WO2010143666A1 - 磁気平衡式電流センサ - Google Patents
磁気平衡式電流センサ Download PDFInfo
- Publication number
- WO2010143666A1 WO2010143666A1 PCT/JP2010/059791 JP2010059791W WO2010143666A1 WO 2010143666 A1 WO2010143666 A1 WO 2010143666A1 JP 2010059791 W JP2010059791 W JP 2010059791W WO 2010143666 A1 WO2010143666 A1 WO 2010143666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- magnetic field
- current sensor
- feedback coil
- balance type
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/205—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
Definitions
- the present invention relates to a magnetic balance type current sensor using a magnetoresistive effect element (TMR element, GMR element).
- TMR element magnetoresistive effect element
- a motor In an electric vehicle, a motor is driven using electricity generated by an engine, and the magnitude of the current for driving the motor is detected by, for example, a current sensor.
- a current sensor As the current sensor, a magnetic core having a notch (core gap) in part is disposed around the conductor, and a magnetic detection element is disposed in the core gap.
- a current sensor for example, there is a magnetic balance type current sensor as shown in FIG. 13 (Patent Document 1).
- the magnetic balance type current sensor shown in FIG. 13 has a feedback coil 2 wound around the magnetic core 1 in the direction in which the magnetic field B1 generated by the current to be measured I is cancelled.
- the magnetic balance type current sensor when the current to be measured flows, an output voltage is generated in the magnetic detection element 3 by the magnetic field B1 according to the current, and a voltage signal output from the magnetic detection element 3 is converted into a current It is fed back to the feedback coil 2.
- Reference numeral 4 in FIG. 13 denotes an amplifier, and R denotes a detection resistor.
- the present invention has been made in view of the foregoing, and it is an object of the present invention to provide a magnetic balance type current sensor which can be miniaturized and has high sensitivity.
- the magnetic balance type current sensor comprises a magnetoresistive element in which a resistance value is changed by application of an induction magnetic field from a current to be measured, a magnetic core disposed in the vicinity of the magnetoresistive element, and the magnetoresistive effect.
- a feedback coil disposed in the vicinity of the element and generating a cancellation magnetic field that cancels out the induction magnetic field, and a magnetic field detection bridge circuit having two outputs that generate a voltage difference according to the induction magnetic field, the voltage difference
- the magnetic balance type current sensor measures the current to be measured based on the current flowing through the feedback coil when the feedback coil is in an equilibrium state in which the induced magnetic field and the cancel magnetic field cancel each other.
- the feedback coil, the magnetic core, and the magnetic field detection bridge circuit are formed on the same substrate. And features.
- the feedback coil, the magnetic core, and the magnetic field detection bridge circuit are formed on the same substrate, miniaturization can be achieved even with a structure having a magnetic core. Thereby, the magnitude of the cancellation magnetic field can be increased, and measurement can be performed even if the current to be measured is a large current.
- the magnetoresistive effect element is used as the magnetic detection element, the sensitivity of the current sensor can be increased.
- the feedback coil is a toroidal type, and the magnetic core is provided inside the feedback coil.
- the feedback coil is a spiral type, and the magnetic core is provided above and below the feedback coil.
- the magnetoresistive effect element is disposed between two magnetic cores, and the magnetoresistive effect element and the magnetic core are formed in the same plane.
- the magnetic core is provided such that the easy axis of magnetization coincides with the current direction of the feedback coil.
- the feedback coil is provided such that the direction perpendicular to the flowing direction of the current to be measured is the axial direction, and the magnetic core has the easy axis of the axis. It is preferable to be provided so as to be orthogonal to the direction.
- the magnetoresistive effect element is preferably a spin valve GMR element or a TMR element.
- the GMR element has a meander shape with a width of 1 ⁇ m to 10 ⁇ m, and the length in the longitudinal direction is twice or more the width, and the longitudinal direction corresponds to the induced magnetic field. It is preferable that both the direction and the direction of the canceling magnetic field be arranged to be perpendicular.
- the TMR element is a rectangle having a width of 1 ⁇ m to 10 ⁇ m, and the length in the longitudinal direction is twice or more the width, and the longitudinal direction corresponds to the direction of the dielectric magnetic field and It is preferable that they are arranged to be perpendicular to the direction of the cancel magnetic field.
- the magnetic core is preferably made of a high magnetic permeability material selected from the group consisting of an amorphous magnetic material, a permalloy magnetic material, and an iron-based microcrystalline material. .
- the magnetic balance type current sensor comprises a magnetoresistive element in which a resistance value is changed by application of an induction magnetic field from a current to be measured, a magnetic core disposed in the vicinity of the magnetoresistive element, and the magnetoresistive effect.
- a feedback coil disposed in the vicinity of the element and generating a cancellation magnetic field that cancels out the induction magnetic field, and a magnetic field detection bridge circuit having two outputs that generate a voltage difference according to the induction magnetic field, the voltage difference
- the magnetic balance type current sensor measures the current to be measured based on the current flowing through the feedback coil when the feedback coil is in an equilibrium state in which the induced magnetic field and the cancel magnetic field cancel each other.
- the feedback coil, the magnetic core, and the magnetic field detection bridge circuit are formed on the same substrate.
- FIG. 1 It is a figure showing a magnetic balance type current sensor concerning Embodiment 1 of the present invention.
- A) is sectional drawing which shows the magnetic balance type
- (b) is an enlarged view of the GMR element which is a magnetoresistive effect element.
- (A) to (c) are diagrams for explaining the operation principle of the magnetic balance type current sensor. It is a figure which shows the structure of a magnetic balance type
- Embodiment 1 In the present embodiment, the case where the feedback coil is a toroidal type and the magnetic core is provided inside the feedback coil will be described.
- FIG. 1 is a diagram showing a magnetic balance type current sensor according to a first embodiment of the present invention.
- the magnetic balance type current sensor shown in FIG. 1 is disposed in the vicinity of a conductor 11 through which a measured current I flows.
- the feedback coil 12 is disposed such that a direction orthogonal to the flowing direction of the current to be measured I is the axial direction X.
- the feedback coil 12 generates a cancellation magnetic field that cancels out the induction magnetic field generated by the flow of the current to be measured I.
- the magnetic core 13 is disposed such that a direction Y orthogonal to the axial center direction of the feedback coil 12 (a direction coincident with the current direction of the feedback coil 12) is the easy magnetization axis.
- the magnetic core 13 is made so that the magnetic field applied to the magnetoresistive element 141 becomes zero.
- the reversal magnetic field (Hk) of the magnetic core 13 can be increased and the saturation magnetic field can be appropriately increased so that the cancellation magnetic field from the feedback coil 12 is unlikely to be saturated.
- the magnetoresistive element 141 is disposed between the two magnetic cores 13.
- the resistance value of the magnetoresistance effect element 141 is changed by the application of the induction magnetic field from the current to be measured I.
- the magnetoresistance effect element 141 constitutes a magnetic field detection bridge circuit 14 together with the three fixed resistance elements 142a, 142b and 142c. As described above, by using the magnetic field detection bridge circuit 14 having the magnetoresistive effect element 141, a highly sensitive magnetic balance type current sensor can be realized.
- the temperature of the output can be obtained by using the GMR element or the TMR element in which the temperature change of the resistance change rate is small while matching the TCR (Temperature Coefficient Resistance) of the magnetoresistive element and the fixed resistance element. Since the dependence can be reduced, the temperature characteristics can be improved.
- the magnetic field detection bridge circuit 14 has two outputs that generate a voltage difference in accordance with the induced magnetic field generated by the current I to be measured.
- the power supply Vdd is connected to the connection point between the fixed resistance elements 142a and 142b, and the ground (GND) is connected to the connection point between the magnetoresistive element 141 and the fixed resistance element 142c.
- the ground is connected to the connection point between the magnetoresistive element 141 and the fixed resistance element 142c.
- Is connected Is connected.
- one output is taken out from the connection point between the magnetoresistance effect element 141 and the fixed resistance element 142b
- another output is taken from the connection point between the fixed resistance element 142a and the fixed resistance element 142c. I am taking out one output.
- This two outputs are amplified by the amplifier 143 and given to the feedback coil 12 as a current (feedback current).
- This feedback current corresponds to the voltage difference according to the induced magnetic field.
- a canceling magnetic field is generated in the feedback coil 12 to cancel the induced magnetic field.
- the measured current is measured by the detection unit (detection resistance R).
- FIG. 2 (a) is a cross-sectional view showing the magnetic balance type current sensor shown in FIG. 1, and FIG. 2 (b) is an enlarged view of a GMR element which is a magnetoresistance effect element.
- the feedback coil 12, the magnetic core 13 and the magnetic field detection bridge circuit 14 are formed on the same substrate 21.
- the magnetic core 13 and the feedback coil 12 are disposed in the vicinity of the magnetoresistive element 141.
- the magnetoresistive effect element 141 is disposed between two structures in which the magnetic core 13 is disposed between the feedback coils 12.
- the magnetoresistive element 141 is disposed between the two magnetic cores 13, and the magnetoresistive element 141 and the magnetic core 13 are formed in the same plane. By disposing the magnetoresistive element 141 between the two magnetic cores 13, an induced magnetic field generated from the current to be measured I can be efficiently applied to the magnetoresistive element 141. Further, since the magnetic core 13 is disposed inside the feedback coil 12 and the magnetoresistive effect element 141 is disposed between the two magnetic cores 13, both of the two magnetic fields (the induction magnetic field and the cancellation magnetic field) Etc. relatively to an unwanted magnetic field, and the current sensor itself can be made more accurate.
- the feedback coil 12 is disposed such that the axial center direction of the feedback coil 12 is orthogonal to the flowing direction of the current I to be measured, and the direction orthogonal to the axial center direction of the feedback coil 12
- the magnetic core 13 is disposed such that (the direction coinciding with the current direction of the feedback coil 12) is the easy magnetization axis.
- a silicon oxide film 22 which is an insulating layer is formed on a substrate 21.
- a silicon oxide film by thermal oxidation or a silicon oxide film formed by CVD is used as the substrate 21.
- a silicon substrate or the like is used as the substrate 21.
- Lower coil layer 12 a is formed on silicon oxide film 22.
- the lower coil layer 12a can be formed by photolithography and etching after depositing a coil material.
- the lower coil layer 12a can be formed by photolithography and plating after depositing the base material.
- a polyimide layer 23 is formed as an insulating layer on the silicon oxide film 22 provided with the lower coil layer 12a.
- the polyimide layer 23 can be formed by applying and curing a polyimide material.
- a silicon oxide film 24 is formed on the polyimide layer 23.
- the silicon oxide film 24 can be formed, for example, by a method such as sputtering.
- the magnetic core 13 is formed on the silicon oxide film 24.
- the magnetic core 13 can be formed by photolithography and etching after depositing the core material.
- the magnetic core 13 can be formed by photolithography and plating after depositing the base material.
- high magnetic permeability materials such as an amorphous magnetic material, a permalloy-type magnetic material, or an iron-type microcrystalline material, can be used.
- a magnetoresistive effect element 141 is formed on the silicon oxide film 24. At this time, a fixed resistance element is also provided together with the magnetoresistive effect element 141, and a magnetic field detection bridge circuit is formed.
- a TMR element tunnel type magnetoresistance effect element
- GMR element giant magnetoresistance effect element
- a GMR element a spin valve type GMR element or an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic layer, a free layer composed of a multilayer film having an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic layer, and a free magnetic layer
- a spin valve type TMR element composed of a multilayer film having a magnetic layer can be used.
- the spin valve type GMR element is preferably a GMR element having a meander shape as shown in FIG. 2 (b).
- this meander shape in consideration of the linearity, it is preferable that the width D in the pin direction is 1 ⁇ m to 10 ⁇ m and the length (L) in the longitudinal direction is twice or more the width (D).
- the longitudinal direction in consideration of linearity, it is desirable that the longitudinal direction be both perpendicular to the direction of the induction magnetic field and the direction of the cancellation magnetic field.
- the output of the magnetoresistive element can be obtained with the number of terminals (two terminals) smaller than that of the Hall element.
- the width in the pin direction is a rectangle of 1 ⁇ m to 10 ⁇ m, and the length in the longitudinal direction is twice or more of the width.
- the longitudinal direction be both perpendicular to the direction of the induction magnetic field and the direction of the cancellation magnetic field.
- a polyimide layer 25 is formed as an insulating layer on the silicon oxide film 24 provided with the magnetic core 13 and the magnetoresistance effect element 141.
- the polyimide layer 25 can be formed by applying and curing a polyimide material.
- a silicon oxide film 26 is formed on the polyimide layer 25.
- the silicon oxide film 26 can be formed, for example, by a method such as sputtering.
- An upper coil layer 12 b is formed on the silicon oxide film 26.
- the upper coil layer 12 b can be formed by photolithography and etching after depositing a coil material.
- the upper coil layer 12b can be formed by photolithography and plating after depositing the base material.
- a polyimide layer 27 is formed as an insulating layer.
- the polyimide layer 27 can be formed by applying and curing a polyimide material.
- a silicon oxide film 28 is formed on the polyimide layer 27 as a protective layer.
- the silicon oxide film 28 can be formed, for example, by a method such as sputtering.
- the induced magnetic field A generated from the current to be measured I is received by the magnetoresistive element 141 through the magnetic core 13, As shown in (b), the induction magnetic field is fed back to generate a cancellation magnetic field B from the feedback coil 12, and as shown in FIG. 3 (c), the two magnetic fields (the induction magnetic field A and the cancellation magnetic field B) are cancelled. Then, the magnetic field applied to the magnetoresistance effect element 141 is appropriately adjusted so as to be zero.
- the magnetic balance type current sensor having the above configuration can be miniaturized even with the structure having the magnetic core 13. Can. Thereby, the magnitude of the cancellation magnetic field can be increased, and measurement can be performed even if the current to be measured is a large current.
- a magnetoresistive element in particular, a GMR element or a TMR element is used as the magnetic detection element, the sensitivity of the current sensor can be increased.
- FIG. 4 is a diagram showing the configuration of a magnetic balance type current sensor for measuring the magnitude of the magnetic field received by the magnetoresistance effect element with respect to the current to be measured.
- a magnetic balance type current sensor for measuring the magnitude of the magnetic field received by the magnetoresistance effect element with respect to the current to be measured.
- two magnetic cores (NiFe) 13 having a thickness of 10 ⁇ m and a length of 100 ⁇ m are disposed inside a feedback coil (Cu) 12.
- the distance between the magnetic cores 13 is 90 ⁇ m.
- a magnetoresistive element 141 having a length of 50 ⁇ m is disposed.
- the feedback coil 12, the magnetic core 13 and the magnetic field detection bridge circuit (not shown) are formed on the same substrate.
- the distance from the conductor 11 having a radius of 17 mm to the magnetoresistance effect element 141 was 5 mm and 50 mm, and the magnitude of the magnetic field received by the magnetoresistance effect element with respect to the current to be measured was obtained by simulation.
- the results are shown in FIG. Further, in the configuration shown in FIG. 4, in the configuration excluding the magnetic core 13, the distance from the conductor 11 having a radius of 17 mm to the magnetoresistive effect element 141 is 5 mm and 50 mm, and the magnetic field received by the magnetoresistive effect element for the current to be measured. The size of was determined by simulation. The results are shown in FIG.
- FIG. 6 is a diagram showing the configuration of a magnetic balance type current sensor for measuring the magnitude of the magnetic field received by the magnetoresistive element with respect to the current (feedback current) flowing through the feedback coil.
- two magnetic cores (NiFe) 13 having a thickness of 10 ⁇ m and a length of 100 ⁇ m are disposed inside a feedback coil (Cu) 12 (toroidal structure).
- the feedback coil 12 has a width of 3 ⁇ m and a height of 2.2 ⁇ m in a cross sectional view, and the distance between the coils is 2 ⁇ m. Also, the number of turns of the feedback coil is 20 turns each.
- the distance between the magnetic cores 13 is 90 ⁇ m.
- a magnetoresistive element 141 having a length of 50 ⁇ m is disposed.
- the feedback coil 12, the magnetic core 13 and the magnetic field detection bridge circuit (not shown) are formed on the same substrate.
- the magnitude of the magnetic field received by the magnetoresistive element with respect to the feedback current was determined by simulation. The results are shown in FIG. Further, in the configuration shown in FIG. 6, in the configuration excluding the magnetic core 13, the magnitude of the magnetic field received by the magnetoresistive element with respect to the feedback current was determined by simulation. The results are shown in FIG.
- the magnetic field received by the magnetoresistive element with respect to the feedback current is much larger.
- the magnetic field received by the magnetoresistive element for the current to be measured and the magnetic field received by the magnetoresistive element for the feedback current are also large.
- a current sensor can be realized.
- the feedback coil 12, the magnetic core 13, and the magnetic field detection bridge circuit 14 are formed on the same substrate, the magnetic balance type current sensor of this configuration achieves miniaturization even with the structure having the magnetic core 13. be able to.
- FIG. 8 is a diagram showing a magnetic balance type current sensor according to a second embodiment of the present invention
- FIG. 9 is a circuit diagram showing the magnetic balance type current sensor shown in FIG.
- the magnetic balance type current sensor shown in FIG. 8 is disposed in the vicinity of the conductor 11 through which the measured current I flows.
- the feedback coil (planar coil) 12 is disposed such that a direction perpendicular to the flowing direction of the current to be measured I is the axial direction X.
- the feedback coil 12 generates a cancellation magnetic field that cancels out the induction magnetic field generated by the flow of the current to be measured I.
- the magnetic core 13 is disposed such that a direction Y orthogonal to the axial center direction of the feedback coil 12 (a direction coincident with the current direction of the feedback coil 12) is the easy magnetization axis.
- the magnetic core 13 is made so that the magnetic field applied to the magnetoresistive element 141 becomes zero.
- the reversal magnetic field (Hk) of the magnetic core 13 can be increased and the saturation magnetic field can be appropriately increased so that the cancellation magnetic field from the feedback coil 12 is unlikely to be saturated.
- the magnetoresistive element 141 is disposed between the two magnetic cores 13.
- the resistance value of the magnetoresistance effect element 141 is changed by the application of the induction magnetic field from the current to be measured I.
- the magnetoresistance effect element 141 constitutes a magnetic field detection bridge circuit 14 together with the three fixed resistance elements 142a, 142b and 142c. As described above, by using the magnetic field detection bridge circuit 14 having the magnetoresistive effect element 141, a highly sensitive magnetic balance type current sensor can be realized.
- the temperature of the output can be obtained by using the GMR element or the TMR element in which the temperature change of the resistance change rate is small while matching the TCR (Temperature Coefficient Resistance) of the magnetoresistive element and the fixed resistance element. Since the dependence can be reduced, the temperature characteristics can be improved.
- the magnetic field detection bridge circuit 14 has two outputs that generate a voltage difference in accordance with the induced magnetic field generated by the current I to be measured.
- power supply Vdd is connected to the connection point between fixed resistance elements 142a and 142b, and ground (GND) is connected to the connection point between magnetoresistance effect element 141 and fixed resistance element 142c. ) Is connected.
- one output is taken out from the connection point between the magnetoresistance effect element 141 and the fixed resistance element 142b, and another output is taken from the connection point between the fixed resistance element 142a and the fixed resistance element 142c. I am taking out one output.
- This two outputs are amplified by the amplifier 143 and given to the feedback coil 12 as a current (feedback current).
- This feedback current corresponds to the voltage difference according to the induced magnetic field.
- a canceling magnetic field is generated in the feedback coil 12 to cancel the induced magnetic field.
- the measured current is measured by the detection unit (detection resistance R).
- FIG. 10A is a cross-sectional view showing the magnetic balance type current sensor shown in FIG.
- the feedback coil 12, the magnetic core 13 and the magnetic field detection bridge circuit are the same substrate 21. It is formed on top.
- the magnetic core 13 and the feedback coil 12 are disposed in the vicinity of the magnetoresistive element 141.
- the magnetoresistive effect element 141 is disposed between them. Furthermore, the magnetoresistive element 141 is disposed between the two magnetic cores 13, and the magnetoresistive element 141 and the magnetic core 13 are formed in the same plane. By disposing the magnetoresistive element 141 between the two magnetic cores 13, an induced magnetic field generated from the current to be measured I can be efficiently applied to the magnetoresistive element 141.
- the feedback coil 12 is disposed such that the axial center direction of the feedback coil 12 is orthogonal to the flowing direction of the current I to be measured, and the direction orthogonal to the axial center direction of the feedback coil 12
- the magnetic core 13 is disposed such that (the direction coinciding with the current direction of the feedback coil 12) is the easy magnetization axis.
- the layer configuration and constituent materials shown in FIG. 10A are the same as in Embodiment 1 except that the patterns of the lower coil layer 12a and the upper coil layer 12b are spiral, so detailed description will be omitted. Do.
- the induction magnetic field A generated from the current to be measured I is received by the magnetoresistance effect element 141 through the magnetic core 13, As shown in (b), the induced magnetic field is fed back to generate a canceling magnetic field B from the feedback coil 12, and as shown in FIG. 10 (c), the two magnetic fields (induced magnetic field A, canceling magnetic field B) are canceled out. Then, the magnetic field applied to the magnetoresistance effect element 141 is appropriately adjusted so as to be zero.
- the magnetic balance type current sensor having the above configuration can be miniaturized even with the structure having the magnetic core 13. Can. Thereby, the magnitude of the cancellation magnetic field can be increased, and measurement can be performed even if the current to be measured is a large current.
- a magnetoresistive element in particular, a GMR element or a TMR element is used as the magnetic detection element, the sensitivity of the current sensor can be increased.
- FIG. 11 is a diagram showing the configuration of a magnetic balance type current sensor for measuring the magnitude of the magnetic field received by the magnetoresistive element with respect to the current (feedback current) flowing through the feedback coil.
- two magnetic cores (NiFe) 13 having a thickness of 10 ⁇ m and a length of 100 ⁇ m are disposed above and below (spiral structure) the feedback coil (Cu) 12.
- the feedback coil 12 has a width of 3 ⁇ m and a height of 2.2 ⁇ m in a cross sectional view, and the distance between the coils is 2 ⁇ m. Also, the number of turns of the feedback coil is 20 turns each.
- the distance between the magnetic cores 13 is 90 ⁇ m. Between the two magnetic cores 13, a magnetoresistive element 141 having a length of 50 ⁇ m is disposed. In this configuration, the feedback coil 12, the magnetic core 13 and the magnetic field detection bridge circuit (not shown) are formed on the same substrate.
- the magnitude of the magnetic field received by the magnetoresistive element with respect to the feedback current was determined by simulation. The results are shown in FIG. Further, in the configuration shown in FIG. 11, in the configuration excluding the magnetic core 13, the magnitude of the magnetic field received by the magnetoresistive element with respect to the feedback current was determined by simulation. The results are shown in FIG.
- the magnetic field received by the magnetoresistive element with respect to the feedback current is much larger.
- the magnetic field received by the magnetoresistive element for the current to be measured and the magnetic field received by the magnetoresistive element for the feedback current are also large.
- a current sensor can be realized.
- the feedback coil 12, the magnetic core 13, and the magnetic field detection bridge circuit 14 are formed on the same substrate, the magnetic balance type current sensor of this configuration achieves miniaturization even with the structure having the magnetic core 13. be able to.
- the present invention is not limited to Embodiments 1 and 2 above, and can be implemented with various modifications.
- the materials in the first and second embodiments, the arrangement position of each layer, the thickness, the size, the manufacturing method, and the like can be appropriately changed and implemented.
- the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
- the present invention can be applied to a current sensor that detects the magnitude of a current for driving a motor of an electric vehicle.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
小型化を図ることができ、しかも高感度である電流センサを提供すること。本発明の磁気平衡式電流センサは、被測定電流からの誘導磁界の印加により抵抗値が変化する磁気抵抗効果素子(141)と、前記磁気抵抗効果素子(141)の近傍に配置された磁気コア(13)と、前記磁気抵抗効果素子(141)の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイル(12)と、前記誘導磁界に応じた電圧差を生じる2つの出力を備える磁界検出ブリッジ回路(14)と、を具備し、前記電圧差により前記フィードバックコイル(12)に通電して前記誘導磁界と前記キャンセル磁界とが相殺される平衡状態となったときの前記フィードバックコイル(12)に流れる電流に基づいて前記被測定電流を測定する磁気平衡式電流センサであって、前記フィードバックコイル(12)、前記磁気コア(13)及び前記磁界検出ブリッジ回路(14)が同一基板上に形成されてなることを特徴とする。
Description
本発明は、磁気抵抗効果素子(TMR素子、GMR素子)を用いた磁気平衡式電流センサに関する。
電気自動車においては、エンジンで発電した電気を用いてモータを駆動しており、このモータ駆動用の電流の大きさは、例えば電流センサにより検出される。この電流センサとしては、導体の周囲に、一部に切り欠き(コアギャップ)を有する磁気コアを配置し、このコアギャップ内に磁気検出素子を配置してなるものである。このような電流センサとして、例えば、図13に示すような磁気平衡式電流センサがある(特許文献1)。
図13に示す磁気平衡式電流センサは、被測定電流Iによって発生する磁界B1を打ち消す方向に磁気コア1に巻回されたフィードバックコイル2を有している。磁気平衡式電流センサにおいては、被測定電流Iが流れると、電流に応じた磁界B1により磁気検出素子3に出力電圧が生じ、この磁気検出素子3から出力された電圧信号が電流に変換されてフィードバックコイル2にフィードバックされる。このフィードバックコイル2により発生する磁界(キャンセル磁界)B2と被測定電流Iにより生じる磁界B1とが打ち消しあって磁界が常に0になるように動作する。このとき、フィードバックコイルに流れるフィードバック電流を電圧変換させて出力として取り出す。図13において参照符号4は増幅器を示し、Rは検出抵抗を示す。
近年、電気自動車の大出力化・高性能化に伴って、取り扱う電流値が大きくなってきており、そのため大電流時の磁気飽和を回避する必要がある。磁気飽和を回避するためには磁気コアを大きくする必要があるが、磁気コアを大きくすると電流センサ自体が大型化するという問題がある。また、電気自動車の高性能化に伴って、電流をより正確に測定する必要があり、高感度の電流センサが求められている。
本発明はかかる点に鑑みてなされたものであり、小型化を図ることができ、しかも高感度である磁気平衡式電流センサを提供することを目的とする。
本発明の磁気平衡式電流センサは、被測定電流からの誘導磁界の印加により抵抗値が変化する磁気抵抗効果素子と、前記磁気抵抗効果素子の近傍に配置された磁気コアと、前記磁気抵抗効果素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイルと、前記誘導磁界に応じた電圧差を生じる2つの出力を備える磁界検出ブリッジ回路と、を具備し、前記電圧差により前記フィードバックコイルに通電して前記誘導磁界と前記キャンセル磁界とが相殺される平衡状態となったときの前記フィードバックコイルに流れる電流に基づいて前記被測定電流を測定する磁気平衡式電流センサであって、前記フィードバックコイル、前記磁気コア及び前記磁界検出ブリッジ回路が同一基板上に形成されてなることを特徴とする。
この構成によれば、フィードバックコイル、磁気コア及び磁界検出ブリッジ回路が同一基板上に形成されてなるので、磁気コアを有する構造であっても小型化を図ることができる。これにより、キャンセル磁界の大きさを大きくすることができ、被測定電流が大電流であっても測定することが可能となる。また、磁気検出素子として磁気抵抗効果素子を用いるので、電流センサの感度を高くすることができる。
本発明の磁気平衡式電流センサにおいては、前記フィードバックコイルがトロイダル型であり、前記磁気コアが前記フィードバックコイルの内側に設けられていることが好ましい。
本発明の磁気平衡式電流センサにおいては、前記フィードバックコイルがスパイラル型であり、前記磁気コアが前記フィードバックコイルの上方及び下方に設けられていることが好ましい。
本発明の磁気平衡式電流センサにおいては、前記磁気抵抗効果素子が2つの磁気コアの間に配置され、前記磁気抵抗効果素子と前記磁気コアとが同一平面に形成されたことが好ましい。
本発明の磁気平衡式電流センサにおいては、前記磁気コアは、磁化容易軸が前記フィードバックコイルの電流方向と一致するように設けられたことが好ましい。
本発明の磁気平衡式電流センサにおいては、前記フィードバックコイルは、前記被測定電流の流れる方向に直交する方向が軸心方向となるように設けられ、前記磁気コアは、磁化容易軸が前記軸心方向と直交するように設けられていることが好ましい。
本発明の磁気平衡式電流センサにおいては、前記磁気抵抗効果素子が、スピンバルブ型のGMR素子又はTMR素子であることが好ましい。
本発明の磁気平衡式電流センサにおいては、前記GMR素子は、幅が1μm~10μmのミアンダ形状を有し、長手方向の長さが幅の2倍以上であり、前記長手方向が前記誘導磁界の方向及び前記キャンセル磁界の方向に対して共に垂直になるように配置されたことが好ましい。
本発明の磁気平衡式電流センサにおいては、前記TMR素子は、幅が1μm~10μmの長方形であり、長手方向の長さが幅の2倍以上であり、前記長手方向が前記誘電磁界の方向及び前記キャンセル磁界の方向に対して共に垂直になるように配置されたことが好ましい。
本発明の磁気平衡式電流センサにおいては、前記磁気コアは、アモルファス磁性材料、パーマロイ系磁性材料、及び鉄系微結晶材料からなる群より選ばれた高透磁率材料で構成されていることが好ましい。
本発明の磁気平衡式電流センサは、被測定電流からの誘導磁界の印加により抵抗値が変化する磁気抵抗効果素子と、前記磁気抵抗効果素子の近傍に配置された磁気コアと、前記磁気抵抗効果素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイルと、前記誘導磁界に応じた電圧差を生じる2つの出力を備える磁界検出ブリッジ回路と、を具備し、前記電圧差により前記フィードバックコイルに通電して前記誘導磁界と前記キャンセル磁界とが相殺される平衡状態となったときの前記フィードバックコイルに流れる電流に基づいて前記被測定電流を測定する磁気平衡式電流センサであって、前記フィードバックコイル、前記磁気コア及び前記磁界検出ブリッジ回路が同一基板上に形成されてなるので、小型化であり、しかも高感度な電流センサである。
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
(実施の形態1)
本実施の形態においては、フィードバックコイルがトロイダル型であり、磁気コアがフィードバックコイルの内側に設けられている場合について説明する。
(実施の形態1)
本実施の形態においては、フィードバックコイルがトロイダル型であり、磁気コアがフィードバックコイルの内側に設けられている場合について説明する。
図1は、本発明の実施の形態1に係る磁気平衡式電流センサを示す図である。図1に示す磁気平衡式電流センサは、被測定電流Iが流れる導体11の近傍に配設される。被測定電流Iの流れる方向に直交する方向が軸心方向Xとなるようにフィードバックコイル12が配設されている。このフィードバックコイル12は、被測定電流Iが流れることにより発生する誘導磁界を相殺するキャンセル磁界を発生する。
また、フィードバックコイル12の軸心方向と直交する方向Y(フィードバックコイル12の電流方向と一致する方向)が磁化容易軸となるように磁気コア13が配設されている。被測定電流Iから発生した誘導磁界とキャンセル磁界とがフィードバックコイル12内部で釣り合っている(平衡状態である)とき、磁気抵抗効果素子141に印加される磁界が零になるように、磁気コア13の磁化容易軸方向をフィードバックコイル12の軸心方向と直交させることにより、残留磁化による磁界が磁気抵抗効果素子141に加わらないようにすることができる。また、これにより、フィードバックコイル12からのキャンセル磁界が飽和し難くなるように、磁気コア13の反転磁界(Hk)を大きくし、飽和磁界を適度に大きくすることができる。
また、2つの磁気コア13の間に磁気抵抗効果素子141が配置されている。この磁気抵抗効果素子141は、被測定電流Iからの誘導磁界の印加により抵抗値が変化する。この磁気抵抗効果素子141は、3つの固定抵抗素子142a,142b,142cと共に磁界検出ブリッジ回路14を構成している。このように磁気抵抗効果素子141を有する磁界検出ブリッジ回路14を用いることにより、高感度の磁気平衡式電流センサを実現することができる。また、このような構成によれば、磁気抵抗効果素子と固定抵抗素子のTCR(Temperature Coefficient Resistivity)を一致させつつ、抵抗変化率の温度変化が小さいGMR素子やTMR素子を用いることで出力の温度依存を小さくできるので、温度特性を向上させることができる。
この磁界検出ブリッジ回路14は、被測定電流Iにより生じた誘導磁界に応じた電圧差を生じる2つの出力を備える。図1に示す磁界検出ブリッジ回路においては、固定抵抗素子142a,142b間の接続点に電源Vddが接続されており、磁気抵抗効果素子141と固定抵抗素子142cとの間の接続点にグランド(GND)が接続されている。さらに、この磁界検出ブリッジ回路においては、磁気抵抗効果素子141と固定抵抗素子142bとの間の接続点から一つの出力を取り出し、固定抵抗素子142aと固定抵抗素子142cとの間の接続点からもう一つの出力を取り出している。これらの2つの出力は増幅器143で増幅され、フィードバックコイル12に電流(フィードバック電流)として与えられる。このフィードバック電流は、誘導磁界に応じた電圧差に対応する。このとき、フィードバックコイル12には、誘導磁界を相殺するキャンセル磁界が発生する。そして、誘導磁界とキャンセル磁界とが相殺される平衡状態となったときのフィードバックコイル12に流れる電流に基づいて検出部(検出抵抗R)で被測定電流を測定する。
図2(a)は、図1に示す磁気平衡式電流センサを示す断面図であり、図2(b)は、磁気抵抗効果素子であるGMR素子の拡大図である。図2(a)に示すように、本実施の形態に係る磁気平衡式電流センサにおいては、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路14が同一基板21上に形成されている。図2(a)に示す構成においては、磁気コア13及びフィードバックコイル12が磁気抵抗効果素子141の近傍に配置されている。ここでは、フィードバックコイル12の間に磁気コア13が配設された2つの構造の間に磁気抵抗効果素子141が配置された構成を採っている。さらに、磁気抵抗効果素子141が2つの磁気コア13の間に配置され、磁気抵抗効果素子141と磁気コア13とが同一平面に形成されている。磁気抵抗効果素子141が2つの磁気コア13の間に配置されることにより、被測定電流Iから発生する誘導磁界を磁気抵抗効果素子141に効率良く印加することができる。また、フィードバックコイル12の内部に磁気コア13が配設され、磁気抵抗効果素子141が2つの磁気コア13の間に配置されているので、2つの磁界(誘導磁界及びキャンセル磁界)を共に、地磁気などの不要磁場に対して相対的に大きくでき、電流センサ自体をより高精度化することができる。
この場合においては、フィードバックコイル12の軸心方向が被測定電流Iの流れる方向に直交する方向がとなるようにフィードバックコイル12が配設されており、フィードバックコイル12の軸心方向と直交する方向(フィードバックコイル12の電流方向と一致する方向)が磁化容易軸となるように磁気コア13が配設されている。
図2(a)に示す層構成について詳細に説明する。図2(a)に示す磁気平衡式電流センサにおいては、基板21上に絶縁層であるシリコン酸化膜22が形成されている。シリコン酸化膜22には、熱酸化によるシリコン酸化膜やCVD成膜されたシリコン酸化膜が用いられる。また、基板21としては、シリコン基板などが用いられる。
シリコン酸化膜22上には、下部コイル層12aが形成されている。下部コイル層12aは、コイル材料を成膜した後に、フォトリソグラフィ及びエッチングにより形成することができる。あるいは、下部コイル層12aは、下地材料を成膜した後に、フォトリソグラフィ及びめっきにより形成することができる。
下部コイル層12aを設けたシリコン酸化膜22上には、絶縁層としてポリイミド層23が形成されている。ポリイミド層23は、ポリイミド材料を塗布し、硬化することにより形成することができる。ポリイミド層23上には、シリコン酸化膜24が形成されている。シリコン酸化膜24は、例えば、スパッタリングなどの方法により成膜することができる。
シリコン酸化膜24上には、磁気コア13が形成されている。磁気コア13は、コア材料を成膜した後に、フォトリソグラフィ及びエッチングにより形成することができる。あるいは、磁気コア13は、下地材料を成膜した後に、フォトリソグラフィ及びめっきにより形成することができる。磁気コア13を構成する材料としては、アモルファス磁性材料、パーマロイ系磁性材料、又は鉄系微結晶材料等の高透磁率材料を用いることができる。
また、シリコン酸化膜24上には、磁気抵抗効果素子141が形成されている。このとき、磁気抵抗効果素子141と共に固定抵抗素子も設けられ、磁界検出ブリッジ回路が作り込まれる。磁気抵抗効果素子141としては、TMR素子(トンネル型磁気抵抗効果素子)、GMR素子(巨大磁気抵抗効果素子)などを用いることができる。例えば、GMR素子として、反強磁性層、固定磁性層、非磁性層、フリー磁性層を有する多層膜で構成されるスピンバルブ型GMR素子や反強磁性層、固定磁性層、非磁性層、フリー磁性層を有する多層膜で構成されるスピンバルブ型TMR素子を用いることができる。
スピンバルブ型GMR素子としては、図2(b)に示すようなミアンダ形状を有するGMR素子であることが好ましい。このミアンダ形状においては、リニアリティを考慮すると、ピン方向の幅Dが1μm~10μmであり、長手方向の長さ(L)が幅(D)の2倍以上であることが好ましい。この場合において、リニアリティを考慮すると、長手方向が誘導磁界の方向及びキャンセル磁界の方向に対して共に垂直になることが望ましい。このようなミアンダ形状にすることにより、ホール素子よりも少ない端子数(2端子)で磁気抵抗効果素子の出力を採ることができる。
また、スピンバルブ型TMR素子としては、リニアリティを考慮すると、ピン方向の幅が1μm~10μmの長方形であり、長手方向の長さが幅の2倍以上であることが好ましい。この場合において、リニアリティを考慮すると、長手方向が誘導磁界の方向及びキャンセル磁界の方向に対して共に垂直になることが望ましい。
磁気コア13及び磁気抵抗効果素子141を設けたシリコン酸化膜24上には、絶縁層としてポリイミド層25が形成されている。ポリイミド層25は、ポリイミド材料を塗布し、硬化することにより形成することができる。ポリイミド層25上には、シリコン酸化膜26が形成されている。シリコン酸化膜26は、例えば、スパッタリングなどの方法により成膜することができる。
シリコン酸化膜26上には、上部コイル層12bが形成されている。上部コイル層12bは、コイル材料を成膜した後に、フォトリソグラフィ及びエッチングにより形成することができる。あるいは、上部コイル層12bは、下地材料を成膜した後に、フォトリソグラフィ及びめっきにより形成することができる。
上部コイル層12bを設けたシリコン酸化膜26上には、絶縁層としてポリイミド層27が形成されている。ポリイミド層27は、ポリイミド材料を塗布し、硬化することにより形成することができる。ポリイミド層27上には、保護層としてシリコン酸化膜28が形成されている。シリコン酸化膜28は、例えば、スパッタリングなどの方法により成膜することができる。
このような構成を有する磁気平衡式電流センサにおいては、図3(a)に示すように、被測定電流Iから発生した誘導磁界Aを、磁気コア13を通して磁気抵抗効果素子141で受け、図3(b)に示すように、その誘導磁界をフィードバックしてフィードバックコイル12からキャンセル磁界Bを発生し、図3(c)に示すように、2つの磁界(誘導磁界A、キャンセル磁界B)を相殺して磁気抵抗効果素子141に印加する磁場が零になるように適宜調整する。
上記構成を有する磁気平衡式電流センサは、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路14が同一基板上に形成されてなるので、磁気コア13を有する構造であっても小型化を図ることができる。これにより、キャンセル磁界の大きさを大きくすることができ、被測定電流が大電流であっても測定することが可能となる。また、磁気検出素子として磁気抵抗効果素子、特にGMR素子やTMR素子を用いるので、電流センサの感度を高くすることができる。
次に、本発明の効果を明確にするために行った実施例について説明する。
図4は、被測定電流に対する磁気抵抗効果素子が受ける磁界の大きさを測定するための磁気平衡式電流センサの構成を示す図である。図4に示す磁気平衡式電流センサは、フィードバックコイル(Cu)12の内部に、厚さ10μm、長さ100μmの2つの磁気コア(NiFe)13が配設されている。磁気コア13間の距離は90μmである。2つの磁気コア13の間には、長さが50μmである磁気抵抗効果素子141が配設されている。この構成において、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路(図示せず)が同一基板上に形成されている。
図4は、被測定電流に対する磁気抵抗効果素子が受ける磁界の大きさを測定するための磁気平衡式電流センサの構成を示す図である。図4に示す磁気平衡式電流センサは、フィードバックコイル(Cu)12の内部に、厚さ10μm、長さ100μmの2つの磁気コア(NiFe)13が配設されている。磁気コア13間の距離は90μmである。2つの磁気コア13の間には、長さが50μmである磁気抵抗効果素子141が配設されている。この構成において、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路(図示せず)が同一基板上に形成されている。
このような電流センサに対して、半径が17mmの導体11から磁気抵抗効果素子141までの距離を5mm、50mmとして、被測定電流に対する磁気抵抗効果素子が受ける磁界の大きさをシミュレーションにより求めた。その結果を図5に示す。また、図4に示す構成において、磁気コア13を除いた構成において、半径が17mmの導体11から磁気抵抗効果素子141までの距離を5mm、50mmとして、被測定電流に対する磁気抵抗効果素子が受ける磁界の大きさをシミュレーションにより求めた。その結果を図5に併記する。
図5に示すように、導体11から磁気抵抗効果素子141までの距離が5mmの場合でも、50mmの場合でも、磁気コアを有する構成の方が被測定電流に対して磁気抵抗効果素子が受ける磁界が大きかった。
図6は、フィードバックコイルに流れる電流(フィードバック電流)に対する磁気抵抗効果素子が受ける磁界の大きさを測定するための磁気平衡式電流センサの構成を示す図である。図6に示す磁気平衡式電流センサは、フィードバックコイル(Cu)12の内部に(トロイダル構造)、厚さ10μm、長さ100μmの2つの磁気コア(NiFe)13が配設されている。フィードバックコイル12は、断面視において幅3μm、高さ2.2μmであり、コイル間の距離が2μmである。また、フィードバックコイルのターン数はそれぞれ20ターンである。また、磁気コア13間の距離は90μmである。2つの磁気コア13の間には、長さが50μmである磁気抵抗効果素子141が配設されている。この構成において、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路(図示せず)が同一基板上に形成されている。
このような電流センサに対して、フィードバック電流に対する磁気抵抗効果素子が受ける磁界の大きさをシミュレーションにより求めた。その結果を図7に示す。また、図6に示す構成において、磁気コア13を除いた構成において、フィードバック電流に対する磁気抵抗効果素子が受ける磁界の大きさをシミュレーションにより求めた。その結果を図7に併記する。
図7に示すように、磁気コアを有する構成の方がフィードバック電流に対して磁気抵抗効果素子が受ける磁界が非常に大きかった。このように、磁気コアを有する構成によれば、被測定電流に対して磁気抵抗効果素子が受ける磁界も、フィードバック電流に対して磁気抵抗効果素子が受ける磁界も大きいので、高感度の磁気平衡式電流センサを実現することができる。また、本構成の磁気平衡式電流センサは、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路14が同一基板上に形成されてなるので、磁気コア13を有する構造であっても小型化を図ることができる。
(実施の形態2)
本実施の形態においては、フィードバックコイルがスパイラル型であり、磁気コアがフィードバックコイルの上方及び下方に設けられている場合について説明する。
本実施の形態においては、フィードバックコイルがスパイラル型であり、磁気コアがフィードバックコイルの上方及び下方に設けられている場合について説明する。
図8は、本発明の実施の形態2に係る磁気平衡式電流センサを示す図であり、図9は、図8に示す磁気平衡式電流センサを示す回路図である。図8に示す磁気平衡式電流センサは、被測定電流Iが流れる導体11の近傍に配設される。被測定電流Iの流れる方向に直交する方向が軸心方向Xとなるようにフィードバックコイル(平面コイル)12が配設されている。このフィードバックコイル12は、被測定電流Iが流れることにより発生する誘導磁界を相殺するキャンセル磁界を発生する。
また、フィードバックコイル12の軸心方向と直交する方向Y(フィードバックコイル12の電流方向と一致する方向)が磁化容易軸となるように磁気コア13が配設されている。被測定電流Iから発生した誘導磁界とキャンセル磁界とがフィードバックコイル12内部で釣り合っている(平衡状態である)とき、磁気抵抗効果素子141に印加される磁界が零になるように、磁気コア13の磁化容易軸方向をフィードバックコイル12の軸心方向と直交させることにより、残留磁化による磁界が磁気抵抗効果素子141に加わらないようにすることができる。また、これにより、フィードバックコイル12からのキャンセル磁界が飽和し難くなるように、磁気コア13の反転磁界(Hk)を大きくし、飽和磁界を適度に大きくすることができる。
また、2つの磁気コア13の間に磁気抵抗効果素子141が配置されている。この磁気抵抗効果素子141は、被測定電流Iからの誘導磁界の印加により抵抗値が変化する。この磁気抵抗効果素子141は、3つの固定抵抗素子142a,142b,142cと共に磁界検出ブリッジ回路14を構成している。このように磁気抵抗効果素子141を有する磁界検出ブリッジ回路14を用いることにより、高感度の磁気平衡式電流センサを実現することができる。また、このような構成によれば、磁気抵抗効果素子と固定抵抗素子のTCR(Temperature Coefficient Resistivity)を一致させつつ、抵抗変化率の温度変化が小さいGMR素子やTMR素子を用いることで出力の温度依存を小さくできるので、温度特性を向上させることができる。
この磁界検出ブリッジ回路14は、被測定電流Iにより生じた誘導磁界に応じた電圧差を生じる2つの出力を備える。図8に示す磁界検出ブリッジ回路においては、固定抵抗素子142a,142b間の接続点に電源Vddが接続されており、磁気抵抗効果素子141と固定抵抗素子142cとの間の接続点にグランド(GND)が接続されている。さらに、この磁界検出ブリッジ回路においては、磁気抵抗効果素子141と固定抵抗素子142bとの間の接続点から一つの出力を取り出し、固定抵抗素子142aと固定抵抗素子142cとの間の接続点からもう一つの出力を取り出している。これらの2つの出力は増幅器143で増幅され、フィードバックコイル12に電流(フィードバック電流)として与えられる。このフィードバック電流は、誘導磁界に応じた電圧差に対応する。このとき、フィードバックコイル12には、誘導磁界を相殺するキャンセル磁界が発生する。そして、誘導磁界とキャンセル磁界とが相殺される平衡状態となったときのフィードバックコイル12に流れる電流に基づいて検出部(検出抵抗R)で被測定電流を測定する。
図10(a)は、図8に示す磁気平衡式電流センサを示す断面図である。図10(a)に示すように、本実施の形態に係る磁気平衡式電流センサにおいては、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路(磁気抵抗効果素子141のみを図示)が同一基板21上に形成されている。図10(a)に示す構成においては、磁気コア13及びフィードバックコイル12が磁気抵抗効果素子141の近傍に配置されている。ここでは、断面視において、磁気コア13の下方にフィードバックコイル12が配設された構造と、磁気コア13の上方にフィードバックコイル12が配設された構造の2つの構造(フィードバックコイル12のスパイラル構造)の間に磁気抵抗効果素子141が配置された構成を採っている。さらに、磁気抵抗効果素子141が2つの磁気コア13の間に配置され、磁気抵抗効果素子141と磁気コア13とが同一平面に形成されている。磁気抵抗効果素子141が2つの磁気コア13の間に配置されることにより、被測定電流Iから発生する誘導磁界を磁気抵抗効果素子141に効率良く印加することができる。また、フィードバックコイル12の内部に磁気コア13が配設され、磁気抵抗効果素子141が2つの磁気コア13の間に配置されているので、2つの磁界(誘導磁界及びキャンセル磁界)を共に、地磁気などの不要磁場に対して相対的に大きくでき、電流センサ自体をより高精度化することができる。
この場合においては、フィードバックコイル12の軸心方向が被測定電流Iの流れる方向に直交する方向がとなるようにフィードバックコイル12が配設されており、フィードバックコイル12の軸心方向と直交する方向(フィードバックコイル12の電流方向と一致する方向)が磁化容易軸となるように磁気コア13が配設されている。
図10(a)に示す層構成や構成材料については、下部コイル層12a及び上部コイル層12bのパターンがスパイラル型になっている以外は実施の形態1と同じであるので、詳細な説明は省略する。
このような構成を有する磁気平衡式電流センサにおいては、図10(a)に示すように、被測定電流Iから発生した誘導磁界Aを、磁気コア13を通して磁気抵抗効果素子141で受け、図10(b)に示すように、その誘導磁界をフィードバックしてフィードバックコイル12からキャンセル磁界Bを発生し、図10(c)に示すように、2つの磁界(誘導磁界A、キャンセル磁界B)を相殺して磁気抵抗効果素子141に印加する磁場が零になるように適宜調整する。
上記構成を有する磁気平衡式電流センサは、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路14が同一基板上に形成されてなるので、磁気コア13を有する構造であっても小型化を図ることができる。これにより、キャンセル磁界の大きさを大きくすることができ、被測定電流が大電流であっても測定することが可能となる。また、磁気検出素子として磁気抵抗効果素子、特にGMR素子やTMR素子を用いるので、電流センサの感度を高くすることができる。
次に、本発明の効果を明確にするために行った実施例について説明する。
図11は、フィードバックコイルに流れる電流(フィードバック電流)に対する磁気抵抗効果素子が受ける磁界の大きさを測定するための磁気平衡式電流センサの構成を示す図である。図11に示す磁気平衡式電流センサは、フィードバックコイル(Cu)12の上方及び下方に(スパイラル構造)、厚さ10μm、長さ100μmの2つの磁気コア(NiFe)13が配設されている。フィードバックコイル12は、断面視において幅3μm、高さ2.2μmであり、コイル間の距離が2μmである。また、フィードバックコイルのターン数はそれぞれ20ターンである。また、磁気コア13間の距離は90μmである。2つの磁気コア13の間には、長さが50μmである磁気抵抗効果素子141が配設されている。この構成において、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路(図示せず)が同一基板上に形成されている。
図11は、フィードバックコイルに流れる電流(フィードバック電流)に対する磁気抵抗効果素子が受ける磁界の大きさを測定するための磁気平衡式電流センサの構成を示す図である。図11に示す磁気平衡式電流センサは、フィードバックコイル(Cu)12の上方及び下方に(スパイラル構造)、厚さ10μm、長さ100μmの2つの磁気コア(NiFe)13が配設されている。フィードバックコイル12は、断面視において幅3μm、高さ2.2μmであり、コイル間の距離が2μmである。また、フィードバックコイルのターン数はそれぞれ20ターンである。また、磁気コア13間の距離は90μmである。2つの磁気コア13の間には、長さが50μmである磁気抵抗効果素子141が配設されている。この構成において、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路(図示せず)が同一基板上に形成されている。
このような電流センサに対して、フィードバック電流に対する磁気抵抗効果素子が受ける磁界の大きさをシミュレーションにより求めた。その結果を図12に示す。また、図11に示す構成において、磁気コア13を除いた構成において、フィードバック電流に対する磁気抵抗効果素子が受ける磁界の大きさをシミュレーションにより求めた。その結果を図12に併記する。
図12に示すように、磁気コアを有する構成の方がフィードバック電流に対して磁気抵抗効果素子が受ける磁界が非常に大きかった。このように、磁気コアを有する構成によれば、被測定電流に対して磁気抵抗効果素子が受ける磁界も、フィードバック電流に対して磁気抵抗効果素子が受ける磁界も大きいので、高感度の磁気平衡式電流センサを実現することができる。また、本構成の磁気平衡式電流センサは、フィードバックコイル12、磁気コア13及び磁界検出ブリッジ回路14が同一基板上に形成されてなるので、磁気コア13を有する構造であっても小型化を図ることができる。
本発明は上記実施の形態1,2に限定されず、種々変更して実施することができる。例えば、上記実施の形態1,2における材料、各層の配置位置、厚さ、大きさ、製法などは適宜変更して実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。
本発明は、電気自動車のモータ駆動用の電流の大きさを検出する電流センサに適用することが可能である。
本出願は、2009年6月12日出願の特願2009-141707に基づく。この内容は、全てここに含めておく。
Claims (10)
- 被測定電流からの誘導磁界の印加により抵抗値が変化する磁気抵抗効果素子と、前記磁気抵抗効果素子の近傍に配置された磁気コアと、前記磁気抵抗効果素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイルと、前記誘導磁界に応じた電圧差を生じる2つの出力を備える磁界検出ブリッジ回路と、を具備し、前記電圧差により前記フィードバックコイルに通電して前記誘導磁界と前記キャンセル磁界とが相殺される平衡状態となったときの前記フィードバックコイルに流れる電流に基づいて前記被測定電流を測定する磁気平衡式電流センサであって、前記フィードバックコイル、前記磁気コア及び前記磁界検出ブリッジ回路が同一基板上に形成されてなることを特徴とする磁気平衡式電流センサ。
- 前記フィードバックコイルがトロイダル型であり、前記磁気コアが前記フィードバックコイルの内側に設けられていることを特徴とする請求項1記載の磁気平衡式電流センサ。
- 前記フィードバックコイルがスパイラル型であり、前記磁気コアが前記フィードバックコイルの上方及び下方に設けられていることを特徴とする請求項1記載の磁気平衡式電流センサ。
- 前記磁気抵抗効果素子が2つの磁気コアの間に配置され、前記磁気抵抗効果素子と前記磁気コアとが同一平面に形成されたことを特徴とする請求項1から請求項3のいずれかに記載の磁気平衡式電流センサ。
- 前記磁気コアは、磁化容易軸が前記フィードバックコイルの電流方向と一致するように設けられたことを特徴とする請求項1から請求項4のいずれかに記載の磁気平衡式電流センサ。
- 前記フィードバックコイルは、前記被測定電流の流れる方向に直交する方向が軸心方向となるように設けられ、前記磁気コアは、磁化容易軸が前記軸心方向と直交するように設けられていることを特徴とする請求項1から請求項5のいずれかに記載の磁気平衡式電流センサ。
- 前記磁気抵抗効果素子が、スピンバルブ型のGMR素子又はTMR素子であることを特徴とする請求項1から請求項6のいずれかに記載の磁気平衡式電流センサ。
- 前記GMR素子は、幅が1μm~10μmのミアンダ形状を有し、長手方向の長さが幅の2倍以上であり、前記長手方向が前記誘導磁界の方向及び前記キャンセル磁界の方向に対して共に垂直になるように配置されたことを特徴とする請求項7記載の磁気平衡式電流センサ。
- 前記TMR素子は、幅が1μm~10μmの長方形であり、長手方向の長さが幅の2倍以上であり、前記長手方向が前記誘電磁界の方向及び前記キャンセル磁界の方向に対して共に垂直になるように配置されたことを特徴とする請求項7記載の磁気平衡式電流センサ。
- 前記磁気コアは、アモルファス磁性材料、パーマロイ系磁性材料、及び鉄系微結晶材料からなる群より選ばれた高透磁率材料で構成されていることを特徴とする請求項1から請求項9のいずれかに記載の磁気平衡式電流センサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011518562A JP5250108B2 (ja) | 2009-06-12 | 2010-06-09 | 磁気平衡式電流センサ |
EP10786197.3A EP2442117B1 (en) | 2009-06-12 | 2010-06-09 | Magnetic balance current sensor |
US13/300,076 US8519704B2 (en) | 2009-06-12 | 2011-11-18 | Magnetic-balance-system current sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009141707 | 2009-06-12 | ||
JP2009-141707 | 2009-06-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/300,076 Continuation US8519704B2 (en) | 2009-06-12 | 2011-11-18 | Magnetic-balance-system current sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010143666A1 true WO2010143666A1 (ja) | 2010-12-16 |
Family
ID=43308921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059791 WO2010143666A1 (ja) | 2009-06-12 | 2010-06-09 | 磁気平衡式電流センサ |
Country Status (4)
Country | Link |
---|---|
US (1) | US8519704B2 (ja) |
EP (1) | EP2442117B1 (ja) |
JP (1) | JP5250108B2 (ja) |
WO (1) | WO2010143666A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013152208A (ja) * | 2011-12-26 | 2013-08-08 | Hitachi Metals Ltd | 磁気センサデバイス、及び電流センサ回路 |
JP2014174061A (ja) * | 2013-03-11 | 2014-09-22 | Hitachi Metals Ltd | 磁気センサ装置 |
WO2014148437A1 (ja) * | 2013-03-18 | 2014-09-25 | 日立金属株式会社 | 磁気センサ |
JP2018189653A (ja) * | 2017-05-08 | 2018-11-29 | ティディケイ−ミクロナス ゲー・エム・ベー・ハー | 磁場補償装置 |
DE102018114015A1 (de) | 2017-06-13 | 2018-12-13 | Tdk Corporation | Stromsensor |
JP2019132719A (ja) * | 2018-01-31 | 2019-08-08 | 旭化成エレクトロニクス株式会社 | 磁気検出装置 |
JP2019174438A (ja) * | 2018-03-29 | 2019-10-10 | 旭化成エレクトロニクス株式会社 | 磁気検出装置 |
JP2019215182A (ja) * | 2018-06-11 | 2019-12-19 | Tdk株式会社 | 磁気センサ |
JP2019219294A (ja) * | 2018-06-20 | 2019-12-26 | Tdk株式会社 | 磁気センサ |
JP2020071198A (ja) * | 2018-11-02 | 2020-05-07 | Tdk株式会社 | 磁気センサ |
US11002806B2 (en) | 2018-03-29 | 2021-05-11 | Asahi Kasei Microdevices Corporation | Magnetic field detection device |
JPWO2020054112A1 (ja) * | 2018-09-12 | 2021-08-30 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP2021124289A (ja) * | 2020-01-31 | 2021-08-30 | Tdk株式会社 | 電流センサ、磁気センサ及び回路 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5250109B2 (ja) | 2009-06-12 | 2013-07-31 | アルプス・グリーンデバイス株式会社 | 磁気平衡式電流センサ |
JP5572208B2 (ja) | 2010-03-12 | 2014-08-13 | アルプス電気株式会社 | 磁気センサ及びそれを用いた磁気平衡式電流センサ |
WO2011111493A1 (ja) | 2010-03-12 | 2011-09-15 | アルプス・グリーンデバイス株式会社 | 電流センサ |
WO2012026255A1 (ja) | 2010-08-23 | 2012-03-01 | アルプス・グリーンデバイス株式会社 | 磁気平衡式電流センサ |
US9030197B1 (en) * | 2012-03-23 | 2015-05-12 | Ohio Semitronics Inc. | Active compensation for ambient, external magnetic fields penetrating closed loop magnetic cores particularly for a fluxgate current sensor |
US9279865B2 (en) | 2012-05-09 | 2016-03-08 | Everspin Technologies, Inc. | Method and structure for testing and calibrating three axis magnetic field sensing devices |
US9817078B2 (en) | 2012-05-10 | 2017-11-14 | Allegro Microsystems Llc | Methods and apparatus for magnetic sensor having integrated coil |
US9664747B2 (en) * | 2012-08-28 | 2017-05-30 | Apple Inc. | Electronic devices with magnetic sensors |
US10495699B2 (en) | 2013-07-19 | 2019-12-03 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target |
US10145908B2 (en) | 2013-07-19 | 2018-12-04 | Allegro Microsystems, Llc | Method and apparatus for magnetic sensor producing a changing magnetic field |
JP6228663B2 (ja) * | 2014-04-07 | 2017-11-08 | アルプス電気株式会社 | 電流検知装置 |
US9790784B2 (en) * | 2014-05-20 | 2017-10-17 | Aps Technology, Inc. | Telemetry system, current sensor, and related methods for a drilling system |
US9823092B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
KR101607025B1 (ko) * | 2014-10-31 | 2016-04-12 | 대성전기공업 주식회사 | 플럭스 게이트 전류 감지 유니트 |
US9976413B2 (en) | 2015-02-20 | 2018-05-22 | Aps Technology, Inc. | Pressure locking device for downhole tools |
US10012518B2 (en) | 2016-06-08 | 2018-07-03 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a proximity of an object |
US10996289B2 (en) | 2017-05-26 | 2021-05-04 | Allegro Microsystems, Llc | Coil actuated position sensor with reflected magnetic field |
US10324141B2 (en) | 2017-05-26 | 2019-06-18 | Allegro Microsystems, Llc | Packages for coil actuated position sensors |
US10310028B2 (en) | 2017-05-26 | 2019-06-04 | Allegro Microsystems, Llc | Coil actuated pressure sensor |
US10641842B2 (en) | 2017-05-26 | 2020-05-05 | Allegro Microsystems, Llc | Targets for coil actuated position sensors |
US10837943B2 (en) | 2017-05-26 | 2020-11-17 | Allegro Microsystems, Llc | Magnetic field sensor with error calculation |
US11428755B2 (en) | 2017-05-26 | 2022-08-30 | Allegro Microsystems, Llc | Coil actuated sensor with sensitivity detection |
JP6620796B2 (ja) | 2017-07-28 | 2019-12-18 | Tdk株式会社 | オフセット推定装置および方法、磁気センサの補正装置ならびに電流センサ |
US10823586B2 (en) | 2018-12-26 | 2020-11-03 | Allegro Microsystems, Llc | Magnetic field sensor having unequally spaced magnetic field sensing elements |
US11061084B2 (en) | 2019-03-07 | 2021-07-13 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deflectable substrate |
US10955306B2 (en) | 2019-04-22 | 2021-03-23 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deformable substrate |
CN110187655A (zh) * | 2019-05-08 | 2019-08-30 | 张慧 | 一种大通流磁环的设计方法 |
US11237020B2 (en) | 2019-11-14 | 2022-02-01 | Allegro Microsystems, Llc | Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet |
US11280637B2 (en) | 2019-11-14 | 2022-03-22 | Allegro Microsystems, Llc | High performance magnetic angle sensor |
US11262422B2 (en) | 2020-05-08 | 2022-03-01 | Allegro Microsystems, Llc | Stray-field-immune coil-activated position sensor |
GB2598365A (en) * | 2020-08-28 | 2022-03-02 | Eaton Intelligent Power Ltd | Current controlling element based on saturation of a magnetic circuit |
US11493361B2 (en) | 2021-02-26 | 2022-11-08 | Allegro Microsystems, Llc | Stray field immune coil-activated sensor |
US11578997B1 (en) | 2021-08-24 | 2023-02-14 | Allegro Microsystems, Llc | Angle sensor using eddy currents |
JP2023119633A (ja) * | 2022-02-17 | 2023-08-29 | Tdk株式会社 | 磁気センサ |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0815322A (ja) | 1994-06-30 | 1996-01-19 | Hioki Ee Corp | 電流センサ |
JPH08179023A (ja) * | 1994-12-27 | 1996-07-12 | Res Dev Corp Of Japan | 半導体基板に集積される磁気検出素子及び磁気検出モジュール |
JP2008516255A (ja) * | 2004-10-12 | 2008-05-15 | アレグロ・マイクロシステムズ・インコーポレーテッド | 所定の温度係数を有する抵抗器 |
JP2008275321A (ja) * | 2007-04-25 | 2008-11-13 | Tdk Corp | 電流センサ |
JP2008286739A (ja) * | 2007-05-21 | 2008-11-27 | Mitsubishi Electric Corp | 磁界検出器及び回転角度検出装置 |
WO2009031539A1 (ja) * | 2007-09-03 | 2009-03-12 | Alps Electric Co., Ltd. | 磁気検出装置 |
JP2009141707A (ja) | 2007-12-06 | 2009-06-25 | Toshiba Corp | 移動通信システムとそのゲートウェイ装置、集線装置およびハンドオーバ制御方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH651701A5 (de) * | 1980-12-24 | 1985-09-30 | Landis & Gyr Ag | Kompensierter messwandler. |
US6429640B1 (en) * | 2000-08-21 | 2002-08-06 | The United States Of America As Represented By The Secretary Of The Air Force | GMR high current, wide dynamic range sensor |
US6949927B2 (en) * | 2001-08-27 | 2005-09-27 | International Rectifier Corporation | Magnetoresistive magnetic field sensors and motor control devices using same |
EP1706751B1 (en) * | 2003-12-23 | 2008-02-20 | Nxp B.V. | High sensitivity magnetic built-in current sensor |
US7365535B2 (en) * | 2005-11-23 | 2008-04-29 | Honeywell International Inc. | Closed-loop magnetic sensor system |
JP2007147460A (ja) | 2005-11-28 | 2007-06-14 | Denso Corp | 磁気平衡式電流センサ |
JP4788922B2 (ja) | 2007-05-07 | 2011-10-05 | Tdk株式会社 | 電流センサ |
JP4877095B2 (ja) * | 2007-06-25 | 2012-02-15 | Tdk株式会社 | 電流センサおよびその製造方法 |
-
2010
- 2010-06-09 WO PCT/JP2010/059791 patent/WO2010143666A1/ja active Application Filing
- 2010-06-09 JP JP2011518562A patent/JP5250108B2/ja not_active Expired - Fee Related
- 2010-06-09 EP EP10786197.3A patent/EP2442117B1/en active Active
-
2011
- 2011-11-18 US US13/300,076 patent/US8519704B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0815322A (ja) | 1994-06-30 | 1996-01-19 | Hioki Ee Corp | 電流センサ |
JPH08179023A (ja) * | 1994-12-27 | 1996-07-12 | Res Dev Corp Of Japan | 半導体基板に集積される磁気検出素子及び磁気検出モジュール |
JP2008516255A (ja) * | 2004-10-12 | 2008-05-15 | アレグロ・マイクロシステムズ・インコーポレーテッド | 所定の温度係数を有する抵抗器 |
JP2008275321A (ja) * | 2007-04-25 | 2008-11-13 | Tdk Corp | 電流センサ |
JP2008286739A (ja) * | 2007-05-21 | 2008-11-27 | Mitsubishi Electric Corp | 磁界検出器及び回転角度検出装置 |
WO2009031539A1 (ja) * | 2007-09-03 | 2009-03-12 | Alps Electric Co., Ltd. | 磁気検出装置 |
JP2009141707A (ja) | 2007-12-06 | 2009-06-25 | Toshiba Corp | 移動通信システムとそのゲートウェイ装置、集線装置およびハンドオーバ制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2442117A4 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013152208A (ja) * | 2011-12-26 | 2013-08-08 | Hitachi Metals Ltd | 磁気センサデバイス、及び電流センサ回路 |
JP2014174061A (ja) * | 2013-03-11 | 2014-09-22 | Hitachi Metals Ltd | 磁気センサ装置 |
WO2014148437A1 (ja) * | 2013-03-18 | 2014-09-25 | 日立金属株式会社 | 磁気センサ |
JPWO2014148437A1 (ja) * | 2013-03-18 | 2017-02-16 | 日立金属株式会社 | 磁気センサ |
US9964602B2 (en) | 2013-03-18 | 2018-05-08 | Hitachi Metals, Ltd. | Magnetic sensor |
JP7513548B2 (ja) | 2017-05-08 | 2024-07-09 | ティディケイ-ミクロナス ゲー・エム・ベー・ハー | 磁場補償装置 |
JP2018189653A (ja) * | 2017-05-08 | 2018-11-29 | ティディケイ−ミクロナス ゲー・エム・ベー・ハー | 磁場補償装置 |
JP2021081450A (ja) * | 2017-05-08 | 2021-05-27 | ティディケイ−ミクロナス ゲー・エム・ベー・ハー | 磁場補償装置 |
DE102018114015A1 (de) | 2017-06-13 | 2018-12-13 | Tdk Corporation | Stromsensor |
JP2019002742A (ja) * | 2017-06-13 | 2019-01-10 | Tdk株式会社 | 電流センサ |
US11892477B2 (en) | 2017-06-13 | 2024-02-06 | Tdk Corporation | Current sensor having soft magnetic bodies for adjusting magnetic field intensity |
US11293950B2 (en) | 2017-06-13 | 2022-04-05 | Tdk Corporation | Current sensor having soft magnetic bodies for adjusting magnetic field intensity |
JP2019132719A (ja) * | 2018-01-31 | 2019-08-08 | 旭化成エレクトロニクス株式会社 | 磁気検出装置 |
US11002806B2 (en) | 2018-03-29 | 2021-05-11 | Asahi Kasei Microdevices Corporation | Magnetic field detection device |
JP2022100322A (ja) * | 2018-03-29 | 2022-07-05 | 旭化成エレクトロニクス株式会社 | 磁気検出装置 |
JP2019174438A (ja) * | 2018-03-29 | 2019-10-10 | 旭化成エレクトロニクス株式会社 | 磁気検出装置 |
JP7232647B2 (ja) | 2018-03-29 | 2023-03-03 | 旭化成エレクトロニクス株式会社 | 磁気検出装置 |
JP7324331B2 (ja) | 2018-03-29 | 2023-08-09 | 旭化成エレクトロニクス株式会社 | 磁気検出装置 |
JP2019215182A (ja) * | 2018-06-11 | 2019-12-19 | Tdk株式会社 | 磁気センサ |
WO2019239933A1 (ja) * | 2018-06-11 | 2019-12-19 | Tdk株式会社 | 磁気センサ |
JP2019219294A (ja) * | 2018-06-20 | 2019-12-26 | Tdk株式会社 | 磁気センサ |
JP7119633B2 (ja) | 2018-06-20 | 2022-08-17 | Tdk株式会社 | 磁気センサ |
JPWO2020054112A1 (ja) * | 2018-09-12 | 2021-08-30 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP7096349B2 (ja) | 2018-09-12 | 2022-07-05 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP2020071198A (ja) * | 2018-11-02 | 2020-05-07 | Tdk株式会社 | 磁気センサ |
JP7115224B2 (ja) | 2018-11-02 | 2022-08-09 | Tdk株式会社 | 磁気センサ |
JP2021124289A (ja) * | 2020-01-31 | 2021-08-30 | Tdk株式会社 | 電流センサ、磁気センサ及び回路 |
JP7140149B2 (ja) | 2020-01-31 | 2022-09-21 | Tdk株式会社 | 電流センサ、磁気センサ及び回路 |
Also Published As
Publication number | Publication date |
---|---|
US20120062215A1 (en) | 2012-03-15 |
EP2442117A1 (en) | 2012-04-18 |
EP2442117B1 (en) | 2021-11-17 |
JP5250108B2 (ja) | 2013-07-31 |
EP2442117A4 (en) | 2017-06-21 |
US8519704B2 (en) | 2013-08-27 |
JPWO2010143666A1 (ja) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5250108B2 (ja) | 磁気平衡式電流センサ | |
US8487612B2 (en) | Current sensor | |
JP5411285B2 (ja) | 磁気平衡式電流センサ | |
JP5012939B2 (ja) | 電流センサ | |
JP5572208B2 (ja) | 磁気センサ及びそれを用いた磁気平衡式電流センサ | |
JP5487402B2 (ja) | 磁気平衡式電流センサ | |
JP2006125962A (ja) | 電流センサ | |
WO2012090631A1 (ja) | 磁気比例式電流センサ | |
US20120306491A1 (en) | Magnetic balance type current sensor | |
JP5540299B2 (ja) | 電流センサ | |
WO2011111537A1 (ja) | 電流センサ | |
JP5505817B2 (ja) | 磁気平衡式電流センサ | |
JP2012255796A (ja) | 磁気センサおよびその製造方法 | |
WO2011111747A1 (ja) | 磁気検出素子を備えた電流センサ | |
JP5540326B2 (ja) | 電流センサ | |
JP2013047610A (ja) | 磁気平衡式電流センサ | |
JPWO2011111457A1 (ja) | 磁気センサ及びそれを備えた磁気平衡式電流センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10786197 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011518562 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010786197 Country of ref document: EP |