[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010038549A1 - Optical sheet and surface light source for liquid crystal display device - Google Patents

Optical sheet and surface light source for liquid crystal display device Download PDF

Info

Publication number
WO2010038549A1
WO2010038549A1 PCT/JP2009/064148 JP2009064148W WO2010038549A1 WO 2010038549 A1 WO2010038549 A1 WO 2010038549A1 JP 2009064148 W JP2009064148 W JP 2009064148W WO 2010038549 A1 WO2010038549 A1 WO 2010038549A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
optical sheet
resin
layer
outer layer
Prior art date
Application number
PCT/JP2009/064148
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 辻内
基之 鈴木
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN200980144267.5A priority Critical patent/CN102203640B/en
Priority to JP2009535720A priority patent/JPWO2010038549A1/en
Publication of WO2010038549A1 publication Critical patent/WO2010038549A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to an optical sheet such as a so-called prism sheet and a backlight unit using the same.
  • Liquid crystal display devices are used in a variety of applications, including notebook computers and mobile phone devices, as well as televisions, monitors, and car navigation systems.
  • the liquid crystal display device incorporates a backlight unit serving as a light source, and is configured to display by controlling light beams from the backlight unit through a liquid crystal cell.
  • the characteristic required for this backlight unit is not only as a light source that emits light, but also to make the entire screen shine brightly and uniformly.
  • the structure of the backlight unit can be roughly divided into two. There are a system called a direct type backlight and a system called a sidelight type backlight.
  • Sidelight type backlight is a system mainly used for mobile phones, notebook computers, etc. that require thinning and miniaturization.
  • a light guide plate is used.
  • typical examples include a reflective film that functions to reflect and reuse light leaking from the back surface of the light guide plate, a diffusion sheet that equalizes the light emitted from the front surface of the light guide plate, and a prism sheet that improves front brightness.
  • Various kinds of optical films are used, such as a light-condensing sheet and a brightness enhancement sheet that improves the brightness on a liquid crystal panel.
  • the prism sheet generally used is one prepared by applying a photocurable resin on a transparent substrate to form a prism pattern (Patent Document 1), and heating a mold on a sheet made of a thermoplastic resin.
  • Patent Document 2 One produced by forming a prism pattern by pressing (Patent Document 2) or produced using a norbornene-based resin as a base material to improve heat resistance (Patent Document 3).
  • the prism sheet produced using the photocurable resin of Patent Document 1 is curled due to shrinkage of the photocurable resin layer forming the prism layer in a durability test under heating or humidification conditions. For this reason, problems in display quality, such as color unevenness, occur when assembled in a backlight unit.
  • the liquid crystal display device When the liquid crystal display device is intended for small-sized mobile phones and the like, it is essential to make various optical sheets thin, including a prism sheet.
  • a prism sheet In the case of the prism sheet produced using the photo-curing resin, there is a drawback that the curl during the durability test is more noticeably generated as the thickness of the support is reduced in order to reduce the thickness.
  • the prism sheet produced using the thermoplastic resin of Patent Document 2 is curled during the durability test as compared with the photocurable resin, but is bent over the front surface of the sheet, that is, the flatness is deteriorated. Can be seen. In particular, in the test under humidified conditions, the flatness is remarkably deteriorated, and the shape formed on the surface is also deformed.
  • the optical sheet produced using the norbornene-based resin of Patent Document 3 is improved in terms of curl and flatness during a durability test, the glass transition temperature (hereinafter referred to as Tg) of the resin is too high.
  • Tg glass transition temperature
  • productivity is poor because it takes a very long time to raise the mold to a high temperature during molding of the uneven shape and a time to cool the mold after pressing the mold against the resin.
  • the present invention is an optical sheet having excellent formability and productivity, having a thin surface, and having less unevenness on the surface and less curling of the sheet even under a durability test, and having good flatness. Is to provide.
  • the optical sheet of the present invention includes a three-layer laminate composed of a core layer and an outer layer laminated on both surfaces of the core layer without an adhesive layer, and the resin constituting the core layer is amorphous.
  • a plurality of convex shapes formed on the surface of at least one of the outer layers, the main component of the resin constituting each outer layer is a resin having the same composition, and the glass transition of the resin constituting each outer layer The temperature is 80 ° C. or higher, and 10 ° C. or lower than the glass transition temperature of the resin constituting the core layer.
  • the backlight unit of the present invention is mounted with the optical sheet of the present invention.
  • an optical sheet that is excellent in formability and productivity, is thin, has little unevenness formed on the surface even under an endurance test, has little curling of the sheet, and has good flatness. it can. And the display quality of the backlight unit carrying this optical sheet can be improved.
  • the structure of the optical sheet of this invention is illustrated typically.
  • (A) to (d) schematically illustrate steps of forming a convex shape on the outer layer of the optical sheet of the present invention.
  • (A) to (e) are perspective views schematically showing the convex shape of the outer layer of the optical sheet of the present invention,
  • (a) to (c) are stripe shapes,
  • (d) is a dome shape,
  • (E) is a pyramid shape.
  • (A) to (f) are all sectional views of the convex shape of the outer layer of the optical sheet of the present invention.
  • d Convex height of the convex shaped cross section h: Thickness from the bottom of the convex shaped cross section to the core layer H: Thickness of the outer layer of the optical sheet p: Convex shape pitch of the convex shaped cross section
  • the optical sheet of the present invention includes a three-layer laminate composed of a core layer and an outer layer laminated on both surfaces of the core layer without an adhesive layer, and the resin constituting the core layer is an amorphous resin.
  • a plurality of convex shapes are formed on the surface of at least one outer layer, the main component of the resin constituting each outer layer is a resin having the same composition, and the glass transition temperature (hereinafter referred to as Tg) of the resin constituting each outer layer. ) Is 80 ° C. or higher and 10 ° C. or lower than the glass transition temperature of the resin constituting the core layer (FIG. 1).
  • layers for imparting surface releasability and adjusting optical properties may be laminated.
  • the thickness of each layer Is preferably 1/5 or less of the thickness of the outer layer.
  • a preferable total number of layers is 3 to 10 layers including 3 layers of a 3-layer laminate.
  • one outer layer is provided on one surface of the core layer for imparting mechanical and thermal strength to form a plurality of convex shapes, and this outer layer is formed on the other surface. This is because a layer mainly composed of a resin having the same composition as the main component of the resin is provided to suppress curling.
  • the “main component” of the resin constituting the outer layer is a resin having a composition occupying 50% by weight or more of the resin constituting the outer layer, preferably 70% by weight or more, more preferably 95% by weight. That's it.
  • the Tg of the resin constituting the outer layer is 80 ° C. or higher.
  • Tg is a midpoint glass transition temperature value obtained by the following procedure by differential scanning calorimetry (hereinafter referred to as DSC) measurement according to JIS K 7121-1987. That is, using a robot DSC “RDSC220” manufactured by Seiko Denshi Kogyo Co., Ltd. as a DSC and a disk station “SSC / 5200” manufactured by Seiko Electronics Co., Ltd. The mixture is heated to 300 ° C. at a rate of temperature rise / minute and melted for 5 minutes, and then quenched with liquid nitrogen. Tg obtained by the measurement in this process is employed.
  • DSC differential scanning calorimetry
  • a test under heating only and heating / humidifying conditions is usually performed as a durability test.
  • a temperature range of 60 to 80 ° C. and a humidity range of 80 to 95% are often employed.
  • curling becomes significant.
  • the curl is particularly large in a prism sheet obtained by forming a prism made of an acrylic UV curable resin on a conventional polyester resin. Therefore, in addition to being capable of surface shaping as the outer layer, it is also necessary that deformation does not occur in the temperature and humidity ranges in the durability test. That is, the Tg of the resin constituting the outer layer needs to be 80 ° C.
  • Tg is a temperature higher than the test temperature.
  • Tg is less than 80 ° C.
  • the Tg of the resin constituting the outer layer is preferably 80 to 120 ° C. If the Tg exceeds 120 ° C, the Tg is too high, making it difficult to improve the accuracy during surface shaping. If a shape with a sharp top like a prism sheet is shaped, it will be molded into the shape as the mold.
  • it may be a low-precision molded product with a rounded top.
  • the time required for raising the mold to a high temperature during surface shaping, and the time required for cooling the mold after pressing the mold against the resin are very long, resulting in poor productivity.
  • the resin constituting the outer layer in the present invention is not particularly limited as long as the above Tg condition is satisfied.
  • cyclic polyolefins and polyester resins are more preferably used in terms of mechanical strength, heat resistance, dimensional stability, and surface formability.
  • cyclic polyolefins are particularly preferred because of excellent transparency, yellowing and moisture permeability and very small dimensional change.
  • the cyclic polyolefin resin has a polymerizable cyclic olefin having an ethylenic double bond in the ring as a monomer unit.
  • cyclic olefins include norbornene monomers (monocyclic and polycyclic).
  • the cyclic polyolefin resin preferably used in the present invention refers to a homopolymer of the above cyclic olefin, a copolymer of two or more cyclic olefins, or a copolymer of a cyclic olefin and a chain olefin.
  • cyclic polyolefin-based resin for example, a structure represented by the following formula (1) can be used.
  • A represents a cyclic olefin monomer
  • B represents a chain copolymerizable monomer
  • M in the formula represents a positive integer
  • n represents 0 or a positive integer
  • cyclic olefin monomer represented by A in the above formula (1) a structural unit represented by the following formula (2) or (3) can be used.
  • a and b represent 0 or a positive integer.
  • R 1 to R 4 are a hydrogen atom, a hydrocarbon group, a halogen atom, a halogen-substituted hydrocarbon group, — (CH 2 ) x COOR 9 (x represents 0 or a positive integer; R 9 represents a hydrogen atom, Represents a hydrocarbon group, a halogen atom, or a halogen-substituted hydrocarbon group.
  • R 5 to R 8 are a hydrogen atom, a hydrocarbon group, a halogen atom, a halogen-substituted hydrocarbon group, — (CH 2 ) x COOR 10 (x represents 0 or a positive integer.
  • R 10 represents a hydrogen atom, Represents a hydrocarbon group, a halogen atom, or a halogen-substituted hydrocarbon group.
  • the cyclic olefin monomer represented by A can be used by copolymerizing not only one type but also two or more types of cyclic olefin monomers.
  • Examples of the chain copolymerizable monomer represented by B in the above formula (1) include ⁇ -olefins such as ethylene, propylene, butene and pentene, (meth) acrylic acid, and (meth) acrylic acid esters. , Acrylonitrile, maleic anhydride and the like can be used. Of these, ⁇ -olefins are preferably used.
  • the cyclic polyolefin resin in the present invention may be composed of one kind of cyclic polyolefin resin, or two or more kinds of cyclic polyolefin resins may be blended and used.
  • a method of blending two or more kinds of resins is a preferred embodiment because it allows control of thermal properties such as glass transition temperature of the optical sheet and mechanical properties such as high elongation.
  • an amorphous resin is used as the resin constituting the core layer.
  • a resin for an optical sheet used for a liquid crystal display or the like an amorphous resin having excellent transparency is generally used.
  • rapid cooling for reducing crystallinity is not required as in crystalline resin, so it can be cooled slowly, and a sheet with excellent thickness accuracy can be obtained. Film formation is possible.
  • a cyclic polyolefin resin, a polycarbonate resin, a polystyrene resin, an acrylic resin, and an amorphous polyester resin are preferable.
  • the cyclic polyolefin resin is excellent in transparency, yellowing and moisture permeability and has a very small dimensional change, it is suitable as an optical sheet material that achieves the effects of the present invention.
  • the “main component” of the resin constituting the core layer is a resin having a composition occupying 50% by weight or more of the resin constituting the core layer.
  • the core layer preferably has a higher Tg than the outer layer in order to impart flatness.
  • the cyclic polyolefin satisfies the Tg condition and is suitable as a main component of the resin constituting the core layer also in this respect.
  • the Tg of the resin constituting the outer layer is 10 ° C. or more lower than the Tg of the resin constituting the core layer.
  • the difference in Tg is less than 10 ° C., when the convex shape is formed on the outer layer using a flat plate pressing method, when the core layer is heated and the mold is peeled off, the entire optical sheet is molded. The flatness becomes worse due to deformation following the above.
  • the Tg of the resin constituting the outer layer is preferably 10 to 100 ° C. lower than the Tg of the resin constituting the core layer.
  • the difference in Tg exceeds 100 ° C., when the sheet is formed by using the coextrusion method, the resin having the lower Tg is carbonized, and the quality of the sheet may be deteriorated.
  • Examples of the method for producing a three-layer laminate in the optical sheet of the present invention include the following methods for producing a laminate without using an adhesive.
  • thermocompression method A method in which a sheet of a support layer and a sheet of an outer layer produced by a single film are separately produced and thermocompression bonded with a heated roll group or the like (thermal lamination method).
  • thermo lamination method thermocompression bonded with a heated roll group or the like
  • coating method a method in which the outer layer sheet is dissolved in a solvent, and the solution is applied onto the support layer sheet and dried (coating method).
  • the coextrusion method of coextrusion and processing into a sheet shape is a preferable method in that a laminate can be produced with high accuracy in a single step.
  • Both the optical sheet of the present invention before forming a convex shape on the outer layer and a mold having a shape obtained by inverting the pattern to be transferred have a glass transition temperature Tg of the resin constituting the outer layer of Tg + 60 ° C. or lower. Heat within the temperature range (FIG. 2A).
  • the outer layer of the optical sheet and the uneven surface of the mold are brought close to each other (FIG. 2B), pressed as it is at a predetermined pressure, and held for a predetermined time (FIG. 2C).
  • the temperature is lowered while maintaining the pressed state.
  • the press pressure is released and the optical sheet is released from the mold (FIG. 2D).
  • a pattern forming method of the outer layer in addition to a method of pressing a flat plate as shown in FIG. 2 (flat plate pressing method), a roll-shaped mold having a pattern formed on the surface is used to form a roll-shaped sheet.
  • the roll-to-roll continuous molding may be performed to obtain a roll-shaped molded body.
  • the flat plate pressing method is excellent in that a finer and higher aspect ratio pattern can be formed.
  • the roll-to-roll continuous forming is superior to the flat plate pressing method in terms of productivity.
  • since the core layer is present in the optical sheet of the present invention, there is a stiffness of the sheet itself compared to a single film made of resin constituting the outer layer. It is preferable because it is excellent.
  • FIG. 3A to 3E are perspective views schematically showing a convex shape.
  • a stripe pattern as shown in FIGS. 3A to 3C (a convex shape in which a plurality of convex shapes each extend in one direction) And the longitudinal directions of the plurality of convex shapes are substantially parallel to each other (the difference between the longitudinal directions is 5 ° or less, preferably 1 ° or less, respectively)
  • FIG. A preferable example is a pattern in which a shape such as a dome shape or a pyramid shape as shown in FIG.
  • FIG. 4 shows a cross-sectional shape in a direction perpendicular to the longitudinal direction of the convex shape.
  • the convex cross-sectional shape of each stripe is an isosceles triangle, equilateral triangle, right-angled isosceles triangle, a triangular shape obtained by deforming them (FIG. 4A), a semicircle, a semi-ellipse, or an arc shape obtained by deforming them. (FIG. 4B), waveform shapes such as regular sine curves and random curves (FIG. 4D), and the like are preferable examples.
  • each cross-sectional shape may be a repeated pattern having the same shape, or as shown in FIG. 4 (d), a regular or random array pattern having different sized shapes.
  • regular or random patterns having different shapes are also preferable embodiments.
  • regular or random arrays of different sizes or shapes, and shapes such as the random curve in FIG. 4 (c) can cause light interference fringes and glare that can be caused by the shape formed on the sheet surface. It is preferable because it also has an inhibitory effect.
  • FIG. 4F a shape in which flat portions are formed between adjacent patterns in the cross section of each stripe is also used.
  • flat portions are formed between adjacent patterns. A shape that is not done is more preferred.
  • each stripe may be a uniform stripe having the same shape and size when observed in the longitudinal direction of the stripe, or may be the same shape but different in size (that is, the height fluctuates).
  • the stripe may be a stripe, or any stripe whose shape changes is preferably used.
  • the individual stripes when the stripes are observed from the normal direction of the sheet, the individual stripes may be completely linear or preferably used when the stripes are not linear, such as wavy. Therefore, the distance (pitch) between the individual stripes is preferably either regular or random.
  • shapes such as a dome shape and a pyramid shape are spread.
  • Preferable shapes can be roughly divided into a hemispherical shape such as a dome shape and a polygonal pyramid shape such as a pyramid shape.
  • a hemispherical shape a hemisphere, a shape obtained by expanding and contracting the hemisphere in the height direction (semi-spheroid), and the like may be used, and the shape may be anisotropic in the sheet plane.
  • anisotropy anisotropy can be optically induced by aligning the major axis directions of the individual shapes.
  • a regular arrangement such as closest packing
  • a random arrangement is preferably used for the arrangement in the hemispherical sheet surface.
  • a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, an octagonal pyramid, etc. are given as examples.
  • a regular arrangement or a random arrangement is preferably used as the arrangement in the sheet surface.
  • These shapes may be a repetitive pattern of a single shape within the sheet surface, or may be a composite shape in which a plurality of shape types are arranged.
  • the present invention is effective when a prism sheet used for exhibiting a luminance improvement effect is produced as an optical sheet for a liquid crystal display device.
  • the prism sheet is a prism sheet in which a plurality of triangular prisms each having a convex (cross-sectional) shape are triangular.
  • the apex angle of the triangle in the cross section is preferably 70 to 110 °, more preferably 80 to 100 °, and still more preferably 90 °.
  • the front luminance improvement effect when incorporated in the backlight unit may be insufficient.
  • the triangle of the said cross section is an isosceles triangle and it is excellent in the front brightness improvement effect in any structure, it is preferable.
  • the prism sheet that is preferably used as the optical sheet of the present invention preferably uses either a repeated arrangement in which the individual triangles of the cross section have the same shape or a different shape array.
  • the height in the film thickness direction of the prism formed on the sheet surface may be constant or oscillated as viewed in the longitudinal direction of the triangular prism of the prism.
  • the line at the top of the prism may be linear or may change into a wave shape.
  • the thickness ratio between the outer layers provided on both sides of the core layer is preferably 1: 1 to 1: 2 in order to reduce the curl of the entire optical sheet.
  • the convex bottom (minimum value) from the lowest bottom of the convex shape to the core layer and the outer layer
  • the relationship between the minimum outer layer thickness h, which is the distance to the interface of the core layer, and the convex height d, which is the distance between the top and bottom of the convex shape, is in the range of d / 10 ⁇ h ⁇ 10d. preferable.
  • the value of h is less than d / 10, it may be difficult to fill the details of the mold when the mold is pressed against the surface layer.
  • the thickness of the outer layer before the convex shape is formed be equal to or greater than the convex height d of the cross section of the convex shape to be formed.
  • the largest convex height dmax of the convex-shaped cross section provided in the outer layer may be appropriately determined according to the required optical characteristics, but is preferably 1 to 10 ⁇ m, and more preferably 5 to 10 ⁇ m. By setting it as this range, curl of the entire optical sheet can be reduced while maintaining mechanical strength.
  • the number of convex-shaped optical sheet widths may be appropriately determined according to the required optical characteristics, but is preferably 5 or more, more preferably 10 or more, and even more preferably 20 or more for a 1 mm width. .
  • the density of the concavo-convex shape is 5 or more per 1 mm width, the optical function is good.
  • the total thickness of the optical sheet of the present invention is preferably 60 ⁇ m or less, more preferably 10 to 50 ⁇ m, still more preferably 30 to 50 ⁇ m.
  • a thinner optical sheet is preferable because the backlight module itself can be made thinner, and as a result, the design of the liquid crystal display device is improved.
  • the thickness of the optical sheet is less than 10 ⁇ m, it may be difficult to handle when incorporated in the backlight module.
  • the “total thickness” means that the optical sheet is formed by laminating another layer (for example, a release layer described later) on a three-layer laminate composed of an outer layer / core layer / outer layer. Is the thickness including all of the other layers and the three-layer laminate. Further, when a convex shape is formed on the surface of the optical sheet, the thickness is measured from the apex of the convex shape.
  • a release layer in advance on the surface of the outer layer in contact with the mold.
  • a release layer may be provided on the surface of one of the outer layers, or a release layer may be provided on the surfaces of both outer layers as shown in FIG. .
  • An optical sheet can be obtained by forming a pattern on the sheets shown in FIGS.
  • the durability (repetitive use) of the release coat formed on the mold surface can be improved, and a mold that partially lost the release effect was used. Even in this case, it is possible to release the mold uniformly without any problem. Further, even if the mold is not subjected to a mold release process at all, it is preferable that a mold release layer is formed on the sheet side in advance so that the mold can be released and the mold mold release process cost can be reduced. . In addition, it is possible to prevent deformation of the molding pattern due to resin adhesion when releasing the optical sheet from the mold, and it is possible to release at a higher temperature, thereby shortening the cycle time. This is also preferable in terms of points. Further, it is preferable because the slip resistance on the surface of the optical sheet is further improved and the scratch resistance is improved, and defects caused in the manufacturing process can be reduced.
  • the resin constituting the release layer is not particularly limited, but is preferably composed mainly of a silicone resin, a fluorine resin, a fatty acid resin, a polyester resin, an olefin resin, and a melamine resin.
  • silicone resins, fluorine resins, and fatty acid resins are more preferable.
  • an acrylic resin, a urethane resin, an epoxy resin, a urea resin, a phenol resin, and the like may be blended in the release layer, and various additives such as an antistatic agent, Surfactants, antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, pigments, dyes, organic or inorganic fine particles, fillers, nucleating agents, crosslinking agents and the like may be blended.
  • the thickness of the release layer is not particularly limited, but is preferably 0.01 to 3 ⁇ m. When the thickness of the release layer is less than 0.01 ⁇ m, the above-mentioned release property improving effect may be lowered.
  • the method for forming the release layer is not particularly limited, but various coating methods such as in-line coating method, reverse coating method, gravure coating method, rod coating method, bar coating method, die coating method or spray coating method should be used. Can do.
  • the in-line coating method can be coated at the same time as the film formation of the base material, and thus is preferable from the viewpoint of productivity and coating uniformity.
  • a plurality of linear fluorescent tubes are arranged in parallel at the back of the screen, a light reflecting film below the light source (in the opposite direction to the screen), a diffuser plate, a diffusion sheet, a prism sheet, and brightness above the light source (screen side)
  • An optical member such as an improvement sheet is installed.
  • a diffusion plate directly above the light source and a brightness enhancement sheet on the uppermost side.
  • a diffusion sheet or / and a prism sheet can be used. In addition, it is preferably used in any configuration.
  • a light guide plate for propagating light rays and spreading it in a planar shape is used, and a light source such as a straight line (for example, a fluorescent tube) or a dot (for example, LED) is provided on the side surface of the light guide plate, A light reflecting film is installed below the light guide plate (in the opposite direction to the screen), and optical members such as a diffusion sheet, a prism sheet, and a brightness enhancement sheet are installed above the light guide plate (screen side).
  • a light source such as a straight line (for example, a fluorescent tube) or a dot (for example, LED) is provided on the side surface of the light guide plate
  • a light reflecting film is installed below the light guide plate (in the opposite direction to the screen)
  • optical members such as a diffusion sheet, a prism sheet, and a brightness enhancement sheet are installed above the light guide plate (screen side).
  • a brightness enhancement sheet at the uppermost position, and a diffusion sheet or / and a prism sheet are used between the light guide plate and the brightness enhancement sheet. It is preferable to use it by arbitrary structures according to.
  • the optical sheet of the present invention can exhibit the effects of light diffusibility and light condensing, like the diffusion sheet and the prism sheet, by giving the shapes exemplified so far. Therefore, in the direct type backlight unit, it can be installed at the same position as the diffusion sheet and the prism sheet.
  • Tg measurement In accordance with JIS K 7121-1987, Seiko Denshi Kogyo's robot DSC “RDSC220” is used for differential scanning calorimetry (DSC), and its disk station “SSC / 5200” is used for data analysis.
  • An aluminum pan is filled with 5 mg of composition or film sample. This sample is heated from room temperature to 300 ° C. at a temperature rising rate of 20 ° C./min and melted for 5 minutes. Next, it was quenched with liquid nitrogen, and the glass transition temperature (midpoint glass transition temperature) was measured in this process.
  • the optical sheet passes through the top of the convex shape, and is cut along a plane perpendicular to the surface of the outer layer on which the convex shape is formed and across the plurality of convex shapes. Palladium was deposited.
  • the cross section was observed by taking a photograph using a scanning electron microscope S-2100A manufactured by Hitachi, Ltd., and the dimensions of the sheet cross section and the convex shape formed on the surface were measured. If the convex shape collapses during cutting, the entire optical sheet is preliminarily immersed in liquid nitrogen and frozen or cut, or embedded in another resin and then cut. Prevent collapse.
  • the observation with the laser microscope, the observation with the optical microscope, or the thin film with the transmission electron microscope Section observation can be employed depending on the material properties.
  • a release layer or a slippery layer is formed along the convex shape on the surface of the outer layer, it is also measured as a part of the outer layer.
  • the difference between the maximum height and the minimum height in the repeating unit is measured.
  • the convex height d can be determined by applying the above-described determination criteria according to the cross-sectional shape.
  • Minimum outer layer thickness h In cross-sectional observation, take a picture by adjusting the magnification to 200 times so that the field of view includes 5 to 20 convex bottoms (minimum value) and the interface between the outer layer and the core layer at the same time. Measure the minimum distance between the bottom and the interface in the 10 consecutive convex shapes selected. This is performed on 10 or more points arbitrarily extracted in the sheet and averaged to obtain the minimum outer layer thickness h.
  • Luminance evaluation 3.5-inch sidelight backlight for evaluation (housing, reflection film, light guide plate) is turned on, and after 10 minutes, a diffusion sheet (TDF187, manufactured by Toray Sehan Co., Ltd.) and a sample sheet are installed on the light guide plate. Then, the luminance in the front direction was measured using a two-dimensional luminance meter (Konica Minolta Sensing, CA-2000). The luminance was evaluated by an average value in a square range with a side of 50 mm centered on the center of the backlight.
  • the luminance evaluation is performed before and after the test for 240 hours (before and after the moist heat test) under the conditions of 85 ° C. and 85% RH described in G and H above.
  • the luminance before the test is “initial luminance”, and the luminance after the test is Defined as “post-test brightness”.
  • Cyclic polyolefin resin 1 ('TOPAS' 6013, Tg 130 ° C, manufactured by Polyplastics Co., Ltd.) is used as the resin constituting the core layer, and cyclic polyolefin resins 1 and 2 (cyclic olefin resin 'TOPAS' are used as the resin constituting the outer layer.
  • the laminated resin extruded from the molten three-layer coextrusion die was extruded into a sheet shape on a metal drum maintained at 100 ° C.
  • a laminated sheet 1 was obtained by winding the metal drum at a speed of 25 m / min.
  • the thickness H of each outer layer was 7.5 ⁇ m
  • the thickness of the core layer was 23 ⁇ m
  • the total was 38 ⁇ m.
  • the following mold 1 and the laminated sheet 1 were heated at 135 ° C. for 1 minute, and the mold 1 and the laminated sheet 1 were pressure-bonded for 30 seconds at a pressure of 2 MPa while maintaining 135 ° C. Then, after cooling to 70 degreeC, the optical sheet 1 which has the pattern which reversed the shape of the following metal mold
  • Example 2 An optical sheet 2 was obtained in the same manner as in Example 1 except that a mold having a pitch p of 15 ⁇ m between adjacent patterns and a height of d7.5 ⁇ m was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 2. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 2 maintained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
  • Example 3 In Example 1, the extrusion amount of each extruder was adjusted to change the outer layer thickness and the core layer thickness.
  • An optical sheet 3 was obtained in the same manner as in Example 1 except that the laminated sheet 2 having an outer layer thickness H of 9 ⁇ m, a core layer thickness of 30 ⁇ m, and a total of 48 ⁇ m was used.
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 3. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 3 retained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
  • Example 4 An optical sheet 4 was obtained in the same manner as in Example 3 except that a metal mold having a pitch p of 15 ⁇ m between adjacent patterns and a height of d7.5 ⁇ m was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 4. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 4 maintained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
  • Example 5 In Example 1, the extrusion amount of each extruder was adjusted to change the outer layer thickness and the core layer thickness.
  • An optical sheet 5 was obtained in the same manner as in Example 1 except that the laminated sheet 3 having an outer layer thickness H of 9 ⁇ m, a core layer thickness of 40 ⁇ m, and a total of 58 ⁇ m was used.
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 5. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 5 retained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
  • Example 6 An optical sheet 6 was obtained in the same manner as in Example 5 except that a mold having a pitch p of 15 ⁇ m between adjacent patterns and a height of d7.5 ⁇ m was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 6. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 6 maintained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
  • Example 7 Manufacture of polyethylene naphthalate pellets (PEN)
  • PEN polyethylene naphthalate pellets
  • PEN polyethylene naphthalate 1
  • a laminated sheet 4 was obtained in the same manner as in Example 1 except that the cyclic polyolefin resin 1 was used for the core layer and PEN1 (Tg: 116 ° C.) was used for the outer layer.
  • the laminated sheet 4 had a thickness H of each outer layer of 9 ⁇ m, a thickness of the core layer of 20 ⁇ m, and a total of 38 ⁇ m.
  • an optical sheet 7 was obtained in the same manner as in Example 1 except that the laminated sheet 4 was used.
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 7.
  • the brightness of the backlight of the optical sheet 7 after the wet heat resistance test was slightly reduced compared to the value before the heat resistance test.
  • Example 8 Polycarbonate resin 1 (Taflon, Tg 145 ° C., manufactured by Idemitsu Kosan Co., Ltd.) is used as the resin constituting the core layer, and polystyrene resin 1 (SX100, Tg 100 ° C., manufactured by PS Japan Co., Ltd.) is used as the resin constituting the outer layer.
  • a laminated sheet 5 was obtained in the same manner as in Example 1 except that.
  • the laminated sheet 5 had a thickness H of each outer layer of 9 ⁇ m, a thickness of the core layer of 20 ⁇ m, and a total of 38 ⁇ m.
  • an optical sheet 8 was obtained in the same manner as in Example 1 except that the laminated sheet 5 was used.
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 8.
  • the luminance of the backlight after the moisture and heat resistance test was slightly reduced compared to the value before the heat resistance test.
  • Example 9 The laminated sheet 1 was sandwiched and pressed between the roll-shaped mold 1 set at 180 ° C. and the nip roll by an apparatus as shown in FIG. 6, and the sheet was peeled off by a peeling roll to obtain a wound optical sheet 9. .
  • the line speed was 10 m / min.
  • Roll mold 1 In-plane pattern: striped (FIG. 1 (a), parallel to the rotation direction)
  • Individual shape right-angled isosceles triangle (height d: 10 ⁇ m)
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 9.
  • the optical sheet 9 retained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
  • Example 10 Laminated polyolefin resin 1 and 2 blended at a mass ratio of 60:40 as the resin constituting the core layer, and laminated in the same manner as in Example 1 except that polystyrene resin 1 was used as the resin constituting the outer layer.
  • Sheet 6 was obtained.
  • the laminated sheet 6 had a thickness H of each outer layer of 9 ⁇ m, a thickness of the core layer of 20 ⁇ m, and a total of 38 ⁇ m.
  • an optical sheet 10 was obtained in the same manner as in Example 1 except that the laminated sheet 6 was used.
  • the curl amount, flatness, and luminance characteristics of the optical sheet 10 are shown in Table 2.
  • the luminance characteristic evaluation results in the optical sheet 10, the luminance of the backlight after the wet heat resistance test was slightly reduced as compared with the value before the heat resistance test.
  • the optical sheet 11 which has the pattern which reversed the shape of the following metal mold
  • the entire thickness of the optical sheet 11 (from the top of the shaping surface to the back surface) was 40 ⁇ m, and the flatness deteriorated during molding.
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 11. It was found that the brightness of the backlight of the optical sheet 11 was lowered after the moisture and heat resistance test with respect to the luminance characteristic evaluation results.
  • Comparative Example 2 A single-layer sheet 2 was obtained in the same manner as in Comparative Example 1 except that the cyclic polyolefin resins 1 and 2 were blended at a mass ratio of 60:40. Next, the mold 1 and the single-layer sheet 2 were heated at 135 ° C. for 1 minute, and the mold 1 and the single-layer sheet 2 were pressure-bonded for 30 seconds at a pressure of 2 MPa while maintaining 135 ° C. Then, after cooling to 70 degreeC, the optical sheet 12 which has the pattern which reversed the shape of the following metal mold
  • the total thickness of the optical sheet 12 (from the top of the shaping surface to the back surface) was 40 ⁇ m, but the flatness deteriorated during molding.
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 12. Regarding the result of evaluating the luminance characteristics, the optical sheet 12 did not show a decrease in the luminance of the backlight after the wet heat resistance test.
  • Optical sheet 13 was obtained in the same manner as in Example 1 except that a laminated sheet 7 having an outer layer thickness H of 7.5 ⁇ m, a core layer thickness of 30.5 ⁇ m, and a total of 38 ⁇ m was obtained using a molten two-layer coextrusion die. Got. However, curling of 10 mm or more occurred at the time of producing the sheet, and it did not change after the durability test.
  • the uneven surface of the mold 1 is filled with the following coating agent 1, and a transparent polyethylene terephthalate film (PET film) having a thickness of 30 ⁇ m is placed on the surface, and the coating is irradiated with 1 J / m 2 from the PET film side with an ultrahigh pressure mercury lamp.
  • the optical sheet 14 was obtained by curing the agent and releasing the mold. The total thickness of the optical sheet 14 (from the top of the shaping surface to the back surface) was 40 ⁇ m.
  • a cyclic polyolefin resin 1 was prepared as the resin constituting the core layer, and a cyclic polyolefin resin 2 (cyclic olefin resin 'TOPAS' 8007, Tg 78 ° C., manufactured by Polyplastics Co., Ltd.) was prepared as the resin constituting the outer layer. They were dried at 60 ° C. for 6 hours and then melted in a separate extruder at a temperature of 270 ° C. Next, the laminated resin extruded from the molten three-layer coextrusion die was extruded into a sheet shape on a metal drum maintained at 100 ° C.
  • a laminated sheet 8 was obtained by winding the metal drum at a speed of 25 m / min. Next, the mold 1 and the laminated sheet 8 were heated at 110 ° C. for 1 minute, and the mold 1 and the laminated sheet 8 were pressure-bonded for 30 seconds at a pressure of 2 MPa while maintaining 110 ° C. Then, after cooling to 50 degreeC, the optical sheet 15 which has the pattern which reversed the shape of the metal mold
  • Cyclic polyolefin-based resin 1 was prepared as the resin constituting the core layer, PET1 (Tg: 67 ° C.) was prepared as the resin constituting one outer layer, and PEN1 was prepared as the resin constituting the other outer layer. Cyclic polyolefin 1 and PEN 1 were dried at 100 ° C. and PET 1 was dried at 60 ° C. for 6 hours, respectively, and then melted in a separate extruder at a temperature of 240 ° C. Next, the laminated resin extruded from the molten three-layer coextrusion die was extruded into a sheet shape on a metal drum maintained at 100 ° C.
  • a laminated sheet 9 was obtained by winding the metal drum at a speed of 25 m / min.
  • the thickness H of each surface layer was 7.5 ⁇ m
  • the thickness of the core layer was 23 ⁇ m
  • the total was 38 ⁇ m.
  • the mold 1 and the laminated sheet 9 were heated at 110 ° C. for 1 minute, and the mold 1 and the PET 1 side of the laminated sheet 9 were pressure-bonded for 30 seconds while maintaining 110 ° C. at a pressure of 2 MPa.
  • the optical sheet 16 was obtained by releasing a metal mold
  • the total thickness of the optical sheet 16 (from the top of the shaping surface to the back surface) was 40 ⁇ m.
  • a curl of 5 mm was generated at the time of producing the sheet, and after the durability test, it was curled by 10 mm or more, and the luminance could not be measured.
  • Example 7 An optical sheet 17 was obtained in the same manner as in Example 9 except that the single-layer sheet 2 was used.
  • the total thickness of the optical sheet 17 (from the top of the shaping surface to the back surface) was 40 ⁇ m, but the flatness deteriorated during peeling from the peeling roll.
  • Table 2 shows the curl amount, planarity, and luminance characteristics of the optical sheet 17. Further, regarding the result of evaluating the luminance characteristics, the optical sheet 17 did not show a decrease in the luminance of the backlight after the moisture and heat resistance test, but the luminance before the test was found to be lower than that in Example 1.
  • Example 8 Except for using a polyolefin resin 1 and 2 blended in a mass ratio of 50:50 (Tg 100 ° C. after blending) as a resin constituting the core layer, and using a polystyrene resin 1 as the resin constituting the outer layer, A laminated sheet 10 was obtained in the same manner as Example 1.
  • the laminated sheet 10 had a thickness H of each outer layer of 9 ⁇ m, a thickness of the core layer of 20 ⁇ m, and a total of 38 ⁇ m.
  • an optical sheet 18 was obtained in the same manner as in Example 1 except that the laminated sheet 10 was used.
  • the total thickness of the optical sheet 18 (from the top of the shaping surface to the back surface) was 40 ⁇ m, but the flatness deteriorated during molding.
  • Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 18.
  • the luminance of the backlight after the wet heat resistance test was slightly reduced compared to the value before the heat resistance test. From Table 1, the following is clear. From Examples 1 to 8, it can be seen that, among the present invention, the use of a cyclic polyolefin-based resin for the core layer and the surface layer can further suppress a decrease in luminance even under a durability test.
  • Example 1 and Comparative Examples 1 and 2 that the planarity can be improved by providing a core layer, and curling can be suppressed by having a three-layer symmetrical structure as compared with Comparative Examples 3 and 4. Further, it can be seen from Example 1 and Comparative Example 5 that a decrease in luminance before and after the durability test can be suppressed by laminating a resin having a Tg of 80 ° C. or more on the outer layer. It can be seen from Example 1 and Comparative Example 6 that the outer layer can suppress curling by laminating the same composition. Further, it can be seen from Example 9 and Comparative Example 7 that a sheet having excellent flatness can be produced even in a roll-to-roll type production apparatus as shown in FIG. Furthermore, it can be seen from Example 10 and Comparative Example 8 that a sheet having excellent planarity can be produced by setting the Tg difference between the core layer and the outer layer to 10 ° C. or more.
  • the laminated sheet of the present invention is applicable to various fields such as liquid crystal display members.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

An optical sheet containing a three-layer laminate resin sheet which is composed of a core layer and outer layers which are arranged on both sides of the core layer without having adhesive layers therebetween.  The core layer is composed of an amorphous resin, and at least one of the outer layers is provided with a plurality of projections in the surface.  The resins constituting the outer layers are mainly composed of resins having the same composition, and each has a glass transition temperature not less than 80˚C and lower than the glass transition temperature of the resin constituting the core layer by 10˚C or more.

Description

光学シート及び液晶表示装置用面光源Optical sheet and surface light source for liquid crystal display device
 本発明は、いわゆるプリズムシートなどの光学シートおよびそれを用いたバックライトユニットに関するものである。 The present invention relates to an optical sheet such as a so-called prism sheet and a backlight unit using the same.
 液晶表示装置は、ノートパソコンや携帯電話機器を始め、テレビ、モニター、カーナビゲーション等、多様な用途に用いられている。液晶表示装置には、光源となるバックライトユニットが組み込まれており、バックライトユニットからの光線を液晶セルに通して制御することにより、表示される仕組みとなっている。このバックライトユニットに求められる特性は、単に光を出射する光源としてだけではなく、画面全体を明るく且つ均一に光らせることである。 Liquid crystal display devices are used in a variety of applications, including notebook computers and mobile phone devices, as well as televisions, monitors, and car navigation systems. The liquid crystal display device incorporates a backlight unit serving as a light source, and is configured to display by controlling light beams from the backlight unit through a liquid crystal cell. The characteristic required for this backlight unit is not only as a light source that emits light, but also to make the entire screen shine brightly and uniformly.
 バックライトユニットの構成は大きく二つに分けることができる。直下型バックライトと称される方式とサイドライト型バックライトと称される方式である。 The structure of the backlight unit can be roughly divided into two. There are a system called a direct type backlight and a system called a sidelight type backlight.
 サイドライト型バックライトは薄型化・小型化が求められる携帯電話、ノートパソコン等に主に使用される方式である。基本構成として導光板を用いるのが特徴である。導光板以外にも、導光板の裏面から漏れ出る光を反射させて再利用させる機能を担う反射フィルム、導光板前面から出射する光を均一化させる拡散シート、正面輝度を向上させるプリズムシートに代表される集光シート、そして液晶パネル上での輝度を向上させる輝度向上シートなど、多種類の光学フィルムが用いられている。その中で一般的に用いられるプリズムシートは、透明基材の上に光硬化樹脂を塗布しプリズムパターンを形成して作製したもの(特許文献1)、熱可塑性樹脂からなるシートに金型を熱プレスすることによりプリズムパターンを形成して作製したもの(特許文献2)、または耐熱性を向上するためにノルボルネン系樹脂を基材に用いて作製したものが挙げられる(特許文献3)。 Sidelight type backlight is a system mainly used for mobile phones, notebook computers, etc. that require thinning and miniaturization. As a basic configuration, a light guide plate is used. In addition to the light guide plate, typical examples include a reflective film that functions to reflect and reuse light leaking from the back surface of the light guide plate, a diffusion sheet that equalizes the light emitted from the front surface of the light guide plate, and a prism sheet that improves front brightness. Various kinds of optical films are used, such as a light-condensing sheet and a brightness enhancement sheet that improves the brightness on a liquid crystal panel. Among them, the prism sheet generally used is one prepared by applying a photocurable resin on a transparent substrate to form a prism pattern (Patent Document 1), and heating a mold on a sheet made of a thermoplastic resin. One produced by forming a prism pattern by pressing (Patent Document 2) or produced using a norbornene-based resin as a base material to improve heat resistance (Patent Document 3).
特許第2670518号公報Japanese Patent No. 2670518 特開平9-21908号公報Japanese Patent Laid-Open No. 9-21908 特開平9-323354号公報JP-A-9-323354
 しかしながら、特許文献1の光硬化性樹脂を用いて作製したプリズムシートは、加熱、あるいは加湿条件での耐久性試験においてプリズム層を形成している光硬化樹脂層の収縮に伴うカールが発生する。このため、バックライトユニットに組み込んだ時に色むらなど表示品位上の問題が生じる。 However, the prism sheet produced using the photocurable resin of Patent Document 1 is curled due to shrinkage of the photocurable resin layer forming the prism layer in a durability test under heating or humidification conditions. For this reason, problems in display quality, such as color unevenness, occur when assembled in a backlight unit.
 液晶表示装置の用途として、携帯電話などの小型向けを想定した場合には、プリズムシートを初め、各種光学シートの薄型化が必須となる。前記、光硬化性樹脂を用いて作製したプリズムシートの場合、薄型化を目指して支持体の膜厚を薄くするに従って、耐久性試験時のカールがより顕著に発生してしまうという欠点を有する。 When the liquid crystal display device is intended for small-sized mobile phones and the like, it is essential to make various optical sheets thin, including a prism sheet. In the case of the prism sheet produced using the photo-curing resin, there is a drawback that the curl during the durability test is more noticeably generated as the thickness of the support is reduced in order to reduce the thickness.
 また、特許文献2の熱可塑性樹脂を用いて作製したプリズムシートは、光硬化性樹脂に比べると耐久性試験時のカールは抑制されるが、シート前面に渡って撓み、すなわち平面性の悪化がみられるようになる。特に、加湿条件下での試験においては顕著に平面性が悪化し、表面に賦形した形状も変形してしまうという欠点を有する。  In addition, the prism sheet produced using the thermoplastic resin of Patent Document 2 is curled during the durability test as compared with the photocurable resin, but is bent over the front surface of the sheet, that is, the flatness is deteriorated. Can be seen. In particular, in the test under humidified conditions, the flatness is remarkably deteriorated, and the shape formed on the surface is also deformed. *
 さらに、特許文献3のノルボルネン系樹脂を用いて作製した光学シートは耐久性試験時のカールや平面性に関しては改善されるが、樹脂のガラス転移温度(以下、Tg)が高すぎるため、凹凸形状の成形精度が高められず、プリズムシートのように頂部が尖った形状を賦形した場合、金型どおりの形状に成形するのが困難である。また、凹凸形状の成形時に高温まで金型を上昇させる時間、樹脂に金型を押し当てた後に金型を冷却する時間が非常に長くかかるため生産性に乏しいという欠点を有する。 Furthermore, although the optical sheet produced using the norbornene-based resin of Patent Document 3 is improved in terms of curl and flatness during a durability test, the glass transition temperature (hereinafter referred to as Tg) of the resin is too high. However, when the shape with a sharp top like a prism sheet is formed, it is difficult to mold into the shape of the mold. In addition, there is a disadvantage in that productivity is poor because it takes a very long time to raise the mold to a high temperature during molding of the uneven shape and a time to cool the mold after pressing the mold against the resin.
 そこで本発明は、かかる従来技術の背景に鑑み、成形性、生産性に優れ、薄型でありながら耐久試験下においても表面に凹凸形状の変形、シートのカールが少なく、平面性の良好な光学シートを提供するものである。 Therefore, in view of the background of the prior art, the present invention is an optical sheet having excellent formability and productivity, having a thin surface, and having less unevenness on the surface and less curling of the sheet even under a durability test, and having good flatness. Is to provide.
 本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の光学シートは、芯層と該芯層の両面に接着層を介さずに積層された外層とで構成された3層積層体を含み、該芯層を構成する樹脂が非晶性樹脂であり、少なくとも一方の該外層の表面に複数の凸型形状が形成され、該各外層を構成する樹脂の主成分が同一組成の樹脂であり、該各外層を構成する樹脂のガラス転移温度が80℃以上であり、かつ、該芯層を構成する樹脂のガラス転移温度よりも10℃以上低いものである。
また、本発明のバックライトユニットは、本発明の光学シートを搭載したものである。
The present invention employs the following means in order to solve such problems. That is, the optical sheet of the present invention includes a three-layer laminate composed of a core layer and an outer layer laminated on both surfaces of the core layer without an adhesive layer, and the resin constituting the core layer is amorphous. A plurality of convex shapes formed on the surface of at least one of the outer layers, the main component of the resin constituting each outer layer is a resin having the same composition, and the glass transition of the resin constituting each outer layer The temperature is 80 ° C. or higher, and 10 ° C. or lower than the glass transition temperature of the resin constituting the core layer.
In addition, the backlight unit of the present invention is mounted with the optical sheet of the present invention.
 本発明によれば、成形性、生産性に優れ、薄型でありながら耐久試験下においても表面に形成した凹凸形状の変形、シートのカールが少なく、平面性の良好な光学シートを提供することができる。そして、本光学シートを搭載したバックライトユニットの表示品位を高めることができる。 According to the present invention, it is possible to provide an optical sheet that is excellent in formability and productivity, is thin, has little unevenness formed on the surface even under an endurance test, has little curling of the sheet, and has good flatness. it can. And the display quality of the backlight unit carrying this optical sheet can be improved.
本発明の光学シートの構成を模式的に例示するものである。The structure of the optical sheet of this invention is illustrated typically. (a)~(d)は、本発明の光学シートの外層に凸型形状を成形する工程を模式的に例示するものである。(A) to (d) schematically illustrate steps of forming a convex shape on the outer layer of the optical sheet of the present invention. (a)~(e)は、いずれも本発明の光学シートの外層の凸型形状を模式的に示す斜視図であり、(a)~(c)はストライプ形状、(d)はドーム形状、(e)はピラミッド形状である。(A) to (e) are perspective views schematically showing the convex shape of the outer layer of the optical sheet of the present invention, (a) to (c) are stripe shapes, (d) is a dome shape, (E) is a pyramid shape. (a)~(f)は、いずれも本発明の光学シートの外層の凸型形状の断面図である。(A) to (f) are all sectional views of the convex shape of the outer layer of the optical sheet of the present invention. (a)および(b)は、離型層を形成した本発明の光学シートの構成を模式的に例示するものであり、(c)および(d)は外層に凸型形状を成形した光学シートの構成を模式的に例示するものである。(A) and (b) schematically illustrate the configuration of the optical sheet of the present invention in which a release layer is formed, and (c) and (d) are optical sheets obtained by forming a convex shape on the outer layer. The structure of is typically illustrated. 実施例9および比較例7における光学シートの製造装置の概略図であるIt is the schematic of the manufacturing apparatus of the optical sheet in Example 9 and Comparative Example 7.
 d:凸型形状の断面の凸型高さ
 h:凸型形状の断面の凸型の底部から芯層までの厚み
 H:光学シートの外層の厚み
 p:凸型形状の断面の凸型のピッチ
d: Convex height of the convex shaped cross section h: Thickness from the bottom of the convex shaped cross section to the core layer H: Thickness of the outer layer of the optical sheet p: Convex shape pitch of the convex shaped cross section
 本発明の光学シートは、芯層とこの芯層の両面に接着層を介さずに積層された外層とで構成された3層積層体を含み、芯層を構成する樹脂が非晶性樹脂であり、少なくとも一方の外層の表面に複数の凸型形状が形成され、各外層を構成する樹脂の主成分が同一組成の樹脂であり、該各外層を構成する樹脂のガラス転移温度(以下、Tg)が80℃以上であり、かつ、該芯層を構成する樹脂のガラス転移温度よりも10℃以上低いことを特徴とする(図1)。この「外層/芯層/外層」の3層積層体以外にも、表面の離型性付与や光学特性の調整のための層が積層されていてもよいが、その場合、それぞれの層の厚みは、該外層厚みの1/5以下とすることが好ましい。また、好ましい積層総数は3層積層体の3層を含めて3~10層である。少なくとも3層とするのは、機械的および熱的強度を付与する芯層の一方の面に複数の凸型形状の成形のために外層を1層設け、もう一方の面にこの外層を構成する樹脂の主成分と同一組成の樹脂を主成分とする層を設けカールを抑制するためである。このように、両方の外層を構成する樹脂の主成分を同一組成とすることで、各外層の熱収縮率がほぼ同じとなり、加熱・加湿による光学シートのカールが抑制できる。ここで外層を構成する樹脂の「主成分」とは、外層を構成する樹脂のうち、50重量%以上を占める組成の樹脂のことであり、好ましくは70重量%以上、さらに好ましくは95重量%以上である。 The optical sheet of the present invention includes a three-layer laminate composed of a core layer and an outer layer laminated on both surfaces of the core layer without an adhesive layer, and the resin constituting the core layer is an amorphous resin. A plurality of convex shapes are formed on the surface of at least one outer layer, the main component of the resin constituting each outer layer is a resin having the same composition, and the glass transition temperature (hereinafter referred to as Tg) of the resin constituting each outer layer. ) Is 80 ° C. or higher and 10 ° C. or lower than the glass transition temperature of the resin constituting the core layer (FIG. 1). In addition to the three-layer laminate of “outer layer / core layer / outer layer”, layers for imparting surface releasability and adjusting optical properties may be laminated. In that case, the thickness of each layer Is preferably 1/5 or less of the thickness of the outer layer. A preferable total number of layers is 3 to 10 layers including 3 layers of a 3-layer laminate. For at least three layers, one outer layer is provided on one surface of the core layer for imparting mechanical and thermal strength to form a plurality of convex shapes, and this outer layer is formed on the other surface. This is because a layer mainly composed of a resin having the same composition as the main component of the resin is provided to suppress curling. Thus, by making the main components of the resins constituting both outer layers have the same composition, the thermal contraction rate of each outer layer becomes substantially the same, and curling of the optical sheet due to heating and humidification can be suppressed. Here, the “main component” of the resin constituting the outer layer is a resin having a composition occupying 50% by weight or more of the resin constituting the outer layer, preferably 70% by weight or more, more preferably 95% by weight. That's it.
 本発明における外層は、外層を構成する樹脂のTgが80℃以上である。本発明においてTgは、JIS K 7121-1987に準じて、示差走査熱量計(以下、DSC)測定により、下記手順にて求めた中間点ガラス転移温度の値である。すなわち、DSCとしてセイコー電子工業株式会社製ロボットDSC「RDSC220」、データ解析装置として同社製ディスクステーション「SSC/5200」を用い、アルミニウム製受皿に5mgのサンプルを充填し、この試料を常温から20℃/分の昇温速度で300℃まで加熱して5分間溶融させ、次いで液体窒素で急冷する。この過程の測定で得られるTgを採用するものである。 In the outer layer in the present invention, the Tg of the resin constituting the outer layer is 80 ° C. or higher. In the present invention, Tg is a midpoint glass transition temperature value obtained by the following procedure by differential scanning calorimetry (hereinafter referred to as DSC) measurement according to JIS K 7121-1987. That is, using a robot DSC “RDSC220” manufactured by Seiko Denshi Kogyo Co., Ltd. as a DSC and a disk station “SSC / 5200” manufactured by Seiko Electronics Co., Ltd. The mixture is heated to 300 ° C. at a rate of temperature rise / minute and melted for 5 minutes, and then quenched with liquid nitrogen. Tg obtained by the measurement in this process is employed.
 液晶表示装置に用いる光学シートの場合、通常、耐久性試験として、加熱のみ、及び加熱加湿条件下での試験が実施される。温度としては60~80℃、湿度としては80~95%の範囲が採用されることが多い。特に厚みが60μmを下回る光学フィルムは、この条件下で試験をするとカールが顕著になる。従来のポリエステル樹脂の上にアクリル系UV硬化樹脂からなるプリズム成形したプリズムシートでは特にカールが大きくなる。そこで、外層としては表面賦形が可能であることに加え、前記耐久性試験での温度、湿度範囲で変形が起こらないことも必要である。すなわち、外層を構成する樹脂のTgとしては、前記試験温度よりも高い温度である80℃以上とする必要がある。Tgが80℃を下回ると、耐久性試験時にシート表面に賦形した形状が変形又は/及びシート自体の平面性が悪化する。平面性が悪化しやすい光学シートをバックライトユニットに組み込むと、平面性の悪化に伴って光学特性ムラとして観測される。外層を構成する樹脂のTgは好ましくは80~120℃である。Tgが120℃を越えると、Tgが高すぎるために表面賦形時の精度が高めにくくなり、プリズムシートのように頂部が尖った形状を賦形した場合、金型通りの形状には成形されず、頂部が丸まった低精度の成形品となることがある。また、表面賦形時に高温まで金型を上昇させる時間、樹脂に金型を押し当てた後に金型を冷却する時間が非常にかかるため生産性に乏しくなる。 In the case of an optical sheet used for a liquid crystal display device, a test under heating only and heating / humidifying conditions is usually performed as a durability test. A temperature range of 60 to 80 ° C. and a humidity range of 80 to 95% are often employed. In particular, when an optical film having a thickness of less than 60 μm is tested under these conditions, curling becomes significant. The curl is particularly large in a prism sheet obtained by forming a prism made of an acrylic UV curable resin on a conventional polyester resin. Therefore, in addition to being capable of surface shaping as the outer layer, it is also necessary that deformation does not occur in the temperature and humidity ranges in the durability test. That is, the Tg of the resin constituting the outer layer needs to be 80 ° C. or higher, which is a temperature higher than the test temperature. When Tg is less than 80 ° C., the shape formed on the sheet surface during the durability test is deformed and / or the planarity of the sheet itself is deteriorated. When an optical sheet whose flatness is likely to deteriorate is incorporated in a backlight unit, it is observed as uneven optical characteristics as the flatness deteriorates. The Tg of the resin constituting the outer layer is preferably 80 to 120 ° C. If the Tg exceeds 120 ° C, the Tg is too high, making it difficult to improve the accuracy during surface shaping. If a shape with a sharp top like a prism sheet is shaped, it will be molded into the shape as the mold. In some cases, it may be a low-precision molded product with a rounded top. In addition, the time required for raising the mold to a high temperature during surface shaping, and the time required for cooling the mold after pressing the mold against the resin are very long, resulting in poor productivity.
 本発明における外層を構成する樹脂としては、上記Tgの条件を満たせば特に制限はないが、例えば、ポリエチレンテレフタレート、ポリエチレン-2、6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、シクロヘキサンジメタノール共重合ポリエステル樹脂、イソフタル酸共重合ポリエステル樹脂、スピログリコール共重合ポリエステル樹脂、フルオレン共重合ポリエステル樹脂等のポリエステル系樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状ポリオレフィン共重合樹脂等のポリオレフィン系樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリカーボネート、ポリスチレン、ポリアミド、ポリエーテル、ポリエステルアミド、ポリエーテルエステル、ポリ塩化ビニル、およびこれらを成分とする共重合体、またはこれら樹脂の混合物等の熱可塑性樹脂が挙げられる。これらのうちでは、機械的強度、耐熱性、寸法安定性、さらには、表面賦形性の点において、環状ポリオレフィンやポリエステル樹脂がより好ましく用いられる。さらに、透明性、黄変性、透湿性に優れ、寸法変化が非常に小さいことから、環状ポリオレフィンが特に好ましい。 The resin constituting the outer layer in the present invention is not particularly limited as long as the above Tg condition is satisfied. For example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, cyclohexanedimethanol copolymer polyester Resin, polyester resin such as isophthalic acid copolymer polyester resin, spiroglycol copolymer polyester resin, fluorene copolymer polyester resin, polyolefin resin such as polyethylene, polypropylene, polymethylpentene, cyclic polyolefin copolymer resin, polymethyl methacrylate, etc. Acrylic resin, polycarbonate, polystyrene, polyamide, polyether, polyesteramide, polyetherester, polyvinyl chloride, and Copolymers to these as a component, or a thermoplastic resin such as a mixture of these resins. Among these, cyclic polyolefins and polyester resins are more preferably used in terms of mechanical strength, heat resistance, dimensional stability, and surface formability. Furthermore, cyclic polyolefins are particularly preferred because of excellent transparency, yellowing and moisture permeability and very small dimensional change.
 ここで、環状ポリオレフィン系樹脂とは、エチレン性二重結合を環内に有する重合性の環状オレフィンをモノマー単位として有するものである。環状オレフィンとして、例えば、ノルボルネン系モノマー(単環、多環)などが例示される。
本発明に好ましく用いられる環状ポリオレフィン系樹脂は、上記環状オレフィンの単独重合体、二種以上の環状オレフィンの共重合体、又は環状オレフィンと鎖状オレフィンとの共重合体などのことをいう。
Here, the cyclic polyolefin resin has a polymerizable cyclic olefin having an ethylenic double bond in the ring as a monomer unit. Examples of cyclic olefins include norbornene monomers (monocyclic and polycyclic).
The cyclic polyolefin resin preferably used in the present invention refers to a homopolymer of the above cyclic olefin, a copolymer of two or more cyclic olefins, or a copolymer of a cyclic olefin and a chain olefin.
 このような環状ポリオレフィン系樹脂としては、例えば、下記式(1)で表される構成を用いることができる。 As such a cyclic polyolefin-based resin, for example, a structure represented by the following formula (1) can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)において、Aは環状オレフィンモノマー、Bは鎖状共重合性モノマーを表している。式中のmは正の整数、nは0または正の整数を表している。 In the above formula (1), A represents a cyclic olefin monomer, and B represents a chain copolymerizable monomer. M in the formula represents a positive integer, and n represents 0 or a positive integer.
 上記式(1)のAで表される環状オレフィンモノマーとしては、下記式(2)または(3)で表される構成単位を用いることができる。 As the cyclic olefin monomer represented by A in the above formula (1), a structural unit represented by the following formula (2) or (3) can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(2)において、aおよびbは0または正の整数を表している。また、R~Rは、水素原子、炭化水素基、ハロゲン原子、ハロゲン置換炭化水素基、-(CH)xCOOR(xは0又は正の整数を示す。Rは、水素原子、炭化水素基、ハロゲン原子、ハロゲン置換炭化水素基を表す。)を示す。 In the above formula (2), a and b represent 0 or a positive integer. R 1 to R 4 are a hydrogen atom, a hydrocarbon group, a halogen atom, a halogen-substituted hydrocarbon group, — (CH 2 ) x COOR 9 (x represents 0 or a positive integer; R 9 represents a hydrogen atom, Represents a hydrocarbon group, a halogen atom, or a halogen-substituted hydrocarbon group.
 また、上記式(3)において、cおよびdは0または正の整数を表している。また、R~Rは、水素原子、炭化水素基、ハロゲン原子、ハロゲン置換炭化水素基、-(CH)xCOOR10(xは0又は正の整数を示す。R10は、水素原子、炭化水素基、ハロゲン原子、ハロゲン置換炭化水素基を表す。)を示す。 In the above formula (3), c and d represent 0 or a positive integer. R 5 to R 8 are a hydrogen atom, a hydrocarbon group, a halogen atom, a halogen-substituted hydrocarbon group, — (CH 2 ) x COOR 10 (x represents 0 or a positive integer. R 10 represents a hydrogen atom, Represents a hydrocarbon group, a halogen atom, or a halogen-substituted hydrocarbon group.
 上記Aで表される環状オレフィンモノマーとしては、1種類だけでなく2種類以上の環状オレフィンモノマーを共重合して用いることができる。 The cyclic olefin monomer represented by A can be used by copolymerizing not only one type but also two or more types of cyclic olefin monomers.
 また、上記式(1)のBで表される鎖状共重合性モノマーとしては、例えば、エチレン、プロピレン、ブテン、ペンテンなどのα-オレフィン類、(メタ)アクリル酸、(メタ)アクリル酸エステル、アクリロニトリル、無水マレイン酸などを用いることができる。これらのうちでは、α-オレフィン類が好ましく用いられる。 Examples of the chain copolymerizable monomer represented by B in the above formula (1) include α-olefins such as ethylene, propylene, butene and pentene, (meth) acrylic acid, and (meth) acrylic acid esters. , Acrylonitrile, maleic anhydride and the like can be used. Of these, α-olefins are preferably used.
 本発明における環状ポリオレフィン樹脂としては、1種類の環状ポリオレフィン樹脂からなる構成であってもよいし、2種類以上の環状ポリオレフィン樹脂をブレンドして使用することも可能である。2種類以上の樹脂をブレンドする方法は、光学シートのガラス転移温度などの熱的物性、強伸度などの機械物性を制御することが可能となるため、好ましい態様である。 The cyclic polyolefin resin in the present invention may be composed of one kind of cyclic polyolefin resin, or two or more kinds of cyclic polyolefin resins may be blended and used. A method of blending two or more kinds of resins is a preferred embodiment because it allows control of thermal properties such as glass transition temperature of the optical sheet and mechanical properties such as high elongation.
 本発明においては、芯層を構成する樹脂として非晶性樹脂を用いる。液晶ディスプレイなどに使用される光学シート用樹脂として、透明性に優れた非晶性樹脂を用いることが一般的である。また、溶融押出にて非晶性樹脂を製膜する場合、結晶性樹脂のように、結晶性低下のための急冷は不要であるため、ゆっくり冷却することができ、厚み精度に優れたシートの製膜が可能である。芯層を構成する樹脂の主成分としては、環状ポリオレフィン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、アクリル樹脂、非晶性ポリエステル樹脂が好ましい。特に、環状ポリオレフィン樹脂は透明性、黄変性、透湿性に優れ、寸法変化が非常に小さいため、本発明の効果を達成する光学シートの材料として適したものである。ここで芯層を構成する樹脂の「主成分」とは、芯層を構成する樹脂のうち、50重量%以上を占める組成の樹脂のことである。 In the present invention, an amorphous resin is used as the resin constituting the core layer. As a resin for an optical sheet used for a liquid crystal display or the like, an amorphous resin having excellent transparency is generally used. In addition, when forming an amorphous resin film by melt extrusion, rapid cooling for reducing crystallinity is not required as in crystalline resin, so it can be cooled slowly, and a sheet with excellent thickness accuracy can be obtained. Film formation is possible. As the main component of the resin constituting the core layer, a cyclic polyolefin resin, a polycarbonate resin, a polystyrene resin, an acrylic resin, and an amorphous polyester resin are preferable. In particular, since the cyclic polyolefin resin is excellent in transparency, yellowing and moisture permeability and has a very small dimensional change, it is suitable as an optical sheet material that achieves the effects of the present invention. Here, the “main component” of the resin constituting the core layer is a resin having a composition occupying 50% by weight or more of the resin constituting the core layer.
 また、非晶性樹脂からなるシートを加工して表面形状を賦形した場合には、Tg以上の温度に加熱されると、形状の変形が観測されるようになる。また芯層は平面性を付与するため外層よりTgが高いことが好ましい。環状ポリオレフィンはこのTg条件を満たすものであり、この点でも芯層を構成する樹脂の主成分として適したものである。 Further, when a surface shape is formed by processing a sheet made of an amorphous resin, deformation of the shape is observed when heated to a temperature of Tg or higher. The core layer preferably has a higher Tg than the outer layer in order to impart flatness. The cyclic polyolefin satisfies the Tg condition and is suitable as a main component of the resin constituting the core layer also in this respect.
 本発明においては、外層を構成する樹脂のTgは、芯層を構成する樹脂のTgよりも10℃以上低い。Tgの差が10℃未満であると、外層に平板プレス法を用いて凸型形状を成形する際に、芯層にも熱が加わって金型を剥離した際に、光学シート全体が金型に追従して変形してしまい平面性が悪くなる。また、外層を構成する樹脂のTgは、芯層を構成する樹脂のTgよりも10~100℃低いことが好ましい。Tgの差が100℃を越えると共押出法を用いてシートを製膜したときにTgの低い方の樹脂が炭化してしまい、シートの品位が悪くなることがある。 In the present invention, the Tg of the resin constituting the outer layer is 10 ° C. or more lower than the Tg of the resin constituting the core layer. When the difference in Tg is less than 10 ° C., when the convex shape is formed on the outer layer using a flat plate pressing method, when the core layer is heated and the mold is peeled off, the entire optical sheet is molded. The flatness becomes worse due to deformation following the above. The Tg of the resin constituting the outer layer is preferably 10 to 100 ° C. lower than the Tg of the resin constituting the core layer. When the difference in Tg exceeds 100 ° C., when the sheet is formed by using the coextrusion method, the resin having the lower Tg is carbonized, and the quality of the sheet may be deteriorated.
 本発明の光学シートにおける3層積層体の製造方法としては、以下のような接着剤を介することなく積層体を製造する方法が列挙できる。
(i)支持層を構成する樹脂と外層を構成する樹脂を二台の押出機に別々に投入し、溶融して口金から冷却したキャストドラム上に共押出してシート状に加工する方法(共押出法)。
(ii)単膜で作製した支持層のシートに、外層を構成する樹脂を押出機に投入し溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)。
(iii)単膜で作製した支持層のシート、外層のシートをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)。
(iv)、その他、外層のシートを溶媒に溶解させ、その溶液を支持層のシート上に塗布し乾燥する方法(コーティング法)。
Examples of the method for producing a three-layer laminate in the optical sheet of the present invention include the following methods for producing a laminate without using an adhesive.
(I) A method in which the resin constituting the support layer and the resin constituting the outer layer are separately charged into two extruders, melted and coextruded onto a cast drum cooled from the die, and processed into a sheet (coextrusion) Law).
(Ii) A method in which a resin constituting an outer layer is put into an extruder, melt extruded and laminated while being extruded from a die on a sheet of a support layer made of a single film (melt lamination method).
(Iii) A method in which a sheet of a support layer and a sheet of an outer layer produced by a single film are separately produced and thermocompression bonded with a heated roll group or the like (thermal lamination method).
(Iv) In addition, a method in which the outer layer sheet is dissolved in a solvent, and the solution is applied onto the support layer sheet and dried (coating method).
 接着剤を介すると作業工程が多くなり、またコストも上昇するため好ましくない。これらのうちでは、共押出してシート状に加工する共押出法が、一度の工程で精度良く積層体を製造できる点において好ましい方法である。 If the adhesive is used, the number of work steps increases and the cost increases, which is not preferable. Among these, the coextrusion method of coextrusion and processing into a sheet shape is a preferable method in that a laminate can be produced with high accuracy in a single step.
 本発明の光学シートの外層に複数の凸型形状を形成する方法の例を図2を用いて説明する。外層に凸型形状を形成する前の本発明の光学シートと、転写すべきパターンを反転した形状を有する金型との両方を、外層を構成する樹脂のガラス転移温度Tg以上、Tg+60℃以下の温度範囲内に加熱する(図2(a))。次いで、光学シートの外層と金型の凹凸面を接近させ(図2(b))、そのまま所定圧力でプレスし、所定時間保持する(図2(c))。次にプレスした状態を保持したまま降温する。最後にプレス圧力を解放して金型から光学シートを離型する(図2(d))。 An example of a method for forming a plurality of convex shapes on the outer layer of the optical sheet of the present invention will be described with reference to FIG. Both the optical sheet of the present invention before forming a convex shape on the outer layer and a mold having a shape obtained by inverting the pattern to be transferred have a glass transition temperature Tg of the resin constituting the outer layer of Tg + 60 ° C. or lower. Heat within the temperature range (FIG. 2A). Next, the outer layer of the optical sheet and the uneven surface of the mold are brought close to each other (FIG. 2B), pressed as it is at a predetermined pressure, and held for a predetermined time (FIG. 2C). Next, the temperature is lowered while maintaining the pressed state. Finally, the press pressure is released and the optical sheet is released from the mold (FIG. 2D).
 また、外層のパターン成形方法としては、図2に示したような平板をプレスする方法(平板プレス法)の他に、表面にパターンを形成したロール状の金型を用いて、ロール状シートに成形し、ロール状の成形体を得るロールtoロールの連続成形であってもよい。平板プレス法の場合には、より微細で高アスペクト比のパターンを形成できる点において優れている。ロールtoロール連続成形の場合、生産性の点で平板プレス法より優れている。さらにはロールtoロール連続成形の場合には、本発明の光学シートには芯層が存在するため、外層を構成する樹脂からなる単一膜と比較して、シート自体のコシがあるため成形に優れるため好ましい。 Moreover, as a pattern forming method of the outer layer, in addition to a method of pressing a flat plate as shown in FIG. 2 (flat plate pressing method), a roll-shaped mold having a pattern formed on the surface is used to form a roll-shaped sheet. The roll-to-roll continuous molding may be performed to obtain a roll-shaped molded body. The flat plate pressing method is excellent in that a finer and higher aspect ratio pattern can be formed. The roll-to-roll continuous forming is superior to the flat plate pressing method in terms of productivity. Furthermore, in the case of roll-to-roll continuous molding, since the core layer is present in the optical sheet of the present invention, there is a stiffness of the sheet itself compared to a single film made of resin constituting the outer layer. It is preferable because it is excellent.
 本発明の光学シートの外層の凸型形状の好ましいパターンを図3に示す。
図3(a)~(e)は凸型形状を模式的に示す斜視図である。外層の表面に形成される凸型形状の面内での配列構造としては、図3(a)~(c)に示すようなストライプパターン(複数の凸型形状が各々一方向に延びた凸型形状であり、これら複数の凸型形状の長手方向が互いに略平行となっている(長手方向の差が各々5°以下、好ましくは1°以下のずれである。))、図3(d)(e)に示すようなドーム状やピラミッド状などの形状が敷き詰められたパターンなどが好ましい例として挙げられる。
A preferred pattern of the convex shape of the outer layer of the optical sheet of the present invention is shown in FIG.
3A to 3E are perspective views schematically showing a convex shape. As the arrangement structure within the surface of the convex shape formed on the surface of the outer layer, a stripe pattern as shown in FIGS. 3A to 3C (a convex shape in which a plurality of convex shapes each extend in one direction) And the longitudinal directions of the plurality of convex shapes are substantially parallel to each other (the difference between the longitudinal directions is 5 ° or less, preferably 1 ° or less, respectively)), FIG. A preferable example is a pattern in which a shape such as a dome shape or a pyramid shape as shown in FIG.
 図3(a)~(c)に例示されるストライプパターンについて説明する。図4には、凸型形状の長手方向に対して垂直な方向における断面形状を示している。個々のストライプの凸型断面形状としては、二等辺三角形、正三角形、直角二等辺三角形またはそれらを変形した三角形状(図4(a))、半円、半楕円、またはそれらを変形した円弧形状(図4(b))、規則的な正弦曲線、ランダム曲線などの波形形状(図4(d))等が好ましい例として挙げられる。 The stripe pattern illustrated in FIGS. 3A to 3C will be described. FIG. 4 shows a cross-sectional shape in a direction perpendicular to the longitudinal direction of the convex shape. The convex cross-sectional shape of each stripe is an isosceles triangle, equilateral triangle, right-angled isosceles triangle, a triangular shape obtained by deforming them (FIG. 4A), a semicircle, a semi-ellipse, or an arc shape obtained by deforming them. (FIG. 4B), waveform shapes such as regular sine curves and random curves (FIG. 4D), and the like are preferable examples.
 また、図4(a)(b)に示すように、個々の断面形状が同じ形状の繰り返しパターンでもよいし、図4(d)のように、異なるサイズの形状の規則的またはランダム配列のパターン、または図4(e)のように、異なる形状の規則的またはランダム配列のパターンなども好ましい態様である。このように異なるサイズまたは異なる形状の規則的またはランダム配列、および図4(c)のランダム曲線などの形状は、シート表面に形成された形状によって引き起こされる可能性のある光干渉縞やぎらつきを抑制する効果もあるため好ましい。 Further, as shown in FIGS. 4 (a) and 4 (b), each cross-sectional shape may be a repeated pattern having the same shape, or as shown in FIG. 4 (d), a regular or random array pattern having different sized shapes. Alternatively, as shown in FIG. 4E, regular or random patterns having different shapes are also preferable embodiments. Thus, regular or random arrays of different sizes or shapes, and shapes such as the random curve in FIG. 4 (c) can cause light interference fringes and glare that can be caused by the shape formed on the sheet surface. It is preferable because it also has an inhibitory effect.
 また、図4(f)のように、個々のストライプの断面において、隣接するパターン間に平坦部が形成された形状も用いられる。しかしながら、この平坦部に入射した光は、角度変換されることなく素通りする可能性が高いため、図4(a)~(e)に例示しているように、隣接パターン間に平坦部が形成されない形状がより好ましい。 Further, as shown in FIG. 4F, a shape in which flat portions are formed between adjacent patterns in the cross section of each stripe is also used. However, since the light incident on the flat portion is likely to pass through without undergoing angle conversion, as shown in FIGS. 4A to 4E, flat portions are formed between adjacent patterns. A shape that is not done is more preferred.
 また、個々のストライプの断面形状について、ストライプ長手方向に観察したときに、同じ形状・サイズが続く均一ストライプであってもよいし、同じ形状であるがサイズが異なる(すなわち高さが揺動している)ストライプであってもよいし、形状が変化するストライプのいずれも好ましく用いられる。 Further, the cross-sectional shape of each stripe may be a uniform stripe having the same shape and size when observed in the longitudinal direction of the stripe, or may be the same shape but different in size (that is, the height fluctuates). The stripe may be a stripe, or any stripe whose shape changes is preferably used.
 またさらに、シートの法線方向からストライプを観察したとき、個々のストライプが完全に直線状であってもよいし、例えば波状など直線でない場合も好ましく用いられる。よって、個々のストライプ間の距離(ピッチ)も規則的、ランダムのいずれも好ましく用いられる。 Furthermore, when the stripes are observed from the normal direction of the sheet, the individual stripes may be completely linear or preferably used when the stripes are not linear, such as wavy. Therefore, the distance (pitch) between the individual stripes is preferably either regular or random.
 次に、図3(d)(e)に示すように、ドーム状やピラミッド状などの形状が敷き詰められたパターンについて説明する。好ましい形状としては、大きくはドーム状などの半球形状、ピラミッド状などの多角錐形状にわけることができる。 Next, as shown in FIGS. 3D and 3E, a pattern in which shapes such as a dome shape and a pyramid shape are spread will be described. Preferable shapes can be roughly divided into a hemispherical shape such as a dome shape and a polygonal pyramid shape such as a pyramid shape.
 半球形状の場合、半球、半球を高さ方向に伸縮させた形状(半回転楕円体)などが挙げられ、シート面内で形状に異方性を有するものであってもよい。異方性を有する場合には、個々の形状の長軸方向を合致させて並べると、光学的に異方性を誘起することが可能となる。半球形状のシート面内での配列については、規則配列(最密充填など)、ランダム配列のいずれも好ましく用いられる。 In the case of a hemispherical shape, a hemisphere, a shape obtained by expanding and contracting the hemisphere in the height direction (semi-spheroid), and the like may be used, and the shape may be anisotropic in the sheet plane. In the case of anisotropy, anisotropy can be optically induced by aligning the major axis directions of the individual shapes. For the arrangement in the hemispherical sheet surface, either a regular arrangement (such as closest packing) or a random arrangement is preferably used.
 また、多角錐形状の場合、三角錐、四角錐、六角錐、八角錐などが例として挙げられる。この場合も、シート面内での配列は規則配列、ランダム配列のいずれも好ましく用いられる。 Further, in the case of a polygonal pyramid shape, a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, an octagonal pyramid, etc. are given as examples. Also in this case, as the arrangement in the sheet surface, either a regular arrangement or a random arrangement is preferably used.
 これらの形状は、シート面内で単一形状の繰り返しパターンでもよいし、複数形状種が配列した複合形状であってもよい。 These shapes may be a repetitive pattern of a single shape within the sheet surface, or may be a composite shape in which a plurality of shape types are arranged.
 例えば、図3(a)~(c)に示すようなストライプパターンが表面に形成されている場合には、特にシートのカールに関してもストライプの方向に応じた異方性が生じることがあるため、本発明の光学シート構成にすることによる効果が大きい。すなわち、液晶表示装置用の光学シートとして、輝度向上効果を発揮させるために使用するプリズムシートを作製する場合に、本発明が有効に作用する。 For example, when a stripe pattern as shown in FIGS. 3A to 3C is formed on the surface, anisotropy may occur depending on the direction of the stripe, particularly with respect to the curl of the sheet. The effect by making the optical sheet structure of the present invention is great. That is, the present invention is effective when a prism sheet used for exhibiting a luminance improvement effect is produced as an optical sheet for a liquid crystal display device.
 プリズムシートは、凸型(断面)形状が三角形をなす三角柱状のプリズムが略平行に複数形成されたものである。本発明の光学シートがプリズムシートの場合、前記断面の三角形の頂角は70~110°であることが好ましく、より好ましくは80~100°、さらに好ましくは90°である。頂角が70°未満および110°を越える場合には、バックライトユニットに組み込んだ場合の正面輝度向上効果が不十分となることがある。また、バックライトの構成によって選択することになるが、前記断面の三角形を二等辺三角形とすることによって、いずれの構成においても正面輝度向上効果に優れるため好ましい。 The prism sheet is a prism sheet in which a plurality of triangular prisms each having a convex (cross-sectional) shape are triangular. When the optical sheet of the present invention is a prism sheet, the apex angle of the triangle in the cross section is preferably 70 to 110 °, more preferably 80 to 100 °, and still more preferably 90 °. When the apex angle is less than 70 ° and exceeds 110 °, the front luminance improvement effect when incorporated in the backlight unit may be insufficient. Moreover, although it selects with the structure of a backlight, since the triangle of the said cross section is an isosceles triangle and it is excellent in the front brightness improvement effect in any structure, it is preferable.
 本発明の光学シートとして好ましく用いられるプリズムシートは、断面の個々の三角形が同一形状の繰り返し配列、異種形状配列のいずれも好ましく用いられる。また、シート面に形成されたプリズムの膜厚方向の高さについては、プリズムの三角柱の長手方向にみて、一定であってもよいし、揺動していてもよい。さらに、シート面内において、プリズムの頂部のラインが直線状であってもよいし、波状に変化していてもよい。 The prism sheet that is preferably used as the optical sheet of the present invention preferably uses either a repeated arrangement in which the individual triangles of the cross section have the same shape or a different shape array. Further, the height in the film thickness direction of the prism formed on the sheet surface may be constant or oscillated as viewed in the longitudinal direction of the triangular prism of the prism. Further, in the sheet surface, the line at the top of the prism may be linear or may change into a wave shape.
 本発明の光学シートの外層と芯層の積層比は、特に限定されないが、好ましくは外層の厚み(片面):芯層の厚み=1:0.05~1:20、より好ましくは外層の厚み(片面):芯層の厚み=1:1~1:10である。外層と芯層の積層比をこの範囲とすることで、薄膜でも充分な厚みの表層を有し、機械的強度を保ちながら、光学シート全体のカールが低減するため好ましい。また、芯層の両側に設けられる外層同士の厚み比に関しては、光学シートの全体のカールを低減するため1:1~1:2であることが好ましい。 The lamination ratio of the outer layer and the core layer of the optical sheet of the present invention is not particularly limited, but preferably the thickness of the outer layer (one side): the thickness of the core layer = 1: 0.05 to 1:20, more preferably the thickness of the outer layer. (Single side): Thickness of the core layer = 1: 1 to 1:10. By setting the lamination ratio of the outer layer and the core layer within this range, even a thin film has a sufficiently thick surface layer, and the curl of the entire optical sheet is reduced while maintaining the mechanical strength, which is preferable. The thickness ratio between the outer layers provided on both sides of the core layer is preferably 1: 1 to 1: 2 in order to reduce the curl of the entire optical sheet.
 本発明の光学シートにおいて、高品質で歩留まりの高いパターン形成を行うためには、凸型形状の断面の凸型の最も低い底部から芯層までの凸型形状の底部(極小値)と外層と芯層の界面との距離である最小外層厚みhと凸状形状の頂点と底部との距離である凸型高さdとの関係が、d/10≦h≦10dの範囲にあるのがさらに好ましい。hの値がd/10未満であると金型を表層に押し付けた際に金型の細部にまで充填するのが困難となる場合がある。また10dを越えると表層に形成したパターンの特性を十分に発揮することが出来ず、輝度低下の原因となる場合がある。このような形状を得るためには、凸型形状が形成される前の外層の厚みは、形成する凸型形状の断面の凸型高さd以上の厚みとすることが好ましい。 In the optical sheet of the present invention, in order to perform high-quality and high-yield pattern formation, the convex bottom (minimum value) from the lowest bottom of the convex shape to the core layer and the outer layer The relationship between the minimum outer layer thickness h, which is the distance to the interface of the core layer, and the convex height d, which is the distance between the top and bottom of the convex shape, is in the range of d / 10 ≦ h ≦ 10d. preferable. When the value of h is less than d / 10, it may be difficult to fill the details of the mold when the mold is pressed against the surface layer. On the other hand, if it exceeds 10d, the characteristics of the pattern formed on the surface layer cannot be fully exhibited, which may cause a decrease in luminance. In order to obtain such a shape, it is preferable that the thickness of the outer layer before the convex shape is formed be equal to or greater than the convex height d of the cross section of the convex shape to be formed.
 また、外層に設ける凸型形状の断面の最も大きい凸型高さdmaxは、求める光学特性に応じて適宜決定すればよいが、好ましくは1~10μm、さらに好ましくは、5~10μmである。この範囲とすることで、機械的強度を保ちながら、光学シート全体のカールを低減することができる。 Further, the largest convex height dmax of the convex-shaped cross section provided in the outer layer may be appropriately determined according to the required optical characteristics, but is preferably 1 to 10 μm, and more preferably 5 to 10 μm. By setting it as this range, curl of the entire optical sheet can be reduced while maintaining mechanical strength.
 凸型形状の光学シート幅に対する個数は求める光学特性に応じて適宜決定すればよいが、好ましくは、1mm幅に対して5個以上、より好ましくは10個以上、さらに好ましくは20個以上である。凹凸形状の密度が1mm幅に対して5個以上となると、光学機能が良好となる。 The number of convex-shaped optical sheet widths may be appropriately determined according to the required optical characteristics, but is preferably 5 or more, more preferably 10 or more, and even more preferably 20 or more for a 1 mm width. . When the density of the concavo-convex shape is 5 or more per 1 mm width, the optical function is good.
 本発明の光学シートの総厚みは好ましくは60μm以下であり、より好ましくは10~50μmであり、さらに好ましくは30~50μmである。光学シートは薄い方がバックライトモジュール自体も薄型化が可能になり、その結果、液晶表示装置の意匠性が高まるため好ましい。しかしながら、光学シートの厚みが10μm未満となるとバックライトモジュールに組み込む際に取り扱い性が困難となる場合がある。ここで「総厚み」とは、光学シートが、外層/芯層/外層からなる3層積層体にさらに他の層(例えば、後述する離型層等)を積層して構成されている場合には、それら他の層と3層積層体の全てを含んだ厚みのことである。また、光学シートの表面に凸型形状が形成されている場合には、その凸型形状の頂点から厚みを測定する。 The total thickness of the optical sheet of the present invention is preferably 60 μm or less, more preferably 10 to 50 μm, still more preferably 30 to 50 μm. A thinner optical sheet is preferable because the backlight module itself can be made thinner, and as a result, the design of the liquid crystal display device is improved. However, when the thickness of the optical sheet is less than 10 μm, it may be difficult to handle when incorporated in the backlight module. Here, the “total thickness” means that the optical sheet is formed by laminating another layer (for example, a release layer described later) on a three-layer laminate composed of an outer layer / core layer / outer layer. Is the thickness including all of the other layers and the three-layer laminate. Further, when a convex shape is formed on the surface of the optical sheet, the thickness is measured from the apex of the convex shape.
 本発明の光学シートにおいて外層に凸型形状を形成する際に、金型と接する外層の面に離型層を予め設けることが好ましい。図5(a) に示すように、どちらか片方の外層の表面に離型層を設けても良いし、図5(b)のように両方の外層の表面に離型層を設けても良い。図5(a)、(b)のシートにパターンを形成することによって光学シートは得られる。 When forming the convex shape on the outer layer in the optical sheet of the present invention, it is preferable to provide a release layer in advance on the surface of the outer layer in contact with the mold. As shown in FIG. 5A, a release layer may be provided on the surface of one of the outer layers, or a release layer may be provided on the surfaces of both outer layers as shown in FIG. . An optical sheet can be obtained by forming a pattern on the sheets shown in FIGS.
 外層に離型層を設けることによって、金型表面に形成する離型コートの耐久性(繰り返し使用回数)を向上することができ、たとえ部分的に離型効果が失われた金型を用いた場合でも問題なく均一に離型することが可能となる。また、金型に全く離型処理を施さなくても、シート側に予め離型層を形成することで離型が可能となり、金型離型処理コストを削減することができるようになるため好ましい。また、金型から光学シートを離型する際の樹脂粘着による成形パターン崩れを防止できることや、より高温での離型が可能となり、サイクルタイムの短縮が可能となるため、成形精度、生産性の点においても好ましい。また、さらに光学シート表面の滑り性が向上することによって耐スクラッチ性が向上し、製造工程などで生じる欠点を低減させることも可能となるため好ましい。 By providing a release layer on the outer layer, the durability (repetitive use) of the release coat formed on the mold surface can be improved, and a mold that partially lost the release effect was used. Even in this case, it is possible to release the mold uniformly without any problem. Further, even if the mold is not subjected to a mold release process at all, it is preferable that a mold release layer is formed on the sheet side in advance so that the mold can be released and the mold mold release process cost can be reduced. . In addition, it is possible to prevent deformation of the molding pattern due to resin adhesion when releasing the optical sheet from the mold, and it is possible to release at a higher temperature, thereby shortening the cycle time. This is also preferable in terms of points. Further, it is preferable because the slip resistance on the surface of the optical sheet is further improved and the scratch resistance is improved, and defects caused in the manufacturing process can be reduced.
 離型層を構成する樹脂は、特に限定されないが、シリコーン系樹脂、フッ素系樹脂、脂肪酸系樹脂、ポリエステル系樹脂、オレフィン系樹脂、メラミン系樹脂、を主成分として構成することが好ましく、これらのうちでは、シリコーン系樹脂、フッ素系樹脂、脂肪酸系樹脂がより好ましい。また、離型層には、上述の樹脂以外にも、例えばアクリル樹脂、ウレタン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂などが配合されてもよいし、各種の添加剤、例えば、帯電防止剤、界面活性剤、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、顔料、染料、有機または無機の微粒子、充填剤、核剤、架橋剤などが配合されても良い。また、離型層の厚みは、特に限定されないが、好ましくは0.01~3μmである。該離型層の厚みが0.01μm未満であると、上述の離型性向上効果が低下する場合がある。 The resin constituting the release layer is not particularly limited, but is preferably composed mainly of a silicone resin, a fluorine resin, a fatty acid resin, a polyester resin, an olefin resin, and a melamine resin. Among these, silicone resins, fluorine resins, and fatty acid resins are more preferable. In addition to the above-mentioned resin, for example, an acrylic resin, a urethane resin, an epoxy resin, a urea resin, a phenol resin, and the like may be blended in the release layer, and various additives such as an antistatic agent, Surfactants, antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, pigments, dyes, organic or inorganic fine particles, fillers, nucleating agents, crosslinking agents and the like may be blended. The thickness of the release layer is not particularly limited, but is preferably 0.01 to 3 μm. When the thickness of the release layer is less than 0.01 μm, the above-mentioned release property improving effect may be lowered.
 離型層を形成する方法としては、特に限定されないが、各種の塗布方法、例えばインラインコーティング法、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、ダイコート法またはスプレーコート法を用いることができる。なかでもインラインコーティング法が、基材の製膜と同時にコーティングできるため、生産性、塗布均一性の観点から好ましく挙げられる。 The method for forming the release layer is not particularly limited, but various coating methods such as in-line coating method, reverse coating method, gravure coating method, rod coating method, bar coating method, die coating method or spray coating method should be used. Can do. In particular, the in-line coating method can be coated at the same time as the film formation of the base material, and thus is preferable from the viewpoint of productivity and coating uniformity.
 直下型バックライトユニットの基本的な構成を説明する。画面奥に線状蛍光管が複数本平行に配置され、光源の下側(画面とは逆方向)に光反射フィルム、光源の上側(画面側)に、拡散板、拡散シート、プリズムシート、輝度向上シートなどの光学部材が設置される。光源の上側の光学部材の配置としては、光源の直上に拡散板、最上方に輝度向上シートが用いられることが好ましく、その2枚の部材間に、拡散シート又は/及びプリズムシートが、用途に合わせて任意の構成で用いられることが好ましい。 The basic configuration of the direct type backlight unit will be described. A plurality of linear fluorescent tubes are arranged in parallel at the back of the screen, a light reflecting film below the light source (in the opposite direction to the screen), a diffuser plate, a diffusion sheet, a prism sheet, and brightness above the light source (screen side) An optical member such as an improvement sheet is installed. As the arrangement of the optical member on the upper side of the light source, it is preferable to use a diffusion plate directly above the light source and a brightness enhancement sheet on the uppermost side. Between the two members, a diffusion sheet or / and a prism sheet can be used. In addition, it is preferably used in any configuration.
 また、サイドライト型バックライトユニットの基本的な構成を説明する。このバックライトユニットの場合、光線を伝搬し面状に広げるための導光板を使用し、該導光板の側面に直線状(例えば蛍光管)または点状(例えばLED)などの光源を有し、該導光板の下側(画面とは逆方向)に光反射フィルム、該導光板の上側(画面側)に、拡散シート、プリズムシート、輝度向上シートなどの光学部材が設置される。 Also, the basic configuration of the sidelight type backlight unit will be described. In the case of this backlight unit, a light guide plate for propagating light rays and spreading it in a planar shape is used, and a light source such as a straight line (for example, a fluorescent tube) or a dot (for example, LED) is provided on the side surface of the light guide plate, A light reflecting film is installed below the light guide plate (in the opposite direction to the screen), and optical members such as a diffusion sheet, a prism sheet, and a brightness enhancement sheet are installed above the light guide plate (screen side).
 サイドライト型バックライトユニットの光源上側の光学部材の配置としては、最上方に輝度向上シートが用いられることが好ましく、導光板と輝度向上シートの間に、拡散シート又は/及びプリズムシートが、用途に合わせて任意の構成で用いられることが好ましい。 As the arrangement of the optical member on the upper side of the light source of the sidelight type backlight unit, it is preferable to use a brightness enhancement sheet at the uppermost position, and a diffusion sheet or / and a prism sheet are used between the light guide plate and the brightness enhancement sheet. It is preferable to use it by arbitrary structures according to.
 本発明の光学シートは、これまで例示してきた形状を付与することで、前記拡散シートやプリズムシートのような、光拡散性、集光性の効果を発揮することが可能となる。よって、直下型バックライトユニットにおいて、前記拡散シートやプリズムシートと同様の位置に設置することが可能である。 The optical sheet of the present invention can exhibit the effects of light diffusibility and light condensing, like the diffusion sheet and the prism sheet, by giving the shapes exemplified so far. Therefore, in the direct type backlight unit, it can be installed at the same position as the diffusion sheet and the prism sheet.
 (測定・評価方法)
以下の測定は特に記載がある他は室温23℃、湿度65%の条件で行った。
(Measurement and evaluation method)
The following measurements were performed under conditions of a room temperature of 23 ° C. and a humidity of 65% unless otherwise specified.
 A.Tg測定
 JIS K 7121-1987に準じて、示差走査熱量測定(DSC)として、セイコー電子工業株式会社製ロボットDSC「RDSC220」を用い、データ解析装置として、同社製ディスクステーション「SSC/5200」を用いて、アルミニウム製受皿に5mgの組成物またはフィルムサンプルを充填する。この試料を常温から20℃/分の昇温速度で300℃まで加熱して5分間溶融させる。次いで液体窒素で急冷し、この過程でガラス転移温度(中間点ガラス転移温度)を測定した。
A. Tg measurement In accordance with JIS K 7121-1987, Seiko Denshi Kogyo's robot DSC “RDSC220” is used for differential scanning calorimetry (DSC), and its disk station “SSC / 5200” is used for data analysis. An aluminum pan is filled with 5 mg of composition or film sample. This sample is heated from room temperature to 300 ° C. at a temperature rising rate of 20 ° C./min and melted for 5 minutes. Next, it was quenched with liquid nitrogen, and the glass transition temperature (midpoint glass transition temperature) was measured in this process.
 B.断面観察
 光学シートを凸型形状の頂部を通り、該凸型形状が形成された外層の面に垂直かつ複数の凸型形状を横切る面で切断して光学シートの断面を切り出し、断面に白金-パラジウムを蒸着した。この断面を日立製作所(株)製走査型電子顕微鏡S-2100Aを用い写真を撮影して観察を行い、シート断面の寸法や表面に賦形した凸型形状の寸法を測定した。切断に際しては凸型形状の崩れが生じる場合は、予め光学シート全体を液体窒素中に浸漬して凍結してから切断する、あるいは別の樹脂で包埋してから切断するなどの方法によって形状の崩れを防止する。
B. Cross section observation The optical sheet passes through the top of the convex shape, and is cut along a plane perpendicular to the surface of the outer layer on which the convex shape is formed and across the plurality of convex shapes. Palladium was deposited. The cross section was observed by taking a photograph using a scanning electron microscope S-2100A manufactured by Hitachi, Ltd., and the dimensions of the sheet cross section and the convex shape formed on the surface were measured. If the convex shape collapses during cutting, the entire optical sheet is preliminarily immersed in liquid nitrogen and frozen or cut, or embedded in another resin and then cut. Prevent collapse.
 C.シート厚み
 断面観察において、視野内にシート全体が入るように倍率を200倍に調整し写真撮影を行い、写真を測長してシートの両表面間の寸法を測定する。このとき表面に凸型形状が形成されている場合は、両表面間の距離が最大になる寸法を測定する。これをシート内から無作為に選んだ10点に対して行い、平均値を求めてシート厚みとする。
C. Sheet thickness In cross-sectional observation, the magnification is adjusted to 200 times so that the entire sheet is within the field of view, a photograph is taken, the length of the photograph is measured, and the dimension between both surfaces of the sheet is measured. At this time, when a convex shape is formed on the surface, the dimension that maximizes the distance between both surfaces is measured. This is performed for 10 points randomly selected from within the sheet, and the average value is obtained as the sheet thickness.
 D.外層厚みH
 断面観察において、視野内に外層全体が含まれるように倍率を200倍に調整して写真撮影を行い、写真を測長してシートの両表面間の寸法を測定する。このとき表面に凸型形状が形成されている場合は、両表面間の距離が最大になる寸法を測定する。これをシート内から無作為に選んだ10点に対して行い、平均値を求めて外層厚みとする。
D. Outer layer thickness H
In cross-sectional observation, the photograph is taken with the magnification adjusted to 200 times so that the entire outer layer is included in the field of view, and the photograph is measured to measure the dimension between both surfaces of the sheet. At this time, when a convex shape is formed on the surface, the dimension that maximizes the distance between both surfaces is measured. This is performed for 10 points randomly selected from within the sheet, and the average value is obtained as the outer layer thickness.
 なお、断面観察において外層と芯層の界面が不明瞭であるときには、これが観察されるように走査型電子顕微鏡観察に替えて、レーザー顕微鏡による観察、光学顕微鏡による観察、あるいは透過型電子顕微鏡による薄膜切片観察が材料特性に応じて採用できる。 In addition, when the interface between the outer layer and the core layer is unclear in the cross-sectional observation, instead of using the scanning electron microscope so that this is observed, the observation with the laser microscope, the observation with the optical microscope, or the thin film with the transmission electron microscope Section observation can be employed depending on the material properties.
 また、外層の表面に凸形状に沿うように離型層や易滑層などが形成されている場合、これも外層の一部と見なして測定する。 Also, when a release layer or a slippery layer is formed along the convex shape on the surface of the outer layer, it is also measured as a part of the outer layer.
 E.凸型形状の断面の凸型高さd
 断面観察において、視野内に10個以上20個以下の凸型形状の頂部(極大値)が含まれるように倍率を200倍に調整して写真撮影を行い、任意に選んだ連続する10点の凸型形状において凸型形状の切断面の最低高さと最高高さの差を測定する。これをシート内で任意に抽出した10点以上について行い平均したものを凸型形状の頂部と底部の距離である凸型高さdとする。
E. Convex height d of convex shaped cross section
In cross-sectional observation, photographs were taken with the magnification adjusted to 200 times so that the top (maximum value) of 10 to 20 convex shapes was included in the field of view, and 10 consecutively selected points were selected. In the convex shape, the difference between the minimum height and the maximum height of the cut surface of the convex shape is measured. This is performed for 10 or more points arbitrarily extracted in the sheet and averaged to obtain a convex height d which is the distance between the top and bottom of the convex shape.
 すなわち該切断面の形状が図4(a)(b)(f)に示すように単一凸形状の繰り返しパターンの場合は、該凸型形状の最高高さと最低高さの差を測定する。 That is, when the shape of the cut surface is a single convex repetitive pattern as shown in FIGS. 4A, 4B, and 4F, the difference between the maximum height and the minimum height of the convex shape is measured.
 また、該切断面の形状が図4(d)(e)のように、異なる形状を組み合わせたパターンの繰り返しの場合は、該繰り返し単位の中で最高高さと最低高さの差を測定する。 In the case where the shape of the cut surface is a repeating pattern in which different shapes are combined as shown in FIGS. 4D and 4E, the difference between the maximum height and the minimum height in the repeating unit is measured.
 また、該切断面の形状が図4(c)のように、個々の凸形状とサイズがランダムに変化している場合は、該切断面において任意の連続する10点の凸型形状を選び最高高さと最低高さの差を測定する。 In addition, when the shape of the cut surface changes randomly as shown in FIG. 4 (c) and the size of each convex shape, an arbitrary continuous 10-point convex shape is selected on the cut surface. Measure the difference between the height and the minimum height.
 また図3(d)(e)に示すドーム状やピラミッド状などの形状が敷き詰められたパターンについても、断面形状に応じて上記判定基準を適用して凸型高さdを定めることができる。 Also, for the pattern in which shapes such as a dome shape and a pyramid shape shown in FIGS. 3D and 3E are spread, the convex height d can be determined by applying the above-described determination criteria according to the cross-sectional shape.
 F.最小外層厚みh
 断面観察において、視野内に5個乃至20個程度の凸型形状の底部(極小値)と外層と芯層の界面が同時に含まれるように倍率を200倍に調整して写真撮影を行い、任意に選んだ連続する10点の凸型形状において底部と該界面の最小距離を測定する。これをシート内で任意に抽出した10点以上について行い平均したものを最小外層厚みhとする。
F. Minimum outer layer thickness h
In cross-sectional observation, take a picture by adjusting the magnification to 200 times so that the field of view includes 5 to 20 convex bottoms (minimum value) and the interface between the outer layer and the core layer at the same time. Measure the minimum distance between the bottom and the interface in the 10 consecutive convex shapes selected. This is performed on 10 or more points arbitrarily extracted in the sheet and averaged to obtain the minimum outer layer thickness h.
 G.カール量測定
 100mm×100mmサイズのサンプルを恒温恒湿試験機(タバイエスペック社製、PR-3SPW)に投入し、85℃・85%RH条件下で240時間放置した。恒温恒湿試験器から取り出した直後のサンプルを凸型形状を形成した面を上にして机上に置いた。サンプルの4つの角のカール量(フィルム設置面からの高さ)を測定し、平均値をカール量とした。
G. Measurement of curl amount A 100 mm × 100 mm size sample was placed in a constant temperature and humidity tester (manufactured by Tabai Espec Co., Ltd., PR-3SPW) and allowed to stand at 85 ° C. and 85% RH for 240 hours. The sample immediately after taking out from the constant temperature and humidity tester was placed on a desk with the surface on which the convex shape was formed facing up. The curl amount (height from the film installation surface) of the four corners of the sample was measured, and the average value was taken as the curl amount.
 H.平面性評価
100mm×100mmサイズのサンプルを恒温恒湿試験機(タバイエスペック社製、PR-3SPW)に投入し、85℃・85%RH条件下で240時間放置した。恒温恒湿試験器から取り出した後、賦形面を下向きにして机上に設置し、非賦形面を観察した。
評価方法は、二本の直線状蛍光管を点灯し、非賦形面に映り込む蛍光灯像を観察して、直線状蛍光管の像が歪むかどうかで判断した。評価は3名で行い、2人以上が歪むと判断した場合をC、1人が歪むと判断した場合をB、全員が歪んでいないと判断した場合をAとした。
H. Flatness Evaluation A sample of 100 mm × 100 mm size was put into a constant temperature and humidity tester (manufactured by Tabai Espec Co., Ltd., PR-3SPW) and allowed to stand at 85 ° C. and 85% RH for 240 hours. After taking out from the constant temperature and humidity tester, it was placed on a desk with the shaped surface facing downward, and the non-shaped surface was observed.
In the evaluation method, two linear fluorescent tubes were turned on, and the fluorescent lamp image reflected on the non-shaped surface was observed to judge whether or not the image of the linear fluorescent tube was distorted. The evaluation was performed by three people, and C was given when two or more people were distorted, B was given when one was judged to be distorted, and A was given when all were judged to be distorted.
 I.輝度評価
 評価用3.5インチサイドライト型バックライト(筐体、反射フィルム、導光板)を点灯させ、10分経過後に導光板の上に拡散シート(東レセハン製、TDF187)、サンプルシートを設置し、2次元輝度計(コニカミノルタセンシング製、CA-2000)を用いて、正面方向における輝度を測定した。輝度は、バックライトの中心部を中心とした1辺50mmの正方形の範囲の平均値で評価した。
I. Luminance evaluation 3.5-inch sidelight backlight for evaluation (housing, reflection film, light guide plate) is turned on, and after 10 minutes, a diffusion sheet (TDF187, manufactured by Toray Sehan Co., Ltd.) and a sample sheet are installed on the light guide plate. Then, the luminance in the front direction was measured using a two-dimensional luminance meter (Konica Minolta Sensing, CA-2000). The luminance was evaluated by an average value in a square range with a side of 50 mm centered on the center of the backlight.
 また、輝度評価は、前記GおよびHに記載の85℃・85%RH条件下240時間の試験前後(耐湿熱試験前後)で行い、試験前の輝度を「初期輝度」、試験後の輝度を「試験後輝度」と定義する。  In addition, the luminance evaluation is performed before and after the test for 240 hours (before and after the moist heat test) under the conditions of 85 ° C. and 85% RH described in G and H above. The luminance before the test is “initial luminance”, and the luminance after the test is Defined as “post-test brightness”. *
 以下に各実施例・比較例の測定方法及び評価方法について説明する。 The measurement method and evaluation method of each example and comparative example will be described below.
 (実施例1)
 芯層を構成する樹脂として環状ポリオレフィン系樹脂1( ‘TOPAS’6013、Tg130℃、ポリプラスチックス(株)製)を、外層を構成する樹脂として環状ポリオレフィン系樹脂1と2(環状オレフィン樹脂‘TOPAS’8007、Tg78℃、ポリプラスチックス(株)製)を質量比で60:40にブレンドしたもの(ブレンド後のTg110℃)を準備した。これらを100℃で6時間乾燥した後にそれぞれを別の押出機内で240℃の温度で溶融した。次いで、溶融3層共押出口金から押し出された積層樹脂を100℃に保たれた金属ドラムにシート状に押出した。金属ドラムの速度を25m/分と設定して巻き取ることで積層シート1を得た。積層シート1は、それぞれの外層の厚みHがいずれも7.5μm、芯層の厚みが23μm、全体で38μmであった。
Example 1
Cyclic polyolefin resin 1 ('TOPAS' 6013, Tg 130 ° C, manufactured by Polyplastics Co., Ltd.) is used as the resin constituting the core layer, and cyclic polyolefin resins 1 and 2 (cyclic olefin resin 'TOPAS' are used as the resin constituting the outer layer. A blend of '8007, Tg 78 ° C, manufactured by Polyplastics Co., Ltd.) at a mass ratio of 60:40 (Tg 110 ° C after blending) was prepared. These were dried at 100 ° C. for 6 hours and then melted in a separate extruder at a temperature of 240 ° C. Next, the laminated resin extruded from the molten three-layer coextrusion die was extruded into a sheet shape on a metal drum maintained at 100 ° C. A laminated sheet 1 was obtained by winding the metal drum at a speed of 25 m / min. In the laminated sheet 1, the thickness H of each outer layer was 7.5 μm, the thickness of the core layer was 23 μm, and the total was 38 μm.
 次に、下記金型1と前記積層シート1を135℃で1分加熱し、135℃を維持しながら圧力2MPaで、金型1と積層シート1とを30秒間圧着した。続いて70℃まで冷却後、金型を離型することにより、積層シート1面に下記金型1の形状を反転したパターンを有する光学シート1を得た。光学シート1の全厚み(賦形面の頂部から裏面まで)は40μmであった。
(金型1)
 面内パターン      :ストライプ状(図1(a))
 個々の形状       :直角二等辺三角形(高さd:10μm)
 隣接パターン間のピッチ(p):20μm
 サイズ           :100mm×100mm(パターン領域)
この光学シート1のカール量、平面性、輝度特性を表2に示した。
輝度特性評価結果に関して光学シート1は耐湿熱試験後も、バックライトの輝度を保持していることを確認でき、耐湿熱性に優れていることがわかった。
Next, the following mold 1 and the laminated sheet 1 were heated at 135 ° C. for 1 minute, and the mold 1 and the laminated sheet 1 were pressure-bonded for 30 seconds at a pressure of 2 MPa while maintaining 135 ° C. Then, after cooling to 70 degreeC, the optical sheet 1 which has the pattern which reversed the shape of the following metal mold | die 1 on the laminated sheet 1 surface was obtained by releasing a metal mold | die. The total thickness of the optical sheet 1 (from the top of the shaping surface to the back surface) was 40 μm.
(Mold 1)
In-plane pattern: striped (FIG. 1 (a))
Individual shape: right-angled isosceles triangle (height d: 10 μm)
Pitch between adjacent patterns (p): 20 μm
Size: 100mm x 100mm (pattern area)
Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 1.
Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 1 maintained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
 (実施例2)
 隣接パターン間のピッチp15μm、高さd7.5μmの金型を用いた以外は実施例1と同様にして光学シート2を得た。この光学シート2のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート2は耐湿熱試験後も、バックライトの輝度を保持していることを確認でき、耐湿熱性に優れていることがわかった。
(Example 2)
An optical sheet 2 was obtained in the same manner as in Example 1 except that a mold having a pitch p of 15 μm between adjacent patterns and a height of d7.5 μm was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 2. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 2 maintained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
 (実施例3)
 実施例1において、それぞれの押出機の押出量を調整して外層厚みと芯層厚みを変えた。それぞれの外層の厚みHがいずれも9μm、芯層の厚みが30μm、全体で48μmの積層シート2を用いた以外は実施例1と同様にして光学シート3を得た。この光学シート3のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート3は耐湿熱試験後も、バックライトの輝度を保持していることを確認でき、耐湿熱性に優れていることがわかった。
(Example 3)
In Example 1, the extrusion amount of each extruder was adjusted to change the outer layer thickness and the core layer thickness. An optical sheet 3 was obtained in the same manner as in Example 1 except that the laminated sheet 2 having an outer layer thickness H of 9 μm, a core layer thickness of 30 μm, and a total of 48 μm was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 3. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 3 retained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
 (実施例4)
 隣接パターン間のピッチp15μm、高さd7.5μmの金型を用いた以外は実施例3と同様にして光学シート4を得た。この光学シート4のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート4は耐湿熱試験後も、バックライトの輝度を保持していることを確認でき、耐湿熱性に優れていることがわかった。
Example 4
An optical sheet 4 was obtained in the same manner as in Example 3 except that a metal mold having a pitch p of 15 μm between adjacent patterns and a height of d7.5 μm was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 4. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 4 maintained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
 (実施例5)
 実施例1において、それぞれの押出機の押出量を調整して外層厚みと芯層厚みを変えた。それぞれの外層の厚みHがいずれも9μm、芯層の厚みが40μm、全体で58μmの積層シート3を用いた以外は実施例1と同様にして光学シート5を得た。この光学シート5のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート5は耐湿熱試験後も、バックライトの輝度を保持していることを確認でき、耐湿熱性に優れていることがわかった。
(Example 5)
In Example 1, the extrusion amount of each extruder was adjusted to change the outer layer thickness and the core layer thickness. An optical sheet 5 was obtained in the same manner as in Example 1 except that the laminated sheet 3 having an outer layer thickness H of 9 μm, a core layer thickness of 40 μm, and a total of 58 μm was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 5. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 5 retained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
 (実施例6)
 隣接パターン間のピッチp15μm、高さd7.5μmの金型を用いた以外は実施例5と同様にして光学シート6を得た。この光学シート6のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート6は耐湿熱試験後も、バックライトの輝度を保持していることを確認でき、耐湿熱性に優れていることがわかった。
(Example 6)
An optical sheet 6 was obtained in the same manner as in Example 5 except that a mold having a pitch p of 15 μm between adjacent patterns and a height of d7.5 μm was used. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 6. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 6 maintained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
 (実施例7)
(ポリエチレンナフタレートペレット(PEN)の製造)
2,6-ナフタレンジカルボン酸ジメチルエステル100重量部、およびエチレングリコール60重量部に、エステル交換触媒として酢酸マグネシウム4水塩を0.018重量部および酢酸カルシウム1水塩を0.003重量部添加し、170~240℃、0.5kg/cmにてエステル交換反応させた後、トリメチルホスフェートを0.004重量部添加し、エステル交換反応を終了させた。さらに重合触媒として三酸化アンチモンを0.23重量部添加し、高温高真空下で重縮合反応を行い、極限粘度0.60dl/gのポリエチレンナフタレート1(PEN)ペレットを得た。芯層に環状ポリオレフィン系樹脂1、外層にPEN1(Tg:116℃)を用いた以外は実施例1と同様にして積層シート4を得た。積層シート4はそれぞれの外層の厚みHがいずれも9μm、芯層の厚みが20μm、全体で38μmであった。次に積層シート4を用いた以外は実施例1と同様にして光学シート7を得た。
この光学シート7のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート7は耐湿熱試験後のバックライトの輝度が耐熱試験前の値に比べて若干低下した。
(Example 7)
(Manufacture of polyethylene naphthalate pellets (PEN))
To 100 parts by weight of 2,6-naphthalenedicarboxylic acid dimethyl ester and 60 parts by weight of ethylene glycol, 0.018 parts by weight of magnesium acetate tetrahydrate and 0.003 parts by weight of calcium acetate monohydrate as transesterification catalysts were added. The ester exchange reaction was carried out at 170 to 240 ° C. and 0.5 kg / cm 2 , and then 0.004 parts by weight of trimethyl phosphate was added to complete the ester exchange reaction. Further, 0.23 parts by weight of antimony trioxide was added as a polymerization catalyst, and a polycondensation reaction was performed under high temperature and high vacuum to obtain polyethylene naphthalate 1 (PEN) pellets having an intrinsic viscosity of 0.60 dl / g. A laminated sheet 4 was obtained in the same manner as in Example 1 except that the cyclic polyolefin resin 1 was used for the core layer and PEN1 (Tg: 116 ° C.) was used for the outer layer. The laminated sheet 4 had a thickness H of each outer layer of 9 μm, a thickness of the core layer of 20 μm, and a total of 38 μm. Next, an optical sheet 7 was obtained in the same manner as in Example 1 except that the laminated sheet 4 was used.
Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 7. Regarding the brightness characteristic evaluation results, the brightness of the backlight of the optical sheet 7 after the wet heat resistance test was slightly reduced compared to the value before the heat resistance test.
 (実施例8)
 芯層を構成する樹脂としてポリカーボネート樹脂1( タフロン、Tg145℃、出光興産(株)製)を、外層を構成する樹脂としてポリスチレン系樹脂1(SX100、Tg100℃、PSジャパン(株)製)を用いた以外は実施例1と同様にして積層シート5を得た。積層シート5はそれぞれの外層の厚みHがいずれも9μm、芯層の厚みが20μm、全体で38μmであった。次に積層シート5を用いた以外は実施例1と同様にして光学シート8を得た。
この光学シート8のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート8は耐湿熱試験後のバックライトの輝度が耐熱試験前の値に比べて若干低下した。
(Example 8)
Polycarbonate resin 1 (Taflon, Tg 145 ° C., manufactured by Idemitsu Kosan Co., Ltd.) is used as the resin constituting the core layer, and polystyrene resin 1 (SX100, Tg 100 ° C., manufactured by PS Japan Co., Ltd.) is used as the resin constituting the outer layer. A laminated sheet 5 was obtained in the same manner as in Example 1 except that. The laminated sheet 5 had a thickness H of each outer layer of 9 μm, a thickness of the core layer of 20 μm, and a total of 38 μm. Next, an optical sheet 8 was obtained in the same manner as in Example 1 except that the laminated sheet 5 was used.
Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 8. Regarding the luminance characteristic evaluation results, in the optical sheet 8, the luminance of the backlight after the moisture and heat resistance test was slightly reduced compared to the value before the heat resistance test.
 (実施例9)
 図6に示すような装置により、積層シート1を180℃に設定されたロール状金型1とニップロールの間で狭持加圧し、剥離ロールでシートを剥離して巻取り光学シート9を得た。なお、ライン速度10m/minであった。
(ロール状金型1)
 面内パターン      :ストライプ状(図1(a)、回転方向に対して平行)
 個々の形状       :直角二等辺三角形(高さd:10μm)
 隣接パターン間のピッチ(p):20μm
 サイズ           :100mm幅、φ3inch
この光学シート9のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート9は耐湿熱試験後も、バックライトの輝度を保持していることを確認でき、耐湿熱性に優れていることがわかった。
Example 9
The laminated sheet 1 was sandwiched and pressed between the roll-shaped mold 1 set at 180 ° C. and the nip roll by an apparatus as shown in FIG. 6, and the sheet was peeled off by a peeling roll to obtain a wound optical sheet 9. . The line speed was 10 m / min.
(Roll mold 1)
In-plane pattern: striped (FIG. 1 (a), parallel to the rotation direction)
Individual shape: right-angled isosceles triangle (height d: 10 μm)
Pitch between adjacent patterns (p): 20 μm
Size: 100mm width, φ3inch
Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 9. Regarding the result of evaluating the luminance characteristics, it was confirmed that the optical sheet 9 retained the luminance of the backlight even after the moisture and heat resistance test, and it was found that the sheet was excellent in moisture and heat resistance.
 (実施例10)
 芯層を構成する樹脂として環状ポリオレフィン系樹脂1と2を質量比で60:40にブレンドしたものを、外層を構成する樹脂としてポリスチレン系樹脂1を用いた以外は実施例1と同様にして積層シート6を得た。積層シート6はそれぞれの外層の厚みHがいずれも9μm、芯層の厚みが20μm、全体で38μmであった。次に積層シート6を用いた以外は実施例1と同様にして光学シート10を得た。
この光学シート10のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート10は耐湿熱試験後のバックライトの輝度が耐熱試験前の値に比べて若干低下した。
(Example 10)
Laminated polyolefin resin 1 and 2 blended at a mass ratio of 60:40 as the resin constituting the core layer, and laminated in the same manner as in Example 1 except that polystyrene resin 1 was used as the resin constituting the outer layer. Sheet 6 was obtained. The laminated sheet 6 had a thickness H of each outer layer of 9 μm, a thickness of the core layer of 20 μm, and a total of 38 μm. Next, an optical sheet 10 was obtained in the same manner as in Example 1 except that the laminated sheet 6 was used.
The curl amount, flatness, and luminance characteristics of the optical sheet 10 are shown in Table 2. Regarding the luminance characteristic evaluation results, in the optical sheet 10, the luminance of the backlight after the wet heat resistance test was slightly reduced as compared with the value before the heat resistance test.
 (比較例1)
 環状オレフィン系樹脂2を60℃で6時間乾燥した後に押出機に投入し、230℃に加熱して溶融させ、Tダイから50℃に保たれた金属ドラムにシート状に押出した。金属ドラムの速度を25m/分と設定して巻き取ることで、厚みが38μmの単層シート1を得た。
次に、前記金型1と前記単層シート1を110℃で1分加熱し、110℃を維持しながら圧力2MPaで、金型1と単層シート1とを30秒間圧着した。続いて50℃まで冷却後、金型を離型することにより、単層シート1面に下記金型1の形状を反転したパターンを有する光学シート11を得た。光学シート11の全厚み(賦形面の頂部から裏面まで)は40μmであった成形時に平面性が悪化した。
この光学シート11のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート11は耐湿熱試験後に、バックライトの輝度が低下していることがわかった。
(Comparative Example 1)
The cyclic olefin resin 2 was dried at 60 ° C. for 6 hours and then charged into an extruder, heated to 230 ° C. to be melted, and extruded from a T-die into a metal drum maintained at 50 ° C. in a sheet form. A single layer sheet 1 having a thickness of 38 μm was obtained by winding the metal drum at a speed of 25 m / min.
Next, the mold 1 and the single-layer sheet 1 were heated at 110 ° C. for 1 minute, and the mold 1 and the single-layer sheet 1 were pressure-bonded for 30 seconds at a pressure of 2 MPa while maintaining 110 ° C. Then, after cooling to 50 degreeC, the optical sheet 11 which has the pattern which reversed the shape of the following metal mold | die 1 on the single layer sheet | seat 1 surface was obtained by releasing a metal mold | die. The entire thickness of the optical sheet 11 (from the top of the shaping surface to the back surface) was 40 μm, and the flatness deteriorated during molding.
Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 11. It was found that the brightness of the backlight of the optical sheet 11 was lowered after the moisture and heat resistance test with respect to the luminance characteristic evaluation results.
 (比較例2)
 環状ポリオレフィン系樹脂1と2を質量比で60:40にブレンドしたものを用いた以外は、比較例1と同様にして単層シート2を得た。
次に、前記金型1と前記単層シート2を135℃で1分加熱し、135℃を維持しながら圧力2MPaで、金型1と単層シート2とを30秒間圧着した。続いて70℃まで冷却後、金型を離型することにより、単層シート2面に下記金型1の形状を反転したパターンを有する光学シート12を得た。光学シート12の全厚み(賦形面の頂部から裏面まで)は40μmであったが成形時に平面性が悪化した。
この光学シート12のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート12は耐湿熱試験後に、バックライトの輝度の低下はみられなかった。
(Comparative Example 2)
A single-layer sheet 2 was obtained in the same manner as in Comparative Example 1 except that the cyclic polyolefin resins 1 and 2 were blended at a mass ratio of 60:40.
Next, the mold 1 and the single-layer sheet 2 were heated at 135 ° C. for 1 minute, and the mold 1 and the single-layer sheet 2 were pressure-bonded for 30 seconds at a pressure of 2 MPa while maintaining 135 ° C. Then, after cooling to 70 degreeC, the optical sheet 12 which has the pattern which reversed the shape of the following metal mold | die 1 on the single-layer sheet | seat 2 surface was obtained by releasing a metal mold | die. The total thickness of the optical sheet 12 (from the top of the shaping surface to the back surface) was 40 μm, but the flatness deteriorated during molding.
Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 12. Regarding the result of evaluating the luminance characteristics, the optical sheet 12 did not show a decrease in the luminance of the backlight after the wet heat resistance test.
 (比較例3)
 溶融2層共押出口金を用いて外層の厚みHが7.5μm、芯層の厚みが30.5μm、全体で38μmの積層シート7を得た以外は実施例1と同様にして光学シート13を得た。しかし、シート作製時に10mm以上のカールが生じており、耐久性試験後も変わることはなかった。
(Comparative Example 3)
Optical sheet 13 was obtained in the same manner as in Example 1 except that a laminated sheet 7 having an outer layer thickness H of 7.5 μm, a core layer thickness of 30.5 μm, and a total of 38 μm was obtained using a molten two-layer coextrusion die. Got. However, curling of 10 mm or more occurred at the time of producing the sheet, and it did not change after the durability test.
 (比較例4) 
 前記金型1の凹凸面に下記塗剤1を充填し、その上に厚み30μmの透明ポリエチレンテレフタレートフィルム(PETフィルム)をのせ、該PETフィルム側から超高圧水銀灯で1J/m照射して塗剤を硬化させ、金型を離型することで光学シート14を得た。また光学シート14の全厚み(賦形面の頂部から裏面まで)は40μmであった。
(塗剤1)
KAYARAD R-551(日本化薬(株)製)  60質量部
KAYARAD R-128H(日本化薬(株)製) 40質量部
ダロキュア1173(チバ・ジャパン(株)製)    4質量部
この光学シート14のカール量、平面性、輝度特性を表2に示した。温度85℃湿度85%で240時間経過後、光学シート13は、温度85℃湿度85%で240時間経過後(耐湿熱試験後)に顕著にカールが発生した(賦形面側にカール)。
また、前記光学シート14を、耐湿熱試験前後において評価用のバックライトに組み込んで、輝度評価を試みたが、耐湿熱試験後ではカールしているために端部が浮き上がり評価できなかった。
(Comparative Example 4)
The uneven surface of the mold 1 is filled with the following coating agent 1, and a transparent polyethylene terephthalate film (PET film) having a thickness of 30 μm is placed on the surface, and the coating is irradiated with 1 J / m 2 from the PET film side with an ultrahigh pressure mercury lamp. The optical sheet 14 was obtained by curing the agent and releasing the mold. The total thickness of the optical sheet 14 (from the top of the shaping surface to the back surface) was 40 μm.
(Coating 1)
KAYARAD R-551 (manufactured by Nippon Kayaku Co., Ltd.) 60 parts by mass KAYARAD R-128H (manufactured by Nippon Kayaku Co., Ltd.) 40 parts by mass Darocur 1173 (manufactured by Ciba Japan Co., Ltd.) 4 parts by mass This optical sheet 14 Table 2 shows the curl amount, flatness, and luminance characteristics. After 240 hours at a temperature of 85 ° C. and a humidity of 85%, the optical sheet 13 was remarkably curled (curled on the shaping surface side) after a lapse of 240 hours at a temperature of 85 ° C. and a humidity of 85% (after the heat and humidity resistance test).
The optical sheet 14 was incorporated in a backlight for evaluation before and after the moisture and heat resistance test, and an attempt was made to evaluate the luminance. However, after the moisture and heat resistance test, the end portion was lifted up and could not be evaluated.
 (比較例5)
 芯層を構成する樹脂として環状ポリオレフィン系樹脂1を、外層を構成する樹脂として環状ポリオレフィン系樹脂2(環状オレフィン樹脂‘TOPAS’8007、Tg78℃、ポリプラスチックス(株)製)を準備した。これらを60℃で6時間乾燥した後にそれぞれを別の押出機内で270℃の温度で溶融させた。次いで、溶融3層共押出口金から押し出された積層樹脂を100℃に保たれた金属ドラムにシート状に押出した。金属ドラムの速度を25m/分と設定して巻き取ることで積層シート8を得た。
次に、金型1と前記積層シート8を110℃で1分加熱し、110℃を維持しながら圧力2MPaで、金型1と積層シート8とを30秒間圧着した。続いて50℃まで冷却後、金型を離型することにより、積層シート8面に金型1の形状を反転したパターンを有する光学シート15を得た。光学シート15の全厚みは40μmであった。
この光学シート15のカール量、平面性、輝度特性を表2に示した。温度85℃湿度85%で240時間経過後、平面性が悪化した。
また、輝度特性評価結果に関して光学シート15は耐湿熱試験後も、バックライトの輝度が大幅に低下した。
(Comparative Example 5)
A cyclic polyolefin resin 1 was prepared as the resin constituting the core layer, and a cyclic polyolefin resin 2 (cyclic olefin resin 'TOPAS' 8007, Tg 78 ° C., manufactured by Polyplastics Co., Ltd.) was prepared as the resin constituting the outer layer. They were dried at 60 ° C. for 6 hours and then melted in a separate extruder at a temperature of 270 ° C. Next, the laminated resin extruded from the molten three-layer coextrusion die was extruded into a sheet shape on a metal drum maintained at 100 ° C. A laminated sheet 8 was obtained by winding the metal drum at a speed of 25 m / min.
Next, the mold 1 and the laminated sheet 8 were heated at 110 ° C. for 1 minute, and the mold 1 and the laminated sheet 8 were pressure-bonded for 30 seconds at a pressure of 2 MPa while maintaining 110 ° C. Then, after cooling to 50 degreeC, the optical sheet 15 which has the pattern which reversed the shape of the metal mold | die 1 on the laminated sheet 8 surface was obtained by releasing a metal mold | die. The total thickness of the optical sheet 15 was 40 μm.
Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 15. The flatness deteriorated after 240 hours at a temperature of 85 ° C. and a humidity of 85%.
Further, regarding the luminance characteristic evaluation results, the luminance of the backlight of the optical sheet 15 was significantly reduced even after the wet heat resistance test.
 (比較例6)
(ポリエチレンテレフタレートペレット(PET)の製造)
酸成分としてテレフタル酸を、グリコール成分としてエチレングリコールを用い、三酸化アンチモン(重合触媒)を得られるポリエステルペレットに対してアンチモン原子換算で300ppmとなるように添加し、重縮合反応を行い、極限粘度0.63dl/g、カルボキシル末端基量40当量/トンのポリエチレンテレフタレートペレット1(PET)を得た。
芯層を構成する樹脂として環状ポリオレフィン系樹脂1を、一方の外層を構成する樹脂としてPET1(Tg:67℃)を、もう一方の外層を構成する樹脂としてPEN1を準備した。環状ポリオレフィン1とPEN1は100℃で、PET1は60℃でそれぞれ6時間乾燥した後にそれぞれを別の押出機内で240℃の温度で溶融させた。次いで、溶融3層共押出口金から押し出された積層樹脂を100℃に保たれた金属ドラムにシート状に押出した。金属ドラムの速度を25m/分と設定して巻き取ることで積層シート9を得た。積層シート9は、それぞれの表層の厚みHがいずれも7.5μm、芯層の厚みが23μm、全体で38μmであった。
次に、前記金型1と前記積層シート9を110℃で1分加熱し、110℃を維持しながら圧力2MPaで、金型1と積層シート9のPET1側とを30秒間圧着した。続いて50℃まで冷却後、金型を離型することにより、光学シート16を得た。光学シート16の全厚み(賦形面の頂部から裏面まで)は40μmであった。
しかし、シート作製時に5mmのカールが生じており、耐久性試験後は10mm以上カールしており輝度を測定することが出来なかった。
(Comparative Example 6)
(Manufacture of polyethylene terephthalate pellets (PET))
Using terephthalic acid as the acid component and ethylene glycol as the glycol component, adding to the polyester pellets that can obtain antimony trioxide (polymerization catalyst) to 300 ppm in terms of antimony atoms, performing a polycondensation reaction, limiting viscosity A polyethylene terephthalate pellet 1 (PET) having 0.63 dl / g and a carboxyl end group amount of 40 equivalents / ton was obtained.
Cyclic polyolefin-based resin 1 was prepared as the resin constituting the core layer, PET1 (Tg: 67 ° C.) was prepared as the resin constituting one outer layer, and PEN1 was prepared as the resin constituting the other outer layer. Cyclic polyolefin 1 and PEN 1 were dried at 100 ° C. and PET 1 was dried at 60 ° C. for 6 hours, respectively, and then melted in a separate extruder at a temperature of 240 ° C. Next, the laminated resin extruded from the molten three-layer coextrusion die was extruded into a sheet shape on a metal drum maintained at 100 ° C. A laminated sheet 9 was obtained by winding the metal drum at a speed of 25 m / min. In the laminated sheet 9, the thickness H of each surface layer was 7.5 μm, the thickness of the core layer was 23 μm, and the total was 38 μm.
Next, the mold 1 and the laminated sheet 9 were heated at 110 ° C. for 1 minute, and the mold 1 and the PET 1 side of the laminated sheet 9 were pressure-bonded for 30 seconds while maintaining 110 ° C. at a pressure of 2 MPa. Then, after cooling to 50 degreeC, the optical sheet 16 was obtained by releasing a metal mold | die. The total thickness of the optical sheet 16 (from the top of the shaping surface to the back surface) was 40 μm.
However, a curl of 5 mm was generated at the time of producing the sheet, and after the durability test, it was curled by 10 mm or more, and the luminance could not be measured.
 (比較例7)
 前記単層シート2を用いた以外は実施例9と同様にして光学シート17を得た。光学シート17の全厚み(賦形面の頂部から裏面まで)は40μmであったが、剥離ロールからの剥離時に平面性が悪化した。
この光学シート17のカール量、平面性、輝度特性を表2に示した。
また、輝度特性評価結果に関して光学シート17は耐湿熱試験後に、バックライトの輝度の低下はみられなかったが、試験前の輝度が実施例1などに比べて低いことがわかった。
(Comparative Example 7)
An optical sheet 17 was obtained in the same manner as in Example 9 except that the single-layer sheet 2 was used. The total thickness of the optical sheet 17 (from the top of the shaping surface to the back surface) was 40 μm, but the flatness deteriorated during peeling from the peeling roll.
Table 2 shows the curl amount, planarity, and luminance characteristics of the optical sheet 17.
Further, regarding the result of evaluating the luminance characteristics, the optical sheet 17 did not show a decrease in the luminance of the backlight after the moisture and heat resistance test, but the luminance before the test was found to be lower than that in Example 1.
 (比較例8)
 芯層を構成する樹脂として環状ポリオレフィン系樹脂1と2を質量比で50:50にブレンドしたもの(ブレンド後のTg100℃)を、外層を構成する樹脂としてポリスチレン系樹脂1を用いた以外は、実施例1と同様にして積層シート10を得た。積層シート10はそれぞれの外層の厚みHがいずれも9μm、芯層の厚みが20μm、全体で38μmであった。次に積層シート10を用いた以外は実施例1と同様にして光学シート18を得た。光学シート18の全厚み(賦形面の頂部から裏面まで)は40μmであったが成形時に平面性が悪化した。この光学シート18のカール量、平面性、輝度特性を表2に示した。輝度特性評価結果に関して光学シート18は耐湿熱試験後のバックライトの輝度が耐熱試験前の値に比べて若干低下した。

 表1より以下のことが明かである。実施例1~8により、本発明の中でも、芯層、表層に環状ポリオレフィン系樹脂を用いることによりさらに、耐久性試験下においても輝度低下を抑制することができることがわかる。
また、実施例1と比較例1および2より、芯層を設けることにより平面性を向上することができ、比較例3および4より3層対称構造を持つことによってカールを抑制できることがわかる。
さらには、実施例1と比較例5より外層にTgが80℃以上の樹脂を積層することによって耐久性試験前後の輝度低下を抑制することが出来ることがわかる。
実施例1と比較例6より、外層は同一組成物を積層することによってカールを抑制することが出来ることがわかる。
また、実施例9と比較例7より図6に示すようなロールtoロールタイプの製造装置にも平面性が優れたシートを作製することができることがわかる。
さらには、実施例10と比較例8より芯層と外層のTg差を10℃以上にすることによって、平面性が優れたシートを作製することができることがわかる。
(Comparative Example 8)
Except for using a polyolefin resin 1 and 2 blended in a mass ratio of 50:50 (Tg 100 ° C. after blending) as a resin constituting the core layer, and using a polystyrene resin 1 as the resin constituting the outer layer, A laminated sheet 10 was obtained in the same manner as Example 1. The laminated sheet 10 had a thickness H of each outer layer of 9 μm, a thickness of the core layer of 20 μm, and a total of 38 μm. Next, an optical sheet 18 was obtained in the same manner as in Example 1 except that the laminated sheet 10 was used. The total thickness of the optical sheet 18 (from the top of the shaping surface to the back surface) was 40 μm, but the flatness deteriorated during molding. Table 2 shows the curl amount, flatness, and luminance characteristics of the optical sheet 18. Regarding the luminance characteristic evaluation results, in the optical sheet 18, the luminance of the backlight after the wet heat resistance test was slightly reduced compared to the value before the heat resistance test.

From Table 1, the following is clear. From Examples 1 to 8, it can be seen that, among the present invention, the use of a cyclic polyolefin-based resin for the core layer and the surface layer can further suppress a decrease in luminance even under a durability test.
Further, it can be seen from Example 1 and Comparative Examples 1 and 2 that the planarity can be improved by providing a core layer, and curling can be suppressed by having a three-layer symmetrical structure as compared with Comparative Examples 3 and 4.
Further, it can be seen from Example 1 and Comparative Example 5 that a decrease in luminance before and after the durability test can be suppressed by laminating a resin having a Tg of 80 ° C. or more on the outer layer.
It can be seen from Example 1 and Comparative Example 6 that the outer layer can suppress curling by laminating the same composition.
Further, it can be seen from Example 9 and Comparative Example 7 that a sheet having excellent flatness can be produced even in a roll-to-roll type production apparatus as shown in FIG.
Furthermore, it can be seen from Example 10 and Comparative Example 8 that a sheet having excellent planarity can be produced by setting the Tg difference between the core layer and the outer layer to 10 ° C. or more.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の積層シートは液晶表示装置用部材など各種分野に適用可能である。 The laminated sheet of the present invention is applicable to various fields such as liquid crystal display members.

Claims (6)

  1.  芯層と該芯層の両面に接着層を介さずに積層された外層とで構成された3層積層体樹脂シートを含む光学シートであって、該芯層を構成する樹脂が非晶性樹脂であり、少なくとも一方の該外層の表面に複数の凸型形状が形成され、該各外層を構成する樹脂のガラス転移温度が80℃以上、それらの主成分が同一組成の樹脂であり、かつ、該芯層を構成する樹脂のガラス転移温度よりも10℃以上低い光学シート。 An optical sheet comprising a three-layer laminate resin sheet composed of a core layer and an outer layer laminated on both surfaces of the core layer without an adhesive layer, wherein the resin constituting the core layer is an amorphous resin A plurality of convex shapes are formed on the surface of at least one of the outer layers, the glass transition temperature of the resin constituting each outer layer is 80 ° C. or higher, and the main components thereof are resins having the same composition, and An optical sheet that is at least 10 ° C. lower than the glass transition temperature of the resin constituting the core layer.
  2.  前記芯層を構成する樹脂の主成分が環状ポリオレフィン系樹脂である請求項1記載の光学シート。 The optical sheet according to claim 1, wherein a main component of the resin constituting the core layer is a cyclic polyolefin resin.
  3.  前記各外層を構成する樹脂の主成分が同一組成の環状ポリオレフィンである請求項1又は2に記載の光学シート。 3. The optical sheet according to claim 1, wherein the main component of the resin constituting each outer layer is a cyclic polyolefin having the same composition.
  4.  前記凸型形状の頂部を通り、該凸型形状が形成された外層の面に垂直かつ複数の凸型形状を横切る面で切断した該凸型形状の切断面の凸型高さが1~10μmであり、かつ、光学シートの総厚みが60μm以下である請求項1~3のいずれかに記載の光学シート。 The convex height of the cut surface of the convex shape cut through a plane passing through the top of the convex shape and perpendicular to the surface of the outer layer on which the convex shape is formed and crossing the plurality of convex shapes is 1 to 10 μm. The optical sheet according to claim 1, wherein the total thickness of the optical sheet is 60 μm or less.
  5.  前記複数の凸型形状が一方向に延びた凸型形状であり、該複数の凸型形状の長手方向が互いに平行である請求項1~4のいずれかに記載の光学シート。 5. The optical sheet according to claim 1, wherein the plurality of convex shapes are convex shapes extending in one direction, and the longitudinal directions of the plurality of convex shapes are parallel to each other.
  6.  請求項1~5のいずれかに記載の光学シートを搭載した液晶表示装置用面光源。 A surface light source for a liquid crystal display device on which the optical sheet according to any one of claims 1 to 5 is mounted.
PCT/JP2009/064148 2008-09-30 2009-08-11 Optical sheet and surface light source for liquid crystal display device WO2010038549A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980144267.5A CN102203640B (en) 2008-09-30 2009-08-11 Optical sheet and surface light source for liquid crystal display device
JP2009535720A JPWO2010038549A1 (en) 2008-09-30 2009-08-11 Optical sheet and surface light source for liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-252819 2008-09-30
JP2008252819 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038549A1 true WO2010038549A1 (en) 2010-04-08

Family

ID=42073325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064148 WO2010038549A1 (en) 2008-09-30 2009-08-11 Optical sheet and surface light source for liquid crystal display device

Country Status (5)

Country Link
JP (1) JPWO2010038549A1 (en)
KR (1) KR20110061592A (en)
CN (1) CN102203640B (en)
TW (1) TWI481908B (en)
WO (1) WO2010038549A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000822A (en) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc Easily surface-shapable sheet laminate and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481914B (en) * 2012-12-28 2015-04-21 Chi Mei Corp An optical plate with microstructures
TWI614533B (en) * 2016-02-01 2018-02-11 群睿股份有限公司 Three-dimensional display device
KR102301279B1 (en) 2017-07-18 2021-09-13 삼성에스디아이 주식회사 Polarizing plate and optical display device comprising the same
KR102462626B1 (en) 2019-04-08 2022-11-02 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
CN110265537A (en) * 2019-05-17 2019-09-20 电子科技大学中山学院 Substrate, substrate production method and encapsulating structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249600A (en) * 2001-02-23 2002-09-06 Sekisui Chem Co Ltd Norbornene-based resin film and method for manufacturing the same
JP2002343121A (en) * 2001-05-18 2002-11-29 Dainippon Printing Co Ltd Protective diffusion film and its manufacturing method, surface light source equipment and liquid crystal display equipment
JP2008152119A (en) * 2006-12-19 2008-07-03 Nippon Zeon Co Ltd Optical film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109395A1 (en) * 2004-11-24 2006-05-25 Junya Yamamoto Area light source device and liquid crystal display device including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249600A (en) * 2001-02-23 2002-09-06 Sekisui Chem Co Ltd Norbornene-based resin film and method for manufacturing the same
JP2002343121A (en) * 2001-05-18 2002-11-29 Dainippon Printing Co Ltd Protective diffusion film and its manufacturing method, surface light source equipment and liquid crystal display equipment
JP2008152119A (en) * 2006-12-19 2008-07-03 Nippon Zeon Co Ltd Optical film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000822A (en) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc Easily surface-shapable sheet laminate and use thereof

Also Published As

Publication number Publication date
TW201020592A (en) 2010-06-01
KR20110061592A (en) 2011-06-09
CN102203640A (en) 2011-09-28
JPWO2010038549A1 (en) 2012-03-01
TWI481908B (en) 2015-04-21
CN102203640B (en) 2015-07-22

Similar Documents

Publication Publication Date Title
US10690819B2 (en) Multi-layer sealing films
KR101072036B1 (en) Light control sheet and surface light source using it
TWI363889B (en) Anisotropic diffusion film
WO2010038549A1 (en) Optical sheet and surface light source for liquid crystal display device
JP2017107193A (en) Upper light diffusion sheet and backlight unit
TW201131212A (en) Light diffusing sheet and backlight using same
WO2018225463A1 (en) Upper-side light diffuser sheet and backlight unit equipped with same
JP2007179035A (en) Diffusion sheet and backlight unit using the same
JP4370539B1 (en) Surface light diffusing polyester film
KR102235161B1 (en) Optical plate with protrusions, optical structure, backlight module and display device
JP5228314B2 (en) Diffusion sheet and backlight unit using the same
JP5532799B2 (en) White reflective film
WO2009090828A1 (en) Optical sheet and surface light source for liquid crystal display device
JP2013218092A (en) Light diffusion laminate, surface light source device, and display device and illumination device using surface light source device
JP2010122663A (en) Optical sheet and back light unit using the same
JP2010117394A (en) Lens sheet and surface light source for liquid crystal display device
JP2015031893A (en) Lens film laminate for lighting equipment
JP2014137943A (en) Direct type surface light source device, and display apparatus and lighting apparatus using the same
JP2010249898A (en) Light diffusion film and surface light source using the same
JP2019035951A (en) Buffer sheet and flat panel display
JP5206358B2 (en) Optical sheet and backlight unit using the same
KR101161659B1 (en) Anisotropic diffusion film for direct backlight
JP2014137520A (en) Optical diffusion laminate and lighting device
JP2014137942A (en) Direct type surface light source device, and display apparatus and lighting apparatus using the same
JP2013218093A (en) Light diffusion laminate, surface light source device, and display device and illumination device using surface light source device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144267.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009535720

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117007240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817586

Country of ref document: EP

Kind code of ref document: A1