WO2010038609A1 - リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法 - Google Patents
リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法 Download PDFInfo
- Publication number
- WO2010038609A1 WO2010038609A1 PCT/JP2009/066038 JP2009066038W WO2010038609A1 WO 2010038609 A1 WO2010038609 A1 WO 2010038609A1 JP 2009066038 W JP2009066038 W JP 2009066038W WO 2010038609 A1 WO2010038609 A1 WO 2010038609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon material
- secondary battery
- negative electrode
- lithium secondary
- silicon
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a carbon material for a lithium secondary battery negative electrode, a lithium secondary battery negative electrode, a lithium secondary battery, and a method for producing a carbon material for a lithium secondary battery negative electrode.
- lithium secondary batteries are required to be smaller and lighter or have higher energy density.
- silicon, tin, germanium, magnesium, lead, aluminum, or an oxide or alloy thereof, which is alloyed with lithium as a negative electrode material.
- the negative electrode material as described above expands in volume during charging to occlude lithium ions, and conversely shrinks in volume during discharge to release lithium ions. For this reason, it is known that the volume of the negative electrode changes as the charge / discharge cycle repeats, and as a result, the negative electrode material is pulverized and falls off the electrode, causing the negative electrode to collapse.
- a metal crystal is made into nanoparticles, and an alkyl group having 2 to 10 carbon atoms, an arylalkyl group having 3 to 10 carbon atoms, or an alkylaryl having 3 to 10 carbon atoms It is characterized in that the surface of the metal crystal is coated with an organic molecule containing a group or an alkoxy group having 2 to 10 carbon atoms.
- the formation of the carbonized layer formed on the surface of the metal crystal described in Japanese Patent Application Laid-Open No. 2007-305569 is formed by a vapor phase growth method and is essentially different from the present invention.
- JP-A-8-241715 a negative electrode active material characterized by mixing a metal salt and an organic substance serving as a carbon source and firing in a non-oxidizing atmosphere has been proposed.
- the negative electrode active material described in JP-A-8-241715 contains only a metal content of up to 40 wt%. Therefore, the amount of the metal introduced into the negative electrode active material occludes lithium ions is small. Further, since the amount of occlusion is small, the metal does not easily expand and the negative electrode is difficult to collapse. However, it is difficult to increase the capacity of the negative electrode active material by the method disclosed in JP-A-8-241715.
- Each of the negative electrodes for lithium secondary batteries described in each of the above publications has a volume or contraction of the negative electrode active material caused by a charge / discharge cycle suppressed to some extent by coating or treating a metal alloying with lithium with carbon. Yes.
- the negative electrode for lithium secondary batteries described in each of the above publications it is not possible to completely prevent the negative electrode collapse due to the pulverization of the negative electrode active material due to the charge / discharge cycle. Therefore, it cannot be said that the negative electrode for lithium secondary batteries described in each of the above publications has sufficient charge / discharge cycle characteristics.
- the present invention provides a carbon material for a lithium secondary battery negative electrode, a lithium secondary battery negative electrode, and a lithium secondary battery using the same, which are intended to further improve the charge / discharge cycle characteristics of the lithium ion secondary battery. .
- the above object is achieved by the following items (1) to (13).
- Composite particles comprising silicon-containing particles containing a silicon alloy, oxide, nitride or carbide capable of occluding and releasing lithium ions, and a resin carbon material surrounding the silicon-containing particles, and the composite particles And a network structure composed of nanofibers and / or nanotubes surrounding the composite particles, wherein the network structure contains silicon, and the carbon for lithium secondary battery negative electrode Material.
- the resin carbon material has pores, and the pore volume having a pore diameter of 0.25 to 0.45 nm calculated by a micropore method using a nitrogen gas adsorption method is 0.00.
- the carbon material for a lithium secondary battery negative electrode according to item (1) wherein the carbon material is 0001 to 1.5 cm 3 / g. (3)
- the carbon for lithium secondary battery negative electrode according to item (2) wherein the pore volume having a pore diameter of 0.25 to 0.45 nm is 0.0005 to 1.0 cm 3 / g. Material.
- the resin carbon material has pores, and the volume of the pores having a pore diameter of 0.25 to 0.45 nm calculated by a micropore method using a nitrogen gas adsorption method is The carbon material for a lithium secondary battery negative electrode according to any one of Items (1) to (3), which is 25% by volume or more based on the total pore volume of the resin carbon material.
- the volume of the pores having a pore diameter of 0.25 to 0.45 nm is 30% by volume or more based on the total pore volume of the resin carbon material, Carbon material for negative electrode of lithium secondary battery.
- a lithium secondary battery negative electrode comprising the carbon material for a lithium secondary battery negative electrode according to any one of items (1) to (9).
- a method for producing a carbon material for a negative electrode of a lithium secondary battery comprising forming a dispersed mixture and then subjecting the mixture to carbonization.
- (13) By mixing silicon-containing particles containing an alloy, oxide, nitride or carbide of silicon capable of occluding and releasing lithium ions, a carbon precursor, and a catalyst, the silicon-containing particles and the catalyst are mixed. Forming a mixture dispersed in the carbon precursor, and then subjecting the mixture to carbonization treatment, a method for producing a carbon material for a negative electrode of a lithium secondary battery.
- the pulverization of the carbon material for the negative electrode due to the charge / discharge cycle is suppressed, and the adhesion between the nanofibers and / or the nanotubes and the composite particles is maintained, thereby reducing the conductivity of the carbon material. Therefore, a carbon material for a negative electrode of a lithium secondary battery exhibiting unprecedented excellent charge / discharge cycle characteristics is provided. Moreover, the carbon material for lithium secondary battery negative electrodes which shows the further outstanding charging / discharging cycling characteristics is provided by controlling the pore volume of the carbon material for lithium secondary battery negative electrodes.
- the carbon material for the negative electrode of the lithium secondary battery according to the present invention is formed separately from the resin carbon material and the nanofibers and / or nanotubes from the same carbon precursor at the time of carbonization treatment.
- the manufacturing process is simple, and the manufacturing cost can be reduced.
- FIG. 1 is a scanning electron microscope (SEM) photograph of the carbon material obtained in Example 1.
- FIG. FIGS. 2A and 2B are graphs showing the results of elemental analysis by an energy dispersive X-ray analyzer (EDX) of different portions of the nanofibers observed by SEM.
- EDX energy dispersive X-ray analyzer
- a carbon material for a negative electrode of a lithium secondary battery according to the present invention includes a silicon-containing particle containing a silicon alloy, oxide, nitride or carbide capable of occluding and releasing lithium ions, and a resin carbon material surrounding the silicon-containing particle. And a network structure composed of nanofibers and / or nanotubes (hereinafter referred to as “nanofibers”) bound to the surface of the composite particles and surrounding the composite particles.
- the network structure includes silicon.
- the resin carbon material and the network structure are formed by carbonizing a carbon precursor in the presence of a catalyst if necessary. Furthermore, the network structure is apparently formed starting from the surface of the composite particles composed of silicon-containing particles and a resin carbon material.
- the network structure composed of nanofibers or the like in the present invention is made of a silicon alloy, oxide, nitride or carbide capable of occluding and releasing lithium ions. It is considered to be entangled with the network structure caused by another adjacent particle because it is bonded to the surface of the composite particle composed of the silicon-containing particle containing and the resin carbon material surrounding the silicon-containing particle. . For this reason, the adhesion between the nanofibers and the composite particles becomes high, and the nanofibers and the like are hardly separated from the composite particles even during the volume expansion and contraction of the silicon-containing particles due to charge and discharge.
- the network structure of a plurality of adjacent particles is entangled with each other to form a stretchable network structure as a whole, the conductivity of the entire negative electrode is maintained during the volume expansion and contraction of silicon-containing particles due to charge and discharge. Is done. And by maintaining the electroconductivity of a negative electrode, the resistance change accompanying charging / discharging can be suppressed and it becomes excellent in cycling characteristics.
- Such a network structure peculiar to the present invention cannot be formed only by adding carbon nanofibers or the like separately formed by a vapor phase method as in the prior art.
- the network structure is apparently formed starting from the surface of the composite particle, but since the network structure contains silicon, the true starting point of the network structure is considered to be the surface of the silicon-containing particle.
- the nanofibers constituting the network structure according to the present invention include silicon-containing fibers having a fiber diameter of less than 1 ⁇ m. Although it is not necessary to strictly distinguish between nanofibers and nanotubes, in the present specification, those having a fiber diameter of 100 nm or more are specifically defined as nanofibers, and those having a fiber diameter of 100 nm or less are defined as nanotubes.
- the elemental composition of the nanofiber or the like according to the present invention is assumed to be silicon carbide, silicon nitride, silicon carbonitride, or any combination thereof depending on the original composition of the silicon-containing particles.
- the elemental composition of the nanofiber or the like according to the present invention may be uniform throughout the nanofiber or the like, or may vary depending on the location.
- the nanofibers and the like constituting the network structure according to the present invention include carbon nanofibers and / or carbon nanotubes (hereinafter referred to as “carbon nanofibers”).
- carbon nanofibers The presence of carbon nanofibers is expected to improve the conductivity between composite particles including silicon-containing particles.
- the resin carbon material according to the present invention has pores for allowing lithium ions to enter. Such pores are places where nitrogen molecules can enter and adsorb when a nitrogen gas is used as a probe molecule with respect to a carbon material for a negative electrode of a lithium secondary battery.
- the pore size (pore diameter) is preferably in the range of 0.25 to 0.45 nm. If the pore diameter is less than 0.25 nm, the lithium ion intrusion is hindered by the shielding effect of the carbon atoms of the resin carbon material by the electron cloud, so that the charge capacity decreases. On the other hand, when the pore diameter exceeds 0.45 nm, solvated lithium ions are trapped in the pores, so that the initial efficiency (discharge capacity / charge capacity) decreases.
- the pore diameter is a value measured by a micropore method (apparatus: manufactured by Shimadzu Corporation, pore distribution measuring apparatus “ASAP-2010”).
- the total pore volume and pore volume of the resin carbon material according to the present invention are measured as a space where nitrogen molecules can enter when nitrogen gas is used as a probe molecule, and are calculated by a micropore method using a nitrogen gas adsorption method.
- the pore volume here means the pore volume at each pore diameter. Specifically, the pore volume at each pore diameter is calculated from the amount of nitrogen gas adsorbed by each relative pressure at the time of measurement.
- the pore volume having a pore diameter of 0.25 to 0.45 nm of the resin carbon material according to the present invention is preferably within the range of 0.0001 to 1.5 cm 3 / g, more preferably 0.0005 to 1.0 cm. Within the range of 3 / g.
- the pore volume having a pore diameter of 0.25 to 0.45 nm is 1.5 cm 3 / g or more, the decomposition reaction of the electrolytic solution in charge / discharge is promoted, and the initial charge / discharge characteristics are deteriorated. In addition, since the true density of the resin carbon material is lowered, it is not preferable in that the energy density as an electrode is lowered. On the other hand, when the pore volume having a pore diameter of 0.25 to 0.45 nm is 0.0001 cm 3 / g or less, the number of sites into which lithium ions can enter decreases, and the charge capacity decreases, which is not preferable.
- the resin carbon material has a denser structure, the expansion of the silicon-containing particles cannot be suppressed, and the charge / discharge cycle characteristics are deteriorated.
- the pore volume having a pore diameter of 0.25 to 0.45 nm can be controlled by heat treatment conditions or carbonization treatment conditions (temperature, temperature rise rate, treatment time, treatment atmosphere, etc.) of the resin carbon material described later.
- the volume of the pores having a pore diameter of 0.25 to 0.45 nm is preferably 25% by volume or more with respect to the total pore volume of the resin carbon material, more preferably 30% by volume or more.
- the total pore volume of the resin carbon material is the fine pore diameter calculated from the nitrogen gas adsorption amount of each relative pressure in the micropore method with respect to the unit mass of the carbon material for the negative electrode of the lithium secondary battery. Refers to the total pore volume. If the volume of the pores having a pore diameter of 0.25 to 0.45 nm is less than 25% by volume with respect to the total pore volume, it is not preferable because sufficient charge capacity cannot be secured.
- the carbon material for a lithium secondary battery negative electrode of the present invention is not particularly limited in shape, and can have any particle shape such as a lump shape, a scale shape, a spherical shape, or a fibrous shape.
- the carbon material particles preferably have an average particle size of 3 ⁇ m or more and 15 ⁇ m or less in view of charge / discharge characteristics. More preferably, it is 5 ⁇ m or more and 12 ⁇ m or less. More preferably, it is 7 ⁇ m or more and 10 ⁇ m or less.
- the average particle diameter is larger than 15 ⁇ m, the gap between the carbon material particles becomes large, and when used as a carbon material for a lithium secondary battery negative electrode, the density of the negative electrode may not be improved.
- the average particle size is smaller than 3 ⁇ m, when viewed per unit mass, the number of carbon material particles increases, and as a result, there is a possibility that problems such as increase in bulk and difficulty in handling.
- the definition of the particle diameter in the present invention is a value obtained by calculating the measured amount into the particle diameter using the particle shape and Mie theory, and is referred to as an effective diameter.
- the average particle diameter was determined as an average particle diameter D50%, which is 50% in terms of volume measured by the laser diffraction particle size distribution measurement method.
- silicon alloys, oxides, nitrides or carbides constituting the silicon-containing particles according to the present invention include silicon monoxide (SiO), silicon nitride (Si 2 N 4 ), silicon carbide (SiC), titanium silicon alloy ( Ti-Si type).
- SiO is more preferable because it has a smaller expansion coefficient during charging than the corresponding Si alone.
- the average particle size of the silicon-containing particles according to the present invention is preferably in the range of about 0.5 ⁇ m to 5 ⁇ m.
- the average particle diameter of the silicon-containing particles is smaller than 0.5 ⁇ m, the amount of occlusion of lithium ions becomes excessive, and it may be difficult to suppress the expansion and contraction of the silicon-containing particles with the network structure.
- the average particle diameter of the silicon-containing particles is larger than 5 ⁇ m, it may be difficult to obtain a high charge / discharge capacity.
- a carbon material for a negative electrode of a lithium secondary battery according to the present invention is obtained by mixing silicon-containing particles containing a silicon alloy, oxide, nitride or carbide capable of occluding and releasing lithium ions, and a carbon precursor.
- the silicon-containing particles are produced by forming a mixture dispersed in the carbon precursor, and then subjecting the mixture to carbonization.
- the carbon precursor is converted into a resin carbon material, and a network structure composed of nanofibers or the like surrounding the composite particles composed of the converted resin carbon material and silicon-containing particles is formed on the surface of the composite particles. Formed at the starting point.
- a catalyst When using a catalyst, as an example, at least one element selected from the group consisting of copper (Cu), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo) and manganese (Mn)
- the thing containing is mentioned.
- the catalytic element may be contained as an impurity in the carbon precursor. In that case, it may not be necessary to intentionally prepare and mix a separate catalyst.
- These catalytic elements are preferably mixed with the particles as a solution so that the silicon-containing particles and the catalyst form a mixture dispersed in the carbon precursor. In order to provide such a solution, the catalyst element is preferably prepared as a metal salt compound.
- the volume of pores having a pore diameter of 0.25 to 0.45 nm is 0.0005 to 1.0 cm 3 / g
- the volume of the resin carbon material is As a result of being 30% by volume or more with respect to the total pore volume, the discharge capacity maintenance rate after 200 cycles exceeded 90%, and the load characteristics exceeded 70%.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
(1)リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに
該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブからなる網状構造体
を含んでなり、該網状構造体がケイ素を含むことを特徴とするリチウム二次電池負極用炭素材。
(2)前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25~0.45nmの細孔径を有する該細孔の容積が0.0001~1.5cm3/gである、第(1)項に記載のリチウム二次電池負極用炭素材。
(3)前記0.25~0.45nmの細孔径を有する該細孔の容積が0.0005~1.0cm3/gである、第(2)項に記載のリチウム二次電池負極用炭素材。
(4)前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25~0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して25容積%以上である、第(1)項~第(3)項のいずれか1項に記載のリチウム二次電池負極用炭素材。
(5)前記0.25~0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して30容積%以上である、第(4)項に記載のリチウム二次電池負極用炭素材。
(6)前記網状構造体が更に炭素を含む、第(1)項~第(5)項のいずれか1項に記載のリチウム二次電池負極用炭素材。
(7)前記ケイ素含有粒子がケイ素酸化物を含む、第(1)項~第(6)項のいずれか1項に記載のリチウム二次電池負極用炭素材。
(8)前記ケイ素の合金、酸化物、窒化物または炭化物の含有量が5~60質量%の範囲内である、第(1)項~第(7)項のいずれか1項に記載のリチウム二次電池負極用炭素材。
(9)平均粒子径が3μm~15μmの範囲内である、第(1)項~第(8)項のいずれか1項に記載のリチウム二次電池負極用炭素材。
(10)第(1)項~第(9)項のいずれか1項に記載のリチウム二次電池負極用炭素材を含むリチウム二次電池負極。
(11)第(10)項に記載のリチウム二次電池負極を含むリチウム二次電池。
(12)リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、炭素前駆体とを混合することにより、該ケイ素含有粒子が該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことを特徴とする、リチウム二次電池負極用炭素材の製造方法。
(13)リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、炭素前駆体と、触媒とを混合することにより、該ケイ素含有粒子と該触媒とが該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことを特徴とする、リチウム二次電池負極用炭素材の製造方法。
また、リチウム二次電池負極用炭素材の細孔容積を制御することにより、さらに優れた充放電サイクル特性を示すリチウム二次電池負極用炭素材が提供される。
また、本発明によるリチウム二次電池負極用炭素材は、樹脂炭素材とナノファイバーおよび/またはナノチューブとが同一の炭素前駆体から炭化処理時に一緒に形成されるため、別途カーボンナノファイバーおよび/またはカーボンナノチューブを気相法、アーク放電法、プラズマ処理法で用意する必要がなく、製造プロセスが簡便であり、製造コストを抑えることができる。
上記0.25~0.45nmの細孔径を有する細孔の容積が上記全細孔容積に対して25容積%未満であると、十分な充電容量が確保できないため、好ましくない。
本発明における平均粒子径は、レーザー回折式粒度分布測定法による測定される体積換算で頻度が50%となる粒子径を平均粒子径D50%として定めた。
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素50質量部(平均粒子径1.2μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を平均粒子径が11μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後10時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材について、下記測定法により測定したところ、0.25~0.45nmの細孔容積は、0.85cm3/gであり、全細孔容積に対して55容積%であった。また、得られた炭素材について、走査型電子顕微鏡(SEM)を用いて観察を行ったところ、炭素材粒子表面に繊維直径が50nmのナノファイバー等の生成が確認された。また、得られた負極用炭素材には一酸化ケイ素が36.7質量%含有されていた。
細孔容積と細孔分布の測定
測定試料を島津製作所製・細孔分布測定装置「ASAP-2010」を用いて、623Kで真空加熱前処理することで吸着ガスを脱着、プローブガスとしてN2を用い、絶対圧760mmHg、相対圧0.005~0.86の範囲で77.3Kでの吸着等温線を測定し、得られた吸着媒質の比表面積・吸着量から吸着層の厚さtを介し、HalseyおよびHalsey and Juraの厚み式をもとに平均細孔水理半径を算出し、細孔容積を次式に基づいて計算した。
HalseyおよびHalsey and Juraの厚み式については、以下に説明した通りである。
t=(M×Vsp/22414)×(Va/S)
[式中、t:吸着層の統計的厚さ、M:吸着質の分子量、Va:吸着媒単位質量当りの吸着量、Vsp:吸着質ガスの比容積、S:吸着媒の比表面積]
tI=HP1×[HP2/ln(PrelI)]HP3
[式中、tI:Ithポイントの厚み、HP1:Halseyパラメーター#1、HP2:Halseyパラメーター#2、HP3:Halseyパラメーター#3、PrelI:Ithポイントの相対圧力(mmHg)]
平均水理半径(nm):RI=(tI+tI-1)/20
Ithポイント目に遮断した細孔表面積の増分ΔS:ΔS=SI-1-SI
Ithポイント目に遮断した積算細孔表面積(m2/g)S:S=S1+S2+S3+・・・・・Sn
Ithポイント目に遮断した細孔容積の増分ΔV:
ΔV=(S×104cm2/m2)×(RI×10-8cm/Å)
Ithポイント目の細孔容積ΔV/ΔRI(cm3/g):ΔV/ΔRI=ΔV/tI-tI-1
なお、上記Ithポイント目というのは、各相対圧による個々の測定ポイントのことをいう。
Ithポイント目に遮断した細孔容積(cm3/g):V=V1+V2+V3+・・・・・Vn。
(1)負極の作製
上記で得られた炭素材100質量部を用い、これに対して結着剤としてポリフッ化ビニリデン10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒としてN-メチル-2-ピロリドンを適量加え混合し、スラリー状の負極用混合物を調製した。
この負極スラリー状混合物を10μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を100μmに加圧成形した。これを幅40mmで長さ290mmの大きさに切り出し負極を作製した。この負極を用いて、リチウムイオン二次電池用電極としてφ13mmの径で打ち抜き負極とした。
上記負極、セパレータ(ポリプロピレン製多孔質フィルム:直径φ16、厚さ25μm)、作用極としてリチウム金属(直径φ12、厚さ1mm)の順で、宝泉製2032型コインセル内の所定の位置に配置した。さらに、電解液としてエチレンカーボネートとジエチレンカーボネートの混合液(体積比が1:1)に、過塩素酸リチウムを1[モル/リットル]の濃度で溶解させたものを注液し、リチウムイオン二次電池を作製した。
〈初期充放電特性評価〉
充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。
一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vに達した時点から、2.5Vで定電圧放電を行い、電流密度が1.25mA/gになるまでに放電した電気量を放電容量とした。
なお、充放電特性の評価は、充放電特性評価装置(北斗電工(株)製:HJR-1010mSM8)を用いて行った。
また、以下の式により初回の充放電効率を定義した。
初回充放電効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)×100
初期充放電特性評価条件を200回繰り返し測定した後に得られた放電容量を200サイクル目の放電容量とした。また、以下の式によりサイクル性(200サイクル容量維持率)を定義した。
サイクル性(%、200サイクル容量維持率)=200サイクル目の放電容量(mAh/g)/初回放電容量(mAh/g)×100
初期充放電特性評価により得られた放電容量を基準容量(C0)とし、基準容量を充電した後に、充電量を1時間で放電させる電流密度にて放電を行い、得られた放電容量を1C容量とした。同様に基準容量を充電した後に、充電量を2分で放電させる電流密度で放電を行い、得られた放電容量を30C容量とした。また、以下の式により負荷特性(%、30Cでの容量 対 1Cでの容量)を定義した。
負荷特性(%、30Cでの容量 対 1Cでの容量)=30C容量(mAh/g)/1C容量(mAh/g)×100
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を30質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素30質量部(平均粒子径3.3μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、550℃到達後1時間の炭化を行った。得られた炭素材を平均粒子径が7μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1150℃到達後10時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の0.25~0.45nmの細孔容積は、0.75cm3/gであり、全細孔容積に対して75容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が40nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が26.0質量%含有されていた。次いで、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を45質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素45質量部(平均粒子径0.7μm)を加え5時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が11μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後5時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材について、実施例1と同様にして評価したところ、0.25~0.45nmの細孔容積は、0.65cm3/gであり、全細孔容積に対して55容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が40nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が35.3質量%含有されていた。次いで、実施例1と同様に、リチウムイオン二次電池を作製して、充放電特性を評価した。
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を25質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素30質量部(平均粒子径1.3μm)、触媒として硝酸鉄0.1質量部を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が12μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後10時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材について、実施例1と同様にして評価したところ、0.25~0.45nmの細孔容積は、0.80cm3/gであり、全細孔容積に対して50容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が20nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が28.4質量%含有されていた。次いで、実施例1と同様に、リチウムイオン二次電池を作製して、充放電特性を評価した。
β-ナフトール100質量部と43%ホルムアルデヒド水溶液53.3質量部、しゅう酸3質量部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、β-ナフトール樹脂90質量部を得た。上記操作を繰り返して得られたβ-ナフトール樹脂100質量部に対してヘキサメチレンテトラミンを10質量部の割合で添加したものを粉砕混合した後、30質量部のジメチルスルホアミドを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素60質量部(平均粒子径3.3μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後6時間の炭化を行った。得られた炭素材を平均粒子径が7μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後10時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材について、実施例1と同様にして評価したところ、0.25~0.45nmの細孔容積は、0.65cm3/gであり、全細孔容積に対して65容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が20nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が56.2質量%含有されていた。次いで、実施例1と同様に、リチウムイオン二次電池を作製して、充放電特性を評価した。
レゾール型フェノール樹脂(住友ベークライト株式会社製PR-51723)100質量部を30質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素20質量部(平均粒子径1.1μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、550℃到達後2時間の炭化を行った。得られた炭素材を平均粒子径が10μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1200℃到達後18時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材について、実施例1と同様にして評価したところ、0.25~0.45nmの細孔容積は、0.012cm3/gであり、全細孔容積に対して40容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が35nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が33.1質量%含有されていた。次いで、実施例1と同様に、リチウムイオン二次電池を作製して、充放電特性を評価した。
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素50質量部(平均粒子径1.2μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを150℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、600℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が9μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1250℃到達後3時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の0.25~0.45nmの細孔容積は、1.2cm3/gであり、全細孔容積に対して80容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が40nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が35.9質量%含有されていた。次いで、実施例1と同様に、リチウムイオン二次電池を作製して、充放電特性を評価した。
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素40質量部(平均粒子径1.2μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを175℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、650℃到達後1時間の炭化を行った。得られた炭素材を平均粒子径が9μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後18時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の0.25~0.45nmの細孔容積は、0.85cm3/gであり、全細孔容積に対して25容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が35nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が36.2質量%含有されていた。次いで、実施例1と同様に、リチウムイオン二次電池を作製して、充放電特性を評価した。
レゾール型フェノール樹脂(住友ベークライト株式会社製PR-51723)100質量部を30質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素45質量部(平均粒子径1.3μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が10μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後3時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の0.25~0.45nmの細孔容積は、0.0003cm3/gであり、全細孔容積に対して30容積%であった。また、得られた炭素材のSEM観察を行ったところ、繊維直径が50nmのナノファイバー等が複合炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた炭素材には一酸化ケイ素が34.1質量%含有されていた。次いで、実施例1と同様に、リチウムイオン二次電池を作製して、充放電特性を評価した。
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらにケイ素20質量部(平均粒子径54μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行い、炭化処理条件を、1000℃到達後10時間の炭化処理を行う以外は、実施例1と同様の方法により炭素材を得た。得られた炭素材の平均粒子径は8μmに調整した。得られた炭素材について、実施例1と同様にして評価のところ、0.25~0.45nmの細孔容積は、0.65cm3/gであり、全細孔容積に対して20容積%であった。得られた炭素材のSEM観察を行ったところ、炭素材粒子表面には網状構造体は確認されなかった。また、得られた負極用炭素材にはケイ素が23.1質量%含有されていた。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR-50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を30質量部のメタノールを加えた4つ口フラスコに溶解させ、さらにケイ素40質量部(平均粒子径25μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行い、炭化処理条件を、900℃到達後5時間の炭化処理を行う以外は、実施例1と同様の方法により炭素材を得た。得られた炭素材の平均粒子径は10μmに調整した。得られた炭素材について、実施例1と同様にして評価のところ、0.25~0.45nmの細孔容積は、1.25cm3/gであり、全細孔容積に対して25容積%であった。得られた炭素材のSEM観察を行ったところ、炭素材粒子表面には網状構造体は確認されなかった。また、得られた負極用炭素材にはケイ素が32.3質量%含有されていた。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。
Claims (13)
- リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに
該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブからなる網状構造体
を含んでなり、該網状構造体がケイ素を含むことを特徴とするリチウム二次電池負極用炭素材。 - 前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25~0.45nmの細孔径を有する該細孔の容積が0.0001~1.5cm3/gである、請求項1に記載のリチウム二次電池負極用炭素材。
- 前記0.25~0.45nmの細孔径を有する該細孔の容積が0.0005~1.0cm3/gである、請求項2に記載のリチウム二次電池負極用炭素材。
- 前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25~0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して25容積%以上である、請求項1~3いずれか1項に記載のリチウム二次電池負極用炭素材。
- 前記0.25~0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して30容積%以上である、請求項4に記載のリチウム二次電池負極用炭素材。
- 前記網状構造体が更に炭素を含む、請求項1~5のいずれか1項に記載のリチウム二次電池負極用炭素材。
- 前記ケイ素含有粒子がケイ素酸化物を含む、請求項1~6のいずれか1項に記載のリチウム二次電池負極用炭素材。
- 前記ケイ素の合金、酸化物、窒化物または炭化物の含有量が5~60質量%の範囲内である、請求項1~7のいずれか1項に記載のリチウム二次電池負極用炭素材。
- 平均粒子径が3μm~15μmの範囲内である、請求項1~8のいずれか1項に記載のリチウム二次電池負極用炭素材。
- 請求項1~9のいずれか1項に記載のリチウム二次電池負極用炭素材を含むリチウム二次電池負極。
- 請求項10に記載のリチウム二次電池負極を含むリチウム二次電池。
- リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、炭素前駆体とを混合することにより、該ケイ素含有粒子が該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことを特徴とする、リチウム二次電池負極用炭素材の製造方法。
- リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、炭素前駆体と、触媒とを混合することにより、該ケイ素含有粒子と該触媒とが該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことを特徴とする、リチウム二次電池負極用炭素材の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010531807A JP5482660B2 (ja) | 2008-09-30 | 2009-09-14 | リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法 |
US13/121,620 US20110200874A1 (en) | 2008-09-30 | 2009-09-14 | Anodic carbon material for lithium secondary battery, lithium secondary battery anode, lithium secondary battery, and method for manufacturing anodic carbon material for lithium secondary battery |
CN200980147980.5A CN102227836B (zh) | 2008-09-30 | 2009-09-14 | 锂二次电池负极用炭材料、锂二次电池负极、锂二次电池和锂二次电池负极用炭材料的制造方法 |
EP09817646.4A EP2333879A4 (en) | 2008-09-30 | 2009-09-14 | CARBON MATERIAL FOR THE NEGATIVE ELECTRODE OF A LITHIUM SUBSTANCE BATTERY, NEGATIVE ELECTRODE OF A LITHIUM CERTAIN BATTERY, LITHIUM SUBSTANCE BATTERY AND METHOD FOR PRODUCING THE CARBON MATERIAL FOR THE NEGATIVE ELECTRODE OF A LITHIUM SUBSTANCE BATTERY |
KR1020117007406A KR101333380B1 (ko) | 2008-09-30 | 2009-09-14 | 리튬 2차 전지 부극용 탄소재, 리튬 2차 전지 부극, 리튬 2차 전지 및 리튬 2차 전지 부극용 탄소재의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008253251 | 2008-09-30 | ||
JP2008-253251 | 2008-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010038609A1 true WO2010038609A1 (ja) | 2010-04-08 |
Family
ID=42073378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/066038 WO2010038609A1 (ja) | 2008-09-30 | 2009-09-14 | リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110200874A1 (ja) |
EP (1) | EP2333879A4 (ja) |
JP (1) | JP5482660B2 (ja) |
KR (1) | KR101333380B1 (ja) |
CN (1) | CN102227836B (ja) |
WO (1) | WO2010038609A1 (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110256452A1 (en) * | 2010-04-19 | 2011-10-20 | Lg Chem, Ltd. | Method of preparing negative active material for a rechargeable lithium battery and a rechargeable lithium battery |
JP2012014939A (ja) * | 2010-06-30 | 2012-01-19 | Sumitomo Bakelite Co Ltd | リチウム二次電池負極用炭素材、リチウム二次電池用負極合剤、リチウム二次電池用負極、及びリチウム二次電池 |
JP2012527735A (ja) * | 2009-05-19 | 2012-11-08 | ナノシス・インク. | 電池に応用するためのナノ構造材料 |
JP2013030405A (ja) * | 2011-07-29 | 2013-02-07 | Sumitomo Bakelite Co Ltd | リチウムイオン二次電池用炭素材の製造方法、リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池。 |
WO2013018721A1 (ja) * | 2011-07-29 | 2013-02-07 | 住友ベークライト株式会社 | リチウムイオン二次電池用炭素材の製造方法、リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極活物質、組成物、リチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
JP2013030428A (ja) * | 2011-07-29 | 2013-02-07 | Sumitomo Bakelite Co Ltd | リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
JP2013073920A (ja) * | 2011-09-29 | 2013-04-22 | Sumitomo Bakelite Co Ltd | 組成物、リチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
JP2013073764A (ja) * | 2011-09-27 | 2013-04-22 | Toshiba Corp | 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法 |
JP2013219059A (ja) * | 2013-07-30 | 2013-10-24 | Sumitomo Bakelite Co Ltd | リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
US20140127576A1 (en) * | 2011-07-29 | 2014-05-08 | Sanyo Electric Co., Ltd. | Active material for nonaqueous electrolyte secondary batteries, method for producing the same, and negative electrode including the same |
JP2014146519A (ja) * | 2013-01-29 | 2014-08-14 | Showa Denko Kk | 複合電極材 |
WO2015140937A1 (ja) * | 2014-03-18 | 2015-09-24 | 株式会社 東芝 | 非水電解質電池用電極、非水電解質二次電池及び電池パック |
JP2016013967A (ja) * | 2014-07-03 | 2016-01-28 | オーシーアイ カンパニー リミテッドOCI Company Ltd. | 炭素‐シリコン複合体及びその製造方法 |
WO2016017583A1 (ja) * | 2014-07-28 | 2016-02-04 | 昭和電工株式会社 | リチウムイオン二次電池用負極材およびその製造方法 |
CN105529447A (zh) * | 2016-01-21 | 2016-04-27 | 昆明理工大学 | 一种碳纳米管-碳-多孔硅复合材料制备方法及应用 |
JP2022506881A (ja) * | 2018-11-08 | 2022-01-17 | ネクシオン リミテッド | 金属イオン電池用電気活性材料 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11038176B1 (en) * | 2020-07-09 | 2021-06-15 | Enevate Corporation | Method and system for water based phenolic binders for silicon-dominant anodes |
WO2012155092A2 (en) * | 2011-05-12 | 2012-11-15 | Applied Materials, Inc. | Precursor formulation for battery active materials synthesis |
KR101733736B1 (ko) * | 2012-01-06 | 2017-05-10 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 그 제조 방법 및 이를 포함하는 리튬 이차 전지 |
US20150099186A1 (en) * | 2012-03-02 | 2015-04-09 | Cornell University | Silicon nanocomposite nanofibers |
EP2690689A1 (en) * | 2012-07-25 | 2014-01-29 | Umicore | Low cost Si-based negative electrodes with enhanced cycling performance |
JP6161328B2 (ja) * | 2012-05-18 | 2017-07-12 | Jsr株式会社 | 電極活物質、電極及び蓄電デバイス |
WO2013191885A1 (en) | 2012-06-19 | 2013-12-27 | Leyden Energy, Inc. | Electrolytes including fluorinated solvents for use in electrochemical cells |
US20140065462A1 (en) * | 2012-08-29 | 2014-03-06 | Apple Inc. | Increased energy density and swelling control in batteries for portable electronic devices |
WO2014160174A1 (en) | 2013-03-14 | 2014-10-02 | Cornell University | Carbon and carbon precursors in nanofibers |
KR20140134954A (ko) | 2013-05-15 | 2014-11-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질 및 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
CN104347858B (zh) * | 2013-07-29 | 2016-12-28 | 华为技术有限公司 | 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池 |
KR101527286B1 (ko) * | 2013-09-30 | 2015-06-09 | 고려대학교 산학협력단 | 리튬 이차 전지용 음극의 형성 방법 |
KR101615439B1 (ko) * | 2014-07-17 | 2016-05-13 | 오씨아이 주식회사 | 탄소-실리콘 복합체의 제조방법 |
KR102356936B1 (ko) * | 2014-12-31 | 2022-02-03 | 삼성전자주식회사 | 복합 음극 활물질, 그 제조방법, 이를 포함하는 음극 및 리튬이차전지 |
DE102015205206A1 (de) * | 2015-03-23 | 2016-09-29 | Robert Bosch Gmbh | Anodenmaterial aus Siliciumkompositpartikeln und Siliciumnanopartikeln |
EP3353844B1 (en) | 2015-03-27 | 2022-05-11 | Mason K. Harrup | All-inorganic solvents for electrolytes |
CN105161759B (zh) * | 2015-08-21 | 2017-10-10 | 北京科技大学 | 一种锂空气电池的复合电解质及其制备方法 |
KR102581466B1 (ko) * | 2016-05-27 | 2023-09-22 | 삼성전자주식회사 | 리튬전지 및 보호음극의 제조방법 |
JP6659504B2 (ja) * | 2016-09-20 | 2020-03-04 | 株式会社東芝 | 固体電解質、リチウム電池、電池パック、及び車両 |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
CN106848282B (zh) * | 2017-01-26 | 2022-05-17 | 彭宪利 | 一种非水电解质二次电池用负极材料及其制备方法和应用 |
GB2580033B (en) | 2018-12-19 | 2021-03-10 | Nexeon Ltd | Electroactive materials for metal-Ion batteries |
US20210122641A1 (en) * | 2019-10-29 | 2021-04-29 | Battelle Memorial Institute | Stabilized porous silicon structure for highly stable silicon anode and methods of making |
CN115463526B (zh) * | 2021-06-11 | 2024-04-16 | 合肥美的电冰箱有限公司 | 一种空气电极及其制备方法和应用 |
CN115832219A (zh) * | 2022-01-05 | 2023-03-21 | 宁德时代新能源科技股份有限公司 | 一种复合材料、正极极片及二次电池 |
CN117954576A (zh) * | 2024-03-26 | 2024-04-30 | 宁波大学 | 一种兼具高容量和低应变的合金负极 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08241715A (ja) | 1995-03-03 | 1996-09-17 | Central Glass Co Ltd | リチウム二次電池用負極材料およびその製造法およびそれを用いたリチウム二次電池 |
JP2004119176A (ja) * | 2002-09-26 | 2004-04-15 | Toshiba Corp | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
JP2004327190A (ja) * | 2003-04-24 | 2004-11-18 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材及びその製造方法 |
JP2005243640A (ja) * | 2004-02-25 | 2005-09-08 | Samsung Sdi Co Ltd | リチウム二次電池用負極活物質,その製造方法及びこの負極活物質を含むリチウム二次電池 |
JP2006244984A (ja) * | 2004-08-26 | 2006-09-14 | Matsushita Electric Ind Co Ltd | 電極用複合粒子およびその製造法、ならびに非水電解質二次電池 |
JP2007165108A (ja) * | 2005-12-14 | 2007-06-28 | Hitachi Maxell Ltd | 非水電解液二次電池 |
JP2007214137A (ja) | 2007-03-12 | 2007-08-23 | Mitsubishi Chemicals Corp | 非水系炭素被覆リチウム二次電池用負極活物質 |
JP2007220411A (ja) * | 2006-02-15 | 2007-08-30 | Kuraray Co Ltd | 複合体およびその製造方法、並びに蓄電デバイス用電極材料 |
JP2007227139A (ja) * | 2006-02-23 | 2007-09-06 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用負極およびその製造法、ならびに非水電解質二次電池 |
JP2007305569A (ja) | 2006-05-09 | 2007-11-22 | Samsung Sdi Co Ltd | 金属ナノ結晶複合体を含む負極活物質、その製造方法及びそれを採用した負極とリチウム電池 |
JP2008166013A (ja) * | 2006-12-27 | 2008-07-17 | Matsushita Electric Ind Co Ltd | 複合活物質およびそれを用いた電気化学素子 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3359164B2 (ja) * | 1994-10-19 | 2002-12-24 | キヤノン株式会社 | 二次電池 |
DE69739132D1 (de) * | 1996-08-08 | 2009-01-08 | Hitachi Chemical Co Ltd | Graphitteilchen und Lithiumsekundärzelle in der diese als Material der negativen Elektrode verwendet werden |
US6235065B1 (en) * | 1998-10-27 | 2001-05-22 | Alcatel | Room temperature lamination of Li-ion polymer electrodes |
AU2002330924A1 (en) * | 2001-07-27 | 2003-02-17 | A 123 Systems | Battery structures, self-organizing structures and related methods |
WO2006022254A1 (ja) * | 2004-08-26 | 2006-03-02 | Matsushita Electric Industrial Co., Ltd. | 電極用複合粒子およびその製造法、ならびに二次電池 |
JPWO2006068066A1 (ja) * | 2004-12-24 | 2008-06-12 | 松下電器産業株式会社 | 非水電解液二次電池用もしくは非水電解液電気化学キャパシタ用の複合電極活物質およびその製造法 |
JP2008066053A (ja) * | 2006-09-06 | 2008-03-21 | Fuji Heavy Ind Ltd | 蓄電デバイス用負極活物質およびその製造方法 |
-
2009
- 2009-09-14 KR KR1020117007406A patent/KR101333380B1/ko not_active IP Right Cessation
- 2009-09-14 US US13/121,620 patent/US20110200874A1/en not_active Abandoned
- 2009-09-14 CN CN200980147980.5A patent/CN102227836B/zh not_active Expired - Fee Related
- 2009-09-14 WO PCT/JP2009/066038 patent/WO2010038609A1/ja active Application Filing
- 2009-09-14 JP JP2010531807A patent/JP5482660B2/ja not_active Expired - Fee Related
- 2009-09-14 EP EP09817646.4A patent/EP2333879A4/en not_active Withdrawn
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08241715A (ja) | 1995-03-03 | 1996-09-17 | Central Glass Co Ltd | リチウム二次電池用負極材料およびその製造法およびそれを用いたリチウム二次電池 |
JP2004119176A (ja) * | 2002-09-26 | 2004-04-15 | Toshiba Corp | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
JP2004327190A (ja) * | 2003-04-24 | 2004-11-18 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材及びその製造方法 |
JP2005243640A (ja) * | 2004-02-25 | 2005-09-08 | Samsung Sdi Co Ltd | リチウム二次電池用負極活物質,その製造方法及びこの負極活物質を含むリチウム二次電池 |
JP2006244984A (ja) * | 2004-08-26 | 2006-09-14 | Matsushita Electric Ind Co Ltd | 電極用複合粒子およびその製造法、ならびに非水電解質二次電池 |
JP2007165108A (ja) * | 2005-12-14 | 2007-06-28 | Hitachi Maxell Ltd | 非水電解液二次電池 |
JP2007220411A (ja) * | 2006-02-15 | 2007-08-30 | Kuraray Co Ltd | 複合体およびその製造方法、並びに蓄電デバイス用電極材料 |
JP2007227139A (ja) * | 2006-02-23 | 2007-09-06 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用負極およびその製造法、ならびに非水電解質二次電池 |
JP2007305569A (ja) | 2006-05-09 | 2007-11-22 | Samsung Sdi Co Ltd | 金属ナノ結晶複合体を含む負極活物質、その製造方法及びそれを採用した負極とリチウム電池 |
JP2008166013A (ja) * | 2006-12-27 | 2008-07-17 | Matsushita Electric Ind Co Ltd | 複合活物質およびそれを用いた電気化学素子 |
JP2007214137A (ja) | 2007-03-12 | 2007-08-23 | Mitsubishi Chemicals Corp | 非水系炭素被覆リチウム二次電池用負極活物質 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012527735A (ja) * | 2009-05-19 | 2012-11-08 | ナノシス・インク. | 電池に応用するためのナノ構造材料 |
US11600821B2 (en) | 2009-05-19 | 2023-03-07 | Oned Material, Inc. | Nanostructured materials for battery applications |
US11233240B2 (en) | 2009-05-19 | 2022-01-25 | Oned Material, Inc. | Nanostructured materials for battery applications |
KR102067922B1 (ko) | 2009-05-19 | 2020-01-17 | 원드 매터리얼 엘엘씨 | 배터리 응용을 위한 나노구조화된 재료 |
US10490817B2 (en) | 2009-05-19 | 2019-11-26 | Oned Material Llc | Nanostructured materials for battery applications |
KR20190002755A (ko) * | 2009-05-19 | 2019-01-08 | 원드 매터리얼 엘엘씨 | 배터리 응용을 위한 나노구조화된 재료 |
US9306209B2 (en) * | 2010-04-19 | 2016-04-05 | Ulsan National Institute Of Science And Technology | Method of preparing negative active material containing a carbon-coated silicon core for a rechargeable lithium battery and a rechargeable lithium battery |
US20110256452A1 (en) * | 2010-04-19 | 2011-10-20 | Lg Chem, Ltd. | Method of preparing negative active material for a rechargeable lithium battery and a rechargeable lithium battery |
JP2012014939A (ja) * | 2010-06-30 | 2012-01-19 | Sumitomo Bakelite Co Ltd | リチウム二次電池負極用炭素材、リチウム二次電池用負極合剤、リチウム二次電池用負極、及びリチウム二次電池 |
JP2013030428A (ja) * | 2011-07-29 | 2013-02-07 | Sumitomo Bakelite Co Ltd | リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
US20140127576A1 (en) * | 2011-07-29 | 2014-05-08 | Sanyo Electric Co., Ltd. | Active material for nonaqueous electrolyte secondary batteries, method for producing the same, and negative electrode including the same |
JP2013030405A (ja) * | 2011-07-29 | 2013-02-07 | Sumitomo Bakelite Co Ltd | リチウムイオン二次電池用炭素材の製造方法、リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池。 |
CN103703592A (zh) * | 2011-07-29 | 2014-04-02 | 住友电木株式会社 | 锂离子二次电池用碳材料的制造方法、锂离子二次电池用碳材料、锂离子二次电池用负极活性物质、组合物、锂离子二次电池负极材料用碳复合材料、锂离子二次电池用负极合剂、锂离子二次电池用负极、以及锂离子二次电池 |
WO2013018721A1 (ja) * | 2011-07-29 | 2013-02-07 | 住友ベークライト株式会社 | リチウムイオン二次電池用炭素材の製造方法、リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極活物質、組成物、リチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
JP2013073764A (ja) * | 2011-09-27 | 2013-04-22 | Toshiba Corp | 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法 |
JP2013073920A (ja) * | 2011-09-29 | 2013-04-22 | Sumitomo Bakelite Co Ltd | 組成物、リチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
JP2014146519A (ja) * | 2013-01-29 | 2014-08-14 | Showa Denko Kk | 複合電極材 |
JP2013219059A (ja) * | 2013-07-30 | 2013-10-24 | Sumitomo Bakelite Co Ltd | リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
WO2015140937A1 (ja) * | 2014-03-18 | 2015-09-24 | 株式会社 東芝 | 非水電解質電池用電極、非水電解質二次電池及び電池パック |
JP2016013967A (ja) * | 2014-07-03 | 2016-01-28 | オーシーアイ カンパニー リミテッドOCI Company Ltd. | 炭素‐シリコン複合体及びその製造方法 |
WO2016017583A1 (ja) * | 2014-07-28 | 2016-02-04 | 昭和電工株式会社 | リチウムイオン二次電池用負極材およびその製造方法 |
CN105529447A (zh) * | 2016-01-21 | 2016-04-27 | 昆明理工大学 | 一种碳纳米管-碳-多孔硅复合材料制备方法及应用 |
JP2022506881A (ja) * | 2018-11-08 | 2022-01-17 | ネクシオン リミテッド | 金属イオン電池用電気活性材料 |
Also Published As
Publication number | Publication date |
---|---|
CN102227836B (zh) | 2014-07-02 |
KR20110069037A (ko) | 2011-06-22 |
JP5482660B2 (ja) | 2014-05-07 |
KR101333380B1 (ko) | 2013-11-28 |
EP2333879A1 (en) | 2011-06-15 |
JPWO2010038609A1 (ja) | 2012-03-01 |
CN102227836A (zh) | 2011-10-26 |
EP2333879A4 (en) | 2014-06-11 |
US20110200874A1 (en) | 2011-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5482660B2 (ja) | リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法 | |
JP5593665B2 (ja) | リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池 | |
JP5593663B2 (ja) | リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池 | |
JP5947198B2 (ja) | 蓄電デバイス用負極材および蓄電デバイス用電極の製造方法 | |
JP6003886B2 (ja) | 非水系二次電池用炭素材、該炭素材を用いた負極及び非水系二次電池 | |
WO2009133807A1 (ja) | リチウム二次電池負極用炭素材、その製造方法、リチウム二次電池負極およびリチウム二次電池 | |
CN112219294A (zh) | 锂离子电池和电池材料 | |
JP6450309B2 (ja) | リチウムイオン二次電池用負極材 | |
JP5593664B2 (ja) | リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池 | |
CN115667136B (zh) | 复合碳粒子及其用途 | |
JP2012216545A (ja) | 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池 | |
JP6961980B2 (ja) | リチウム二次電池用複合活物質およびその製造方法 | |
JP6543255B2 (ja) | リチウムイオン二次電池用負極材およびその製造方法 | |
JP5573149B2 (ja) | リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池 | |
JP6759583B2 (ja) | リチウム二次電池用複合活物質およびその製造方法、リチウム二次電池 | |
JP2016170930A (ja) | 負極活物質層及びその負極活物質層を具備する蓄電装置 | |
JP5655396B2 (ja) | リチウム二次電池負極用炭素材、リチウム二次電池用負極合剤、リチウム二次電池用負極、及びリチウム二次電池 | |
JP5499636B2 (ja) | リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池 | |
JP5482094B2 (ja) | リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法 | |
JP5540631B2 (ja) | リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池 | |
JP5440488B2 (ja) | 二次電池用炭素材 | |
WO2024048051A1 (ja) | 負極活物質および二次電池 | |
JP2024520460A (ja) | 負極の製造方法、負極およびそれを含む二次電池 | |
JP2024035246A (ja) | 負極活物質および二次電池 | |
JP2021157996A (ja) | リチウムイオン二次電池負極用バインダー及びそれを含むリチウムイオン二次電池負極材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980147980.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09817646 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010531807 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13121620 Country of ref document: US Ref document number: 2009817646 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117007406 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |