As a fifteenth aspect, a biosensor comprising the inclusion gel according to the eleventh aspect or the twelfth aspect.
- the encapsulated gel of the present invention can encapsulate a hydrophobic compound, a hydrophilic compound, or both compounds in the gel. It is also possible to release the encapsulated compound gradually. Therefore, when applied to a damaged site such as the skin, a therapeutic effect such as a moisturizing effect as a gel and a sustained release of a drug, and a therapeutic effect by capturing a damaging compound or a pathogenic protein can be expected.
- the encapsulated gel of the present invention can encapsulate an enzyme such as cytochrome c as a compound, and when the encapsulated protein is an enzyme-like protein, the enzyme can be incorporated into the gel even if incorporated. Its activity is maintained without loss, rather it is possible to allow the enzymatic reaction to proceed within the gel. Therefore, a gel incorporating such an enzyme can see the reaction in the gel and can be used as a biosensor or a test / diagnostic agent.
- the gel encapsulating the compound of the present invention can be subjected not only to the enzyme reaction described above but also to a chemical reaction depending on the compound encapsulated in the gel.
- the encapsulated gel of the present invention is a wound dressing, an adhesion prevention film, a drug delivery system, a base for external medicine, a fragrance / deodorant that is safe for living bodies and the environment, and has an ability to recognize an affected area or damaged site.
- base materials such as insect repellents, insecticides and agricultural chemicals, base materials for biosensors, base materials for environmental analysis, and base materials for capturing contaminants in soil and water.
- FIG. 1 is a diagram showing a conceptual diagram of lipid peptide self-assembly and subsequent gelation.
- FIG. 2 is a diagram showing a comparison of fluorescence intensity of ANS between Pal-GGGH gel and polymer gel.
- FIG. 3 is a diagram showing a comparison of fluorescence intensity of ANS in a Pal-GGGH gel and an organic solvent.
- FIG. 4 is a graph showing the ANS release rate depending on the gelling agent and the ANS concentration.
- FIG. 5 is a diagram showing ANS release rates (left: gel prepared at pH 7.4, right: gel adjusted at pH 9.0) in release solutions having different pHs.
- FIG. 6 is a graph showing the riboflavin release rate with different pH release solutions in gel pH 7.4.
- FIG. 1 is a diagram showing a conceptual diagram of lipid peptide self-assembly and subsequent gelation.
- FIG. 2 is a diagram showing a comparison of fluorescence intensity of ANS between Pal-GGGH gel and polymer gel
- FIG. 7 is a graph showing changes in the ionization state of Pal-GGGH with pH.
- FIG. 8 is a diagram showing evaluation criteria for the degree of solubilization of hydrophobic substances ((I) is in a dissolved state, (II) is in a slightly cloudy state, and (III) is in a cloudy state without being dissolved). is there.
- FIG. 9 is a diagram showing the evaluation of solubilized vitamin E concentration by turbidity.
- FIG. 10 is a view showing a comparison of vitamin E-encapsulated gel between polymer gel and Pal-GGGH.
- FIG. 11 is a view showing a simultaneous inclusion gel of vitamin E and vitamin C (left: before gel formation, right: after gel formation).
- FIG. 12 is a diagram showing the release behavior of vitamin E with respect to ethanol having different concentrations.
- FIG. 13 shows the adsorption of cytochrome c on the gel sheet.
- FIG. 14 is a diagram showing the amount of cytochrome c adsorbed to the gel sheet under different pH conditions.
- FIG. 15 is a view showing the reduction of the cytochrome c-immersed gel sheet.
- FIG. 16 shows the release behavior of cytochrome c with respect to buffers having different pHs.
- FIG. 17 is a diagram showing the structure of Pal-GGGH.
- FIG. 18 shows the results of measurement of cytochrome c peroxidase activity.
- FIG. 19 is a diagram showing the results of CD spectrum measurement.
- FIG. 20 is a diagram showing the results of UV spectrum measurement.
- FIG. 21 is a diagram showing a measurement result of the gelling agent concentration dependence of peroxidase activity.
- the encapsulated gel of the present invention is an encapsulated gel characterized by encapsulating at least one compound in an aqueous medium gelled by a low molecular gelling agent.
- the gel formation mechanism of the low molecular weight gelling agent used for the gel encapsulating the compound of the present invention is that the low molecular weight compound constituting the low molecular weight gelling agent is self-assembled to form a fiber-like form. Forms a network structure, and water, various aqueous solutions, alcohol water, organic solvent water and the like are enclosed in the network structure to form a gel.
- self-assembly means that in a group of substances (molecules) that are initially in a random state, molecules spontaneously associate under non-covalent interactions between molecules under appropriate external conditions. , Refers to growing into a macro functional assembly.
- the inclusion gel of the present invention contains a gel formed of self-assembled fibers and a network structure formed thereby, and if it is a hydrophobic compound, it may be a hydrophilic compound in the fiber in a hydrophobic environment. For example, it can be included in the network structure formed by the fiber.
- the encapsulated gel of the present invention is a gel sheet composed of fibers formed by self-assembly of the above-mentioned low molecules. Therefore, unlike the gel sheet obtained by the polymerization crosslinking reaction, the encapsulated gel obstructs or encapsulates the reaction performed in the gel. Providing a safe and stable gel sheet that eliminates the need to remove a reagent that decomposes a compound and that does not cause the natural polymer to fall off from the gel sheet one by one like a gel sheet obtained from a natural polymer. It is possible. Moreover, it is also possible to provide a film by evaporating the solvent of this gel sheet without freeze-drying.
- lipid peptides or pharmaceutically usable salts thereof low-molecular compounds having a lipid part which is a hydrophobic part and a peptide part which is a hydrophilic part
- low-molecular compounds having a lipid part which is a hydrophobic part and a peptide part which is a hydrophilic part low-molecular compounds having a lipid part which is a hydrophobic part and a peptide part which is a hydrophilic part
- the lipid peptide or pharmaceutically usable salt thereof includes a lipid part (alkylcarbonyl group) and a peptide part (tetrapeptide having a structure represented by the following formula (1) and having a lipid-soluble long chain. ).
- R 1 represents an aliphatic group having 9 to 23 carbon atoms, and preferably R 1 is a straight chain having 11 to 23 carbon atoms that may have 0 to 2 unsaturated bonds. It is an aliphatic group.
- a lipid part (acyl group) composed of R 1 and an adjacent carbonyl group examples include myristoyl group, pentadecanoyl group, palmitoyl group, margaroyl group, oleoyl group, eridoyl group, linoleoyl group, stearoyl group, baccenoyl group, octadecylcarbonyl group, arachidoyl group, icosanoyl group, preferably lauroyl.
- R 2 to R 5 contained in the peptide part are each independently a hydrogen atom or an alkyl group having 1 to 7 carbon atoms that may have a branched chain of 1 to 3 carbon atoms.
- the alkyl group having 1 to 7 carbon atoms which may have a branched chain having 1 to 3 carbon atoms is preferably a hydrogen atom, or 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms. It is an alkyl group.
- alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms
- examples of the alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i -Butyl group, secondary butyl group, tertiary butyl group and the like can be mentioned, and preferred are methyl group, i-propyl group, i-butyl group, secondary butyl group and the like.
- n represents a number of 1 to 4
- X is an amino group, a guanidino group, a —CONH 2 group, or a 5-membered ring that may have 1 to 3 nitrogen atoms or A condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring is represented.
- X preferably represents an amino group, a guanidino group, a —CONH 2 group, a pyrrole group, an imidazole group, a pyrazole group or an indole group.
- the — (CH 2 ) n—X group is preferably an aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3- A carbamoylpropyl group, a 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolemethyl group, an imidazolemethyl group, a pyrazolemethyl group or a 3-indolemethyl group, more preferably a 4-aminobutyl group, a carbamoylmethyl group, 3-carbamoylpropyl group, imidazolemethyl group or 3-indolemethyl group.
- a lipid peptide particularly suitable as a low molecular gelling agent is a compound formed from the following lipid part and peptide part (amino acid assembly part).
- amino acid assembly part As abbreviations of amino acids, alanine (Ala), arginine (Arg), glutamine (Gln), glycine (Gly), histidine (His), isorosine (Ile), leucine (Leu), lysine (Lys), tryptophan (Trp) ), Valine (Val).
- Lauroyl-Gly-Gly-Gly-His Lauroyl-Gly-Gly-Gly-Gln, Lauroyl-Gly-Gly-Asn, Lauroyl-Gly-Gly-Trp, Lauroyl-Gly-Gly-Gly-Gly Lauroyl-Gly-Gly-Ala-His, Lauroyl-Gly-Gly-Ala-Gln, Lauroyl-Gly-Gly-Ala-Asn, Lauroyl-Gly-Gly-Ala-Trp, Lauroyl-Gly-Gly-Ala-Lys Lauroyl-Gly-Ala-Gly-His, Lauroyl-Gly-Ala-Gly-Gln, Lauroyl-Gly-Ala-Gly-Asn, Lauroyl-Gly-Ala-Gly-Trp, Lauroyl-Gly-Ala-Gly-His, Lauroyl-Gly-Ala-Gly-
- lauroyl-Gly-Gly-Gly-His myristoyl-Gly-Gly-Gly-His, palmitoyl-Gly-Gly-Gly-His, palmitoyl-Gly-Gly-His-Gly, palmitoyl-Gly-His -Gly-Gly, palmitoyl-His-Gly-Gly-Gly, stearoyl-Gly-Gly-Gly-His and the like.
- the gelled aqueous medium used for the inclusion gel of the present invention is formed containing the low molecular weight gelling agent and the aqueous medium (solvent).
- the solvent is not particularly limited as long as it does not prevent fiber formation or hydrogelation of the low-molecular gelling agent.
- water, alcohol, a mixed solvent of water and alcohol, or a mixed solution of water and water-soluble solvent is used.
- the alcohol is preferably a water-soluble alcohol that is freely soluble in water, more preferably an alcohol having 1 to 6 carbon atoms, still more preferably methanol, ethanol, 2-propanol, or i-butanol, Further particularly preferred is ethanol or 2-propanol.
- the water-soluble organic solvent means an organic solvent other than alcohol and that dissolves in water at an arbitrary ratio. Examples of the water-soluble organic solvent to be used include acetone or dioxane.
- the gelled aqueous medium may contain a salt.
- a salt may be added at any stage leading to the formation of the hydrogel, but it is preferable to add a solvent to the solution before adding the hydrogelator.
- a plurality of types of salts may be added, but one or two types are preferable. It is also desirable that the solution has buffer capacity by adding two salts.
- the salt is an inorganic salt or an organic salt. Examples of preferred inorganic salts include carbonates, inorganic sulfates or inorganic phosphates.
- Examples of preferred organic salts include organic amine hydrochlorides or organic amine acetates. More preferred are ethylenediamine hydrochloride, ethylenediaminetetraacetate, and trishydroxymethylaminomethane hydrochloride.
- examples of the compound encapsulated in the gel of the present invention include a hydrophobic compound, a hydrophilic compound, an enzyme, and pyrene.
- hydrophobic compound examples include vitamin E (tocopherol), pyrene, azelaic acid derivatives, retinol (vitamin A alcohol), retinoic acid, hydroxycinnamic acid, caffeine, hinokitiol, carotenoid, astaxanthin, steroid, indomethacin, and Ketoprofen and the like can be mentioned.
- hydrophilic compound examples include vitamin C (ascorbic acid), vitamin B2 (riboflavin), kojic acid, glucosamine, azelaic acid, pyridoxine (vitamin B6), pantothenic acid (vitamin B5), arbutin, and chitosan. It is done.
- Examples of the enzyme include cytochrome c.
- the encapsulated gel of the present invention includes, for example, ascorbic acid and derivatives thereof, kojic acid and derivatives thereof, glucosamine and derivatives thereof, azelain and derivatives thereof, retinoic acid and derivatives thereof, pyridoxine and derivatives thereof, pantothenic acid and Whitening effect can be achieved by encapsulating its derivatives, arbutin and its derivatives, tocopherol and its derivatives, hydroxycinnamic acid and its derivatives, chitosan, chitosan degradation products, caffeine derivatives, hinokitiol, carotenoid, astaxanthin, etc. .
- the lipid peptide molecule (a) assembles around a lipid part which is a hydrophobic site (b), and forms a fiber (c) by self-assembly.
- one kind of the low molecular gelling agent may be used, or two or more kinds may be used in combination.
- one type or two types are used, and more preferably one type is used. However, when two types are used, it can be expected to obtain different properties from the case of one type.
- the low-molecular gelling agent used in the present invention can also form a fiber by mixing with a surfactant and self-assembling.
- surfactants include anionic surfactants, nonionic surfactants, and cationic surfactants.
- the fiber When the fiber is formed in an aqueous solution or an alcohol aqueous solution, the fiber forms a three-dimensional network structure (for example, see (d) in FIG. 1), and further, a hydrophilic portion (peptide portion) on the fiber surface.
- a three-dimensional network structure for example, see (d) in FIG. 1
- a hydrophilic portion peptide portion
- the hydrophobic compound is taken into the self-assembled fiber, while the hydrophilic compound or protein is taken into the network structure formed by the fiber, and the compound is included in the gel. It will be.
- the encapsulated gel of the present invention when the encapsulated protein is an enzyme-like protein, the enzyme is maintained without losing its activity even if it is incorporated into the gel. It is possible to proceed a redox reaction. Therefore, a gel containing such an enzyme can be used as a biosensor or a test / diagnosis agent.
- cytochrome c has heme and histidine as an axial ligand, but usually methionine is coordinated as an axial ligand and hydrogen peroxide is difficult to come into contact with heme. Since there is no amino acid responsible for the Push-Pull mechanism such as peroxidase from horseradish or horseradish, cytochrome c alone has very low peroxidase activity, but it interacts with biological membranes, mainly with cytochrome c. It is thought that the structure near the heme of cytochrome c is changed and the peroxidase activity is enhanced mainly by electrostatic interaction between the positively charged lysine residue on the surface of cytochrome c and the negative charge of the biological membrane. Yes.
- cytochrome c encapsulated in the Pal-GGGH gel is predicted to have an interaction with cytochrome c similar to that of the biological membrane, and the cytochrome c encapsulated in the Pal-GGGH gel Enhancement of peroxidase activity and stability of cytochrome c are expected.
- the encapsulated gel of the present invention is a wound dressing having an ability to recognize an affected area or damaged site, an adhesion preventing film, a drug delivery system, a skin care product, a hair care product, an external medicine, an fragrance, a deodorant, an insecticide, an insecticide. It can be widely used as an agent, a substrate for agricultural chemicals, a cleaning agent, a paint, an antiseptic, a substrate for capturing environmental pollutants.
- the lipid peptide was synthesized according to the procedure of Fmoc solid phase peptide synthesis method shown below.
- the resin was mainly an amino acid-Barlos Resin.
- the synthesis scale was 0.3 mmol.
- a condensing agent solution 2 (DIEA 2.75 ml dissolved in DMF 14.25 ml) was added. This was stirred with a vibrator for 30 minutes, then washed 5 times with 5 ml of DMF, 3 times with 5 ml of DCM, and further 3 times with 5 ml of DMF. Next, 5 ml of 20% piperidine / DMF solution was added and stirred for 1 minute, then the solution was discarded, 5 ml of 20% piperidine / DMF solution was added again, stirred for 45 minutes, and washed 5 times with 5 ml of DMF.
- DIEA condensing agent solution 2
- the following examples were carried out using palmitoyl-Gly-Gly-Gly-His synthesized by the above method as a low-molecular gelling agent.
- the low molecular gelling agent used in the present invention can easily form a gel into various shapes including a sheet shape by using only the low molecular gelling agent without using a base material such as a nonwoven fabric or a polymer compound.
- the gel is used in the form of a sheet for convenience.
- Example 1 Gel sheet of palmitoyl-Gly-Gly-Gly-His by acidic, neutral, alkaline solution> 40.8 mg of palmitoyl-Gly-Gly-Gly-His is placed in a screw tube (Marem NO7) and 0.2% (w / v) (w means mass (g), v means volume (mL)).
- the sheet-like slice gel of palmitoyl-Gly-Gly-Gly-His was observed as a sheet-like slice gel for 3 months without melting / degrading in acidic, neutral or alkaline water immersion liquid. .
- palmitoyl-Gly-Gly-Gly-His gel sheet prepared using water and PBS as a medium adsorbed BSA. From the above results, palmitoyl-Gly-Gly-Gly-His gel sheet has an albumin adsorption effect.
- Palmitoyl-Gly-Gly-Gly-His gel sheet containing riboflavin> Add 128.2 mg of palmitoyl-Gly-Gly-Gly-His to a screw tube (Marem NO7) and make phosphate buffer (Wako Pure Chemical Industries, Ltd.) to a concentration of 0.3% (w / v) Phosphate buffer powder, 1/15 mol / L, pH 7.4, composition: Na 2 HPO 4 7.6 g, KH 2 PO 4 1.8 g / L), dry bath incubator (manufactured by First Gene) Then, heating (100 ° C., 10 minutes) and 3 ml of the obtained solution was placed in an aluminum cylinder (diameter 2.5 cm, height 4 cm) placed in a glass petri dish (diameter 6 cm, height 4 cm).
- ⁇ Comparative Example 1 Effect of cellulose gel, carboxyvinyl polymer gel, xanthan gum gel, curdlan gel on water immersion>
- the cellulose gel was prepared by adding 166 g of Japanese pharmacopoeia water to 100 g of Serodine 4M (NanoWope, cellulose gel 4 wt%, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). K. Using a mixing analyzer MA2500 (Primics Co., Ltd.), the mixture was stirred at 5000 rpm for 240 minutes and allowed to stand at room temperature until gelation was observed to obtain a cellulose gel (1.5 wt% cellulose aqueous dispersion).
- the 2% carboxyvinyl polymer was gelled by adding Japanese Pharmacopoeia water to 0.252 g of Carbopol 940 (manufactured by IT Corporation) and then heating in a water bath until dissolved.
- 5% xanthan gum was gelled by adding Japanese pharmacopoeia water to 0.725 g of xanthan gum (manufactured by Tokyo Chemical Industry Co., Ltd.) and then heating in a water bath until dissolved.
- ANS was dissolved in each organic solvent (ethanol, 1-propanol, acetone, dioxane) so as to be 5 ⁇ M.
- the fluorescence intensity of each gel and organic solvent was measured (ex 350 nm, em 480 nm).
- FIG. 2 shows that only Pal-GGGH had an increase in fluorescence intensity and had a hydrophobic environment in the gel.
- the formation of the hydrophobic region accompanying the self-assembly of Pal-GGGH has an effect on the increase in fluorescence intensity, not the gel formation. It is thought to have been given.
- Pal-GGGH showed fluorescence even at a gel formation concentration or less (0.02 wt%), it is considered that a hydrophobic region is formed by self-organization even at a low concentration that is not gelled.
- the sustained release from the gel sheet was compared by changing the concentration of the gelling agent and the pH of the gel and the release liquid. As a result, it was shown that the release rate of ANS decreased when the concentration of the gelling agent was increased (FIG. 4). The reason for this is thought to be that the amount of encapsulated ANS increased because the gel fiber increased as the gelling agent concentration increased. In ANS, the release rate increased as the pH increased (FIG. 5), but riboflavin did not differ depending on the pH (FIG. 6).
- the charge state of the gelling agent molecule at each pH of Pal-GGGH (FIG. 7) is based on the pKa of the amino acid residue.
- Example 4 Encapsulation of hydrophilic substance by immersion in gel sheet> An experiment was conducted to determine whether riboflavin can be incorporated into the gel sheet by immersing the gel sheet in a solution of riboflavin.
- a gel sheet was prepared by adding a gelling agent (gelling agent concentration: 0.3 wt%) to 1 ml of phosphate buffer. The gel sheet was immersed in 5 ml of a riboflavin solution of each concentration (10 ⁇ g / ml to 200 ⁇ g / ml) for 68 hours, and the concentration of the soaking solution was calculated from the absorbance (445 nm) to determine the amount of riboflavin encapsulated in the gel sheet.
- a gelling agent gelling agent concentration: 0.3 wt%
- riboflavin was encapsulated in the gel sheet by immersing the gel sheet in the riboflavin solution.
- the amount of inclusion in the gel sheet increased in proportion to the increase in the concentration of the riboflavin immersion liquid.
- a gelling agent (final concentration of 0.1 wt% to 0.4 wt%) was added to each sample solution to cause gelation.
- the solubility of the hydrophobic substance by gelation was evaluated visually.
- the criteria of the degree of solubilization of the hydrophobic substance shown in FIG. 8 are as follows: (I) shows a dissolved state, (II) shows a slightly cloudy state, and (III) shows no dissolution. It shows a cloudy state.
- Example 5 Preparation of vitamin E-containing gel> The aforementioned stock solution was diluted with MOPS buffer (pH 7.5) to prepare a 500 ⁇ M vitamin E aqueous solution (containing 5% ethanol). Using this, each gel (0.5 wt% Pal-GGGH, 0.5 wt% agarose, 5% polyacrylamide) was prepared, and a vitamin E-encapsulating gel was prepared.
- Vitamin C sodium ascorbate phosphate
- MOPS buffer pH 7.5
- a stock solution is added so as to become 500 ⁇ M vitamin E (containing 5% ethanol), the solution is gelled, and the hydrophobic substance vitamin E is added.
- a simultaneous inclusion gel of vitamin C which is a hydrophilic substance.
- the vitamin E stock solution was diluted with MOPS buffer (pH 7.5) to prepare a 500 ⁇ M vitamin E aqueous solution (containing 5% ethanol).
- MOPS buffer pH 7.5
- Pal-GGGH was added so that it might become 0.3 wt%, and it heated and allowed to cool and created the gel sheet.
- the gel sheet was immersed in 5 ml of an aqueous ethanol solution (50, 70, 100%) and shaken at 45 rpm to release vitamin E.
- the release solution was sampled over time, and the release concentration of vitamin E at each time was calculated from the absorbance (292 nm).
- Example 7 Examination of adsorptivity of cytochrome c to gel sheet>
- phosphate buffer solution pH 7.4
- Tris-HCl buffer solution pH 9.0 were used, respectively.
- a gel sheet was prepared by adding a gelling agent (gelling agent concentration: 0.3 wt%) to 1 ml of each buffer solution.
- the gel sheet was immersed in a 0.3 mg / ml cytochrome c solution, and the concentration of the immersion liquid was calculated over time by absorbance (407 nm) to determine the amount of cytochrome c adsorbed on the gel sheet.
- 10 ⁇ l of 1M DTT was dropped onto the cytochrome c adsorption gel sheet to reduce the cytochrome c.
- cytochrome c is a protein having an isoelectric point near pI10 and has a positive charge under the present conditions. Therefore, the adsorption amount in a gel of pH 9.0 having more negative charges (FIG. 7) is large. It is thought that it rose.
- cytochrome c is a protein having an isoelectric point near pI10, and is considered to have a negative charge only at pH 11.0 under the present conditions. Therefore, it is considered that only at pH 11.0, cytochrome c and gel fiber were repelled by the negative charge of each other and released.
- Example 8 Measurement of peroxidase activity of cytochrome c encapsulated in Pal-GGGH gel (oxidation reaction of 2,6-dimethoxyphenol with H 2 O 2 using Pal-GGGH gel encapsulating cytochrome c)>
- the oxidation reaction of 2,6-dimethoxyphenol with H 2 O 2 using Pal-GGGH gel encapsulating cytochrome c shown below Went.
- cytochrome c is added to a 50 mM phosphate buffer solution containing Pal-GGGH powder as a gelling agent, and the buffer solution is heated at 95 ° C. It was obtained by dissolving and allowing to cool to room temperature.
- the reaction using the cytochrome c-encapsulated Pal-GGGH gel has a larger amount of product than the reaction with the cytochrome c solution not subjected to heat treatment. It was confirmed that per-oxidase activity was increased in the Pal-GGGH gel encapsulating c. Moreover, in the reaction with the cytochrome c solution that had been subjected to the heat treatment, the amount of the product was large, and it was confirmed that the peroxidase activity was similarly increased.
- Example 9 Measurement of CD spectrum and UV spectrum of cytochrome c encapsulated in Pal-GGGH gel> Pal-GGGH gel (gelling agent 0.2 wt%) containing cytochrome c at a concentration of 10 ⁇ M, 50 mM phosphate buffer solution containing cytochrome c at a concentration of 10 ⁇ M and heat-treated at 95 ° C. in the same manner as the gel preparation ( A 50 mM phosphate buffer (pH 7) containing pH 7) and cytochrome c at a concentration of 20 ⁇ M and not subjected to the heat treatment was prepared in 1 mL cells, and CD spectra at wavelengths of 250 nm to 450 nm were measured. The heat treatment time was 26 minutes, and the temperature of the apparatus was set at 25 ° C.
- a Pal-GGGH gel (gelator 0.1 wt%) containing cytochrome c at a concentration of 20 ⁇ M, and a 50 mM phosphate buffer containing cytochrome c at a concentration of 20 ⁇ M and subjected to the same 95 ° C. heat treatment as in the gel preparation.
- a 50 mM phosphate buffer solution (pH 7) containing a solution (pH 7) and cytochrome c at a concentration of 20 ⁇ M and not subjected to the heat treatment was prepared in 1 mL cells, and UV spectra at wavelengths of 350 nm to 800 nm were measured.
- the heat treatment time was 15 minutes, and the temperature of the apparatus was set to 25 ° C.
- the UV spectrum measurement results shown in FIG. 20 are based on the Soret band near 400 nm caused by the ⁇ - ⁇ * transition of the porphyrin ring of cytochrome c and the transition conjugated to the molecular vibration appearing near 480-650 nm in both gel and solution. Q band was confirmed. However, a charge transfer absorption band (S ⁇ Fe: LMCT band) derived from a coordination bond between heme iron and Met80, which is the sixth ligand, in the vicinity of 700 nm could not be confirmed with cytochrome c in the gel.
- S ⁇ Fe LMCT band
- Example 10 Gelling agent concentration dependence of peroxidase activity> The same experiment as in Example 8 was performed when the gelling agent concentrations were 0.1 wt%, 0.2 wt%, and 0.3 wt%. From FIG. 21, it was found that the initial reaction rate and the amount of product increased as the gelling agent concentration increased.
- the encapsulated gel of the present invention it becomes possible to encapsulate a hydrophobic compound, a hydrophilic compound, or both compounds in the gel.
- the encapsulated gel of the present invention can also release the encapsulated compound gradually.
- the gel in which the compound of the present invention is encapsulated can also encapsulate an enzyme such as cytochrome c as a compound, and if the encapsulated protein is an enzyme-like protein, Once incorporated, the enzyme maintains its activity without loss, but rather allows the enzymatic reaction to proceed within the gel. Therefore, a gel incorporating such an enzyme can see the reaction in the gel and can be used as a biosensor or a test / diagnostic agent.
- the encapsulated gel of the present invention is a wound dressing having an ability to recognize a damaged site, an adhesion-preventing film, a drug delivery system, a base for external medicine, a base such as a fragrance, a deodorant, an insecticide, an insecticide and an agrochemical. It can be widely used for materials, inspection / diagnosis, biosensors, base materials for environmental analysis, and base materials for capturing contaminants in soil and water.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
Disclosed is a gel enclosing a compound by means of a low-molecular weight gelling agent. The enclosing gel is characterized by containing a low-molecular weight gelling agent comprising a lipid peptide represented by formula (1) (wherein R1 through R5 represent organic groups) or a pharmaceutically usable salt thereof, an aqueous medium gelled by means of said low-molecular weight gelling agent, and at least one type of compound enclosed therein.
Description
本発明は、低分子ゲル化剤により化合物が内包されたゲルに関する。より詳細には、該化合物として疎水性化合物又は親水性化合物、若しくはその両方の化合物並びに酵素などの蛋白質を内包させたゲルに関する。
本発明の内包ゲルは、スキンケア製品、外用医薬品、創傷被服剤、癒着防止膜、薬物速達システム、芳香剤、消臭剤、防虫剤、殺虫剤、農薬用基材、診断薬用基材、化学反応や酵素反応の溶材、化学センサ用基材、バイオセンサー用基材などに好適に利用可能である。 The present invention relates to a gel in which a compound is encapsulated by a low molecular gelling agent. More specifically, the present invention relates to a gel in which a hydrophobic compound or a hydrophilic compound, or both compounds, and a protein such as an enzyme are encapsulated as the compound.
The inclusion gel of the present invention is a skin care product, external medicine, wound dressing, anti-adhesion film, drug delivery system, fragrance, deodorant, insect repellent, insecticide, agricultural chemical base, diagnostic base, chemical reaction It can be suitably used as an enzyme reaction solution, a chemical sensor substrate, a biosensor substrate, and the like.
本発明の内包ゲルは、スキンケア製品、外用医薬品、創傷被服剤、癒着防止膜、薬物速達システム、芳香剤、消臭剤、防虫剤、殺虫剤、農薬用基材、診断薬用基材、化学反応や酵素反応の溶材、化学センサ用基材、バイオセンサー用基材などに好適に利用可能である。 The present invention relates to a gel in which a compound is encapsulated by a low molecular gelling agent. More specifically, the present invention relates to a gel in which a hydrophobic compound or a hydrophilic compound, or both compounds, and a protein such as an enzyme are encapsulated as the compound.
The inclusion gel of the present invention is a skin care product, external medicine, wound dressing, anti-adhesion film, drug delivery system, fragrance, deodorant, insect repellent, insecticide, agricultural chemical base, diagnostic base, chemical reaction It can be suitably used as an enzyme reaction solution, a chemical sensor substrate, a biosensor substrate, and the like.
従来より、各種溶媒をゲル化させるゲル化剤が研究されている。水溶液や有機溶剤と水溶液の混液をゲル化するゲル剤としては、重合架橋反応により得られる高分子、多糖などのような天然高分子、低分子化合物が自己組織化して形成するゲルを形成する低分子ゲル化剤が知られている。
ところで、これらゲル剤にて重合反応を用いずに安全で安定なシート状のものを作成しようとした際には、天然高分子を溶解させた溶液をシート形状の型に入れゲル化させることになるが、このように作成したゲルシートは水に浸漬しておくと次第に天然高分子がゲルシートから水へと抜け落ち、崩壊してしまう。このように、物理ゲルのみでゲルシート作成は極めて困難であった(非特許文献1)。また、低分子ゲルによるゲルシートの作成は知られていなかった。 Conventionally, gelling agents that gel various solvents have been studied. Gel agents for gelling aqueous solutions or organic solvents and aqueous solutions include polymers obtained by polymerization cross-linking reactions, natural polymers such as polysaccharides, and low gels that form self-organized low molecular compounds. Molecular gelling agents are known.
By the way, when trying to create a safe and stable sheet-like material without using a polymerization reaction with these gel agents, the solution in which the natural polymer is dissolved is put into a sheet-shaped mold and gelled. However, when the gel sheet prepared in this way is immersed in water, the natural polymer gradually falls from the gel sheet to the water and collapses. As described above, it was extremely difficult to produce a gel sheet using only a physical gel (Non-Patent Document 1). Moreover, preparation of the gel sheet by a low molecular gel was not known.
ところで、これらゲル剤にて重合反応を用いずに安全で安定なシート状のものを作成しようとした際には、天然高分子を溶解させた溶液をシート形状の型に入れゲル化させることになるが、このように作成したゲルシートは水に浸漬しておくと次第に天然高分子がゲルシートから水へと抜け落ち、崩壊してしまう。このように、物理ゲルのみでゲルシート作成は極めて困難であった(非特許文献1)。また、低分子ゲルによるゲルシートの作成は知られていなかった。 Conventionally, gelling agents that gel various solvents have been studied. Gel agents for gelling aqueous solutions or organic solvents and aqueous solutions include polymers obtained by polymerization cross-linking reactions, natural polymers such as polysaccharides, and low gels that form self-organized low molecular compounds. Molecular gelling agents are known.
By the way, when trying to create a safe and stable sheet-like material without using a polymerization reaction with these gel agents, the solution in which the natural polymer is dissolved is put into a sheet-shaped mold and gelled. However, when the gel sheet prepared in this way is immersed in water, the natural polymer gradually falls from the gel sheet to the water and collapses. As described above, it was extremely difficult to produce a gel sheet using only a physical gel (Non-Patent Document 1). Moreover, preparation of the gel sheet by a low molecular gel was not known.
一方、低分子ゲル化剤によるゲルに新たな機能を付与し、該ゲルを機能性材料として活用しようとした場合、例えば、低分子ゲル化剤によりビタミンCとビタミンEを同時に内包させたゲルは美白用化粧材として有用であることは予想されるが(特許文献1、2)、親水性低分子化合物と疎水性低分子化合物の両化合物を同時に内包させるゲルを形成することは極めて困難である。
また、低分子ゲル化剤によりチトクロームcのような酵素を内包した場合、ゲル内に取り込まれた酵素がその活性を損なうことなく維持することができれば、そのゲル内で酵素反応を進行させることが可能になると考えられ、さらにゲル内で反応を見ることができ、酵素を内包したゲルをバイオセンサーや検査・診断薬等として使用することができると考えられる(特許文献3~6)。 On the other hand, when a new function is given to the gel by the low molecular gelling agent and the gel is used as a functional material, for example, a gel in which vitamin C and vitamin E are encapsulated simultaneously by the low molecular gelling agent is Although it is expected to be useful as a whitening cosmetic material (Patent Documents 1 and 2), it is extremely difficult to form a gel that encapsulates both a hydrophilic low-molecular compound and a hydrophobic low-molecular compound at the same time. .
In addition, when an enzyme such as cytochrome c is encapsulated by a low molecular gelling agent, the enzyme reaction can proceed in the gel if the enzyme incorporated in the gel can be maintained without impairing its activity. It is considered that the reaction can be observed in the gel, and the gel containing the enzyme can be used as a biosensor, a test / diagnostic agent or the like (Patent Documents 3 to 6).
また、低分子ゲル化剤によりチトクロームcのような酵素を内包した場合、ゲル内に取り込まれた酵素がその活性を損なうことなく維持することができれば、そのゲル内で酵素反応を進行させることが可能になると考えられ、さらにゲル内で反応を見ることができ、酵素を内包したゲルをバイオセンサーや検査・診断薬等として使用することができると考えられる(特許文献3~6)。 On the other hand, when a new function is given to the gel by the low molecular gelling agent and the gel is used as a functional material, for example, a gel in which vitamin C and vitamin E are encapsulated simultaneously by the low molecular gelling agent is Although it is expected to be useful as a whitening cosmetic material (
In addition, when an enzyme such as cytochrome c is encapsulated by a low molecular gelling agent, the enzyme reaction can proceed in the gel if the enzyme incorporated in the gel can be maintained without impairing its activity. It is considered that the reaction can be observed in the gel, and the gel containing the enzyme can be used as a biosensor, a test / diagnostic agent or the like (Patent Documents 3 to 6).
上述より、今まで、疎水性低分子化合物、又は親水性低分子化合物と疎水性低分子化合物の両化合物を同時に内包させること並びに酵素のような蛋白質等を内包させることが可能なゲルシートを含め、そのような化合物を内包させるゲルは提案されていない。
From the above, until now, including a gel sheet that can encapsulate a hydrophobic low molecular weight compound, or both a hydrophilic low molecular weight compound and a hydrophobic low molecular weight compound at the same time, and a protein such as an enzyme, No gel has been proposed that encapsulates such compounds.
そこで、本発明は、上記の事情に基づきなされたものであり、その解決しようとする課題は、ビタミンCのような親水性の生理活性物質又はビタミンEのような疎水性の生理活性物質、若しくはそれら化合物を同時に内包させたゲル、並びにチトクロームcのような酵素を内包させたゲルを提供することを目的とする。また、本発明の化合物を内包したゲルを化学反応や酵素反応に用いる方法を提供することを目的とする。また、本発明の目的は、本発明の化合物を内包したゲルを化学反応や酵素反応に用いることにより、該内包ゲルをバイオセンサーとして使用する方法を提供することにある。
Therefore, the present invention has been made based on the above circumstances, and the problem to be solved is a hydrophilic physiologically active substance such as vitamin C or a hydrophobic physiologically active substance such as vitamin E, or It is an object of the present invention to provide a gel in which these compounds are encapsulated and a gel in which an enzyme such as cytochrome c is encapsulated. It is another object of the present invention to provide a method of using a gel encapsulating the compound of the present invention for a chemical reaction or an enzyme reaction. Moreover, the objective of this invention is providing the method of using this inclusion gel as a biosensor by using the gel which included the compound of this invention for a chemical reaction or an enzyme reaction.
なお、重合架橋反応にて作成したゲルシートは、ゲル内に未反応の架橋剤などが残存するとゲル内で行う化学反応や酵素反応の妨げになる。一方、天然高分子によるゲルシートは不安定で水に浸漬すると溶解して崩壊する。ゲル内での化学反応や酵素反応を妨げず、かつ酵素や基質、さらには検査対象検体をゲル内に取込ませるために各種水溶に浸漬しても崩壊せず安定で安全なゲルシートを提供することでもある。
In the gel sheet prepared by the polymerization crosslinking reaction, if an unreacted crosslinking agent or the like remains in the gel, it interferes with the chemical reaction or enzyme reaction performed in the gel. On the other hand, gel sheets made of natural polymers are unstable and dissolve and disintegrate when immersed in water. Providing a stable and safe gel sheet that does not disturb chemical reactions and enzyme reactions in the gel, and does not collapse even when immersed in various water solutions so that the enzyme, substrate, and specimen to be tested can be taken into the gel. It is also a thing.
本発明者らは、上記の課題を解決するべく鋭意研究を行なった結果、本発明を見出すに至った。
すなわち、第1観点として、式(1): As a result of intensive studies to solve the above problems, the present inventors have found the present invention.
That is, as a first viewpoint, the formula (1):
すなわち、第1観点として、式(1): As a result of intensive studies to solve the above problems, the present inventors have found the present invention.
That is, as a first viewpoint, the formula (1):
(式中、R1は炭素原子数9乃至23の脂肪族基を表し、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1乃至3の分枝鎖を有し得る炭素原子数1乃至7のアルキル基、フェニルメチル基、フェニルエチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち少なくとも1つが-(CH2)n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは5員環と6員環から構成される縮合複素環を表し、mは1又は2を表す。)で表される脂質ペプチド又はその薬学的に使用可能な塩からなる低分子ゲル化剤と、該低分子ゲル化剤によりゲル化された水性媒体と、これに内包された少なくとも1種以上の化合物とを含むことを特徴とする内包ゲル。
第2観点として、前記式(1)中、R1が不飽和結合を0乃至2個有し得る炭素原子数11乃至23の直鎖状脂肪族基であることを特徴とする、第1観点に記載の内包ゲル。
第3観点として、前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、フェニルメチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち一つ又は二つが-(CH2)n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至2個有し得る5員環又は5員環と6員環から構成される縮合複素環を表すことを特徴とする、第1観点又は第2観点に記載の内包ゲル。
第4観点として、前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、フェニルメチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち一つ又は二つが-(CH2)n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、ピロール基、イミダゾール基、ピラゾール基又はインドール基を表すことを特徴とする、第3観点に記載の内包ゲル。
第5観点として、前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、第二ブチル基、第三ブチル基、フェニルメチル基、アミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基を表し、かつR2乃至R5のうち一つ又は二つがアミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基を表すことを特徴とする、第4観点に記載の内包ゲル。
第6観点として、前記式(1)中、R2乃至R5は、それぞれ独立して水素原子、メチル基、i-プロピル基、i-ブチル基、第二ブチル基、フェニルメチル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-グアニジノプロピル基、イミダゾールメチル基又は3-インドールメチル基を表し、かつR2乃至R5のうち一つ又は二つが4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-グアニジノプロピル基、イミダゾールメチル基、又は3-インドールメチル基を表すことを特徴とする、第5観点に記載の内包ゲル。
第7観点として前記式(1)中、mは1を表すことを特徴とする、第1観点乃至第6観点に記載の内包ゲル。
第8観点として、前記化合物が疎水性化合物又は親水性化合物、若しくはその両方の化合物であることを特徴とする、第1観点乃至第7観点に記載の内包ゲル。
第9観点として、前記化合物が酵素であることを特徴とする、第1観点乃至第7観点の内包ゲル。
第10観点として、前記化合物がチトクロームcであることを特徴とする、第9観点に記載の内包ゲル。
第11観点として、第9観点に記載の内包ゲルを酵素反応に用いる方法。
第12観点として、第10観点に記載の内包ゲルをH2O2による目的物の酸化反応に用いる方法。
第13観点として、第9観点に記載の内包ゲルを酵素反応に用いることにより、該内包ゲルをバイオセンサーとして使用する方法。
第14観点として、第10観点に記載の内包ゲルをH2O2による酸化反応に用いることにより、該内包ゲルをバイオセンサーとして使用する方法。
第15観点として、第11観点又は第12観点に記載の内包ゲルを備えたバイオセンサー。 (Wherein R 1 represents an aliphatic group having 9 to 23 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom or a carbon atom that may have a branched chain of 1 to 3 carbon atoms. Represents an alkyl group, a phenylmethyl group, a phenylethyl group, or a — (CH 2 ) n—X group represented byformulas 1 to 7, and at least one of R 2 to R 5 represents a — (CH 2 ) n—X group. N represents a number of 1 to 4, X is composed of an amino group, a guanidino group, a —CONH 2 group, or a 5-membered ring or a 5-membered ring and a 6-membered ring which may have 1 to 3 nitrogen atoms. M represents 1 or 2), and a low molecular gelling agent comprising a lipid peptide represented by the following formula: An aqueous medium and at least one compound contained therein. An included gel.
As a second aspect, the first aspect is characterized in that, in the formula (1), R 1 is a linear aliphatic group having 11 to 23 carbon atoms which may have 0 to 2 unsaturated bonds. The inclusion gel described in 1.
As a third aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms, A phenylmethyl group, or a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group, and n is a number from 1 to 4; Wherein X represents an amino group, a guanidino group, a -CONH 2 group, or a 5-membered ring having 1 to 2 nitrogen atoms or a condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring, The inclusion gel according to the first aspect or the second aspect.
As a fourth aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms, A phenylmethyl group, or a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group, and n is a number from 1 to 4; X represents an amino group, a guanidino group, a -CONH 2 group, a pyrrole group, an imidazole group, a pyrazole group, or an indole group according to the third aspect.
As a fifth aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i- Butyl, sec-butyl, tert-butyl, phenylmethyl, aminomethyl, 2-aminoethyl, 3-aminopropyl, 4-aminobutyl, carbamoylmethyl, 2-carbamoylethyl, 3 -Represents a carbamoylpropyl group, 2-guanidinoethyl group, 3-guanidinopropyl group, pyrrolemethyl group, imidazolemethyl group, pyrazolemethyl group or 3-indolemethyl group, and one or two of R 2 to R 5 are Aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, The inclusion according to the fourth aspect, characterized in that it represents a 3-carbamoylpropyl group, a 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolemethyl group, an imidazolemethyl group, a pyrazolemethyl group or a 3-indolemethyl group gel.
As a sixth aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, a methyl group, an i-propyl group, an i-butyl group, a secondary butyl group, a phenylmethyl group, 4- Represents an aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolemethyl group or a 3-indolemethyl group, and one or two of R 2 to R 5 is a 4-aminobutyl group Or a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolemethyl group, or a 3-indolemethyl group.
The inclusion gel according to any one of the first to sixth aspects, wherein m represents 1 in the formula (1) as a seventh aspect.
As an eighth aspect, the inclusion gel according to any one of the first to seventh aspects, wherein the compound is a hydrophobic compound, a hydrophilic compound, or a compound of both.
As a ninth aspect, the encapsulated gel according to the first aspect to the seventh aspect, wherein the compound is an enzyme.
As a tenth aspect, the inclusion gel according to the ninth aspect, wherein the compound is cytochrome c.
As an eleventh aspect, a method of using the inclusion gel according to the ninth aspect for an enzyme reaction.
As a twelfth aspect, a method of using the inclusion gel according to the tenth aspect for an oxidation reaction of a target product with H 2 O 2 .
As a thirteenth aspect, a method of using the inclusion gel as a biosensor by using the inclusion gel according to the ninth aspect for an enzyme reaction.
As a fourteenth aspect, a method of using the inclusion gel as a biosensor by using the inclusion gel according to the tenth aspect for an oxidation reaction with H 2 O 2 .
As a fifteenth aspect, a biosensor comprising the inclusion gel according to the eleventh aspect or the twelfth aspect.
第2観点として、前記式(1)中、R1が不飽和結合を0乃至2個有し得る炭素原子数11乃至23の直鎖状脂肪族基であることを特徴とする、第1観点に記載の内包ゲル。
第3観点として、前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、フェニルメチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち一つ又は二つが-(CH2)n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至2個有し得る5員環又は5員環と6員環から構成される縮合複素環を表すことを特徴とする、第1観点又は第2観点に記載の内包ゲル。
第4観点として、前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、フェニルメチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち一つ又は二つが-(CH2)n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、ピロール基、イミダゾール基、ピラゾール基又はインドール基を表すことを特徴とする、第3観点に記載の内包ゲル。
第5観点として、前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、第二ブチル基、第三ブチル基、フェニルメチル基、アミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基を表し、かつR2乃至R5のうち一つ又は二つがアミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基を表すことを特徴とする、第4観点に記載の内包ゲル。
第6観点として、前記式(1)中、R2乃至R5は、それぞれ独立して水素原子、メチル基、i-プロピル基、i-ブチル基、第二ブチル基、フェニルメチル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-グアニジノプロピル基、イミダゾールメチル基又は3-インドールメチル基を表し、かつR2乃至R5のうち一つ又は二つが4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-グアニジノプロピル基、イミダゾールメチル基、又は3-インドールメチル基を表すことを特徴とする、第5観点に記載の内包ゲル。
第7観点として前記式(1)中、mは1を表すことを特徴とする、第1観点乃至第6観点に記載の内包ゲル。
第8観点として、前記化合物が疎水性化合物又は親水性化合物、若しくはその両方の化合物であることを特徴とする、第1観点乃至第7観点に記載の内包ゲル。
第9観点として、前記化合物が酵素であることを特徴とする、第1観点乃至第7観点の内包ゲル。
第10観点として、前記化合物がチトクロームcであることを特徴とする、第9観点に記載の内包ゲル。
第11観点として、第9観点に記載の内包ゲルを酵素反応に用いる方法。
第12観点として、第10観点に記載の内包ゲルをH2O2による目的物の酸化反応に用いる方法。
第13観点として、第9観点に記載の内包ゲルを酵素反応に用いることにより、該内包ゲルをバイオセンサーとして使用する方法。
第14観点として、第10観点に記載の内包ゲルをH2O2による酸化反応に用いることにより、該内包ゲルをバイオセンサーとして使用する方法。
第15観点として、第11観点又は第12観点に記載の内包ゲルを備えたバイオセンサー。 (Wherein R 1 represents an aliphatic group having 9 to 23 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom or a carbon atom that may have a branched chain of 1 to 3 carbon atoms. Represents an alkyl group, a phenylmethyl group, a phenylethyl group, or a — (CH 2 ) n—X group represented by
As a second aspect, the first aspect is characterized in that, in the formula (1), R 1 is a linear aliphatic group having 11 to 23 carbon atoms which may have 0 to 2 unsaturated bonds. The inclusion gel described in 1.
As a third aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms, A phenylmethyl group, or a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group, and n is a number from 1 to 4; Wherein X represents an amino group, a guanidino group, a -CONH 2 group, or a 5-membered ring having 1 to 2 nitrogen atoms or a condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring, The inclusion gel according to the first aspect or the second aspect.
As a fourth aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms, A phenylmethyl group, or a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group, and n is a number from 1 to 4; X represents an amino group, a guanidino group, a -CONH 2 group, a pyrrole group, an imidazole group, a pyrazole group, or an indole group according to the third aspect.
As a fifth aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i- Butyl, sec-butyl, tert-butyl, phenylmethyl, aminomethyl, 2-aminoethyl, 3-aminopropyl, 4-aminobutyl, carbamoylmethyl, 2-carbamoylethyl, 3 -Represents a carbamoylpropyl group, 2-guanidinoethyl group, 3-guanidinopropyl group, pyrrolemethyl group, imidazolemethyl group, pyrazolemethyl group or 3-indolemethyl group, and one or two of R 2 to R 5 are Aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, The inclusion according to the fourth aspect, characterized in that it represents a 3-carbamoylpropyl group, a 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolemethyl group, an imidazolemethyl group, a pyrazolemethyl group or a 3-indolemethyl group gel.
As a sixth aspect, in the formula (1), R 2 to R 5 are each independently a hydrogen atom, a methyl group, an i-propyl group, an i-butyl group, a secondary butyl group, a phenylmethyl group, 4- Represents an aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolemethyl group or a 3-indolemethyl group, and one or two of R 2 to R 5 is a 4-aminobutyl group Or a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolemethyl group, or a 3-indolemethyl group.
The inclusion gel according to any one of the first to sixth aspects, wherein m represents 1 in the formula (1) as a seventh aspect.
As an eighth aspect, the inclusion gel according to any one of the first to seventh aspects, wherein the compound is a hydrophobic compound, a hydrophilic compound, or a compound of both.
As a ninth aspect, the encapsulated gel according to the first aspect to the seventh aspect, wherein the compound is an enzyme.
As a tenth aspect, the inclusion gel according to the ninth aspect, wherein the compound is cytochrome c.
As an eleventh aspect, a method of using the inclusion gel according to the ninth aspect for an enzyme reaction.
As a twelfth aspect, a method of using the inclusion gel according to the tenth aspect for an oxidation reaction of a target product with H 2 O 2 .
As a thirteenth aspect, a method of using the inclusion gel as a biosensor by using the inclusion gel according to the ninth aspect for an enzyme reaction.
As a fourteenth aspect, a method of using the inclusion gel as a biosensor by using the inclusion gel according to the tenth aspect for an oxidation reaction with H 2 O 2 .
As a fifteenth aspect, a biosensor comprising the inclusion gel according to the eleventh aspect or the twelfth aspect.
本発明の内包ゲルは、ゲル内に疎水性化合物又は親水性化合物、若しくはその両方の化合物を内包することが可能である。また、内包した化合物を徐放することも可能である。そのため、皮膚などの損傷部位にあてるとゲルとしての保湿効果と薬物の徐放といった治療効果や、損傷となる化合物や病原となる蛋白質を捕捉することによる治療効果が期待できる。
The encapsulated gel of the present invention can encapsulate a hydrophobic compound, a hydrophilic compound, or both compounds in the gel. It is also possible to release the encapsulated compound gradually. Therefore, when applied to a damaged site such as the skin, a therapeutic effect such as a moisturizing effect as a gel and a sustained release of a drug, and a therapeutic effect by capturing a damaging compound or a pathogenic protein can be expected.
また、本発明の内包ゲルは、化合物としてチトクロームc等の酵素を内包することも可能であり、かつ内包したものが酵素のような活性を有する蛋白質の場合には、ゲル内に取り込んでも酵素はその活性は損なうことなく維持され、むしろ、そのゲル内で酵素反応を進行させることが可能である。したがって、このような酵素などを取り込んだゲルは、ゲル内で反応を見ることができ、バイオセンサーや検査・診断薬として使用することが可能である。また、本発明の化合物が内包されたゲルは、上述の酵素反応だけでなく、ゲル内に内包させた化合物によっては化学反応をさせることも可能である。
In addition, the encapsulated gel of the present invention can encapsulate an enzyme such as cytochrome c as a compound, and when the encapsulated protein is an enzyme-like protein, the enzyme can be incorporated into the gel even if incorporated. Its activity is maintained without loss, rather it is possible to allow the enzymatic reaction to proceed within the gel. Therefore, a gel incorporating such an enzyme can see the reaction in the gel and can be used as a biosensor or a test / diagnostic agent. In addition, the gel encapsulating the compound of the present invention can be subjected not only to the enzyme reaction described above but also to a chemical reaction depending on the compound encapsulated in the gel.
以上より、本発明の内包ゲルは、生体や環境に安全であり、患部や損傷部位認識能を有する創傷被覆剤、癒着防止膜、薬物速達システム、外用医薬品用基材、芳香剤・消臭剤・防虫剤・殺虫剤・農薬などの基材、バイオセンサー用基材、環境分析用の基材、土中や水中の汚染物質の捕捉といった基材などに広く利用することができる。
As described above, the encapsulated gel of the present invention is a wound dressing, an adhesion prevention film, a drug delivery system, a base for external medicine, a fragrance / deodorant that is safe for living bodies and the environment, and has an ability to recognize an affected area or damaged site. -It can be widely used for base materials such as insect repellents, insecticides and agricultural chemicals, base materials for biosensors, base materials for environmental analysis, and base materials for capturing contaminants in soil and water.
本発明の内包ゲルは、低分子ゲル化剤によりゲル化された水性媒体に少なくとも1種以上の化合物を内包させたことを特徴とする内包ゲルである。
The encapsulated gel of the present invention is an encapsulated gel characterized by encapsulating at least one compound in an aqueous medium gelled by a low molecular gelling agent.
本発明の化合物が内包されたゲルに用いる低分子ゲル化剤のゲル形成メカニズムは、該低分子ゲル化剤を構成する低分子化合物が自己集合化してファイバー状の形態を形成し、さらに該ファイバーが網目構造を形成し、この網目構造に水や各種水溶液、アルコール水、有機溶媒水等を囲い込み、ゲルを形成する。ここで、「自己集合化」とは、当初ランダムな状態にある物質(分子)群において、分子が適切な外部条件下で分子間の非共有結合性相互作用等により自発的に会合することにより、マクロな機能性集合体に成長することを指す。そのため、本発明の内包ゲルは、自己集合化したファイバーとそれにより構築された網目構造により形成されるゲルを含有し、疎水性化合物であれば疎水環境下のファイバー内に、親水性化合物であればファイバーが構成する網目構造内に内包されることが可能となる。
The gel formation mechanism of the low molecular weight gelling agent used for the gel encapsulating the compound of the present invention is that the low molecular weight compound constituting the low molecular weight gelling agent is self-assembled to form a fiber-like form. Forms a network structure, and water, various aqueous solutions, alcohol water, organic solvent water and the like are enclosed in the network structure to form a gel. Here, “self-assembly” means that in a group of substances (molecules) that are initially in a random state, molecules spontaneously associate under non-covalent interactions between molecules under appropriate external conditions. , Refers to growing into a macro functional assembly. Therefore, the inclusion gel of the present invention contains a gel formed of self-assembled fibers and a network structure formed thereby, and if it is a hydrophobic compound, it may be a hydrophilic compound in the fiber in a hydrophobic environment. For example, it can be included in the network structure formed by the fiber.
本発明の内包ゲルは、上記低分子が自己集合して形成されたファイバーにより構成されたゲルシートなため、重合架橋反応により得たゲルシートと異なり、ゲル内で行う反応を妨げになったり、内包する化合物を分解するような試薬を取り除く作業も必要なく、また天然高分子から得たゲルシートのようにゲルシートから一本ずつ天然高分子が抜け落ちて崩壊する心配の無い、安全で安定なゲルシートを提供することが可能である。
また、このゲルシートの溶剤を凍結乾燥させずに蒸発させることで、フィルムを提供することも可能である。 The encapsulated gel of the present invention is a gel sheet composed of fibers formed by self-assembly of the above-mentioned low molecules. Therefore, unlike the gel sheet obtained by the polymerization crosslinking reaction, the encapsulated gel obstructs or encapsulates the reaction performed in the gel. Providing a safe and stable gel sheet that eliminates the need to remove a reagent that decomposes a compound and that does not cause the natural polymer to fall off from the gel sheet one by one like a gel sheet obtained from a natural polymer. It is possible.
Moreover, it is also possible to provide a film by evaporating the solvent of this gel sheet without freeze-drying.
また、このゲルシートの溶剤を凍結乾燥させずに蒸発させることで、フィルムを提供することも可能である。 The encapsulated gel of the present invention is a gel sheet composed of fibers formed by self-assembly of the above-mentioned low molecules. Therefore, unlike the gel sheet obtained by the polymerization crosslinking reaction, the encapsulated gel obstructs or encapsulates the reaction performed in the gel. Providing a safe and stable gel sheet that eliminates the need to remove a reagent that decomposes a compound and that does not cause the natural polymer to fall off from the gel sheet one by one like a gel sheet obtained from a natural polymer. It is possible.
Moreover, it is also possible to provide a film by evaporating the solvent of this gel sheet without freeze-drying.
上記低分子ゲル化剤としては、脂質ペプチド又はその薬学的に使用可能な塩(疎水性部位である脂質部と親水性部位であるペプチド部とを有する低分子化合物)を用いることができる。
As the low-molecular gelling agent, lipid peptides or pharmaceutically usable salts thereof (low-molecular compounds having a lipid part which is a hydrophobic part and a peptide part which is a hydrophilic part) can be used.
上記脂質ペプチド又はその薬学的に使用可能な塩としては、下記式(1)で表される構造を有し、脂溶性の高い長鎖を有する脂質部(アルキルカルボニル基)とペプチド部(テトラペプチド)より構成される。
The lipid peptide or pharmaceutically usable salt thereof includes a lipid part (alkylcarbonyl group) and a peptide part (tetrapeptide having a structure represented by the following formula (1) and having a lipid-soluble long chain. ).
上記式(1)において、R1は炭素原子数9乃至23の脂肪族基を表し、好ましくは、R1が不飽和結合を0乃至2個有し得る炭素原子数11乃至23の直鎖状脂肪族基である。
R1及び隣接するカルボニル基で構成される脂質部(アシル基)の具体例としては、
ミリストイル基、ペンタデカノイル基、パルミトイル基、マルガロイル基、オレオイル基、エライドイル基、リノレオイル基、ステアロイル基、バクセノイル基、オクタデシルカルボニル基、アラキドイル基、イコサノイル基等を挙げることができ、好ましくは、ラウロイル基、ミリストイル基、パルミトイル基、マルガロイル基、マルガリル基、ステアロイル基、エライドイル基、ベヘノイル基、オレオイル基、及びカルダノイル基である。 In the above formula (1), R 1 represents an aliphatic group having 9 to 23 carbon atoms, and preferably R 1 is a straight chain having 11 to 23 carbon atoms that may have 0 to 2 unsaturated bonds. It is an aliphatic group.
As a specific example of a lipid part (acyl group) composed of R 1 and an adjacent carbonyl group,
Examples include myristoyl group, pentadecanoyl group, palmitoyl group, margaroyl group, oleoyl group, eridoyl group, linoleoyl group, stearoyl group, baccenoyl group, octadecylcarbonyl group, arachidoyl group, icosanoyl group, preferably lauroyl. A group, a myristoyl group, a palmitoyl group, a margaroyl group, a margaryl group, a stearoyl group, an elideyl group, a behenoyl group, an oleoyl group, and a cardanoyl group.
R1及び隣接するカルボニル基で構成される脂質部(アシル基)の具体例としては、
ミリストイル基、ペンタデカノイル基、パルミトイル基、マルガロイル基、オレオイル基、エライドイル基、リノレオイル基、ステアロイル基、バクセノイル基、オクタデシルカルボニル基、アラキドイル基、イコサノイル基等を挙げることができ、好ましくは、ラウロイル基、ミリストイル基、パルミトイル基、マルガロイル基、マルガリル基、ステアロイル基、エライドイル基、ベヘノイル基、オレオイル基、及びカルダノイル基である。 In the above formula (1), R 1 represents an aliphatic group having 9 to 23 carbon atoms, and preferably R 1 is a straight chain having 11 to 23 carbon atoms that may have 0 to 2 unsaturated bonds. It is an aliphatic group.
As a specific example of a lipid part (acyl group) composed of R 1 and an adjacent carbonyl group,
Examples include myristoyl group, pentadecanoyl group, palmitoyl group, margaroyl group, oleoyl group, eridoyl group, linoleoyl group, stearoyl group, baccenoyl group, octadecylcarbonyl group, arachidoyl group, icosanoyl group, preferably lauroyl. A group, a myristoyl group, a palmitoyl group, a margaroyl group, a margaryl group, a stearoyl group, an elideyl group, a behenoyl group, an oleoyl group, and a cardanoyl group.
上記式(1)において、ペプチド部に含まれるR2乃至R5は、それぞれ互いに独立して、水素原子、炭素原子1乃至3の分枝鎖を有し得る炭素原子数1乃至7のアルキル基、フェニルメチル基、フェニルエチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち少なくとも1つ、より好ましくは1つ又は2つが-(CH2)n-X基を表し、mは1又は2を表す。
In the above formula (1), R 2 to R 5 contained in the peptide part are each independently a hydrogen atom or an alkyl group having 1 to 7 carbon atoms that may have a branched chain of 1 to 3 carbon atoms. , A phenylmethyl group, a phenylethyl group, or a — (CH 2 ) n—X group, and at least one, more preferably one or two of R 2 to R 5 is — (CH 2 ) n—X Represents a group, and m represents 1 or 2.
上記炭素原子1乃至3の分枝鎖を有し得る炭素原子数1乃至7のアルキル基とは、好ましくは水素原子、炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基である。
該炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、第二ブチル基又は第三ブチル基等を挙げることができ、好ましくは、メチル基、i-プロピル基、i-ブチル基、又は第二ブチル基等である。 The alkyl group having 1 to 7 carbon atoms which may have a branched chain having 1 to 3 carbon atoms is preferably a hydrogen atom, or 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms. It is an alkyl group.
Examples of the alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i -Butyl group, secondary butyl group, tertiary butyl group and the like can be mentioned, and preferred are methyl group, i-propyl group, i-butyl group, secondary butyl group and the like.
該炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、第二ブチル基又は第三ブチル基等を挙げることができ、好ましくは、メチル基、i-プロピル基、i-ブチル基、又は第二ブチル基等である。 The alkyl group having 1 to 7 carbon atoms which may have a branched chain having 1 to 3 carbon atoms is preferably a hydrogen atom, or 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms. It is an alkyl group.
Examples of the alkyl group having 1 to 4 carbon atoms that may have a branched chain of 1 or 2 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i -Butyl group, secondary butyl group, tertiary butyl group and the like can be mentioned, and preferred are methyl group, i-propyl group, i-butyl group, secondary butyl group and the like.
上記-(CH2)n-X基において、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは5員環と6員環から構成される縮合複素環を表す。
In the — (CH 2 ) n—X group, n represents a number of 1 to 4, and X is an amino group, a guanidino group, a —CONH 2 group, or a 5-membered ring that may have 1 to 3 nitrogen atoms or A condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring is represented.
上記-(CH2)n-X基において、Xは好ましくはアミノ基、グアニジノ基、-CONH2基、ピロール基、イミダゾール基、ピラゾール基又はインドール基を表す。
したがって、上記-(CH2)n-X基は、好ましくはアミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基等であり、より好ましくは4-アミノブチル基、カルバモイルメチル基、3-カルバモイルプロピル基、イミダゾールメチル基又は3-インドールメチル基である。 In the — (CH 2 ) n—X group, X preferably represents an amino group, a guanidino group, a —CONH 2 group, a pyrrole group, an imidazole group, a pyrazole group or an indole group.
Accordingly, the — (CH 2 ) n—X group is preferably an aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3- A carbamoylpropyl group, a 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolemethyl group, an imidazolemethyl group, a pyrazolemethyl group or a 3-indolemethyl group, more preferably a 4-aminobutyl group, a carbamoylmethyl group, 3-carbamoylpropyl group, imidazolemethyl group or 3-indolemethyl group.
したがって、上記-(CH2)n-X基は、好ましくはアミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基等であり、より好ましくは4-アミノブチル基、カルバモイルメチル基、3-カルバモイルプロピル基、イミダゾールメチル基又は3-インドールメチル基である。 In the — (CH 2 ) n—X group, X preferably represents an amino group, a guanidino group, a —CONH 2 group, a pyrrole group, an imidazole group, a pyrazole group or an indole group.
Accordingly, the — (CH 2 ) n—X group is preferably an aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3- A carbamoylpropyl group, a 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolemethyl group, an imidazolemethyl group, a pyrazolemethyl group or a 3-indolemethyl group, more preferably a 4-aminobutyl group, a carbamoylmethyl group, 3-carbamoylpropyl group, imidazolemethyl group or 3-indolemethyl group.
上記式(1)で表される化合物において、低分子ゲル化剤として特に好適な脂質ペプチドとしては、以下の脂質部とペプチド部(アミノ酸集合部)から形成される化合物である。
なおアミノ酸の略称としては、アラニン(Ala)、アルギニン(Arg)、グルタミン(Gln)、グリシン(Gly)、ヒスチジン(His)、イソロシン(Ile)、ロイシン(Leu)、リジン(Lys)、トリプトファン(Trp)、バリン(Val)を表す。:ラウロイル-Gly-Gly-Gly-His、ラウロイル―Gly-Gly-Gly-Gln、ラウロイル-Gly-Gly-Gly-Asn、ラウロイル-Gly-Gly-Gly-Trp、ラウロイル-Gly-Gly-Gly-Lys、ラウロイル-Gly-Gly-Ala-His、ラウロイル-Gly-Gly-Ala-Gln、ラウロイル-Gly-Gly-Ala-Asn、ラウロイル-Gly-Gly-Ala-Trp、ラウロイル-Gly-Gly-Ala-Lys、ラウロイル-Gly-Ala-Gly-His、ラウロイル-Gly-Ala-Gly-Gln、ラウロイル-Gly-Ala-Gly-Asn、ラウロイル-Gly-Ala-Gly-Trp、ラウロイル-Gly-Ala-Gly-Lys、ラウロイル-Ala-Gly―Gly-His、ラウロイル-Ala-Gly-Gly-Gln、ラウロイル-Ala-Gly-Gly-Asn、ラウロイル-Ala-Gly-Gly-Trp、ラウロイル-Ala-Gly-Gly-Lys、ラウロイル-Gly-Gly-His-Gly、ラウロイル-Gly-His-Gly-Gly、ラウロイル-His-Gly-Gly-Gly;ミリストイル-Gly-Gly-Gly-His、ミリストイル-Gly-Gly-Gly-Gln、ミリストイル-Gly-Gly-Gly-Asn、ミリストイル-Gly-Gly-Gly-Trp,ミリストイル-Gly-Gly-Gly-Lys、ミリストイル-Gly-Gly-Ala-His、ミリストイル-Gly-Gly-Ala-Gln、ミリストイル-Gly-Gly-Ala-Asn、ミリストイル-Gly-Gly-Ala-Trp、ミリストイル-Gly-Gly-Ala-Lys、ミリストイル-Gly-Ala-Gly-His、ミリストイル-Gly-Ala-Gly-Gln、ミリストイル-Gly-Ala-Gly-Asn、ミリストイル-Gly-Ala-Gly-Trp、ミリストイル-Gly-Ala-Gly-Lys、ミリストイル-Ala-Gly―Gly-His、ミリストイル-Ala-Gly-Gly-Gln、ミリストイル-Ala-Gly-Gly-Asn、ミリストイル-Ala-Gly-Gly-Trp、ミリストイル-Ala-Gly-Gly-Lys、ミリストイル-Gly-Gly-His-Gly、ミリストイル-Gly-His-Gly-Gly、ミリストイル-His-Gly-Gly-Gly;パルミトイル-Gly-Gly-Gly-His、パルミトイル―Gly-Gly-Gly-Gln、パルミトイル-Gly-Gly-Gly-Asn、パルミトイル-Gly-Gly-Gly-Trp、パルミトイル-Gly-Gly-Gly-Lys、パルミトイル-Gly-Gly-Ala-His、パルミトイル-Gly-Gly-Ala-Gln、パルミトイル-Gly-Gly-Ala-Asn、パルミトイル-Gly-Gly-Ala-Trp、パルミトイル-Gly-Gly-Ala-Lys、パルミトイル-Gly-Ala-Gly-His、パルミトイル-Gly-Ala-Gly-Gln、パルミトイル-Gly-Ala-Gly-Asn、パルミトイル-Gly-Ala-Gly-Trp、パルミトイル-Gly-Ala-Gly-Lys、パルミトイル-Ala-Gly―Gly-His、パルミトイル-Ala-Gly-Gly-Gln、パルミトイル-Ala-Gly-Gly-Asn、パルミトイル-Ala-Gly-Gly-Trp、パルミトイル-Ala-Gly-Gly-Lys、パルミトイル-Gly-Gly-His-Gly、パルミトイル-Gly-His-Gly-Gly、パルミトイル-His-Gly-Gly-Gly;ステアロイル-Gly-Gly-Gly-His、ステアロイル―Gly-Gly-Gly-Gln、ステアロイル-Gly-Gly-Gly-Asn、ステアロイル-Gly-Gly-Gly-Trp、ステアロイル-Gly-Gly-Gly-Lys、ステアロイル-Gly-Gly-Ala-His、ステアロイル-Gly-Gly-Ala-Gln、ステアロイル-Gly-Gly-Ala-Asn、ステアロイル-Gly-Gly-Ala-Trp、ステアロイル-Gly-Gly-Ala-Lys、ステアロイル-Gly-Ala-Gly-His、ステアロイル-Gly-Ala-Gly-Gln、ステアロイル-Gly-Ala-Gly-Asn、ステアロイル-Gly-Ala-Gly-Trp、ステアロイル-Gly-Ala-Gly-Lys、ステアロイル-Ala-Gly―Gly-His、ステアロイル-Ala-Gly-Gly-Gln、ステアロイル-Ala-Gly-Gly-Asn、ステアロイル-Ala-Gly-Gly-Trp、ステアロイル-Ala-Gly-Gly-Lys、ステアロイル-Gly-Gly-His-Gly、ステアロイル-Gly-His-Gly-Gly、ステアロイル-His-Gly-Gly-Gly。 In the compound represented by the above formula (1), a lipid peptide particularly suitable as a low molecular gelling agent is a compound formed from the following lipid part and peptide part (amino acid assembly part).
As abbreviations of amino acids, alanine (Ala), arginine (Arg), glutamine (Gln), glycine (Gly), histidine (His), isorosine (Ile), leucine (Leu), lysine (Lys), tryptophan (Trp) ), Valine (Val). : Lauroyl-Gly-Gly-Gly-His, Lauroyl-Gly-Gly-Gly-Gln, Lauroyl-Gly-Gly-Gly-Asn, Lauroyl-Gly-Gly-Gly-Trp, Lauroyl-Gly-Gly-Gly-Gly-Gly Lauroyl-Gly-Gly-Ala-His, Lauroyl-Gly-Gly-Ala-Gln, Lauroyl-Gly-Gly-Ala-Asn, Lauroyl-Gly-Gly-Ala-Trp, Lauroyl-Gly-Gly-Ala-Lys Lauroyl-Gly-Ala-Gly-His, Lauroyl-Gly-Ala-Gly-Gln, Lauroyl-Gly-Ala-Gly-Asn, Lauroyl-Gly-Ala-Gly-Trp, Lauroyl-Gly-Ala-Gly-Lys Lau Ir-Ala-Gly-Gly-His, Lauroyl-Ala-Gly-Gly-Gln, Lauroyl-Ala-Gly-Gly-Asn, Lauroyl-Ala-Gly-Gly-Trp, Lauroyl-Ala-Gly-Gly-Lys, Lauroyl-Gly-Gly-His-Gly, Lauroyl-Gly-His-Gly-Gly, Lauroyl-His-Gly-Gly-Gly; Myristoyl-Gly-Gly-Gly-His, Myristoyl-Gly-Gly-Gly, Myristoyl-Gly-Gly-Gly-Asn, Myristoyl-Gly-Gly-Gly-Trp, Myristoyl-Gly-Gly-Gly-Lys, Myristoyl-Gly-Gly-Ala-His, Myristoyl-Gly-Gly-Ala-Gl , Myristoyl-Gly-Gly-Ala-Asn, Myristoyl-Gly-Gly-Ala-Trp, Myristoyl-Gly-Gly-Ala-Lys, Myristoyl-Gly-Ala-Gly-His, Myristoyl-Gly-Ala-Gly-Gln , Myristoyl-Gly-Ala-Gly-Asn, Myristoyl-Gly-Ala-Gly-Trp, Myristoyl-Gly-Ala-Gly-Lys, Myristoyl-Ala-Gly-Gly-His, Myristoyl-Ala-Gly-Gly-Gln , Myristoyl-Ala-Gly-Gly-Asn, Myristoyl-Ala-Gly-Gly-Trp, Myristoyl-Ala-Gly-Gly-Lys, Myristoyl-Gly-Gly-His-Gly, Myristoyl-Gly -His-Gly-Gly, Myristoyl-His-Gly-Gly-Gly; Palmitoyl-Gly-Gly-Gly-His, Palmitoyl-Gly-Gly-Gly-Gln, Palmitoyl-Gly-Gly-Gly-Asn, Palmitoyl-Gly-Asn -Gly-Gly-Trp, Palmitoyl-Gly-Gly-Gly-Lys, Palmitoyl-Gly-Gly-Ala-His, Palmitoyl-Gly-Gly-Ala-Gln, Palmitoyl-Gly-Gly-Ala-Asn, Palmytoyl-Asl -Gly-Ala-Trp, Palmitoyl-Gly-Gly-Ala-Lys, Palmitoyl-Gly-Ala-Gly-His, Palmitoyl-Gly-Ala-Gly-Gln, Palmitoyl-Gly-Ala-Gly-As Palmitoyl-Gly-Ala-Gly-Trp, Palmitoyl-Gly-Ala-Gly-Lys, Palmitoyl-Ala-Gly-Gly-His, Palmitoyl-Ala-Gly-Gly-Gln, Palmitoyl-Ala-Gly-Gly-Gly-Gly-Gly Palmitoyl-Ala-Gly-Gly-Trp, Palmitoyl-Ala-Gly-Gly-Lys, Palmitoyl-Gly-Gly-His-Gly, Palmitoyl-Gly-His-Gly-Gly, Palmitoyl-His-Gly-Gly-Gly Stearoyl-Gly-Gly-Gly-His, stearoyl-Gly-Gly-Gly-Gln, stearoyl-Gly-Gly-Gly-Asn, stearoyl-Gly-Gly-Gly-Trp, stearoyl-Gl -Gly-Gly-Lys, stearoyl-Gly-Gly-Ala-His, stearoyl-Gly-Gly-Ala-Gln, stearoyl-Gly-Gly-Ala-Asn, stearoyl-Gly-Gly-Ala-Trp, stearoyl-Gly -Gly-Ala-Lys, stearoyl-Gly-Ala-Gly-His, stearoyl-Gly-Ala-Gly-Gln, stearoyl-Gly-Ala-Gly-Asn, stearoyl-Gly-Ala-Gly-Trp, stearoyl-Gly -Ala-Gly-Lys, stearoyl-Ala-Gly-Gly-His, stearoyl-Ala-Gly-Gly-Gln, stearoyl-Ala-Gly-Gly-Asn, stearoyl-Ala-Gly-Gly-Tr p, stearoyl-Ala-Gly-Gly-Lys, stearoyl-Gly-Gly-His-Gly, stearoyl-Gly-His-Gly-Gly, stearoyl-His-Gly-Gly-Gly.
なおアミノ酸の略称としては、アラニン(Ala)、アルギニン(Arg)、グルタミン(Gln)、グリシン(Gly)、ヒスチジン(His)、イソロシン(Ile)、ロイシン(Leu)、リジン(Lys)、トリプトファン(Trp)、バリン(Val)を表す。:ラウロイル-Gly-Gly-Gly-His、ラウロイル―Gly-Gly-Gly-Gln、ラウロイル-Gly-Gly-Gly-Asn、ラウロイル-Gly-Gly-Gly-Trp、ラウロイル-Gly-Gly-Gly-Lys、ラウロイル-Gly-Gly-Ala-His、ラウロイル-Gly-Gly-Ala-Gln、ラウロイル-Gly-Gly-Ala-Asn、ラウロイル-Gly-Gly-Ala-Trp、ラウロイル-Gly-Gly-Ala-Lys、ラウロイル-Gly-Ala-Gly-His、ラウロイル-Gly-Ala-Gly-Gln、ラウロイル-Gly-Ala-Gly-Asn、ラウロイル-Gly-Ala-Gly-Trp、ラウロイル-Gly-Ala-Gly-Lys、ラウロイル-Ala-Gly―Gly-His、ラウロイル-Ala-Gly-Gly-Gln、ラウロイル-Ala-Gly-Gly-Asn、ラウロイル-Ala-Gly-Gly-Trp、ラウロイル-Ala-Gly-Gly-Lys、ラウロイル-Gly-Gly-His-Gly、ラウロイル-Gly-His-Gly-Gly、ラウロイル-His-Gly-Gly-Gly;ミリストイル-Gly-Gly-Gly-His、ミリストイル-Gly-Gly-Gly-Gln、ミリストイル-Gly-Gly-Gly-Asn、ミリストイル-Gly-Gly-Gly-Trp,ミリストイル-Gly-Gly-Gly-Lys、ミリストイル-Gly-Gly-Ala-His、ミリストイル-Gly-Gly-Ala-Gln、ミリストイル-Gly-Gly-Ala-Asn、ミリストイル-Gly-Gly-Ala-Trp、ミリストイル-Gly-Gly-Ala-Lys、ミリストイル-Gly-Ala-Gly-His、ミリストイル-Gly-Ala-Gly-Gln、ミリストイル-Gly-Ala-Gly-Asn、ミリストイル-Gly-Ala-Gly-Trp、ミリストイル-Gly-Ala-Gly-Lys、ミリストイル-Ala-Gly―Gly-His、ミリストイル-Ala-Gly-Gly-Gln、ミリストイル-Ala-Gly-Gly-Asn、ミリストイル-Ala-Gly-Gly-Trp、ミリストイル-Ala-Gly-Gly-Lys、ミリストイル-Gly-Gly-His-Gly、ミリストイル-Gly-His-Gly-Gly、ミリストイル-His-Gly-Gly-Gly;パルミトイル-Gly-Gly-Gly-His、パルミトイル―Gly-Gly-Gly-Gln、パルミトイル-Gly-Gly-Gly-Asn、パルミトイル-Gly-Gly-Gly-Trp、パルミトイル-Gly-Gly-Gly-Lys、パルミトイル-Gly-Gly-Ala-His、パルミトイル-Gly-Gly-Ala-Gln、パルミトイル-Gly-Gly-Ala-Asn、パルミトイル-Gly-Gly-Ala-Trp、パルミトイル-Gly-Gly-Ala-Lys、パルミトイル-Gly-Ala-Gly-His、パルミトイル-Gly-Ala-Gly-Gln、パルミトイル-Gly-Ala-Gly-Asn、パルミトイル-Gly-Ala-Gly-Trp、パルミトイル-Gly-Ala-Gly-Lys、パルミトイル-Ala-Gly―Gly-His、パルミトイル-Ala-Gly-Gly-Gln、パルミトイル-Ala-Gly-Gly-Asn、パルミトイル-Ala-Gly-Gly-Trp、パルミトイル-Ala-Gly-Gly-Lys、パルミトイル-Gly-Gly-His-Gly、パルミトイル-Gly-His-Gly-Gly、パルミトイル-His-Gly-Gly-Gly;ステアロイル-Gly-Gly-Gly-His、ステアロイル―Gly-Gly-Gly-Gln、ステアロイル-Gly-Gly-Gly-Asn、ステアロイル-Gly-Gly-Gly-Trp、ステアロイル-Gly-Gly-Gly-Lys、ステアロイル-Gly-Gly-Ala-His、ステアロイル-Gly-Gly-Ala-Gln、ステアロイル-Gly-Gly-Ala-Asn、ステアロイル-Gly-Gly-Ala-Trp、ステアロイル-Gly-Gly-Ala-Lys、ステアロイル-Gly-Ala-Gly-His、ステアロイル-Gly-Ala-Gly-Gln、ステアロイル-Gly-Ala-Gly-Asn、ステアロイル-Gly-Ala-Gly-Trp、ステアロイル-Gly-Ala-Gly-Lys、ステアロイル-Ala-Gly―Gly-His、ステアロイル-Ala-Gly-Gly-Gln、ステアロイル-Ala-Gly-Gly-Asn、ステアロイル-Ala-Gly-Gly-Trp、ステアロイル-Ala-Gly-Gly-Lys、ステアロイル-Gly-Gly-His-Gly、ステアロイル-Gly-His-Gly-Gly、ステアロイル-His-Gly-Gly-Gly。 In the compound represented by the above formula (1), a lipid peptide particularly suitable as a low molecular gelling agent is a compound formed from the following lipid part and peptide part (amino acid assembly part).
As abbreviations of amino acids, alanine (Ala), arginine (Arg), glutamine (Gln), glycine (Gly), histidine (His), isorosine (Ile), leucine (Leu), lysine (Lys), tryptophan (Trp) ), Valine (Val). : Lauroyl-Gly-Gly-Gly-His, Lauroyl-Gly-Gly-Gly-Gln, Lauroyl-Gly-Gly-Gly-Asn, Lauroyl-Gly-Gly-Gly-Trp, Lauroyl-Gly-Gly-Gly-Gly-Gly Lauroyl-Gly-Gly-Ala-His, Lauroyl-Gly-Gly-Ala-Gln, Lauroyl-Gly-Gly-Ala-Asn, Lauroyl-Gly-Gly-Ala-Trp, Lauroyl-Gly-Gly-Ala-Lys Lauroyl-Gly-Ala-Gly-His, Lauroyl-Gly-Ala-Gly-Gln, Lauroyl-Gly-Ala-Gly-Asn, Lauroyl-Gly-Ala-Gly-Trp, Lauroyl-Gly-Ala-Gly-Lys Lau Ir-Ala-Gly-Gly-His, Lauroyl-Ala-Gly-Gly-Gln, Lauroyl-Ala-Gly-Gly-Asn, Lauroyl-Ala-Gly-Gly-Trp, Lauroyl-Ala-Gly-Gly-Lys, Lauroyl-Gly-Gly-His-Gly, Lauroyl-Gly-His-Gly-Gly, Lauroyl-His-Gly-Gly-Gly; Myristoyl-Gly-Gly-Gly-His, Myristoyl-Gly-Gly-Gly, Myristoyl-Gly-Gly-Gly-Asn, Myristoyl-Gly-Gly-Gly-Trp, Myristoyl-Gly-Gly-Gly-Lys, Myristoyl-Gly-Gly-Ala-His, Myristoyl-Gly-Gly-Ala-Gl , Myristoyl-Gly-Gly-Ala-Asn, Myristoyl-Gly-Gly-Ala-Trp, Myristoyl-Gly-Gly-Ala-Lys, Myristoyl-Gly-Ala-Gly-His, Myristoyl-Gly-Ala-Gly-Gln , Myristoyl-Gly-Ala-Gly-Asn, Myristoyl-Gly-Ala-Gly-Trp, Myristoyl-Gly-Ala-Gly-Lys, Myristoyl-Ala-Gly-Gly-His, Myristoyl-Ala-Gly-Gly-Gln , Myristoyl-Ala-Gly-Gly-Asn, Myristoyl-Ala-Gly-Gly-Trp, Myristoyl-Ala-Gly-Gly-Lys, Myristoyl-Gly-Gly-His-Gly, Myristoyl-Gly -His-Gly-Gly, Myristoyl-His-Gly-Gly-Gly; Palmitoyl-Gly-Gly-Gly-His, Palmitoyl-Gly-Gly-Gly-Gln, Palmitoyl-Gly-Gly-Gly-Asn, Palmitoyl-Gly-Asn -Gly-Gly-Trp, Palmitoyl-Gly-Gly-Gly-Lys, Palmitoyl-Gly-Gly-Ala-His, Palmitoyl-Gly-Gly-Ala-Gln, Palmitoyl-Gly-Gly-Ala-Asn, Palmytoyl-Asl -Gly-Ala-Trp, Palmitoyl-Gly-Gly-Ala-Lys, Palmitoyl-Gly-Ala-Gly-His, Palmitoyl-Gly-Ala-Gly-Gln, Palmitoyl-Gly-Ala-Gly-As Palmitoyl-Gly-Ala-Gly-Trp, Palmitoyl-Gly-Ala-Gly-Lys, Palmitoyl-Ala-Gly-Gly-His, Palmitoyl-Ala-Gly-Gly-Gln, Palmitoyl-Ala-Gly-Gly-Gly-Gly-Gly Palmitoyl-Ala-Gly-Gly-Trp, Palmitoyl-Ala-Gly-Gly-Lys, Palmitoyl-Gly-Gly-His-Gly, Palmitoyl-Gly-His-Gly-Gly, Palmitoyl-His-Gly-Gly-Gly Stearoyl-Gly-Gly-Gly-His, stearoyl-Gly-Gly-Gly-Gln, stearoyl-Gly-Gly-Gly-Asn, stearoyl-Gly-Gly-Gly-Trp, stearoyl-Gl -Gly-Gly-Lys, stearoyl-Gly-Gly-Ala-His, stearoyl-Gly-Gly-Ala-Gln, stearoyl-Gly-Gly-Ala-Asn, stearoyl-Gly-Gly-Ala-Trp, stearoyl-Gly -Gly-Ala-Lys, stearoyl-Gly-Ala-Gly-His, stearoyl-Gly-Ala-Gly-Gln, stearoyl-Gly-Ala-Gly-Asn, stearoyl-Gly-Ala-Gly-Trp, stearoyl-Gly -Ala-Gly-Lys, stearoyl-Ala-Gly-Gly-His, stearoyl-Ala-Gly-Gly-Gln, stearoyl-Ala-Gly-Gly-Asn, stearoyl-Ala-Gly-Gly-Tr p, stearoyl-Ala-Gly-Gly-Lys, stearoyl-Gly-Gly-His-Gly, stearoyl-Gly-His-Gly-Gly, stearoyl-His-Gly-Gly-Gly.
最も好ましいものとして、ラウロイル-Gly-Gly-Gly-His、ミリストイル-Gly-Gly-Gly-His、パルミトイル-Gly-Gly-Gly-His、パルミトイル-Gly-Gly-His-Gly、パルミトイル-Gly-His-Gly-Gly、パルミトイル-His-Gly-Gly-Gly、ステアロイル-Gly-Gly-Gly-His等が挙げられる。
Most preferred are lauroyl-Gly-Gly-Gly-His, myristoyl-Gly-Gly-Gly-His, palmitoyl-Gly-Gly-Gly-His, palmitoyl-Gly-Gly-His-Gly, palmitoyl-Gly-His -Gly-Gly, palmitoyl-His-Gly-Gly-Gly, stearoyl-Gly-Gly-Gly-His and the like.
本発明の内包ゲルに用いるゲル化された水性媒体は、前記低分子ゲル化剤及び水性媒体(溶媒)を含有して形成される。
前記溶媒としては、低分子ゲル化剤のファイバー化やヒドロゲル化を防げるものでなければ特に限定されないが、好ましくは、水、アルコール、水とアルコールの混合溶媒、水と水溶性溶媒の混合溶液を用いることができる。より好ましくは、水又は水とアルコールの混合溶媒であり、さらに好ましくは、水である。
前記アルコールは、好ましくは水に自由に溶解する水溶性アルコールであり、より好ましくは炭素原子数1乃至6のアルコールであり、さらに好ましくは、メタノール、エタノール、2-プロパノール又はi-ブタノールであり、さらに特に好ましくはエタノール又は2-プロパノールである。
前記水溶性有機溶媒とは、アルコール以外の有機溶媒であって、かつ水に任意の割合で溶解する有機溶媒を意味する。用いる水溶性有機溶媒の例としては、アセトン又はジオキサン等が挙げられる。 The gelled aqueous medium used for the inclusion gel of the present invention is formed containing the low molecular weight gelling agent and the aqueous medium (solvent).
The solvent is not particularly limited as long as it does not prevent fiber formation or hydrogelation of the low-molecular gelling agent. Preferably, water, alcohol, a mixed solvent of water and alcohol, or a mixed solution of water and water-soluble solvent is used. Can be used. More preferred is water or a mixed solvent of water and alcohol, and further preferred is water.
The alcohol is preferably a water-soluble alcohol that is freely soluble in water, more preferably an alcohol having 1 to 6 carbon atoms, still more preferably methanol, ethanol, 2-propanol, or i-butanol, Further particularly preferred is ethanol or 2-propanol.
The water-soluble organic solvent means an organic solvent other than alcohol and that dissolves in water at an arbitrary ratio. Examples of the water-soluble organic solvent to be used include acetone or dioxane.
前記溶媒としては、低分子ゲル化剤のファイバー化やヒドロゲル化を防げるものでなければ特に限定されないが、好ましくは、水、アルコール、水とアルコールの混合溶媒、水と水溶性溶媒の混合溶液を用いることができる。より好ましくは、水又は水とアルコールの混合溶媒であり、さらに好ましくは、水である。
前記アルコールは、好ましくは水に自由に溶解する水溶性アルコールであり、より好ましくは炭素原子数1乃至6のアルコールであり、さらに好ましくは、メタノール、エタノール、2-プロパノール又はi-ブタノールであり、さらに特に好ましくはエタノール又は2-プロパノールである。
前記水溶性有機溶媒とは、アルコール以外の有機溶媒であって、かつ水に任意の割合で溶解する有機溶媒を意味する。用いる水溶性有機溶媒の例としては、アセトン又はジオキサン等が挙げられる。 The gelled aqueous medium used for the inclusion gel of the present invention is formed containing the low molecular weight gelling agent and the aqueous medium (solvent).
The solvent is not particularly limited as long as it does not prevent fiber formation or hydrogelation of the low-molecular gelling agent. Preferably, water, alcohol, a mixed solvent of water and alcohol, or a mixed solution of water and water-soluble solvent is used. Can be used. More preferred is water or a mixed solvent of water and alcohol, and further preferred is water.
The alcohol is preferably a water-soluble alcohol that is freely soluble in water, more preferably an alcohol having 1 to 6 carbon atoms, still more preferably methanol, ethanol, 2-propanol, or i-butanol, Further particularly preferred is ethanol or 2-propanol.
The water-soluble organic solvent means an organic solvent other than alcohol and that dissolves in water at an arbitrary ratio. Examples of the water-soluble organic solvent to be used include acetone or dioxane.
上記ゲル化された水性媒体は塩を含有しても良い。かかる塩はヒドロゲル形成に至る段階のどの段階で加えても良いが、ヒドロゲル化剤を加える前に溶媒を加えて溶液にしておくことが好ましい。
塩は、複数種を加えても良いが、好ましくは1又は2種である。塩を2種類加えることで、溶液が緩衝能をもつことも望ましい。
前記の塩は、無機塩若しくは有機塩である。好ましい無機塩の例としては、炭酸塩、無機硫酸塩若しくは無機リン酸塩が挙げられる。より好ましくは、炭酸カルシウム、炭酸ナトリウム、炭酸カリウム、硫酸ナトリウム、硫酸カリウム、硫酸ナトリウム、硫酸マグネシウム、リン酸カリウム、リン酸ナトリウム、リン酸水素二ナトリウム又はリン酸二水素ナトリウムである。また、好ましい有機塩の例としては、有機アミンの塩酸塩若しくは有機アミン酢酸塩が挙げられる。より好ましくは、エチレンジアミン塩酸塩、エチレンジアミン四酢酸塩、トリスヒドロキシメチルアミノメタン塩酸塩である。 The gelled aqueous medium may contain a salt. Such a salt may be added at any stage leading to the formation of the hydrogel, but it is preferable to add a solvent to the solution before adding the hydrogelator.
A plurality of types of salts may be added, but one or two types are preferable. It is also desirable that the solution has buffer capacity by adding two salts.
The salt is an inorganic salt or an organic salt. Examples of preferred inorganic salts include carbonates, inorganic sulfates or inorganic phosphates. More preferred are calcium carbonate, sodium carbonate, potassium carbonate, sodium sulfate, potassium sulfate, sodium sulfate, magnesium sulfate, potassium phosphate, sodium phosphate, disodium hydrogen phosphate or sodium dihydrogen phosphate. Examples of preferred organic salts include organic amine hydrochlorides or organic amine acetates. More preferred are ethylenediamine hydrochloride, ethylenediaminetetraacetate, and trishydroxymethylaminomethane hydrochloride.
塩は、複数種を加えても良いが、好ましくは1又は2種である。塩を2種類加えることで、溶液が緩衝能をもつことも望ましい。
前記の塩は、無機塩若しくは有機塩である。好ましい無機塩の例としては、炭酸塩、無機硫酸塩若しくは無機リン酸塩が挙げられる。より好ましくは、炭酸カルシウム、炭酸ナトリウム、炭酸カリウム、硫酸ナトリウム、硫酸カリウム、硫酸ナトリウム、硫酸マグネシウム、リン酸カリウム、リン酸ナトリウム、リン酸水素二ナトリウム又はリン酸二水素ナトリウムである。また、好ましい有機塩の例としては、有機アミンの塩酸塩若しくは有機アミン酢酸塩が挙げられる。より好ましくは、エチレンジアミン塩酸塩、エチレンジアミン四酢酸塩、トリスヒドロキシメチルアミノメタン塩酸塩である。 The gelled aqueous medium may contain a salt. Such a salt may be added at any stage leading to the formation of the hydrogel, but it is preferable to add a solvent to the solution before adding the hydrogelator.
A plurality of types of salts may be added, but one or two types are preferable. It is also desirable that the solution has buffer capacity by adding two salts.
The salt is an inorganic salt or an organic salt. Examples of preferred inorganic salts include carbonates, inorganic sulfates or inorganic phosphates. More preferred are calcium carbonate, sodium carbonate, potassium carbonate, sodium sulfate, potassium sulfate, sodium sulfate, magnesium sulfate, potassium phosphate, sodium phosphate, disodium hydrogen phosphate or sodium dihydrogen phosphate. Examples of preferred organic salts include organic amine hydrochlorides or organic amine acetates. More preferred are ethylenediamine hydrochloride, ethylenediaminetetraacetate, and trishydroxymethylaminomethane hydrochloride.
また、本発明のゲルに内包された化合物としては、疎水性化合物、親水性化合物、酵素、及びピレン等が挙げられる。
Further, examples of the compound encapsulated in the gel of the present invention include a hydrophobic compound, a hydrophilic compound, an enzyme, and pyrene.
上記疎水性化合物としては、例えば、ビタミンE(トコフェロール)、ピレン、アゼライン酸誘導体、レチノール(ビタミンAアルコール)、レチノイン酸、ヒドロキシケイ皮酸、カフェイン、ヒノキチオール、カロテノイド、アスタキサンチン、ステロイド、インドメタシン、及びケトプロフェン等が挙げられる。
Examples of the hydrophobic compound include vitamin E (tocopherol), pyrene, azelaic acid derivatives, retinol (vitamin A alcohol), retinoic acid, hydroxycinnamic acid, caffeine, hinokitiol, carotenoid, astaxanthin, steroid, indomethacin, and Ketoprofen and the like can be mentioned.
上記親水性化合物としては、例えば、ビタミンC(アスコルビン酸)、ビタミンB2(リボフラビン)、コウジ酸、グルコサミン、アゼライン酸、ピリドキシン(ビタミンB6)、パントテン酸(ビタミンB5)、アルブチン、及びキトサン等が挙げられる。
Examples of the hydrophilic compound include vitamin C (ascorbic acid), vitamin B2 (riboflavin), kojic acid, glucosamine, azelaic acid, pyridoxine (vitamin B6), pantothenic acid (vitamin B5), arbutin, and chitosan. It is done.
上記酵素としては、チトクロームc等が挙げられる。
Examples of the enzyme include cytochrome c.
さらに、本発明の内包ゲルは、化合物として、例えば、アスコルビン酸及びその誘導体、コウジ酸及びその誘導体、グルコサミン及びその誘導体、アゼライン及びその誘導体、レチノール酸及びその誘導体、ピリドキシン及びその誘導体、パントテン酸及びその誘導体、アルブチン及びその誘導体、トコフェロール及びその誘導体、ヒドロキシケイ皮酸及びその誘導体、キトサン、キトサン分解物、カフェイン誘導体、ヒノキチオール、カロテノイド、及びアスタキサンチン等を内包することにより、美白効果を発揮し得る。
Furthermore, the encapsulated gel of the present invention includes, for example, ascorbic acid and derivatives thereof, kojic acid and derivatives thereof, glucosamine and derivatives thereof, azelain and derivatives thereof, retinoic acid and derivatives thereof, pyridoxine and derivatives thereof, pantothenic acid and Whitening effect can be achieved by encapsulating its derivatives, arbutin and its derivatives, tocopherol and its derivatives, hydroxycinnamic acid and its derivatives, chitosan, chitosan degradation products, caffeine derivatives, hinokitiol, carotenoid, astaxanthin, etc. .
[ゲル形成メカニズム]
本発明に用いる低分子ゲル化剤である、上記式(1)で表される低分子化合物(脂質ペプチド)は、水溶液又はアルコール溶液系に投入されると、式(1)におけるペプチド部が水素結合により分子間非共有結合を形成し、一方、式(1)における脂質部が疎水的にパッキングするように自己集合化(或いは自己組織化ともいう)し、ファイバーが形成される。ファイバーの形状は限定されないが、筒状又は板状の形状が挙げられる。
参考として図1に脂質ペプチドの自己集合化及びゲル化の概念図の一例を示す(但し、本発明の内包ゲルにおいて、全ての脂質ペプチドが図1に示す自己集合化及びゲル化の形態をとっているとは限らない)。該脂質ペプチド分子(a)は疎水性部位である脂質部を中心として集合し(b)、自己集合化によりファイバー(c)を形成する。
ファイバ-形成には、前記低分子ゲル化剤を1種類用いても良いし2種類以上を組み合わせて用いても良い。好ましくは、1種類又は2種類を用い、さらに好ましくは、1種類を用いる。ただし、2種類用いる場合は、1種類の場合と異なる性質を得ることが期待できる。 [Gel formation mechanism]
When the low molecular weight compound (lipid peptide) represented by the above formula (1), which is a low molecular gelling agent used in the present invention, is introduced into an aqueous solution or an alcohol solution system, the peptide portion in the formula (1) is hydrogen. An intermolecular non-covalent bond is formed by the bond, while the lipid part in the formula (1) is self-assembled so as to be hydrophobically packed (also referred to as self-assembly), and a fiber is formed. Although the shape of a fiber is not limited, A cylindrical shape or plate shape is mentioned.
For reference, FIG. 1 shows an example of a conceptual diagram of lipid peptide self-assembly and gelation (however, in the inclusion gel of the present invention, all lipid peptides take the form of self-assembly and gelation shown in FIG. Not necessarily). The lipid peptide molecule (a) assembles around a lipid part which is a hydrophobic site (b), and forms a fiber (c) by self-assembly.
In forming the fiber, one kind of the low molecular gelling agent may be used, or two or more kinds may be used in combination. Preferably, one type or two types are used, and more preferably one type is used. However, when two types are used, it can be expected to obtain different properties from the case of one type.
本発明に用いる低分子ゲル化剤である、上記式(1)で表される低分子化合物(脂質ペプチド)は、水溶液又はアルコール溶液系に投入されると、式(1)におけるペプチド部が水素結合により分子間非共有結合を形成し、一方、式(1)における脂質部が疎水的にパッキングするように自己集合化(或いは自己組織化ともいう)し、ファイバーが形成される。ファイバーの形状は限定されないが、筒状又は板状の形状が挙げられる。
参考として図1に脂質ペプチドの自己集合化及びゲル化の概念図の一例を示す(但し、本発明の内包ゲルにおいて、全ての脂質ペプチドが図1に示す自己集合化及びゲル化の形態をとっているとは限らない)。該脂質ペプチド分子(a)は疎水性部位である脂質部を中心として集合し(b)、自己集合化によりファイバー(c)を形成する。
ファイバ-形成には、前記低分子ゲル化剤を1種類用いても良いし2種類以上を組み合わせて用いても良い。好ましくは、1種類又は2種類を用い、さらに好ましくは、1種類を用いる。ただし、2種類用いる場合は、1種類の場合と異なる性質を得ることが期待できる。 [Gel formation mechanism]
When the low molecular weight compound (lipid peptide) represented by the above formula (1), which is a low molecular gelling agent used in the present invention, is introduced into an aqueous solution or an alcohol solution system, the peptide portion in the formula (1) is hydrogen. An intermolecular non-covalent bond is formed by the bond, while the lipid part in the formula (1) is self-assembled so as to be hydrophobically packed (also referred to as self-assembly), and a fiber is formed. Although the shape of a fiber is not limited, A cylindrical shape or plate shape is mentioned.
For reference, FIG. 1 shows an example of a conceptual diagram of lipid peptide self-assembly and gelation (however, in the inclusion gel of the present invention, all lipid peptides take the form of self-assembly and gelation shown in FIG. Not necessarily). The lipid peptide molecule (a) assembles around a lipid part which is a hydrophobic site (b), and forms a fiber (c) by self-assembly.
In forming the fiber, one kind of the low molecular gelling agent may be used, or two or more kinds may be used in combination. Preferably, one type or two types are used, and more preferably one type is used. However, when two types are used, it can be expected to obtain different properties from the case of one type.
本発明に用いる低分子ゲル化剤は、界面活性剤を混合させて自己集合化することによりファイバーを形成することもできる。かかる界面活性剤としては、アニオン界面活性剤、ノニオン界面活性剤又はカチオン界面活性剤が挙げられる。
The low-molecular gelling agent used in the present invention can also form a fiber by mixing with a surfactant and self-assembling. Examples of such surfactants include anionic surfactants, nonionic surfactants, and cationic surfactants.
上記ファイバーが水溶液又はアルコール水溶液等の中で形成されると、このファイバーが三次元網目構造を形成し(例えば、図1における(d)参照)、さらに、ファイバー表面の親水性部分(ペプチド部)と水性溶媒間で非共有結合を形成して膨潤することにより、水溶系又はアルコール水溶液全体がゲル化し、水性媒体がゲル化される。
When the fiber is formed in an aqueous solution or an alcohol aqueous solution, the fiber forms a three-dimensional network structure (for example, see (d) in FIG. 1), and further, a hydrophilic portion (peptide portion) on the fiber surface. By forming a non-covalent bond between the aqueous solvent and the aqueous solvent to swell, the entire aqueous system or aqueous alcohol solution gels, and the aqueous medium gels.
そして、本発明の内包ゲルでは、疎水性化合物は自己集合体のファイバー内に取り込まれ、一方、親水性化合物や蛋白質はファイバーが構成する網目構造内に取り込まれ、ゲル内に化合物が内包されることとなる。
In the inclusion gel of the present invention, the hydrophobic compound is taken into the self-assembled fiber, while the hydrophilic compound or protein is taken into the network structure formed by the fiber, and the compound is included in the gel. It will be.
また、本発明の内包ゲルは、内包したものが酵素のような活性を有する蛋白質の場合には、ゲル内に取り込んでも酵素はその活性は損なうことなく維持されるため、そのゲル内で酵素反応や酸化還元反応を進行させることが可能である。したがって、このような酵素などを内包したゲルは、バイオセンサーや検査・診断薬として使用することが可能である。
In the case of the encapsulated gel of the present invention, when the encapsulated protein is an enzyme-like protein, the enzyme is maintained without losing its activity even if it is incorporated into the gel. It is possible to proceed a redox reaction. Therefore, a gel containing such an enzyme can be used as a biosensor or a test / diagnosis agent.
また、チトクロームcはヘムを有し、軸配位子としてヒスチジンを有するにも関わらず、通常は軸配位子としてメチオニンが配位しており過酸化水素がヘムと接触しにくくなっていることや西洋わさび由来ペルオキシダーゼのようなPush-Pull機構を担うようなアミノ酸が存在しないことから、チトクロームc単独でのペルオキシダーゼ活性は極めて低いが、生体膜との相互作用、主にチトクロームcとの相互作用、主にチトクロームcの表面の正に帯電したリジン残基と生体膜の負電荷との静電相互作用などにより、チトクロームcのヘム近傍の構造が変化しペルオキシダーゼ活性が強化されると考えられている。
そこで、Pal-GGGHゲル中に内包されたチトクロームcは、Pal-GGGHゲルが生体膜と同様のチトクロームcとの相互作用を有することが予測され、Pal-GGGHゲル中に内包されたチトクロームcのペルオキシダーゼ活性の強化及びチトクロームcの安定性強化が期待される。 In addition, cytochrome c has heme and histidine as an axial ligand, but usually methionine is coordinated as an axial ligand and hydrogen peroxide is difficult to come into contact with heme. Since there is no amino acid responsible for the Push-Pull mechanism such as peroxidase from horseradish or horseradish, cytochrome c alone has very low peroxidase activity, but it interacts with biological membranes, mainly with cytochrome c. It is thought that the structure near the heme of cytochrome c is changed and the peroxidase activity is enhanced mainly by electrostatic interaction between the positively charged lysine residue on the surface of cytochrome c and the negative charge of the biological membrane. Yes.
Thus, cytochrome c encapsulated in the Pal-GGGH gel is predicted to have an interaction with cytochrome c similar to that of the biological membrane, and the cytochrome c encapsulated in the Pal-GGGH gel Enhancement of peroxidase activity and stability of cytochrome c are expected.
そこで、Pal-GGGHゲル中に内包されたチトクロームcは、Pal-GGGHゲルが生体膜と同様のチトクロームcとの相互作用を有することが予測され、Pal-GGGHゲル中に内包されたチトクロームcのペルオキシダーゼ活性の強化及びチトクロームcの安定性強化が期待される。 In addition, cytochrome c has heme and histidine as an axial ligand, but usually methionine is coordinated as an axial ligand and hydrogen peroxide is difficult to come into contact with heme. Since there is no amino acid responsible for the Push-Pull mechanism such as peroxidase from horseradish or horseradish, cytochrome c alone has very low peroxidase activity, but it interacts with biological membranes, mainly with cytochrome c. It is thought that the structure near the heme of cytochrome c is changed and the peroxidase activity is enhanced mainly by electrostatic interaction between the positively charged lysine residue on the surface of cytochrome c and the negative charge of the biological membrane. Yes.
Thus, cytochrome c encapsulated in the Pal-GGGH gel is predicted to have an interaction with cytochrome c similar to that of the biological membrane, and the cytochrome c encapsulated in the Pal-GGGH gel Enhancement of peroxidase activity and stability of cytochrome c are expected.
さらに、本発明では、脂肪酸やアミノ酸といった天然由来原料により構成された低分子ゲル化剤を用いることで、皮膚面などを被覆しても安心安全に使用できる。
このため、本発明の内包ゲルは、患部や損傷部位認識能を有する創傷被覆剤、癒着防止膜、薬物速達システム、スキンケア製品、ヘアケア製品、外用医薬品、芳香剤、消臭剤、防虫剤、殺虫剤、農薬用基材、洗浄剤、塗料、防腐剤、環境汚染物質の捕捉用基材などに広く利用することができる。 Furthermore, in this invention, even if it coat | covers a skin surface etc., it can be used safely and safely by using the low molecular gelatinizer comprised by the natural origin raw materials, such as a fatty acid and an amino acid.
For this reason, the encapsulated gel of the present invention is a wound dressing having an ability to recognize an affected area or damaged site, an adhesion preventing film, a drug delivery system, a skin care product, a hair care product, an external medicine, an fragrance, a deodorant, an insecticide, an insecticide. It can be widely used as an agent, a substrate for agricultural chemicals, a cleaning agent, a paint, an antiseptic, a substrate for capturing environmental pollutants.
このため、本発明の内包ゲルは、患部や損傷部位認識能を有する創傷被覆剤、癒着防止膜、薬物速達システム、スキンケア製品、ヘアケア製品、外用医薬品、芳香剤、消臭剤、防虫剤、殺虫剤、農薬用基材、洗浄剤、塗料、防腐剤、環境汚染物質の捕捉用基材などに広く利用することができる。 Furthermore, in this invention, even if it coat | covers a skin surface etc., it can be used safely and safely by using the low molecular gelatinizer comprised by the natural origin raw materials, such as a fatty acid and an amino acid.
For this reason, the encapsulated gel of the present invention is a wound dressing having an ability to recognize an affected area or damaged site, an adhesion preventing film, a drug delivery system, a skin care product, a hair care product, an external medicine, an fragrance, a deodorant, an insecticide, an insecticide. It can be widely used as an agent, a substrate for agricultural chemicals, a cleaning agent, a paint, an antiseptic, a substrate for capturing environmental pollutants.
以下、実施例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[実施例で用いる略記号]
以下の実施例で用いる略記号の意味は、次のとおりである。
Gly:グリシン
His:ヒスチジン
HBTU:2-(1-H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム-ヘキサフルオロホスフェート(渡辺化学工業(株))
HOBt:1-ヒドロキシ-ベンゾトリアゾール((株)ペプチド研究所)
DMF:ジメチルホルムアミド
DCM:ジクロロメタン
DIEA:N,N-ジイソプロピルエチルアミン (東京化成工業(株))
TFA:トリフルオロ酢酸(渡辺化学工業(株))
TIS:トリイソプロピルシラン(渡辺化学工業(株))
Pal-GGGH:パルミトイル-Gly-Gly-Gly-His
cyt c:チトクロームc [Abbreviations used in Examples]
The meanings of the abbreviations used in the following examples are as follows.
Gly: glycine His: histidine HBTU: 2- (1-H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium-hexafluorophosphate (Watanabe Chemical Co., Ltd.)
HOBt: 1-hydroxy-benzotriazole (Peptide Institute, Inc.)
DMF: Dimethylformamide DCM: Dichloromethane DIEA: N, N-diisopropylethylamine (Tokyo Chemical Industry Co., Ltd.)
TFA: trifluoroacetic acid (Watanabe Chemical Co., Ltd.)
TIS: Triisopropylsilane (Watanabe Chemical Co., Ltd.)
Pal-GGGH: Palmitoyl-Gly-Gly-Gly-His
cyt c: cytochrome c
以下の実施例で用いる略記号の意味は、次のとおりである。
Gly:グリシン
His:ヒスチジン
HBTU:2-(1-H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム-ヘキサフルオロホスフェート(渡辺化学工業(株))
HOBt:1-ヒドロキシ-ベンゾトリアゾール((株)ペプチド研究所)
DMF:ジメチルホルムアミド
DCM:ジクロロメタン
DIEA:N,N-ジイソプロピルエチルアミン (東京化成工業(株))
TFA:トリフルオロ酢酸(渡辺化学工業(株))
TIS:トリイソプロピルシラン(渡辺化学工業(株))
Pal-GGGH:パルミトイル-Gly-Gly-Gly-His
cyt c:チトクロームc [Abbreviations used in Examples]
The meanings of the abbreviations used in the following examples are as follows.
Gly: glycine His: histidine HBTU: 2- (1-H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium-hexafluorophosphate (Watanabe Chemical Co., Ltd.)
HOBt: 1-hydroxy-benzotriazole (Peptide Institute, Inc.)
DMF: Dimethylformamide DCM: Dichloromethane DIEA: N, N-diisopropylethylamine (Tokyo Chemical Industry Co., Ltd.)
TFA: trifluoroacetic acid (Watanabe Chemical Co., Ltd.)
TIS: Triisopropylsilane (Watanabe Chemical Co., Ltd.)
Pal-GGGH: Palmitoyl-Gly-Gly-Gly-His
cyt c: cytochrome c
[脂質ペプチドの合成]
脂質ペプチドは、以下に示すFmoc固相ペプチド合成法の手順に従って合成した。樹脂は主にアミノ酸-Barlos Resinを用いた。合成スケールは0.3mmolで行った。 [Synthesis of lipid peptides]
The lipid peptide was synthesized according to the procedure of Fmoc solid phase peptide synthesis method shown below. The resin was mainly an amino acid-Barlos Resin. The synthesis scale was 0.3 mmol.
脂質ペプチドは、以下に示すFmoc固相ペプチド合成法の手順に従って合成した。樹脂は主にアミノ酸-Barlos Resinを用いた。合成スケールは0.3mmolで行った。 [Synthesis of lipid peptides]
The lipid peptide was synthesized according to the procedure of Fmoc solid phase peptide synthesis method shown below. The resin was mainly an amino acid-Barlos Resin. The synthesis scale was 0.3 mmol.
<合成例1:N-パルミトイル-Gly-Gly-Gly-Hisのトリフルオロ酢酸塩の合成>
ヒスチジンBarlos Resin(渡辺化学工業(株))390mgをPD-10カラムに添加し、DCM 5mlにて3回、DMF 5mlにて3回、それぞれ洗浄した。次に、上記カラムにFmoc-Gly-OH(渡辺化学工業(株))を270mg、縮合剤溶液1(HBTU 3.05g、HOBt 1.25gをDMF 16mlに溶解したもの)2.1mlを添加し、さらに縮合剤溶液2(DIEA 2.75mlをDMF 14.25mlに溶解したもの)2.1mlを加えた。これを30分間バイブレーターにて攪拌した後、DMF 5mlにて5回、DCM 5mlにて3回、さらにDMF 5mlにて3回、それぞれ洗浄した。
次に、20%ピペリジン/DMF溶液5mlを加えて1分間攪拌した後溶液を捨て、再び20%ピペリジン/DMF溶液5mlを加えて45分間攪拌し、DMF 5mlにて5回洗浄した。 <Synthesis Example 1: Synthesis of trifluoroacetate salt of N-palmitoyl-Gly-Gly-Gly-His>
390 mg of histidine Barlos Resin (Watanabe Chemical Co., Ltd.) was added to the PD-10 column, and washed 3 times with 5 ml of DCM and 3 times with 5 ml of DMF. Next, 270 mg of Fmoc-Gly-OH (Watanabe Chemical Co., Ltd.) and 2.1 ml of condensing agent solution 1 (3.05 g of HBTU and 1.25 g of HOBt dissolved in 16 ml of DMF) were added to the above column. Furthermore, 2.1 ml of a condensing agent solution 2 (DIEA 2.75 ml dissolved in DMF 14.25 ml) was added. This was stirred with a vibrator for 30 minutes, then washed 5 times with 5 ml of DMF, 3 times with 5 ml of DCM, and further 3 times with 5 ml of DMF.
Next, 5 ml of 20% piperidine / DMF solution was added and stirred for 1 minute, then the solution was discarded, 5 ml of 20% piperidine / DMF solution was added again, stirred for 45 minutes, and washed 5 times with 5 ml of DMF.
ヒスチジンBarlos Resin(渡辺化学工業(株))390mgをPD-10カラムに添加し、DCM 5mlにて3回、DMF 5mlにて3回、それぞれ洗浄した。次に、上記カラムにFmoc-Gly-OH(渡辺化学工業(株))を270mg、縮合剤溶液1(HBTU 3.05g、HOBt 1.25gをDMF 16mlに溶解したもの)2.1mlを添加し、さらに縮合剤溶液2(DIEA 2.75mlをDMF 14.25mlに溶解したもの)2.1mlを加えた。これを30分間バイブレーターにて攪拌した後、DMF 5mlにて5回、DCM 5mlにて3回、さらにDMF 5mlにて3回、それぞれ洗浄した。
次に、20%ピペリジン/DMF溶液5mlを加えて1分間攪拌した後溶液を捨て、再び20%ピペリジン/DMF溶液5mlを加えて45分間攪拌し、DMF 5mlにて5回洗浄した。 <Synthesis Example 1: Synthesis of trifluoroacetate salt of N-palmitoyl-Gly-Gly-Gly-His>
390 mg of histidine Barlos Resin (Watanabe Chemical Co., Ltd.) was added to the PD-10 column, and washed 3 times with 5 ml of DCM and 3 times with 5 ml of DMF. Next, 270 mg of Fmoc-Gly-OH (Watanabe Chemical Co., Ltd.) and 2.1 ml of condensing agent solution 1 (3.05 g of HBTU and 1.25 g of HOBt dissolved in 16 ml of DMF) were added to the above column. Furthermore, 2.1 ml of a condensing agent solution 2 (DIEA 2.75 ml dissolved in DMF 14.25 ml) was added. This was stirred with a vibrator for 30 minutes, then washed 5 times with 5 ml of DMF, 3 times with 5 ml of DCM, and further 3 times with 5 ml of DMF.
Next, 5 ml of 20% piperidine / DMF solution was added and stirred for 1 minute, then the solution was discarded, 5 ml of 20% piperidine / DMF solution was added again, stirred for 45 minutes, and washed 5 times with 5 ml of DMF.
再度、上記カラムにFmoc-Gly-OHを270mg、前記縮合剤1及び2を2.1mlずつ添加した。これを20分間バイブレーターにて攪拌した後、DMF 5mlにて5回、DCM 5mlにて3回、さらにDMF 5mlにて3回、それぞれ洗浄した。次に、20%ピペリジン/DMF溶液 5mlを加えて1分間攪拌した後溶液を捨て、再び20%ピペリジン/DMF溶液 5mlを加えて45分間攪拌し、DMF 5mlにて5回洗浄した。
Again, 270 mg of Fmoc-Gly-OH and 2.1 ml of the condensing agents 1 and 2 were added to the column. This was stirred for 20 minutes with a vibrator, and then washed 5 times with 5 ml of DMF, 3 times with 5 ml of DCM, and further 3 times with 5 ml of DMF. Next, 5 ml of 20% piperidine / DMF solution was added and stirred for 1 minute, then the solution was discarded, 5 ml of 20% piperidine / DMF solution was added again, stirred for 45 minutes, and washed 5 times with 5 ml of DMF.
再度、上記カラムにFmoc-Gly-OHを270mg、前記縮合剤1及び2を2.1mlずつ添加し、これを20分間バイブレーターにて攪拌した後、DMF 5mlにて5回、DCM 5mlにて3回、さらにDMF 5mlにて3回、それぞれ洗浄した。次に、20%ピペリジン/DMF溶液5mlを加えて1分間攪拌した後溶液を捨て、再び20%ピペリジン/DMF溶液5mlを加えて45分間攪拌し、DMF 5mlにて5回洗浄した。
Again, 270 mg of Fmoc-Gly-OH and 2.1 ml of the condensing agents 1 and 2 were added to the above column and stirred for 20 minutes with a vibrator, then 5 times with 5 ml of DMF and 3 times with 5 ml of DCM. And further washed 3 times with 5 ml of DMF. Next, 5 ml of 20% piperidine / DMF solution was added and stirred for 1 minute, then the solution was discarded, 5 ml of 20% piperidine / DMF solution was added again, stirred for 45 minutes, and washed 5 times with 5 ml of DMF.
パルミチン酸(Aldrich社製)約230mgをカラムに添加し、前記縮合剤1及び2を2.1mlずつ添加し、90分間バイブレーターにて攪拌した。反応後、DMF 5mlにて5回、DCM 5mlにて5回、メタノール5mlにて5回、それぞれ洗浄した後、樹脂を一晩真空乾燥させた。
乾燥後、TFA 3.8ml及びTIS 0.1mlをカラムに添加し1時間攪拌した。
回収した混合溶液に水を添加し、固形物を析出させた後、吸引ろ過を行って生成物を回収し、凍結乾燥を行った後、アセトニトリル4mlにて3回洗浄することで、目的化合物を得た。 About 230 mg of palmitic acid (manufactured by Aldrich) was added to the column, 2.1 ml of the condensing agents 1 and 2 were added, and the mixture was stirred for 90 minutes with a vibrator. After the reaction, the resin was washed 5 times with 5 ml of DMF, 5 times with 5 ml of DCM, and 5 times with 5 ml of methanol, and then the resin was vacuum-dried overnight.
After drying, 3.8 ml of TFA and 0.1 ml of TIS were added to the column and stirred for 1 hour.
Water is added to the collected mixed solution to precipitate a solid, and then suction filtration is performed to collect the product. After freeze-drying, the target compound is washed with 4 ml of acetonitrile three times. Obtained.
乾燥後、TFA 3.8ml及びTIS 0.1mlをカラムに添加し1時間攪拌した。
回収した混合溶液に水を添加し、固形物を析出させた後、吸引ろ過を行って生成物を回収し、凍結乾燥を行った後、アセトニトリル4mlにて3回洗浄することで、目的化合物を得た。 About 230 mg of palmitic acid (manufactured by Aldrich) was added to the column, 2.1 ml of the condensing
After drying, 3.8 ml of TFA and 0.1 ml of TIS were added to the column and stirred for 1 hour.
Water is added to the collected mixed solution to precipitate a solid, and then suction filtration is performed to collect the product. After freeze-drying, the target compound is washed with 4 ml of acetonitrile three times. Obtained.
FT-MS +m/z calc. for C28H49N606 [M+H]+ 565.37140, found 565.3572
FT-MS + m / z calc. For C28H49N606 [M + H] + 565.37140, found 5655.3572
<合成例2:N-パルミトイル-Gly-Gly-Gly-Hisのトリフルオロ酢酸塩の中和>
N-パルミトイル-Gly-Gly-Gly-Hisのトリフルオロ酢酸塩0.5gに、50mlの飽和NaHCO3水を加えて分散させ、遠心分離(3500rpm、10分間、8℃)(トミー社製、SRX-201高速冷却遠心機)した。得られたぺレットにEtOH 40mlを加え、遠心分離(3500rpm、10分間、8℃)し、さらに、ペレットに2% NaCl水を加え、遠心分離(3500rpm、10分間、8℃)した。その後、得られたペレットに50mlの純水を加え、遠心(3500rpm、10分間、8℃)で洗浄した。この洗浄操作を2回繰り返して、ペレットを凍結乾燥((株)池田理化社製、VFD-SP、真空凍結乾燥機)して、450mgの白色固形物を得た。 <Synthesis Example 2: Neutralization of N-palmitoyl-Gly-Gly-Gly-His trifluoroacetate>
To 0.5 g of trifluoroacetate of N-palmitoyl-Gly-Gly-Gly-His, 50 ml of saturated NaHCO 3 water was added and dispersed, and centrifuged (3500 rpm, 10 minutes, 8 ° C.) (Tomy, SRX -201 high speed cooling centrifuge). 40 ml of EtOH was added to the obtained pellet and centrifuged (3500 rpm, 10 minutes, 8 ° C.). Further, 2% NaCl water was added to the pellet and centrifuged (3500 rpm, 10 minutes, 8 ° C.). Thereafter, 50 ml of pure water was added to the obtained pellets and washed by centrifugation (3500 rpm, 10 minutes, 8 ° C.). This washing operation was repeated twice, and the pellet was lyophilized (VFD-SP, manufactured by Ikeda Rika Co., Ltd., vacuum lyophilizer) to obtain 450 mg of a white solid.
N-パルミトイル-Gly-Gly-Gly-Hisのトリフルオロ酢酸塩0.5gに、50mlの飽和NaHCO3水を加えて分散させ、遠心分離(3500rpm、10分間、8℃)(トミー社製、SRX-201高速冷却遠心機)した。得られたぺレットにEtOH 40mlを加え、遠心分離(3500rpm、10分間、8℃)し、さらに、ペレットに2% NaCl水を加え、遠心分離(3500rpm、10分間、8℃)した。その後、得られたペレットに50mlの純水を加え、遠心(3500rpm、10分間、8℃)で洗浄した。この洗浄操作を2回繰り返して、ペレットを凍結乾燥((株)池田理化社製、VFD-SP、真空凍結乾燥機)して、450mgの白色固形物を得た。 <Synthesis Example 2: Neutralization of N-palmitoyl-Gly-Gly-Gly-His trifluoroacetate>
To 0.5 g of trifluoroacetate of N-palmitoyl-Gly-Gly-Gly-His, 50 ml of saturated NaHCO 3 water was added and dispersed, and centrifuged (3500 rpm, 10 minutes, 8 ° C.) (Tomy, SRX -201 high speed cooling centrifuge). 40 ml of EtOH was added to the obtained pellet and centrifuged (3500 rpm, 10 minutes, 8 ° C.). Further, 2% NaCl water was added to the pellet and centrifuged (3500 rpm, 10 minutes, 8 ° C.). Thereafter, 50 ml of pure water was added to the obtained pellets and washed by centrifugation (3500 rpm, 10 minutes, 8 ° C.). This washing operation was repeated twice, and the pellet was lyophilized (VFD-SP, manufactured by Ikeda Rika Co., Ltd., vacuum lyophilizer) to obtain 450 mg of a white solid.
上述の方法で合成したパルミトイル-Gly-Gly-Gly-Hisを低分子ゲル化剤として用いて、以下の実施例を行った。
なお、本発明で用いる低分子ゲル化剤は、不織布や高分子化合物といった基材を用いずに簡便に当該低分子ゲル化剤のみでゲルをシート形状をはじめ様々な形状にすることが可能であるが、実施例1乃至実施例7においては、便宜上、ゲルをシート状にして用いている。 The following examples were carried out using palmitoyl-Gly-Gly-Gly-His synthesized by the above method as a low-molecular gelling agent.
In addition, the low molecular gelling agent used in the present invention can easily form a gel into various shapes including a sheet shape by using only the low molecular gelling agent without using a base material such as a nonwoven fabric or a polymer compound. However, in Examples 1 to 7, the gel is used in the form of a sheet for convenience.
なお、本発明で用いる低分子ゲル化剤は、不織布や高分子化合物といった基材を用いずに簡便に当該低分子ゲル化剤のみでゲルをシート形状をはじめ様々な形状にすることが可能であるが、実施例1乃至実施例7においては、便宜上、ゲルをシート状にして用いている。 The following examples were carried out using palmitoyl-Gly-Gly-Gly-His synthesized by the above method as a low-molecular gelling agent.
In addition, the low molecular gelling agent used in the present invention can easily form a gel into various shapes including a sheet shape by using only the low molecular gelling agent without using a base material such as a nonwoven fabric or a polymer compound. However, in Examples 1 to 7, the gel is used in the form of a sheet for convenience.
<実施例1:パルミトイル-Gly―Gly-Gly-Hisの酸性、中性、アルカリ溶液によるゲルシート>
パルミトイル-Gly―Gly-Gly-His 40.8mgをスクリュー管(マルエムNO7)に入れ、0.2%(w/v)(wは質量(g)、vは体積(mL)を意味する。)の濃度になるようにリン酸緩衝液(和光純薬工業(株)製 phosphate buffer powder、1/15mol/L、pH=7.4、組成:Na2HPO4 7.6g、KH2PO4 1.8g/L)を添加し、ドライ・バス・インキュベーター(First Gene社製)で、加熱(100℃、10分)し、得られた溶解液のうち3mlをスチロール非帯電角型ケース(36mm×36mm×14mm)に移し、室温まで冷却した。溶液が固化し、ゲル化を確認後、日本薬局方水3mlを滴下し、室温で、静置させた。1日後、シート状ゲルの切片(1cm×0.5cm)を切取り、スクリュー管(マルエムNO5)に入れ、日本薬局方水、及びリン酸緩衝液(pH=2、pH=7.4、pH=11、pHは、NaOH又はHClを滴下して調製)6mlを加え、3ヶ月間、シート状ゲルの切片が融解・分解するか否か、3ヶ月間達観的に観察した。 <Example 1: Gel sheet of palmitoyl-Gly-Gly-Gly-His by acidic, neutral, alkaline solution>
40.8 mg of palmitoyl-Gly-Gly-Gly-His is placed in a screw tube (Marem NO7) and 0.2% (w / v) (w means mass (g), v means volume (mL)). Phosphate buffer (made by Wako Pure Chemical Industries, Ltd., phosphate buffer powder, 1/15 mol / L, pH = 7.4, composition: Na 2 HPO 4 7.6 g, KH 2 PO 4 1 .8 g / L) was added, and heated (100 ° C., 10 minutes) with a dry bath incubator (manufactured by First Gene). 3 ml of the resulting solution was added to a styrene non-charged square case (36 mm × 36 mm × 14 mm) and cooled to room temperature. After the solution was solidified and gelled, 3 ml of Japanese Pharmacopoeia water was added dropwise and allowed to stand at room temperature. One day later, a sheet-like gel slice (1 cm × 0.5 cm) was cut out, placed in a screw tube (Marem NO5), Japanese Pharmacopoeia water, and phosphate buffer (pH = 2, pH = 7.4, pH = 11, pH was prepared by adding NaOH or HCl dropwise) 6 ml was added, and it was objectively observed for 3 months whether or not the section of the sheet gel melted and decomposed for 3 months.
パルミトイル-Gly―Gly-Gly-His 40.8mgをスクリュー管(マルエムNO7)に入れ、0.2%(w/v)(wは質量(g)、vは体積(mL)を意味する。)の濃度になるようにリン酸緩衝液(和光純薬工業(株)製 phosphate buffer powder、1/15mol/L、pH=7.4、組成:Na2HPO4 7.6g、KH2PO4 1.8g/L)を添加し、ドライ・バス・インキュベーター(First Gene社製)で、加熱(100℃、10分)し、得られた溶解液のうち3mlをスチロール非帯電角型ケース(36mm×36mm×14mm)に移し、室温まで冷却した。溶液が固化し、ゲル化を確認後、日本薬局方水3mlを滴下し、室温で、静置させた。1日後、シート状ゲルの切片(1cm×0.5cm)を切取り、スクリュー管(マルエムNO5)に入れ、日本薬局方水、及びリン酸緩衝液(pH=2、pH=7.4、pH=11、pHは、NaOH又はHClを滴下して調製)6mlを加え、3ヶ月間、シート状ゲルの切片が融解・分解するか否か、3ヶ月間達観的に観察した。 <Example 1: Gel sheet of palmitoyl-Gly-Gly-Gly-His by acidic, neutral, alkaline solution>
40.8 mg of palmitoyl-Gly-Gly-Gly-His is placed in a screw tube (Marem NO7) and 0.2% (w / v) (w means mass (g), v means volume (mL)). Phosphate buffer (made by Wako Pure Chemical Industries, Ltd., phosphate buffer powder, 1/15 mol / L, pH = 7.4, composition: Na 2 HPO 4 7.6 g, KH 2 PO 4 1 .8 g / L) was added, and heated (100 ° C., 10 minutes) with a dry bath incubator (manufactured by First Gene). 3 ml of the resulting solution was added to a styrene non-charged square case (36 mm × 36 mm × 14 mm) and cooled to room temperature. After the solution was solidified and gelled, 3 ml of Japanese Pharmacopoeia water was added dropwise and allowed to stand at room temperature. One day later, a sheet-like gel slice (1 cm × 0.5 cm) was cut out, placed in a screw tube (Marem NO5), Japanese Pharmacopoeia water, and phosphate buffer (pH = 2, pH = 7.4, pH = 11, pH was prepared by adding NaOH or HCl dropwise) 6 ml was added, and it was objectively observed for 3 months whether or not the section of the sheet gel melted and decomposed for 3 months.
その結果、パルミトイル-Gly―Gly―Gly-Hisのシート状切片ゲルは、酸性、中性、アルカリ性水浸漬液中で、融解・分解することなく、3ヶ月間、シート状切片ゲルとして観察された。
As a result, the sheet-like slice gel of palmitoyl-Gly-Gly-Gly-His was observed as a sheet-like slice gel for 3 months without melting / degrading in acidic, neutral or alkaline water immersion liquid. .
[パルミトイル-Gly―Gly-Gly-Hisゲルシートのアルブミンの吸着評価]
パルミトイル-Gly―Gly-Gly-His 81.6mg及び60.1mgに超純水(栗田工業(株)製)、リン酸緩衝液(和光純薬工業(株)製 phosphate buffer powder、1/15mol/L、pH=7.4、組成:Na2HPO4 7.6g、KH2PO4 1.8g/L)を加え、2時間ソニケーション後、90℃で3分間加熱して得られた溶解液のうち3mlをスチロール非帯電角型ケース(36mm×36mm×14mm)に移し、室温静置により0.3%(w/v)濃度のパルミトイル-Gly―Gly-Gly-Hisゲルを作成した。このゲルを1g切り取とって、超純水(栗田工業(株)製)5mlの入ったスクリュー管(マルエムNO7)に入れ24時間室温静置し、シート化した。この水浸漬中のゲルシートに超純水に溶解させたAlbumin from bovine serum Fraction V(Sigma社製、≧98%、BSA)を最終濃度1mg/mlになるように添加した。浸漬液500μlを採取し、外液の浸漬液中のBSA量をHPLCで測定し、ゲルへの吸着タンパク量を算出した。 [Adsorption evaluation of albumin on palmitoyl-Gly-Gly-Gly-His gel sheet]
Palmitoyl-Gly-Gly-Gly-His 81.6 mg and 60.1 mg were added to ultrapure water (Kurita Kogyo Co., Ltd.), phosphate buffer (manufactured by Wako Pure Chemical Industries, Ltd.) phosphate buffer powder, 1/15 mol / L, pH = 7.4, composition: Na 2 HPO 4 7.6 g, KH 2 PO 4 1.8 g / L), 2 hours sonication and heating at 90 ° C. for 3 minutes. 3 ml of the solution was transferred to a styrene non-charged square case (36 mm × 36 mm × 14 mm), and a palmitoyl-Gly-Gly-Gly-His gel having a concentration of 0.3% (w / v) was prepared by standing at room temperature. 1 g of this gel was cut out and placed in a screw tube (Marume NO7) containing 5 ml of ultrapure water (manufactured by Kurita Kogyo Co., Ltd.) and allowed to stand at room temperature for 24 hours to form a sheet. Albumin from bovine serum Fraction V (manufactured by Sigma, ≧ 98%, BSA) dissolved in ultrapure water was added to this gel sheet immersed in water to a final concentration of 1 mg / ml. 500 μl of the immersion liquid was collected, the amount of BSA in the immersion liquid of the external liquid was measured by HPLC, and the amount of protein adsorbed on the gel was calculated.
パルミトイル-Gly―Gly-Gly-His 81.6mg及び60.1mgに超純水(栗田工業(株)製)、リン酸緩衝液(和光純薬工業(株)製 phosphate buffer powder、1/15mol/L、pH=7.4、組成:Na2HPO4 7.6g、KH2PO4 1.8g/L)を加え、2時間ソニケーション後、90℃で3分間加熱して得られた溶解液のうち3mlをスチロール非帯電角型ケース(36mm×36mm×14mm)に移し、室温静置により0.3%(w/v)濃度のパルミトイル-Gly―Gly-Gly-Hisゲルを作成した。このゲルを1g切り取とって、超純水(栗田工業(株)製)5mlの入ったスクリュー管(マルエムNO7)に入れ24時間室温静置し、シート化した。この水浸漬中のゲルシートに超純水に溶解させたAlbumin from bovine serum Fraction V(Sigma社製、≧98%、BSA)を最終濃度1mg/mlになるように添加した。浸漬液500μlを採取し、外液の浸漬液中のBSA量をHPLCで測定し、ゲルへの吸着タンパク量を算出した。 [Adsorption evaluation of albumin on palmitoyl-Gly-Gly-Gly-His gel sheet]
Palmitoyl-Gly-Gly-Gly-His 81.6 mg and 60.1 mg were added to ultrapure water (Kurita Kogyo Co., Ltd.), phosphate buffer (manufactured by Wako Pure Chemical Industries, Ltd.) phosphate buffer powder, 1/15 mol / L, pH = 7.4, composition: Na 2 HPO 4 7.6 g, KH 2 PO 4 1.8 g / L), 2 hours sonication and heating at 90 ° C. for 3 minutes. 3 ml of the solution was transferred to a styrene non-charged square case (36 mm × 36 mm × 14 mm), and a palmitoyl-Gly-Gly-Gly-His gel having a concentration of 0.3% (w / v) was prepared by standing at room temperature. 1 g of this gel was cut out and placed in a screw tube (Marume NO7) containing 5 ml of ultrapure water (manufactured by Kurita Kogyo Co., Ltd.) and allowed to stand at room temperature for 24 hours to form a sheet. Albumin from bovine serum Fraction V (manufactured by Sigma, ≧ 98%, BSA) dissolved in ultrapure water was added to this gel sheet immersed in water to a final concentration of 1 mg / ml. 500 μl of the immersion liquid was collected, the amount of BSA in the immersion liquid of the external liquid was measured by HPLC, and the amount of protein adsorbed on the gel was calculated.
[HPLC測定条件]
カラム:Inertsil WP300 C8 5μm、2.1mm i.d.×150mm
溶離液:A;0.1% TFA-MeCN B;0.1% TFA-Water
B;70%(0min)-20%(10min) (分析時間:10min)
流速:0.3ml/min
カラム温度:60℃
検出:UV214nm(BW10nm)
注入量:2μl
ポストコンディショニング:7min [HPLC measurement conditions]
Column:Inertsil WP300 C8 5 μm, 2.1 mm i. d. × 150mm
Eluent: A; 0.1% TFA-MeCN B; 0.1% TFA-Water
B: 70% (0 min) -20% (10 min) (Analysis time: 10 min)
Flow rate: 0.3 ml / min
Column temperature: 60 ° C
Detection: UV214nm (BW10nm)
Injection volume: 2 μl
Post conditioning: 7 min
カラム:Inertsil WP300 C8 5μm、2.1mm i.d.×150mm
溶離液:A;0.1% TFA-MeCN B;0.1% TFA-Water
B;70%(0min)-20%(10min) (分析時間:10min)
流速:0.3ml/min
カラム温度:60℃
検出:UV214nm(BW10nm)
注入量:2μl
ポストコンディショニング:7min [HPLC measurement conditions]
Column:
Eluent: A; 0.1% TFA-MeCN B; 0.1% TFA-Water
B: 70% (0 min) -20% (10 min) (Analysis time: 10 min)
Flow rate: 0.3 ml / min
Column temperature: 60 ° C
Detection: UV214nm (BW10nm)
Injection volume: 2 μl
Post conditioning: 7 min
表1の結果から、媒体として水及びPBSを用いて作成したパルミトイル-Gly―Gly-Gly-Hisのゲルシートは、BSAを吸着させた。
以上の結果から、パルミトイル-Gly―Gly-Gly-Hisゲルシートはアルブミン吸着効果を有する。 From the results shown in Table 1, palmitoyl-Gly-Gly-Gly-His gel sheet prepared using water and PBS as a medium adsorbed BSA.
From the above results, palmitoyl-Gly-Gly-Gly-His gel sheet has an albumin adsorption effect.
以上の結果から、パルミトイル-Gly―Gly-Gly-Hisゲルシートはアルブミン吸着効果を有する。 From the results shown in Table 1, palmitoyl-Gly-Gly-Gly-His gel sheet prepared using water and PBS as a medium adsorbed BSA.
From the above results, palmitoyl-Gly-Gly-Gly-His gel sheet has an albumin adsorption effect.
<実施例3:リボフラビン内包パルミトイル-Gly―Gly-Gly-Hisゲルシート>
パルミトイル-Gly―Gly-Gly-His 128.2mgをスクリュー管(マルエムNO7)に入れ、0.3%(w/v)の濃度になるようにリン酸緩衝液(和光純薬工業(株)製 phosphate buffer powder、1/15mol/L、pH=7.4、組成:Na2HPO47.6g、KH2PO41.8g/L)を加え、ドライ・バス・インキュベーター(First Gene社製)で、加熱(100℃、10分)し、得られた溶解液のうち3mlをガラスシャーレー(直径6cm、高さ4cm)内に置いたアルミ製の円筒(直径2.5cm、高さ4cm)に移し、室温まで冷却した。溶液が固化したのを確認後、アルミ製の円筒を取り除き、日本薬局方水6mlをガラスシャーレ内に加えた。1時間後、リボフラビン(和光純薬工業(株)製)水溶液(2mg/mL)250μLをガラスシャーレ内加えると、14時間後にゲル内が黄色に着色し、リボフラビンがゲル内に内包されてシート化した。 <Example 3: Palmitoyl-Gly-Gly-Gly-His gel sheet containing riboflavin>
Add 128.2 mg of palmitoyl-Gly-Gly-Gly-His to a screw tube (Marem NO7) and make phosphate buffer (Wako Pure Chemical Industries, Ltd.) to a concentration of 0.3% (w / v) Phosphate buffer powder, 1/15 mol / L, pH = 7.4, composition: Na 2 HPO 4 7.6 g, KH 2 PO 4 1.8 g / L), dry bath incubator (manufactured by First Gene) Then, heating (100 ° C., 10 minutes) and 3 ml of the obtained solution was placed in an aluminum cylinder (diameter 2.5 cm,height 4 cm) placed in a glass petri dish (diameter 6 cm, height 4 cm). Transfer and cool to room temperature. After confirming that the solution was solidified, the aluminum cylinder was removed, and 6 ml of Japanese Pharmacopoeia water was added to the glass petri dish. After 1 hour, 250 μL of aqueous riboflavin (manufactured by Wako Pure Chemical Industries, Ltd.) (2 mg / mL) was added to the glass petri dish, and after 14 hours, the gel was colored yellow, and the riboflavin was encapsulated in the gel to form a sheet. did.
パルミトイル-Gly―Gly-Gly-His 128.2mgをスクリュー管(マルエムNO7)に入れ、0.3%(w/v)の濃度になるようにリン酸緩衝液(和光純薬工業(株)製 phosphate buffer powder、1/15mol/L、pH=7.4、組成:Na2HPO47.6g、KH2PO41.8g/L)を加え、ドライ・バス・インキュベーター(First Gene社製)で、加熱(100℃、10分)し、得られた溶解液のうち3mlをガラスシャーレー(直径6cm、高さ4cm)内に置いたアルミ製の円筒(直径2.5cm、高さ4cm)に移し、室温まで冷却した。溶液が固化したのを確認後、アルミ製の円筒を取り除き、日本薬局方水6mlをガラスシャーレ内に加えた。1時間後、リボフラビン(和光純薬工業(株)製)水溶液(2mg/mL)250μLをガラスシャーレ内加えると、14時間後にゲル内が黄色に着色し、リボフラビンがゲル内に内包されてシート化した。 <Example 3: Palmitoyl-Gly-Gly-Gly-His gel sheet containing riboflavin>
Add 128.2 mg of palmitoyl-Gly-Gly-Gly-His to a screw tube (Marem NO7) and make phosphate buffer (Wako Pure Chemical Industries, Ltd.) to a concentration of 0.3% (w / v) Phosphate buffer powder, 1/15 mol / L, pH = 7.4, composition: Na 2 HPO 4 7.6 g, KH 2 PO 4 1.8 g / L), dry bath incubator (manufactured by First Gene) Then, heating (100 ° C., 10 minutes) and 3 ml of the obtained solution was placed in an aluminum cylinder (diameter 2.5 cm,
<比較例1:セルロースゲル、カルボキシビニルポリマーゲル、キサンタンガムゲル、カードランゲルの水浸漬に対する影響>
セルロースゲルは、セロディーヌ4M(ナノウオープ、セルロースゲル4wt%、第一工業製薬(株)製)100gに166gの日本局方水を加えて、攪拌装置T.K. mixing analyzer MA2500(プライミクス株式会社)を用いて、5000rpmで240分間攪拌し、ゲル化が認められるまで室温静置して、セルロースゲル(1.5wt%のセルロース水分散体)を得た。
2%カルボキシビニルポリマーは、カーボポール940(アイ・ティー・オー社製)0.252gに日本局方水を加えた後、溶解するまで水浴中で加温してゲル化させた。
5%キサンタンガムは、キサンタンガム(東京化成工業(株)製)0.725gに日本局方水を加えた後、溶解するまで水浴中で加温してゲル化させた。
カルボキシビニルポリマー(2wt%,カーボポール)1g、セルロースゲル(1.5wt%,セロディーヌ)1g、キサンタンガム(1.5wt%)及びカードラン(1.5wt%)1gをプラスティックシャーレ(直径8.5cm×深さ1.4cm)に入れ、水6ml水に浸漬させたところ、72日後にはゲルは消失し、シートの形成は認められなかった。 <Comparative Example 1: Effect of cellulose gel, carboxyvinyl polymer gel, xanthan gum gel, curdlan gel on water immersion>
The cellulose gel was prepared by adding 166 g of Japanese pharmacopoeia water to 100 g of Serodine 4M (NanoWope,cellulose gel 4 wt%, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). K. Using a mixing analyzer MA2500 (Primics Co., Ltd.), the mixture was stirred at 5000 rpm for 240 minutes and allowed to stand at room temperature until gelation was observed to obtain a cellulose gel (1.5 wt% cellulose aqueous dispersion).
The 2% carboxyvinyl polymer was gelled by adding Japanese Pharmacopoeia water to 0.252 g of Carbopol 940 (manufactured by IT Corporation) and then heating in a water bath until dissolved.
5% xanthan gum was gelled by adding Japanese pharmacopoeia water to 0.725 g of xanthan gum (manufactured by Tokyo Chemical Industry Co., Ltd.) and then heating in a water bath until dissolved.
1 g of carboxyvinyl polymer (2 wt%, carbopol), 1 g of cellulose gel (1.5 wt%, cellodine), 1 g of xanthan gum (1.5 wt%) and curdlan (1.5 wt%) were added to a plastic petri dish (diameter 8.5 cm × When the sample was placed in a depth of 1.4 cm and immersed in 6 ml of water, the gel disappeared after 72 days and no sheet was formed.
セルロースゲルは、セロディーヌ4M(ナノウオープ、セルロースゲル4wt%、第一工業製薬(株)製)100gに166gの日本局方水を加えて、攪拌装置T.K. mixing analyzer MA2500(プライミクス株式会社)を用いて、5000rpmで240分間攪拌し、ゲル化が認められるまで室温静置して、セルロースゲル(1.5wt%のセルロース水分散体)を得た。
2%カルボキシビニルポリマーは、カーボポール940(アイ・ティー・オー社製)0.252gに日本局方水を加えた後、溶解するまで水浴中で加温してゲル化させた。
5%キサンタンガムは、キサンタンガム(東京化成工業(株)製)0.725gに日本局方水を加えた後、溶解するまで水浴中で加温してゲル化させた。
カルボキシビニルポリマー(2wt%,カーボポール)1g、セルロースゲル(1.5wt%,セロディーヌ)1g、キサンタンガム(1.5wt%)及びカードラン(1.5wt%)1gをプラスティックシャーレ(直径8.5cm×深さ1.4cm)に入れ、水6ml水に浸漬させたところ、72日後にはゲルは消失し、シートの形成は認められなかった。 <Comparative Example 1: Effect of cellulose gel, carboxyvinyl polymer gel, xanthan gum gel, curdlan gel on water immersion>
The cellulose gel was prepared by adding 166 g of Japanese pharmacopoeia water to 100 g of Serodine 4M (NanoWope,
The 2% carboxyvinyl polymer was gelled by adding Japanese Pharmacopoeia water to 0.252 g of Carbopol 940 (manufactured by IT Corporation) and then heating in a water bath until dissolved.
5% xanthan gum was gelled by adding Japanese pharmacopoeia water to 0.725 g of xanthan gum (manufactured by Tokyo Chemical Industry Co., Ltd.) and then heating in a water bath until dissolved.
1 g of carboxyvinyl polymer (2 wt%, carbopol), 1 g of cellulose gel (1.5 wt%, cellodine), 1 g of xanthan gum (1.5 wt%) and curdlan (1.5 wt%) were added to a plastic petri dish (diameter 8.5 cm × When the sample was placed in a depth of 1.4 cm and immersed in 6 ml of water, the gel disappeared after 72 days and no sheet was formed.
[ゲルファイバー内疎水性環境の評価]
疎水性環境応答性プローブである8-アニリノ-1-ナフタレンスルホン酸(ANS)を用いた。疎水性環境応答性プローブであるANSは、その周辺における極性が減少すると共に蛍光極大波長が短波長側にシフトし、蛍光強度が増大することが知られている。そこで、終濃度5μMとなるように、リン酸緩衝液(pH7.5)にANSを溶解し、各ゲル(0.5又は0.02wt%のPal-GGGH、0.5wt%のアガロース、3wt%のアルギン酸ナトリウム、5wt%のポリアクリルアミド)を調整した。
また、各有機溶媒(エタノール、1-プロパノール、アセトン、ジオキサン)に、5μMとなるようにANSを溶解した。各ゲル及び有機溶媒の蛍光強度を測定した(ex 350nm、em 480nm)。
その結果、Pal-GGGHだけに蛍光強度の増大が見られ、ゲル内に疎水性環境を有していることが明らかとなった(図2)。一方、他の高分子ゲルでは蛍光強度にほとんど変化が見られないことから、ゲルの形成ではなく、Pal-GGGHの自己組織化に伴った疎水性領域の形成が、蛍光強度の増大に影響を与えたものと考えられる。また、Pal-GGGHはゲル形成濃度以下(0.02wt%)でも蛍光を示したことから、ゲル化していない低濃度でも自己組織化して疎水領域を形成していると考えられる。 [Evaluation of hydrophobic environment in gel fiber]
A hydrophobic environmentally responsive probe, 8-anilino-1-naphthalene sulfonic acid (ANS), was used. It is known that ANS, which is a hydrophobic environmentally responsive probe, decreases in polarity in the vicinity thereof and shifts the fluorescence maximum wavelength to the short wavelength side, thereby increasing the fluorescence intensity. Therefore, ANS was dissolved in a phosphate buffer (pH 7.5) so that the final concentration was 5 μM, and each gel (0.5 or 0.02 wt% Pal-GGGH, 0.5 wt% agarose, 3 wt% Of sodium alginate, 5 wt% polyacrylamide).
In addition, ANS was dissolved in each organic solvent (ethanol, 1-propanol, acetone, dioxane) so as to be 5 μM. The fluorescence intensity of each gel and organic solvent was measured (ex 350 nm, em 480 nm).
As a result, it was revealed that only Pal-GGGH had an increase in fluorescence intensity and had a hydrophobic environment in the gel (FIG. 2). On the other hand, since there is almost no change in the fluorescence intensity in other polymer gels, the formation of the hydrophobic region accompanying the self-assembly of Pal-GGGH has an effect on the increase in fluorescence intensity, not the gel formation. It is thought to have been given. Further, since Pal-GGGH showed fluorescence even at a gel formation concentration or less (0.02 wt%), it is considered that a hydrophobic region is formed by self-organization even at a low concentration that is not gelled.
疎水性環境応答性プローブである8-アニリノ-1-ナフタレンスルホン酸(ANS)を用いた。疎水性環境応答性プローブであるANSは、その周辺における極性が減少すると共に蛍光極大波長が短波長側にシフトし、蛍光強度が増大することが知られている。そこで、終濃度5μMとなるように、リン酸緩衝液(pH7.5)にANSを溶解し、各ゲル(0.5又は0.02wt%のPal-GGGH、0.5wt%のアガロース、3wt%のアルギン酸ナトリウム、5wt%のポリアクリルアミド)を調整した。
また、各有機溶媒(エタノール、1-プロパノール、アセトン、ジオキサン)に、5μMとなるようにANSを溶解した。各ゲル及び有機溶媒の蛍光強度を測定した(ex 350nm、em 480nm)。
その結果、Pal-GGGHだけに蛍光強度の増大が見られ、ゲル内に疎水性環境を有していることが明らかとなった(図2)。一方、他の高分子ゲルでは蛍光強度にほとんど変化が見られないことから、ゲルの形成ではなく、Pal-GGGHの自己組織化に伴った疎水性領域の形成が、蛍光強度の増大に影響を与えたものと考えられる。また、Pal-GGGHはゲル形成濃度以下(0.02wt%)でも蛍光を示したことから、ゲル化していない低濃度でも自己組織化して疎水領域を形成していると考えられる。 [Evaluation of hydrophobic environment in gel fiber]
A hydrophobic environmentally responsive probe, 8-anilino-1-naphthalene sulfonic acid (ANS), was used. It is known that ANS, which is a hydrophobic environmentally responsive probe, decreases in polarity in the vicinity thereof and shifts the fluorescence maximum wavelength to the short wavelength side, thereby increasing the fluorescence intensity. Therefore, ANS was dissolved in a phosphate buffer (pH 7.5) so that the final concentration was 5 μM, and each gel (0.5 or 0.02 wt% Pal-GGGH, 0.5 wt% agarose, 3 wt% Of sodium alginate, 5 wt% polyacrylamide).
In addition, ANS was dissolved in each organic solvent (ethanol, 1-propanol, acetone, dioxane) so as to be 5 μM. The fluorescence intensity of each gel and organic solvent was measured (
As a result, it was revealed that only Pal-GGGH had an increase in fluorescence intensity and had a hydrophobic environment in the gel (FIG. 2). On the other hand, since there is almost no change in the fluorescence intensity in other polymer gels, the formation of the hydrophobic region accompanying the self-assembly of Pal-GGGH has an effect on the increase in fluorescence intensity, not the gel formation. It is thought to have been given. Further, since Pal-GGGH showed fluorescence even at a gel formation concentration or less (0.02 wt%), it is considered that a hydrophobic region is formed by self-organization even at a low concentration that is not gelled.
さらに、有機溶媒及びPal-GGGHゲル中におけるANSの蛍光極大波長を比較したところ、エタノールや1-プロパノールとPal-GGGHゲルの蛍光極大波長が近いことから、ゲルファイバーの疎水性領域はエタノール、プロパノールと同程度の疎水性を持つことが示唆された(図3)。
Further, when the fluorescence maximum wavelengths of ANS in an organic solvent and a Pal-GGGH gel were compared, the hydrophobic regions of the gel fiber were ethanol, propanol because ethanol and 1-propanol were close to the fluorescence maximum wavelength of the Pal-GGGH gel. (Fig. 3).
[ゲルシートからの放出性の評価]
ゲルシートからの内包物質の放出性の評価を行った。先の実験で使用したANSとビタミンB2(リボフラビン)を親水性内包物質とした。緩衝液はそれぞれpH3:クエン酸緩衝液溶液、pH7.4:リン酸緩衝液、pH9.0:Tris-HCl緩衝液を用いた。100又は300μMになるようにANS又はリボフラビンを緩衝液に溶解し、各溶液1mlに対しゲル化剤(ゲル化剤濃度0.3又は0.6wt%)を加え、ゲルシートを作成した。そこに抽出用緩衝液10mlを加え40rpmで振とうして内包物質を抽出した。サンプルは経時的にサンプリングを行い、各時間の放出濃度を吸光度(ANS:350nm、リボフラビン:445nm)から算出した。 [Evaluation of release from gel sheet]
The release of the encapsulated substance from the gel sheet was evaluated. ANS and vitamin B2 (riboflavin) used in the previous experiment were used as hydrophilic inclusion substances. As the buffer solution, pH 3: citrate buffer solution, pH 7.4: phosphate buffer solution, pH 9.0: Tris-HCl buffer solution were used, respectively. ANS or riboflavin was dissolved in a buffer so as to be 100 or 300 μM, and a gelling agent (gelling agent concentration of 0.3 or 0.6 wt%) was added to 1 ml of each solution to prepare a gel sheet. Thereto was added 10 ml of an extraction buffer, and the inclusion substance was extracted by shaking at 40 rpm. Samples were sampled over time, and the release concentration at each time was calculated from the absorbance (ANS: 350 nm, riboflavin: 445 nm).
ゲルシートからの内包物質の放出性の評価を行った。先の実験で使用したANSとビタミンB2(リボフラビン)を親水性内包物質とした。緩衝液はそれぞれpH3:クエン酸緩衝液溶液、pH7.4:リン酸緩衝液、pH9.0:Tris-HCl緩衝液を用いた。100又は300μMになるようにANS又はリボフラビンを緩衝液に溶解し、各溶液1mlに対しゲル化剤(ゲル化剤濃度0.3又は0.6wt%)を加え、ゲルシートを作成した。そこに抽出用緩衝液10mlを加え40rpmで振とうして内包物質を抽出した。サンプルは経時的にサンプリングを行い、各時間の放出濃度を吸光度(ANS:350nm、リボフラビン:445nm)から算出した。 [Evaluation of release from gel sheet]
The release of the encapsulated substance from the gel sheet was evaluated. ANS and vitamin B2 (riboflavin) used in the previous experiment were used as hydrophilic inclusion substances. As the buffer solution, pH 3: citrate buffer solution, pH 7.4: phosphate buffer solution, pH 9.0: Tris-HCl buffer solution were used, respectively. ANS or riboflavin was dissolved in a buffer so as to be 100 or 300 μM, and a gelling agent (gelling agent concentration of 0.3 or 0.6 wt%) was added to 1 ml of each solution to prepare a gel sheet. Thereto was added 10 ml of an extraction buffer, and the inclusion substance was extracted by shaking at 40 rpm. Samples were sampled over time, and the release concentration at each time was calculated from the absorbance (ANS: 350 nm, riboflavin: 445 nm).
ゲルシートからの徐放性をゲル化剤の濃度とゲル及び放出液のpHを変えて比較した。その結果、ゲル化剤の濃度を上げるとANSの放出率が低下することが示された(図4)。この理由としては、ゲル化剤濃度が増えることでゲルファイバーが増加したため、ANSの内包量が増えたのではないかと考えられる。また、ANSではpHが高くなるほど放出率が増加した(図5)が、リボフラビンではpHによる違いは生じなかった(図6)。Pal-GGGHの各pHにおけるゲル化剤分子の荷電状態(図7)はアミノ酸残基のpKaを考慮すると、ゲル化剤分子は主にpH1.8以下においては(I)の、pH1.8から6.0においては(II)の、pH6.0以上においては(III)のイオン化状態をとっていると考えられる。pH9.0のときはより多くのPal-GGGH分子が(III)のイオン化状態をとっていると考えられ、マイナスの電荷を持つことが予想される。ANSは陰イオンであることから、ゲルファイバー表面のマイナスの電荷と反発して放出液中に放出されたのではないかと考えられる。リボフラビンは水溶液中で電荷を持たないため、pHの影響を受けなかったと考えられる。
The sustained release from the gel sheet was compared by changing the concentration of the gelling agent and the pH of the gel and the release liquid. As a result, it was shown that the release rate of ANS decreased when the concentration of the gelling agent was increased (FIG. 4). The reason for this is thought to be that the amount of encapsulated ANS increased because the gel fiber increased as the gelling agent concentration increased. In ANS, the release rate increased as the pH increased (FIG. 5), but riboflavin did not differ depending on the pH (FIG. 6). The charge state of the gelling agent molecule at each pH of Pal-GGGH (FIG. 7) is based on the pKa of the amino acid residue. It is considered that the ionized state of (II) is taken at 6.0 and (III) is taken at pH 6.0 or higher. When the pH is 9.0, more Pal-GGGH molecules are considered to be in the ionized state of (III) and are expected to have a negative charge. Since ANS is an anion, it is considered that the ANS was released into the release liquid repelling the negative charge on the surface of the gel fiber. Since riboflavin has no charge in aqueous solution, it is considered that it was not affected by pH.
<実施例4:ゲルシートへの浸漬による親水性物質の内包>
ゲルシートをリボフラビンの溶液に浸漬することで、リボフラビンをゲルシート内に取り込むことが可能であるか実験を行った。リン酸緩衝液1mlに対しゲル化剤(ゲル化剤濃度0.3wt%)を加えてゲルシートを作成した。ゲルシートを各濃度(10μg/ml~200μg/ml)のリボフラビン溶液5mlに68時間浸漬させ、浸漬液の濃度を吸光度(445nm)から算出することで、ゲルシートへのリボフラビンの内包量を求めた。 <Example 4: Encapsulation of hydrophilic substance by immersion in gel sheet>
An experiment was conducted to determine whether riboflavin can be incorporated into the gel sheet by immersing the gel sheet in a solution of riboflavin. A gel sheet was prepared by adding a gelling agent (gelling agent concentration: 0.3 wt%) to 1 ml of phosphate buffer. The gel sheet was immersed in 5 ml of a riboflavin solution of each concentration (10 μg / ml to 200 μg / ml) for 68 hours, and the concentration of the soaking solution was calculated from the absorbance (445 nm) to determine the amount of riboflavin encapsulated in the gel sheet.
ゲルシートをリボフラビンの溶液に浸漬することで、リボフラビンをゲルシート内に取り込むことが可能であるか実験を行った。リン酸緩衝液1mlに対しゲル化剤(ゲル化剤濃度0.3wt%)を加えてゲルシートを作成した。ゲルシートを各濃度(10μg/ml~200μg/ml)のリボフラビン溶液5mlに68時間浸漬させ、浸漬液の濃度を吸光度(445nm)から算出することで、ゲルシートへのリボフラビンの内包量を求めた。 <Example 4: Encapsulation of hydrophilic substance by immersion in gel sheet>
An experiment was conducted to determine whether riboflavin can be incorporated into the gel sheet by immersing the gel sheet in a solution of riboflavin. A gel sheet was prepared by adding a gelling agent (gelling agent concentration: 0.3 wt%) to 1 ml of phosphate buffer. The gel sheet was immersed in 5 ml of a riboflavin solution of each concentration (10 μg / ml to 200 μg / ml) for 68 hours, and the concentration of the soaking solution was calculated from the absorbance (445 nm) to determine the amount of riboflavin encapsulated in the gel sheet.
表2の結果から、リボフラビン溶液にゲルシートを浸漬することでゲルシート内にリボフラビンが内包された。また、リボフラビン浸漬液の濃度の増加に比例してゲルシートへの内包量が増加した。
From the results in Table 2, riboflavin was encapsulated in the gel sheet by immersing the gel sheet in the riboflavin solution. In addition, the amount of inclusion in the gel sheet increased in proportion to the increase in the concentration of the riboflavin immersion liquid.
[Pal-GGGHのゲル化による疎水性物質の可溶化の評価]
ゲル化剤Pal-GGGHによるゲルを用いることで、どの程度疎水性物質を可溶化できるのか、その溶解度の評価を行った。モデル疎水性物質としてピレン及びビタミンE(α-トコフェロール)を用いた。まず疎水性物質をDMSO又はエタノールに溶解し、ストック溶液を調製した。このストック溶液をリン酸緩衝液(pH7.5)で希釈することで、疎水性物質が終濃度100μM~900μMのサンプル溶液を調製した(DMSO及びエタノール5%又は1%を含む)。各サンプル溶液にゲル化剤(最終濃度0.1wt%~0.4wt%)を添加し、ゲル化した。
図8に示す疎水性物質可溶化の程度の基準を用いて、ゲル化による疎水性物質の溶解度の評価を目視により行った。ここで、図8に示す疎水性物質可溶化の程度の基準は、(I)は、溶解した状態を示し、(II)は、若干白濁した状態を示し、(III)は、溶解せずに白濁した状態を示す。 [Evaluation of Solubilization of Hydrophobic Substance by Gelation of Pal-GGGH]
To what extent a hydrophobic substance can be solubilized by using a gel with a gelling agent, Pal-GGGH, was evaluated for its solubility. Pyrene and vitamin E (α-tocopherol) were used as model hydrophobic substances. First, a hydrophobic material was dissolved in DMSO or ethanol to prepare a stock solution. This stock solution was diluted with a phosphate buffer (pH 7.5) to prepare a sample solution having a final concentration of 100 μM to 900 μM of a hydrophobic substance (containing DMSO andethanol 5% or 1%). A gelling agent (final concentration of 0.1 wt% to 0.4 wt%) was added to each sample solution to cause gelation.
Using the standard of the degree of solubilization of the hydrophobic substance shown in FIG. 8, the solubility of the hydrophobic substance by gelation was evaluated visually. Here, the criteria of the degree of solubilization of the hydrophobic substance shown in FIG. 8 are as follows: (I) shows a dissolved state, (II) shows a slightly cloudy state, and (III) shows no dissolution. It shows a cloudy state.
ゲル化剤Pal-GGGHによるゲルを用いることで、どの程度疎水性物質を可溶化できるのか、その溶解度の評価を行った。モデル疎水性物質としてピレン及びビタミンE(α-トコフェロール)を用いた。まず疎水性物質をDMSO又はエタノールに溶解し、ストック溶液を調製した。このストック溶液をリン酸緩衝液(pH7.5)で希釈することで、疎水性物質が終濃度100μM~900μMのサンプル溶液を調製した(DMSO及びエタノール5%又は1%を含む)。各サンプル溶液にゲル化剤(最終濃度0.1wt%~0.4wt%)を添加し、ゲル化した。
図8に示す疎水性物質可溶化の程度の基準を用いて、ゲル化による疎水性物質の溶解度の評価を目視により行った。ここで、図8に示す疎水性物質可溶化の程度の基準は、(I)は、溶解した状態を示し、(II)は、若干白濁した状態を示し、(III)は、溶解せずに白濁した状態を示す。 [Evaluation of Solubilization of Hydrophobic Substance by Gelation of Pal-GGGH]
To what extent a hydrophobic substance can be solubilized by using a gel with a gelling agent, Pal-GGGH, was evaluated for its solubility. Pyrene and vitamin E (α-tocopherol) were used as model hydrophobic substances. First, a hydrophobic material was dissolved in DMSO or ethanol to prepare a stock solution. This stock solution was diluted with a phosphate buffer (pH 7.5) to prepare a sample solution having a final concentration of 100 μM to 900 μM of a hydrophobic substance (containing DMSO and
Using the standard of the degree of solubilization of the hydrophobic substance shown in FIG. 8, the solubility of the hydrophobic substance by gelation was evaluated visually. Here, the criteria of the degree of solubilization of the hydrophobic substance shown in FIG. 8 are as follows: (I) shows a dissolved state, (II) shows a slightly cloudy state, and (III) shows no dissolution. It shows a cloudy state.
上述のゲルファイバー内疎水性環境評価の結果により、ゲルファイバー中に疎水的な領域が存在することが明らかになったが、その疎水性領域に疎水性物質が内包することで見掛け上ゲル中の水系の溶媒中への可溶化ができると考え、疎水性物質の可溶化の評価を行った(図9)。その結果、DMSO、エタノールを含む状態でピレン及びビタミンE共にゲル中に可溶化できることが明らかとなった(表3)。
As a result of the evaluation of the hydrophobic environment in the gel fiber described above, it has been clarified that the hydrophobic region exists in the gel fiber. However, the hydrophobic substance is encapsulated in the hydrophobic region, and apparently in the gel fiber. It was considered that solubilization in an aqueous solvent was possible, and solubilization of hydrophobic substances was evaluated (FIG. 9). As a result, it was revealed that both pyrene and vitamin E can be solubilized in the gel in a state containing DMSO and ethanol (Table 3).
<実施例5:ビタミンE内包ゲルの調整>
前述のストック溶液を、MOPS緩衝液(pH7.5)を用いて希釈し、500μMビタミンE水溶液を調製した(5%エタノールを含む)。これを用いて各ゲル(0.5wt%のPal-GGGH、0.5wt%のアガロース、5%のポリアクリルアミド)を調製し、ビタミンE内包ゲルを作成した。 <Example 5: Preparation of vitamin E-containing gel>
The aforementioned stock solution was diluted with MOPS buffer (pH 7.5) to prepare a 500 μM vitamin E aqueous solution (containing 5% ethanol). Using this, each gel (0.5 wt% Pal-GGGH, 0.5 wt% agarose, 5% polyacrylamide) was prepared, and a vitamin E-encapsulating gel was prepared.
前述のストック溶液を、MOPS緩衝液(pH7.5)を用いて希釈し、500μMビタミンE水溶液を調製した(5%エタノールを含む)。これを用いて各ゲル(0.5wt%のPal-GGGH、0.5wt%のアガロース、5%のポリアクリルアミド)を調製し、ビタミンE内包ゲルを作成した。 <Example 5: Preparation of vitamin E-containing gel>
The aforementioned stock solution was diluted with MOPS buffer (pH 7.5) to prepare a 500 μM vitamin E aqueous solution (containing 5% ethanol). Using this, each gel (0.5 wt% Pal-GGGH, 0.5 wt% agarose, 5% polyacrylamide) was prepared, and a vitamin E-encapsulating gel was prepared.
その結果、Pal-GGGHゲルでは、ビタミンEの有無にかかわらず、ゲルの濁度に変化はなかった(図10)。この理由としては、ビタミンEがゲルファイバー内の疎水性領域に内包されたため、見かけ上溶解したためであると考えられる。一方、ポリアクリルアミドゲル及びアガロースゲル内にビタミンEの内包を試みたところ、ビタミンEは疎水性が高く水に不溶であるため析出し、ゲルの白濁が見られた。高分子ゲルではビタミンEを可溶化できないことが分かる。
以上より、Pal-GGGHゲルはビタミンEを可溶化することが示された。 As a result, in the Pal-GGGH gel, the turbidity of the gel was not changed regardless of the presence or absence of vitamin E (FIG. 10). This is probably because vitamin E was apparently dissolved because it was encapsulated in a hydrophobic region in the gel fiber. On the other hand, when an attempt was made to encapsulate vitamin E in polyacrylamide gel and agarose gel, vitamin E was precipitated because it was highly hydrophobic and insoluble in water, and white turbidity of the gel was observed. It can be seen that the polymer gel cannot solubilize vitamin E.
From the above, it was shown that Pal-GGGH gel solubilizes vitamin E.
以上より、Pal-GGGHゲルはビタミンEを可溶化することが示された。 As a result, in the Pal-GGGH gel, the turbidity of the gel was not changed regardless of the presence or absence of vitamin E (FIG. 10). This is probably because vitamin E was apparently dissolved because it was encapsulated in a hydrophobic region in the gel fiber. On the other hand, when an attempt was made to encapsulate vitamin E in polyacrylamide gel and agarose gel, vitamin E was precipitated because it was highly hydrophobic and insoluble in water, and white turbidity of the gel was observed. It can be seen that the polymer gel cannot solubilize vitamin E.
From the above, it was shown that Pal-GGGH gel solubilizes vitamin E.
<実施例6:ビタミンE及びビタミンCの同時内包ゲルの調整>
ビタミンC(アスコルビン酸リン酸ナトリウム)を1mg/mlとなるようにMOPS緩衝液(pH7.5)に溶解した。そこへ、0.5wt%のPal-GGGHを添加し、さらに500μMのビタミンEとなるようにストック溶液を加え(5%のエタノールを含む)、溶液をゲル化させ、疎水性物質であるビタミンEと親水性物質であるビタミンCの同時内包ゲルを作成した。 <Example 6: Preparation of simultaneous inclusion gel of vitamin E and vitamin C>
Vitamin C (sodium ascorbate phosphate) was dissolved in MOPS buffer (pH 7.5) to a concentration of 1 mg / ml. Thereto, 0.5 wt% of Pal-GGGH is added, and a stock solution is added so as to become 500 μM vitamin E (containing 5% ethanol), the solution is gelled, and the hydrophobic substance vitamin E is added. And a simultaneous inclusion gel of vitamin C which is a hydrophilic substance.
ビタミンC(アスコルビン酸リン酸ナトリウム)を1mg/mlとなるようにMOPS緩衝液(pH7.5)に溶解した。そこへ、0.5wt%のPal-GGGHを添加し、さらに500μMのビタミンEとなるようにストック溶液を加え(5%のエタノールを含む)、溶液をゲル化させ、疎水性物質であるビタミンEと親水性物質であるビタミンCの同時内包ゲルを作成した。 <Example 6: Preparation of simultaneous inclusion gel of vitamin E and vitamin C>
Vitamin C (sodium ascorbate phosphate) was dissolved in MOPS buffer (pH 7.5) to a concentration of 1 mg / ml. Thereto, 0.5 wt% of Pal-GGGH is added, and a stock solution is added so as to become 500 μM vitamin E (containing 5% ethanol), the solution is gelled, and the hydrophobic substance vitamin E is added. And a simultaneous inclusion gel of vitamin C which is a hydrophilic substance.
その結果、ビタミンC誘導体存在下においてもビタミンEはゲルファイバーの疎水性領域に溶解し、ビタミンEの析出に伴うゲルの白濁も見られなかった(図11)。
以上より、Pal-GGGHを用いることで、溶解性の異なるビタミンEとビタミンCを、同時に溶解・内包したゲルを作成可能であることが示された。 As a result, even in the presence of vitamin C derivative, vitamin E was dissolved in the hydrophobic region of the gel fiber, and no white turbidity of the gel accompanying the precipitation of vitamin E was observed (FIG. 11).
From the above, it was shown that by using Pal-GGGH, it is possible to prepare a gel in which vitamin E and vitamin C having different solubilities are dissolved and encapsulated at the same time.
以上より、Pal-GGGHを用いることで、溶解性の異なるビタミンEとビタミンCを、同時に溶解・内包したゲルを作成可能であることが示された。 As a result, even in the presence of vitamin C derivative, vitamin E was dissolved in the hydrophobic region of the gel fiber, and no white turbidity of the gel accompanying the precipitation of vitamin E was observed (FIG. 11).
From the above, it was shown that by using Pal-GGGH, it is possible to prepare a gel in which vitamin E and vitamin C having different solubilities are dissolved and encapsulated at the same time.
[ゲルシートからのビタミンEの放出性評価]
ビタミンEストック溶液をMOPS緩衝液(pH7.5)を用いて希釈し、500μMビタミンE水溶液を調製した(5%のエタノールを含む)。ここへ、0.3wt%となるようにPal-GGGHを添加し、加熱・放冷してゲルシートを作成した。ゲルシートを5mlのエタノール水溶液(50、70、100%)に浸し、45rpmで振とう攪拌しビタミンEを放出させた。放出液を経時的にサンプリングし、各時間におけるビタミンEの放出濃度を吸光度(292nm)から算出した。 [Evaluation of Vitamin E Release from Gel Sheet]
The vitamin E stock solution was diluted with MOPS buffer (pH 7.5) to prepare a 500 μM vitamin E aqueous solution (containing 5% ethanol). Here, Pal-GGGH was added so that it might become 0.3 wt%, and it heated and allowed to cool and created the gel sheet. The gel sheet was immersed in 5 ml of an aqueous ethanol solution (50, 70, 100%) and shaken at 45 rpm to release vitamin E. The release solution was sampled over time, and the release concentration of vitamin E at each time was calculated from the absorbance (292 nm).
ビタミンEストック溶液をMOPS緩衝液(pH7.5)を用いて希釈し、500μMビタミンE水溶液を調製した(5%のエタノールを含む)。ここへ、0.3wt%となるようにPal-GGGHを添加し、加熱・放冷してゲルシートを作成した。ゲルシートを5mlのエタノール水溶液(50、70、100%)に浸し、45rpmで振とう攪拌しビタミンEを放出させた。放出液を経時的にサンプリングし、各時間におけるビタミンEの放出濃度を吸光度(292nm)から算出した。 [Evaluation of Vitamin E Release from Gel Sheet]
The vitamin E stock solution was diluted with MOPS buffer (pH 7.5) to prepare a 500 μM vitamin E aqueous solution (containing 5% ethanol). Here, Pal-GGGH was added so that it might become 0.3 wt%, and it heated and allowed to cool and created the gel sheet. The gel sheet was immersed in 5 ml of an aqueous ethanol solution (50, 70, 100%) and shaken at 45 rpm to release vitamin E. The release solution was sampled over time, and the release concentration of vitamin E at each time was calculated from the absorbance (292 nm).
疎水性物質の放出性を評価するため、ゲルシートからのビタミンEの放出性挙動を、濃度の異なるエタノール水溶液に対して評価・比較した(図12)。エタノール濃度が50%以上のとき、ビタミンEがゲルから放出されることが示された。その放出速度は、エタノールの濃度が高いほど速くなる傾向が見られた。ゲルファイバー内の疎水性領域は、エタノールと同程度と考えられるため(図3参照)、エタノール濃度によって放出速度が変化することが考えられる。
In order to evaluate the release of hydrophobic substances, the release behavior of vitamin E from gel sheets was evaluated and compared with aqueous ethanol solutions having different concentrations (FIG. 12). It was shown that vitamin E is released from the gel when the ethanol concentration is 50% or more. The release rate tended to increase with increasing ethanol concentration. Since the hydrophobic region in the gel fiber is considered to be about the same as ethanol (see FIG. 3), the release rate may vary depending on the ethanol concentration.
<実施例7:ゲルシートへのチトクロームcの吸着性の検討>
Pal-GGGHゲルシートのタンパク質吸着素材としての利用を検討するため、チトクロームcのゲルシートへの吸着実験を行った。緩衝液はそれぞれリン酸緩衝液:pH7.4、Tris-HCl緩衝液:pH9.0を用いた。各緩衝液1mlに対しゲル化剤(ゲル化剤濃度0.3wt%)を加えてゲルシートを作成した。ゲルシートを0.3mg/mlチトクロームc溶液に浸漬させ経時的に浸漬液の濃度を吸光度(407nm)により算出してゲルシートへのチトクロームcの吸着量を求めた。
次に吸着したチトクロームcが変性していないことを確認するためにチトクロームc吸着ゲルシートに1M DTT 10μlを滴下してチトクロームcの還元を行った。 <Example 7: Examination of adsorptivity of cytochrome c to gel sheet>
In order to examine the use of the Pal-GGGH gel sheet as a protein adsorption material, an adsorption experiment of cytochrome c on the gel sheet was conducted. As the buffer solutions, phosphate buffer solution: pH 7.4 and Tris-HCl buffer solution: pH 9.0 were used, respectively. A gel sheet was prepared by adding a gelling agent (gelling agent concentration: 0.3 wt%) to 1 ml of each buffer solution. The gel sheet was immersed in a 0.3 mg / ml cytochrome c solution, and the concentration of the immersion liquid was calculated over time by absorbance (407 nm) to determine the amount of cytochrome c adsorbed on the gel sheet.
Next, in order to confirm that the adsorbed cytochrome c was not denatured, 10 μl of 1M DTT was dropped onto the cytochrome c adsorption gel sheet to reduce the cytochrome c.
Pal-GGGHゲルシートのタンパク質吸着素材としての利用を検討するため、チトクロームcのゲルシートへの吸着実験を行った。緩衝液はそれぞれリン酸緩衝液:pH7.4、Tris-HCl緩衝液:pH9.0を用いた。各緩衝液1mlに対しゲル化剤(ゲル化剤濃度0.3wt%)を加えてゲルシートを作成した。ゲルシートを0.3mg/mlチトクロームc溶液に浸漬させ経時的に浸漬液の濃度を吸光度(407nm)により算出してゲルシートへのチトクロームcの吸着量を求めた。
次に吸着したチトクロームcが変性していないことを確認するためにチトクロームc吸着ゲルシートに1M DTT 10μlを滴下してチトクロームcの還元を行った。 <Example 7: Examination of adsorptivity of cytochrome c to gel sheet>
In order to examine the use of the Pal-GGGH gel sheet as a protein adsorption material, an adsorption experiment of cytochrome c on the gel sheet was conducted. As the buffer solutions, phosphate buffer solution: pH 7.4 and Tris-HCl buffer solution: pH 9.0 were used, respectively. A gel sheet was prepared by adding a gelling agent (gelling agent concentration: 0.3 wt%) to 1 ml of each buffer solution. The gel sheet was immersed in a 0.3 mg / ml cytochrome c solution, and the concentration of the immersion liquid was calculated over time by absorbance (407 nm) to determine the amount of cytochrome c adsorbed on the gel sheet.
Next, in order to confirm that the adsorbed cytochrome c was not denatured, 10 μl of 1M DTT was dropped onto the cytochrome c adsorption gel sheet to reduce the cytochrome c.
その結果、チトクロームc溶液にゲルシート(pH7.4及びpH9.0)を浸漬したところ、ゲルシート内部にチトクロームcが吸着された(図13)。また、その吸着速度はpH7.4よりもpH9.0の方が早いことがわかった(図14)。
さらに、チトクロームcが吸着したゲルシートに1M DTTを滴下したところ、酸化型でオレンジ系赤色であったチトクロームcがピンク色系に変化したため、ゲルシートに吸着したチトクロームcが還元型に変化したことが言える(図15)。つまり、シートに吸着しても変性していないことが示唆された。また、チトクロームcは等電点がpI10付近のタンパク質で、今回の条件下ではプラスの電荷を持つため、より多くのマイナスの電荷を持ったpH9.0のゲル(図7)において、吸着量が上昇したことが考えられる。 As a result, when the gel sheet (pH 7.4 and pH 9.0) was immersed in the cytochrome c solution, cytochrome c was adsorbed inside the gel sheet (FIG. 13). The adsorption rate was found to be faster at pH 9.0 than at pH 7.4 (FIG. 14).
Furthermore, when 1M DTT was dropped onto the gel sheet adsorbed with cytochrome c, cytochrome c that was oxidized and orange red changed to pink, so it can be said that cytochrome c adsorbed on the gel sheet changed to reduced form. (FIG. 15). That is, it was suggested that it was not denatured even when adsorbed on the sheet. In addition, cytochrome c is a protein having an isoelectric point near pI10 and has a positive charge under the present conditions. Therefore, the adsorption amount in a gel of pH 9.0 having more negative charges (FIG. 7) is large. It is thought that it rose.
さらに、チトクロームcが吸着したゲルシートに1M DTTを滴下したところ、酸化型でオレンジ系赤色であったチトクロームcがピンク色系に変化したため、ゲルシートに吸着したチトクロームcが還元型に変化したことが言える(図15)。つまり、シートに吸着しても変性していないことが示唆された。また、チトクロームcは等電点がpI10付近のタンパク質で、今回の条件下ではプラスの電荷を持つため、より多くのマイナスの電荷を持ったpH9.0のゲル(図7)において、吸着量が上昇したことが考えられる。 As a result, when the gel sheet (pH 7.4 and pH 9.0) was immersed in the cytochrome c solution, cytochrome c was adsorbed inside the gel sheet (FIG. 13). The adsorption rate was found to be faster at pH 9.0 than at pH 7.4 (FIG. 14).
Furthermore, when 1M DTT was dropped onto the gel sheet adsorbed with cytochrome c, cytochrome c that was oxidized and orange red changed to pink, so it can be said that cytochrome c adsorbed on the gel sheet changed to reduced form. (FIG. 15). That is, it was suggested that it was not denatured even when adsorbed on the sheet. In addition, cytochrome c is a protein having an isoelectric point near pI10 and has a positive charge under the present conditions. Therefore, the adsorption amount in a gel of pH 9.0 having more negative charges (FIG. 7) is large. It is thought that it rose.
[ゲルシートからのチトクロームcの放出性評価]
0.5mg/mlになるようにチトクロームcをリン酸緩衝液(pH7.4)に溶解し、0.3wt%となるようにPal-GGGHを添加し、加熱・放冷し、チトクロームc内包ゲルシートを作成した。ゲルシートを10mlの各緩衝液(pH5.0のクエン酸ナトリウム緩衝液、pH7.4のリン酸緩衝液、pH11.0のリン酸/水酸化ナトリウム緩衝液)に浸し、40rpmで振とう攪拌しチトクロームcを放出させた。放出液を経時的にサンプリングし、各時間におけるチトクロームcの放出濃度を吸光度(407nm)から算出した。 [Evaluation of cytochrome c release from gel sheet]
Dissolve cytochrome c in phosphate buffer solution (pH 7.4) to 0.5 mg / ml, add Pal-GGGH to 0.3 wt%, heat and cool, and cytochrome c-encapsulated gel sheet It was created. The gel sheet is immersed in 10 ml of each buffer solution (pH 5.0 sodium citrate buffer solution, pH 7.4 phosphate buffer solution, pH 11.0 phosphate / sodium hydroxide buffer solution), shaken and stirred at 40 rpm, and cytochrome. c was released. The release solution was sampled over time, and the release concentration of cytochrome c at each time was calculated from the absorbance (407 nm).
0.5mg/mlになるようにチトクロームcをリン酸緩衝液(pH7.4)に溶解し、0.3wt%となるようにPal-GGGHを添加し、加熱・放冷し、チトクロームc内包ゲルシートを作成した。ゲルシートを10mlの各緩衝液(pH5.0のクエン酸ナトリウム緩衝液、pH7.4のリン酸緩衝液、pH11.0のリン酸/水酸化ナトリウム緩衝液)に浸し、40rpmで振とう攪拌しチトクロームcを放出させた。放出液を経時的にサンプリングし、各時間におけるチトクロームcの放出濃度を吸光度(407nm)から算出した。 [Evaluation of cytochrome c release from gel sheet]
Dissolve cytochrome c in phosphate buffer solution (pH 7.4) to 0.5 mg / ml, add Pal-GGGH to 0.3 wt%, heat and cool, and cytochrome c-encapsulated gel sheet It was created. The gel sheet is immersed in 10 ml of each buffer solution (pH 5.0 sodium citrate buffer solution, pH 7.4 phosphate buffer solution, pH 11.0 phosphate / sodium hydroxide buffer solution), shaken and stirred at 40 rpm, and cytochrome. c was released. The release solution was sampled over time, and the release concentration of cytochrome c at each time was calculated from the absorbance (407 nm).
上述より、吸着性にはpHが影響していたことから、ゲルシートからのチトクロームcの放出挙動を、異なるpHの緩衝液に対して評価した(図16)。その結果、pH11.0の放出液においてのみ、チトクロームcの放出が認められた。Pal-GGGH中におけるヒスチジンのpKa(イミダゾール基:pKa 約6.0、カルボキシル基:pKa 約1.8)を考慮すると(図17)、ゲルファイバー表面は、pH11.0、pH7.4ではマイナス、pH5.0ではプラスとマイナスの両方に帯電していることが推察される。ここで、チトクロームcは等電点がpI10付近のタンパク質であり、今回の条件下ではpH11.0の場合のみマイナスの電荷を持つと考えられる。従って、pH11.0においてのみ、チトクロームcとゲルファイバーが互いのマイナス電荷により反発し、放出されたのではないかと考えられる。
As described above, since the pH affected the adsorptivity, the release behavior of cytochrome c from the gel sheet was evaluated with respect to buffers having different pHs (FIG. 16). As a result, release of cytochrome c was observed only in the release solution having a pH of 11.0. Considering the pKa of histidine in Pal-GGGH (imidazole group: pKa about 6.0, carboxyl group: pKa about 1.8) (FIG. 17), the gel fiber surface is negative at pH 11.0 and pH 7.4. It is presumed that the pH is both positive and negative at pH 5.0. Here, cytochrome c is a protein having an isoelectric point near pI10, and is considered to have a negative charge only at pH 11.0 under the present conditions. Therefore, it is considered that only at pH 11.0, cytochrome c and gel fiber were repelled by the negative charge of each other and released.
<実施例8:Pal-GGGHゲルに内包されたチトクロームcのペルオキシターゼ活性測定(チトクロームcを内包したPal-GGGHゲルを用いたH2O2による2,6-ジメトキシフェノールの酸化反応)>
Pal-GGGHゲルに内包されたチトクロームcのペルオキシターゼ活性を評価するために、下記に示される、チトクロームcを内包したPal-GGGHゲルを用いたH2O2による2,6-ジメトキシフェノールの酸化反応を行った。
ここで、チトクロームcを内包したPal-GGGHゲルは、ゲル化剤であるPal-GGGH粉末を含む50mMリン酸緩衝液にチトクロームcを加え、該緩衝液を95℃で加熱してゲル化剤を溶解し室温放冷することにより得た。
<Example 8: Measurement of peroxidase activity of cytochrome c encapsulated in Pal-GGGH gel (oxidation reaction of 2,6-dimethoxyphenol with H 2 O 2 using Pal-GGGH gel encapsulating cytochrome c)>
In order to evaluate the peroxidase activity of cytochrome c encapsulated in Pal-GGGH gel, the oxidation reaction of 2,6-dimethoxyphenol with H 2 O 2 using Pal-GGGH gel encapsulating cytochrome c shown below Went.
Here, for the Pal-GGGH gel encapsulating cytochrome c, cytochrome c is added to a 50 mM phosphate buffer solution containing Pal-GGGH powder as a gelling agent, and the buffer solution is heated at 95 ° C. It was obtained by dissolving and allowing to cool to room temperature.
Pal-GGGHゲルに内包されたチトクロームcのペルオキシターゼ活性を評価するために、下記に示される、チトクロームcを内包したPal-GGGHゲルを用いたH2O2による2,6-ジメトキシフェノールの酸化反応を行った。
ここで、チトクロームcを内包したPal-GGGHゲルは、ゲル化剤であるPal-GGGH粉末を含む50mMリン酸緩衝液にチトクロームcを加え、該緩衝液を95℃で加熱してゲル化剤を溶解し室温放冷することにより得た。
In order to evaluate the peroxidase activity of cytochrome c encapsulated in Pal-GGGH gel, the oxidation reaction of 2,6-dimethoxyphenol with H 2 O 2 using Pal-GGGH gel encapsulating cytochrome c shown below Went.
Here, for the Pal-GGGH gel encapsulating cytochrome c, cytochrome c is added to a 50 mM phosphate buffer solution containing Pal-GGGH powder as a gelling agent, and the buffer solution is heated at 95 ° C. It was obtained by dissolving and allowing to cool to room temperature.
96穴マイクロプレートの各wellに、0.2wt%の濃度でゲル化剤を含む50mMリン酸緩衝液(pH7)に3μMになるようチトクロームcを添加し95℃で加熱することで得られたPal-GGGHゲル、チトクロームcを3μMの濃度で含み前記ゲル調製と同様の95℃の加熱処理を行った50mMリン酸緩衝液(pH7)並びにチトクロームcを3μMの濃度で含み加熱処理を行っていない50mMリン酸緩衝液(pH7)をそれぞれ50μL調製し、2,6-ジメトキシフェノール(7.5mM)とH2O2(1.5mM)を含む混合溶液100μLをそれぞれ添加した。Pal-GGGHゲルに該混合溶液を添加する場合は、該ゲル上に該混合溶液を加えた。ペルオキシダーゼ活性の比較は、生成物由来の469nmの吸光度を追跡することで行った。加熱処理時間は30分で、測定はその後30分ほど放置してから行い、装置の温度は35℃に設定した。
Pal obtained by adding cytochrome c to each well of a 96-well microplate at 3 μM in 50 mM phosphate buffer (pH 7) containing a gelling agent at a concentration of 0.2 wt% and heating at 95 ° C. -GGGH gel, 50 mM phosphate buffer (pH 7) containing 3 μM of cytochrome c and heat-treated at 95 ° C. as in the gel preparation, and 50 mM not containing heat-treated cytochrome c at a concentration of 3 μM 50 μL each of phosphate buffer (pH 7) was prepared, and 100 μL of a mixed solution containing 2,6-dimethoxyphenol (7.5 mM) and H 2 O 2 (1.5 mM) was added thereto. When the mixed solution was added to the Pal-GGGH gel, the mixed solution was added onto the gel. Comparison of peroxidase activity was performed by following the absorbance at 469 nm derived from the product. The heat treatment time was 30 minutes, and the measurement was performed after leaving for about 30 minutes thereafter, and the temperature of the apparatus was set to 35 ° C.
図18に示すように、チトクロームcを内包したPal-GGGHゲルを用いた反応の方が、加熱処理を行っていないチトクロームc溶液での反応に比較して生成物の量が多いことから、チトクロームcを内包したPal-GGGHゲルはペルオキシダーゼ活性が増大していることが確認できた。また、加熱処理を行ったチトクロームc溶液での反応においても生成物の量が多く、同様にペルオキシダーゼ活性が増大していることが確認できた。しかし、チトクロームcを内包したPal-GGGHゲル用いた反応の方が加熱処理を行ったチトクロームc溶液での反応に比べ生成物の量が多いことから、チトクロームcを内包したPal-GGGHゲルの方がより一層活性が高まっていると言え、Pal-GGGHゲル中ではチトクロームcの触媒作用の安定性が強化されていることが考えられる。
As shown in FIG. 18, the reaction using the cytochrome c-encapsulated Pal-GGGH gel has a larger amount of product than the reaction with the cytochrome c solution not subjected to heat treatment. It was confirmed that per-oxidase activity was increased in the Pal-GGGH gel encapsulating c. Moreover, in the reaction with the cytochrome c solution that had been subjected to the heat treatment, the amount of the product was large, and it was confirmed that the peroxidase activity was similarly increased. However, since the amount of product is larger in the reaction using the cytochrome c-encapsulated Pal-GGGH gel than in the reaction with the heat-treated cytochrome c solution, the Pal-GGGH gel encapsulating the cytochrome c However, it is considered that the stability of the catalytic action of cytochrome c is enhanced in the Pal-GGGH gel.
<実施例9:Pal-GGGHゲルに内包されたチトクロームcのCDスペクトル及びUVスペクトル測定>
チトクロームcを10μMの濃度で含むPal-GGGHゲル(ゲル化剤0.2wt%)、チトクロームcを10μMの濃度で含み前記ゲル調製と同様に95℃の加熱処理を行った50mMリン酸緩衝液(pH7)及びチトクロームcを20μMの濃度で含み前記加熱処理を行っていない50mMリン酸緩衝液(pH7)をそれぞれ1mLセルに調製し波長250nm乃至450nmにおけるCDスペクトルを測定した。加熱処理時間は26分であり装置の温度は25℃に設定した。 <Example 9: Measurement of CD spectrum and UV spectrum of cytochrome c encapsulated in Pal-GGGH gel>
Pal-GGGH gel (gelling agent 0.2 wt%) containing cytochrome c at a concentration of 10 μM, 50 mM phosphate buffer solution containing cytochrome c at a concentration of 10 μM and heat-treated at 95 ° C. in the same manner as the gel preparation ( A 50 mM phosphate buffer (pH 7) containing pH 7) and cytochrome c at a concentration of 20 μM and not subjected to the heat treatment was prepared in 1 mL cells, and CD spectra at wavelengths of 250 nm to 450 nm were measured. The heat treatment time was 26 minutes, and the temperature of the apparatus was set at 25 ° C.
チトクロームcを10μMの濃度で含むPal-GGGHゲル(ゲル化剤0.2wt%)、チトクロームcを10μMの濃度で含み前記ゲル調製と同様に95℃の加熱処理を行った50mMリン酸緩衝液(pH7)及びチトクロームcを20μMの濃度で含み前記加熱処理を行っていない50mMリン酸緩衝液(pH7)をそれぞれ1mLセルに調製し波長250nm乃至450nmにおけるCDスペクトルを測定した。加熱処理時間は26分であり装置の温度は25℃に設定した。 <Example 9: Measurement of CD spectrum and UV spectrum of cytochrome c encapsulated in Pal-GGGH gel>
Pal-GGGH gel (gelling agent 0.2 wt%) containing cytochrome c at a concentration of 10 μM, 50 mM phosphate buffer solution containing cytochrome c at a concentration of 10 μM and heat-treated at 95 ° C. in the same manner as the gel preparation ( A 50 mM phosphate buffer (pH 7) containing pH 7) and cytochrome c at a concentration of 20 μM and not subjected to the heat treatment was prepared in 1 mL cells, and CD spectra at wavelengths of 250 nm to 450 nm were measured. The heat treatment time was 26 minutes, and the temperature of the apparatus was set at 25 ° C.
図19に示すCDスペクトル測定結果では、Pal-GGGHゲルに内包されたチトクロームcのスペクトルにおいて溶液中のチトクロームcのCDスペクトルにみられる280nm、380nmのピークが確認できなかった。
In the CD spectrum measurement result shown in FIG. 19, the peaks of 280 nm and 380 nm observed in the CD spectrum of cytochrome c in the solution in the spectrum of cytochrome c included in the Pal-GGGH gel could not be confirmed.
また、チトクロームcを20μMの濃度で含むPal-GGGHゲル(ゲル化剤0.1wt%)、チトクロームcを20μMの濃度で含み前記ゲル調製と同様の95℃の加熱処理を行った50mMリン酸緩衝液(pH7)及びチトクロームcを20μMの濃度で含み前記加熱処理を行っていない50mMリン酸緩衝液(pH7)をそれぞれ1mLセルに調製し、波長350nm乃至800nmにおけるUVスペクトルを測定した。加熱処理時間は15分であり装置の温度は25℃に設定した。
In addition, a Pal-GGGH gel (gelator 0.1 wt%) containing cytochrome c at a concentration of 20 μM, and a 50 mM phosphate buffer containing cytochrome c at a concentration of 20 μM and subjected to the same 95 ° C. heat treatment as in the gel preparation. A 50 mM phosphate buffer solution (pH 7) containing a solution (pH 7) and cytochrome c at a concentration of 20 μM and not subjected to the heat treatment was prepared in 1 mL cells, and UV spectra at wavelengths of 350 nm to 800 nm were measured. The heat treatment time was 15 minutes, and the temperature of the apparatus was set to 25 ° C.
図20に示すUVスペクトル測定結果では、ゲル中、溶液中ともにチトクロームcのポルフィリン環のπ-π*遷移に起因する400nm付近のSoret帯と480-650nm付近に現れる分子振動に共役した遷移に基づくQ帯が確認できた。しかし、700nm付近におけるヘム鉄と第6配位子であるMet80の間の配位結合由来の電荷移動吸収帯(S→Fe:LMCT帯)がゲル中のチトクロームcでは確認できなかった。
The UV spectrum measurement results shown in FIG. 20 are based on the Soret band near 400 nm caused by the π-π * transition of the porphyrin ring of cytochrome c and the transition conjugated to the molecular vibration appearing near 480-650 nm in both gel and solution. Q band was confirmed. However, a charge transfer absorption band (S → Fe: LMCT band) derived from a coordination bond between heme iron and Met80, which is the sixth ligand, in the vicinity of 700 nm could not be confirmed with cytochrome c in the gel.
CDスペクトル及びUVスペクトルの結果から、チトクロームcはPal-GGGHゲル中で構造が変化していると認められ、このことが、チトクロームcを内包するPal-GGGHゲルのペルオキシダーゼ活性の増大に関与しているものと思われる。
From the results of CD spectrum and UV spectrum, it was recognized that cytochrome c was structurally changed in the Pal-GGGH gel, which was related to the increase in peroxidase activity of the Pal-GGGH gel containing cytochrome c. It seems that there is.
<実施例10:ペルオキシダーゼ活性のゲル化剤濃度依存性>
実施例8と同様の実験を、ゲル化剤濃度を0.1wt%、0.2wt%及び0.3wt%とした場合で行った。
図21から、ゲル化剤濃度の上昇に伴い反応初速度及び生成物量が増加していることが分かった。 <Example 10: Gelling agent concentration dependence of peroxidase activity>
The same experiment as in Example 8 was performed when the gelling agent concentrations were 0.1 wt%, 0.2 wt%, and 0.3 wt%.
From FIG. 21, it was found that the initial reaction rate and the amount of product increased as the gelling agent concentration increased.
実施例8と同様の実験を、ゲル化剤濃度を0.1wt%、0.2wt%及び0.3wt%とした場合で行った。
図21から、ゲル化剤濃度の上昇に伴い反応初速度及び生成物量が増加していることが分かった。 <Example 10: Gelling agent concentration dependence of peroxidase activity>
The same experiment as in Example 8 was performed when the gelling agent concentrations were 0.1 wt%, 0.2 wt%, and 0.3 wt%.
From FIG. 21, it was found that the initial reaction rate and the amount of product increased as the gelling agent concentration increased.
本発明の内包ゲルでは、ゲル内に疎水性化合物又は親水性化合物、若しくはその両方の化合物を内包することが可能となる。また、本発明の内包ゲルは、内包した化合物を徐放することも可能である。さらに、本発明の化合物が内包されたゲルは、化合物としてチトクロームc等の酵素を内包することも可能であり、かつ内包したものが酵素のような活性を有する蛋白質の場合には、ゲル内に取り込んでも酵素はその活性は損なうことなく維持され、むしろ、そのゲル内で酵素反応を進行させることが可能である。したがって、このような酵素などを取り込んだゲルは、ゲル内で反応を見ることができ、バイオセンサーや検査・診断薬として使用することが可能である。
そのため、本発明の内包ゲルは、損傷部位認識能を有する創傷被覆剤、癒着防止膜、薬物速達システム、外用医薬品用基材、芳香剤・消臭剤・防虫剤・殺虫剤・農薬などの基材、検査・診断やバイオセンサー、環境分析用の基材、土中や水中の汚染物質の捕捉といった基材などに広く利用することができる。
In the encapsulated gel of the present invention, it becomes possible to encapsulate a hydrophobic compound, a hydrophilic compound, or both compounds in the gel. The encapsulated gel of the present invention can also release the encapsulated compound gradually. Furthermore, the gel in which the compound of the present invention is encapsulated can also encapsulate an enzyme such as cytochrome c as a compound, and if the encapsulated protein is an enzyme-like protein, Once incorporated, the enzyme maintains its activity without loss, but rather allows the enzymatic reaction to proceed within the gel. Therefore, a gel incorporating such an enzyme can see the reaction in the gel and can be used as a biosensor or a test / diagnostic agent.
Therefore, the encapsulated gel of the present invention is a wound dressing having an ability to recognize a damaged site, an adhesion-preventing film, a drug delivery system, a base for external medicine, a base such as a fragrance, a deodorant, an insecticide, an insecticide and an agrochemical. It can be widely used for materials, inspection / diagnosis, biosensors, base materials for environmental analysis, and base materials for capturing contaminants in soil and water.
そのため、本発明の内包ゲルは、損傷部位認識能を有する創傷被覆剤、癒着防止膜、薬物速達システム、外用医薬品用基材、芳香剤・消臭剤・防虫剤・殺虫剤・農薬などの基材、検査・診断やバイオセンサー、環境分析用の基材、土中や水中の汚染物質の捕捉といった基材などに広く利用することができる。
In the encapsulated gel of the present invention, it becomes possible to encapsulate a hydrophobic compound, a hydrophilic compound, or both compounds in the gel. The encapsulated gel of the present invention can also release the encapsulated compound gradually. Furthermore, the gel in which the compound of the present invention is encapsulated can also encapsulate an enzyme such as cytochrome c as a compound, and if the encapsulated protein is an enzyme-like protein, Once incorporated, the enzyme maintains its activity without loss, but rather allows the enzymatic reaction to proceed within the gel. Therefore, a gel incorporating such an enzyme can see the reaction in the gel and can be used as a biosensor or a test / diagnostic agent.
Therefore, the encapsulated gel of the present invention is a wound dressing having an ability to recognize a damaged site, an adhesion-preventing film, a drug delivery system, a base for external medicine, a base such as a fragrance, a deodorant, an insecticide, an insecticide and an agrochemical. It can be widely used for materials, inspection / diagnosis, biosensors, base materials for environmental analysis, and base materials for capturing contaminants in soil and water.
Claims (15)
-
(式中、R1は炭素原子数9乃至23の脂肪族基を表し、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1乃至3の分枝鎖を有し得る炭素原子数1乃至7のアルキル基、フェニルメチル基、フェニルエチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち少なくとも1つが-(CH2)n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは5員環と6員環から構成される縮合複素環を表し、mは1又は2を表す。)で表される脂質ペプチド又はその薬学的に使用可能な塩からなる低分子ゲル化剤と、該低分子ゲル化剤によりゲル化された水性媒体と、これに内包された少なくとも1種以上の化合物とを含むことを特徴とする内包ゲル。
(Wherein R 1 represents an aliphatic group having 9 to 23 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom or a carbon atom that may have a branched chain of 1 to 3 carbon atoms. Represents an alkyl group, a phenylmethyl group, a phenylethyl group, or a — (CH 2 ) n—X group represented by formulas 1 to 7, and at least one of R 2 to R 5 represents a — (CH 2 ) n—X group. N represents a number of 1 to 4, X is composed of an amino group, a guanidino group, a —CONH 2 group, or a 5-membered ring or a 5-membered ring and a 6-membered ring which may have 1 to 3 nitrogen atoms. M represents 1 or 2), and a low molecular gelling agent comprising a lipid peptide represented by the following formula: An aqueous medium and at least one compound contained therein. An included gel. - 前記式(1)中、R1が不飽和結合を0乃至2個有し得る炭素原子数11乃至23の直鎖状脂肪族基であることを特徴とする、請求項1に記載の内包ゲル。 The inclusion gel according to claim 1, wherein, in the formula (1), R 1 is a linear aliphatic group having 11 to 23 carbon atoms which may have 0 to 2 unsaturated bonds. .
- 前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、フェニルメチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち一つ又は二つが-(CH2)n-X基を表し、
nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至2個有し得る5員環又は5員環と6員環から構成される縮合複素環を表すことを特徴とする、請求項1又は請求項2に記載の内包ゲル。 In the formula (1), R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a branched chain of 1 or 2 carbon atoms, a phenylmethyl group, or Represents a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group,
n represents a number from 1 to 4, and X is an amino group, guanidino group, —CONH 2 group, or a 5-membered ring or a 5-membered ring and a 6-membered ring which may have 1 or 2 nitrogen atoms The inclusion gel according to claim 1 or 2, wherein the inclusion gel represents a heterocyclic ring. - 前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、炭素原子1又は2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、フェニルメチル基、又は-(CH2)n-X基を表し、かつR2乃至R5のうち一つ又は二つが-(CH2)n-X基を表し、
nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、ピロール基、イミダゾール基、ピラゾール基又はインドール基を表すことを特徴とする、請求項3に記載の内包ゲル。 In the formula (1), R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a branched chain of 1 or 2 carbon atoms, a phenylmethyl group, or Represents a — (CH 2 ) n—X group, and one or two of R 2 to R 5 represent a — (CH 2 ) n—X group,
The encapsulated gel according to claim 3, wherein n represents a number from 1 to 4, and X represents an amino group, a guanidino group, a -CONH 2 group, a pyrrole group, an imidazole group, a pyrazole group, or an indole group. . - 前記式(1)中、R2乃至R5はそれぞれ互いに独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、第二ブチル基、第三ブチル基、フェニルメチル基、アミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基を表し、かつR2乃至R5のうち一つ又は二つがアミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルプロピル基、2-グアニジノエチル基、3-グアニジノプロピル基、ピロールメチル基、イミダゾールメチル基、ピラゾールメチル基又は3-インドールメチル基を表すことを特徴とする、請求項4に記載の内包ゲル。 In the formula (1), R 2 to R 5 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, second Butyl group, tert-butyl group, phenylmethyl group, aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3-carbamoylpropyl group, A 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolemethyl group, an imidazolemethyl group, a pyrazolemethyl group or a 3-indolemethyl group, and one or two of R 2 to R 5 are an aminomethyl group, 2 -Aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3-carbamoyl The inclusion gel according to claim 4, which represents a propyl group, a 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolemethyl group, an imidazolemethyl group, a pyrazolemethyl group or a 3-indolemethyl group.
- 前記式(1)中、R2乃至R5は、それぞれ独立して水素原子、メチル基、i-プロピル基、i-ブチル基、第二ブチル基、フェニルメチル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-グアニジノプロピル基、イミダゾールメチル基又は3-インドールメチル基を表し、かつR2乃至R5のうち一つ又は二つが4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-グアニジノプロピル基、イミダゾールメチル基、又は3-インドールメチル基を表すことを特徴とする、請求項5に記載の内包ゲル。 In the formula (1), R 2 to R 5 are each independently a hydrogen atom, methyl group, i-propyl group, i-butyl group, sec-butyl group, phenylmethyl group, 4-aminobutyl group, carbamoyl. Represents a methyl group, 2-carbamoylethyl group, 3-guanidinopropyl group, imidazolemethyl group or 3-indolemethyl group, and one or two of R 2 to R 5 are a 4-aminobutyl group, a carbamoylmethyl group, The inclusion gel according to claim 5, which represents a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolemethyl group, or a 3-indolemethyl group.
- 前記式(1)中、mは1を表すことを特徴とする、請求項1乃至請求項6に記載の内包ゲル。 The encapsulated gel according to any one of claims 1 to 6, wherein m represents 1 in the formula (1).
- 前記化合物が疎水性化合物又は親水性化合物、若しくはその両方の化合物であることを特徴とする、請求項1乃至請求項7に記載の内包ゲル。 The inclusion gel according to any one of claims 1 to 7, wherein the compound is a hydrophobic compound, a hydrophilic compound, or a compound of both.
- 前記化合物が酵素であることを特徴とする、請求項1乃至請求項7に記載の内包ゲル。 The inclusion gel according to any one of claims 1 to 7, wherein the compound is an enzyme.
- 前記化合物がチトクロームcであることを特徴とする、請求項9に記載の内包ゲル。 The inclusion gel according to claim 9, wherein the compound is cytochrome c.
- 請求項9に記載の内包ゲルを酵素反応に用いる方法。 A method of using the inclusion gel according to claim 9 for an enzyme reaction.
- 請求項10に記載の内包ゲルをH2O2による目的物の酸化反応に用いる方法。 A method of using the encapsulated gel according to the oxidation reaction of the desired product by H 2 O 2 in claim 10.
- 請求項9に記載の内包ゲルを酵素反応に用いることにより、該内包ゲルをバイオセンサーとして使用する方法。 A method of using the inclusion gel as a biosensor by using the inclusion gel according to claim 9 in an enzyme reaction.
- 請求項10に記載の内包ゲルをH2O2による酸化反応に用いることにより、該内包ゲルをバイオセンサーとして使用する方法。 By using encapsulated gel according to oxidation reaction with H 2 O 2 in claim 10, methods of using the inner hull gel as a biosensor.
- 請求項11又は請求項12に記載の内包ゲルを備えたバイオセンサー。 A biosensor comprising the inclusion gel according to claim 11 or 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011519820A JP5727932B2 (en) | 2009-06-19 | 2010-06-16 | Gel in which compound is encapsulated by low molecular gelling agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009147058 | 2009-06-19 | ||
JP2009-147058 | 2009-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010147158A1 true WO2010147158A1 (en) | 2010-12-23 |
Family
ID=43356474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060226 WO2010147158A1 (en) | 2009-06-19 | 2010-06-16 | Gel enclosing a compound by means of low-molecular weight gelling agent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5727932B2 (en) |
WO (1) | WO2010147158A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011052613A1 (en) * | 2009-10-26 | 2011-05-05 | 日産化学工業株式会社 | Cosmetic and external skin preparation, and medical instrument |
JP2012186055A (en) * | 2011-03-07 | 2012-09-27 | Nissan Chem Ind Ltd | Gel electrolyte |
JP2012186056A (en) * | 2011-03-07 | 2012-09-27 | Nissan Chem Ind Ltd | Gel electrolyte |
WO2012144609A1 (en) * | 2011-04-22 | 2012-10-26 | 日産化学工業株式会社 | Hydrogel-forming material |
WO2013047458A1 (en) * | 2011-09-27 | 2013-04-04 | 互応化学工業株式会社 | Gelling agent and gelled composition |
JP2015510518A (en) * | 2012-02-22 | 2015-04-09 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Organogels and emulsions for biological and non-biological applications |
CN114163494A (en) * | 2021-11-10 | 2022-03-11 | 中国科学院南海海洋研究所 | Preparation method and application of octopus antioxidant peptide for resisting oxidative stress damage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100588A1 (en) * | 2006-02-27 | 2007-09-07 | Edwards Lifesciences Corporation | Hydrogel for an intravenous amperometric biosensor |
WO2009005151A1 (en) * | 2007-07-05 | 2009-01-08 | Nissan Chemical Industries, Ltd. | Novel lipid peptide and hydrogel |
WO2009005152A1 (en) * | 2007-07-05 | 2009-01-08 | Nissan Chemical Industries, Ltd. | Novel lipid-tripeptide based hydrogel-forming agent and hydrogel |
WO2010013555A1 (en) * | 2008-08-01 | 2010-02-04 | 日産化学工業株式会社 | Novel lipid dipeptide and gel |
JP2010047534A (en) * | 2008-08-22 | 2010-03-04 | Kyushu Univ | Enzyme-responsive gel |
-
2010
- 2010-06-16 JP JP2011519820A patent/JP5727932B2/en active Active
- 2010-06-16 WO PCT/JP2010/060226 patent/WO2010147158A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100588A1 (en) * | 2006-02-27 | 2007-09-07 | Edwards Lifesciences Corporation | Hydrogel for an intravenous amperometric biosensor |
WO2009005151A1 (en) * | 2007-07-05 | 2009-01-08 | Nissan Chemical Industries, Ltd. | Novel lipid peptide and hydrogel |
WO2009005152A1 (en) * | 2007-07-05 | 2009-01-08 | Nissan Chemical Industries, Ltd. | Novel lipid-tripeptide based hydrogel-forming agent and hydrogel |
WO2010013555A1 (en) * | 2008-08-01 | 2010-02-04 | 日産化学工業株式会社 | Novel lipid dipeptide and gel |
JP2010047534A (en) * | 2008-08-22 | 2010-03-04 | Kyushu Univ | Enzyme-responsive gel |
Non-Patent Citations (4)
Title |
---|
"Abstracts of Annual Meeting of the Society of Chemical Engineers, Japan, 2009, Feb.", vol. 74, article DAISUKE KODA ET AL.: "Shippei Kanren Seitai Shokubai ni Oto shita Chobunshi Hydrogel Keisei", pages: Q105 * |
"Preprints of Joint Chemical Conference of Kyushu Branch, 2007", vol. 44, article DAISUKE KODA ET AL.: "Histidine Gan'yu Peptide-sei Kaimen Kasseizai ni yoru Hydrogel no Keisei", pages: 79 * |
KIM, S.H. ET AL.: "Encapsulation of enzymes within polymer spheres to create optical nanosensors for oxidative stress.", ANAL. CHEM., vol. 77, no. 21, 2005, pages 6828 - 6833, XP002468007, DOI: doi:10.1021/ac0507340 * |
SUN, Y.X. ET AL.: "Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film.", SENS. ACT. B, vol. 124, no. 2, 2007, pages 494 - 500, XP022107837, DOI: doi:10.1016/j.snb.2007.01.012 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011052613A1 (en) * | 2009-10-26 | 2011-05-05 | 日産化学工業株式会社 | Cosmetic and external skin preparation, and medical instrument |
US9561255B2 (en) | 2009-10-26 | 2017-02-07 | Nissan Chemical Industries, Ltd. | Cosmetic, external skin preparation, and medical instrument |
US8999300B2 (en) | 2009-10-26 | 2015-04-07 | Nissan Chemical Industries Ltd. | Cosmetic, external skin preparation, and medical instrument |
JP2012186055A (en) * | 2011-03-07 | 2012-09-27 | Nissan Chem Ind Ltd | Gel electrolyte |
JP2012186056A (en) * | 2011-03-07 | 2012-09-27 | Nissan Chem Ind Ltd | Gel electrolyte |
CN103608421B (en) * | 2011-04-22 | 2016-08-31 | 日产化学工业株式会社 | Hydrogel forms material |
WO2012144609A1 (en) * | 2011-04-22 | 2012-10-26 | 日産化学工業株式会社 | Hydrogel-forming material |
CN103608421A (en) * | 2011-04-22 | 2014-02-26 | 日产化学工业株式会社 | Hydrogel-forming material |
CN106176258A (en) * | 2011-04-22 | 2016-12-07 | 日产化学工业株式会社 | Hydrogel forms material |
US9328137B2 (en) | 2011-04-22 | 2016-05-03 | Nissan Chemical Industries, Ltd. | Hydrogel-forming material |
JP5943211B2 (en) * | 2011-04-22 | 2016-06-29 | 日産化学工業株式会社 | Hydrogel forming material |
WO2013047458A1 (en) * | 2011-09-27 | 2013-04-04 | 互応化学工業株式会社 | Gelling agent and gelled composition |
JPWO2013047458A1 (en) * | 2011-09-27 | 2015-03-26 | 互応化学工業株式会社 | Gelling agent and gel composition |
JP2015510518A (en) * | 2012-02-22 | 2015-04-09 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Organogels and emulsions for biological and non-biological applications |
US9988423B2 (en) | 2012-02-22 | 2018-06-05 | Agency For Science, Technology And Research | Organogels and emulsions for biological and non-biological applications |
CN114163494A (en) * | 2021-11-10 | 2022-03-11 | 中国科学院南海海洋研究所 | Preparation method and application of octopus antioxidant peptide for resisting oxidative stress damage |
CN114163494B (en) * | 2021-11-10 | 2023-10-10 | 中国科学院南海海洋研究所 | Preparation method and application of octopus antioxidant peptide for antagonizing oxidative stress injury |
Also Published As
Publication number | Publication date |
---|---|
JP5727932B2 (en) | 2015-06-03 |
JPWO2010147158A1 (en) | 2012-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5727932B2 (en) | Gel in which compound is encapsulated by low molecular gelling agent | |
JP6065245B2 (en) | Novel dipeptides and gels | |
Das et al. | Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications | |
JP5441693B2 (en) | Novel lipid peptides and hydrogels | |
JP5388848B2 (en) | Novel lipid tripeptide hydrogelator and hydrogel | |
KR101656540B1 (en) | Peptides useful in the treatment and/or care of skin, mucous membranes, scalp and/or hair and their use in cosmetic or pharmaceutical compisitions | |
EP0831703A1 (en) | Method of solubilizing and encapsulating itraconazole | |
JP2007191643A (en) | Polyamino acid derivative imparted with fixability to living body | |
JP5510635B2 (en) | Lipid histidine gelling agent | |
Ghosh et al. | Self-assembly and potassium ion triggered disruption of peptide-based soft structures | |
EP3416730B1 (en) | Dermatological cosmetic composition comprising an sdkp peptide or an analog thereof | |
Rive | Peptide-based transient gels | |
FR2834215A1 (en) | AMPHIPHILIC COMPOUNDS FOR PHARMACEUTICAL OR COSMETIC USE | |
CN114716582A (en) | Keratin peptide modified chitosan derivative and preparation method, application and pharmaceutical composition thereof | |
BHATT et al. | International Journal of Drug Development & Research| April-June 2010| Vol. 2| Issue 2| ISSN 0975-9344 Available online http://www. ijddr. com© 2010 IJDDR | |
RU98118927A (en) | METHOD OF SOLUBILIZING HYDROPHILIC SUBSTANCES (FOR EXAMPLE, PROTEINS) IN A HYDROPHOBIC SOLVENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789532 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011519820 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10789532 Country of ref document: EP Kind code of ref document: A1 |