WO2010143225A1 - Luminescent powder, method for producing same, luminescent element wherein luminescent powder is used, method for producing said luminescent element, and apparatus for producing luminescent powder - Google Patents
Luminescent powder, method for producing same, luminescent element wherein luminescent powder is used, method for producing said luminescent element, and apparatus for producing luminescent powder Download PDFInfo
- Publication number
- WO2010143225A1 WO2010143225A1 PCT/JP2009/002596 JP2009002596W WO2010143225A1 WO 2010143225 A1 WO2010143225 A1 WO 2010143225A1 JP 2009002596 W JP2009002596 W JP 2009002596W WO 2010143225 A1 WO2010143225 A1 WO 2010143225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- supercritical fluid
- light emitting
- luminescent powder
- crystal silicon
- single crystal
- Prior art date
Links
- GTAMZWKWRLPZDB-UHFFFAOYSA-N CCCCCC(CC)N=O Chemical compound CCCCCC(CC)N=O GTAMZWKWRLPZDB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/59—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
- C09K11/592—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
Definitions
- the present invention relates to a luminescent powder, a manufacturing method thereof, a light emitting element using the luminescent powder, a manufacturing method of the light emitting element, and a manufacturing apparatus of the luminescent powder.
- Each of the light emitting layers A, B, and C is made of silicon oxide and nanosilicon contained in the silicon oxide.
- the nanosilicon contained in the light emitting layers A, B, and C has different sizes. More specifically, the nanosilicon included in the light emitting layer A has a size of 1.5 to 2.0 nm, and the nanosilicon included in the light emitting layer B has a size of 2.0 to 2.5 nm.
- the nanosilicon contained in the light emitting layer C has a size of 2.5 to 3.5 nm.
- the silicon oxide film is manufactured by a high frequency sputtering method and a heat treatment. More specifically, the silicon oxide film includes an amorphous silicon oxide film a that is the source of the light emitting layer A, an amorphous silicon oxide film b that is the source of the light emitting layer B, and an amorphous silicon oxide film c that is the source of the light emitting layer C.
- the silicon oxide film includes an amorphous silicon oxide film a that is the source of the light emitting layer A, an amorphous silicon oxide film b that is the source of the light emitting layer B, and an amorphous silicon oxide film c that is the source of the light emitting layer C.
- the silicon oxide film is formed by sequentially laminating the amorphous silicon oxide films a, b, and c having different amounts of silicon atoms, and the light-emitting layers A and B containing nano-silicones having different sizes by heat-treating the laminated bodies. , C is manufactured.
- Another object of the present invention is to provide a method for producing a luminescent powder capable of emitting white light.
- Another object of the present invention is to provide an apparatus for producing a luminescent powder capable of emitting white light.
- the luminescent powder includes a first step of holding single crystal silicon in a supercritical fluid made of carbon dioxide, and laser ablation in which nano-sized crystal silicon jumps out of the single crystal silicon into the supercritical fluid.
- a method for producing a luminescent powder includes a first step of holding single crystal silicon in a supercritical fluid made of carbon dioxide, and a nanosize crystalline silicon from single crystal silicon to a supercritical fluid. A second step of irradiating the single crystal silicon with a laser beam having an intensity that causes laser ablation to jump out.
- At least one of the first and second electrodes is composed of a plurality of electrode pieces.
- the method for manufacturing a light emitting element includes a first step of manufacturing a plurality of light emitting powders, and a light emitting member made of a plurality of light emitting powders by collecting the plurality of light emitting powders.
- the first step includes a first sub-step of holding single crystal silicon in a supercritical fluid made of carbon dioxide, and laser ablation in which nano-sized crystal silicon jumps out of the single crystal silicon into the supercritical fluid.
- the luminescent powder can emit white light.
- FIG. 1 It is sectional drawing of the luminescent powder by embodiment of this invention. It is the schematic which shows the structure of the manufacturing apparatus of the luminescent powder by embodiment of this invention. It is process drawing which shows the manufacturing method of the luminescent powder shown in FIG. It is a schematic diagram of the luminescent powder deposited on the substrate. It is an optical microscope image of the several luminescent powder arrange
- FIG. Fig. 4 It is another fluorescence microscope image of the luminescent powder manufactured according to the process shown in FIG. Fig. 4 is a photoluminescence spectrum of a luminescent powder produced according to the process shown in Fig. 3. It is a figure which shows the pressure dependence of the integrated intensity
- FIG. 1 is a cross-sectional view of a luminescent powder according to an embodiment of the present invention.
- luminescent powder 10 according to an embodiment of the present invention includes crystalline silicon 1 and silicon oxide 2.
- the silicon oxide 2 covers the crystalline silicon 1. Therefore, the luminescent powder 10 has a core / shell structure with the crystalline silicon 1 as a core.
- the crystalline silicon 1 is made of single crystal silicon and has a spherical shape.
- the crystalline silicon 1 has an average particle diameter of about 2 nm.
- the silicon oxide 2 is made of silicon dioxide (SiO 2 ) and has an average thickness of about 2 nm. Therefore, the luminescent powder 10 has a spherical shape having a diameter of about 6 nm.
- FIG. 2 is a schematic diagram showing a configuration of a luminescent powder manufacturing apparatus according to an embodiment of the present invention.
- the luminescent powder manufacturing apparatus 100 includes a cylinder 20, pipes 21 and 23, a pump 22, a cooler 24, a reaction vessel 25, a laser device 26, a lens 27, and a heater. 28, a thermocouple 29, a temperature detector 30, and a controller 31.
- the cylinder 20 has a pressure valve 201 and is a siphon type CO 2 cylinder.
- the cylinder 20 stores gaseous carbon dioxide (CO 2 ).
- the pipe 21 is an oil-free pipe and supplies CO 2 stored in the cylinder 20 to the pump 22 via the pressure valve 201.
- the pressure valve 201 is sealed with a CO 2 swelling-resistant material (for example, ethylene propylene rubber, nitrile rubber, and chloropyrene rubber).
- the pump 22 is manufactured by removing the lubricant. Then, the pump 22 supplies CO 2 supplied from the cylinder 20 via the pipe 21 into the reaction vessel 25 via the pipe 23. In this case, the pump 22 supplies a supercritical fluid composed of CO 2 via the CO 2 piping 23 so that the pressure generated in the reaction vessel 25 within the reaction vessel 25.
- the lens 27 condenses the laser light emitted from the laser device 26 and irradiates the silicon lump 40 with the condensed laser light through the sapphire window 252. In this case, the lens 27 condenses the laser light so that the energy per pulse is changed from 19 mJ / pulse to 800 mJ / pulse.
- the silicon lump 40 is made of, for example, a cube having a side length of 1 cm and has a (111) plane orientation.
- the substrate 50 is made of, for example, carbon (C) or stainless steel. And the board
- the heater 28 heats the reaction vessel 25 to a temperature at which CO 2 in the reaction vessel 25 becomes a supercritical fluid in accordance with control from the controller 31.
- the thermocouple 29 detects an electromotive force due to the temperature of CO 2 in the reaction vessel 25 and outputs the detected electromotive force to the temperature detector 30.
- the temperature detector 30 receives an electromotive force from the thermocouple 29, and detects the temperature T of CO 2 based on the received electromotive force. Then, the temperature detector 30 outputs the detected temperature T to the controller 31.
- a high-pressure valve is also used in the path for supplying CO 2 from the cylinder 20 to the reaction vessel 25.
- the high-pressure valve (diaphragm type) is connected to the oil-free valve. Become.
- the pump 22 supplies CO 2 into the reaction vessel 25 so that the pressure in the reaction vessel 25 is in the range of 4.56 MPa to 14.8 MPa.
- the heater 28 heats the reaction container 25 so that the temperature T of CO 2 in the reaction container 25 is in the range of 40 ° C. to 50 ° C.
- the pressure in the reaction vessel 25 is in the range of 4.56 MPa to 14.8 MPa, and the temperature T of CO 2 in the reaction vessel 25 is not less than the critical temperature of 31 ° C., for example, in the range of 40 ° C. to 50 ° C. If it becomes, the CO 2 in the reaction vessel 25 becomes a supercritical fluid.
- the gaseous CO 2 output from the pump 22 is cooled by the cooler 24 so as to become liquid CO 2.
- liquid CO 2 is more gaseous CO 2.
- the pressure of CO 2 in the reaction vessel 25 is easily set to a pressure of 4.56 MPa to 14.8 MPa by the pump 22 because it is easier to pressurize by the pump 22 than 2 . That is, it is for stably producing a supercritical fluid composed of CO 2 .
- the pressure valve 201 supplies gaseous CO 2 from the cylinder 20 to the pump 22 via the pipe 21, and the pump 22 outputs CO 2 into the pipe 23.
- the cooler 24 cools gaseous CO 2 to liquid CO 2 .
- the pump 22 supplies the cooled liquid CO 2 to the reaction vessel 25 so as to have a pressure at which a supercritical fluid is generated in the reaction vessel 25 (step S2).
- thermocouple 29 detects an electromotive force due to the temperature of CO 2 in the reaction vessel 25 and outputs the detected electromotive force to the temperature detector 30.
- the temperature detector 30 detects the temperature T of CO 2 in the reaction vessel 25 based on the electromotive force received from the thermocouple 29 and outputs the detected temperature T to the controller 31.
- the laser device 26 stops the laser beam irradiation (step S5).
- nano products are grown in the reaction vessel 25 for the growth time determined by the pressure in the reaction vessel 25 (step S6). Due to this growth, crystalline silicon that has jumped into the supercritical fluid is cooled by supercritical CO 2 at the nanosecond to picosecond term scale immediately after laser light irradiation, and emits light while moving downward in the supercritical fluid. The luminescent powder 10 is deposited on the substrate 50. During these periods, the reaction vessel 25 is controlled by the controller 31 so as to have the same temperature.
- the growth time is 4 to 10 minutes when the pressure in the reaction vessel 25 is 4.56 MPa, and 1 hour when the pressure in the reaction vessel 25 is 11.0 MPa. When the internal pressure is 14.8 MPa, it is 2 hours. These times were determined based on the calculated time for 100 nm particles to sink by 1 cm.
- the growth time determined by the pressure of the supercritical fluid is generated by the CO 2 in the reaction vessel 25 and the laser ablation.
- the crystalline silicon is cooled and the luminescent powder 10 is deposited on the substrate 50.
- the laser device 26 condenses the laser light by the lens 27 and irradiates the silicon lump 40 with the laser light having an intensity of 800 mJ / pulse.
- the laser device 26 is not limited to this, and the laser device 26 uses laser light having an intensity of 200 mJ / pulse or more, which is a critical intensity at which laser ablation occurs in which nano-sized crystalline silicon jumps out of the silicon mass 40 into the supercritical fluid. What is necessary is just to irradiate the silicon lump 40 via 27.
- a plurality of luminescent powders 10 forming a network structure were collected and analyzed by EPMA (Electron Probe Micro Analyzer).
- FIG. 6 is a diagram showing an analysis result by small-angle X-ray scattering. X-ray small angle scattering was measured using CuK ⁇ rays having a wavelength of 1.5 mm.
- Curve k1 shows the analysis result by X-ray small angle scattering of the luminescent powder 10 manufactured by setting the pressure of the supercritical fluid made of CO 2 to 4.56 MPa. Furthermore, a curve k2 shows the analysis result by X-ray small angle scattering of the luminescent powder 10 manufactured by setting the pressure of the supercritical fluid made of CO 2 to 10.4 MPa. Furthermore, the curve k3 shows a typical spectrum of X-ray small angle scattering.
- the luminescent powder 10 was composed of Si having a diameter of about 2 nm and SiO 2 having a thickness of about 2 nm. .
- the luminescent powder 10 emits white light blue as a whole and emits white light in the region indicated by the arrow A.
- FIG. 9 is another optical microscope image of a plurality of luminescent powders arranged on a stainless steel substrate.
- the optical microscope image was taken under the same shooting conditions as those of the optical microscope image shown in FIG. Referring to FIG. 9, a product composed of a plurality of luminescent powders 10 is generated. And a product has a projection part.
- FIG. 10 is another fluorescence microscopic image of the luminescent powder 10 manufactured according to the process shown in FIG.
- the excitation wavelength of the luminescent powder 10 when a fluorescent microscope image is taken is 325 nm, and the intensity of the excitation light is 20 mW.
- the fluorescence microscope image was image
- FIG. 11 is a photoluminescence spectrum of the luminescent powder 10 produced according to the process shown in FIG. In FIG. 11, the horizontal axis represents wavelength (or energy), and the vertical axis represents intensity.
- the excitation wavelength of the luminescent powder 10 when measuring photoluminescence is 325 nm, and the intensity of the excitation light is 2 mW.
- a laser beam having a wavelength of 325 nm is irradiated onto the sample by epi-illumination (the intensity of the excitation light immediately before the sample is several tens of ⁇ W), and light emitted from the sample is collected by an ultraviolet-compatible objective lens.
- the wavelength was dispersed by a single-type spectrometer, and the spectrum was measured by a CCD camera.
- an instrument function is obtained based on an intensity-corrected light source compliant with the National Institute of Standards and Technology (NIST), and the spectral sensitivity characteristic is calibrated using the device function. The measurement was performed at normal temperature and normal pressure.
- FIG. 12 is a diagram showing the pressure dependence of the integrated intensity of the emission spectrum.
- the horizontal axis represents the pressure of the supercritical fluid at the time of manufacturing the luminescent powder 10
- the vertical axis represents the integrated intensity.
- Curve k9 shows the pressure dependence of the integrated intensity of the emission spectrum 40 minutes after producing the luminescent powder 10
- curve k10 shows the emission spectrum two days after producing the luminescent powder 10.
- the pressure dependence of the integrated intensity is shown
- the curve k11 shows the pressure dependence of the integrated intensity of the emission spectrum two months after the luminescent powder 10 is manufactured.
- the integrated intensity of the emission spectrum after 40 minutes from the production of the luminescent powder 10 is substantially constant with respect to the pressure of the supercritical fluid (see curve k9).
- the luminous powder 10 after two months from the production of the luminous powder 10 has a maximum luminous intensity (integrated intensity) of about 100 times (see curves k9 and k11).
- the emission intensity can be controlled by controlling the pressure of the supercritical fluid when the luminescent powder 10 is manufactured.
- the emission intensity (integrated intensity) of the luminescent powder 10 becomes stronger as the elapsed time after the luminescent powder 10 is manufactured becomes longer (see curves k9 to k11).
- steps S1 to S3 constitute a “first process” for holding single crystal silicon in a supercritical fluid made of carbon dioxide.
- step S4 by irradiating the silicon lump 40 made of single crystal silicon with laser light having an intensity that causes laser ablation, the nano-sized crystalline silicon jumps out of the silicon lump 40 into the supercritical fluid.
- Step S4 constitutes a “second step” of irradiating the single crystal silicon with a laser beam having an intensity that causes laser ablation in which nano-sized crystal silicon jumps out of the single crystal silicon into the supercritical fluid.
- the crystalline silicon jumps out of the silicon lump 40 into the supercritical fluid by laser ablation, and the luminescent powder 10 is manufactured if the jumped crystalline silicon is cooled for an arbitrary time. Even if the sample is taken out before the time elapses, the luminescent powder 10 can be obtained. Therefore, the luminescent powder according to the embodiment of the present invention only needs to be manufactured by the first and second steps described above.
- FIG. 13 is a cross-sectional view showing the configuration of the light emitting device according to the embodiment of the present invention.
- a light emitting device 200 according to an embodiment of the present invention includes a transparent substrate 210, a transparent conductive film 220, a conductive polymer 230, a light emitting member 240, and an electrode 250.
- the transparent substrate 210 is made of a film or glass.
- the transparent conductive film 220 is made of any material for flexible displays such as ITO (Indium Tin Oxide), SnO 2 , ZnO, and organic EL (Electro Luminescence), and is formed around the transparent substrate 210.
- the conductive polymer 230 is made of any one of polyacetylene, polyparaphenylene, polyaniline, polythiophene, and polyparaphenylene vinylene.
- the conductive polymer 230 is disposed between the transparent conductive film 220 and the light emitting member 240 in contact with the transparent conductive film 220 and the light emitting member 240.
- the light emitting member 240 is composed of a plurality of laminated light emitting powders 10.
- the light emitting member 240 is disposed between the conductive polymer 230 and the electrode 250 in contact with the conductive polymer 230 and the electrode 250.
- the light emitting element 200 emits white light when a voltage of 3.82 V is applied between the transparent conductive film 220 and the electrode 250, and a voltage of 3.3 V is generated between the transparent conductive film 220 and the electrode 250.
- a voltage of 3.82 V is applied between the transparent conductive film 220 and the electrode 250
- a voltage of 3.3 V is generated between the transparent conductive film 220 and the electrode 250.
- FIG. 14 is a process diagram showing a method of manufacturing the light emitting device 200 shown in FIG. Referring to FIG. 14, when the manufacture of light emitting element 200 is started, a plurality of light emitting powders 10 are manufactured according to the process shown in FIG. 3 (step S11).
- step S12 a plurality of luminescent powders 10 are collected and a light emitting member 240 made of the plurality of luminescent powders 10 is manufactured.
- the light emitting member 240 is bonded to the transparent conductive film 220 by the conductive polymer 230 (step S13).
- the electrode 250 is formed on the light emitting member 240 by any of sputtering, vapor deposition, and ink jet method (step S14). Thereby, the light emitting element 200 is completed.
- FIG. 15 is a cross-sectional view showing the configuration of another light emitting device according to the embodiment of the present invention.
- the light emitting device according to the embodiment of the present invention may be a light emitting device 200A shown in FIG.
- the region of the light emitting member 240 in contact with the electrode piece 261 emits white light
- the region of the light emitting member 240 in contact with the electrode piece 262 emits blue light
- the region of the light emitting member 240 in contact with the electrode piece 263 is green.
- the region of the light emitting member 240 that emits light and contacts the electrode piece 264 emits red light.
- the light emitting element 200A is manufactured according to a process of adding a step of patterning the electrode 260 into electrode pieces 261 to 264 by photolithography after step S14 shown in FIG.
- the electrode 250 may be made of a transparent conductive film such as ITO.
- the light emitting element 200A may include an n-type or p-type silicon wafer having a carrier concentration of 10 20 cm ⁇ 3 or more, instead of the transparent substrate 210 and the transparent conductive film 220. In this case, the emitted light is emitted in the lateral direction of the light emitting element 200A.
- the transparent conductive film 220 may be patterned in the same manner as the electrode 260.
- at least one of the two electrodes disposed on both sides of the light emitting member 240 may be patterned into a plurality of electrode pieces.
- the light emitting elements 200 and 200A described above are applied to lighting devices and display devices.
- the luminescence lifetime of silicon nanomaterials is assumed to be on the order of microseconds (in some cases on the order of nanoseconds or picoseconds), considering its size. Therefore, by using the switching circuit, the light emission / flashing becomes quick and the electric follow-up property is good. As a result, the light emitting elements 200 and 200A are more suitable for a moving image display than a liquid crystal display device.
- the luminescent powder 10 can be applied to an element for photoluminescence (PL).
- PL photoluminescence
- the conventional fluorescent lamp mercury is enclosed, and rare earth elements such as eurobium (Eu) and terbium (Tb) are excited by ultraviolet light of the enclosed mercury, and light of three primary colors is mixed to form a white fluorescent lamp. Therefore, when the above-described luminescent powder 10 is used in a fluorescent lamp, it can be used as a substitute for rare earth elements and a white fluorescent lamp can be realized by ultraviolet irradiation.
- the luminescent powder 10 can also be applied to a plasma display.
- the luminescent powder 10 is mixed with the ultraviolet transmissive polymer by mixing the luminescent powder 10 with the ultraviolet transmissive polymer together with the solvent, coating the solution on the inner wall of the glass, and then removing the solvent.
- the structure is solidified on the glass surface.
- the glass to be solidified may be any material as long as it is a transparent material, and the shape may be either a flat surface or a curved surface. Then, light is emitted from the inside by mercury discharge or rare gas discharge.
- the reaction vessel 25 holds the silicon lump 40.
- the reaction vessel 25 may hold a silicon wafer.
- the silicon wafer is held in the reaction vessel 25 so that the surface thereof is substantially perpendicular to the laser beam.
- the pump 22, the cooler 24, the heater 28, the thermocouple 29, the temperature detector 30 and the controller 31 generate a supercritical fluid made of CO 2 in the reaction vessel 25. Configure the “generator”.
- the present invention is applied to a luminescent powder capable of emitting white light.
- the present invention is also applied to a method for producing a luminescent powder capable of emitting white light.
- the present invention is applied to a light emitting element using a luminescent powder capable of emitting white light.
- the present invention is applied to a method for manufacturing a light-emitting element using a luminescent powder capable of emitting white light.
- the present invention is applied to an apparatus for producing a luminescent powder capable of emitting white light.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Luminescent Compositions (AREA)
Abstract
Luminescent powder (10) is produced with a first process wherein single-crystal silicon is maintained in a super-critical fluid comprising carbon dioxide and a second process wherein laser light, having an intensity which gives rise to laser ablation where nano-size silicon crystals are dispersed from the single-crystal silicon into the super-critical fluid, is directed onto the single-crystal silicon. As a result the luminescent powder (10) comprises crystalline silicon (1) which has a spherical form, with silicon oxide (2) covering the outside of the crystalline silicon (1). The diameter of the crystalline silicon (1) is about 2 nm and the thickness of the silicon oxide (2) is about 2 nm. Hence, the luminescent powder (10) has a spherical form of diameter about 6 nm.
Description
この発明は、発光粉体、その製造方法、発光粉体を用いた発光素子、発光素子の製造方法および発光粉体の製造装置に関するものである。
The present invention relates to a luminescent powder, a manufacturing method thereof, a light emitting element using the luminescent powder, a manufacturing method of the light emitting element, and a manufacturing apparatus of the luminescent powder.
従来、白色で発光する酸化ケイ素膜が知られている(特許文献1)。この酸化ケイ素膜は、青色で発光する発光層Aと、緑色で発光する発光層Bと、赤色で発光する発光層Cとを積層した構造からなる。
Conventionally, a silicon oxide film emitting white light is known (Patent Document 1). This silicon oxide film has a structure in which a light emitting layer A that emits blue light, a light emitting layer B that emits green light, and a light emitting layer C that emits red light are stacked.
発光層A,B,Cの各々は、酸化ケイ素と、酸化ケイ素中に含まれるナノシリコンとからなる。そして、発光層A,B,Cに含まれるナノシリコンは、それぞれ、サイズが異なる。より具体的には、発光層Aに含まれるナノシリコンは、1.5~2.0nmのサイズを有し、発光層Bに含まれるナノシリコンは、2.0~2.5nmのサイズを有し、発光層Cに含まれるナノシリコンは、2.5~3.5nmのサイズを有する。
Each of the light emitting layers A, B, and C is made of silicon oxide and nanosilicon contained in the silicon oxide. The nanosilicon contained in the light emitting layers A, B, and C has different sizes. More specifically, the nanosilicon included in the light emitting layer A has a size of 1.5 to 2.0 nm, and the nanosilicon included in the light emitting layer B has a size of 2.0 to 2.5 nm. The nanosilicon contained in the light emitting layer C has a size of 2.5 to 3.5 nm.
酸化ケイ素膜は、高周波スパッタリング法および熱処理によって製造される。より具体的には、酸化ケイ素膜は、発光層Aの元になるアモルファス酸化ケイ素膜a、発光層Bの元になるアモルファス酸化ケイ素膜b、および発光層Cの元になるアモルファス酸化ケイ素膜cを高周波スパッタリング法によって基板上に順次積層し、その積層した積層体を熱処理することによって製造される。
The silicon oxide film is manufactured by a high frequency sputtering method and a heat treatment. More specifically, the silicon oxide film includes an amorphous silicon oxide film a that is the source of the light emitting layer A, an amorphous silicon oxide film b that is the source of the light emitting layer B, and an amorphous silicon oxide film c that is the source of the light emitting layer C. Are sequentially laminated on a substrate by a high frequency sputtering method, and the laminated body is heat-treated.
この場合、アモルファス酸化ケイ素膜a,b,cは、相互に異なる量のシリコン原子を含む。
In this case, the amorphous silicon oxide films a, b, and c contain different amounts of silicon atoms.
このように、酸化ケイ素膜は、シリコン原子の量が異なるアモルファス酸化ケイ素膜a,b,cを順次積層し、その積層した積層体を熱処理して異なるサイズのナノシリコンを含む発光層A,B,Cを形成することによって製造される。
特開2007-63378号公報
As described above, the silicon oxide film is formed by sequentially laminating the amorphous silicon oxide films a, b, and c having different amounts of silicon atoms, and the light-emitting layers A and B containing nano-silicones having different sizes by heat-treating the laminated bodies. , C is manufactured.
JP 2007-63378 A
しかし、特許文献1に記載されたナノシリコンは、青、緑、および赤のいずれか1つの色で発光するため、白色で発光する発光粉体を製造することが困難であるという問題がある。
However, since the nanosilicon described in Patent Document 1 emits light in any one color of blue, green, and red, there is a problem that it is difficult to produce a luminescent powder that emits white light.
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、白色で発光可能な発光粉体を提供することである。
Therefore, the present invention has been made to solve such a problem, and an object thereof is to provide a luminescent powder capable of emitting white light.
また、この発明の別の目的は、白色で発光可能な発光粉体の製造方法を提供することである。
Another object of the present invention is to provide a method for producing a luminescent powder capable of emitting white light.
さらに、この発明の別の目的は、白色で発光可能な発光粉体を用いた発光素子を提供することである。
Furthermore, another object of the present invention is to provide a light emitting device using a luminescent powder capable of emitting white light.
さらに、この発明の別の目的は、白色で発光可能な発光粉体を用いた発光素子の製造方法を提供することである。
Furthermore, another object of the present invention is to provide a method for manufacturing a light emitting device using a luminescent powder capable of emitting white light.
さらに、この発明の別の目的は、白色で発光可能な発光粉体の製造装置を提供することである。
Furthermore, another object of the present invention is to provide an apparatus for producing a luminescent powder capable of emitting white light.
この発明によれば、発光粉体は、二酸化炭素からなる超臨界流体中に単結晶シリコンを保持する第1の工程と、ナノサイズの結晶シリコンが単結晶シリコンから超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を単結晶シリコンに照射する第2の工程とを実行して製造される発光粉体である。
According to this invention, the luminescent powder includes a first step of holding single crystal silicon in a supercritical fluid made of carbon dioxide, and laser ablation in which nano-sized crystal silicon jumps out of the single crystal silicon into the supercritical fluid. Is a luminescent powder produced by performing a second step of irradiating a single crystal silicon with a laser beam having an intensity of generating
好ましくは、発光粉体は、超臨界流体中へ飛び出したナノサイズの結晶シリコンを超臨界流体の圧力によって決定された成長時間だけ成長させる第3の工程をさらに実行して製造される発光粉体である。
Preferably, the luminescent powder is produced by further performing a third step of growing nano-sized crystalline silicon that has jumped into the supercritical fluid for a growth time determined by the pressure of the supercritical fluid. It is.
好ましくは、第3の工程において、ナノサイズの結晶シリコンは、超臨界流体の圧力が高い程、長い時間、成長し、超臨界流体の圧力が低い程、短い時間、成長する。
Preferably, in the third step, the nano-sized crystalline silicon grows for a longer time as the pressure of the supercritical fluid is higher, and grows for a shorter time as the pressure of the supercritical fluid is lower.
また、この発明によれば、発光粉体の製造方法は、二酸化炭素からなる超臨界流体中に単結晶シリコンを保持する第1の工程と、ナノサイズの結晶シリコンが単結晶シリコンから超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を単結晶シリコンに照射する第2の工程とを備える。
In addition, according to the present invention, a method for producing a luminescent powder includes a first step of holding single crystal silicon in a supercritical fluid made of carbon dioxide, and a nanosize crystalline silicon from single crystal silicon to a supercritical fluid. A second step of irradiating the single crystal silicon with a laser beam having an intensity that causes laser ablation to jump out.
好ましくは、発光粉体の製造方法は、超臨界流体中へ飛び出したナノサイズの結晶シリコンを超臨界流体の圧力によって決定された成長時間だけ成長させる第3の工程をさらに備える。
Preferably, the method for producing a luminescent powder further includes a third step of growing nano-sized crystalline silicon that has jumped into the supercritical fluid for a growth time determined by the pressure of the supercritical fluid.
好ましくは、第3の工程において、ナノサイズの結晶シリコンは、超臨界流体の圧力が高い程、長い時間、成長し、超臨界流体の圧力が低い程、短い時間、成長する。
Preferably, in the third step, the nano-sized crystalline silicon grows for a longer time as the pressure of the supercritical fluid is higher, and grows for a shorter time as the pressure of the supercritical fluid is lower.
好ましくは、第1の工程は、単結晶シリコンを反応容器内に入れる第1のサブ工程と、二酸化炭素をサイフォン式のボンベから取り出し、耐膨潤性のある材料によってシールされた圧力弁、潤滑材を取り除いて作製されたポンプ、およびオイルフリーの配管を用いて超臨界流体が生成される圧力になるように反応容器に、取り出した二酸化炭素を供給する第2のサブ工程と、超臨界流体が生成される温度になるように反応容器を加熱する第3のサブ工程とを含む。
Preferably, the first step includes a first sub-step of putting single crystal silicon into the reaction vessel, a pressure valve and a lubricant which are taken out of a siphon type cylinder and sealed with a swelling-resistant material. A second sub-process for supplying the extracted carbon dioxide to the reaction vessel so as to obtain a pressure at which the supercritical fluid is generated using a pump produced by removing the oil and an oil-free pipe; And a third sub-step of heating the reaction vessel to a temperature that is generated.
さらに、この発明によれば、発光素子は、発光部材と、第1および第2の電極とを備える。第1の電極は、発光部材の一方の表面に形成される。第2の電極は、発光部材の他方の表面に形成される。そして、発光部材は、複数の発光粉体からなる。複数の発光粉体の各々は、請求項1から請求項3のいずれか1項に記載の発光粉体からなる。
Furthermore, according to the present invention, the light emitting element includes a light emitting member and first and second electrodes. The first electrode is formed on one surface of the light emitting member. The second electrode is formed on the other surface of the light emitting member. The light emitting member is made of a plurality of light emitting powders. Each of the plurality of luminescent powders comprises the luminescent powder according to any one of claims 1 to 3.
好ましくは、第1および第2の電極の少なくとも一方の電極は、透明導電膜からなる。
Preferably, at least one of the first and second electrodes is made of a transparent conductive film.
好ましくは、第1および第2の電極の少なくとも一方の電極は、複数の電極片からなる。
Preferably, at least one of the first and second electrodes is composed of a plurality of electrode pieces.
さらに、この発明によれば、発光素子の製造方法は、複数の発光粉体を製造する第1の工程と、複数の発光粉体を収集して複数の発光粉体からなる発光部材を製造する第2の工程と、基板上に形成された第1の電極に発光部材を接着する第3の工程と、発光部材上に第2の電極を形成する第4の工程とを備える。そして、第1の工程は、二酸化炭素からなる超臨界流体中に単結晶シリコンを保持する第1のサブ工程と、ナノサイズの結晶シリコンが単結晶シリコンから超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を単結晶シリコンに照射する第2のサブ工程とを含む。
Furthermore, according to this invention, the method for manufacturing a light emitting element includes a first step of manufacturing a plurality of light emitting powders, and a light emitting member made of a plurality of light emitting powders by collecting the plurality of light emitting powders. A second step, a third step of bonding the light emitting member to the first electrode formed on the substrate, and a fourth step of forming the second electrode on the light emitting member. The first step includes a first sub-step of holding single crystal silicon in a supercritical fluid made of carbon dioxide, and laser ablation in which nano-sized crystal silicon jumps out of the single crystal silicon into the supercritical fluid. And a second sub-step of irradiating the single crystal silicon with laser light having intensity.
さらに、この発明によれば、発光粉体の製造装置は、反応容器と、生成器と、レーザ装置とを備える。反応容器は、単結晶シリコンを保持する。生成器は、反応容器に液体の二酸化炭素を供給し、反応容器内に二酸化炭素からなる超臨界流体を生成する。レーザ装置は、ナノサイズの結晶シリコンが単結晶シリコンから超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を単結晶シリコンに照射する。
Furthermore, according to this invention, the manufacturing apparatus of luminescent powder is equipped with the reaction container, the generator, and the laser apparatus. The reaction vessel holds single crystal silicon. The generator supplies liquid carbon dioxide to the reaction vessel, and generates a supercritical fluid made of carbon dioxide in the reaction vessel. The laser device irradiates single crystal silicon with laser light having an intensity that causes laser ablation in which nano-sized crystal silicon jumps out of single crystal silicon into a supercritical fluid.
この発明によれば、発光粉体は、CO2からなる超臨界流体中に保持された単結晶シリコンからレーザアブレーションによって製造された発光粉体からなる。そして、発光粉体は、白色の蛍光を発する。
According to the present invention, the luminescent powder is made of luminescent powder produced by laser ablation from single crystal silicon held in a supercritical fluid made of CO 2 . The luminescent powder emits white fluorescence.
したがって、この発明によれば、発光粉体を白色で発光させることができる。
Therefore, according to the present invention, the luminescent powder can emit white light.
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
図1は、この発明の実施の形態による発光粉体の断面図である。図1を参照して、この発明の実施の形態による発光粉体10は、結晶シリコン1と、酸化シリコン2とを備える。酸化シリコン2は、結晶シリコン1を覆う。したがって、発光粉体10は、結晶シリコン1をコアとするコア/シェル構造からなる。
FIG. 1 is a cross-sectional view of a luminescent powder according to an embodiment of the present invention. Referring to FIG. 1, luminescent powder 10 according to an embodiment of the present invention includes crystalline silicon 1 and silicon oxide 2. The silicon oxide 2 covers the crystalline silicon 1. Therefore, the luminescent powder 10 has a core / shell structure with the crystalline silicon 1 as a core.
結晶シリコン1は、単結晶シリコンからなり、球形状を有する。そして、結晶シリコン1は、約2nmの平均粒径を有する。酸化シリコン2は、二酸化ケイ素(SiO2)からなり、平均で約2nmの厚みを有する。したがって、発光粉体10は、約6nmの直径を有する球形状からなる。
The crystalline silicon 1 is made of single crystal silicon and has a spherical shape. The crystalline silicon 1 has an average particle diameter of about 2 nm. The silicon oxide 2 is made of silicon dioxide (SiO 2 ) and has an average thickness of about 2 nm. Therefore, the luminescent powder 10 has a spherical shape having a diameter of about 6 nm.
図2は、この発明の実施の形態による発光粉体の製造装置の構成を示す概略図である。図2を参照して、発光粉体の製造装置100は、ボンベ20と、配管21,23と、ポンプ22と、冷却器24と、反応容器25と、レーザ装置26と、レンズ27と、ヒータ28と、熱電対29と、温度検出器30と、制御器31とを備える。
FIG. 2 is a schematic diagram showing a configuration of a luminescent powder manufacturing apparatus according to an embodiment of the present invention. Referring to FIG. 2, the luminescent powder manufacturing apparatus 100 includes a cylinder 20, pipes 21 and 23, a pump 22, a cooler 24, a reaction vessel 25, a laser device 26, a lens 27, and a heater. 28, a thermocouple 29, a temperature detector 30, and a controller 31.
ボンベ20は、配管21によってポンプ22に接続される。ポンプ22は、配管23によって反応容器25に接続される。ヒータ28は、反応容器25の周囲に接して配置される。これは、反応容器25内に生成された超臨界流体を均一に加熱するためである。熱電対29は、一方端側が反応容器25内に挿入され、他方端が温度検出器30に接続される。
The cylinder 20 is connected to the pump 22 by a pipe 21. The pump 22 is connected to the reaction vessel 25 by a pipe 23. The heater 28 is disposed in contact with the periphery of the reaction vessel 25. This is for heating the supercritical fluid generated in the reaction vessel 25 uniformly. One end of the thermocouple 29 is inserted into the reaction vessel 25 and the other end is connected to the temperature detector 30.
ボンベ20は、圧力弁201を有し、サイフォン式のCO2ボンベからなる。そして、ボンベ20は、気体の二酸化炭素(CO2)を収納する。配管21は、オイルフリーの配管からなり、ボンベ20に収納されたCO2を圧力弁201を介してポンプ22へ供給する。そして、圧力弁201は、CO2の耐膨潤性のある材料(たとえば、エチレンプロピレンゴム、ニトリルゴムおよびクロロピレンゴム)によってシールされている。
The cylinder 20 has a pressure valve 201 and is a siphon type CO 2 cylinder. The cylinder 20 stores gaseous carbon dioxide (CO 2 ). The pipe 21 is an oil-free pipe and supplies CO 2 stored in the cylinder 20 to the pump 22 via the pressure valve 201. The pressure valve 201 is sealed with a CO 2 swelling-resistant material (for example, ethylene propylene rubber, nitrile rubber, and chloropyrene rubber).
ポンプ22は、潤滑材を取り除いて作製されている。そして、ポンプ22は、配管21を介してボンベ20から供給されたCO2を配管23を介して反応容器25内へ供給する。この場合、ポンプ22は、CO2からなる超臨界流体が反応容器25内で生成される圧力になるようにCO2を配管23を介して反応容器25内へ供給する。
The pump 22 is manufactured by removing the lubricant. Then, the pump 22 supplies CO 2 supplied from the cylinder 20 via the pipe 21 into the reaction vessel 25 via the pipe 23. In this case, the pump 22 supplies a supercritical fluid composed of CO 2 via the CO 2 piping 23 so that the pressure generated in the reaction vessel 25 within the reaction vessel 25.
配管23は、オイルフリーの配管からなり、ポンプ22からのCO2を反応容器25内に供給する。冷却器24は、たとえば、氷からなり、ポンプ22から出力されたCO2が液体のCO2になる温度にCO2を冷却する。
The pipe 23 is an oil-free pipe, and supplies CO 2 from the pump 22 into the reaction vessel 25. Cooler 24, for example, made from the ice, CO 2 output from the pump 22 to cool the CO 2 to the temperature at which CO 2 liquid.
反応容器25は、耐膨潤性のある材料(たとえば、テフロン(登録商標)、カルレッツ、シリコンゴム)によってシールされている。そして、反応容器25は、中空の円筒形状を有し、たとえば、ステンレスからなる。また、反応容器25は、長さ方向の両端部に、透明な窓、たとえば、サファイア窓251,252を有する。また、反応容器25は、CO2からなる超臨界流体と、単結晶シリコンからなるシリコン塊40と、基板50とを保持する。
The reaction vessel 25 is sealed with a material having swelling resistance (for example, Teflon (registered trademark), Kalrez, silicon rubber). The reaction vessel 25 has a hollow cylindrical shape and is made of, for example, stainless steel. Moreover, the reaction container 25 has transparent windows, for example, sapphire windows 251 and 252 at both ends in the length direction. The reaction vessel 25 holds a supercritical fluid made of CO 2 , a silicon lump 40 made of single crystal silicon, and a substrate 50.
レーザ装置26は、たとえば、Nd:YAGレーザからなり、Nd:YAGレーザの2倍波である532nmの波長を有するレーザ光を出射する。このレーザ光は、パルス幅が10nsecであり、繰返し周波数が20Hzであり、フルーエンスが19mJ/cm2であるパルス光からなる。
The laser device 26 is composed of, for example, an Nd: YAG laser and emits laser light having a wavelength of 532 nm, which is a second harmonic of the Nd: YAG laser. This laser beam is composed of pulsed light having a pulse width of 10 nsec, a repetition frequency of 20 Hz, and a fluence of 19 mJ / cm 2 .
レンズ27は、レーザ装置26から出射されたレーザ光を集光し、その集光したレーザ光をサファイア窓252を介してシリコン塊40に照射する。この場合、レンズ27は、1パルス当たりのエネルギーが19mJ/パルスから800mJ/パルスになるようにレーザ光を集光する。また、シリコン塊40は、たとえば、1辺の長さが1cmである立方体からなり、(111)の面方位を有する。さらに、基板50は、たとえば、カーボン(C)またはステンレスからなる。そして、基板50は、レーザ光が照射されるシリコン塊40の面と反対面側に配置される。これは、小さいサイズの発光粉体10を得るためである。
The lens 27 condenses the laser light emitted from the laser device 26 and irradiates the silicon lump 40 with the condensed laser light through the sapphire window 252. In this case, the lens 27 condenses the laser light so that the energy per pulse is changed from 19 mJ / pulse to 800 mJ / pulse. The silicon lump 40 is made of, for example, a cube having a side length of 1 cm and has a (111) plane orientation. Further, the substrate 50 is made of, for example, carbon (C) or stainless steel. And the board | substrate 50 is arrange | positioned on the surface opposite to the surface of the silicon lump 40 to which a laser beam is irradiated. This is to obtain a light emitting powder 10 having a small size.
ヒータ28は、制御器31からの制御に従って、反応容器25内のCO2が超臨界流体になる温度に反応容器25を加熱する。熱電対29は、反応容器25内のCO2の温度に起因する起電力を検出し、その検出した起電力を温度検出器30へ出力する。
The heater 28 heats the reaction vessel 25 to a temperature at which CO 2 in the reaction vessel 25 becomes a supercritical fluid in accordance with control from the controller 31. The thermocouple 29 detects an electromotive force due to the temperature of CO 2 in the reaction vessel 25 and outputs the detected electromotive force to the temperature detector 30.
温度検出器30は、熱電対29から起電力を受け、その受けた起電力に基づいて、CO2の温度Tを検出する。そして、温度検出器30は、その検出した温度Tを制御器31へ出力する。
The temperature detector 30 receives an electromotive force from the thermocouple 29, and detects the temperature T of CO 2 based on the received electromotive force. Then, the temperature detector 30 outputs the detected temperature T to the controller 31.
制御器31は、温度検出器30から温度Tを受け、その受けた温度Tに基づいて、反応容器25内のCO2が超臨界流体になる温度Tcに反応容器25を加熱するようにヒータ28を制御する。
The controller 31 receives the temperature T from the temperature detector 30 and, based on the received temperature T, the heater 28 so as to heat the reaction vessel 25 to a temperature Tc at which CO 2 in the reaction vessel 25 becomes a supercritical fluid. To control.
CO2を反応容器25内に4.56MPa~14.8MPaの圧力範囲で詰める方法について説明する。図2においては、図示されていないが、製造装置100は、反応容器25内の圧力を測定する圧力計と、反応容器25内のCO2を外部へ放出するための開閉弁とを備えている。そして、反応容器25内の圧力が設定圧力(=4.56MPa~14.8MPaの圧力範囲のいずれかの圧力)よりも高い圧力になるように、ボンベ20、配管21,23、ポンプ22および冷却器24を用いてCO2を反応容器25内に詰める。そして、開閉弁を開いてCO2を外部へ放出し、反応容器25内の圧力を設定圧力に設定する。
A method of filling CO 2 in the reaction vessel 25 in the pressure range of 4.56 MPa to 14.8 MPa will be described. Although not shown in FIG. 2, the manufacturing apparatus 100 includes a pressure gauge for measuring the pressure in the reaction vessel 25 and an on-off valve for releasing CO 2 in the reaction vessel 25 to the outside. . The cylinder 20, the pipes 21, 23, the pump 22, and the cooling are performed so that the pressure in the reaction vessel 25 becomes higher than the set pressure (= any pressure in the pressure range of 4.56 MPa to 14.8 MPa). CO 2 is packed into the reaction vessel 25 using the vessel 24. Then, the on-off valve is opened to release CO 2 to the outside, and the pressure in the reaction vessel 25 is set to the set pressure.
なお、図2においては、図示されていないが、CO2をボンベ20から反応容器25へ供給する経路には、高圧バルブも使用されており、高圧バルブ(ダイヤフラム型)は、オイルフリーのバルブからなる。
Although not shown in FIG. 2, a high-pressure valve is also used in the path for supplying CO 2 from the cylinder 20 to the reaction vessel 25. The high-pressure valve (diaphragm type) is connected to the oil-free valve. Become.
この発明の実施の形態においては、ポンプ22は、反応容器25内の圧力が4.56MPa~14.8MPaの範囲になるようにCO2を反応容器25内に供給する。また、ヒータ28は、反応容器25内のCO2の温度Tが40℃~50℃の範囲になるように反応容器25を加熱する。
In the embodiment of the present invention, the pump 22 supplies CO 2 into the reaction vessel 25 so that the pressure in the reaction vessel 25 is in the range of 4.56 MPa to 14.8 MPa. The heater 28 heats the reaction container 25 so that the temperature T of CO 2 in the reaction container 25 is in the range of 40 ° C. to 50 ° C.
そして、反応容器25内の圧力が4.56MPa~14.8MPaの範囲になり、反応容器25内のCO2の温度Tが臨界温度である31℃以上、たとえば、40℃~50℃の範囲になれば、反応容器25内のCO2は、超臨界流体になる。
The pressure in the reaction vessel 25 is in the range of 4.56 MPa to 14.8 MPa, and the temperature T of CO 2 in the reaction vessel 25 is not less than the critical temperature of 31 ° C., for example, in the range of 40 ° C. to 50 ° C. If it becomes, the CO 2 in the reaction vessel 25 becomes a supercritical fluid.
また、製造装置100においては、ポンプ22から出力された気体のCO2を液体のCO2になるように冷却器24によって冷却しているが、これは、液体のCO2の方が気体のCO2よりもポンプ22によって加圧し易いため、反応容器25内のCO2の圧力をポンプ22によって4.56MPa~14.8MPaの圧力に設定し易くするためである。つまり、CO2からなる超臨界流体を安定して作り出すためである。
Further, in the manufacturing apparatus 100, the gaseous CO 2 output from the pump 22 is cooled by the cooler 24 so as to become liquid CO 2. This is because liquid CO 2 is more gaseous CO 2. This is because the pressure of CO 2 in the reaction vessel 25 is easily set to a pressure of 4.56 MPa to 14.8 MPa by the pump 22 because it is easier to pressurize by the pump 22 than 2 . That is, it is for stably producing a supercritical fluid composed of CO 2 .
さらに、製造装置100においては、上述したように、ポンプ22は、潤滑材を取り除いて作製されており、配管21,23および高圧バルブがそれぞれオイルフリーの配管およびバルブからなるので、CO2からなる超臨界流体を反応容器25内で安定させることができるとともに、製造された発光粉体10への汚染を抑制できる。
Further, in the manufacturing apparatus 100, as described above, the pump 22 is manufactured by removing the lubricant, since the pipe 21, 23 and the high pressure valve consists of oil-free respective piping and valves, consisting of CO 2 The supercritical fluid can be stabilized in the reaction vessel 25, and contamination of the manufactured luminescent powder 10 can be suppressed.
さらに、製造装置100においては、上述したように、ボンベ20は、サイフォン式のCO2ボンベからなるので、短時間で効率的に高密度のCO2をボンベ20から取り出すことができる。
Furthermore, in the manufacturing apparatus 100, as described above, since the cylinder 20 is a siphon type CO 2 cylinder, high-density CO 2 can be efficiently extracted from the cylinder 20 in a short time.
図3は、図1に示す発光粉体10の製造方法を示す工程図である。図3を参照して、発光粉体10の製造が開始されると、シリコン塊40が反応容器25内に設置される(ステップS1)。
FIG. 3 is a process diagram showing a manufacturing method of the luminescent powder 10 shown in FIG. Referring to FIG. 3, when the production of luminescent powder 10 is started, silicon lump 40 is installed in reaction vessel 25 (step S1).
そして、圧力弁201は、ボンベ20からの気体のCO2を配管21を介してポンプ22に供給し、ポンプ22は、CO2を配管23中へ出力する。そして、冷却器24は、気体のCO2を液体のCO2に冷却する。そうすると、ポンプ22は、その冷却された液体のCO2を反応容器25内で超臨界流体が生成される圧力になるように反応容器25へ供給する(ステップS2)。
The pressure valve 201 supplies gaseous CO 2 from the cylinder 20 to the pump 22 via the pipe 21, and the pump 22 outputs CO 2 into the pipe 23. The cooler 24 cools gaseous CO 2 to liquid CO 2 . Then, the pump 22 supplies the cooled liquid CO 2 to the reaction vessel 25 so as to have a pressure at which a supercritical fluid is generated in the reaction vessel 25 (step S2).
その後、熱電対29は、反応容器25内のCO2の温度に起因する起電力を検出し、その検出した起電力を温度検出器30へ出力する。温度検出器30は、熱電対29から受けた起電力に基づいて、反応容器25内のCO2の温度Tを検出し、その検出した温度Tを制御器31へ出力する。
Thereafter, the thermocouple 29 detects an electromotive force due to the temperature of CO 2 in the reaction vessel 25 and outputs the detected electromotive force to the temperature detector 30. The temperature detector 30 detects the temperature T of CO 2 in the reaction vessel 25 based on the electromotive force received from the thermocouple 29 and outputs the detected temperature T to the controller 31.
制御器31は、温度検出器30から受けた温度Tが、CO2からなる超臨界流体が生成される温度Tcになるようにヒータ28を制御する。そして、ヒータ28は、温度Tが温度Tcになるように反応容器25を加熱する(ステップS3)。
The controller 31 controls the heater 28 so that the temperature T received from the temperature detector 30 becomes the temperature Tc at which a supercritical fluid made of CO 2 is generated. Then, the heater 28 heats the reaction vessel 25 so that the temperature T becomes the temperature Tc (step S3).
引き続いて、レーザ装置26は、レーザアブレーションが生じる強度(=800mJ/パルス)を有するレーザ光をレンズ27を介してシリコン塊40に照射する(ステップS4)。この場合、レーザ光の照射時間は、約5分~10分である。また、レーザ装置26は、たとえば、約40秒、レーザ光をシリコン塊40の一箇所に照射し、その後、照射場所を数mmずらして、約40秒、レーザ光をシリコン塊40に照射することを繰り返す。また、反応容器25に入射されるレーザ光の入射位置を固定し、ターゲットとなるシリコン塊40を回転または移動させることによって、シリコン塊40におけるレーザ光の照射位置を変えてもよい。このように、レーザ光の照射場所を変えながらレーザ光をシリコン塊40に照射することによって、4倍程度、多くの発光粉体10を製造できる。
Subsequently, the laser device 26 irradiates the silicon block 40 with a laser beam having an intensity (= 800 mJ / pulse) at which laser ablation occurs (step S4). In this case, the laser beam irradiation time is about 5 to 10 minutes. Further, the laser device 26 irradiates the silicon lump 40 with laser light for about 40 seconds, and then irradiates the silicon lump 40 with laser light for about 40 seconds after shifting the irradiation position by several mm. repeat. Further, the irradiation position of the laser beam in the silicon lump 40 may be changed by fixing the incident position of the laser beam incident on the reaction vessel 25 and rotating or moving the silicon lump 40 as a target. Thus, by irradiating the silicon lump 40 with the laser light while changing the irradiation place of the laser light, many light emitting powders 10 can be manufactured about four times.
これによって、レーザアブレーションが起こり、ナノサイズの結晶シリコンがシリコン塊40から超臨界流体(=CO2)中へ飛び出す。
As a result, laser ablation occurs, and nano-sized crystalline silicon jumps out of the silicon mass 40 into the supercritical fluid (= CO 2 ).
レーザ光の照射時間が10分になると、レーザ装置26は、レーザ光の照射を停止する(ステップS5)。
When the laser beam irradiation time is 10 minutes, the laser device 26 stops the laser beam irradiation (step S5).
その後、反応容器25内の圧力によって決定された成長時間だけ反応容器25中でナノ生成物を成長させる(ステップS6)。この成長によって、超臨界流体中へ飛び出した結晶シリコンは、レーザ光の照射直後のナノ秒からピコ秒のタームスケールで超臨界CO2によって冷却され、超臨界流体中を下方向へ移動しながら発光粉体10になり、発光粉体10が基板50上に堆積される。これらの間、反応容器25は、同一温度になるように制御器31によって制御されている。
Thereafter, nano products are grown in the reaction vessel 25 for the growth time determined by the pressure in the reaction vessel 25 (step S6). Due to this growth, crystalline silicon that has jumped into the supercritical fluid is cooled by supercritical CO 2 at the nanosecond to picosecond term scale immediately after laser light irradiation, and emits light while moving downward in the supercritical fluid. The luminescent powder 10 is deposited on the substrate 50. During these periods, the reaction vessel 25 is controlled by the controller 31 so as to have the same temperature.
また、成長時間は、反応容器25内の圧力が4.56MPaである場合、4分~10分であり、反応容器25内の圧力が11.0MPaである場合、1時間であり、反応容器25内の圧力が14.8MPaである場合、2時間である。これらの時間は、100nmの粒子が1cmだけ沈む時間を計算し、その計算した時間に基づいて決定された。
The growth time is 4 to 10 minutes when the pressure in the reaction vessel 25 is 4.56 MPa, and 1 hour when the pressure in the reaction vessel 25 is 11.0 MPa. When the internal pressure is 14.8 MPa, it is 2 hours. These times were determined based on the calculated time for 100 nm particles to sink by 1 cm.
このように、成長時間は、CO2からなる超臨界流体の圧力が高い程、長い時間に設定され、CO2からなる超臨界流体の圧力が低い程、短い時間に設定される。
Thus, the growth time is set to a longer time as the pressure of the supercritical fluid made of CO 2 is higher, and is set to a shorter time as the pressure of the supercritical fluid made of CO 2 is lower.
そして、成長時間が経過すると、発光粉体10の製造が終了する。
Then, when the growth time has elapsed, the production of the luminescent powder 10 is finished.
上述したように、この発明の実施の形態においては、レーザ光の照射を停止した後、超臨界流体の圧力によって決定された成長時間だけ、反応容器25内のCO2およびレーザアブレーションによって生成された結晶シリコンを冷却し、発光粉体10を基板50上に堆積させる。
As described above, in the embodiment of the present invention, after the irradiation with the laser beam is stopped, the growth time determined by the pressure of the supercritical fluid is generated by the CO 2 in the reaction vessel 25 and the laser ablation. The crystalline silicon is cooled and the luminescent powder 10 is deposited on the substrate 50.
なお、図3に示す工程においては、レーザ装置26は、レーザ光をレンズ27によって集光し、800mJ/パルスの強度を有するレーザ光をシリコン塊40に照射すると説明したが、この発明の実施の形態においては、これに限らず、レーザ装置26は、ナノサイズの結晶シリコンがシリコン塊40から超臨界流体中へ飛び出すレーザアブレーションが生じる臨界強度である200mJ/パルス以上の強度を有するレーザ光をレンズ27を介してシリコン塊40に照射するものであればよい。
In the process shown in FIG. 3, it has been described that the laser device 26 condenses the laser light by the lens 27 and irradiates the silicon lump 40 with the laser light having an intensity of 800 mJ / pulse. In the embodiment, the laser device 26 is not limited to this, and the laser device 26 uses laser light having an intensity of 200 mJ / pulse or more, which is a critical intensity at which laser ablation occurs in which nano-sized crystalline silicon jumps out of the silicon mass 40 into the supercritical fluid. What is necessary is just to irradiate the silicon lump 40 via 27.
図4は、基板50上に堆積された発光粉体10の模式図である。なお、図4は、基板50上に堆積された複数の発光粉体10の一部を拡大して示したものである。
FIG. 4 is a schematic diagram of the luminescent powder 10 deposited on the substrate 50. FIG. 4 is an enlarged view of a part of the plurality of luminescent powders 10 deposited on the substrate 50.
図4を参照して、発光粉体10は、ネットワーク構造(図4の斜線部分)を形成するように基板50上に堆積される。
Referring to FIG. 4, the luminescent powder 10 is deposited on the substrate 50 so as to form a network structure (shaded portion in FIG. 4).
図5は、ステンレス基板上に配置された複数の発光粉体の光学顕微鏡像である。なお、図5は、図4に示すネットワーク構造を構成する複数の発光粉体10を収集してステンレス基板上に配置したときの光学顕微鏡像(明視野像)である。そして、明視野像は、ハロゲンランプを落射照明で照射し、常温および常圧下で高感度カラーCCDカメラ付き顕微鏡によって測定した。
FIG. 5 is an optical microscope image of a plurality of luminescent powders arranged on a stainless steel substrate. FIG. 5 is an optical microscope image (bright field image) when a plurality of luminescent powders 10 constituting the network structure shown in FIG. 4 are collected and arranged on a stainless steel substrate. The bright field image was measured with a microscope with a high-sensitivity color CCD camera at normal temperature and normal pressure by irradiating a halogen lamp with epi-illumination.
図5を参照して、複数の微小な粒が写っているのが解る。
Referring to FIG. 5, it can be seen that a plurality of minute grains are shown.
ネットワーク構造を形成する複数の発光粉体10を収集してEPMA(Electron Probe Micro Analyzer)による分析を行なった。
A plurality of luminescent powders 10 forming a network structure were collected and analyzed by EPMA (Electron Probe Micro Analyzer).
複数の発光粉体10の集合体をEPMAによって分析した結果、シリコン(Si)および酸素(O)が約1:2の組成比で検出された。したがって、発光粉体10の表面側は、SiO2からなることが解った。
As a result of analyzing the aggregate of the plurality of luminescent powders 10 by EPMA, silicon (Si) and oxygen (O) were detected at a composition ratio of about 1: 2. Thus, the surface side of the light emitting powder 10 was found to be composed of SiO 2.
また、複数の発光粉体10の集合体をHFに浸漬したものについてフォトルミネッセンスを測定した結果、Siの発光が検出された。したがって、発光粉体10の中心部は、Siからなることが解った。なお、発光粉体10のフッ酸処理は、30%のHFに発光粉体10を数時間浸漬することによって行なわれた。
Further, as a result of measuring photoluminescence of an assembly of a plurality of luminescent powders 10 immersed in HF, Si luminescence was detected. Therefore, it has been found that the central portion of the luminescent powder 10 is made of Si. The hydrofluoric acid treatment of the luminescent powder 10 was performed by immersing the luminescent powder 10 in 30% HF for several hours.
このEPMAの分析およびフォトルミネッセンスの測定結果によって、発光粉体10は、上述したようにSiをコアとし、SiO2をシェルとするコア/シェル構造からなることが実証された。
This EPMA analysis and photoluminescence measurement results demonstrated that the luminescent powder 10 has a core / shell structure with Si as the core and SiO 2 as the shell as described above.
次に、複数の発光粉体10の集合体をX線小角散乱(SAXS:Small Angle X-ray Scattering)によって分析した。
Next, the aggregate of the plurality of luminescent powders 10 was analyzed by X-ray small angle scattering (SAXS: Small Angle X-ray Scattering).
図6は、X線小角散乱による分析結果を示す図である。なお、X線小角散乱は、波長1.5ÅのCuKα線を用いて測定された。
FIG. 6 is a diagram showing an analysis result by small-angle X-ray scattering. X-ray small angle scattering was measured using CuKα rays having a wavelength of 1.5 mm.
図6において、横軸は、サイズを表し、縦軸は、存在量を表す。また、曲線k1は、CO2からなる超臨界流体の圧力を4.56MPaに設定して製造した発光粉体10のX線小角散乱による分析結果を示す。さらに、曲線k2は、CO2からなる超臨界流体の圧力を10.4MPaに設定して製造した発光粉体10のX線小角散乱による分析結果を示す。さらに、曲線k3は、X線小角散乱の典型的なスペクトルを示す。
In FIG. 6, the horizontal axis represents size, and the vertical axis represents abundance. Curve k1 shows the analysis result by X-ray small angle scattering of the luminescent powder 10 manufactured by setting the pressure of the supercritical fluid made of CO 2 to 4.56 MPa. Furthermore, a curve k2 shows the analysis result by X-ray small angle scattering of the luminescent powder 10 manufactured by setting the pressure of the supercritical fluid made of CO 2 to 10.4 MPa. Furthermore, the curve k3 shows a typical spectrum of X-ray small angle scattering.
図6を参照して、CO2からなる超臨界流体の圧力を4.56MPaに設定して製造した発光粉体10、およびCO2からなる超臨界流体の圧力を10.4MPaに設定して製造した発光粉体10は、共に、約0.5nm~約100nmの範囲のサイズを有し、約6nmのサイズに最も多く分布する(曲線k1,k2参照)。
Referring to FIG. 6, by setting the light emitting powder 10 was prepared by setting the pressure of the supercritical fluid consisting CO 2 to 4.56MPa, and the pressure of the supercritical fluid consisting CO 2 to 10.4MPa production Both of the luminescent powders 10 have a size in the range of about 0.5 nm to about 100 nm and are most distributed in a size of about 6 nm (see curves k1 and k2).
このサイズの分布と、上述したX線小角散乱の分析結果とを併せると、発光粉体10は、約2nmの直径を有するSiと、約2nmの厚みを有するSiO2とからなることが解った。
Combining this size distribution with the X-ray small angle scattering analysis results described above, it was found that the luminescent powder 10 was composed of Si having a diameter of about 2 nm and SiO 2 having a thickness of about 2 nm. .
図7は、ラマン散乱のスペクトルを示す図である。図7において、横軸は、ラマンシフトを表し、縦軸は、強度を表す。また、曲線k4は、CO2からなる超臨界流体の圧力を4.56MPaに設定して製造した発光粉体10のラマン散乱のスペクトルを示す。さらに、曲線k5は、CO2からなる超臨界流体の圧力を10.4MPaに設定して製造した発光粉体10のラマン散乱のスペクトルを示す。さらに、曲線k6は、CO2からなる超臨界流体の圧力を14.8MPaに設定して製造した発光粉体10のラマン散乱のスペクトルを示す。さらに、曲線k7は、単結晶シリコンのラマン散乱のスペクトルを示す。さらに、曲線k8は、アモルファスシリコンのラマン散乱のスペクトルを示す。
FIG. 7 is a diagram showing a spectrum of Raman scattering. In FIG. 7, the horizontal axis represents Raman shift, and the vertical axis represents intensity. A curve k4 shows the Raman scattering spectrum of the luminescent powder 10 produced by setting the pressure of the supercritical fluid made of CO 2 to 4.56 MPa. Furthermore, the curve k5 shows the spectrum of Raman scattering of the luminescent powder 10 produced by setting the pressure of the supercritical fluid made of CO 2 to 10.4 MPa. Furthermore, the curve k6 shows the spectrum of Raman scattering of the luminescent powder 10 produced by setting the pressure of the supercritical fluid made of CO 2 to 14.8 MPa. Furthermore, the curve k7 shows the spectrum of Raman scattering of single crystal silicon. Furthermore, the curve k8 shows the spectrum of Raman scattering of amorphous silicon.
図7を参照して、発光粉体10は、製造時の超臨界流体(CO2からなる)の圧力に拘わらず、ラマンシフトの鋭いピークが520cm-1に観測された(曲線k4~k6参照)。これは、単結晶シリコンのラマンシフトのピーク(520cm-1)と同じであり(曲線k7参照)、アモルファスシリコンのラマンシフトと全く異なるものである(曲線k8参照)。
Referring to FIG. 7, in the luminescent powder 10, a sharp peak of Raman shift was observed at 520 cm −1 regardless of the pressure of the supercritical fluid (consisting of CO 2 ) at the time of manufacture (see curves k4 to k6). ). This is the same as the peak of Raman shift (520 cm −1 ) of single crystal silicon (see curve k7), which is completely different from the Raman shift of amorphous silicon (see curve k8).
したがって、発光粉体10は、単結晶シリコンからなるコアを有することが解った。
Therefore, it was found that the luminescent powder 10 had a core made of single crystal silicon.
図8は、図3に示す工程に従って製造した発光粉体10の蛍光顕微鏡像である。なお、蛍光顕微鏡像を撮ったときの発光粉体10の励起波長は、325nmであり、励起光の強度は、20mWである。また、蛍光顕微鏡像は、常温および常圧下で撮影された。
FIG. 8 is a fluorescence microscope image of the luminescent powder 10 produced according to the process shown in FIG. In addition, the excitation wavelength of the luminescent powder 10 when a fluorescent microscope image is taken is 325 nm, and the intensity of the excitation light is 20 mW. Moreover, the fluorescence microscope image was image | photographed under normal temperature and normal pressure.
図8を参照して、発光粉体10は、全体的には、白水色に発光しており、矢印Aによって示される領域では、白色で発光しているのが解る。
Referring to FIG. 8, it is understood that the luminescent powder 10 emits white light blue as a whole and emits white light in the region indicated by the arrow A.
図9は、ステンレス基板上に配置された複数の発光粉体の他の光学顕微鏡像である。なお、光学顕微鏡像は、図5に示す光学顕微鏡像の撮影条件と同じ撮影条件によって撮影された。図9を参照して、複数の発光粉体10からなる生成物が生成されている。そして、生成物は、突起部分を有する。
FIG. 9 is another optical microscope image of a plurality of luminescent powders arranged on a stainless steel substrate. The optical microscope image was taken under the same shooting conditions as those of the optical microscope image shown in FIG. Referring to FIG. 9, a product composed of a plurality of luminescent powders 10 is generated. And a product has a projection part.
図10は、図3に示す工程に従って製造した発光粉体10の他の蛍光顕微鏡像である。なお、蛍光顕微鏡像を撮ったときの発光粉体10の励起波長は、325nmであり、励起光の強度は、20mWである。また、蛍光顕微鏡像は、常温および常圧下で撮影された。
FIG. 10 is another fluorescence microscopic image of the luminescent powder 10 manufactured according to the process shown in FIG. In addition, the excitation wavelength of the luminescent powder 10 when a fluorescent microscope image is taken is 325 nm, and the intensity of the excitation light is 20 mW. Moreover, the fluorescence microscope image was image | photographed under normal temperature and normal pressure.
図10を参照して、図9に示す領域と同じ領域が白色または白水色で発光している。図9および図10に示す領域は、図5および図8に示す領域よりも広い領域であり、数百μmのサイズを有する。
Referring to FIG. 10, the same region as shown in FIG. 9 emits light in white or light blue. The region shown in FIGS. 9 and 10 is wider than the region shown in FIGS. 5 and 8 and has a size of several hundred μm.
したがって、複数の発光粉体10の集合体は、数百μmの領域で全体的に発光することが確認された。
Therefore, it was confirmed that the aggregate of the plurality of luminescent powders 10 totally emitted light in the region of several hundred μm.
このように、CO2からなる超臨界流体中でシリコン塊40からレーザアブレーションによって製造された発光粉体10は、白水色または白色で発光することが実証された。
Thus, it was demonstrated that the luminescent powder 10 produced by laser ablation from the silicon mass 40 in a supercritical fluid made of CO 2 emits light blue or white light.
図11は、図3に示す工程に従って製造した発光粉体10のフォトルミネッセンスのスペクトルである。図11において、横軸は、波長(またはエネルギー)を表し、縦軸は、強度を表す。
FIG. 11 is a photoluminescence spectrum of the luminescent powder 10 produced according to the process shown in FIG. In FIG. 11, the horizontal axis represents wavelength (or energy), and the vertical axis represents intensity.
なお、フォトルミネッセンスを測定するときの発光粉体10の励起波長は、325nmであり、励起光の強度は、2mWである。そして、フォトルミネッセンスの測定は、波長325nmのレーザ光を試料に対して落射によって照射し(試料直前における励起光の強度は、数十μWである)、紫外対応対物レンズで試料からの発光を採光し、シングル型分光器によって波長分散させ、CCDカメラでスペクトル計測を行なうことによって測定された。スペクトルは、アメリカ国立標準技術研究所(NIST)準拠の強度補正された光源を元に装置関数を得て、それを用いて分光感度特性が校正されている。測定は、常温および常圧下で行なわれた。
The excitation wavelength of the luminescent powder 10 when measuring photoluminescence is 325 nm, and the intensity of the excitation light is 2 mW. In the photoluminescence measurement, a laser beam having a wavelength of 325 nm is irradiated onto the sample by epi-illumination (the intensity of the excitation light immediately before the sample is several tens of μW), and light emitted from the sample is collected by an ultraviolet-compatible objective lens. Then, the wavelength was dispersed by a single-type spectrometer, and the spectrum was measured by a CCD camera. As for the spectrum, an instrument function is obtained based on an intensity-corrected light source compliant with the National Institute of Standards and Technology (NIST), and the spectral sensitivity characteristic is calibrated using the device function. The measurement was performed at normal temperature and normal pressure.
また、図11は、CO2からなる超臨界流体の圧力を7.5MPaに設定し、CO2からなる超臨界流体の温度を322.4K(=49.4℃)に設定して発光粉体10を製造し、その製造した発光粉体10を大気中へ取り出して4日経過後に測定されたフォトルミネッセンスのスペクトルである。
Further, FIG. 11, to set the pressure of the supercritical fluid consisting CO 2 to 7.5 MPa, and the temperature of the supercritical fluid consisting CO 2 to 322.4K (= 49.4 ℃) emitting powder 10 is a spectrum of photoluminescence measured after 4 days have passed after the produced luminescent powder 10 is taken out into the atmosphere.
図11を参照して、発光粉体10は、350nm以上の波長範囲に発光スペクトルを有することが解った。すなわち、色の三原色である青、緑および赤の波長を含む波長範囲に発光スペクトルを有する。
Referring to FIG. 11, it was found that the luminescent powder 10 had an emission spectrum in a wavelength range of 350 nm or more. That is, it has an emission spectrum in a wavelength range including the wavelengths of blue, green and red, which are the three primary colors.
この発光スペクトルは、図8に示す蛍光顕微鏡像が白色であることを支持するものである。
This emission spectrum supports that the fluorescence microscope image shown in FIG. 8 is white.
図12は、発光スペクトルの積分強度の圧力依存性を示す図である。図12において、横軸は、発光粉体10の製造時の超臨界流体の圧力を表し、縦軸は、積分強度を表す。また、曲線k9は、発光粉体10を製造してから40分後の発光スペクトルの積分強度の圧力依存性を示し、曲線k10は、発光粉体10を製造してから2日後の発光スペクトルの積分強度の圧力依存性を示し、曲線k11は、発光粉体10を製造してから2ヶ月後の発光スペクトルの積分強度の圧力依存性を示す。
FIG. 12 is a diagram showing the pressure dependence of the integrated intensity of the emission spectrum. In FIG. 12, the horizontal axis represents the pressure of the supercritical fluid at the time of manufacturing the luminescent powder 10, and the vertical axis represents the integrated intensity. Curve k9 shows the pressure dependence of the integrated intensity of the emission spectrum 40 minutes after producing the luminescent powder 10, and curve k10 shows the emission spectrum two days after producing the luminescent powder 10. The pressure dependence of the integrated intensity is shown, and the curve k11 shows the pressure dependence of the integrated intensity of the emission spectrum two months after the luminescent powder 10 is manufactured.
図12を参照して、発光粉体10を製造してから40分経過後の発光スペクトルの積分強度は、超臨界流体の圧力に対してほぼ一定である(曲線k9参照)。
Referring to FIG. 12, the integrated intensity of the emission spectrum after 40 minutes from the production of the luminescent powder 10 is substantially constant with respect to the pressure of the supercritical fluid (see curve k9).
一方、発光粉体10を製造してから2日経過後の発光スペクトルの積分強度、および発光粉体10を製造してから2ヶ月経過後の発光スペクトルの積分強度は、4.56MPa~14.8MPaの圧力範囲において超臨界流体の圧力が高くなるに従って強くなる(曲線k10,k11参照)。
On the other hand, the integrated intensity of the emission spectrum after 2 days from the production of the luminescent powder 10 and the integrated intensity of the emission spectrum after 2 months from the production of the luminescent powder 10 are 4.56 MPa to 14.8 MPa. In the pressure range increases as the pressure of the supercritical fluid increases (see curves k10 and k11).
そして、発光粉体10を製造してから2ヶ月経過後の発光粉体10は、発光強度(積分強度)が最大で約100倍になる(曲線k9,k11参照)。
The luminous powder 10 after two months from the production of the luminous powder 10 has a maximum luminous intensity (integrated intensity) of about 100 times (see curves k9 and k11).
したがって、発光粉体10を製造するときの超臨界流体の圧力を制御することによって発光強度を制御できる。
Therefore, the emission intensity can be controlled by controlling the pressure of the supercritical fluid when the luminescent powder 10 is manufactured.
また、各圧力において、発光粉体10の発光強度(積分強度)は、発光粉体10を製造してからの経過時間が長くなるに従って強くなる(曲線k9~k11参照)。
Also, at each pressure, the emission intensity (integrated intensity) of the luminescent powder 10 becomes stronger as the elapsed time after the luminescent powder 10 is manufactured becomes longer (see curves k9 to k11).
したがって、図3に示す工程に従って製造された発光粉体10は、製造されてからの経過時間によって劣化しないことが解った。
Therefore, it has been found that the luminescent powder 10 manufactured according to the process shown in FIG. 3 does not deteriorate with the elapsed time since it was manufactured.
なお、上述した図3に示す工程において、ステップS1~S3は、二酸化炭素からなる超臨界流体中に単結晶シリコンを保持する「第1の工程」を構成する。
In the process shown in FIG. 3 described above, steps S1 to S3 constitute a “first process” for holding single crystal silicon in a supercritical fluid made of carbon dioxide.
また、上述したステップS4において、レーザアブレーションが生じる強度を有するレーザ光を単結晶シリコンからなるシリコン塊40に照射することによって、ナノサイズの結晶シリコンがシリコン塊40から超臨界流体中へ飛び出すので、ステップS4は、ナノサイズの結晶シリコンが単結晶シリコンから超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を単結晶シリコンに照射する「第2の工程」を構成する。
Further, in step S4 described above, by irradiating the silicon lump 40 made of single crystal silicon with laser light having an intensity that causes laser ablation, the nano-sized crystalline silicon jumps out of the silicon lump 40 into the supercritical fluid. Step S4 constitutes a “second step” of irradiating the single crystal silicon with a laser beam having an intensity that causes laser ablation in which nano-sized crystal silicon jumps out of the single crystal silicon into the supercritical fluid.
そして、結晶シリコンがレーザアブレーションによってシリコン塊40から超臨界流体中へ飛び出し、その飛び出した結晶シリコンが、その後、任意の時間、冷却されれば、発光粉体10が製造されるので、上述した成長時間が経過する前に試料を取り出しても発光粉体10を得ることができる。したがって、この発明の実施の形態による発光粉体は、上述した第1および第2の工程によって製造されるものであればよい。
Then, the crystalline silicon jumps out of the silicon lump 40 into the supercritical fluid by laser ablation, and the luminescent powder 10 is manufactured if the jumped crystalline silicon is cooled for an arbitrary time. Even if the sample is taken out before the time elapses, the luminescent powder 10 can be obtained. Therefore, the luminescent powder according to the embodiment of the present invention only needs to be manufactured by the first and second steps described above.
図13は、この発明の実施の形態による発光素子の構成を示す断面図である。図13を参照して、この発明の実施の形態による発光素子200は、透明基板210と、透明導電膜220と、導電性高分子230と、発光部材240と、電極250とを備える。
FIG. 13 is a cross-sectional view showing the configuration of the light emitting device according to the embodiment of the present invention. Referring to FIG. 13, a light emitting device 200 according to an embodiment of the present invention includes a transparent substrate 210, a transparent conductive film 220, a conductive polymer 230, a light emitting member 240, and an electrode 250.
透明基板210は、フィルムまたはガラスからなる。透明導電膜220は、ITO(Indium Tin Oxide)、SnO2、ZnO、および有機EL(Electro Luminescence)のフレキシブルディスプレイ用の材料のいずれかからなり、透明基板210の周囲に形成される。
The transparent substrate 210 is made of a film or glass. The transparent conductive film 220 is made of any material for flexible displays such as ITO (Indium Tin Oxide), SnO 2 , ZnO, and organic EL (Electro Luminescence), and is formed around the transparent substrate 210.
導電性高分子230は、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリチオフェンおよびポリパラフェニレンビニレンのいずれかからなる。そして、導電性高分子230は、透明導電膜220および発光部材240に接して透明導電膜220と発光部材240との間に配置される。
The conductive polymer 230 is made of any one of polyacetylene, polyparaphenylene, polyaniline, polythiophene, and polyparaphenylene vinylene. The conductive polymer 230 is disposed between the transparent conductive film 220 and the light emitting member 240 in contact with the transparent conductive film 220 and the light emitting member 240.
なお、キャリア移動度を大きくし、電極に印加された電圧を有効利用するためには、導電性高分子230は、比誘電率の小さい材料からなる。
In order to increase the carrier mobility and effectively use the voltage applied to the electrode, the conductive polymer 230 is made of a material having a low relative dielectric constant.
発光部材240は、積層された複数の発光粉体10からなる。そして、発光部材240は、導電性高分子230および電極250に接して導電性高分子230と電極250との間に配置される。
The light emitting member 240 is composed of a plurality of laminated light emitting powders 10. The light emitting member 240 is disposed between the conductive polymer 230 and the electrode 250 in contact with the conductive polymer 230 and the electrode 250.
電極250は、たとえば、金(Au)からなり、発光部材240に接して発光部材240上に形成される。また、電極250は、合金材料(Ca/Ag)およびMg系の金属からなっていてもよく、ナノ金属の集積体からなっていてもよい。
The electrode 250 is made of, for example, gold (Au), and is formed on the light emitting member 240 in contact with the light emitting member 240. Further, the electrode 250 may be made of an alloy material (Ca / Ag) and an Mg-based metal, or may be made of a nano metal aggregate.
発光素子200において、電圧が透明導電膜220と電極250との間に印加されると、電子および正孔が発光部材240の発光粉体10に注入され、発光部材240が発光する。この場合、電子および正孔は、発光粉体10の約2nmの厚みを有する酸化シリコン(SiO2)2をトンネルして結晶シリコン1中へ注入される。また、2つの発光粉体10が接する領域においては、電子および正孔は、発光粉体10の約2nmの厚みを有する酸化シリコン(SiO2)2をトンネルして一方の発光粉体10から他方の発光粉体10へ流れる。したがって、発光粉体10が積層されていても、その積層された発光粉体10に電子および正孔を注入できる。
In the light emitting element 200, when a voltage is applied between the transparent conductive film 220 and the electrode 250, electrons and holes are injected into the light emitting powder 10 of the light emitting member 240 and the light emitting member 240 emits light. In this case, electrons and holes are injected into the crystalline silicon 1 through the silicon oxide (SiO 2 ) 2 having a thickness of about 2 nm of the luminescent powder 10. Further, in the region where the two luminescent powders 10 are in contact, electrons and holes tunnel through the silicon oxide (SiO 2 ) 2 having a thickness of about 2 nm of the luminescent powder 10 and from one luminescent powder 10 to the other. The luminescent powder 10 flows. Therefore, even if the luminescent powder 10 is laminated, electrons and holes can be injected into the laminated luminescent powder 10.
また、発光素子200は、3.82Vの電圧が透明導電膜220と電極250との間に印加されると、白色で発光し、3.3Vの電圧が透明導電膜220と電極250との間に印加されると、青色で発光し、2.7Vの電圧が透明導電膜220と電極250との間に印加されると、緑色で発光し、2.41Vの電圧が透明導電膜220と電極250との間に印加されると、赤色で発光する。
The light emitting element 200 emits white light when a voltage of 3.82 V is applied between the transparent conductive film 220 and the electrode 250, and a voltage of 3.3 V is generated between the transparent conductive film 220 and the electrode 250. When the voltage is applied to the transparent conductive film 220, the light is emitted in blue, and when a voltage of 2.7 V is applied between the transparent conductive film 220 and the electrode 250, the light is emitted in green, and a voltage of 2.41 V is applied to the transparent conductive film 220 and the electrode. When it is applied to 250, it emits red light.
なお、これらの電圧値は、最小の電圧値であり、結晶シリコン1と酸化シリコン2との界面におけるエネルギーギャップが作用する場合には、高電圧側へシフトする。
Note that these voltage values are minimum voltage values, and shift to the high voltage side when the energy gap at the interface between the crystalline silicon 1 and the silicon oxide 2 acts.
このように、透明導電膜220と電極250との間に印加する電圧を制御することによって発光素子200を異なる色で発光させることができる。
Thus, by controlling the voltage applied between the transparent conductive film 220 and the electrode 250, the light emitting element 200 can emit light in different colors.
図14は、図13に示す発光素子200の製造方法を示す工程図である。図14を参照して、発光素子200の製造が開始されると、複数の発光粉体10が図3に示す工程に従って製造される(ステップS11)。
FIG. 14 is a process diagram showing a method of manufacturing the light emitting device 200 shown in FIG. Referring to FIG. 14, when the manufacture of light emitting element 200 is started, a plurality of light emitting powders 10 are manufactured according to the process shown in FIG. 3 (step S11).
そして、複数の発光粉体10を収集して複数の発光粉体10からなる発光部材240が製造される(ステップS12)。
Then, a plurality of luminescent powders 10 are collected and a light emitting member 240 made of the plurality of luminescent powders 10 is manufactured (step S12).
引き続いて、発光部材240が導電性高分子230によって透明導電膜220に接着される(ステップS13)。
Subsequently, the light emitting member 240 is bonded to the transparent conductive film 220 by the conductive polymer 230 (step S13).
そして、電極250がスパッタリング、蒸着、およびインクジェット法のいずれかによって発光部材240上に形成される(ステップS14)。これによって、発光素子200が完成する。
Then, the electrode 250 is formed on the light emitting member 240 by any of sputtering, vapor deposition, and ink jet method (step S14). Thereby, the light emitting element 200 is completed.
なお、発光素子200においては、電極250は、ITO等の透明導電膜からなっていてもよい。
In the light emitting element 200, the electrode 250 may be made of a transparent conductive film such as ITO.
また、発光素子200は、透明基板210および透明導電膜220に代えて、キャリア濃度が1020cm-3以上のn型またはp型のシリコンウェハを備えていてもよく、透明基板210および透明導電膜220に代えて、キャリア濃度が1020cm-3以上のn型またはp型のシリコンウェハを備え、かつ、電極250に代えて、キャリア濃度が1020cm-3以上のpn型またはn型のシリコンウェハを備えていてもよい。この場合、発光した光は、発光素子200の横方向へ出射される。
The light emitting element 200 may include an n-type or p-type silicon wafer having a carrier concentration of 10 20 cm −3 or more instead of the transparent substrate 210 and the transparent conductive film 220. instead of the membrane 220, the carrier concentration with a is 10 20 cm -3 or more n-type or p-type silicon wafer, and, in place of the electrode 250, the carrier concentration is 10 20 cm -3 or more pn-type or n-type The silicon wafer may be provided. In this case, the emitted light is emitted in the lateral direction of the light emitting element 200.
図15は、この発明の実施の形態による他の発光素子の構成を示す断面図である。この発明の実施の形態による発光素子は、図15に示す発光素子200Aであってもよい。
FIG. 15 is a cross-sectional view showing the configuration of another light emitting device according to the embodiment of the present invention. The light emitting device according to the embodiment of the present invention may be a light emitting device 200A shown in FIG.
図15を参照して、発光素子200Aは、図13に示す発光素子200の電極250を電極260に代えたものであり、その他は、発光素子200と同じである。
Referring to FIG. 15, a light emitting element 200A is the same as light emitting element 200 except that electrode 250 of light emitting element 200 shown in FIG.
電極260は、たとえば、Auからなり、発光部材240に接して発光部材240上に形成される。
The electrode 260 is made of, for example, Au, and is formed on the light emitting member 240 in contact with the light emitting member 240.
図16は、図15に示すB方向から見た電極260の平面図である。図16を参照して、電極260は、電極片261~264からなる。
FIG. 16 is a plan view of the electrode 260 viewed from the direction B shown in FIG. Referring to FIG. 16, electrode 260 includes electrode pieces 261-264.
電極片261~264は、相互に異なる電圧が印加される。たとえば、電極片261は、3.82Vの電圧が印加され、電極片262は、3.3Vの電圧が印加され、電極片263は、2.7Vの電圧が印加され、電極片264は、2.41Vの電圧が印加される。
Different voltages are applied to the electrode pieces 261 to 264. For example, a voltage of 3.82 V is applied to the electrode piece 261, a voltage of 3.3 V is applied to the electrode piece 262, a voltage of 2.7 V is applied to the electrode piece 263, and the voltage of the electrode piece 264 is 2 A voltage of .41V is applied.
その結果、電極片261に接する発光部材240の領域は、白色で発光し、電極片262に接する発光部材240の領域は、青色で発光し、電極片263に接する発光部材240の領域は、緑色で発光し、電極片264に接する発光部材240の領域は、赤色で発光する。
As a result, the region of the light emitting member 240 in contact with the electrode piece 261 emits white light, the region of the light emitting member 240 in contact with the electrode piece 262 emits blue light, and the region of the light emitting member 240 in contact with the electrode piece 263 is green. The region of the light emitting member 240 that emits light and contacts the electrode piece 264 emits red light.
このように、発光素子200Aは、白色の光、青色の光、緑色の光および赤色の光を同時に発光する発光素子である。
Thus, the light emitting element 200A is a light emitting element that simultaneously emits white light, blue light, green light, and red light.
なお、発光素子200Aは、図14に示すステップS14の後に、電極260をフォトリソグラフィによって電極片261~264にパターンニングするステップを追加する工程に従って製造される。
The light emitting element 200A is manufactured according to a process of adding a step of patterning the electrode 260 into electrode pieces 261 to 264 by photolithography after step S14 shown in FIG.
また、発光素子200Aにおいては、電極250は、ITO等の透明導電膜からなっていてもよい。
Further, in the light emitting element 200A, the electrode 250 may be made of a transparent conductive film such as ITO.
さらに、発光素子200Aは、透明基板210および透明導電膜220に代えて、キャリア濃度が1020cm-3以上のn型またはp型のシリコンウェハを備えていてもよい。この場合、発光した光は、発光素子200Aの横方向へ出射される。
Further, the light emitting element 200A may include an n-type or p-type silicon wafer having a carrier concentration of 10 20 cm −3 or more, instead of the transparent substrate 210 and the transparent conductive film 220. In this case, the emitted light is emitted in the lateral direction of the light emitting element 200A.
さらに、発光素子200Aにおいては、透明導電膜220が電極260と同じようにパターンニングされていてもよい。そして、一般的には、発光素子200Aにおいては、発光部材240の両側に配置される2つの電極のうち、少なくとも一方が複数の電極片にパターンニングされていればよい。
Furthermore, in the light emitting element 200A, the transparent conductive film 220 may be patterned in the same manner as the electrode 260. In general, in the light emitting element 200A, at least one of the two electrodes disposed on both sides of the light emitting member 240 may be patterned into a plurality of electrode pieces.
そして、上述した発光素子200,200Aは、照明装置および表示装置に適用される。シリコンナノ材料の発光寿命は、そのサイズを考慮すると、マイクロ秒オーダー(場合によっては、ナノ秒またはピコ秒のオーダー)であると想定される。したがって、スイッチング回路を用いることにより、発光/点滅が素早くなり、電気追従性がよい。その結果、発光素子200,200Aは、液晶表示装置に比べ、動画用のディスプレイに適している。
The light emitting elements 200 and 200A described above are applied to lighting devices and display devices. The luminescence lifetime of silicon nanomaterials is assumed to be on the order of microseconds (in some cases on the order of nanoseconds or picoseconds), considering its size. Therefore, by using the switching circuit, the light emission / flashing becomes quick and the electric follow-up property is good. As a result, the light emitting elements 200 and 200A are more suitable for a moving image display than a liquid crystal display device.
また、発光粉体10は、フォトルミネッセンス(PL)用の素子に適用できる。従来の蛍光灯は、水銀が封入され、その封入された水銀の紫外線によってユーロビウム(Eu)およびテルビウム(Tb)等の希土類元素を励起し、三原色の光を混ぜて白色蛍光灯としている。そこで、上述した発光粉体10を蛍光灯に用いると、希土類元素の代用になるとともに、紫外線照射によって白色蛍光灯を実現できる。また、発光粉体10は、プラズマディスプレイにも適用可能である。
Further, the luminescent powder 10 can be applied to an element for photoluminescence (PL). In the conventional fluorescent lamp, mercury is enclosed, and rare earth elements such as eurobium (Eu) and terbium (Tb) are excited by ultraviolet light of the enclosed mercury, and light of three primary colors is mixed to form a white fluorescent lamp. Therefore, when the above-described luminescent powder 10 is used in a fluorescent lamp, it can be used as a substitute for rare earth elements and a white fluorescent lamp can be realized by ultraviolet irradiation. The luminescent powder 10 can also be applied to a plasma display.
素子構造は、発光粉体10を紫外透過性高分子に溶媒と一緒に混ぜ、その溶液をガラス内壁に塗布し、その後、溶媒を飛ばすことによって、発光粉体10を紫外透過性高分子と一緒にガラス表面に固化させた構造である。そして、固化させるガラスは、透明な材料であればどのような材料であってもよく、また、形状も、平面および曲面のいずれでもよい。そして、内側から水銀の放電または希ガスの放電によって発光させる。
In the device structure, the luminescent powder 10 is mixed with the ultraviolet transmissive polymer by mixing the luminescent powder 10 with the ultraviolet transmissive polymer together with the solvent, coating the solution on the inner wall of the glass, and then removing the solvent. The structure is solidified on the glass surface. The glass to be solidified may be any material as long as it is a transparent material, and the shape may be either a flat surface or a curved surface. Then, light is emitted from the inside by mercury discharge or rare gas discharge.
上記においては、反応容器25は、シリコン塊40を保持すると説明したが、この発明の実施の形態においては、反応容器25は、シリコンウェハを保持してもよい。この場合、シリコンウェハは、その表面がレーザ光に対して略垂直になるように反応容器25内に保持される。
In the above description, it has been described that the reaction vessel 25 holds the silicon lump 40. However, in the embodiment of the present invention, the reaction vessel 25 may hold a silicon wafer. In this case, the silicon wafer is held in the reaction vessel 25 so that the surface thereof is substantially perpendicular to the laser beam.
また、この発明の実施の形態においては、ポンプ22、冷却器24、ヒータ28、熱電対29、温度検出器30および制御器31は、反応容器25内にCO2からなる超臨界流体を生成する「生成器」を構成する。
In the embodiment of the present invention, the pump 22, the cooler 24, the heater 28, the thermocouple 29, the temperature detector 30 and the controller 31 generate a supercritical fluid made of CO 2 in the reaction vessel 25. Configure the “generator”.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
この発明は、白色で発光可能な発光粉体に適用される。また、この発明は、白色で発光可能な発光粉体の製造方法に適用される。さらに、この発明は、白色で発光可能な発光粉体を用いた発光素子に適用される。さらに、この発明は、白色で発光可能な発光粉体を用いた発光素子の製造方法に適用される。さらに、この発明は、白色で発光可能な発光粉体の製造装置に適用される。
The present invention is applied to a luminescent powder capable of emitting white light. The present invention is also applied to a method for producing a luminescent powder capable of emitting white light. Furthermore, the present invention is applied to a light emitting element using a luminescent powder capable of emitting white light. Furthermore, the present invention is applied to a method for manufacturing a light-emitting element using a luminescent powder capable of emitting white light. Further, the present invention is applied to an apparatus for producing a luminescent powder capable of emitting white light.
Claims (12)
- 二酸化炭素からなる超臨界流体中に単結晶シリコン(40)を保持する第1の工程と、
ナノサイズの結晶シリコン(1)が前記単結晶シリコン(40)から前記超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を前記単結晶シリコン(40)に照射する第2の工程とを実行して製造される発光粉体。 A first step of holding single crystal silicon (40) in a supercritical fluid comprising carbon dioxide;
A second step of irradiating the single crystal silicon (40) with a laser beam having an intensity that causes laser ablation in which the nano-sized crystal silicon (1) jumps out of the single crystal silicon (40) into the supercritical fluid; Luminescent powder produced by execution. - 前記超臨界流体中へ飛び出した前記ナノサイズの結晶シリコン(1)を前記超臨界流体の圧力によって決定された成長時間だけ成長させる第3の工程をさらに実行して製造される、請求項1に記載の発光粉体。 2. The method according to claim 1, further comprising performing a third step of growing the nano-sized crystalline silicon (1) jumping into the supercritical fluid for a growth time determined by the pressure of the supercritical fluid. The luminescent powder described.
- 前記第3の工程において、前記ナノサイズの結晶シリコン(1)は、前記超臨界流体の圧力が高い程、長い時間、成長し、前記超臨界流体の圧力が低い程、短い時間、成長する、請求項2に記載の発光粉体。 In the third step, the nano-sized crystalline silicon (1) grows for a longer time as the pressure of the supercritical fluid is higher, and grows for a shorter time as the pressure of the supercritical fluid is lower. The luminescent powder according to claim 2.
- 二酸化炭素からなる超臨界流体中に単結晶シリコン(40)を保持する第1の工程と、
ナノサイズの結晶シリコン(1)が前記単結晶シリコン(40)から前記超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を前記単結晶シリコン(40)に照射する第2の工程とを備える発光粉体の製造方法。 A first step of holding single crystal silicon (40) in a supercritical fluid comprising carbon dioxide;
A second step of irradiating the single crystal silicon (40) with a laser beam having an intensity that causes laser ablation in which the nano-sized crystal silicon (1) jumps out of the single crystal silicon (40) into the supercritical fluid; A method for producing a luminescent powder. - 前記超臨界流体中へ飛び出した前記ナノサイズの結晶シリコン(1)を前記超臨界流体の圧力によって決定された成長時間だけ成長させる第3の工程をさらに備える、請求項4に記載の発光粉体の製造方法。 The luminescent powder according to claim 4, further comprising a third step of growing the nano-sized crystalline silicon (1) jumping into the supercritical fluid for a growth time determined by the pressure of the supercritical fluid. Manufacturing method.
- 前記第3の工程において、前記ナノサイズの結晶シリコン(1)は、前記超臨界流体の圧力が高い程、長い時間、成長し、前記超臨界流体の圧力が低い程、短い時間、成長する、請求項5に記載の発光粉体の製造方法。 In the third step, the nano-sized crystalline silicon (1) grows for a longer time as the pressure of the supercritical fluid is higher, and grows for a shorter time as the pressure of the supercritical fluid is lower. The method for producing a luminescent powder according to claim 5.
- 前記第1の工程は、
前記単結晶シリコン(40)を反応容器(25)内に入れる第1のサブ工程と、
前記二酸化炭素をサイフォン式のボンベから取り出し、耐膨潤性のある材料によってシールされた圧力弁(201)、潤滑材を取り除いて作製されたポンプ(20)、およびオイルフリーの配管(21,23)を用いて前記超臨界流体が生成される圧力になるように前記反応容器(25)に前記取り出した二酸化炭素を供給する第2のサブ工程と、
前記超臨界流体が生成される温度になるように前記反応容器(25)を加熱する第3のサブ工程とを含む、請求項4に記載の発光粉体の製造方法。 The first step includes
A first sub-step of placing said single crystal silicon (40) into a reaction vessel (25);
The carbon dioxide is taken out of the siphon type cylinder, the pressure valve (201) sealed with a material having swelling resistance, the pump (20) prepared by removing the lubricant, and the oil-free pipes (21, 23) A second sub-step of supplying the extracted carbon dioxide to the reaction vessel (25) so that the pressure at which the supercritical fluid is generated using
The method for producing a luminescent powder according to claim 4, further comprising a third sub-step of heating the reaction vessel (25) so as to reach a temperature at which the supercritical fluid is generated. - 発光部材(240)と、
前記発光部材(240)の一方の表面に形成された第1の電極(220)と、
前記発光部材(240)の他方の表面に形成された第2の電極(250)とを備え、
前記発光部材(240)は、複数の発光粉体(10)からなり、
前記複数の発光粉体(10)の各々は、請求項1から請求項3のいずれか1項に記載の発光粉体からなる、発光素子。 A light emitting member (240);
A first electrode (220) formed on one surface of the light emitting member (240);
A second electrode (250) formed on the other surface of the light emitting member (240),
The light emitting member (240) is composed of a plurality of light emitting powders (10),
Each of these light emitting powders (10) is a light emitting element which consists of luminescent powder of any one of Claims 1-3. - 前記第1および第2の電極の少なくとも一方の電極は、透明導電膜からなる、請求項8に記載の発光素子。 The light emitting device according to claim 8, wherein at least one of the first and second electrodes is made of a transparent conductive film.
- 前記第1および第2の電極の少なくとも一方の電極は、複数の電極片(261~264)からなる、請求項8に記載の発光素子。 The light emitting device according to claim 8, wherein at least one of the first and second electrodes is composed of a plurality of electrode pieces (261 to 264).
- 複数の発光粉体(10)を製造する第1の工程と、
前記複数の発光粉体(10)を収集して前記複数の発光粉体(10)からなる発光部材(240)を製造する第2の工程と、
基板(210)上に形成された第1の電極(220)に前記発光部材(240)を接着する第3の工程と、
前記発光部材(240)上に第2の電極(250)を形成する第4の工程とを備え、
前記第1の工程は、
二酸化炭素からなる超臨界流体中に単結晶シリコン(40)を保持する第1のサブ工程と、
ナノサイズの結晶シリコン(1)が前記単結晶シリコン(40)から前記超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を前記単結晶シリコン(40)に照射する第2のサブ工程とを含む、発光素子の製造方法。 A first step of producing a plurality of luminescent powders (10);
A second step of collecting the plurality of luminescent powders (10) to produce a light emitting member (240) comprising the plurality of luminescent powders (10);
A third step of bonding the light emitting member (240) to the first electrode (220) formed on the substrate (210);
And a fourth step of forming a second electrode (250) on the light emitting member (240),
The first step includes
A first sub-step of holding single crystal silicon (40) in a supercritical fluid consisting of carbon dioxide;
A second sub-step of irradiating the single crystal silicon (40) with a laser beam having an intensity that causes laser ablation in which nano-sized crystal silicon (1) jumps out of the single crystal silicon (40) into the supercritical fluid; A method for manufacturing a light emitting device, comprising: - 単結晶シリコン(40)を保持する反応容器(25)と、
前記反応容器(25)に液体の二酸化炭素を供給し、前記反応容器(25)内に前記二酸化炭素からなる超臨界流体を生成する生成器(22,24,28,29,30,31)と、
ナノサイズの結晶シリコン(1)が前記単結晶シリコン(40)から前記超臨界流体中へ飛び出すレーザアブレーションが生じる強度を有するレーザ光を前記単結晶シリコン(40)に照射するレーザ装置(26)とを備える発光粉体の製造装置。 A reaction vessel (25) holding single crystal silicon (40);
A generator (22, 24, 28, 29, 30, 31) for supplying liquid carbon dioxide to the reaction vessel (25) and generating a supercritical fluid composed of the carbon dioxide in the reaction vessel (25); ,
A laser device (26) for irradiating the single crystal silicon (40) with laser light having an intensity that causes laser ablation in which nano-sized crystalline silicon (1) jumps out of the single crystal silicon (40) into the supercritical fluid; A luminescent powder production apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/002596 WO2010143225A1 (en) | 2009-06-09 | 2009-06-09 | Luminescent powder, method for producing same, luminescent element wherein luminescent powder is used, method for producing said luminescent element, and apparatus for producing luminescent powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/002596 WO2010143225A1 (en) | 2009-06-09 | 2009-06-09 | Luminescent powder, method for producing same, luminescent element wherein luminescent powder is used, method for producing said luminescent element, and apparatus for producing luminescent powder |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010143225A1 true WO2010143225A1 (en) | 2010-12-16 |
Family
ID=43308499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002596 WO2010143225A1 (en) | 2009-06-09 | 2009-06-09 | Luminescent powder, method for producing same, luminescent element wherein luminescent powder is used, method for producing said luminescent element, and apparatus for producing luminescent powder |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010143225A1 (en) |
-
2009
- 2009-06-09 WO PCT/JP2009/002596 patent/WO2010143225A1/en active Application Filing
Non-Patent Citations (4)
Title |
---|
K.SAITOW: "Gold Nanospheres and Nanonecklaces Generated by Laser Ablation in Supercritical Fluid", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 112, 2008, pages 18340 - 18349 * |
K.SAITOW: "Silicon Nanoclusters Selectively Generated by Laser Ablation in Supercritical Fluid", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 109, 2005, pages 3731 - 3733 * |
KEISUKE SATO: "Kashi Hakko Kino o Fuka shita Nano Silicon Ryushi no Seizoho to sono Oyo", ELECTRONIC MATERIALS AND PARTS, vol. 47, no. 11, 2008, pages 81 - 85 * |
TOMOHARU YAMAMURA: "Cho Rinkai Ryutaichu deno Tankessho Silicon no Pulse Laser Shosha ni yori Sosei shita Midori.Aka Iro Hakko Silicon Nano Kessho", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 88, no. 1, 2008, pages 429 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7132692B2 (en) | Nanosilicon light-emitting element and manufacturing method thereof | |
Guo et al. | Aggregation-induced emission enhancement of carbon quantum dots and applications in light emitting devices | |
CN104755584B (en) | Ultraviolet light produces the manufacture method with target, electron-beam excitation ultraviolet source and ultraviolet light generation target | |
Ye et al. | CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes | |
KR20150079628A (en) | Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation | |
Su et al. | Understanding and manipulating luminescence in carbon nanodots | |
Basso et al. | On the route towards a facile fluorescent nanodiamonds laser-synthesis | |
Wang et al. | 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays | |
CN103502392B (en) | UV-light produces the manufacture method with target, electron rays excitation ultraviolet source and UV-light generation target | |
Zhao et al. | Electrically driven plasmon mediated energy transfer between ZnO microwires and Au nanoparticles | |
El Jouad et al. | Roughness effect on photoluminescence of cerium doped zinc oxide thin films | |
US8895947B2 (en) | Ultraviolet light generating target, electron-beam-excited ultraviolet light source, and method for producing ultraviolet light generating target | |
WO2010143225A1 (en) | Luminescent powder, method for producing same, luminescent element wherein luminescent powder is used, method for producing said luminescent element, and apparatus for producing luminescent powder | |
Li et al. | Electrical-pumping spasing action from cross-stacked microwires | |
Liu et al. | Single photon emitters in hexagonal boron nitride fabricated by focused helium ion beam | |
Popovic et al. | Continuous wave laser for tailoring the photoluminescence of silicon nanoparticles produced by laser ablation in liquid | |
Pérez-Díaz et al. | Study of silicon rich oxide light emitter capacitors using textured substrates by metal assisted chemical etching | |
JP5339683B2 (en) | Method of manufacturing phosphor film using multi-source vacuum deposition method | |
LIEM et al. | Facile synthesis of carbon quantum dots by plasma-liquid interaction method | |
WO2010024447A2 (en) | Color center-containing magnesium oxide and thin film of same, wavelength-variable laser medium, laser device, and light source device | |
CN104736661A (en) | Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation | |
Noor | Microplasmas in ZnO Nano-forests under High Voltage Stress | |
Gelloz et al. | Blue phosphorescence in oxidized nano-porous silicon | |
Khomchenko et al. | Laser processing and characterization of ZnS–Cu thin films | |
Gelloz et al. | Synthesis and optical properties of silicon oxide nanowires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845752 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09845752 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |