WO2010035397A1 - 光ファイバ及びその製造方法 - Google Patents
光ファイバ及びその製造方法 Download PDFInfo
- Publication number
- WO2010035397A1 WO2010035397A1 PCT/JP2009/004019 JP2009004019W WO2010035397A1 WO 2010035397 A1 WO2010035397 A1 WO 2010035397A1 JP 2009004019 W JP2009004019 W JP 2009004019W WO 2010035397 A1 WO2010035397 A1 WO 2010035397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- cladding
- refractive index
- core
- clad
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03661—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
- G02B6/03683—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + +
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03694—Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/21—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/23—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/28—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
- C03B2203/23—Double or multiple optical cladding profiles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
Definitions
- the present invention relates to an optical fiber including a core, a first cladding, and a second cladding, and a method for manufacturing the same.
- an optical fiber having a two-layer structure of a core and a clad In addition to an optical fiber having a two-layer structure of a core and a clad, an optical fiber having a plurality of clads and a reduced bending loss has been put into practical use.
- Patent Document 1 discloses a single mode optical fiber including a high absorption type outer cladding glass of quartz glass solution-doped with cobalt oxide, a non-absorption type inner cladding glass, and a non-absorption type core glass. Yes.
- the optical fiber of the present invention includes a core, a first clad provided so as to cover the core and having a lower refractive index than the core, and provided so as to cover the first clad and having a refractive index higher than that of the first clad.
- An optical fiber comprising a low second cladding,
- the first cladding is doped with a light-attenuating dopant so that the concentration increases from the inner peripheral side toward the outer peripheral side.
- the optical fiber manufacturing method of the present invention is provided with the optical fiber of the present invention so as to cover the core forming portion, the first cladding forming portion provided so as to cover the core forming portion, and the first cladding.
- FIG. 5 is an explanatory diagram showing propagation of signal light in the optical fiber according to the present embodiment.
- FIG. 1 shows an optical fiber 10 according to this embodiment.
- the optical fiber 10 is used for communication, and is connected to a single mode optical fiber branched from an optical fiber cable, for example, and is provided at a portion where bending deformation is particularly applied.
- the optical fiber 10 has a structure in which a core 11, a first clad 12, a second clad 13, and a support layer 14 are integrally provided concentrically in order from the fiber center.
- the core 11 is made of, for example, quartz doped with a high refractive index dopant, and has an outer diameter of 8 to 10.2 ⁇ m (preferably 8.2 to 10 ⁇ m) and a refractive index of 1.460 to 1.462. It is.
- a refractive index means the refractive index with respect to normal temperature and normal air.
- the high refractive index dopant for example, typically, germanium (Ge) is exemplified, and in addition, phosphorus (P) and the like are exemplified.
- the high refractive index dopant may be doped with a single species or may be doped with a plurality of species.
- the concentration of the high refractive index dopant is preferably 2.9 to 4.0% by mass.
- the first cladding 12 is made of, for example, quartz doped with a light-attenuating dopant, and has an outer diameter of 30 to 45 ⁇ m (preferably 30 to 40 ⁇ m) and a refractive index of 1.450 to 1.454.
- the ratio of the outer diameter of the first cladding 12 to the outer diameter of the core 11 is preferably 2.9 to 5.5.
- Examples of the light-attenuating dopant include a hydroxyl group (OH) and hydrogen (H 2 ). Of these, OH is preferred from the viewpoint of easy control of light absorption.
- the light attenuating dopant may be doped with a single species, or may be doped with a plurality of species.
- the light-attenuating dopant is doped so that the concentration continuously increases from the inner circumference side to the outer circumference side of the first cladding 12.
- the average concentration of the light-attenuating dopant in the first cladding 12 is preferably 100 to 10,000 ppm by mass.
- the second cladding 13 is made of, for example, quartz doped with a low refractive index dopant, and has an outer diameter of 44 to 75 ⁇ m and a refractive index of 1.430 to 1.444.
- low refractive index dopant examples include boron (B) and fluorine (F).
- B boron
- F fluorine
- the low refractive index dopant may be doped with a single species, or may be doped with a plurality of species.
- the concentration of the low refractive index dopant is preferably 2.0 to 25% by mass.
- the support layer 14 is made of, for example, pure quartz, and has an outer diameter of 123 to 127 ⁇ m (typically 125 ⁇ m) and a refractive index of 1.450 to 1.454.
- the optical fiber 10 having the above-described configuration is used as an optical fiber core by being coated with a resin coating layer (not shown).
- FIG. 2 shows a refractive index distribution in the diameter direction of the fiber cross section of the optical fiber 10 according to the present embodiment.
- the core 11 is a high refractive index portion protruding
- the second cladding 13 has a trench type structure that is a low refractive index portion that is largely immersed.
- the axis of the core 11 is shifted when connected to another single mode optical fiber, and as shown in FIG.
- the first clad 12 is doped with an optical attenuating dopant, and the optical attenuating dopant is included in the first clad 12. Since doping is performed so that the concentration increases from the peripheral side toward the outer peripheral side, as shown in FIGS. 4A and 4B, the concentration on the side close to the core 11 on which the fundamental mode signal light propagates mainly. Is relatively low, the attenuation of the fundamental mode signal light can be kept low.
- the light attenuating dopant doped in the first cladding 12 has a narrow wavelength band of light that is attenuated by absorption, such as a hydroxyl group (OH), for example, the signal light in the wavelength 1300 nm band is effectively absorbed and attenuated.
- the attenuation due to the absorption of the core identification light in the wavelength 1650 nm band and the 650 nm band propagated to the first cladding 12 when performing the core contrast is small, and there is no problem in performing the core contrast.
- the difference between the loss of the signal light and the loss of the core identification light is 10 dB or more.
- the optical fiber 10 includes a core forming portion 21, a first cladding forming portion 22 provided so as to cover the core forming portion 21, and a first cladding provided so as to cover the first cladding forming portion 22. It can be manufactured by drawing the preform 20 including the two clad forming portion 23 and the support layer forming portion 24 (third clad forming portion) provided so as to cover the second clad forming portion 23.
- the preform 20 can be manufactured by a CVD method, a VAD method, or an OVD method.
- a step of introducing a light-attenuating dopant from the outer periphery of the first cladding forming portion 22 is included. Good.
- the light attenuating dopant is introduced from the outer periphery of the first cladding forming portion 22 in this way, the light attenuating dopant is heavily doped on the outer peripheral side of the first cladding forming portion 22 and lightly doped on the inner peripheral side. .
- a hydroxyl group (OH) when a hydroxyl group (OH) is doped as a light-attenuating dopant, there is a method in which the outer periphery of the first cladding forming portion 22 is flame oxidized after the first cladding forming portion 22 is formed.
- the preform 20 can also be manufactured by a rod-in-tube method.
- a second cladding forming portion 23 is internally attached to a support layer forming portion 24 made of a quartz glass tube by the MCVD method, and as shown in FIG. 5B.
- a layered body of the core forming part 21 and the first clad forming part 22 is produced by CVD or VAD, and a light-attenuating dopant introduced from the outer periphery of the first clad forming part 22 is inserted, and FIG. As shown in (c), they may be collapsed.
- the furnace temperature is preferably 1800 to 2200 ° C., for example, and the drawing speed is preferably 100 to 1000 m / min.
- the core 11 is doped with a high refractive index dopant
- the first cladding 12 is doped with a light-attenuating dopant
- the second cladding 13 is doped with a low refractive index dopant
- the support layer 14 is formed of pure quartz.
- the present invention is not particularly limited to this, and the first cladding 12 has a lower refractive index than the core 11 and the second cladding 13 has a lower refractive index than the first cladding 12.
- each part may be doped with other dopants as necessary.
- the present invention is useful for an optical fiber including a core, a first cladding, and a second cladding.
- optical fiber 11 core 12 first clad 13 second clad 20 preform 21 core forming part 22 first clad forming part 23 second clad forming part
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
上記第1クラッドには、内周側から外周側に向かって濃度が高くなるように光減衰ドーパントがドープされている。
第1クラッド形成部を形成した後、該第1クラッド形成部の外周から光減衰ドーパントを導入する工程を有する。
11 コア
12 第1クラッド
13 第2クラッド
20 プリフォーム
21 コア形成部
22 第1クラッド形成部
23 第2クラッド形成部
Claims (10)
- コアと、該コアを覆うように設けられ該コアよりも屈折率が低い第1クラッドと、該第1クラッドを覆うように設けられ該第1クラッドよりも屈折率が低い第2クラッドと、を備えた光ファイバであって、
上記第1クラッドには、内周側から外周側に向かって濃度が高くなるように光減衰ドーパントがドープされている光ファイバ。 - 請求項1に記載された光ファイバにおいて、
上記コアは、高屈折率化ドーパントがドープされた石英で形成されている光ファイバ。 - 請求項1又は2に記載された光ファイバにおいて、
上記第1クラッドは、光減衰ドーパントがドープされた石英で形成されている光ファイバ。 - 請求項1乃至3のいずれかに記載された光ファイバにおいて、
上記光減衰ドーパントがOHである光ファイバ。 - 請求項1乃至4のいずれかに記載された光ファイバにおいて、
上記第1クラッドの外径の上記コアの外径に対する比が2.9~5.5である光ファイバ。 - 請求項1乃至5のいずれかに記載された光ファイバにおいて、
上記第2クラッドは、低屈折率化ドーパントがドープされた石英で形成されている光ファイバ。 - 請求項1乃至6のいずれかに記載された光ファイバにおいて、
上記第2クラッドを覆うように設けられ該第2クラッドよりも屈折率が高いサポート層をさらに備えた光ファイバ。 - 請求項7に記載された光ファイバにおいて、
上記サポート層は純粋石英で形成されている光ファイバ。 - 請求項7又は8に記載された光ファイバにおいて、
ファイバ断面の直径方向の屈折率分布が、上記第1クラッド及び上記サポート層の屈折率が同一であり、それを基準として、上記コアの屈折率が突出する一方、上記第2クラッドの屈折率が没入したトレンチ型構造を有する光ファイバ。 - 請求項1乃至9のいずれかに記載された光ファイバを、コア形成部と、該コア形成部を覆うように設けられた第1クラッド形成部と、該第1クラッドを覆うように設けられた第2クラッド形成部と、を備えたプリフォームを線引きすることにより製造する方法であって、
第1クラッド形成部を形成した後、該第1クラッド形成部の外周から光減衰ドーパントを導入する工程を有する光ファイバの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801371970A CN102165345A (zh) | 2008-09-26 | 2009-08-21 | 光纤及其制造方法 |
US13/121,361 US8606065B2 (en) | 2008-09-26 | 2009-08-21 | Optical fiber and method for fabricating the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008248197 | 2008-09-26 | ||
JP2008-248197 | 2008-09-26 | ||
JP2008-281471 | 2008-10-31 | ||
JP2008281471A JP2010102276A (ja) | 2008-09-26 | 2008-10-31 | 光ファイバ及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010035397A1 true WO2010035397A1 (ja) | 2010-04-01 |
Family
ID=42059411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004019 WO2010035397A1 (ja) | 2008-09-26 | 2009-08-21 | 光ファイバ及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8606065B2 (ja) |
JP (1) | JP2010102276A (ja) |
CN (1) | CN102165345A (ja) |
WO (1) | WO2010035397A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014527012A (ja) * | 2011-06-30 | 2014-10-09 | コーニング インコーポレイテッド | 低屈折率のトレンチを有する光ファイバープリフォームの製造方法 |
JP2017534551A (ja) * | 2014-09-16 | 2017-11-24 | コーニング インコーポレイテッド | 一工程フッ素トレンチ及びオーバークラッドを有する光ファイバプリフォームの作製方法 |
US20220011506A1 (en) * | 2018-11-07 | 2022-01-13 | Spectrawave, Inc. | Optical fibers, methods of their formation, and methods of their use |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5908318B2 (ja) * | 2012-03-29 | 2016-04-26 | 三菱電線工業株式会社 | ファンアウトモジュール |
JP6318569B2 (ja) * | 2013-11-15 | 2018-05-09 | 住友電気工業株式会社 | 光ファイバの製造方法および光ファイバ用ガラス母材の製造方法 |
CN104536085B (zh) * | 2015-01-07 | 2017-06-20 | 烽火通信科技股份有限公司 | 一种细径保偏光纤 |
CN111399113B (zh) * | 2020-04-24 | 2021-05-25 | 长飞光纤光缆股份有限公司 | 一种小外径弯曲不敏感单模光纤 |
JP7394088B2 (ja) * | 2021-05-13 | 2023-12-07 | 三菱電線工業株式会社 | レーザ加工用光ファイバ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240424A (ja) * | 2000-02-29 | 2001-09-04 | Sumitomo Electric Ind Ltd | 光ファイバ母材の製造方法 |
WO2004092794A1 (ja) * | 2003-04-11 | 2004-10-28 | Fujikura Ltd. | 光ファイバ |
JP2005017694A (ja) * | 2003-06-26 | 2005-01-20 | Furukawa Electric Co Ltd:The | 光ファイバおよび光ファイバケーブル |
JP2007031194A (ja) * | 2005-07-26 | 2007-02-08 | Fujikura Ltd | 光ファイバ用母材とその製造方法、光ファイバとその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659638A (en) * | 1979-10-19 | 1981-05-23 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of optical fiber |
JPS63121807A (ja) * | 1986-11-11 | 1988-05-25 | Sumitomo Electric Ind Ltd | 光フアイバ |
JP2002528757A (ja) | 1998-10-09 | 2002-09-03 | ジーシー テクノロジーズ リミテッド | 光ファイバシステムにおけるモーダルノイズを抑制するための方法及びシステム。 |
KR100577491B1 (ko) * | 2004-06-28 | 2006-05-10 | 엘에스전선 주식회사 | 저손실 광섬유 및 그 제조방법 |
US20070003198A1 (en) * | 2005-06-29 | 2007-01-04 | Lance Gibson | Low loss optical fiber designs and methods for their manufacture |
JP2007134626A (ja) * | 2005-11-14 | 2007-05-31 | Fujikura Ltd | ダブルクラッドファイバ、光ファイバ増幅器及びファイバレーザ |
-
2008
- 2008-10-31 JP JP2008281471A patent/JP2010102276A/ja active Pending
-
2009
- 2009-08-21 US US13/121,361 patent/US8606065B2/en not_active Expired - Fee Related
- 2009-08-21 CN CN2009801371970A patent/CN102165345A/zh active Pending
- 2009-08-21 WO PCT/JP2009/004019 patent/WO2010035397A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240424A (ja) * | 2000-02-29 | 2001-09-04 | Sumitomo Electric Ind Ltd | 光ファイバ母材の製造方法 |
WO2004092794A1 (ja) * | 2003-04-11 | 2004-10-28 | Fujikura Ltd. | 光ファイバ |
JP2005017694A (ja) * | 2003-06-26 | 2005-01-20 | Furukawa Electric Co Ltd:The | 光ファイバおよび光ファイバケーブル |
JP2007031194A (ja) * | 2005-07-26 | 2007-02-08 | Fujikura Ltd | 光ファイバ用母材とその製造方法、光ファイバとその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014527012A (ja) * | 2011-06-30 | 2014-10-09 | コーニング インコーポレイテッド | 低屈折率のトレンチを有する光ファイバープリフォームの製造方法 |
JP2017534551A (ja) * | 2014-09-16 | 2017-11-24 | コーニング インコーポレイテッド | 一工程フッ素トレンチ及びオーバークラッドを有する光ファイバプリフォームの作製方法 |
US20220011506A1 (en) * | 2018-11-07 | 2022-01-13 | Spectrawave, Inc. | Optical fibers, methods of their formation, and methods of their use |
US11867943B2 (en) * | 2018-11-07 | 2024-01-09 | Spectra WAVE, Inc. | Optical fibers, methods of their formation, and methods of their use |
Also Published As
Publication number | Publication date |
---|---|
CN102165345A (zh) | 2011-08-24 |
US8606065B2 (en) | 2013-12-10 |
US20110176783A1 (en) | 2011-07-21 |
JP2010102276A (ja) | 2010-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6008575B2 (ja) | シングルモード光ファイバ | |
US10150695B2 (en) | Low loss optical fibers with fluorine and chlorine codoped core regions | |
JP5579707B2 (ja) | シングル・モード光ファイバにおける曲げに対する敏感性および破局的な曲げ損失の低減ならびにその作製方法 | |
WO2010035397A1 (ja) | 光ファイバ及びその製造方法 | |
JP5881213B2 (ja) | シングルモード光ファイバ | |
EP2700988B1 (en) | Bending-resistant large core diameter high numerical aperture multimode fiber | |
JP6298893B2 (ja) | 損失低下を示す、台形コアを有するシングルモードファイバ | |
JP5330729B2 (ja) | グレーデッドインデックス形マルチモード光ファイバ | |
EP2299303B1 (en) | Multimode optical fibre with reduced bending losses | |
US10571628B2 (en) | Low loss optical fiber with core codoped with two or more halogens | |
JP5476125B2 (ja) | 光ファイバ及びその製造方法 | |
JP2007279739A (ja) | 単一モード光ファイバ | |
KR20130116009A (ko) | 광섬유 | |
JP4093553B2 (ja) | 光ファイバプリフォームとその製造方法、及びこれを線引きして得られる光ファイバ | |
JP6268758B2 (ja) | 光ファイバ | |
JP2007536580A5 (ja) | ||
JP2007536580A (ja) | 長波長用純シリカ製コアシングルモードファイバ及び該ファイバを形成する方法 | |
US6904213B2 (en) | Step index optical fiber with doped cladding and core, a preform, and a method of fabricating such a fiber | |
JP2002258091A (ja) | 光ファイバおよび光ファイバ型回折格子 | |
JPS638707A (ja) | 分散シフト光フアイバ | |
US8792762B2 (en) | Low loss aluminum doped optical fiber for UV applications | |
JP4890767B2 (ja) | 光ファイバ用プリフォームロッドの製造方法 | |
AU2023203764A1 (en) | Optical fiber with an immediate fluorine cladding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980137197.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09815819 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13121361 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09815819 Country of ref document: EP Kind code of ref document: A1 |