[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010028975A2 - Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit - Google Patents

Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit Download PDF

Info

Publication number
WO2010028975A2
WO2010028975A2 PCT/EP2009/061231 EP2009061231W WO2010028975A2 WO 2010028975 A2 WO2010028975 A2 WO 2010028975A2 EP 2009061231 W EP2009061231 W EP 2009061231W WO 2010028975 A2 WO2010028975 A2 WO 2010028975A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
acid
molding compositions
component
thermoplastic molding
Prior art date
Application number
PCT/EP2009/061231
Other languages
English (en)
French (fr)
Other versions
WO2010028975A3 (de
Inventor
Rebekka Von Benten
Daniel SCHÖNFELDER
Bernd Bruchmann
Volker Warzelhan
Matthias Scheibitz
Sachin Jain
Peter Eibeck
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2010028975A2 publication Critical patent/WO2010028975A2/de
Publication of WO2010028975A3 publication Critical patent/WO2010028975A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • thermoplastic molding compositions comprising
  • thermoplastic polyamide A) 10 to 99% by weight of at least one thermoplastic polyamide
  • the invention relates to the use of the molding compositions for the production of fibers, films and moldings of any kind and the fibers, films and moldings obtainable in this case.
  • Polyetheramine are usually prepared from trialkanolamines, e.g. Triethanol- amine, tripropanolamine, triisopropanolamine, optionally in admixture with mono- or dialkanolamines obtained by catalysis of these monomers, e.g. acidic or basic catalysis, etherified with elimination of water.
  • the preparation of these polymers is e.g. in US Pat. No. 2,178,173, US Pat. No. 2,290,415, US Pat. No. 2,407,895 and DE 40 03 243.
  • the polymerization can be carried out either statistically or block structures can be prepared from individual alkanolamines which are linked together in a further reaction (see also US Pat. No. 4,404,362).
  • the in the o.g. Literature described polyetheramine (polyols) are in free or quaternized form, e.g. used as emulsifiers for oil / water mixtures, as aftertreatment agent for dyed leather (DE 41 04 834) or as a lubricant for metal processing (CS 265 929).
  • Lubricants are generally added for the flow improvement of thermoplastic polyesters and polycarbonates (see Gumbleter, Müller: Kunststoffadditive, 3rd ed. P. 479, 486-488, Carl Hanser Verlag 1989). Disadvantages here are in particular the blooming of the additives during processing.
  • WO 97/45474 and EP-A 14 24 360 and WO 2006/42705 disclose dendritic polymers and dendrimers as additives for improving the flowability of thermoplastics. The disadvantage here is a very reduced effectiveness, as a function of the matrix polymer and / or in the case of high molecular weight thermoplastics.
  • the object of the present invention was therefore to increase the flowability and / or heat aging of polyamide molding compositions, wherein the decrease in molecular weight should be as low as possible. Furthermore, the additive should be present in as small amounts as possible in the matrix. The mechanics of the molding compounds should be preserved as much as possible and the additive should not bloom during processing.
  • thermoplastic molding compounds mentioned at the beginning, their use, and the moldings, films and fibers obtainable from them have been found.
  • Preferred embodiments of the invention can be found in the subclaims.
  • thermoplastic molding composition the amounts of components A) to D) within the ranges mentioned are selected such that the sum of components A) to C) and optionally D) is 100% by weight. % added; Component D) is optional.
  • the molding compositions according to the invention contain 10 to 99, preferably 20 to 79.95 and in particular 20 to 49.95% by weight of at least one thermoplastic polyamide A).
  • the polyamides of the molding compositions according to the invention generally have a viscosity number of 70 to 350, preferably 70 to 200 ml / g, determined in a 0.5 wt .-% solution in 96 wt .-% sulfuric acid at 25 ° C according to ISO 307th
  • Semicrystalline or amorphous resins having a weight average molecular weight of at least 5,000 e.g. U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606 and 3,393,210 are preferred.
  • Examples include polyamides derived from lactams having 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurolactam and polyamides obtained by reacting dicarboxylic acids with diamines.
  • alkanedicarboxylic acids having 6 to 12, in particular 6 to 10 carbon atoms and aromatic dicarboxylic acids can be used.
  • adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and terephthalic and / or isophthalic acid are mentioned as acids.
  • Suitable diamines are in particular alkanediamines having 6 to 12, in particular 6 to 8 carbon atoms and m-xylylenediamine, di (4-aminophenyl) methane, di (4-amino-cyclohexyl) methane, 2,2-di (4 -aminophenyl) -propane, 2,2-di (4-aminocyclohexyl) propane or 1, 5-diamino-2-methyl-pentane.
  • Preferred polyamides are polyhexamethylene adipamide, polyhexamethylene sebacamide and polycaprolactam and also copolyamides 6/66, in particular with a content of 5 to 95% by weight of caprolactam units.
  • polyamides are obtainable from ⁇ -aminoalkyl nitriles such as, for example, aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065 described.
  • ⁇ -aminoalkyl nitriles such as, for example, aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065 described.
  • polyamides which are e.g. are obtainable by condensation of 1, 4-diaminobutane with adipic acid at elevated temperature (polyamide 4.6). Manufacturing processes for polyamides of this structure are known e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524 described.
  • polyamides which are obtainable by copolymerization of two or more of the abovementioned monomers or mixtures of a plurality of polyamides are suitable, the mixing ratio being arbitrary.
  • PA 6 / 6T and PA 66 / 6T have proven to be particularly advantageous, in particular those whose triamine content is less than 0.5, preferably less than 0.3 wt .-% (see EP-A 299 444 ).
  • the preparation of the preferred partially aromatic copolyamides having a low triamine content can be carried out by the processes described in EP-A 129,195 and 129,196.
  • the preferred partially aromatic copolyamides A) contain, as component a-i), 40 to 90% by weight of units derived from terephthalic acid and hexamethylenediamine.
  • a small proportion of the terephthalic acid preferably not more than 10% by weight of the total aromatic dicarboxylic acids used, can be replaced by isophthalic acid or other aromatic dicarboxylic acids, preferably those in which the carboxyl groups are in the para position.
  • the partly aromatic copolyamides contain units derived from ⁇ -caprolactam (a2) and / or units derived from adipic acid and hexamethylenediamine (a3).
  • the proportion of units derived from ⁇ -caprolactam is at most 50% by weight, preferably 20 to 50% by weight, in particular 25 to 40% by weight, while the proportion of units derived from adipic acid and Hexamethylenediamine, up to 60 wt .-%, preferably 30 to 60 wt .-% and in particular 35 to 55 wt .-% is.
  • the copolyamides may also contain both units of ⁇ -caprolactam and units of adipic acid and hexamethylenediamine; In this case it is to be ensured that the proportion of units which are free of aromatic groups is at least 10% by weight, preferably at least 20% by weight.
  • the ratio of the units derived from ⁇ -caprolactam and from adipic acid and hexamethylenediamine is subject to no particular restriction.
  • Polyamides having from 50 to 80, in particular from 60 to 75,% by weight of units derived from terephthalic acid and hexamethylenediamine (units a 1 )) and from 20 to 50, preferably from 25 to 40,% by weight have proven particularly advantageous for many applications. Units derived from ⁇ -caprolactam (units a2)), proved.
  • the partly aromatic copolyamides according to the invention may also contain minor amounts, preferably not more than 15% by weight, in particular not more than 10% by weight, of further polyamide units (a 4 ), as described in US Pat other polyamides are known.
  • These building blocks can be derived from dicarboxylic acids having 4 to 16 carbon atoms and aliphatic or cycloaliphatic diamines having 4 to 16 carbon atoms and from aminocarboxylic acids or corresponding lactams having 7 to 12 carbon atoms.
  • Suitable monomers of these types are only suberic acid, azelaic acid, sebacic acid or isophthalic acid as representatives of the dicarboxylic acids, 1,4-butanediamine, 1,5-pentanediamine, piperazine, 4,4'-diaminodicyclohexylmethane, 2,2- (4,4 ') - Diaminodicyclohexyl) propane or 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane as representatives of the diamines and capryllactam, enantiolactam, omega-aminoundecanoic acid and laurolactam as representatives of lactams or aminocarboxylic called.
  • the melting points of the partially aromatic copolyamides A) are in the range from 260 to more than 300 ° C., this high melting point also being associated with a high glass transition temperature of generally more than 75, in particular more than 85 ° C.
  • Binary copolyamides based on terephthalic acid, hexamethylenediamine and ⁇ -caprolactam have, at levels of about 70% by weight of units derived from terephthalic acid and hexamethylenediamine, melting points in the region of 300 ° C. and a glass transition temperature of more than 1 10 ° C on.
  • Binary copolyamides based on terephthalic acid, adipic acid and hexamethylenediamine (HMD) reach melting points of 300 ° C.
  • the glass transition temperature being not as high as in the case of binary copolyamides which contain ⁇ -caprolactam instead of adipic acid or adipic acid / HMD.
  • PA 1 1 1 1-aminoundecanoic acid
  • PA 46 tetramethylenediamine, adipic acid
  • PA 66 hexamethylenediamine, adipic acid
  • PA 610 hexamethylenediamine, sebacic acid
  • PA 612 hexamethylenediamine, decanedicarboxylic acid
  • PA 613 hexamethylenediamine, undecanedicarboxylic acid
  • PA 1212 1, 12-dodecanediamine, decanedicarboxylic acid
  • PA 1313 1, 13-diaminotridecane, undecanedicarboxylic acid
  • PA 6T hexamethylenediamine, terephthalic acid
  • PA MXD6 m-xylylenediamine, adipic acid
  • PA 6I hexamethylenediamine, isophthalic acid
  • PA 6-3-T trimethylhexamethylenediamine, terephthalic acid
  • PA 6 / 6T (see PA 6 and PA 6T)
  • PA 6/66 (see PA 6 and PA 66)
  • PA 6/12 see PA 6 and PA 12
  • PA 66/6/610 see PA 66, PA 6 and PA 610)
  • PA 6I / 6T see PA 6I and PA 6T
  • PA PA PACM 12 diaminodicyclohexylmethane, laurolactam
  • PA 6I / 6T / PACM such as PA 6I / 6T + diaminodicyclohexylmethane PA 12 / MACMI laurolactam, dimethyldiaminodicyclohexylmethane,
  • the molding compositions according to the invention contain from 0.01 to 30, preferably from 0.05 to 10, and in particular from 0.05 to 5,% by weight of at least one hyperbranched polyetheramine.
  • Component B) is obtainable by reacting at least one tertiary amine with hydroxy functional groups, preferably at least one di-, tri- or tetraalkanolamine with optionally secondary amines which carry hydroxyl groups as a substituent, in particular dialkanolamines or optionally with di- or higher-functional polyether polyols, preferably in Presence of a transetherification and etherification catalyst.
  • Preferred tertiary dialkanolamines having hydroxy functional groups are
  • Diethanolalkylamines having C1 to C30, in particular C1 to C18-alkyl radicals,
  • N-methyl-diethanolamine N-methyl-dipropanolamine
  • N-ethyl-dipentanolamine N-ethyl-dihexanolamine
  • N-propyl-diisopropanolamine N-propyl-dibutanolamine, N-propyl-dipentanolamine, N-propyl-dihexanolamine,
  • Preferred trialkanolamines are N-(2-aminoethyl)-2-aminoethylamines.
  • R 1 CH 2 -CH 2 to (CH 2 Je, preferably (CH 2 ) 2 - (CH 2 ) 4
  • R 2 -R 5 C 2 to C 6 , preferably C 2 and C 3 , for example N, N, N ', N'-tetrahydroxyethylethylenediamine, N, N, N', N'-tetrahydroxyethylbutylenediamine, N, N, N ', N'-tetrahydroxypropylethylenediamine, N, N, N', N'-tetrahydroxyisopropylethylenediamine, N, N, N ' , N'-Tetrahydroxypropylbutylenediamine, N, N, N ', N'-tetrahydroxyisopropylbutylenediamine.
  • Particularly preferred component B) is obtainable by intermolecular polycondensation of at least one trialkanolamine of the general formula
  • radicals R 1 to R 3 independently of one another are identical or different, preferably alkylene, groups having 2 to 10 C atoms, preferably 2 to 6 C atoms.
  • Trialkanolamine optionally be used in combination with di- or higher functional polyetherols, in particular based on ethylene oxide and / or propylene oxide.
  • the highly functional highly branched or hyperbranched polyetheramines formed by the process according to the invention are terminated with hydroxyl groups after the reaction, ie without further modification. They dissolve well in various solvents.
  • solvents examples include aromatic and / or (cyclo) aliphatic hydrocarbons and mixtures thereof, halogenated hydrocarbons, ketones, esters and ethers.
  • aromatic hydrocarbons (cyclo) aliphatic hydrocarbons, alkanoic acid alkyl esters, ketones, alkoxylated alkanoic acid alkyl esters and mixtures thereof.
  • aromatic hydrocarbon mixtures are those which comprise predominantly aromatic C 7 - to C 14 -hydrocarbons and may have a boiling range of from 10 to 300 ° C., particular preference is given to toluene, o-, m- or p-xylene, trimethylbenzene isomers, tetramethylbenzene isomers, ethylbenzene , Cumene, tetrahydronaphthalene and mixtures containing such.
  • Solvesso® brands of ExxonMobil Chemical especially Solvesso® 100 (CAS No. 64742-95-6, predominantly Cg and Cio aromatics, boiling range about 154-178 ° C), 150 (boiling range about 182 -207 ° C) and 200 (CAS No. 64742-94-5), and Shell's Shellsol® grades.
  • Hydrocarbon mixtures on paraffins, cycloparaffins and aromatics are also known under the designations crystal oil (for example crystal oil 30, boiling range about 158-198 ° C. or crystal oil 60: CAS No. 64742-82-1), white spirit (for example likewise CAS No. 64747).
  • hydrocarbon mixtures are generally more than 90% by weight, preferably more than 95, more preferably more than 98, and very preferably more than 99% by weight. It may be useful to use hydrocarbon mixtures with a particularly reduced content of naphthalene.
  • the content of aliphatic hydrocarbons is generally less than 5, preferably less than 2.5 and more preferably less than 1 wt .-%.
  • Halogenated hydrocarbons are, for example, chlorobenzene and dichlorobenzene or isomeric mixtures thereof.
  • Esters include, for example, n-butyl acetate, ethyl acetate, 1-methoxypropyl acetate-2 and 2-methoxyethyl acetate.
  • Ethers are, for example, THF, dioxane and the dimethyl, ethyl or n-butyl ethers of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol or tripropylene glycol.
  • ketones are acetone, 2-butanone, 2-pentanone, 3-pentanone, hexanone, isobutyl methyl ketone, heptanone, cyclopentanone, cyclohexanone or cycloheptanone.
  • Examples of (cyclo) aliphatic hydrocarbons are decalin, alkylated decalin and isomer mixtures of straight-chain or branched alkanes and / or cycloalkyls.
  • Such mixtures can be prepared in a volume ratio of 5: 1 to 1: 5, preferably in a volume ratio of 4: 1 to 1: 4, more preferably in a volume ratio of 3: 1 to 1: 3 and most preferably in a volume ratio of 2: 1 to 1: 2 ,
  • Preferred solvents are butyl acetate, methoxypropyl acetate, isobutyl methyl ketone, 2-butanone, Solvesso® brands and xylene.
  • suitable solvents for the polyetheramines are, for example, water, alcohols, such as methanol, ethanol, butanol, alcohol / water mixtures, acetone, 2-butanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, ethylene carbonate or propylene carbonate.
  • a highly functional hyperbranched or hyperbranched polyetheramine is to be understood as meaning a product which, in addition to the ether groups and the amino groups which form the polymer backbone, also has an average of at least three, preferably at least six, more preferably at least has ten functional groups.
  • the functional groups are OH groups.
  • the number of terminal or pendant functional groups is not limited to the top, but products having a very large number of functional groups may have undesirable properties such as high viscosity or poor solubility.
  • the high-functionality polyetheramine polyols of the present invention generally have not more than 500 terminal or pendant functional groups, preferably not more than 100 terminal or pendant groups.
  • hyperbranched polyetheramines are understood as meaning undyed macromolecules having hydroxyl, ether and amine groups which are structurally as well as molecularly nonuniform. They can be constructed on the one hand, starting from a central molecule analogous to dendrimers, but with uneven chain length of the branches. On the other hand, they can also be constructed linearly with functional side groups or, as a combination of the two extremes, they can have linear and branched molecular parts.
  • PJ Flory, J. Am. Chem. Soc. 1952, 74, 2718 and H. Frey et al., Chem. Eur. J. 2000, 6, no. 14, 2499.
  • the polyetheramines are prepared either in bulk or in solution. Suitable solvents are the solvents already mentioned above. It is a preferred embodiment to carry out the reaction without solvent.
  • the temperature during production should be sufficient for the reaction of the amino alcohol.
  • a temperature of 100 ° C is required for the reaction 350 ° C, preferably 150 to 300, more preferably 180 to 280 ° C and especially 200 to 250 ° C required.
  • the condensation reaction is carried out in bulk.
  • the water or low molecular weight reaction products liberated in the reaction may be removed from the reaction equilibrium to accelerate the reaction, e.g. by distillation, if appropriate under reduced pressure.
  • Separation of the water or low molecular weight reaction products can also be accomplished by passing a stream of gas substantially inert under the reaction conditions (stripping), e.g. Nitrogen or noble gas, for example helium, neon or argon, be supported.
  • a stream of gas substantially inert under the reaction conditions (stripping), e.g. Nitrogen or noble gas, for example helium, neon or argon, be supported.
  • Suitable catalysts are compounds which catalyze etherification or transetherification reactions, e.g. Alkali metal hydroxides, alkali metal carbonates, alkali hydrogen carbonates, preferably of sodium, potassium or cesium, acidic compounds such as iron chloride or zinc chloride, formic acid, oxalic acid or phosphorus-containing acidic compounds such as phosphoric acid, polyphosphoric acid, phosphorous acid or hypophosphorous acid.
  • the addition of the catalyst is generally carried out in an amount of 0.001 to 10, preferably from 0.005 to 7, particularly preferably 0.01 to 5 mol%, based on the amount of alkanolamine or alkanolamine used.
  • the intermolecular polycondensation reaction both by adding the appropriate catalyst and by selecting a suitable temperature. Furthermore, the average molecular weight of the polymer can be adjusted via the composition of the starting components and over the residence time.
  • the polymers prepared at elevated temperature are usually stable at room temperature for a longer period of time, for example for at least 6 weeks, without turbidity, precipitation and / or viscosity increase.
  • the temperature can be lowered to a range in which the reaction comes to a standstill and the polycondensation product is storage-stable. This is usually below 60 ° C, preferably below 50 ° C, especially It prefers below 40 ° C and most preferably at room temperature the case.
  • an acidic component e.g. a Lewis acid or an organic or inorganic protic acid
  • a basic component e.g. a Lewis base or an organic or inorganic base.
  • the high-functionality highly branched or hyperbranched polyetheramines according to the invention generally have a glass transition temperature of less than 50 ° C., preferably less than 30 and particularly preferably less than 10 ° C.
  • the OH number is usually 50 to 1000 mg KOH / g, preferably 100 to 900 mg KOH / g and most preferably 150 to 800 mg KOH / g.
  • the weight-average molecular weight M w is usually between 1,000 and 500,000, preferably from 2,000 to 300,000 g / mol, the number average molecular weight M n between 500 and 50,000, preferably between 1,000 and 40,000 g / mol, measured by gel permeation chromatography with hexafluoroisopropanol as the mobile phase and polymethylmethacrylate (PMMA) as standard.
  • PMMA polymethylmethacrylate
  • the preparation of the highly functional polyetheramines according to the invention is usually carried out in a pressure range from 0.1 mbar to 20 bar, preferably at 1 mbar to 5 bar, in reactors or reactor cascades which are operated batchwise, semicontinuously or continuously.
  • the products according to the invention can be further processed after preparation without further purification.
  • the reaction mixture may be discolored, for example, by treatment with activated carbon or metal oxides such as alumina, silica, magnesia, zirconia, boria or mixtures thereof, in amounts of, for example, 0.1 to 50% by weight, preferably 0.5 to 25 wt .-%, particularly preferably 1 to 10 wt .-% at temperatures of for example 10 to 100 ° C, preferably 20 to 80 ° C and particularly preferably 30 to 60 ° C are subjected.
  • the reaction mixture may also be filtered to remove any precipitates that may be present.
  • the product is stripped, that is freed from low molecular weight, volatile compounds.
  • the catalyst can optionally be deactivated and the low molecular weight volatiles, e.g. Water, the amino alcohols used as starting material or volatile oligomeric or cyclic compounds by distillation, optionally with the introduction of a gas, preferably nitrogen, or noble gases, optionally at reduced pressure, are removed.
  • the highly functional highly branched polyetheramines formed by the process according to the invention are terminated with hydroxyl groups after the reaction, ie without further modification. They dissolve well in various solvents, e.g. in water, alcohols, such as methanol, ethanol, butanol, alcohol / water mixtures, acetone, 2-butanone, ethyl acetate, butyl acetate, methoxypropyl acetate, methoxyethyl acetate, terahydrofuran, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene carbonate or propylene carbonate.
  • alcohols such as methanol, ethanol, butanol, alcohol / water mixtures, acetone, 2-butanone, ethyl acetate, butyl acetate, methoxypropyl acetate, methoxyethyl acetate, terahydrofuran, dimethylformamide, dimethylacetamide, N
  • the molding compositions according to the invention contain 0.5 to 80, preferably 20 to 70 and in particular 50 to 60 wt .-% of a thermally conductive filler.
  • Preferred fillers are Al oxides, MgO, ZnO, ZrO, boron nitrides, graphite or carbon fibers or mixtures thereof.
  • Suitable Al oxides preferably have an aspect ratio of less than 10, preferably less than 7.5 and in particular less than 5.
  • the preferred average particle diameter (dso) is from 0.2 to 20, preferably from 0.3 to 15 and in particular from 0.35 to 10 microns according to laser granulometry according to ISO 13320-1.
  • Such products are commercially available, for example, from Almatis.
  • a dso value is understood to mean the particle size value (particle diameter) at which 50% of the particles have a smaller particle size and 50% have a larger particle size.
  • the dio value is preferably less than 10 ⁇ m, in particular less than 5 ⁇ m and very particularly preferably less than 2.2 ⁇ m.
  • Preferred d 90 values are less than 50 ⁇ m and in particular less than 30 ⁇ m and very particularly preferably less than 30 ⁇ m.
  • the oxides occur in various modifications, of which the hexagonal ⁇ -oxide is the only thermodynamically stable modification.
  • Well characterized is still the face-centered cubic Y-Al2O3. It is formed from the aluminum hydroxides by heating to 400-800 ° C and, like the other modifications, can be converted by annealing to more than 1 100 ° into the 0AI2O3.
  • ⁇ -Al 2 O 3 is meant a group of oxides containing small amounts of foreign ions in the crystal lattice.
  • Other modifications, as well as the numerous transitional forms between the aluminum hydroxides and the two, are less significant.
  • ⁇ -Al 2 O 3 density 3.98, hardness 9, mp 2053 ° C, which is insoluble in water, acids u. Bases is.
  • the ⁇ -Al 2 O 3 is obtained from bauxite according to the Bayer process.
  • the main quantity serves for the electrolytic production of aluminum.
  • the oxides are as a thin protective layer on aluminum; By chemical or anodic oxidation, this oxide layer can be strengthened.
  • 0Al2O3 occurs as corundum, mp 2050 ° C. Corundum is usually clouded by impurities and often colored. Today corundum is technically obtained as electrocorundum; This melts from Bauxid won AI2O3. in an electric arc furnace above 2000 ° C. This gives a very hard product with about 99% ⁇ -Al 2 O 3 .
  • active oxides are prepared by precipitation methods from aluminum salt solution - e.g. via thermally treated aluminum hydroxide gels - or by calcination from ⁇ -aluminum hydroxide at low temperatures or by impact heating.
  • Component B) preferably has a BET specific surface area (according to ISO 9277) of ⁇ 12, preferably at least 0.1, preferably at least 0.3 m 2 / g.
  • the preferred density is 2.5 to 4.5, especially 3.9 to 4.0 g / cm 3 .
  • the sodium oxide content is preferably less than 0.4, in particular from 0.01 to 0.35 wt .-%, based on 100 wt .-% B).
  • the thermal conductivity in accordance with DIN 52612 is preferably at least 20 W / mK and in particular at least 25 W / mK.
  • Suitable Mg oxides preferably have an aspect ratio of less than 10, preferably less than 7.5 and in particular less than 5.
  • Preferred oxides have a BET surface area according to DIN 66131 of less than or equal to 14 m 2 / g, preferably less than or equal to 10 m 2 / g.
  • the preferred average particle diameter (d 50 ) is from 0.2 to 20, preferably from 0.3 to 15 and in particular from 0.35 to 10 microns according to laser granulometry according to ISO 13320 EN.
  • Such products are commercially available, for example, from Almatis.
  • Suitable boron nitrides have in particular a hexagonal modification.
  • the particle sizes d 50 are generally 1 to 50 .mu.m, preferably 2 to 20 .mu.m, the thermal conductivity is> 100 W / m K, preferably> 150 W / m K.
  • the molding compositions according to the invention may contain from 0 to 70, in particular up to 30% by weight of further additives and processing aids which are different from C) / B) and / or A).
  • the thermoplastic molding compositions may contain, as component D1), from 0.01 to 30% by weight of at least one polyethyleneimine homopolymer or copolymer.
  • the proportion of D1) is preferably from 0.3 to 4% by weight and in particular from 0.3 to 3% by weight, based on A) to D).
  • the preferred ratio of B to D1) is 10: 1 to 1:10, especially 2: 1 to 1: 2.
  • polyethyleneimines are to be understood as meaning both homopolymers and copolymers which are obtainable, for example, by the processes in Ullmann Electronic Release under the heading "aziridines” or according to WO-A 94/12560.
  • the homopolymers are generally obtainable by polymerization of ethyleneimine (aziridine) in aqueous or organic solution in the presence of acid-releasing compounds, acids or Lewis acids.
  • Such homopolymers are branched polymers, which usually contain primary, secondary and tertiary amino groups in the ratio of about 30% to 40% to 30%.
  • the distribution of the amino groups can be determined in general by means of 13 C-NMR spectroscopy.
  • Comonomers used are preferably compounds which have at least two amino functions.
  • suitable comonomers are alkylenediamines having 2 to 10 C atoms in the alkylene radical, with ethylenediamine and propylenediamine being preferred.
  • Further suitable comonomers are diethylene triamine, triethylene tetramine, tetraethylene pentamine, dipropylene triamine, tripropylene tetramine, dihexamethylenetriamine, aminopropylethylenediamine and Bisaminopropylethy- lendiamin.
  • Polyethyleneimines typically have a weight average molecular weight of from 100 to 3,000,000, preferably from 800 to 2,000,000 (as determined by light scattering).
  • crosslinked polyethyleneimines which are obtainable by reaction of polyethyleneimines with bifunctional or polyfunctional crosslinkers which have as a functional group at least one halohydrin, glycidyl, aziridine, isocyanate unit or a halogen atom are suitable.
  • Examples include its epichlorohydrin or bischlorohydrin ether of polyalkylene glycols having 2 to 100 ethylene oxide and / or propylene oxide units and the compounds listed in DE-A 19 93 17 20 and US 4,144,123.
  • Methods of making crosslinked polyethyleneimines include, but are not limited to, from the o.g. Fonts and EP-A 895 521 and EP-A 25 515 known.
  • grafted polyethyleneimines are suitable, it being possible for all compounds which can react with the amino or imino groups of the polyethyleneimines to be used as the grafting agent.
  • Suitable grafting agents and processes for the preparation of grafted polyethyleneimines can be found, for example, in EP-A 675 914.
  • suitable polyethyleneimines in the context of the invention are amidated polymers which are usually obtainable by reacting polyethyleneimines with carboxylic acids, their esters or anhydrides, carboxamides or carboxylic acid halides.
  • carboxylic acids their esters or anhydrides, carboxamides or carboxylic acid halides.
  • the amidated polymers can be subsequently crosslinked with said crosslinkers.
  • up to 30% of the amino functions are amidated, so that sufficient primary and / or secondary nitrogen atoms are available for a subsequent crosslinking reaction.
  • alkoxylated polyethyleneimines which are obtainable, for example, by reacting polyethyleneimine with ethylene oxide and / or propylene oxide. Such alkoxylated polymers are also crosslinkable.
  • polyethyleneimines according to the invention are hydroxyl-containing polyethyleneimines and amphoteric polyethyleneimines (incorporation of anionic groups) and lipophilic polyethyleneimines which are generally obtained by incorporation of long-chain hydrocarbon radicals into the polymer chain. Processes for the preparation of such polyethyleneimines are known to the person skilled in the art, so that further details are unnecessary.
  • the molding compositions according to the invention may contain 0 to 3, preferably 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-% of a lubricant.
  • the metal ions are preferably alkaline earth and Al, with Ca or Mg being particularly preferred.
  • Preferred metal salts are Ca-stearate and Ca-montanate as well as Al-stearate.
  • the carboxylic acids can be 1- or 2-valent. Examples which may be mentioned are pelargonic acid, palmitic acid, lauric acid, margaric acid, dodecanedioic acid, behenic acid and particularly preferably stearic acid, capric acid and montanic acid (mixture of fatty acids having 30 to 40 carbon atoms).
  • the aliphatic alcohols can be 1 - to 4-valent.
  • examples of alcohols are n-butanol, n-octanol, stearyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, with glycerol and pentaerythritol being preferred.
  • the aliphatic amines can be monohydric to trihydric. Examples of these are stearylamine, ethylenediamine, propylenediamine, hexamethylenediamine, di (6-aminohexyl) amine, with ethylenediamine and hexamethylenediamine being particularly preferred.
  • preferred esters or amides are glycerol distearate, glycerol tristearate, ethylenediamine distearate, glycerol monopalmitate, glycerol trilaurate, glycerol monobehenate and pentaerythritol tetrastearate.
  • the molding compositions according to the invention may contain heat stabilizers or antioxidants or mixtures thereof selected from the group of copper compounds, sterically hindered phenols, sterically hindered aliphatic amines and / or aromatic amines.
  • Copper compounds are in the novel PA molding compositions to 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-%, preferably as Cu (l) halide, in particular in a mixture with an alkali halide, preferential example KJ, in particular in the ratio 1: 4, or a sterically hindered phenol or an amine stabilizer or mixtures thereof.
  • Suitable salts of monovalent copper are preferably copper (I) acetate, copper (I) chloride, bromide and iodide. They are contained in amounts of 5 to 500 ppm copper, preferably 10 to 250 ppm, based on polyamide.
  • the advantageous properties are obtained in particular when the copper is present in molecular distribution in the polyamide.
  • This is achieved by adding to the molding compound a concentrate containing polyamide, a salt of monovalent copper and an alkali halide in the form of a solid, homogeneous solution.
  • a typical concentrate is e.g. from 79 to 95 wt .-% polyamide and 21 to 5 wt .-% of a mixture of copper iodide or bromide and potassium iodide.
  • the concentration of the solid homogeneous solution of copper is preferably between 0.3 and 3, in particular between 0.5 and 2 wt .-%, based on the total weight of the solution and the molar ratio of copper (I) iodide to potassium iodide is between 1 and 11, 5, preferably between 1 and 5.
  • Suitable polyamides for the concentrate are homopolyamides and copolyamides, in particular polyamide 6 and polyamide 6.6.
  • Suitable hindered phenols are in principle all compounds having a phenolic structure which have at least one sterically demanding group on the phenolic ring.
  • R 1 and R 2 are an alkyl group, a substituted alkyl group or a substituted triazole group, wherein the radicals R 1 and R 2 may be the same or different and R 3 is an alkyl group, a substituted alkyl group, an alkoxy group or a substituted amino group.
  • Antioxidants of the type mentioned are described, for example, in DE-A 27 02 661 (US Pat. No. 4,360,617).
  • Another group of preferred sterically hindered phenols are derived from substituted benzenecarboxylic acids, especially substituted benzenepropionic acids.
  • Particularly preferred compounds of this class are compounds of the formula
  • R 4 , R 5 , R 7 and R 8 are independently alkyl groups may in turn be substituted (at least one of which is a sterically demanding group) and R 6 is a divalent aliphatic radical having 1 to 10 carbon atoms, which may also have CO bonds in the main chain.
  • the phenolic antioxidants which may be used singly or as mixtures are in an amount of 0.05 to 3% by weight, preferably 0.1 to 1.5% by weight, more preferably 0.1 to 1% by weight .-%, based on the total weight of the molding compositions A) to D) included.
  • sterically hindered phenols having no more than one sterically hindered group ortho to the phenolic hydroxy group have been found to be particularly advantageous; especially when assessing color stability when stored in diffused light for extended periods of time.
  • Fibrous or particulate fillers D which may be mentioned are carbon fibers, glass fibers, glass beads, amorphous silicic acid, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica, barium sulfate and feldspar, which are present in amounts of up to 40% by weight. , In particular 1 to 15 wt .-% are used.
  • Preferred fibrous fillers are carbon fibers, aramid fibers and potassium titanate fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or cut glass in the commercial forms.
  • the fibrous fillers can be surface-pretreated with a silane compound.
  • Suitable silane compounds are those of the general formula
  • O n is an integer from 2 to 10, preferably 3 to 4 m, an integer from 1 to 5, preferably 1 to 2 k, an integer from 1 to 3, preferably 1 Preferred silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
  • the silane compounds are generally used in amounts of 0.01 to 2, preferably 0.025 to 1, 0 and in particular 0.05 to 0.5 wt .-% (based on the fibrous fillers fillers) for surface coating.
  • acicular mineral fillers are also suitable.
  • the term "needle-shaped mineral fillers” is understood to mean a mineral filler with a pronounced, needle-like character.
  • An example is acicular wollastonite.
  • the mineral has a UD (length diameter) ratio of 8: 1 to 35: 1, preferably 8: 1 to 11: 1.
  • the mineral filler may optionally be pretreated with the silane compounds mentioned above; however, pretreatment is not essential.
  • the platelet-shaped nanofillers according to the prior art are organically modified.
  • the addition of the platelet- or needle-shaped nanofillers to the nanocomposites according to the invention leads to a further increase in the mechanical strength.
  • talc is used which is a hydrated magnesium silicate of the composition Mg3 [(OH) 2 / Si4 ⁇ io] or 3MgO4SiO2 H2O.
  • Mg3 [(OH) 2 / Si4 ⁇ io] or 3MgO4SiO2 H2O.
  • Mn, Ti, Cr, Ni, Na and K may be present, wherein the OH group may be partially replaced by fluoride.
  • talc the particle size of which is 99.5% ⁇ 20 ⁇ m.
  • the particle size distribution is usually determined by sedimentation analysis and is preferably:
  • Examples of impact modifiers as component D) are rubbers which may have functional groups. It is also possible to use mixtures of two or more different impact-modifying rubbers.
  • Rubbers which increase the toughness of the molding compositions generally contain an elastomeric fraction which has a glass transition temperature of less than -10 ° C, preferably less than -30 ° C, and contain at least one functional group associated with the polyamide can react.
  • Suitable functional groups are, for example, carboxylic acid, carboxylic acid anhydride, carboxylic ester, carboxamide, carboxylic imide, amino, hydroxyl, epoxide, urethane or oxazoline groups, preferably carboxylic anhydride groups.
  • Preferred functionalized rubbers include functionalized polyolefin rubbers which are composed of the following components:
  • ⁇ -olefins there may be mentioned ethylene, propylene, 1-butylene, 1-pentylene, 1-hexylene, 1-heptylene, 1-octylene, 2-methylpropylene, 3-methyl-1-butylene and 3-ethyl-1. butylene, with ethylene and propylene being preferred.
  • Suitable diene monomers are conjugated dienes having 4 to 8 C atoms, such as isoprene and butadiene, non-conjugated dienes having 5 to 25 C atoms, such as penta-1,4-diene, hexa-1,4-diene , Hexa-1, 5-diene, 2,5-dimethylhexa-1,5-diene and octa-1,4-diene, cyclic dienes such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadiene, as well as alkenylnorbornene such as 5-ethylidene-2 norbornene, 5-butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and tricyclodienes, such as 3-methyltricyclo- (5.2.1.0.2.6) -3,8-decadiene,
  • the diene content is preferably 0.5 to 50, in particular 2 to 20 and particularly preferably 3 to 15 wt .-%, based on the total weight of the olefin polymer.
  • suitable esters are methyl, ethyl, propyl, n-butyl, i-butyl and 2-ethylhexyl, octyl and decyl acrylates or the corresponding esters of methacrylic acid. Of these, methyl, ethyl, propyl, n-butyl and 2-ethylhexyl acrylate or methacrylate are particularly preferred.
  • acid-functional and / or latent acid-functional monomers of ethylenically unsaturated mono- or dicarboxylic acids may also be present in the olefin polymers.
  • ethylenically unsaturated mono- or dicarboxylic acids are acrylic acid, methacrylic acid, tertiary alkyl esters of these acids, in particular tert-butyl acrylate and dicarboxylic acids, such as maleic acid and fumaric acid, or derivatives of these acids and their monoesters.
  • Latent acid-functional monomers are understood as meaning those compounds which form free acid groups under the polymerization conditions or during the incorporation of the olefin polymers into the molding compositions.
  • Examples of these are anhydrides of dicarboxylic acids having 2 to 20 carbon atoms, in particular maleic anhydride and tertiary C 1 -C 12 alkyl esters of the abovementioned acids, in particular tert-butyl acrylate and tert-butyl methacrylate.
  • olefin polymers from 50 to 98.9, in particular 60 to 94.85 wt .-% of ethylene, and 1 to 50, in particular 5 to 40 wt .-% of an ester of acrylic or methacrylic acid 0.1 to 20.0 , in particular 0.15 to 15 wt .-% glycidyl acrylate and / or glycidyl methacrylate, acrylic acid and / or maleic anhydride.
  • Particularly suitable functionalized rubbers are ethylene-methyl methacrylate-glycidyl methacrylate, ethylene-methyl acrylate-glycidyl methacrylate, ethylene-methyl acrylate-glycidyl acrylate and ethylene-methyl methacrylate-glycidyl acrylate polymers.
  • the preparation of the polymers described above can be carried out by processes known per se, preferably by random copolymerization under high pressure and elevated temperature.
  • melt index of these copolymers is generally in the range of 1 to 80 g / 10 min (measured at 190 ° C and 2.16 kg load).
  • Other suitable rubbers are commercial ethylene- ⁇ -olefin copolymers which contain polyamide-reactive groups.
  • the preparation of the underlying ethylene- ⁇ -olefin copolymers is carried out by transition metal catalysis in the gas phase or in solution.
  • Suitable comonomers are the following ⁇ -olefins: propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1 Undecene, 1-dodecene, styrene and substituted styrenes, vinyl esters, vinyl acetates, acrylic esters, methacrylic esters, glycidyl acrylates and methacrylates, hydroxyethyl acrylates, acrylamides, acrylonitrile, allylamine; Serve, such as butadiene isoprene.
  • ethylene / 1-octene copolymers particularly preferred are ethylene / 1-butene copolymers, ethylene-propylene copolymers, wherein compositions of
  • the molecular weight of these ethylene- ⁇ -olefin copolymers is between 10,000 and 500,000 g / mol, preferably between 15,000 and 400,000 g / mol (Mn as determined by GPC in 1, 2,4-trichlorobenzene with PS calibration).
  • the proportion of ethylene in the ethylene- ⁇ -olefin copolymers is between 5 and 97, preferably between 10 and 95, in particular between 15 and 93 wt .-%.
  • ethylene- ⁇ -olefin copolymers prepared by means of so-called “single site catalysts" are used Further details can be found in US 5,272,236 In this case, the ethylene- ⁇ -olefin copolymers have a molecular weight distribution which is narrow for polyolefins 4, preferably less than 3.5.
  • Suitable rubbers are core-shell graft rubbers. These are graft rubbers made in emulsion, which consist of at least one hard and one soft component.
  • a hard component is usually understood to mean a polymer having a glass transition temperature of at least 25 ° C., and a polymer having a glass transition temperature of at most 0 ° C. under a soft component.
  • These products have a structure of a core and at least one shell, the structure resulting from the order of monomer addition.
  • the soft components are generally derived from butadiene, isoprene, alkyl acrylates, alkyl methacrylates or siloxanes and optionally further comonomers.
  • Suitable siloxane cores can be prepared, for example, starting from cyclic oligomeric octamethyltetrasiloxane or tetravinyltetramethyltetrasiloxane. These can be reacted, for example, with ⁇ -mercaptopropylmethyldimethoxysilane in a ring-opening cationic polymerization, preferably in the presence of sulfonic acids, to the soft siloxane cores.
  • the siloxanes can also be crosslinked by, for example, carrying out the polymerization reaction in the presence of silanes having hydrolyzable groups such as halogen or alkoxy groups such as tetraethoxysilane, methyltrimethoxysilane or phenyltrimethoxysilane.
  • Suitable comonomers here are, for example, styrene, acrylonitrile and crosslinking or graft-active monomers having more than one polymerizable double bond, such as diallyl phthalate, divinylbenzene, butanediol diacrylate or trialyl (iso) cyanurate.
  • the hard constituents are generally derived from styrene, alpha-methylstyrene and their copolymers, in which case comonomers are preferably acrylonitrile, methacrylonitrile and methyl methacrylate.
  • Preferred core-shell graft rubbers include a soft core and a hard shell or hard core, a first soft shell and at least one other hard shell.
  • the incorporation of functional groups such as carbonyl, carboxylic acid, acid anhydride, acid amide, acid imide, carboxylic acid ester, amino, hydroxyl, epoxy, oxazoline, urethane, urea, lactam or halobenzyl groups, he - follows preferably by the addition of suitably functionalized monomers in the polymerization of the last shell.
  • Suitable functionalized monomers are maleic acid, maleic anhydride, mono- or diesters or maleic acid, tert-butyl (meth) acrylate, acrylic acid, glycidyl (meth) acrylate and vinyloxazoline.
  • the proportion of monomers having functional groups is generally from 0.1 to 25 wt .-%, preferably 0.25 to 15 wt .-%, based on the total weight of the core-shell graft rubber.
  • the weight ratio of soft to hard components is generally 1: 9 to 9: 1, preferably 3: 7 to 8: 2.
  • polyester elastomers are understood as meaning segmented copolyester esters which contain long-chain segments which are generally derived from poly (alkylene) ether glycols and short-chain segments which are derived from low molecular weight diols and dicarboxylic acids. Such products are known per se and are known in the literature, e.g. in US 3,651,014. Also commercially available are corresponding products under the names Hytrel TM (Du Pont), Arnitel TM (Akzo) and Pelprene TM (Toyobo Co. Ltd.).
  • thermoplastic molding compositions according to the invention can contain conventional processing aids such as stabilizers, oxidation retardants, other agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, flame retardants, etc.
  • antioxidants and heat stabilizers include phosphites and further amines (eg TAD), hydroquinones, various substituted representatives of these groups and mixtures thereof in concentrations of up to 1% by weight, based on the weight of the thermoplastic molding compositions.
  • TAD phosphites and further amines
  • hydroquinones various substituted representatives of these groups and mixtures thereof in concentrations of up to 1% by weight, based on the weight of the thermoplastic molding compositions.
  • UV stabilizers which are generally used in amounts of up to 2% by weight, based on the molding composition, of various substituted resorcinols, salicylates, benzotriazoles and benzophenones may be mentioned.
  • inorganic pigments such as titanium dioxide, ultramarine blue, iron oxide and carbon black and / or graphite
  • organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes, such as nigrosine and anthraquinones, as colorants.
  • sodium phenylphosphinate, alumina, silica and preferably talc may be used as nucleating agents.
  • Preferred stabilizers are aromatic secondary amines in amounts of up to 2, preferably 0.5 to 1, 5 and in particular 0.7 to 1 wt .-%, according to the general formula I:
  • a and B tertiary C-atom substituted by C 1 -C 4 -alkyl or phenyl
  • R 1 , R 2 hydrogen or a C 1 -C 6 -alkyl group in the ortho or para position, which may optionally be substituted by 1 to 3 Phenyl radicals, halogens, carboxyl group or a transition metal salt of this carboxyl group
  • R 3 , R 4 hydrogen or a methyl radical in the ortho or para position when m plus n is 1 or a tertiary C 3 -C 9 alkyl group in the ortho or para position, which is optionally substituted by 1 to 3 phenyl radicals may be substituted when m plus n is 0 or 1, mean.
  • Preferred radicals A or B are symmetrically substituted tertiary carbon atoms, with dimethyl-substituted tertiary carbon being particularly preferred. Also preferred are tertiary carbons which have 1 to 3 phenyl groups as substituents.
  • R 1 or R 2 are para-t-butyl or tetramethylsubstituiert.es n-butyl, wherein the methyl groups may preferably be replaced by 1 to 3 phenyl groups.
  • Preferred halogens are chlorine and bromine.
  • Preferred secondary aromatic amines are diphenylamine and its derivatives, which are commercially available as Naugard® (Chemtura). These are preferred in combination with up to 2000, preferably 100 to 2000, preferably 200 to 500 and in particular 200 to 400 ppm of at least one phosphorus-containing inorganic acid or derivatives thereof.
  • Preferred acids are hypophosphorous acid, phosphorous acid or phosphoric acid and their salts with alkali metals, with sodium and potassium being particularly preferred.
  • Preferred mixtures are in particular hypophosphorous and phosphorous acid or their alkali metal salts in a ratio of 3: 1 to 1: 3.
  • Organic derivatives of these acids are preferably understood to mean ester derivatives of the abovementioned acids.
  • thermoplastic molding compositions according to the invention can be prepared by processes known per se, in which mixing the starting components in conventional mixing devices such as screw extruders, Brabender mills or Banbury mills and then extruded. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the mixing temperatures are usually 230 to 320 ° C.
  • the components B) and C) and optionally D) can be mixed with a prepolymer, formulated and granulated.
  • the resulting granules are then condensed in solid phase under inert gas continuously or discontinuously at a temperature below the melting point of component A) to the desired viscosity.
  • thermoplastic molding compositions of the invention are characterized by good mechanics and heat aging and good processability / flowability and thermal stability and weld line strength (vibration welding).
  • the polyetheramine polyols were analyzed by gel permeation chromatography with a refractometer as detector. Hexafluoroisopropanol (HFIP) was used as the mobile phase, and polymethyl methacrylate (PMMA) was used as the standard for determining the molecular weight.
  • HFIP Hexafluoroisopropanol
  • PMMA polymethyl methacrylate
  • the OH number was determined in accordance with DIN 53240, Part 2.
  • TIPA triisopropanolamine
  • TEA triethanolamine
  • Finely ground alumina (CL4400 FG from Alcoa Inc.) with an average particle size d50 of 7 ⁇ m (measured by laser diffraction according to ISO 13320-1), a specific see BET surface area of 0.6 m 2 / g (determined according to ISO 9277) and an Al 2 O 3 content of> 99.8%.
  • PI Polyethyleneimine
  • GPC Polyethyleneimine
  • the components A) to D) were on a twin-screw extruder at 280 to
  • Blended 290 ° C and extruded in a water bath After granulation and drying, specimens were sprayed and tested on an injection molding machine.
  • the thermal conductivity was determined on 2 mm thick round plates by means of Netzsch (NETZSCH-LFA 447 Nano Flash (R)) laser flash apparatus according to ASTM E1461;
  • the MVR was measured on the granules according to ISO 1133, at 270 ° C melt temperature, 5 kg load and 4 min dwell time.
  • VZ of the products was carried out according to ISO 307 on 0.5% [m / v] solution in 96% [mm] H 2 SO 4 at 25 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft thermoplastische Formmassen, enthaltend: A) 10 bis 99 Gew.-% mindestens eines thermoplastischen Polyamides, B) 0,01 bis 30 Gew.-% mindestens eines hoch- oder hyperverzweigten PoIyetheramins, C) 0,5 bis 80 Gew.-% eines wärmeleitfähigen Füllstoffes, D) 0 bis 70 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.

Description

Wärmeleitfähiges Polyamid mit erhöhter Fließfähigkeit
Beschreibung
Die Erfindung betrifft thermoplastische Formmassen, enthaltend
A) 10 bis 99 Gew.-% mindestens eines thermoplastischen Polyamides,
B) 0,01 bis 30 Gew.-% mindestens eines hoch- oder hyperverzweigten PoIy- etheramins,
C) 0,5 bis 80 Gew.-% eines wärmeleitfähigen Füllstoffes,
D) 0 bis 70 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.
Weiterhin betrifft die Erfindung die Verwendung der Formmassen zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art sowie die hierbei erhältlichen Fasern, Folien und Formkörper.
Polyetheramin(-polyole) werden üblicherweise aus Trialkanolaminen, z.B. Triethanol- amin, Tripropanolamin, Triisopropanolamin, gegebenenfalls in Mischung mit Mono- oder Dialkanolaminen erhalten, indem diese Monomere unter Katalyse, z.B. saurer oder basischer Katalyse, unter Wassereliminierung verethert werden. Die Herstellung dieser Polymere ist z.B. beschrieben in US 2,178,173, US 2,290,415, US 2,407,895 und DE 40 03 243. Die Polymerisation kann entweder statistisch erfolgen oder es können Blockstrukturen aus einzelnen Alkanolaminen hergestellt werden, die in einer weiteren Reaktion miteinander verknüpft werden (siehe dazu auch US 4,404,362).
Die in der o.g. Literatur beschriebenen Polyetheramin(-polyole) werden in freier oder quaternisierter Form z.B. eingesetzt als Emulgatoren für Öl/Wasser-Gemische, als Nachbehandlungsmittel für gefärbte Leder (DE 41 04 834) oder als Schmiermittel für die Metallverarbeitung (CS 265 929).
In der jüngeren EP-Anmeldung (EP-Anm.-Nr. 07123450.4) werden diese als Fließverbesserer für Polyamide vorgeschlagen.
Für die Fließverbesserung von thermoplastischen Polyestern und Polycarbonaten wer- den im allgemeinen Schmiermittel zugesetzt (siehe Gächter, Müller: Kunststoffadditive, 3. Ausgabe S. 479, 486-488, Carl Hanser Verlag 1989). Nachteile hierbei sind insbesondere das Ausblühen der Additive bei der Verarbeitung. Aus der WO 97/45474 sowie EP-A 14 24 360 und WO 2006/42705 sind dendritische Polymere und Dendrimere als Zusatz zur Verbesserung der Fließfähigkeit von Thermoplasten bekannt. Nachteilig hierbei sind eine sehr verringerte Wirksamkeit, in Ab- hängigkeit vom Matrixpolymeren und/oder bei hochmolekularen Thermoplasten.
Aufgabe der vorliegenden Erfindung war es daher, die Fließfähigkeit und/oder Wärmealterung von Polyamidformmassen zu erhöhen, wobei die Abnahme des Molekulargewichtes möglichst gering sein soll. Ferner sollte das Additiv in möglichst geringen Men- gen in der Matrix vorliegen. Die Mechanik der Formmassen soll möglichst erhalten bleiben und bei der Verarbeitung das Additiv nicht ausblühen.
Demgemäß wurden die eingangs genannten thermoplastischen Formmassen, deren Verwendung, und die aus ihnen erhältlichen Formkörper, Folien und Fasern gefunden. Bevorzugte Ausführungsformen der Erfindung sind den Unteransprüchen zu entnehmen.
Hinweis zu den weiter unten gemachten Mengenangaben: bei der thermoplastischen Formmasse werden die Mengen der Komponenten A) bis D) innerhalb der genannten Bereiche derart gewählt, dass sich die Summe der Komponenten A) bis C) sowie ggf. D) zu 100 Gew.-% ergänzt; Komponente D) ist fakultativ.
Als Komponente A) enthalten die erfindungsgemäßen Formmassen 10 bis 99, bevorzugt 20 bis 79,95 und insbesondere 20 bis 49,95 Gew.-% mindestens eines thermo- plastischen Polyamids A).
Die Polyamide der erfindungsgemäßen Formmassen weisen im allgemeinen eine Viskositätszahl von 70 bis 350, vorzugsweise 70 bis 200 ml/g auf, bestimmt in einer 0,5 gew.-%igen Lösung in 96 gew.-%iger Schwefelsäure bei 25°C gemäß ISO 307.
Halbkristalline oder amorphe Harze mit einem Molekulargewicht (Gewichtsmittelwert) von mindestens 5.000, wie sie z.B. in den amerikanischen Patentschriften 2 071 250, 2 071 251 , 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben werden, sind bevorzugt.
Beispiele hierfür sind Polyamide, die sich von Lactamen mit 7 bis 13 Ringgliedern ableiten, wie Polycaprolactam, Polycapryllactam und Polylaurinlactam sowie Polyamide, die durch Umsetzung von Dicarbonsäuren mit Diaminen erhalten werden.
Als Dicarbonsäuren sind Alkandicarbonsäuren mit 6 bis 12, insbesondere 6 bis 10 Kohlenstoffatomen und aromatische Dicarbonsäuren einsetzbar. Hier seien nur Adipinsäu- re, Azelainsäure, Sebacinsäure, Dodecandisäure und Terephthal- und/oder Isophthal- säure als Säuren genannt. Als Diamine eignen sich besonders Alkandiamine mit 6 bis 12, insbesondere 6 bis 8 Kohlenstoffatomen sowie m-Xylylendiamin, Di-(4-aminophenyl)methan, Di-(4-amino- cyclohexyl)-methan, 2,2-Di- (4-aminophenyl)-propan, 2,2-Di-(4-aminocyclohexyl)- propan oder 1 ,5-Diamino-2-methyl-pentan.
Bevorzugte Polyamide sind Polyhexamethylenadipinsäureamid, Polyhexamethylen- sebacinsäureamid und Polycaprolactam sowie Copolyamide 6/66, insbesondere mit einem Anteil von 5 bis 95 Gew.-% an Caprolactam-Einheiten.
Weiterhin geeignete Polyamide sind erhältlich aus ω-Aminoalkylnitrilen wie beispielsweise Aminocapronitril (PA 6) und Adipodinitril mit Hexamethylendiamin (PA 66) durch sog. Direktpolymerisation in Anwesenheit von Wasser, wie beispielsweise in der DE-A 10313681 , EP-A 1 198491 und EP 922065 beschrieben.
Außerdem seien auch noch Polyamide erwähnt, die z.B. durch Kondensation von 1 ,4- Diaminobutan mit Adipinsäure unter erhöhter Temperatur erhältlich sind (Polyamid 4,6). Herstellungsverfahren für Polyamide dieser Struktur sind z.B. in den EP-A 38 094, EP-A 38 582 und EP-A 39 524 beschrieben.
Weiterhin sind Polyamide, die durch Copolymerisation zweier oder mehrerer der vorgenannten Monomeren erhältlich sind, oder Mischungen mehrerer Polyamide geeignet, wobei das Mischungsverhältnis beliebig ist.
Weiterhin haben sich solche teilaromatischen Copolyamide wie PA 6/6T und PA 66/6T als besonders vorteilhaft erwiesen, insbesondere solche, deren Triamingehalt weniger als 0,5, vorzugsweise weniger als 0,3 Gew.-% beträgt (siehe EP-A 299 444).
Die Herstellung der bevorzugten teilaromatischen Copolyamide mit niedrigem Triamin- gehalt kann nach den in den EP-A 129 195 und 129 196 beschriebenen Verfahren erfolgen.
Die bevorzugten teilaromatischen Copolyamide A) enthalten als Komponente a-i) 40 bis 90 Gew.-% Einheiten, die sich von Terephthalsäure und Hexamethylendiamin ableiten. Ein geringer Anteil der Terephthalsäure, vorzugsweise nicht mehr als 10 Gew.-% der gesamten eingesetzten aromatischen Dicarbonsäuren können durch Isophthalsäure oder andere aromatische Dicarbonsäuren, vorzugsweise solche, in denen die Carb- oxylgruppen in para-Stellung stehen, ersetzt werden.
Neben den Einheiten, die sich von Terephthalsäure und Hexamethylendiamin ableiten, enthalten die teilaromatischen Copolyamide Einheiten, die sich von ε-Caprolactam ableiten (a2) und/oder Einheiten, die sich von Adipinsäure und Hexamethylendiamin (a3) ableiten. Der Anteil an Einheiten, die sich von ε-Caprolactam ableiten, beträgt maximal 50 Gew.-%, vorzugsweise 20 bis 50 Gew.-%, insbesondere 25 von 40 Gew.-%, während der Anteil an Einheiten, die sich von Adipinsäure und Hexamethylendiamin ablei- ten, bis zu 60 Gew.-%, vorzugsweise 30 bis 60 Gew.-% und insbesondere 35 bis 55 Gew.-% beträgt.
Die Copolyamide können auch sowohl Einheiten von ε-Caprolactam als auch Einheiten von Adipinsäure und Hexamethylendiamin enthalten; in diesem Fall ist darauf zu ach- ten, dass der Anteil an Einheiten, die frei von aromatischen Gruppen sind, mindestens 10 Gew.-% beträgt, vorzugsweise mindestens 20 Gew.-%. Das Verhältnis der Einheiten, die sich von ε-Caprolactam und von Adipinsäure und Hexamethylendiamin ableiten, unterliegt dabei keiner besonderen Beschränkung.
Als besonders vorteilhaft für viele Anwendungszwecke haben sich Polyamide mit 50 bis 80, insbesondere 60 bis 75 Gew.-% Einheiten, die sich von Terephthalsäure und Hexamethylendiamin ableiten (Einheiten a1 )) und 20 bis 50, vorzugsweise 25 bis 40 Gew.-% Einheiten, die sich von ε-Caprolactam ableiten (Einheiten a2)), erwiesen.
Neben den vorstehend beschriebenen Einheiten a-i) bis a3) können die erfindungsgemäßen teilaromatischen Copolyamide noch untergeordnete Mengen, vorzugsweise nicht mehr als 15 Gew.-%, insbesondere nicht mehr als 10 Gew.-% an weiteren Polyamidbausteinen (a4) enthalten, wie sie von anderen Polyamiden bekannt sind. Diese Bausteine können sich von Dicarbonsäuren mit 4 bis 16 Kohlenstoffatomen und alipha- tischen oder cycloaliphatischen Diaminen mit 4 bis 16 Kohlenstoffatomen sowie von Aminocarbonsäuren bzw. entsprechenden Lactamen mit 7 bis 12 Kohlenstoffatomen ableiten. Als geeignete Monomere dieser Typen seien hier nur Suberinsäure, Azelainsäure, Sebacinsäure oder Isophthalsäure als Vertreter der Dicarbonsäuren, 1 ,4- Butandiamin, 1 ,5-Pentandiamin, Piperazin, 4,4'-Diaminodicyclohexylmethan, 2,2-(4,4'- Diaminodicyclohexyl)propan oder 3,3'-Dimethyl-4,4'-Diaminodicyclohexylmethan als Vertreter der Diamine und Capryllactam, Önanthlactam, Omega-Aminoundecansäure und Laurinlactam als Vertreter von Lactamen bzw. Aminocarbonsäuren genannt.
Die Schmelzpunkte der teilaromatischen Copolyamide A) liegen im Bereich von 260 bis über 300°C, wobei dieser hohe Schmelzpunkt auch mit einer hohen Glasübergangstemperatur von in der Regel mehr als 75, insbesondere mehr als 85°C verbunden ist.
Binäre Copolyamide auf der Basis von Terephthalsäure, Hexamethylendiamin und ε- Caprolactam weisen bei Gehalten von etwa 70 Gew.-% an Einheiten, die sich von Te- rephthalsäure und Hexamethylendiamin ableiten, Schmelzpunkte im Bereich von 300°C und eine Glasübergangstemperatur von mehr als 1 10°C auf. Binäre Copolyamide auf der Basis von Terephthalsäure, Adipinsäure und Hexamethy- lendiamin (HMD) erreichen bereits bei niedrigeren Gehalten von etwa 55 Gew.-% Einheiten aus Terephthalsäure und Hexamethylendiamin Schmelzpunkte von 300°C und mehr, wobei die Glasübergangstemperatur nicht ganz so hoch liegt wie bei binären Copolyamiden, die anstelle von Adipinsäure bzw. Adipinsäure/HMD ε-Caprolactam enthalten.
Die nachfolgende nicht abschließende Aufstellung enthält die genannten, sowie weitere Polyamide A) im Sinne der Erfindung und die enthaltenen Monomeren.
AB-Polymere:
PA 4 Pyrrolidon
PA 6 ε-Caprolactam
PA 7 Ethanolactam
PA 8 Capryllactam
PA 9 9-Aminopelargonsäure
PA 1 1 1 1-Aminoundecansäure
PA 12 Laurinlactam
AA/BB-Polymere
PA 46 Tetramethylendiamin, Adipinsäure
PA 66 Hexamethylendiamin, Adipinsäure
PA 69 Hexamethylendiamin, Azelainsäure
PA 610 Hexamethylendiamin, Sebacinsäure
PA 612 Hexamethylendiamin, Decandicarbonsäure
PA 613 Hexamethylendiamin, Undecandicarbonsäure
PA 1212 1 ,12-Dodecandiamin, Decandicarbonsäure
PA 1313 1 ,13-Diaminotridecan, Undecandicarbonsäure
PA 6T Hexamethylendiamin, Terephthalsäure
PA 9T Nonyldiamin/Terephthalsäure
PA MXD6 m-Xylylendiamin, Adipinsäure
PA 6I Hexamethylendiamin, Isophthalsäure
PA 6-3-T Trimethylhexamethylendiamin, Terephthalsäure
PA 6/6T (siehe PA 6 und PA 6T)
PA 6/66 (siehe PA 6 und PA 66)
PA 6/12 (siehe PA 6 und PA 12)
PA 66/6/610 (siehe PA 66, PA 6 und PA 610)
PA 6I/6T (siehe PA 6I und PA 6T)
PA PACM 12 Diaminodicyclohexylmethan, Laurinlactam
PA 6I/6T/PACM wie PA 6I/6T + Diaminodicyclohexylmethan PA 12/MACMI Laurinlactam, Dimethyl-diaminodicyclohexylmethan,
Isophthalsäure PA 12/MACMT Laurinlactam, Dimethyl-diaminodicyclohexylmethan,
Terephthalsäure PA PDA-T Phenylendiamin, Terephthalsäure
Es können aber auch Mischungen obiger Polyamide eingesetzt werden.
Als Komponente B) enthalten die erfindungsgemäßen Formmassen 0,01 bis 30, vor- zugsweise 0,05 bis 10 und insbesondere 0,05 bis 5 Gew.-% mindestens eines hyperverzweigten Polyetheramins.
Die Komponente B) ist erhältlich durch Umsetzung mindestens eines tertiären Amins mit funktionellen Hydroxygruppen, vorzugsweise mindestens einem Di-, Tri- oder Tetraalkanolamin mit gegebenenfalls sekundären Aminen, welche Hydroxylgruppen als Substituent tragen, insbesondere Dialkanolaminen oder gegebenenfalls mit Di- oder höherfunktionellen Polyetherpolyolen, bevorzugt in Gegenwart eines Umetherungs- und Veretherungskatalysators.
Bevorzugte tertiäre Dialkanolamine mit funktionellen Hydroxygruppen sind
Diethanolalkylamine mit C1 bis C30, insbesondere C1 bis C18-Alkylresten,
Diethanolamin,
Dipropanolamin Diisopropanolamin,
Dibutanolamin,
Dipentanolamin,
Dihexanolamin,
N-Methyl-Diethanolamin, N-Methyl-Dipropanolamin,
N-Methyl-Diisopropanolamin,
N-Methyl-Dibutanolamin,
N-Methyl-Dipentanolamin,
N-Methyl-Dihexanolamin, N-Ethyl-Diethanolamin,
N-Ethyl-Dipropanolamin,
N-Ethyl-Diisopropanolamin,
N-Ethyl-Dibutanolamin,
N-Ethyl-Dipentanolamin, N-Ethyl-Dihexanolamin,
N-Propyl-Diethanolamin,
N-Propyl-Dipropanolamin,
N-Propyl-Diisopropanolamin, N-Propyl-Dibutanolamin, N-Propyl-Dipentanolamin, N-Propyl-Dihexanolamin,
Diethanolethylamin,
Diethanolpropylamin,
Diethanolmethylamin,
Dipropanolmethylamin,
Cyclohexanoldiethanolamin, Dicyclohexanolethanolamin,
Cyclohexyldiethanolamin,
Dicyclohexyldiethanolamin,
Dicyclohexanolethylamin,
Benzyldiethanolamin, Dibenzylethanolamin,
Benzyldipropanolamin,
Tripentanolamin,
Trihexanolamin,
Ethylhexylethanolamin, Octadecyldiethanolamin,
Polyethanolamine,
Bevorzugte Trialkanolamine sind
Trimethanolamin,
Triethanolamin,
Tripropanolamin,
Triisopropanolamin,
Tributanolamin, Tripentanolamin,
oder die daraus abgeleiteten Derivate.
/
Figure imgf000009_0001
Figure imgf000010_0001
Bevorzugt R1 = CH2-CH2 bis (CH2Je, bevorzugt (CH2)2-(CH2)4 R2-R5 = C2 bis C6, bevorzugt C2 und C3, z.B. N,N,N',N'-Tetrahydroxyethylethylendiamin, N,N,N',N'-Tetrahydroxyethylbutylendiamin, N,N,N',N'-Tetrahydroxypropylethylendiamin, N,N,N',N'-Tetrahydroxyisopropylethylendiamin, N,N,N',N'-Tetrahydroxypropylbutylendiamin, N,N,N',N'-Tetrahydroxyisopropylbutylendiamin. Insbesondere bevorzugte Komponente B) ist erhältlich durch intermolekulare Polykon- densation von mindestens einem Trialkanolamin der allgemeinen Formel
Figure imgf000011_0001
in der die Reste R1 bis R3 unabhängig voneinander für gleiche oder unterschiedliche vorzugsweise Alkylengruppen mit 2 bis 10 C-Atomen, bevorzugt 2 bis 6 C-Atomen stehen.
Als Ausgangsmaterial wird bevorzugt Triethanolamin, Tripropanolamin, Triisopropanol- amin oder Tributanolamin oder deren Mischungen eingesetzt; gegebenenfalls in Kombination mit Dialkanolaminen, wie Diethanolamin, Dipropanolamin, Diisopropanolamin, Dibutanolamin, N,N'-Dihydroxyalkyl-piperidin (alkyl = C1-C8), Dicyclohexanolamin, Dipentanolamin, Dihexanolamin, wobei Dialkanolamine bevorzugt sind.
Weiterhin können die o.g. Trialkanolamine gegebenenfalls in Kombination mit di- oder höherfunktionellen Polyetherolen, insbesondere auf der Basis von Ethylenoxid und/oder Propylenoxid eingesetzt werden.
Ganz besonders bevorzugt wird jedoch Triethanolamin und Triisopropanolamin oder deren Gemisch als Ausgangsprodukt verwendet.
Die nach dem erfindungsgemäßen Verfahren gebildeten hochfunktionellen hoch- oder hyperverzweigten Polyetheramine sind nach der Reaktion, also ohne weitere Modifika- tion, mit Hydroxylgruppen terminiert. Sie lösen sich gut in verschiedenen Lösemitteln.
Beispiele für derartige Lösungsmittel sind aromatische und/oder (cyclo)aliphatische Kohlenwasserstoffe und deren Gemische, halogenierte Kohlenwasserstoffe, Ketone, Ester und Ether.
Bevorzugt sind aromatische Kohlenwasserstoffe, (cyclo)aliphatische Kohlenwasserstoffe, Alkansäurealkylester, Ketone, alkoxylierte Alkansäurealkylester und deren Gemische.
Besonders bevorzugt sind ein- oder mehrfach alkylierte Benzole und Naphthaline, Ketone, Alkansäurealkylester und alkoxylierte Alkansäurealkylester sowie deren Gemische. Als aromatische Kohlenwasserstoffgemische sind solche bevorzugt, die überwiegend aromatische C7- bis C14-Kohlenwasserstoffe umfassen und einen Siedebereich von 1 10 bis 300°C umfassen können, besonders bevorzugt sind Toluol, o-, m- oder p-Xylol, Trimethylbenzolisomere, Tetramethylbenzolisomere, Ethylbenzol, Cumol, Tetrahydro- naphthalin und solche enthaltende Gemische.
Beispiele dafür sind die Solvesso®-Marken der Firma ExxonMobil Chemical, besonders Solvesso® 100 (CAS-Nr. 64742-95-6, überwiegend Cg- und Cio-Aromaten, Siedebereich etwa 154-178°C), 150 (Siedebereich etwa 182-207°C) und 200 (CAS-Nr. 64742-94-5), sowie die Shellsol®-Marken der Firma Shell. Kohlenwasserstoffgemische auf Paraffinen, Cycloparaffinen und Aromaten sind auch unter den Bezeichnungen Kristallöl (beispielsweise Kristallöl 30, Siedebereich etwa 158-198°C oder Kristallöl 60: CAS-Nr. 64742-82-1), Testbenzin (beispielsweise ebenfalls CAS-Nr. 64747-82-1 ) oder Solventnaphtha (leicht: Siedebereich etwa 155-180°C, schwer: Siedebereich etwa 225- 300°), im Handel erhältlich. Der Aromatengehalt derartiger Kohlenwasserstoffgemische beträgt in der Regel mehr als 90 Gew.-%, bevorzugt mehr als 95, besonders bevorzugt mehr als 98 und ganz besonders bevorzugt mehr als 99 Gew.-%. Es kann sinnvoll sein, Kohlenwasserstoffgemische mit einem besonders verringerten Gehalt an Naphthalin einzusetzen.
Der Gehalt an aliphatischen Kohlenwasserstoffen beträgt in der Regel weniger als 5, bevorzugt weniger als 2,5 und besonders bevorzugt weniger als 1 Gew.-%.
Halogenierte Kohlenwasserstoffe sind beispielsweise Chlorbenzol und Dichlorbenzol oder dessen Isomerengemische.
Ester sind beispielsweise n-Butylacetat, Ethylacetat, 1 -Methoxypropylacetat-2 und 2- Methoxyethylacetat.
Ether sind beispielsweise THF, Dioxan sowie die Dimethyl-, ethyl- oder n-butylether von Ethylenglykol, Diethylenglykol, Triethylenglykol, Propylenglykol, Dipropylenglykol oder Tripropylenglykol.
Ketone sind beispielsweise Aceton, 2-Butanon, 2-Pentanon, 3-Pentanon, Hexanon, iso-Butyl-methylketon, Heptanon, Cyclopentanon, Cyclohexanon oder Cycloheptanon.
(Cyclo)aliphatische Kohlenwasserstoffe sind beispielsweise Dekalin, alkyliertes Dekalin und Isomerengemische von geradlinigen oder verzweigten Alkanen und/oder Cycloal- kynen.
Weiterhin bevorzugt sind n-Butylacetat, Ethylacetat, 1-Methoxypropylacetat-2,3- Methoxyethylacetat, 2-Butanon, iso-Butyl-methylketon sowie deren Gemische, insbesondere mit den oben aufgeführten aromatischen Kohlenwasserstoffgemischen. Derartige Gemische können im Volumenverhältnis 5:1 bis 1 :5 erstellt werden, bevorzugt im Volumenverhältnis 4:1 bis 1 :4, besonders bevorzugt im Volumenverhältnis 3:1 bis 1 :3 und ganz besonders bevorzugt im Volumenverhältnis 2:1 bis 1 :2.
Bevorzugt Lösungsmittel sind Butylacetat, Methoxypropylacetat, iso-Butyl-methylketon, 2-Butanon, Solvesso®-Marken und XyIoI.
Weiterhin als Lösungsmittel geeignet können für die Polyetheramine zum Beispiel Wasser, Alkohole, wie Methanol, Ethanol, Butanol, Alkohol/Wasser-Mischungen, Aceton, 2-Butanon, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, N- Ethylpyrrolidon, Ethylencarbonat oder Propylencarbonat sein.
Unter einem hochfunktionellen hoch- oder hyperverzweigten Polyetheramin ist im Rah- men dieser Erfindung ein Produkt zu verstehen, das neben den Ethergruppen und den Aminogruppen, die das Polymergerüst bilden, end- oder seitenständig weiterhin im Mittel mindestens drei, bevorzugt mindestens sechs, mehr bevorzugt mindestens zehn funktionelle Gruppen aufweist. Bei den funktionellen Gruppen handelt es sich um OH- Gruppen. Die Anzahl der end- oder seitenständigen funktionellen Gruppen ist prinzipiell nach oben nicht beschränkt, jedoch können Produkte mit sehr hoher Anzahl funktioneller Gruppen unerwünschte Eigenschaften, wie beispielsweise hohe Viskosität oder schlechte Löslichkeit, aufweisen. Die hochfunktionellen Polyetheramin-polyole der vorliegenden Erfindung weisen zumeist nicht mehr als 500 end- oder seitenständige funktionelle Gruppen, bevorzugt nicht mehr als 100 end- oder seitenständige Gruppen auf.
Unter hyperverzweigten Polyetheraminen werden im Rahmen dieser Erfindung unver- netzte Makromoleküle mit Hydroxyl-, Ether- und Amingruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite ausgehend von einem Zentralmolekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste aufgebaut sein. Sie können auf der anderen Seite auch linear, mit funktionellen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrimeren und hyperverzweigten Polymeren siehe auch PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.
Die Herstellung der Polyetheramine erfolgt entweder in Substanz oder in Lösung. Als Lösungsmittel kommen die bereits oben angeführten Lösungsmittel in Frage. Es stellt eine bevorzugte Ausführungsform dar, die Reaktion ohne Lösungsmittel durchzuführen.
Die Temperatur bei der Herstellung sollte ausreichend für die Umsetzung des Aminoal- kohols sein. In der Regel wird für die Umsetzung eine Temperatur von 100°C bis 350°C, bevorzugt 150 bis 300, besonders bevorzugt 180 bis 280°C und speziell 200 bis 250°C benötigt.
In einer bevorzugten Ausführungsform wird die Kondensationsreaktion in Substanz durchgeführt. Das bei der Reaktion freiwerdende Wasser oder niedermolekulare Reaktionsprodukte können zur Beschleunigung der Reaktion aus dem Reaktionsgleichgewicht entfernt werden, z.B. destillativ, gegebenenfalls bei vermindertem Druck.
Die Abtrennung des Wassers oder der niedermolekularen Reaktionsprodukte kann auch durch Durchleiten eines unter den Reaktionsbedingungen im wesentlichen inerten Gasstromes (Strippen), wie z.B. Stickstoff oder Edelgas, zum Beispiel Helium, Neon oder Argon, unterstützt werden.
Zur Beschleunigung der Reaktion können auch Katalysatoren oder Katalysatorgemi- sehe zugegeben werden. Geeignete Katalysatoren sind Verbindungen, die Verethe- rungs- oder Umetherungsreaktionen katalysieren, z.B. Alkalihydroxide, Alkalicarbonate, Alkalihydrogencarbonate, vorzugsweise des Natriums, Kaliums oder Cäsiums, saure Verbindungen wie Eisenschlorid oder Zinkchlorid, Ameisensäure, Oxalsäure oder Phosphor-haltige saure Verbindungen, wie Phosphorsäure, Polyphosphorsäure, Phos- phorige Säure oder Unterphosphorige Säure.
Vorzugsweise werden Phosphorsäure, Phosphorige Säure oder Unterphosphorige Säure, gegebenenfalls in mit Wasser verdünnter Form, eingesetzt.
Die Zugabe des Katalysators erfolgt im allgemeinen in einer Menge von 0,001 bis 10, bevorzugt von 0,005 bis 7, besonders bevorzugt 0,01 bis 5 mol-%, bezogen auf die Menge des eingesetzten Alkanolamins oder Alkanolamingemisches.
Ferner ist es auch möglich, sowohl durch Zugabe des geeigneten Katalysators, als auch durch Wahl einer geeigneten Temperatur die intermolekulare Polykondensations- reaktion zu steuern. Weiterhin lässt sich über die Zusammensetzung der Ausgangskomponenten und über die Verweilzeit das mittlere Molekulargewicht des Polymeren einstellen.
Die Polymere, die bei erhöhter Temperatur hergestellt wurden, sind bei Raumtemperatur üblicherweise über einen längeren Zeitraum, beispielsweise über mindestens 6 Wochen stabil, ohne Trübungen, Ausfällungen und/oder einen Viskositätsanstieg zu zeigen.
Zum Abbruch der intermolekularen Polykondensationsreaktion gibt es verschiedene Möglichkeiten. Beispielsweise kann die Temperatur auf einen Bereich abgesenkt werden, in dem die Reaktion zum Stillstand kommt und das Polykondensationsprodukt lagerstabil ist. Dies ist in der Regel unterhalb von 60°C, bevorzugt unter 50°C, beson- ders bevorzugt unterhalb von 40°C und ganz besonders bevorzugt bei Raumtemperatur der Fall.
Weiterhin kann man den Katalysator desaktivieren, bei basischen Katalysatoren z.B. durch Zugabe einer sauren Komponente, z.B. einer Lewis-Säure oder einer organischen oder anorganischen Protonensäure, bei sauren Katalysatoren durch Zugabe einer basischen Komponente, z.B. einer Lewis-Base oder einer organischen oder anorganischen Base.
Ferner ist es möglich, die Reaktion durch Verdünnen mit einem vorgekühlten Lösungsmittel zu stoppen. Dies ist insbesondere dann bevorzugt, wenn man die Viskosität des Reaktionsgemischs durch Zugabe von Lösungsmittel anpassen muss.
Die erfindungsgemäßen hochfunktionellen hoch- oder hyperverzweigten Polyetherami- ne weisen in der Regel eine Glasübergangstemperatur von weniger als 50°C, bevorzugt weniger als 30 und besonders bevorzugt weniger als 10°C auf.
Die OH-Zahl beträgt meist 50 bis 1000 mg KOH/g, bevorzugt 100 bis 900 mg KOH/g und ganz bevorzugt 150 bis 800 mg KOH/g.
Das gewichtsmittlere Molgewicht Mw liegt zumeist zwischen 1.000 und 500.000, bevorzugt von 2.000 bis 300.000 g/mol, das zahlenmittlere Molgewicht Mn zwischen 500 und 50.000, bevorzugt zwischen 1.000 und 40.000 g/mol, gemessen mittels Gelpermeati- onschromatographie mit Hexafluorisopropanol als mobiler Phase und Polymethyl- methacrylat (PMMA) als Standard.
Die Herstellung der erfindungsgemäßen hochfunktionellen Polyetheramine erfolgt zumeist in einem Druckbereich von 0,1 mbar bis 20 bar, bevorzugt bei 1 mbar bis 5 bar, in Reaktoren oder Reaktorkaskaden, die im Batchbetrieb, halbkontinuierlich oder konti- nuierlich betrieben werden.
Durch die vorgenannte Einstellung der Reaktionsbedingungen und gegebenenfalls durch die Wahl des geeigneten Lösemittels können die erfindungsgemäßen Produkte nach der Herstellung ohne weitere Reinigung weiterverarbeitet werden.
Falls erforderlich, kann das Reaktionsgemisch einer Entfärbung, beispielsweise durch Behandlung mit Aktivkohle oder Metalloxiden, wie z.B. Aluminiumoxid, Siliciumoxid, Magnesiumoxid, Zirkonoxid, Boroxid oder Gemischen davon, in Mengen von beispielsweise 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 25 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-% bei Temperaturen von beispielsweise 10 bis 100°C, bevorzugt 20 bis 80°C und besonders bevorzugt 30 bis 60°C unterworfen werden. Gegebenenfalls kann das Reaktionsgemisch auch zur Entfernung von eventuell vorhandenen Ausfällungen filtriert werden.
In einer weiteren bevorzugten Ausführungsform wird das Produkt gestrippt, das heißt von niedermolekularen, flüchtigen Verbindungen befreit. Dazu kann nach Erreichen des gewünschten Umsatzgrades der Katalysator optional desaktiviert und die niedermolekularen flüchtigen Bestandteile, z.B. Wasser, die als Einsatzstoff verwendeten Aminoalkohole oder leichtflüchtige oligomere oder cyclische Verbindungen destillativ, gegebenenfalls unter Einleitung eines Gases, vorzugsweise Stickstoff, oder Edelgase, gegebenenfalls bei vermindertem Druck, entfernt werden.
Die nach dem erfindungsgemäßen Verfahren gebildeten hochfunktionellen hochverzweigten Polyetheramine sind nach der Reaktion, also ohne weitere Modifikation, mit Hydroxylgruppen terminiert. Sie lösen sich gut in verschiedenen Lösemitteln, z.B. in Wasser, Alkoholen, wie Methanol, Ethanol, Butanol, Alkohol/Wasser-Mischungen, Aceton, 2-Butanon, Essigester, Butylacetat, Methoxypropylacetat, Methoxyethylacetat, Terahydrofuran, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Ethylen- carbonat oder Propylencarbonat.
Als Komponente C) enthalten die erfindungsgemäßen Formmassen 0,5 bis 80, vorzugsweise 20 bis 70 und insbesondere 50 bis 60 Gew.-% eines wärmeleitfähigen Füllstoffes.
Bevorzugte Füllstoffe sind AI-Oxide, MgO, ZnO, ZrO, Bornitride, Graphit oder Carbon- fasern oder deren Mischungen.
Geeignete AI-Oxide weisen vorzugsweise ein Aspektverhältnis kleiner 10, bevorzugt kleiner 7,5 und insbesondere kleiner 5 auf.
Der bevorzugte mittlere Partikeldurchmesser (dso) beträgt von 0,2 bis 20, vorzugsweise von 0,3 bis 15 und insbesondere von 0,35 bis 10 μm gemäß Lasergranulometrie nach ISO 13320-1.
Derartige Produkte sind beispielsweise von der Firma Almatis im Handel erhältlich.
Unter einem dso-Wert versteht der Fachmann in der Regel den Teilchengrößenwert (Partikeldurchmesser), bei welchem 50 % der Teilchen eine kleinere Teilchengröße aufweisen und 50 % eine größere Teilchengröße aufweisen.
Der dio-Wert ist vorzugsweise kleiner 10 μm, insbesondere kleiner 5 μm und ganz besonders bevorzugt kleiner 2,2 μm. Bevorzugte d90-Werte sind kleiner 50 μm und insbesondere kleiner 30 μm und ganz besonders bevorzugt kleiner 30 μm.
Aluminiumoxide (Tonerde), AI2O3, MG. 101 ,96. Die Oxide treten in verschiedenen Mo- difikationen auf, von denen das hexagonale α -Oxid die einzige thermodynamisch stabile Modifikation ist. Gut charakterisiert ist weiterhin das kubisch-flächenzentrierte Y- AI2O3. Es entsteht aus den Aluminiumhydroxiden durch Erhitzen auf 400-800°C und kann wie die anderen Modifikationen durch Glühen auf über 1 100° in das 0AI2O3 übergeführt werden. Unter ß-Al2O3 versteht man eine Gruppe von Oxiden, die kleine Men- gen Fremd-Ionen im Kristallgitter enthalten. Andere Modifikationen haben ebenso wie die zahlreichen Übergangsformen zwischen den Aluminiumhydroxiden und den beiden geringere Bedeutung. Bevorzugt ist α-Al2O3, Dichte 3,98, Härte 9, Schmp. 2053°C, welches unlöslich in Wasser, Säuren u. Basen ist. Technisch wird das α-Al2O3 aus Bauxit nach dem Bayer-Verfahren gewonnen. Die Hauptmenge dient zur elektrolyti- sehen Herstellung von Aluminium. Die Oxide befinden sich als dünne Schutzschicht auf Aluminium; durch chemische oder anodische Oxidation lässt sich diese Oxid- Schicht verstärken.
In der Natur kommt 0AI2O3 als Korund vor, Schmp. 2050°C. Korund ist meist durch Verunreinigungen getrübt und oft auch gefärbt. Heute gewinnt man Korund technisch als Elektrokorund; hierbei schmilzt man aus Bauxid gewonnenes AI2O3. im elektrischen Lichtbogenofen über 2000°C. Man erhält so ein sehr hartes Produkt mit ca. 99 % α- AI2O3.
Die sog. aktiven Oxide werden durch Fällungsverfahren aus Aluminium-Salzlösung - z.B. über thermisch nachbehandelte Aluminiumhydroxid-Gele - oder durch Calcination aus α-Aluminiumhydroxid bei niedrigen Temperaturen oder durch Stoßerhitzung hergestellt.
Vorzugsweise weist die Komponente B) eine spezifische Oberfläche nach BET (gemäß ISO 9277) von < 12, bevorzugt mindestens 0,1 vorzugsweise mindestens 0,3 m2/g auf.
Die bevorzugte Dichte beträgt 2,5 bis 4,5, insbesondere 3,9 bis 4,0 g/cm3.
Der Natriumoxidgehalt beträgt vorzugsweise weniger als 0,4, insbesondere von 0,01 bis 0,35 Gew.-%, bezogen auf 100 Gew.-% B).
Die Wärmeleitfähigkeit gemäß DIN 52612 beträgt vorzugsweise mindestens 20 W/mK und insbesondere mindestens 25 W/mK.
Geeignete Mg-Oxide weisen vorzugsweise ein Aspektverhältnis kleiner 10, bevorzugt kleiner 7,5 und insbesondere kleiner 5 auf. Bevorzugte Oxide weisen eine BET-Oberfläche nach DIN 66131 von kleiner/gleich 14 m2/g, bevorzugt kleiner/gleich 10 m2/g auf.
Der bevorzugte mittlere Partikeldurchmesser (d50) beträgt von 0,2 bis 20, vorzugsweise von 0,3 bis 15 und insbesondere von 0,35 bis 10 μm gemäß Lasergranulometrie nach ISO 13320 EN.
Derartige Produkte sind beispielsweise von der Firma Almatis im Handel erhältlich.
Geeignete Bornitride weisen insbesondere eine hexagonale Modifikation auf. Die Partikelgrößen d50 betragen in der Regel 1 bis 50 μm, bevorzugt 2 bis 20 μm, die Wärmeleitfähigkeit beträgt > 100 W/m K, bevorzugt > 150 W/m K.
Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 70, insbeson- dere bis zu 30 Gew.-% weiterer Zusatzstoffe und Verarbeitungshilfsmittel enthalten, welche verschieden von C)/B) und/oder A) sind.
Die thermoplastischen Formmassen können als Komponente D1 ) erfindungsgemäß 0,01 bis 30 Gew.-% mindestes eines Polyethylenimin-Homopolymerisats oder - Copolymerisates enthalten. Bevorzugt beträgt der Anteil von D1) 0,3 bis 4 Gew.-% und insbesondere 0,3 bis 3 Gew.-% bezogen auf A) bis D).
Das bevorzugte Verhältnis von B zu D1) beträgt 10:1 bis 1 :10, insbesondere 2:1 bis 1 :2.
Unter Polyethyleniminen im Sinne der vorliegenden Erfindung sollen sowohl Homo- als auch Copolymerisate verstanden werden, welche beispielsweise nach den Verfahren in Ullmann Electronic Release unter dem Stichwort "Aziridine" oder gemäß WO-A 94/12560 erhältlich sind.
Die Homopolymerisate sind im allgemeinen durch Polymerisation von Ethylenimin (Azi- ridin) in wässriger oder organischer Lösung in Gegenwart von säureabspaltenden Verbindungen, Säuren oder Lewis-Säuren erhältlich. Derartige Homopolymerisate sind verzweigte Polymere, die in der Regel primäre, sekundäre und tertiäre Aminogruppen im Verhältnis von ca. 30 % zu 40 % zu 30 % enthalten. Die Verteilung der Aminogruppen kann im allgemeinen mittels 13C-NMR Spektroskopie bestimmt werden.
Als Comonomere werden vorzugsweise Verbindungen eingesetzt, welche mindestens zwei Aminofunktionen aufweisen. Als geeignete Comonomere seien beispielsweise Alkylendiamine mit 2 bis 10 C-Atomen im Alkylenrest genannt, wobei Ethylendiamin und Propylendiamin bevorzugt sind. Weiterhin geeignete Comonomere sind Diethy- lentriamin, Triethylentetramin, Tetraethylenpentamin, Dipropylentriamin, Tripropylen- tetramin, Dihexamethylentriamin, Aminopropylethylendiamin und Bisaminopropylethy- lendiamin.
Polyethylenimine weisen üblicherweise ein mittleres Molekulargewicht (Gewichtsmittel) von 100 bis 3.000.000, vorzugsweise von 800 bis 2.000.000 auf (bestimmt mittels Lichtstreuung).
Darüber hinaus eignen sich vernetzte Polyethylenimine, die durch Reaktion von PoIy- ethyleniminen mit bi- oder polyfunktionellen Vernetzern erhältlich sind, welche als funk- tionelle Gruppe mindestens eine Halogenhydrin-, Glycidyl-, Aziridin-, Isocyanateinheit oder ein Halogenatom aufweisen. Als Beispiele seinen Epichlorhydrin oder Bischlor- hydrinether von Polyalkylenglykolen mit 2 bis 100 Ethylenoxid- und/oder Propylen- oxid-Einheiten sowie die in der DE-A 19 93 17 20 und US 4 144 123 aufgeführten Verbindungen genannt. Verfahren zur Herstellung von vernetzten Polyethyleniminen sind u.a. aus den o.g. Schriften sowie EP-A 895 521 und EP-A 25 515 bekannt.
Weiterhin sind gepfropfte Polyethylenimine geeignet, wobei als Pfropfmittel sämtliche Verbindungen eingesetzt werden können, die mit den Amino- bzw. Iminogruppen der Polyethylenimine reagieren können. Geeignete Pfropfmittel und Verfahren zur Herstel- lung von gepfropften Polyethyleniminen sind beispielsweise der EP-A 675 914 zu entnehmen.
Ebenso geeignete Polyethylenimine im Sinne der Erfindung sind amidierte Polymerisate, die üblicherweise durch Umsetzung von Polyethyleniminen mit Carbonsäuren, de- ren Ester oder Anhydride, Carbonsäureamide oder Carbonsäurehalogenide erhältlich sind. Je nach Anteil der amidierten Stickstoffatome in der Polyethyleniminkette können die amidierten Polymerisate nachträglich mit den genannten Vernetzern vernetzt werden. Vorzugsweise werden hierbei bis zu 30 % der Aminofunktionen amidiert, damit für eine anschließende Vernetzungsreaktion noch genügend primäre und/oder sekundäre Stickstoffatome zur Verfügung stehen.
Außerdem eignen sich alkoxylierte Polyethylenimine, die beispielsweise durch Umsetzung von Polyethylenimin mit Ethylenoxid und/oder Propylenoxid erhältlich sind. Auch derartige alkoxylierte Polymerisate sind anschließend vernetzbar.
Als weitere geeignete erfindungsgemäße Polyethylenimine seien hydroxylgruppenhal- tige Polyethylenimine und amphotere Polyethylenimine (Einbau von anionischen Gruppen) genannt sowie lipophile Polyethylenimine, die in der Regel durch Einbau langket- tiger Kohlenwasserstoffreste in die Polymerkette erhalten werden. Verfahren zur Her- Stellung derartiger Polyethylenimine sind dem Fachmann bekannt, so dass sich weitere Einzelheiten hierzu erübrigen. Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 3, bevorzugt 0,05 bis 3, vorzugsweise 0,1 bis 1 ,5 und insbesondere 0,1 bis 1 Gew.-% eines Schmiermittels enthalten.
Bevorzugt sind AI-, Alkali-, Erdalkalisalze oder Ester- oder Amide von Fettsäuren mit 10 bis 44 C-Atomen, vorzugsweise mit 14 bis 44 C-Atomen.
Die Metallionen sind vorzugsweise Erdalkali und AI, wobei Ca oder Mg besonders bevorzugt sind.
Bevorzugte Metallsalze sind Ca-Stearat und Ca-Montanat sowie Al-Stearat.
Es können auch Mischungen verschiedener Salze eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Die Carbonsäuren können 1- oder 2-wertig sein. Als Beispiele seien Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Dodecandisäure, Behensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäuren mit 30 bis 40 C-Atomen) genannt.
Die aliphatischen Alkohole können 1 - bis 4-wertig sein. Beispiele für Alkohole sind n- Butanol, n-Octanol, Stearylalkohol, Ethylenglykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.
Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexamethylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamin- distearat, Glycerinmonopalmitrat, Glycerintrilaurat, Glycerinmonobehenat und Penta- erythrittetrastearat.
Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Als weitere Komponenten D) können die erfindungsgemäßen Formmassen Wärmestabilisatoren oder Antioxidantien oder deren Mischungen, ausgewählt aus der Gruppe der Kupferverbindungen, sterisch gehinderter Phenole, sterisch gehinderter aliphati- scher Amine und/oder aromatischer Amine, enthalten.
Kupferverbindungen sind in den erfindungsgemäßen PA-Formmassen zu 0,05 bis 3, vorzugsweise 0,1 bis 1 ,5 und insbesondere 0,1 bis 1 Gew.-% enthalten, vorzugsweise als Cu-(l)-Halogenid, insbesondere in Mischung mit einem Alkalihalogenid, Vorzugs- weise KJ, insbesondere im Verhältnis 1 : 4, oder eines sterisch gehinderten Phenols oder eines Aminstabilisators oder deren Mischungen enthalten.
Als Salze des einwertigen Kupfers kommen vorzugsweise Kupfer(l)-Acetat, Kupfer(l)- Chlorid, -Bromid und -Jodid in Frage. Sie sind in Mengen von 5 bis 500 ppm Kupfer, vorzugsweise 10 bis 250 ppm, bezogen auf Polyamid, enthalten.
Die vorteilhaften Eigenschaften werden insbesondere erhalten, wenn das Kupfer in molekularer Verteilung im Polyamid vorliegt. Dies wird erreicht, wenn man der Form- masse ein Konzentrat zusetzt, das Polyamid, ein Salz des einwertigen Kupfers und ein Alkalihalogenid in Form einer festen, homogenen Lösung enthält. Ein typisches Konzentrat besteht z.B. aus 79 bis 95 Gew.-% Polyamid und 21 bis 5 Gew.-% eines Gemisches aus Kupferjodid oder -bromid und Kaliumjodid. Die Konzentration der festen homogenen Lösung an Kupfer liegt bevorzugt zwischen 0,3 und 3, insbesondere zwi- sehen 0,5 und 2 Gew.-%, bezogen auf das Gesamtgewicht der Lösung und das molare Verhältnis von Kupfer(l)-Jodid zu Kaliumjodid liegt zwischen 1 und 11 ,5, vorzugsweise zwischen 1 und 5.
Geeignete Polyamide für das Konzentrat sind Homopolyamide und Copolyamide, ins- besondere Polyamid 6 und Polyamid 6.6.
Als sterisch gehinderte Phenole eignen sich prinzipiell alle Verbindungen mit phenolischer Struktur, die am phenolischen Ring mindestens eine sterisch anspruchsvolle Gruppe aufweisen.
Vorzugsweise kommen z.B. Verbindungen der Formel
Figure imgf000021_0001
in Betracht, in der bedeuten:
R1 und R2 eine Alkylgruppe, eine substituierte Alkylgruppe oder eine substituierte Tri- azolgruppe, wobei die Reste R1 und R2 gleich oder verschieden sein können und R3 eine Alkylgruppe, eine substituierte Alkylgruppe, eine Alkoxigruppe oder eine substituierte Aminogruppe.
Antioxidantien der genannten Art werden beispielsweise in der DE-A 27 02 661 (US-A 4 360 617) beschrieben.
Eine weitere Gruppe bevorzugter sterisch gehinderter Phenole leiten sich von substitu- ierten Benzolcarbonsäuren ab, insbesondere von substituierten Benzolpropionsäuren. Besonders bevorzugte Verbindungen aus dieser Klasse sind Verbindungen der Formel
Figure imgf000022_0001
wobei R4, R5, R7 und R8 unabhängig voneinander -Alkylgruppen darstellen, die
Figure imgf000022_0004
ihrerseits substituiert sein können (mindestens eine davon ist eine sterisch anspruchsvolle Gruppe) und R6 einen zweiwertigen aliphatischen Rest mit 1 bis 10 C-Atomen bedeutet, der in der Hauptkette auch C-O-Bindungen aufweisen kann.
Bevorzugte Verbindungen, die dieser Formel entsprechen, sind
Figure imgf000022_0002
(Irganox® 245 der Firma Ciba-Geigy
Figure imgf000022_0003
(Irganox® 259 der Firma Ciba-Geigy)
Beispielhaft genannt seien insgesamt als sterisch gehinderte Phenole:
2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenol), 1 ,6-Hexandiol-bis[3-(3,5-di-tert.-butyl- 4-hydroxyphenyl)-propionat], Pentaerythril-tetrakis-[3-(3,5-di-tert.-butyl-4- hydroxyphenyl)-propionat], Distearyl-3,5-di-tert.-butyl-4-hydroxybenzylphosphonat, 2,6,7-Trioxa-1-phosphabicyclo-[2.2.2]oct-4-yl-methyl-3,5-di-tert.-butyl-4- hydroxyhydrocinnamat, 3,5-Di-tert.-butyl-4-hydroxyphenyl-3,5-distearyl-thiotriazylamin, 2-(2'-Hydroxy-3'-hydroxy-3',5'-di-tert.-butylphenyl)-5-chlorbenzotriazol, 2,6-Di-tert.- butyl-4-hydroxymethylphenol, 1 ,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert.-butyl-4- hydroxybenzyl)-benzol, 4,4'-Methylen-bis-(2,6-di-tert.-butylphenol), 3,5-Di-tert.-butyl-4- hydroxybenzyl-dimethylamin. Als besonders wirksam erwiesen haben sich und daher vorzugsweise verwendet werden 2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenyl), 1 ,6-Hexandiol-bis-(3,5-di-tert- butyl-4-hydroxyphenyl]-propionat (Irganox® 259), Pentaerythrityl-tetrakis-[3-(3,5-di- tert.-butyl-4-hydroxyphenyl)-propionat] sowie N,N'-Hexamethylen-bis-3,5-di-tert.-butyl- 4-hydroxyhydrocinnamid (Irganox® 1098) und das vorstehend beschriebene Irganox® 245 der Firma Ciba Geigy, das besonders gut geeignet ist.
Die phenolischen Antioxidantien, die einzeln oder als Gemische eingesetzt werden können, sind in einer Menge von 0,05 bis zu 3 Gew.-%, vorzugsweise von 0,1 bis 1 ,5 Gew.-%, insbesondere 0,1 bis 1 Gew.-%, bezogen auf das Gesamtgewicht der Formmassen A) bis D) enthalten.
In manchen Fällen haben sich sterisch gehinderte Phenole mit nicht mehr als einer sterisch gehinderten Gruppe in ortho-Stellung zur phenolischen Hydroxygruppe als besonders vorteilhaft erwiesen; insbesondere bei der Beurteilung der Farbstabilität bei Lagerung in diffusem Licht über längere Zeiträume.
Als faser- oder teilchenförmige Füllstoffe D) seien Kohlenstofffasern, Glasfasern, Glas- kugeln, amorphe Kieselsäure, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat genannt, die in Mengen bis zu 40 Gew.-%, insbesondere 1 bis 15 Gew.-% eingesetzt werden.
Als bevorzugte faserförmige Füllstoffe seien Kohlenstofffasern, Aramid-Fasern und Kaliumtitanat-Fasern genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.
Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermoplas- ten mit einer Silanverbindung oberflächlich vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(CH2)n)k-Si-(O-CmH2m+i)4-k
in der die Substituenten folgende Bedeutung haben:
X NH -, CH2-CH-, HO-,
\ /
O n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4 m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2 k eine ganze Zahl von 1 bis 3, bevorzugt 1 Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimeth- oxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten.
Die Silanverbindungen werden im allgemeinen in Mengen von 0,01 bis 2, vorzugsweise 0,025 bis 1 ,0 und insbesondere 0,05 bis 0,5 Gew.-% (bezogen auf die faserförmi- gen Füllstoffe) zur Oberflächenbeschichtung eingesetzt.
Geeignet sind auch nadeiförmige mineralische Füllstoffe.
Unter nadeiförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Als Beispiel sei nadeiförmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein UD- (Länge Durchmesser)-Verhältnis von 8 : 1 bis 35 : 1 , bevorzugt von 8 : 1 bis 11 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erforderlich.
Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt sowie zusätzlich plättchen- oder nadeiförmige Nanofüllstoffe bevorzugt in
Mengen zwischen 0,1 und 10 % . Bevorzugt werden hierfür Böhmit, Bentonit, Montmo- rillonit, Vermicullit, Hektorit und Laponit eingesetzt. Um eine gute Verträglichkeit der plättchenförmigen Nanofüllstoffe mit dem organischen Bindemittel zu erhalten, werden die plättchenförmigen Nanofüllstoffe nach dem Stand der Technik organisch modifi- ziert. Der Zusatz der plättchen- oder nadeiförmigen Nanofüllstoffe zu den erfindungsgemäßen Nanokompositen führt zu einer weiteren Steigerung der mechanischen Festigkeit.
Insbesondere wird Talkum verwendet, welches ein hydratisiertes Magnesiumsilikat der Zusammensetzung Mg3[(OH)2/Si4θio] oder 3 MgO 4 SiÜ2 H2O ist. Diese sogenannten Drei-Schicht-Phyllosilikate weisen einen triklinen, monoklinen oder rhombischen Kristallaufbau auf mit bläschenförmigem Erscheinungsbild. An weiteren Spurenelementen können Mn, Ti, Cr, Ni, Na und K anwesend sein, wobei die OH-Gruppe teilweise durch Fluorid ersetzt sein kann.
Besonders bevorzugt wird Talkum eingesetzt, dessen Teilchengrößen zu 99,5 % < 20 μm beträgt. Die Teilchengrößenverteilung wird üblicherweise durch Sedimentationsanalyse bestimmt und beträgt vorzugsweise:
< 20 μm 99, 5 Gew.-%
< 10 μm 99 Gew .-%
< 5 μm 85 Gew .-%
< 3 μm 60 Gew .-% < 2 μm 43 Gew.-%.
Derartige Produkte sind im Handel als Micro-Tale I.T. extra (Fa. Omya) erhältlich.
Beispiele für Schlagzähmodifier als Komponente D) sind Kautschuke, welche funktionelle Gruppen aufweisen können. Es können auch Mischungen aus zwei oder mehreren unterschiedlichen schlagzähmodifizierenden Kautschuken eingesetzt werden.
Kautschuke, die die Zähigkeit der Formmassen erhöhen enthalten im allgemeinen ei- nen elastomeren Anteil, der eine Glasübergangstemperatur von weniger als -10°C, vorzugsweise von weniger als -30°C aufweist, und sie enthalten mindestens eine funktionelle Gruppe, die mit dem Polyamid reagieren kann. Geeignete funktionelle Gruppen sind beispielsweise Carbonsäure-, Carbonsäureanhydrid-, Carbonsäureester-, Car- bonsäureamid-, Carbonsäureimid-, Amino-, Hydroxyl-, Epoxid-, Urethan- oder Oxazo- lingruppen, bevorzugt Carbonsäureanhydridgruppen.
Zu den bevorzugten funktionalisierten Kautschuken zählen funktionalisierte Polyolefin- kautschuke, die aus folgenden Komponenten aufgebaut sind:
1. 40 bis 99 Gew.-% mindestens eines alpha-Olefins mit 2 bis 8 C-Atomen,
2. 0 bis 50 Gew.-% eines Diens,
3. 0 bis 45 Gew.-% eines C1-C12-Alkylesters der Acrylsäure oder Methacrylsäure oder Mischungen derartiger Ester,
4. 0 bis 40 Gew.-% einer ethylenisch ungesättigten C2-C2o-Mono- oder Dicarbon- säure oder einem funktionellen Derivat einer solchen Säure,
5. 0 bis 40 Gew.-% eines Epoxygruppen enthaltenden Monomeren, und
6. 0 bis 5 Gew.-% sonstiger radikalisch polymerisierbarer Monomerer,
wobei die Summe der Komponenten 3) bis 5) mindestens 1 bis 45 Gew.-% beträgt, bezogen auf die Komponenten 1) bis 6).
Als Beispiele für geeignete α-Olefine können Ethylen, Propylen, 1-Butylen, 1-Pentylen, 1-Hexylen, 1-Heptylen, 1-Octylen, 2-Methylpropylen, 3-Methyl-1-butylen und 3-Ethyl-1- butylen genannt werden, wobei Ethylen und Propylen bevorzugt sind.
Als geeignete Dien-Monomere seien beispielsweise konjugierte Diene mit 4 bis 8 C- Atomen, wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen, wie Penta-1 ,4-dien, Hexa-1 ,4-dien, Hexa-1 ,5-dien, 2,5-Dimethylhexa-1 ,5-dien und Octa- 1 ,4-dien, cyclische Diene, wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopentadien, sowie Alkenylnorbornen, wie 5-Ethyliden-2-norbornen, 5-Butyliden- 2-norbornen, 2- Methallyl-5-norbornen, 2-lsopropenyl-5-norbornen und Tricyclodiene, wie 3- Methyltricyclo-(5.2.1.0.2.6)-3,8-decadien, oder deren Mischungen genannt. Bevorzugt werden Hexa-1 ,5-dien, 5-Ethyliden-norbornen und Dicyclopentadien. Der Diengehalt beträgt vorzugsweise 0,5 bis 50, insbesondere 2 bis 20 und besonders bevorzugt 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Olefinpolymerisats. Beispiele für geeignete Ester sind Methyl-, Ethyl-, Propyl-, n-Butyl, i-Butyl- und 2-Ethyl- hexyl-, Octyl- und Decylacrylate bzw. die entsprechenden Ester der Methacrylsäure. Von diesen werden Methyl-, Ethyl-, Propyl-, n-Butyl- und 2- Ethylhexylacrylat bzw. -methacrylat besonders bevorzugt.
Anstelle der Ester oder zusätzlich zu diesen können in den Olefinpolymerisaten auch säurefunktionelle und/oder latent säurefunktionelle Monomere ethylenisch ungesättigter Mono- oder Dicarbonsäuren enthalten sein.
Beispiele für ethylenisch ungesättigte Mono- oder Dicarbonsäuren sind Acrylsäure, Methacrylsäure, tertiäre Alkylester dieser Säuren, insbesondere tert.-Butylacrylat und Dicarbonsäuren, wie Maleinsäure und Fumarsäure, oder Derivate dieser Säuren sowie deren Monoester.
Als latent säurefunktionelle Monomere sollen solche Verbindungen verstanden werden, die unter den Polymerisationsbedingungen bzw. bei der Einarbeitung der Olefinpoly- merisate in die Formmassen freie Säuregruppen bilden. Als Beispiele hierfür seien Anhydride von Dicarbonsäuren mit 2 bis 20 C-Atomen, insbesondere Maleinsäureanhydrid und tertiäre C1-C12-Alkylester der vorstehend genannten Säuren, insbesondere tert.-Butylacrylat und tert.-Butylmethacrylat angeführt.
Als sonstige Monomere kommen z. B. Vinylester und Vinylether in Betracht.
Besonders bevorzugt sind Olefinpolymerisate aus 50 bis 98,9, insbesondere 60 bis 94,85 Gew.-% Ethylen, und 1 bis 50, insbesondere 5 bis 40 Gew.-% eines Esters der Acryl- oder Methacrylsäure 0,1 bis 20,0, insbesondere 0,15 bis 15 Gew.-% Glycidylac- rylat und/oder Glycidylmethacrylat, Acrylsäure und/oder Maleinsäureanhydrid.
Besonders geeignete funktionalisierte Kautschuke sind Ethylen-Methylmethacrylat- Glycidylmethacrylat-, Ethylen-Methylacrylat-Glycidylmethacrylat-, Ethylen-Methyl- acrylat-Glycidylacrylat- und Ethylen-Methylmethacrylat-Glycidylacrylat-Polymere.
Die Herstellung der vorstehend beschriebenen Polymere kann nach an sich bekannten Verfahren erfolgen, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur.
Der Schmelzindex dieser Copolymere liegt im Allgemeinen im Bereich von 1 bis 80 g/10 min (gemessen bei 190°C und 2,16 kg Belastung). Als Kautschuke kommen weiterhin kommerzielle Ethylen-α-Olefin-Copolymere, welche mit Polyamid reaktionsfähige Gruppen enthalten, in Betracht. Die Herstellung der zugrunde liegenden Ethylen-α-Olefin-Copolymere erfolgt durch Übergangsmetallkatalyse in der Gasphase oder in Lösung. Als Comonomere kommen folgende α-Olefine in Frage: Propylen, 1 -Buten, 1-Penten, 4-Methyl-1-penten, 1 -Hexen, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Undecen, 1-Dodecen, Styrol und substituierte Styrole, Vinylester, Vinylacetate, Acrylester, Methacrylester, Glycidylacrylate und -methacrylate, Hydro- xyethylacrylate, Acrylamide, Acrylnitril, Allylamin; Diene, wie z.B. Butadien Isopren.
Besonders bevorzugt sind Ethylen/1-Octen-Copolymere, Ethylen/1-Buten-Copolymere, Ethylen-Propylen-Copolymere, wobei Zusammensetzungen aus
25 bis 85 Gew.-%, vorzugsweise 35 bis 80 Gew.-% Ethylen, 14,9 bis 72 Gew.-%, vorzugsweise 19,8 bis 63 Gew.-% 1-Octen oder 1 -Buten oder Propylen oder deren Mischungen
0,1 bis 3 Gew.-%, vorzugsweise 0,2 bis 2 Gew.-% einer ethylenisch ungesättigten Mono- oder Dicarbonsäure oder einem funktionellen Derivat einer solchen Säure.
besonders bevorzugt sind.
Das Molekulargewicht dieser Ethylen-α-Olefin-Copolymere liegt zwischen 10.000 und 500.000 g/mol, bevorzugt zwischen 15.000 und 400.000 g/mol (Mn, bestimmt mittels GPC in 1 ,2,4-Trichlorbenzol mit PS-Eichung).
Der Anteil an Ethylen in den Ethylen-α-Olefin-Copolymere liegt zwischen 5 und 97, bevorzugt zwischen 10 und 95, insbesondere zwischen 15 und 93 Gew.-%.
In einer besonderen Ausführungsform werden mittels sog. „Single site catalysts" hergestellte Ethylen-α-Olefin-Copolymere eingesetzt. Weitere Einzelheiten können der US 5,272,236 entnommen werden. In diesem Fall weisen die Ethylen-α-Olefin- Copolymere eine für Polyolefine enge Molekulargewichtsverteilung kleiner 4, vorzugsweise kleiner 3,5 auf.
Als weitere Gruppe von geeigneten Kautschuken sind Kern-Schale-Pfropfkautschuke zu nennen. Hierbei handelt es sich um in Emulsion hergestellte Pfropfkautschuke, die aus mindestens einem harten und einem weichen Bestandteil bestehen. Unter einem harten Bestandteil versteht man üblicherweise ein Polymerisat mit einer Glasübergangstemperatur von mindestens 25°C, unter einem weichen Bestandteil ein Polymerisat mit einer Glasübergangstemperatur von höchstens 0°C. Diese Produkte weisen eine Struktur aus einem Kern und mindestens einer Schale auf, wobei sich die Struktur durch die Reihenfolge der Monomerenzugabe ergibt. Die weichen Bestandteile leiten sich im Allgemeinen von Butadien, Isopren, Alkylacrylaten, Alkylmethacrylaten oder Siloxanen und gegebenenfalls weiteren Comonomeren ab. Geeignete Siloxankerne können beispielsweise ausgehend von cyclischem oligomerem Octamethyltetrasiloxan oder Tetravinyltetramethyltetrasiloxan hergestellt werden. Diese können beispielsweise mit γ-Mercaptopropylmethyldimethoxysilan in einer ringöffnenden kationischen Polymerisation, vorzugsweise in Gegenwart von Sulfonsäuren, zu den weichen Siloxankernen umgesetzt werden. Die Siloxane können auch vernetzt werden, indem z.B. die Polymerisationsreaktion in Gegenwart von Silanen mit hydrolysierbaren Gruppen wie Halogen oder Alkoxygruppen wie Tetraethoxysilan, Methyltrimethoxysilan oder Phenyltrimetho- xysilan durchgeführt wird. Als geeignete Comonomere sind hier z.B. Styrol, Acrylnitril und vernetzende oder pfropfaktive Monomere mit mehr als einer polymerisierbaren Doppelbindung wie Diallylphthalat, Divinylbenzol, Butandioldiacrylat oder Trial- lyl(iso)cyanurat zu nennen. Die harten Bestandteile leiten sich im Allgemeinen von Styrol, alpha-Methylstyrol und deren Copolymerisaten ab, wobei hier als Comonomere vorzugsweise Acrylnitril, Methacrylnitril und Methylmethacrylat aufzuführen sind.
Bevorzugte Kern-Schale-Pfropfkautschuke enthalten einen weichen Kern und eine harte Schale oder einen harten Kern, eine erste weiche Schale und mindestens eine weitere harte Schale. Der Einbau von funktionellen Gruppen wie Carbonyl-, Carbonsäure-, Säureanhydrid-, Säureamid-, Säureimid-, Carbonsäureester-, Amino-, Hydro- xyl-, Epoxi-, Oxazolin-, Urethan-, Harnstoff-, Lactam- oder Halogenbenzylgruppen, er- folgt hierbei vorzugsweise durch den Zusatz geeignet funktionalisierter Monomere bei der Polymerisation der letzten Schale. Geeignete funktionalisierte Monomere sind beispielsweise Maleinsäure, Maleinsäureanhydrid, Mono- oder Diester oder Maleinsäure, tertiär-Butyl-(meth)acrylat, Acrylsäure, Glycidyl(meth)acrylat und Vinyloxazolin. Der Anteil an Monomeren mit funktionellen Gruppen beträgt im Allgemeinen 0,1 bis 25 Gew.-%, vorzugsweise 0,25 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Kern-Schale-Pfropfkautschuks. Das Gewichtsverhältnis von weichen zu harten Bestandteilen beträgt im Allgemeinen 1 : 9 bis 9 : 1 , bevorzugt 3 : 7 bis 8 : 2.
Derartige Kautschuke sind an sich bekannt und beispielsweise in der EP-A-O 208 187 beschrieben. Der Einbau von Oxazingruppen zur Funktionalisierung kann z.B. gemäß EP-A-O 791 606 erfolgen.
Eine weitere Gruppe von geeigneten Schlagzähmodifiern sind thermoplastische Polyester-Elastomere. Unter Polyester-Elastomeren werden dabei segmentierte Copoly- etherester verstanden, die langkettige Segmente, die sich in der Regel von PoIy- (alkylen)etherglykolen und kurzkettige Segmente, die sich von niedermolekularen Diolen und Dicarbonsäuren ableiten, enthalten. Derartige Produkte sind an sich bekannt und in der Literatur, z.B. in der US 3,651 ,014, beschrieben. Auch im Handel sind entsprechende Produkte unter den Bezeichnungen Hytrel TM (Du Pont), Arnitel TM (Akzo) und Pelprene TM (Toyobo Co. Ltd.) erhältlich.
Selbstverständlich können auch Mischungen verschiedener Kautschuke eingesetzt werden. Als weitere Komponente D) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, weitere Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher, Flammschutzmittel usw. enthalten.
Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren seien Phosphite und weitere Amine (z. B. TAD), Hydrochinone, verschiedene substituierte Vertreter dieser Gruppen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen genannt.
Als UV-Stabilisatoren, die im allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien verschiedene substituierte Resorcine, Salicyla- te, Benzotriazole und Benzophenone genannt.
Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß und/oder Grafit, weiterhin organische Pigmente, wie Phthalocyanine, Chinacrido- ne, Perylene sowie Farbstoffe, wie Nigrosin und Anthrachinone als Farbmittel zuge- setzt werden.
Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminiumoxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.
Als Flammschutzmittel seien roter Phosphor, P- und N-haltige Flammschutzmittel sowie halogenierte FS-Mittel-Systeme und deren Synergisten genannt.
Bevorzugte Stabilisatoren sind aromatische sekundäre Amine in Mengen bis zu 2, vorzugsweise 0,5 bis 1 ,5 und insbesondere 0,7 bis 1 Gew.-%, gemäß der allgemeinen Formel I:
Figure imgf000029_0001
wobei
m,n = 0 oder 1 ,
A und B = durch C1-C4-AIkVl oder Phenyl substituiertes tertiäres C-Atom, R1, R2 = Wasserstoff oder eine d-C6-Alkylgruppe in ortho- oder para-Stellung, welcher gegebenenfalls substituiert sein kann durch 1 bis 3 Phenylreste, HaIo- gen, Carboxylgruppe oder ein Übergangsmetallsalz dieser Carboxylgruppe, und R3, R4 = Wasserstoff oder ein Methylrest in ortho- oder para-Position, wenn m plus n für 1 steht oder eine tertiäre C3-C9-Alkylgruppe in ortho- oder Para-Position, welche gegebenenfalls durch 1 bis 3 Phenylreste substituiert sein kann, wenn m plus n für 0 oder 1 steht, bedeuten.
Bevorzugte Reste A oder B sind symmetrisch substituierte tertiäre Kohlenstoffatome, wobei dimethylsubstituierter tertiärer Kohlenstoff besonders bevorzugt ist. Ebenso bevorzugt sind tertiäre Kohlenstoffe, welche 1 bis 3 Phenylgruppen als Substituenten aufweisen.
Bevorzugte Reste R1 oder R2 sind para t-butyl oder tetramethylsubstituiert.es n-Butyl, wobei die Methylgruppen vorzugsweise durch 1 bis 3 Phenylgruppen ersetzt sein können. Bevorzugte Halogene sind Chlor und Brom. Übergangsmetalle sind beispielswei- se - welche mit R1 oder R2 = Carboxyl Übergangsmetallsalze bilden können.
Bevorzugte Reste R3 oder R4 sind für m plus n = 2 Wasserstoff, sowie für m plus n = 0 oder 1 ein t-Butylrest in ortho- oder para-Position, welcher insbesondere durch 1 bis 3 Phenylreste substituiert sein kann.
Beispiele für sekundäre aromatische Amine D) sind
4,4'-Bis(α,α'- tertiäroctyl)diphenylamin
4,4'Bis(α,α-dimethylbenzyl)diphenylamin 4,4'-Bis(α-methylbenzhydryl)diphenylamin
4-(1 ,1 ,3,3-Tetramethylbutyl)4'-triphenylmethyldiphenylamin
4,4'-Bis(α,α-p-trimethylbenzyl)diphenylamin
2,4,4'-Tris(α,α-dimethylbenzyl)diphenylamin
2,2'-Dibromo,4,4'- bis(α,α-dimethyl benzy1)diphenylamin 4,4'-Bis(α,α-dimethylbenzyl)-2-carboxydiphenylamini-nickel-4,4'-bis(α,α- dimethylbenzyl)-diphenylamin
2-sec-Butyl-4,4'-bis(α,α-dimethylbenzyl)diphenylamin
4,4'-Bis(α,α-dimethylbenzyl)-2-(α-methlheptyl)diphenylamin
2-(α-Methylpentyl)4,4'-ditrityldiphenylamin 4-α,α-Dimethylbenzyl-4'-isopropoxydiphenylamin
2-(α-Methylheptyl)-4'-(α,α-dimethylbenzyl)diphenylamin
2-(α-Methylpentyl)-4'- trityldiphenylamin
4,4'-Bis(tertiary-butyl)diphenylamin sowie:
Figure imgf000030_0001
Figure imgf000031_0001
10
10
Figure imgf000032_0001
15
Figure imgf000033_0001
Die Herstellung erfolgt gemäß den in der BE-A 67/05 00 120 und CA-A 9 63 594 beschriebenen Verfahren. Bevorzugte sekundäre aromatische Amine sind Diphenylamin und dessen Derivate, welche als Naugard® (Firma Chemtura) im Handel erhältlich sind. Diese sind in Kombination mit bis zu 2000, vorzugsweise 100 bis 2000, bevorzugt 200 bis 500 und insbesondere 200 bis 400 ppm mindestens einer phosphorhaltigen anorganischen Säure oder deren Derivate bevorzugt.
Bevorzugte Säuren sind hypophosphorige Säure, phosphorige Säure oder Phosphorsäure sowie deren Salze mit Alkalimetallen, wobei Natrium und Kalium besonders bevorzugt sind. Bevorzugte Mischungen sind insbesondere hypophosphorige und phosphorige Säure bzw. deren Alkalimetallsalze im Verhältnis 3:1 bis 1 :3. Unter organischen Derivaten dieser Säuren sollen vorzugsweise Esterderivate oben genannter Säuren verstanden werden.
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Ausgangskomponenten in üblichen Mischvorrichtungen wie Schneckenextrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel bei 230 bis 320°C.
Nach einer weiteren bevorzugten Arbeitsweise können die Komponenten B) und C) sowie gegebenenfalls D) mit einem Präpolymeren gemischt, konfektioniert und granuliert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunktes der Komponente A) bis zur gewünschten Viskosität kondensiert.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch gute Mechanik sowie Wärmealterung und eine gute Verarbeitbarkeit/Fließfähigkeit sowie thermische Stabilität und Bindenahtfestigkeit (Vibrationsschweißen) aus.
Diese eignen sich zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art. Nachfolgend sind einige bevorzugte Beispiele genannt:
Haushaltsartikel, elektronische Bauteile, medizinische Geräte, Kfz-Bauteile, Gehäuse von Elektrogeräten, Gehäuse von Elektronik-Komponenten im Kfz, Kotflügel, Türbe- plankung, Heckklappen, Spoiler, Ansaugrohre, Wasserkästen, Gehäuse von Elektro- Werkzeugen, Gehäuse von Elektronikkomponenten (allg.), Überspitzung von Elektronikkomponenten (z.B. Spulen).
Beispiele 1V bis 4
Es wurden folgende Komponenten verwendet:
Komponente A/1 :
Polyamid 66 mit einer Viskositätszahl VZ von 180 ml/g, gemessen als 0,5 gew.-%ige Lösung in 96 gew.-%iger Schwefelsäure bei 25°C nach ISO 307. (Es wurde Ultramid® A24 E der BASF SE verwendet).
Die Herstellung der Komponenten B/1 bis B/4 erfolgte gemäß den Beispielen der EP 07123450.4.
Analytik der erfindungsgemäßen Produkte:
Die Polyetheramin-Polyole wurden per Gelpermeationschromatographie mit einem Refraktometer als Detektor analysiert. Als mobile Phase wurde Hexafluorisopropanol (HFIP) verwendet, als Standard zur Bestimmung des Molekulargewichts wurde PoIy- methylmethacrylat (PMMA) eingesetzt.
Die Bestimmung der OH-Zahl erfolgte gemäß DIN 53240, Teil 2.
Tabelle 1 : Einsatzstoffe und Endprodukte
Figure imgf000034_0001
TIPA = Triisopropanolamin TEA = Triethanolamin
Komponente C):
Feingemahlenes Aluminiumoxid (CL4400 FG der Alcoa Inc.) mit mittlerer Partikelgröße d50 von 7 μm (gemessen mit Laserstrahlbeugung nach ISO 13320-1 ), einer spezifi- sehen BET-Oberfläche von 0,6 m2/g (bestimmt nach ISO 9277) und einem AI2O3- Gehalt von >99,8 %.
Komponente D1 ):
Polyethylenimin (PEI) mit einem Mw von 1300 g/mol (GPC), es wurde Lupasol® G 20 der BASF SE eingesetzt.
Komponente D2):
Glasfasern mit einer mittleren Dicke von 10 μm (Aminosilanschlichte).
Komponente D3):
Fusabond® N NM493D der Firma DuPont, Ethylen-Octen-Copolymer mit Maleinsäureanhydrid funktionsalisiert, MFR 1 ,5 g/10' (D1238, 190°C/2,16 kg).
Herstellung der Formmassen
Die Komponenten A) bis D) wurden auf einem Zweischneckenextruder bei 280 bis
290°C abgemischt und in ein Wasserbad extrudiert. Nach Granulierung und Trocknung wurden auf einer Spritzgussmaschine Prüfkörper gespritzt und geprüft.
Die Wärmeleitfähigkeit wurde an runden Platten mit 2 mm Dicke mittels eines Laser- Flash-Apparates von Netzsch (NETZSCH-LFA 447 Nano Flash (R)) nach ASTM E1461 bestimmt;
Schlagzähigkeit gemäß ISO 179/1 eil bei 23°C und 50 % rel. Luftfeuchtigkeit;
Zugeigenschaften gemäß ISO 527-2.
Die MVR wurde am Granulat gemäß ISO 1133 gemessen, bei 270°C Massetemperatur, 5 kg Belastung und 4 min Verweilzeit.
Die Bestimmung der VZ der Produkte erfolgte nach ISO 307 an 0,5 % [m/v] Lösung in 96 % [mm] H2SO4 bei 25°C.
Die Ergebnisse der Prüfungen und Zusammensetzungen der Formmassen sind in der Tabelle 2 aufgeführt. Tabelle 2:
Figure imgf000036_0001
Tabelle 3: Wärmealterung
Figure imgf000037_0001
Legende: o durchschnittlich + verbessert
++ stark verbessert

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend
A) 10 bis 99 Gew.-% mindestens eines thermoplastischen Polyamides,
B) 0,01 bis 30 Gew.-% mindestens eines hoch- oder hyperverzweigten PoIy- etheramins,
C) 0,5 bis 80 Gew.-% eines wärmeleitfähigen Füllstoffes,
D) 0 bis 70 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % er- gibt.
2. Thermoplastische Formmassen nach Anspruch 1 , wobei die Komponente B) eine Glasübergangstemperatur von weniger als 50°C aufweist.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, wobei die Komponente B) eine OH-Zahl von 100 bis 900 mg KOH/g aufweist.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, enthaltend als Komponente D1) 0,01 bis 30 Gew.-% eines Polyethylenimin-Homopolymerisates oder -copolymerisates.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, wobei die Komponente B) im Mittel mindestens 3 weitere funktionelle OH-Gruppen aufweist, neben den Ether- und den Aminogruppen, die das Polymergerüst bilden.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, wobei die Komponente B) erhältlich ist durch Umsetzung von mindestens einem Trialkanolamin mit gegebenenfalls Dialkanolaminen oder gegebenenfalls mit Di- oder höherfunk- tionellen Polyetherolen.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, in denen die Komponente B) erhältlich ist durch intermolekulare Polykondensation von mindestens einem Trialkanolamin der allgemeinen Formel
Figure imgf000039_0001
in der die Reste R1 bis R3 unabhängig voneinander für gleiche oder unterschiedliche Alkylengruppen mit 2 bis 10 C-Atomen stehen.
8. Thermoplastische Formmassen nach den Ansprüchen 1 bis 7, in denen die
Komponente C) aus AI-Oxiden, MgO, ZnO, Bornitrid, ZrO, Graphit, Carbonfasern oder deren Mischungen aufgebaut ist.
9. Verwendung der thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 7 zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art.
10. Fasern, Folien und Formkörper, erhältlich aus den thermoplastischen Formkörpern gemäß den Ansprüchen 1 bis 7.
PCT/EP2009/061231 2008-09-09 2009-09-01 Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit WO2010028975A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08163960.1 2008-09-09
EP08163960 2008-09-09

Publications (2)

Publication Number Publication Date
WO2010028975A2 true WO2010028975A2 (de) 2010-03-18
WO2010028975A3 WO2010028975A3 (de) 2010-07-15

Family

ID=41657564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061231 WO2010028975A2 (de) 2008-09-09 2009-09-01 Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit

Country Status (1)

Country Link
WO (1) WO2010028975A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135624A1 (en) 2013-03-07 2014-09-12 Basf Se Heat conducting thermoplastic moulding compositions comprising a flame retardant
CN109504083A (zh) * 2018-11-21 2019-03-22 杭州本松新材料技术股份有限公司 聚酰胺树脂用双组份除味剂及含其的聚酰胺树脂复合材料
CN109810616A (zh) * 2019-02-02 2019-05-28 宁夏瑞锦新材料技术有限公司 一种高耐磨环氧陶瓷复合涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424360A1 (de) * 2002-11-26 2004-06-02 Bayer Aktiengesellschaft Hochfliessfähige Polymerzusammensetzungen mit verzweigten Fliesshilfsmitteln
WO2007113116A1 (de) * 2006-03-29 2007-10-11 Basf Se Wärmeleitfähige polyamide
WO2009077492A2 (de) * 2007-12-18 2009-06-25 Basf Se Thermoplastische polyamide mit polyetheraminen
WO2009115535A2 (de) * 2008-03-18 2009-09-24 Basf Se Polyamid-nanokomposite mit hyperverzweigten polyetheraminen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424360A1 (de) * 2002-11-26 2004-06-02 Bayer Aktiengesellschaft Hochfliessfähige Polymerzusammensetzungen mit verzweigten Fliesshilfsmitteln
WO2007113116A1 (de) * 2006-03-29 2007-10-11 Basf Se Wärmeleitfähige polyamide
WO2009077492A2 (de) * 2007-12-18 2009-06-25 Basf Se Thermoplastische polyamide mit polyetheraminen
WO2009115535A2 (de) * 2008-03-18 2009-09-24 Basf Se Polyamid-nanokomposite mit hyperverzweigten polyetheraminen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135624A1 (en) 2013-03-07 2014-09-12 Basf Se Heat conducting thermoplastic moulding compositions comprising a flame retardant
CN109504083A (zh) * 2018-11-21 2019-03-22 杭州本松新材料技术股份有限公司 聚酰胺树脂用双组份除味剂及含其的聚酰胺树脂复合材料
CN109810616A (zh) * 2019-02-02 2019-05-28 宁夏瑞锦新材料技术有限公司 一种高耐磨环氧陶瓷复合涂层及其制备方法

Also Published As

Publication number Publication date
WO2010028975A3 (de) 2010-07-15

Similar Documents

Publication Publication Date Title
EP2227507B1 (de) Thermoplastische polyamide mit polyetheraminen
EP2257597B1 (de) Polyamid-nanokomposite mit hyperverzweigten polyetheraminen
EP2001951B1 (de) Wärmeleitfähige polyamide
EP1851265B1 (de) Wärmealterungsbeständige polyamide
WO2009115536A1 (de) Polyamid-nanokomposite mit hyperverzweigten polyethyleniminen
EP2652032B1 (de) Glühdrahtbeständige polyamide
EP2294120B1 (de) Wärmeleitfähige polyamide mit diatomeenerde
WO2010076145A1 (de) Wärmealterungsbeständige polyamide
WO2010054933A1 (de) Stabilisierte polyamide
EP2641939A1 (de) Hellgefärbte flammgeschützte Polyamide
EP2861666B1 (de) Flammgeschützte polyamide mit polyacrylnitrilhomopolymerisaten
WO2010028975A2 (de) Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit
EP2817363B1 (de) Cuo/zno-mischungen als stabilisatoren für flammgeschützte polyamide
EP2665777B1 (de) Hydrolysestabile polyamide
EP2650331A1 (de) Polyamide für Trinkwasseranwendungen
WO2006010543A1 (de) Wärmestabilisierte polyamide
EP2756033B1 (de) Silber-zinkoxid-mischungen als stabilisator für flammgeschützte polyamide enthaltend roten phosphor
WO2012146624A1 (de) Flammgeschütze formmassen
DE102010051726A1 (de) Amorphe Polyamide mit bicyclischen aliphatischen Diaminen
DE102008058246A1 (de) Hochmolekulare Polyamide
DE102009035974A1 (de) Amorphe Polyamide
DE102008043863A1 (de) Teilaromatische Polyamide mit hyperverzweigten Polyoxazolinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782418

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09782418

Country of ref document: EP

Kind code of ref document: A2