WO2010024291A1 - 膜脱気モジュール - Google Patents
膜脱気モジュール Download PDFInfo
- Publication number
- WO2010024291A1 WO2010024291A1 PCT/JP2009/064860 JP2009064860W WO2010024291A1 WO 2010024291 A1 WO2010024291 A1 WO 2010024291A1 JP 2009064860 W JP2009064860 W JP 2009064860W WO 2010024291 A1 WO2010024291 A1 WO 2010024291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- liquid
- flow path
- envelope
- deaeration
- Prior art date
Links
- 238000007872 degassing Methods 0.000 title claims abstract description 121
- 239000007788 liquid Substances 0.000 claims abstract description 199
- 239000012528 membrane Substances 0.000 claims description 214
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 43
- 238000004140 cleaning Methods 0.000 abstract description 29
- 239000007789 gas Substances 0.000 description 69
- 239000011248 coating agent Substances 0.000 description 28
- 238000000576 coating method Methods 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 27
- 238000012360 testing method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- -1 polyethylene Polymers 0.000 description 8
- 239000006260 foam Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004744 fabric Substances 0.000 description 5
- 230000001846 repelling effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/101—Spiral winding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0021—Degasification of liquids by bringing the liquid in a thin layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/103—Details relating to membrane envelopes
- B01D63/1031—Glue line or sealing patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/08—Flow guidance means within the module or the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/06—Surface irregularities
Definitions
- the present invention relates to an improvement of a membrane deaeration module that removes dissolved gas from a degassed liquid such as a coating solution by membrane deaeration.
- a coating solution with a large amount of dissolved gas is likely to generate bubbles in the coating machine during application, and the generated bubbles cause surface defects such as streak and repellency failures in the coating solution layer formed on the support. . Therefore, it is necessary to remove the dissolved gas in the coating liquid before sending the coating liquid to the coating machine, and a membrane deaeration module is usually used to remove the dissolved gas in the coating liquid. Degassing is performed by passing the coating solution through the membrane degassing module.
- This membrane deaeration module is a housing in which a deaeration membrane structure in which a non-porous or porous film type deaeration membrane is formed in an envelope shape is spirally wound and stored.
- the outside of the degassing membrane structure is a liquid flow path through which the coating liquid flows. Further, a depressurized gas flow path is formed inside the degassing membrane structure, and this gas flow path becomes a gas flow path degassed from the coating liquid.
- a liquid channel forming material such as a net or cotton cloth is degassed as a method of forming a liquid channel or a gas channel of such a degassing membrane structure.
- a liquid channel is formed by spirally winding the membrane structure on the membrane structure, and a gas channel is formed by providing a gas channel forming material made of cloth cloth, net, etc. between the deaeration membranes.
- a gas channel is formed by providing a gas channel forming material made of cloth cloth, net, etc. between the deaeration membranes.
- a degassing membrane structure 1 and a mesh (mesh) liquid flow path forming material 2 superposed on the deaeration membrane structure 1 are spirally wound so that the liquid flow path forming material 2 is liquid flow. It functions as a road.
- the degassing membrane structure 1 is provided with a gas flow path forming material 5 between the two degassing films 3 and 4, and this gas flow path forming material 5 is used as a gas flow path. To function as.
- dot-shaped convex portions 6 are formed in a dotted pattern on at least one surface of the deaeration membrane structure 1 (FIG. 14A), or lattice-shaped convex portions 7 are formed. It has also been proposed to form a liquid flow path by doing (FIG. 14B).
- a liquid flow path is formed with a net-like liquid flow path forming material, or the deaeration membrane structure is in the form of dots or lattices. If a convex part is formed or a structure that blocks the liquid flow in a certain direction is formed, the flow of the degassed liquid flowing in the liquid flow path can be disturbed, so that the deaeration performance is improved.
- the liquid flow path with a structure that blocks the liquid flow in a certain direction is not cleanable when the cleaning liquid is passed through the liquid flow path without disassembling the membrane degassing module and the membrane module is being degassed.
- the conventional membrane deaeration module deteriorates quickly, and the membrane deaeration module has to be replaced after a long period of deaeration operation.
- the present invention has been made in view of such circumstances, while maintaining a deaeration performance equal to or higher than that of a conventional membrane deaeration module in which a liquid channel is formed in a net shape, a dotted shape, or a lattice shape.
- An object of the present invention is to provide a membrane deaeration module capable of improving the cleaning performance of a liquid flow path.
- a membrane deaeration module includes two deaeration membranes whose peripheral edges are closed in an envelope shape, and an envelope-like deaeration closed in the envelope shape.
- a gas flow path forming member that forms a gas flow path of the gas degassed from the degassed liquid formed inside the film, and is provided in communication with the gas flow path at an end of the envelope-shaped degassing film
- a gas liquid supply port is formed on one end side, and a degassed degassing liquid discharge port is formed on the other end side.
- a plurality of air bubbles gradually widen from the supply port side to the discharge port side on at least one inner surface of the air membrane Between the taper-shaped convex portion and the envelope-shaped deaeration membrane wound in the spiral shape by the taper-shaped convex portion, and narrower from the degassed liquid supply port side to the discharge port side.
- a liquid channel having a taper-shaped groove where A is a channel cross-sectional area on the supply port side of the liquid channel, and B is a channel cross-sectional area on the discharge port side.
- the channel cross-sectional area satisfies the condition that (B / A) ⁇ 100 is 40% or more and 80% or less from the supply port side to the discharge port side.
- two degassing membranes includes not only two separated degassing membranes but also a case where one degassing membrane is folded into two upper and lower sheets.
- the first aspect of the present invention is a gas flow path forming material inside an envelope-like deaeration membrane in which two deaeration membranes are made into an envelope shape, and a plurality of them are provided from the supply port side of the liquid to be deaerated toward the discharge side.
- a liquid channel having a tapered groove is formed between the envelope-shaped degassing membranes. It is comprised as follows. Note that the tapered groove means a tapered groove.
- the envelope deaeration membrane is wound in a spiral shape so that the envelope supplied from the supply port is sandwiched between the envelope deaeration membranes sandwiching the tapered convex portion.
- a liquid channel having a tapered groove through which the degassed liquid flows is formed, and the cross-sectional area of the liquid channel is from the supply port side to the discharge port side, and the formula (B / A) ⁇ 100 is It was made to become narrow gradually so that the range of 40% or more and 80% or less might be satisfied.
- the liquid to be degassed that has flowed into the liquid flow channel from the supply port side having a wide flow channel cross-sectional area is gradually reduced toward the discharge port side, so that the liquid flow channel is reticulated,
- a deaeration performance equivalent to or higher than that of a conventional membrane deaeration module formed in the form of dots or lattices can be obtained.
- the reason for this is not clear, but by gradually reducing the cross-sectional area of the liquid flow path from the supply port side to the degassed liquid side, the flow speed, pressure increase, and turbulence in the liquid may occur.
- the deaeration performance is improved by thinning or destroying the boundary film (inhibiting gas permeation into the permeable membrane) formed in the vicinity of the deaeration membrane.
- the liquid flow path when the liquid flow path is washed with a cleaning liquid, the liquid flow path forms a flow in a certain direction from the supply port side to the discharge port side or in the opposite direction, and has a conventional mesh shape, dotted shape, Or since the liquid flow of a fixed direction is not obstruct
- a deaeration module can be provided.
- a membrane deaeration module includes two deaeration membranes whose peripheral edges are closed in an envelope shape, and an envelope-like deaeration closed in the envelope shape.
- a gas flow path forming member that forms a gas flow path of gas degassed from the degassed liquid formed inside the film, and the flow path of the degassed liquid outside the envelope degassing film
- a liquid flow path forming member, and a suction pipe that is provided in communication with the gas flow path at an end of the envelope-like degassing membrane and sucks and removes the gas degassed from the degassed liquid into the gas flow path;
- the envelope-shaped degassing membrane and the liquid flow path forming member are superposed around the suction pipe, and the envelope-shaped degassing membrane is accommodated in a spirally wound state.
- a housing formed on one end side and having a discharge port for degassed degassed liquid formed on the other end side, and the liquid
- a plurality of tapered convex portions arranged side by side on the path forming member and gradually widening from the supply port side toward the discharge port side with respect to at least one outer surface of the envelope-shaped deaeration membrane;
- a liquid channel having a taper-like groove formed by an envelope-shaped degassing film wound in a spiral shape and the tapered convex portion, and narrowing from the degassed liquid supply port side to the discharge port side.
- the channel cross-sectional area of the liquid channel is from the supply port side to the discharge port.
- the condition that (B / A) ⁇ 100 is 40% or more and 80% or less is satisfied.
- a liquid flow path forming material is provided outside the envelope-shaped degassing membrane in which two degassing membranes are formed in an envelope shape, and a plurality of degassed liquid from the supply port side toward the discharge side.
- a membrane deaeration module that can improve the cleaning performance of the liquid flow path can be provided.
- the liquid flow path forming material has a taper that gradually becomes wider from the supply port side to the discharge port side with respect to both outer surfaces than one outer surface of the envelope-shaped degassing membrane. It is preferable to have a shape in which a plurality of convex portions are arranged in parallel. This is because tapered grooves can be formed on all the film surfaces when spirally wound around the suction tube.
- the gas flow path forming material forms a liquid flow path.
- the liquid flow path forming member is also used. Accordingly, it is not necessary to separately provide a liquid flow path forming material as in the second aspect, and the liquid flow path is surrounded by the envelope-shaped deaeration film, so that the liquid to be deaerated contacts. A member becomes only a deaeration film
- the intervals between the convex portions where the liquid flow path forming member and the gas flow path forming member are arranged in parallel are equal intervals. This is to suppress liquid drift and obtain degassing performance.
- the tapered protrusions forming the liquid channel and the gas channel may be formed integrally with the outside or inside of the envelope-shaped deaeration membrane. It may be formed separately from the degassing membrane and may be spirally wound together with the degassing membrane.
- the convex section cross-sectional shape forming the taper shape can be formed in a semicircular shape, a polygonal shape such as a trapezoid, or a spherical shape.
- the flow path cross-sectional area A on the supply port side is preferably in the range of 0.01 mm 2 to 5 mm 2
- the flow path cross-sectional area B on the discharge port side is preferably in the range of 0.005 mm 2 to 4 mm 2. .
- the formula (B / A) ⁇ 100 satisfies the range of 40% to 80%.
- the deaeration performance is that the flow path cross-sectional area A is in the range of 0.01 mm 2 to 5 mm 2 and the flow path cross-sectional area B on the outlet side is in the range of 0.005 mm 2 to 4 mm 2 under the conditions. This is because it is more preferable for improving the cleaning performance. Thereby, while being able to improve deaeration performance further, a foreign material failure can be prevented further.
- the surface area of the entire degassing membrane is preferably 4% or more larger than the surface area of the entire tapered convex portion, but is preferably not larger than 10%.
- the pitch width on the supply port side is preferably 0.25 mm or more and 6 mm or less.
- the membrane deaeration module of the present invention while maintaining the deaeration performance equal to or higher than that of the conventional membrane deaeration module in which the liquid channel is formed in a net shape, a dotted shape, or a lattice shape, Detergency can also be improved. Thereby, it is possible to effectively prevent both foreign matter failure and bubble repellency failure in the coating liquid layer.
- FIG. 1 shows a deaeration membrane module according to a first embodiment of the present invention, in which a tapered convex portion is formed on the inner side of an envelope-like deaeration membrane, and illustrates a state before being wound and housed in a housing. It is explanatory drawing to do.
- FIG. 2 is a state diagram in which the envelope-shaped degassing membrane of FIG. 1 is wound around the suction tube.
- FIG. 3A is a cross-sectional view when a tapered convex portion is formed on one side with respect to the inside of the envelope-shaped deaeration membrane.
- FIG. 3B is a cross-sectional view in the case where tapered convex portions are formed on both sides with respect to the inside of the envelope-shaped deaeration membrane.
- FIG. 4 is a cross-sectional view of the envelope deaeration membrane of FIG. 2 taken along the line AA, in which the enveloped deaeration membrane wound is housed in a housing to constitute the membrane deaeration module of the present invention. It is.
- FIG. 5 is an explanatory view for explaining the action of the liquid flow path formed by the tapered convex portion.
- FIG. 6 shows a deaeration membrane module according to a second embodiment of the present invention, in which a tapered convex portion is formed on the outside of the envelope-like deaeration membrane, and illustrates a state before being wound and housed in a housing. It is explanatory drawing to do.
- FIG. 5 is an explanatory view for explaining the action of the liquid flow path formed by the tapered convex portion.
- FIG. 6 shows a deaeration membrane module according to a second embodiment of the present invention, in which a tapered convex portion is formed on the outside of the envelope-like deaeration membrane, and
- FIG. 7A is an explanatory diagram showing a relationship between the tapered convex portion and the deaeration membrane when the tapered convex portion is formed outside the deaeration membrane.
- FIG. 7B is an explanatory diagram showing a relationship between the tapered convex portion and the deaeration membrane when the tapered convex portion is formed outside the deaeration membrane.
- FIG. 8 is an explanatory diagram for explaining the difference in configuration between the membrane degassing module of the present invention and the membrane degassing module of the comparative example.
- FIG. 9 is a table for explaining the results of the deaeration ability test of Example A.
- FIG. 10 is a table for explaining the results of the bubble repellency test of Example B.
- FIG. 11 is a table illustrating the results of Example C before cleaning.
- FIG. 12 is a table for explaining the results of Example C after cleaning.
- FIG. 13A is an explanatory diagram for explaining liquid channel formation and gas channel formation of a conventional membrane deaeration module.
- FIG. 13B is an explanatory diagram for explaining liquid channel formation and gas channel formation of a conventional membrane deaeration module.
- FIG. 14A is an explanatory view for explaining another mode of liquid flow path formation in the conventional membrane deaeration module.
- FIG. 14B is an explanatory view for explaining another mode of liquid flow path formation in the conventional membrane deaeration module.
- the first embodiment of the present invention is a gas flow path forming material that forms a gas flow path inside an envelope-shaped degassing film in which two degassing films are formed into an envelope shape.
- a taper shape is formed between the envelope-shaped deaeration films.
- the liquid channel of the groove is configured to be formed.
- FIG. 1 shows a housing 14 (see FIG. 4) in which an envelope-like degassing membrane 12 (also referred to as a degassing membrane structure) which is a main component of the membrane degassing module 10 (see FIG. 4) of the present invention is wound. It is explanatory drawing explaining the state before storing in ().
- FIG. 2 is a state diagram in which the envelope-shaped degassing membrane 12 of FIG. 1 is wound around the suction pipe 16.
- 3A and 3B are partial cross-sectional views in which a tapered convex portion 50A is formed with a gas flow path forming material 50 inside the envelope-shaped degassing membrane 12.
- FIG. 4 is a cross-sectional view of the membrane deaeration module 10 configured by housing the wound envelope deaeration membrane 12 in the housing 14, and the envelope deaeration membrane 12 is taken along the line AA in FIG.
- the liquid flow path 18 is made easy to understand by cutting.
- the envelope-shaped deaeration membrane 12 is composed of two deaeration membranes 20A and 20B (see FIGS. 3A and 3B), and the periphery thereof is sealed in an envelope shape by a joining method such as heat fusion.
- a tapered convex portion 50A formed of a gas flow path forming material 50 that forms a gas flow path is provided inside the sealed envelope-shaped deaeration membrane 12 (see FIGS. 3A and 3B).
- the rectangular plate-shaped envelope-shaped deaeration membrane 12 in which the tapered convex portions 50A are provided by the gas flow path forming material 50 is formed inside the sealed deaeration membranes 20A and 20B.
- a suction tube 16 for sucking and removing the degassed gas out of the housing 14 is provided at the longitudinal end of the envelope-shaped degassing membrane 12.
- the portion excluding the base end portion 16A of the suction tube 16 is inserted into the envelope-shaped deaeration membrane 12, and the suction tube 16 of the insertion portion 12B has a number of suction holes 24 communicating with the gas flow path forming member 50. Is formed.
- the base end portion 16A of the suction pipe 16 extends outside the housing 14 as shown in FIG. 4 and is connected to a vacuum pump pipe (not shown).
- the insertion portion 16B is sealed with a seal member (not shown) so that gas does not leak from the insertion portion 16B of the suction pipe 16.
- the gas flow path forming member 50 prevents the two degassing membranes 20 and 20 from coming into close contact with each other when the inside of the envelope degassing membrane 12 is sucked by the suction pipe 16.
- a gas flow path 22 through which the degassed gas flows can be formed inside the degassing membrane 12.
- the deaeration membrane 20 may be a non-porous membrane or a porous membrane, and the thickness thereof can be appropriately changed.
- tetrafluoroethylene-hexafluoropropylene copolymer FEP
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- the envelope-shaped degassing membrane 12 is formed by joining the two separated degassing membranes 20 and 20 together and joining the peripheral portions.
- two degassing membranes are used.
- the envelope-shaped deaeration film 12 may be formed by folding the film and sealing the periphery.
- the taper-shaped convex portion 50A is formed in a stripe shape from the supply port 32 side to the discharge port 34 side by directly bonding, fusing, applying, molding, or the like to the gas flow path forming material 50.
- a tapered convex portion 50A having a convex shape formed in a stripe shape from the supply port 32 side to the discharge port 34 side is prepared. It may be formed on both sides.
- the material of the gas flow path forming material 50 that forms the tapered convex portion 50A is not particularly limited as long as it is a material that does not dissolve in the liquid to be deaerated and the gas to be degassed.
- a material that does not dissolve in the liquid to be deaerated and the gas to be degassed For example, polyethylene, polypropylene, polytetrafluoroethylene, etc.
- Various resins can be used.
- the tapered convex portion 50A As a method of forming the tapered convex portion 50A with the gas flow path forming material 50, it is integrally formed with the gas flow path forming material 50 such as polytetrafluoroethylene (Teflon (registered trademark)) powder fusion bonding, screen coating, gravure coating, and the like. There is no particular limitation as long as it can be bonded to the gas flow path forming member 50.
- Teflon polytetrafluoroethylene
- the cross-sectional shape of the tapered convex portion 50A can be various shapes such as a circular shape, a semicircular shape, an elliptical shape, a triangular shape, and a trapezoidal shape.
- a trapezoidal cross section is shown.
- the height of the tapered convex portion 50A is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and most preferably 50 ⁇ m or less when provided on only one side with respect to the inside of the envelope-shaped deaeration membrane 12. Moreover, when providing in both surfaces with respect to the inner side of the envelope-shaped deaeration membrane 12, 100 micrometers or less are preferable and 50 micrometers or less are more preferable.
- a plurality of tapered convex portions 50A parallel to the suction pipe 16 are arranged in parallel by the gas flow path forming member 50 inside the envelope-shaped deaeration membrane 12.
- the tapered convex portion 50A is formed in a bar shape having a trapezoidal cross section, and is directed toward the degassing gas discharge port 34 side degassed from the degassing liquid supply port 32 side formed in the housing 14.
- a taper is formed on the side surface of the trapezoid so that the trapezoidal width gradually increases.
- the envelope-like degassing membrane 12 in which a plurality of taper-shaped convex portions 50A formed with such a taper are juxtaposed inside the envelope-like degassing membrane 12 is wound as shown in FIG.
- a liquid channel 18 is formed in which the liquid to be deaerated supplied from the supply port 32 side flows while in contact with the deaeration membrane 20 (see FIG. 1).
- the flow channel cross-sectional area of the liquid flow channel 18 gradually decreases from the supply port 32 side toward the discharge port 34 so as to satisfy the following expression.
- the liquid channel 18 In addition to the condition that the formula (B / A) ⁇ 100 is 40% or more and 80% or less, the liquid channel 18 more preferably satisfies the following conditions.
- the channel cross-sectional area A on the supply port 32 side is in the range of 0.01 mm 2 to 5 mm 2
- the channel cross-sectional area B on the discharge port 34 side is in the range of 0.005 mm 2 to 4 mm 2. Is preferred.
- the flow channel cross-sectional area B on the discharge port 34 side needs to be further narrowed, depending on the diameter of the foreign matter. Foreign matter clogging is likely to occur. When this is viewed from the channel cross-sectional area B on the discharge port 34 side, 0.005 mm 2 is the lower limit.
- the channel cross-sectional area B on the discharge port 34 side of the liquid channel 18 exceeds 4 mm 2 , it is necessary to further increase the channel cross-sectional area A on the supply port 32 side. Since the turbulence is reduced and the contact between the liquid and the film is reduced, the deaeration ability is reduced. When this is viewed from the channel cross-sectional area A on the supply port 32 side, the upper limit is 5 mm 2 .
- the deaeration performance can be further improved, and the cleaning performance is improved, so that foreign matter failure prevention can be further improved.
- the entire surface area of the deaeration membrane 20 is 4% or more larger than the entire surface area of the tapered convex portion 50A, but it is preferably not larger than 10%.
- the inventor examined a preferable relationship between the surface area of the entire degassing membrane 20 and the surface area of the entire taper-shaped convex portion 50A, and as a result, the surface area of the entire degassing membrane 20 was the same as that of the entire taper-shaped convex portion 50A.
- Degassing performance can be improved and the degassing membrane can be damaged by designing it so that it is 4% or more larger than the surface area but not larger than 10% (large in the range of 4% to 10%). I was able to prevent it.
- the pitch width P on the supply port 32 side is preferably 0.25 mm or more and 6 mm or less.
- the pitch width P is a distance from the center in the width direction on the supply port 32 side of the liquid channel 18 to the center in the width direction on the supply port 32 side of the adjacent liquid channel 18 as shown in FIG.
- FIG. 1 and FIG. 2 the example in which the tapered convex portion 50A formed by the gas flow path forming material 50 is provided only on one side with respect to the inner side of the envelope-shaped degassing membrane 12 has been described. You may provide in both sides with respect to an inner side.
- FIG. 3A is a view in which the tapered convex portion 50A is provided only on one side with respect to the inner side of the envelope-shaped deaeration membrane 12.
- FIG. 3B is a diagram in which tapered convex portions 50A are provided on both sides with respect to the inside of the envelope-shaped deaeration membrane 12, and in the case of FIG.
- the membrane deaeration module 10 of the present invention is formed by housing the envelope-like deaeration membrane 12 configured as described above in a housing 14 in a state of being wound around a suction pipe 16.
- the material and shape of the housing 14 are not particularly limited.
- the housing 14 is mainly composed of a cylindrical casing 14A and a pair of lid members 14B and 14C that are placed on both ends of the cylindrical casing 14A.
- a supply port 32 for supplying a liquid to be degassed is formed in one of the pair of lid members 14B and 14C.
- the other lid member 14C is formed with a discharge port 34 for discharging the deaerated liquid deaerated by the envelope-shaped deaeration film 12, and a through hole 38 through which the suction pipe 16 passes.
- rectifying screens 40, 40 are provided, and the degassed liquid supplied from the supply port 32 is rectified so as to spread evenly over the entire envelope-shaped degassing membrane 12.
- the rectifying screen 40 may be eliminated for improving the cleaning performance.
- the cross-sectional area of the liquid flow path 18 of the envelope-shaped degassing membrane 12 housed in the housing 14 is from the supply port 32 side to the discharge port 34. It gradually narrows toward the side. Thereby, it is possible to obtain a degassing performance equal to or higher than that of a conventional membrane degassing module in which the liquid flow path is formed in a net shape, a dotted shape, or a lattice shape. The reason for this is not clear, but as shown in FIG. 5, it is expected that the flow speed, pressure increase, and turbulence occur in the liquid to be degassed flowing through the liquid flow path 18.
- the boundary film (inhibiting gas permeation into the deaeration film) formed in the vicinity of the surface of the deaeration film 20B can be thinned or destroyed. Therefore, even if the liquid flow path 18 is formed in a stripe shape as in the present invention so that a flow in a certain direction is generated, the conventional film removal with the liquid flow path formed in a mesh shape, a dotted shape, or a lattice shape is performed. Degassing performance equal to or higher than that of the air module can be obtained.
- the cleaning liquid for example, clean water
- the liquid channel 18 is discharged from the supply port 32 side.
- a flow in a certain direction is formed from the outlet 34 side or the discharge port 34 side toward the supply port 32 side. Accordingly, the liquid flow in a certain direction is not obstructed unlike the conventional liquid channels formed in a net shape, a dotted shape, or a lattice shape, so that the cleaning property can be improved.
- the cleaning liquid is preferably supplied from the discharge port 34 side, and more preferably alternately supplied from the discharge port 34 side and the supply port 32 side.
- a membrane degassing module that can be provided can be provided.
- a liquid flow path forming material 30 is provided on the outside of an envelope-shaped degassing membrane 12 in which two degassing membranes 20A and 20B are enveloped.
- the envelope degassing membrane 12 is wound in a spiral shape when the envelope is wound.
- the liquid degassing membrane 12 and the liquid flow path forming member 30 are configured so that the liquid flow path 18 having a tapered groove is formed. Note that a description of the same parts as those in the first embodiment will be omitted.
- FIG. 6 the example in which the tapered convex portion 30 ⁇ / b> A formed by the liquid flow path forming material 30 is provided only on one surface of the envelope-shaped deaeration film 12 is described.
- Good. 7A is a diagram in which tapered convex portions 30A are provided on both surfaces of the envelope-shaped deaeration membrane 12, and FIG. 7B is a diagram in which the tapered convex portions 30A are provided only on one surface of the envelope-shaped deaeration membrane 12. .
- FIG. 7A when the envelope-shaped degassing membrane 12 is wound in a spiral shape, the liquid flow path 18 is formed in a state where the tapered convex portions 30A formed on both surfaces are in contact with each other. . Therefore, it is preferable to make the trapezoidal height of the tapered convex portion 30A lower than that in the case of FIG. 7B where the tapered convex portion 30A is formed only on one side.
- the cross-sectional shape of the tapered convex portion 30A formed by the liquid flow path forming material 30 is various shapes such as a circular shape, a semicircular shape, an elliptical shape, a trapezoidal shape, and a triangular shape.
- FIG. 6 and FIGS. 7A and 7B are illustrated in an oval shape.
- the trapezoidal height of the tapered convex portion 30A formed by the liquid flow path forming material 30 is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and most preferably 50 ⁇ m or less when provided on only one side of the envelope-shaped degassing membrane 12. . Moreover, when providing on both surfaces of the envelope-shaped deaeration membrane 12, 100 micrometers or less are preferable and 50 micrometers or less are more preferable.
- the material of the liquid flow path forming material 30 that forms the tapered convex portion 30A is not particularly limited as long as it is a material that does not dissolve in the liquid to be deaerated.
- polyethylene, polypropylene, polytetrafluoroethylene, or the like can be used. .
- taper such as polytetrafluoroethylene (Teflon (registered trademark)) powder fusion bonding, screen coating, gravure coating, etc.
- Teflon polytetrafluoroethylene
- the convex portion 30A can be bonded to the envelope-shaped degassing membrane 12 or the liquid flow path forming material 30.
- the method for forming the gas flow path 22 inside the envelope-shaped degassing membrane 12 is not particularly limited as long as the gas flow path is used.
- tetrafluoroethylene-perfluoroalkyl is used.
- Two pieces of gas flow path forming material 26 such as vinyl ether copolymer (PFA), cloth cloth made of resin such as nylon and polyester, urethane sponge, resin net, metal wire mesh, etc. are removed.
- a method of sandwiching between the air membranes 20 can be employed.
- the gas flow path convex portion 28 in addition to a smooth surface, a dot-like shape in which a large number of dot-like convex portions are scattered on the surface of the deaeration film 20, and a supply port on the surface of the deaeration film 20 Various forms such as those in which convex portions are formed in a stripe shape from the side toward the discharge port side and those in which convex portions are formed in a lattice shape on the surface of the deaeration film 20 can be adopted. Further, the cross-sectional shape of the gas flow path convex portion 28 can be various shapes such as a circular shape, a semicircular shape, an elliptical shape, a triangular shape, and a trapezoidal shape. Moreover, you may provide integrally with the envelope-shaped deaeration membrane 12.
- Example A is a test comparing the deaeration ability of the membrane deaeration module of the present invention with a comparative example.
- the liquid channel is formed by a tapered convex portion, and the cross-sectional area of the liquid channel on the supply port side is A, and the channel on the discharge port side
- the cross-sectional area is B
- the formula (B / A) ⁇ 100 falls within the range of 40% to 80%.
- a liquid channel is formed by superposing a polyester net (liquid channel forming material) having a thickness of 250 ⁇ m and a pore size of 60 mesh on an envelope-shaped degassing membrane, which corresponds to a conventional membrane degassing module. To do.
- Comparative Examples 2 to 5 are the same as in Examples 1 to 4 except that the liquid flow path is formed by the tapered convex portion, but the formula (B / A) ⁇ 100 does not satisfy 40% or more and 80% or less. It is.
- Example 1 to 4 and Comparative Examples 1 to 5 the housing volume, the material of the degassing membrane, the area, the thickness, and the method of forming the gas flow path are common.
- the deaeration capability test is a deaeration capability for degassing dissolved oxygen in pure water by flowing pure water (25 ° C., dissolved oxygen amount: 8.1 ppm) for each of the membrane deaeration modules in FIG. Contrasted. Further, the pure water was fed at four levels of 500 cc / min, 1000 cc / min, 1500 cc / min, and 2000 cc / min. Since the housing volume is 1 L (liter), the deaeration time is 1 minute, for example, when the liquid feeding amount is 1000 cc / min.
- Examples 1 to 4 of the present invention have the same deaeration capability as compared with Comparative Example 1 using a polyester net for forming the liquid flow path, and the deaeration of the conventional membrane deaeration module You can see that the ability is maintained.
- Comparative Examples 2 and 3 are slightly better than the present invention, but Comparative Examples 4 and 5 are slightly better than the present invention. It has become.
- Example B The foam repellency test of Example B is performed when the coating liquid is deaerated by the respective membrane degassing modules shown in the table of FIG. The number of bubbles is contrasted.
- Coating solution was prepared by mixing and dissolving polyvinyl alcohol (PVA) and a surfactant in pure water.
- PVA polyvinyl alcohol
- Membrane deaeration module One membrane deaeration module is placed in the coating liquid supply line, and after the coating liquid is flown at a flow rate of 2000 cc / min and degassed, the length is 10 inches and the filtration accuracy is 20 ⁇ m. It filtered with the Japan pole profile filter and sent to the bar coating device.
- the deaeration pressure reduction degree of the membrane deaeration module was 30 torr.
- the envelope deaeration membrane of the membrane deaeration module was formed by stacking two deaeration membranes each having a size of 0.31 m (310 mm) ⁇ 16 m in width and sealing the periphery in an envelope shape.
- the housing used was a cylindrical casing having an inner diameter of 125 mm and a length of 370 mm.
- the pipe diameters of the supply port and the discharge port are 10A size pipes, but 15A or 20A size pipes may be used.
- a pressure gauge was attached to the pipe before the filtration filter after the membrane degassing module to measure the liquid feeding pressure.
- A is a case where there is no bubble repellency and the liquid feeding pressure is low.
- B shows the case where the number of bubbles repelled is not a problem but the liquid feeding pressure is high.
- C is a case where there is no problem with the liquid feeding pressure, but there are many problems with the number of bubbles to be repelled.
- Comparative Examples 2 to 3 had 0 bubble repellency, but the liquid feed pressure was 0.13 to 0.15, approximately twice that of Examples 1 to 4. Was B.
- Comparative Examples 4 to 5 although the liquid feeding pressure was 0.04 to 0.06, which was lower than Examples 1 to 4, the number of bubble repellency was as many as 6 to 7, and the evaluation was C.
- Example C The capacity recovery test by cleaning in Example C was carried out after cleaning each membrane degassing module shown in the table of FIG. 8 for a long period of time, by degassing capacity, liquid feeding pressure, number of bubbles repelling, and number of foreign objects. This is a comparison of how the resilience of the four items will be.
- the degassing capacity, the liquid supply pressure, the number of bubbles repelled, and the number of foreign substances were measured for each membrane degassing module before cleaning immediately after the coating liquid was circulated for 1 month at a flow rate of 2000 cc / min. Examined. In addition, after circulating and feeding for 1 month, the membrane deaeration module was washed by flowing pure water (30 ° C.) at a delivery rate of 2000 cc / min for 30 minutes. The number of repels and the number of foreign matters were examined.
- Example A The deaeration test is conducted in the same manner as in Example A, and the liquid feeding pressure, bubble repellency, and foreign matter failure tests are conducted in the same manner as in Example B (however, no filter is used). It was.
- FIG. 11 shows the results before cleaning
- FIG. 12 shows the results after cleaning.
- the degree of deaeration ability after long-term operation of the membrane deaeration module is the smallest in Examples 1 to 4, and then the comparative examples 2 to 4 are small. Comparative Example 1 was the largest.
- the deaeration capability shown in the table of FIG. 9 is the deaeration capability before operating the membrane deaeration module for a long time.
- the increase in the liquid feeding pressure after the membrane degassing module was operated for a long time was smallest in Examples 1 to 4, followed by Comparative Examples 2 to 4, and Comparative Example 1 being the largest.
- the liquid feeding pressure shown in the table of FIG. 10 is the liquid feeding pressure before the membrane degassing module is operated for a long time.
- Examples 1 to 4 and Comparative Examples 2 to 5 are substantially the same in the range of foam repellency in the range of 5 to 7.
- the number of bubbles in 1 was as many as 10.
- Examples 1 to 4 have a good resilience and an evaluation of A
- Comparative Examples 1 to 5 have a poor resilience and a determination of C.
- the deaeration capacity, the liquid feeding pressure, the number of bubbles repelling, and the number of foreign matters are comprehensively determined.
- the channel cross-sectional area A on the supply port side is in the range of 0.01 mm 2 to 5 mm 2
- the channel cross-sectional area B on the discharge port side is in the range of 0.005 mm 2 to 4 mm 2. 4 shows a good tendency.
- the entire surface area of the deaeration membrane is larger than the entire surface area of the tapered convex portion by 4% or more and 10% or less in order to prevent deaeration performance and foreign matter failure.
- the pitch width on the supply port side is preferably 0.25 mm or more and 6 mm or less in the plurality of liquid channels arranged in parallel.
- SYMBOLS 10 Membrane deaeration module, 12 ... Envelope-shaped deaeration membrane, 14 ... Casing, 16 ... Suction pipe, 18 ... Liquid flow path, 20 ... Deaeration membrane, 22 ... Gas flow path, 24 ... Suction hole, 26 ... Gas Flow path forming material, 28: convex part for gas flow path, 30 ... tapered convex part formed of a liquid forming member, 32 ... supply port, 34 ... discharge port, 38 ... through hole, 40 ... rectifying screen, 50 ... Gas forming member, 50A ... Tapered convex portion formed of gas forming member
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Coating Apparatus (AREA)
Abstract
膜脱気モジュール(10)において、2枚の脱気膜(20A、20B)を封筒状にした封筒状脱気膜(12)の内側に、被脱気液体の供給口(32)側から排出口(34)側に向けて複数本並設されたテーパー状凸部(50A)を有する気体流路形成材を配置し、封筒状脱気膜(12)をスパイラル状に巻回したときに、封筒状脱気膜(12)同士の間にテーパー状溝の液体流路(18)が形成されるように構成した。これにより、液体流路が網状、散点状、あるいは格子状に形成された従来の膜脱気モジュールと同等以上の脱気性能を維持しつつ、液体流路の洗浄性も向上させることが可能となる。
Description
本発明は、塗布液等の被脱気液体から溶存気体を膜脱気により除去する膜脱気モジュールの改良に関する。
溶存気体量の多い塗布液は、塗布中に塗布機において気泡が発生し易く、発生した気泡は、支持体に塗布形成された塗布液層において筋やハジキ故障等の面状故障の原因となる。したがって、塗布液を塗布機に送る前に、塗布液中の溶存気体を除去しておく必要があり、この塗布液の溶存気体を除去するには膜脱気モジュールが通常用いられていた。この膜脱気モジュールに塗布液を通過させることにより脱気するものである。
この膜脱気モジュールは、ハウジングに、非多孔質ないし多孔質等から成るフィルムタイプの脱気膜を封筒状に形成した脱気膜構造体をスパイラル状に巻回して収納したものであり、この脱気膜構造体の外側が塗布液の流れる液体流路となる。また、脱気膜構造体の内部に減圧された気体流路が形成されており、この気体流路が塗布液から脱気された気体の流路となる。
従来、このような脱気膜構造体の液体流路や気体流路を形成する方法には、特許文献1で開示されているように、ネット状、綿布等の液体流路形成材を脱気膜構造体に重ね合わせた状態でスパイラル状に巻回することにより液体流路を形成し、脱気膜間にクロス織布、ネット等から成る気体流路形成材を設けることにより気体流路を形成していた。
即ち、図13Aに示すように、脱気膜構造体1と、それに重ね合わせた網状(メッシュ状)の液体流路形成材2とをスパイラル状に巻回し、液体流路形成材2が液体流路として機能するようにしている。更に、脱気膜構造体1は、図13Bに示すように、2枚の脱気膜3、4の間に気体流路形成材5が設けられ、この気体流路形成材5が気体流路として機能するようにしている。
また、特許文献2に示すように、脱気膜構造体1の少なくとも一方の面に、散点状にドット状の凸部6を形成したり(図14A)、格子状の凸部7を形成したり(図14B)することにより、液体流路を形成することも提案されている。
このように、特許文献1や特許文献2の膜脱気モジュールのように、液体流路を、網状の液体流路形成材で形成したり、脱気膜構造体に散点状、格子状の凸部を形成したり、一定方向の液流れを遮る構造に形成すると、液体流路を流れる被脱気液体の流れに乱れを発生させることができるので、脱気性能が向上するとされている。
しかしながら、一定方向の液流れを遮る構造の液体流路は、膜脱気モジュールを分解しない状態で液体流路に洗浄液を流して洗浄する際に洗浄性が悪くなり、膜モジュールの脱気運転中に液体流路に蓄積した異物が洗浄により十分排除できないという問題がある。これにより、膜脱気モジュールで脱気した塗布液を塗布形成した塗布液層に異物故障や泡はじき故障等が発生する。
したがって、従来の膜脱気モジュールは、劣化が早く、脱気運転を長期間行った後は、膜脱気モジュールを交換せざるをえない状況にあった。
このような背景から、脱気性能を低下させずに液体流路の洗浄性も向上できる膜脱気モジュールが要望されている。
本発明は、このような事情に鑑みてなされたもので、液体流路が網状、散点状、あるいは格子状に形成された従来の膜脱気モジュールと同等以上の脱気性能を維持しつつ、液体流路の洗浄性も向上させることができる膜脱気モジュールを提供することを目的とする。
前記目的を達成するために、本発明の第1の態様に係る膜脱気モジュールは、周縁が封筒状に閉じられた2枚の脱気膜と、前記封筒状に閉じられた封筒状脱気膜の内側に形成され被脱気液体から脱気された気体の気体流路を形成する気体流路形成部材と、前記封筒状脱気膜の端部に前記気体流路に連通して設けられ前記被脱気液体から前記気体流路に脱気された気体を吸引除去する吸引管と、前記吸引管を中心としてスパイラル状に巻回した状態で前記封筒状脱気膜を収納し、被脱気液体の供給口が一端側に形成されると共に脱気された脱気液体の排出口が他端側に形成されたハウジングと、前記気体流路形成部材上に並設され、前記封筒状脱気膜の少なくとも一方の内側面に前記供給口側から前記排出口側に向けて徐々に幅広になる複数本のテーパー状凸部と、前記スパイラル状に巻回された封筒状脱気膜同士の間に、前記テーパー状凸部によって形成され、被脱気液供給口側から排出口側に向け幅狭になるテーパー状溝の液体流路と、を備え、該液体流路の供給口側の流路断面積をAとし、排出口側の流路断面積をBとしたときに、該液体流路の流路断面積は供給口側から排出口側に向けて、(B/A)×100が40%以上80%以下となるという条件を満たす。
ここで、「2枚の脱気膜」とは、分離された2枚の脱気膜の場合以外に、1枚の脱気膜を折り畳んで上下2枚にする場合も含む。
本発明の第1の態様は、2枚の脱気膜を封筒状にした封筒状脱気膜の内側に気体流路形成材で、被脱気液体の供給口側から排出側に向けて複数本並設されたテーパー状凸部を形成することにより、封筒状脱気膜をスパイラル状に巻回したときに、封筒状脱気膜同士の間にテーパー状溝の液体流路が形成されるように構成したものである。なお、テーパー状溝とは、テーパー形状の溝をいう。
本発明の第1の態様によれば、封筒状脱気膜をスパイラル状に巻回することにより、テーパー状凸部を挟んだ封筒状脱気膜同士の間に、供給口から供給された被脱気液体が流れるテーパー状溝の液体流路が形成されるようにし、該液体流路の流路断面積が、供給口側から排出口側に向けて、式(B/A)×100が40%以上80%以下の範囲を満足するように、徐々に狭くなるようにした。このように、流路断面積の広い供給口側から液体流路に流入した被脱気液体は、排出口側に向けて流路断面積が徐々に小さくなることにより、液体流路が網状、散点状、あるいは格子状に形成された従来の膜脱気モジュールと同等以上の脱気性能を得ることができる。この理由は定かではないが、液体流路の流路断面積を被脱気液体の供給口側から排出口側に徐々に小さくすることで液体における流れの速度、圧力上昇、乱れが生ずることが予想され、これにより、脱気膜近傍に形成される境膜(透過膜内への気体の透過を阻害する)を薄膜化又は破壊することで脱気性能が向上することが推測される。
一方、液体流路を洗浄液で洗浄する場合には、液体流路は供給口側から排出口側に向けて、又はその反対方向に一定方向の流れを形成し、従来の網状、散点状、あるいは格子状に形成された液体流路のように、一定方向の液流れを遮ることがないので、洗浄性を向上できる。
これにより、液体流路が網状、散点状、あるいは格子状に形成された従来の膜脱気モジュールと同等の脱気性能を維持しつつ、液体流路の洗浄性も向上させることができる膜脱気モジュールを提供できる。
前記目的を達成するために、本発明の第2の態様に係る膜脱気モジュールは、周縁が封筒状に閉じられた2枚の脱気膜と、前記封筒状に閉じられた封筒状脱気膜の内側に形成され被脱気液体から脱気された気体の気体流路を形成する気体流路形成部材と、前記封筒状脱気膜の外側に前記被脱気液体の流路を形成する液体流路形成部材と、前記封筒状脱気膜の端部に前記気体流路に連通して設けられ前記被脱気液体から前記気体流路に脱気された気体を吸引除去する吸引管と、前記吸引管を中心として前記封筒状脱気膜と液体流路形成部材を重ね合わせ、スパイラル状に巻回した状態で、前記封筒状脱気膜を収納し、被脱気液体の供給口が一端側に形成されると共に脱気された脱気液体の排出口が他端側に形成されたハウジングと、前記液体流路形成部材上に並設され、前記封筒状脱気膜の少なくとも一方の外側面に対し前記供給口側から前記排出口側に向けて徐々に幅広になる複数本のテーパー状凸部と、前記スパイラル状に巻回された封筒状脱気膜と前記テーパー状凸部によって形成され、被脱気液供給口側から排出口側に向け幅狭になるテーパー状溝の液体流路と、を備え、該液体流路の供給口側の流路断面積をAとし、排出口側の流路断面積をBとしたときに、該液体流路の流路断面積は前記供給口側から排出口側に向けて、(B/A)×100が40%以上80%以下となるという条件を満たす。
本発明の第2の態様は、2枚の脱気膜を封筒状にした封筒状脱気膜の外側に液体流路形成材で、被脱気液体の供給口側から排出側に向けて複数本並設されたテーパー状凸部を形成することにより、封筒状脱気膜をスパイラル状に巻回したときに、封筒状脱気膜同士の間にテーパー状溝の液体流路が形成されるように構成したものである。なお、テーパー状溝とは、テーパー形状の溝をいう。
第2の態様の場合も、第1の態様と同様に、液体流路が網状、散点状、あるいは格子状に形成された従来の膜脱気モジュールと同等の脱気性能を維持しつつ、液体流路の洗浄性も向上させることができる膜脱気モジュールを提供できる。
ここで、前記液体流路形成材は、前記封筒状脱気膜の一方の外側面よりも、両方の外側面に対して前記供給口側から前記排出口側に向けて徐々に幅広になるテーパー状凸部が複数本並設された形状を有することが好ましい。これは、吸引管を中心にスパイラル状に巻回した時に、全ての膜面においてテーパー状溝が形成できるからである。
特に、第1の様態のように、封筒状脱気膜の内側に、気体流路形成材でテーパー状凸部を形成した場合には、気体流路形成材が液体流路を形成するための液体流路形成部材を兼用する。これにより、第2の態様のように、液体流路形成材を別途設ける必要がないと共に、液体流路が封筒状脱気膜で囲まれた状態になることから、被脱気液体が接触する部材が脱気膜のみになり、脱気性能及び洗浄性が向上する。
また、液体流路形成部材及び気体流路形成部材が並設される凸状部の間隔は、等間隔であることが好ましい。これは、液の偏流を抑制し、脱気性能を得るためである。
液体流路及び気体流路を形成するテーパー状凸部は、封筒状脱気膜の外側ないし内側と一体に形成してもよい。脱気膜とは別に形成し、脱気膜とともにスパイラル状に巻回してもよい。テーパー形状を形成する凸部断面形状は、半円形、台形等の多角形、球形等の形状でも形成できる。
また、前記供給口側の流路断面積Aは0.01mm2~5mm2の範囲であると共に、排出口側の流路断面積Bは0.005mm2~4mm2の範囲であることが好ましい。
これは、供給口側の流路断面積をAとし、排出口側の流路断面積をBとしたときに、式(B/A)×100が40%以上80%以下の範囲を満足した条件下で、更に流路断面積Aが0.01mm2~5mm2の範囲であり、排出口側の流路断面積Bが0.005mm2~4mm2の範囲であることが、脱気性能及び洗浄性の向上にとって一層好ましいからである。これにより、脱気性能を一層向上できると共に、異物故障を一層防止できる。
また、前記脱気膜全体の表面積は、前記テーパー状凸部全体の表面積よりも4%以上大きいが10%を超えて大きくはないことが好ましい。これにより、巻回時あるいは脱気膜内を減圧にしたときに、膜の破損を防止できる。
また、前記並設された複数本の液体流路において、前記供給口側のピッチ幅が、0.25mm以上6mm以下であることが好ましい。これにより、脱気性能を一層向上できると共に、異物故障を一層防止できる。
本発明の膜脱気モジュールによれば、液体流路が網状、散点状、あるいは格子状に形成された従来の膜脱気モジュールと同等以上の脱気性能を維持しつつ、液体流路の洗浄性も向上させることができる。これにより、塗布液層における異物故障及び泡はじき故障の両方を効果的に防止できる。
以下、添付図面に従って、本発明に係る膜脱気モジュールの好ましい実施の形態について詳説する。
(膜脱気モジュールの第1の実施の形態)
本発明の第1の実施の形態は、2枚の脱気膜を封筒状にした封筒状脱気膜の内側に、気体流路を形成する気体流路形成材で、被脱気液体の供給口側から排出側に向けて複数本並設されたテーパー状凸部を形成することにより、封筒状脱気膜をスパイラル状に巻回したときに、封筒状脱気膜同士の間にテーパー状溝の液体流路が形成されるように構成したものである。
本発明の第1の実施の形態は、2枚の脱気膜を封筒状にした封筒状脱気膜の内側に、気体流路を形成する気体流路形成材で、被脱気液体の供給口側から排出側に向けて複数本並設されたテーパー状凸部を形成することにより、封筒状脱気膜をスパイラル状に巻回したときに、封筒状脱気膜同士の間にテーパー状溝の液体流路が形成されるように構成したものである。
図1は、本発明の膜脱気モジュール10(図4参照)の主たる構成要素である封筒状脱気膜12(脱気膜構造体ということもある)を巻回してハウジング14(図4参照)に収納する前の状態を説明する説明図である。図2は、吸引管16を中心に図1の封筒状脱気膜12を巻回している状態図である。図3A及び3Bは、封筒状脱気膜12の内側に気体流路形成材50でテーパー状凸部50Aを形成した部分断面図である。図4は、巻回した封筒状脱気膜12をハウジング14に収納して膜脱気モジュール10を構成した断面図であり、封筒状脱気膜12は図2のA-A線に沿って切断することにより、液体流路18が分かり易いようにしている。
図1に示すように、封筒状脱気膜12は、2枚の脱気膜20A、20B(図3A及び3B参照)を合わせて、その周縁が熱融着等の接合方法によって封筒状にシールされると共に、シールされた封筒状脱気膜12の内側には、気体流路を形成する気体流路形成材50で形成されたテーパー状凸部50Aが設けられる(図3A及び3B参照)。これにより、シールされた脱気膜20A、20B同士の内側に、気体流路形成材50によりテーパー状凸部50Aが設けられた矩形板状の封筒状脱気膜12が形成される。封筒状脱気膜12の長手方向端部には、脱気された気体をハウジング14外に吸引除去するための吸引管16が設けられる。この吸引管16の基端部16Aを除く部分は、封筒状脱気膜12の内部に挿入され、挿入部分12Bの吸引管16には、気体流路形成材50に連通する多数の吸引孔24が形成される。また、吸引管16の基端部16Aは、図4に示すようにハウジング14外に延設されて、図示しない真空ポンプの配管に接続される。また、吸引管16の挿入部分16Bから気体が洩れないように、挿入部分16Bが図示しないシール部材でシールされる。そして、上記の気体流路形成材50は、吸引管16により封筒状脱気膜12の内部を吸引したときに、2枚の脱気膜20、20が密着することを防止するので、封筒状脱気膜12の内部に脱気された気体が流れる気体流路22を形成することができる。
脱気膜20は、非多孔質膜であっても多孔質膜であってもよく、また、その厚み等に関しても適宜変更することができる。例えば、脱気膜として、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)を好適に使用できる。
尚、本実施の形態では、分離された2枚の脱気膜20、20を合わせて周縁部を接合することにより封筒状脱気膜12を形成したが、一枚の脱気膜を2つに折り畳んで周縁部をシールすることにより封筒状脱気膜12を形成してもよい。
気体流路形成材50に直接、接着、融着、塗布、成型法等で、供給口32側から排出口34側に向けてテーパー状凸部50Aをストライプ状に形成する。又、気体流路形成材50とは別に、供給口32側から排出口34側に向けて凸形状をストライプ状に形成したテーパー状凸部50Aを用意し、気体流路形成材50の片面ないし両面に形成しても良い。
テーパー状凸部50Aを形成する気体流路形成材50の材質は、被脱気液体及び脱気対象気体に溶解しない材質であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン等の各種樹脂を用いることができる。
気体流路形成材50でテーパー状凸部50Aを形成する方法としては、ポリテトラフルオロエチレン(テフロン(登録商標))粉末溶融接着、スクリーン塗布、グラビア塗布等、気体流路形成材50に一体形成できる手段あるいは、気体流路形成材50に接着できれば特に限定されない。
テーパー状凸部50Aの断面形状は円状、半円状、楕円状、三角形状、台形状等の各種形状とすることができる。なお、本実施の形態では、断面台形状に形成した例で示してある。これにより、液体流路18を形成するためのネット(網)等の液体流路形成材を別途必要としないので、製作も簡単になる。又、2枚の脱気膜20A、20Bの少なくとも一方の内面にテーパー状凸部50Aを封筒状脱気膜12と一体的に設けても良い。
テーパー状凸部50Aの高さは、封筒状脱気膜12の内側に対して片面にのみ設ける場合は、200μm以下が好ましく、100μm以下がより好ましく、50μm以下が最も好ましい。また、封筒状脱気膜12の内側に対して両面に設ける場合は、100μm以下が好ましく、50μm以下がより好ましい。
このように、封筒状脱気膜12の内側に、気体流路形成材50によって吸引管16と平行な複数本のテーパー状凸部50Aが並設される。このテーパー状凸部50Aは、断面が台形な棒状に形成されると共に、ハウジング14に形成された被脱気液体の供給口32側から脱気された脱気気体の排出口34側に向けて台形幅が徐々に幅広になるように台形側面にテーパーが形成されている。このようなテーパーが形成された複数本のテーパー状凸部50Aを封筒状脱気膜12の内側に並設させた封筒状脱気膜12を図2のように巻回することにより、脱気膜20Bの面には、供給口32側から供給された被脱気液体が脱気膜20に接触しながら流れる液体流路18が形成される(図1参照)。そして、この液体流路18の流路断面積は、供給口32側から排出口34側に向けて下記式を満足するように徐々に幅が狭くなる。
即ち、供給口32側の流路断面積をAとし、排出口34側の流路断面積をBとしたときに、式(B/A)×100が40%以上80%以下の範囲である。
また、液体流路18は、上記式(B/A)×100が40%以上80%以下である条件に加えて、下記の条件を満足することが一層好ましい。
(1)供給口32側の流路断面積Aは0.01mm2~5mm2の範囲であると共に、排出口34側の流路断面積Bは0.005mm2~4mm2の範囲であることが好ましい。
供給口32側の流路断面積をAとし、排出口34側の流路断面積をBとしたときに、式(B/A)×100が40%以上80%以下の範囲を満足した条件下で、更に供給口32側の流路断面積Aが0.01mm2~5mm2の範囲であり、排出口34側の流路断面積Bが0.005mm2~4mm2の範囲であることが、脱気性能及び洗浄性の向上にとって一層好ましいからである。即ち、液体流路18の供給口32側の流路断面積Aが0.01mm2未満では、排出口34側の流路断面積Bを更に狭くする必要があり、異物の径にもよるが異物詰まりが生じ易くなる。これを排出口34側の流路断面積Bから見た場合には、0.005mm2が下限になる。
一方、液体流路18の排出口34側の流路断面積Bが4mm2を超えると、供給口32側の流路断面積Aを更に広くする必要があり、流速や圧力の上昇、液流の乱れが低下し、液と膜との接触が低下するため、脱気能力が低下する。これを供給口32側の流路断面積Aから見た場合には、5mm2が上限になる。
これにより、脱気性能を一層向上できると共に、洗浄性が向上するので異物故障防止を一層向上できる。
(2)脱気膜20全体の表面積は、テーパー状凸部50A全体の表面積よりも4%以上大きいが、10%を超えて大きくはないことが好ましい。
これは、封筒状脱気膜12の内部を減圧したときに、凸部を有し、表面積の大きな気体流路形成材50によって脱気膜20A,20Bが破壊されてしまうためである。
そこで、発明者は、脱気膜20全体の表面積と、テーパー状凸部50A全体の表面積との好ましい関係を実験により調べたところ、脱気膜20全体の表面積は、テーパー状凸部50A全体の表面積よりも4%以上大きいが、10%を超えて大きくはないように(4%以上10%以下の範囲で大きく)設計することで、脱気性能を向上でき、且つ脱気膜の破損を防止できた。
(3)並設された複数本の液体流路18において、供給口32側のピッチ幅Pが、0.25mm以上6mm以下であることが好ましい。ここで、ピッチ幅Pは、図1に示すように、液体流路18の供給口32側の幅方向中心から隣の液体流路18の供給口32側の幅方向中心までの距離を言う。
これは、供給口32側のピッチ幅が0.25mm未満で小さ過ぎると、流路断面積の小さな液体流路18が多数本形成されることになり、液体流路18が異物によって目詰まりし易くなる傾向にある。また、ハウジング14内に収納できる封筒状脱気膜12の直径、即ち封筒状脱気膜12を巻き戻したときの長さL(図1参照)には制限があるので、供給口32側のピッチ幅が6mmを超えて大きくなり過ぎると、封筒状脱気膜12に形成できる液体流路18の本数が少なくなる。これにより、脱気性能が落ちる傾向にある。したがって、供給口32側のピッチ幅が、0.25mm以上6mm以下とすることで、脱気性能を一層向上できると共に、洗浄性が向上するので異物故障防止を一層向上できる。
図1~図2では、気体流路形成材50で形成したテーパー状凸部50Aを封筒状脱気膜12の内側に対して片面のみに設け例で説明したが、封筒状脱気膜12の内側に対して、両面に設けてもよい。図3Aは、テーパー状凸部50Aを封筒状脱気膜12の内側に対して片面にのみ設けた図である。図3Bは、テーパー状凸部50Aを封筒状脱気膜12の内側に対して両面に設けた図であり、図3Bの場合、封筒状脱気膜12をスパイラル状に巻回したときに、両面に形成されたテーパー状凸部50A同士が接触して合わさった状態で液体流路18を形成することになる。したがって、上記したように、テーパー状凸部50Aが、片面にのみ形成された図3Aの場合に比べてテーパー状凸部50Aの台形高さを低くすることが好ましい。
次に、図4を用いて本発明の膜脱気モジュール10について説明する。
本発明の膜脱気モジュール10は、上記の如く構成された封筒状脱気膜12を、吸引管16を中心に巻回した状態で、ハウジング14に収納することにより形成される。ハウジング14の材質及び形状に関しては特に限定されない。
ハウジング14は、主として、円筒ケーシング14Aと、円筒ケーシング14Aの両端に被せる一対の蓋部材14B,14Cとによって構成される。一対の蓋部材14B,14Cのうちの一方の蓋部材14Bには、被脱気液体を供給する供給口32が形成される。また、他方の蓋部材14Cには、封筒状脱気膜12によって脱気された脱気液体を排出する排出口34が形成されると共に、吸引管16が貫通する貫通孔38が形成される。
円筒ケーシング14Aの両端には、整流用スクリーン40,40が設けられ、供給口32から供給された被脱気液体が封筒状脱気膜12全体に均等に行き渡るように整流される。洗浄性向上のため、この整流用スクリーン40をなくしてもよい。
ハウジング14に収納された封筒状脱気膜12は、図4の封筒状脱気膜12の断面図から分かるように、液体流路18の流路断面積は、供給口32側から排出口34側に向けて徐々に狭くなっている。これにより、液体流路が網状、散点状、あるいは格子状に形成された従来の膜脱気モジュールと同等以上の脱気性能を得ることができる。この理由については、定かではないが、図5に示すように液体流路18を流れる被脱気液体における流れの速度、圧力上昇、乱れが生ずることが予想される。これにより、脱気膜20B面の近傍に形成される境膜(脱気膜内への気体の透過を阻害する)を薄膜化又は破壊することができる。したがって、本発明のように液体流路18をストライプ状に形成して、一定方向の流れが発生するようにしても、網状、散点状、格子状に液体流路を形成した従来の膜脱気モジュールと比べても同等以上の脱気性能を得ることができる。
一方、供給口32又は排出口34から洗浄液(例えば清浄水)を膜脱気モジュール10内に送液して液体流路18を洗浄する場合には、液体流路18は供給口32側から排出口34側、又は排出口34側から供給口32側に向けて一定方向の流れを形成する。これにより、従来の網状、散点状、格子状に形成された液体流路のように、一定方向の液流れを遮ることがないので、洗浄性を向上できる。洗浄液の送液は、排出口34側から送液することが好ましく、排出口34側と供給口32側から交互に送液することが一層好ましい。
これにより、液体流路18が網状、散点状、格子状に形成された従来の膜脱気モジュールと同等以上の脱気性能を維持しつつ、液体流路18の洗浄性も向上させることができる膜脱気モジュールを提供できる。
(膜脱気モジュールの第2の実施の形態)
本発明の第2の実施の形態は、図6に示すように、2枚の脱気膜20A、20Bを封筒状にした封筒状脱気膜12の外側に液体流路形成材30で、被脱気液体の供給口32側から排出口34側に向けて複数本並設されたテーパー状凸部30Aを形成することにより、封筒状脱気膜12をスパイラル状に巻回したときに、封筒状脱気膜12と液体流路形成部材30とでテーパー状溝の液体流路18が形成されるように構成したものである。なお、第1の実施の形態と同様の部分についての説明は省略する。
本発明の第2の実施の形態は、図6に示すように、2枚の脱気膜20A、20Bを封筒状にした封筒状脱気膜12の外側に液体流路形成材30で、被脱気液体の供給口32側から排出口34側に向けて複数本並設されたテーパー状凸部30Aを形成することにより、封筒状脱気膜12をスパイラル状に巻回したときに、封筒状脱気膜12と液体流路形成部材30とでテーパー状溝の液体流路18が形成されるように構成したものである。なお、第1の実施の形態と同様の部分についての説明は省略する。
図6では、液体流路形成材30で形成したテーパー状凸部30Aを封筒状脱気膜12の片面にのみに設けた例で説明したが、封筒状脱気膜12の両面に設けてもよい。図7Aは、テーパー状凸部30Aを封筒状脱気膜12の両面に設けた図であり、図7Bは、テーパー状凸部30Aを封筒状脱気膜12の片面にのみ設けた図である。図7Aの場合、封筒状脱気膜12をスパイラル状に巻回したときに、両面に形成されたテーパー状凸部30A同士が接触して合わさった状態で液体流路18を形成することになる。したがって、テーパー状凸部30Aが、片面にのみ形成された図7Bの場合に比べてテーパー状凸部30Aの台形高さを低くすることが好ましい。
第2の実施の形態の場合も、液体流路形成材30で形成するテーパー状凸部30Aの断面形状は、円状、半円状、楕円状、台形状、三角形状等の各種形状とすることができ、図6及び図7A及び7Bは、楕円状で図示したものである。テーパー状凸部30Aを楕円状や円状にすることで、台形状、半円状、三角形状にする場合に比べて、脱気膜20との接触面積を小さくできるので、脱気性能向上にとって好ましい。
液体流路形成材30で形成するテーパー状凸部30Aの台形高さは、封筒状脱気膜12の片面のみに設ける場合は、200μm以下が好ましく、100μm以下がより好ましく、50μm以下が最も好ましい。また、封筒状脱気膜12の両面に設ける場合は、100μm以下が好ましく、50μm以下がより好ましい。
テーパー状凸部30Aを形成する液体流路形成材30の材質は、被脱気液体に溶解しない材質であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン等を用いることができる。
液体流路用のテーパー状凸部30Aを、封筒状脱気膜12の面に形成する方法としては、ポリテトラフルオロエチレン(テフロン(登録商標))粉末溶融接着、スクリーン塗布、グラビア塗布等、テーパー状凸部30Aを、封筒状脱気膜12に一体形成できる手段、あるいは液体流路形成材30に接着できれば特に限定されない。
また、第2の実施の形態において、封筒状脱気膜12の内部に気体流路22を形成する方法は、気体が流れる流路であれば特に限定されず、例えばテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ナイロン、ポリエステル等の樹脂製のクロス織布、ウレタンスポンジ、樹脂製のネット、金属金網等の気体流路形成材26(図7A及び7B参照)を2枚の脱気膜20の間に挟み込む方法を採用できる。
気体流路用凸部28としては、表面が平滑なもの以外に、ドット状の凸状部を脱気膜20面に多数散点させた散点状のもの、脱気膜20面に供給口側から排出口側に向けて凸状部をストライプ状に形成したもの、脱気膜20面に凸部を格子状に形成したもの等の各種形態を採用することができる。また、気体流路用凸部28の断面形状は円状、半円状、楕円状、三角形状、台形状等の各種形状とすることができる。又、封筒状脱気膜12と一体的に設けても良い。
次に、本発明の第1の実施の形態の膜脱気モジュールを使用した実施例を説明する。
(実施例A)
実施例Aは、本発明の膜脱気モジュールの脱気能力を、比較例と比較した試験である。
実施例Aは、本発明の膜脱気モジュールの脱気能力を、比較例と比較した試験である。
本発明の実施例で使用した膜脱気モジュールと、比較例で使用した膜脱気モジュールの詳細を図8の表に示す。
図8の表において、実施例1~4は、テーパー状凸部により液体流路を形成したものであり、液体流路の供給口側の流路断面積をAとし、排出口側の流路断面積をBとしたときに、式(B/A)×100が40%以上80%以下の範囲に入るようにしたものである。
比較例1は、厚み250μmで孔径が60メッシュのポリエステルネット(液体流路形成材)を封筒状脱気膜に重ね合わせることにより液体流路を形成したもので、従来の膜脱気モジュールに相当するものである。
比較例2~5は、テーパー状凸部により液体流路を形成したことは実施例1~4と同様であるが、式(B/A)×100が40%以上80%以下を満足しない場合である。
尚、実施例1~4、及び比較例1~5ともにハウジング容積、脱気膜の材質、面積、厚み、及び気体流路の形成方法は共通である。
そして、脱気能力試験は、図1の膜脱気モジュールのそれぞれについて、純水(25℃、溶存酸素量:8.1ppm)を流して、純水中の溶存酸素を脱気する脱気能力を対比した。また、純水の送液量を、500cc/分、1000cc/分、1500cc/分、2000cc/分の4水準で行った。なお、脱気時間は、ハウジング容積が1L(リットル)であることから、例えば送液量が1000cc/分の場合には1分となる。
脱気能力試験の結果を図9の表に示す。
図9の表から、本発明の実施例1~4は、液体流路形成にポリエステルネットを使用した比較例1と対比すると、同等の脱気能力があり、従来の膜脱気モジュールの脱気能力が維持されていることが分かる。
本発明の実施例1~4を、比較例2~5と対比すると、比較例2、3は本発明よりも若干良くなっているが、比較例4、5は本発明の方が若干良い結果になっている。
(実施例B)
実施例Bの泡はじき試験は、図8の表に示すそれぞれの膜脱気モジュールによって塗布液を脱気した後、塗布装置によって塗布液を走行する支持体に塗布したときに、塗布液層の泡はじき個数を対比したものである。
実施例Bの泡はじき試験は、図8の表に示すそれぞれの膜脱気モジュールによって塗布液を脱気した後、塗布装置によって塗布液を走行する支持体に塗布したときに、塗布液層の泡はじき個数を対比したものである。
塗布条件:バー塗布装置を使用して、塗布速度(支持体の走行速度)80m/分で、厚み0.3mm、幅1000mmのアルミニウム製の支持体に塗布液を塗布した。
塗布液:純水にポリビニルアルコール(PVA)と界面活性剤とを混合溶解して塗布液を調製した。
膜脱気モジュール:塗布液供給ラインには1台の膜脱気モジュールを配置し、塗布液を送液量2000cc/分で流して脱気した後、長さ10インチで、濾過精度が20μmの日本ポールプロファイル濾過フィルタで濾過してバー塗布装置に送った。膜脱気モジュールの脱気減圧度は30torrとした。膜脱気モジュールの封筒状脱気膜は、縦0.31m(310mm)×横16mサイズの2枚の脱気膜を重ね合わせて、周囲を封筒状に封止することで形成した。また、ハウジングは、円筒ケーシングのサイズが内径125mm×長さ370mmのものを使用した。供給口及び排出口の配管径は10Aサイズの配管を使用したが、15A又は20Aサイズ配管でもよい。また、膜脱気モジュール後の濾過フィルタ前の配管に圧力計をつけて送液圧力を測定した。
そして、支持体に塗布された塗布液層に発生する泡はじき個数(個/支持体1000m当たり)、及び送液圧力(MPa)の2項目について評価した。泡はじき個数は目視にて評価した。また、泡はじき個数と送液圧力の両方から総合判定をA、B、Cで判定した。Aは、泡はじきが無く、送液圧力も低い場合である。Bは、泡はじき個数は問題ないが、送液圧力が高い場合である。Cは、送液圧力は問題ないが、泡はじき個数が多く問題な場合である。
実施例Bの泡はじき試験結果を、図10の表に示す。
図10の表から分かるように、比較例1及び本発明の実施例1~4は、泡はじき個数が0個であると共に、送液圧力も0.07~0.09(MPa)の範囲であり、総合判定がAであった。
これに対して、比較例2~3は、泡はじき個数が0個であるものの、送液圧力が0.13~0.15と実施例1~4の約2倍になっており、総合評価はBであった。また、比較例4~5は、送液圧力は0.04~0.06と実施例1~4よりも低いものの、泡はじき個数が6~7個と多く、Cの評価であった。
(実施例C)
実施例Cの洗浄による能力回復試験は、図8の表に示したそれぞれの膜脱気モジュールを長期間運転した後の洗浄によって、脱気能力、送液圧力、泡はじき個数、及び異物個数の4項目の回復力がどうなるかを対比したものである。
実施例Cの洗浄による能力回復試験は、図8の表に示したそれぞれの膜脱気モジュールを長期間運転した後の洗浄によって、脱気能力、送液圧力、泡はじき個数、及び異物個数の4項目の回復力がどうなるかを対比したものである。
試験は、それぞれの膜脱気モジュールに、塗布液を送液量2000cc/分で1カ月間循環送液した直後の洗浄前について、脱気能力、送液圧力、泡はじき個数、及び異物個数を調べた。また、1カ月間循環送液した後で、膜脱気モジュールに純水(30℃)を送液量2000cc/分で30分流して洗浄した洗浄後について、脱気能力、送液圧力、泡はじき個数、及び異物個数を調べた。
そして、洗浄前と洗浄後の結果を対比することで洗浄回復力を判定した。尚、脱気能力の試験は実施例Aと同様に行い、送液圧力、泡はじき個数、及び異物故障の試験は実施例B(但し、濾過フィルタは使用せず)と同様に行うことで調べた。
図11の表に洗浄前の結果を示し、図12の表に洗浄後の結果を示す。
図11の洗浄前の結果を見ると、膜脱気モジュールを長期運転した後の脱気能力の低下の程度は、実施例1~4が一番小さく、次に比較例2~4が小さく、比較例1が一番大きかった。尚、図9の表に示す脱気能力が膜脱気モジュールを長期運転する前の脱気能力である。
また、膜脱気モジュールを長期運転した後の送液圧力の上昇は、実施例1~4が一番小さく、次に比較例2~4が小さく、比較例1が一番大きかった。尚、図10の表に示す送液圧力が膜脱気モジュールを長期運転する前の送液圧力である。
膜脱気モジュールを長期運転することにより、塗布液層に異物が発現しているが、実施例1~4は、異物個数が2個であり、比較例1の異物個数30に比べて顕著に少ない。このことから、従来のポリエステルネットで液体流路を形成する方法は、長期間運転により異物故障が発生し易くなることが分かる。また、比較例2~5は、実施例1~4に比べて異物個数が若干多い傾向になるが、比較例1に比べると顕著に少ない。これにより、テーパー状凸部で液体流路を形成する方法は、液体流路に異物が蓄積されにくく、異物故障に対して顕著な改善がなされることが分かる。
また、膜脱気モジュールを長期運転した後の泡はじき個数について見ると、実施例1~4及び比較例2~5は、泡はじき個数が5~7の範囲で略同等であるが、比較例1の泡はじき個数は10個と多かった。
次に、図12の洗浄後の結果を、上記した洗浄前の結果と対比すると、いずれの膜脱気モジュールの場合も洗浄することによって、脱気能力、送液圧力、泡はじき個数、及び異物個数は、改善される。しかし、長期運転する前の図9の脱気能力と比較した場合、実施例1~4は、長期運転する前の脱気能力レベルまで回復しているのに対して、比較例1~5は、長期運転する前の脱気能力レベルまで回復しないことが分かる。
また、洗浄することによって、実施例1~4の異物個数及び泡はじき個数は0個になり
、比較例1~5に比べて回復力が大きいことが分かる。比較例4、5の異物個数は0個であるものの、泡はじき個数は7個と多い。また、比較例1~3は、異物個数及び泡はじき個数とも多く、洗浄回復力が悪い結果であった。
、比較例1~5に比べて回復力が大きいことが分かる。比較例4、5の異物個数は0個であるものの、泡はじき個数は7個と多い。また、比較例1~3は、異物個数及び泡はじき個数とも多く、洗浄回復力が悪い結果であった。
以上の洗浄前と洗浄後の対比による洗浄回復力を総合判定すると、実施例1~4は回復力が良くAの評価であり、比較例1~5は回復力が悪くCの判定になる。
また、テーパー状凸部で液体流路を形成した実施例1~4と比較例2~5との対比に注目して、脱気能力、送液圧力、泡はじき個数、異物個数を総合的に見ると、供給口側の流路断面積Aが0.01mm2~5mm2の範囲であり、排出口側の流路断面積Bが0.005mm2~4mm2の範囲である実施例1~4において良い傾向にあることが分かる。
尚、実施例には示さなかったが、脱気性能や異物故障の防止には、脱気膜全体の表面積が、テーパー状凸部全体の表面積よりも4%以上10%以下の範囲で大きいことが好ましいことが分かった。また、並設された複数本の液体流路において、供給口側のピッチ幅が、0.25mm以上6mm以下であることが好ましいことも分かった。
10…膜脱気モジュール、12…封筒状脱気膜、14…ケーシング、16…吸引管、18…液体流路、20…脱気膜、22…気体流路、24…吸引孔、26…気体流路形成材、28…気体流路用凸部、30…液体形成部材で形成したテーパー状凸部、32…供給口、34…排出口、38…貫通孔、40…整流用スクリーン、50…気体形成部材、50A…気体形成部材で形成したテーパー状凸部
Claims (7)
- 周縁が封筒状に閉じられた2枚の脱気膜と、
前記封筒状に閉じられた封筒状脱気膜の内側に形成され被脱気液体から脱気された気体の気体流路を形成する気体流路形成部材と、
前記封筒状脱気膜の端部に前記気体流路に連通して設けられ前記被脱気液体から前記気体流路に脱気された気体を吸引除去する吸引管と、
前記吸引管を中心としてスパイラル状に巻回した状態で前記封筒状脱気膜を収納し、被脱気液体の供給口が一端側に形成されると共に脱気された脱気液体の排出口が他端側に形成されたハウジングと、
前記気体流路形成部材上に並設され、前記封筒状脱気膜の少なくとも一方の内側面に前記供給口側から前記排出口側に向けて徐々に幅広になる複数本のテーパー状凸部と、
前記スパイラル状に巻回された封筒状脱気膜同士の間に、前記テーパー状凸部によって形成され、被脱気液供給口側から排出口側に向け幅狭になるテーパー状溝の液体流路と、を備え、
該液体流路の供給口側の流路断面積をAとし、排出口側の流路断面積をBとしたときに、該液体流路の流路断面積は供給口側から排出口側に向けて、(B/A)×100が40%以上80%以下となるという条件を満たす、
膜脱気モジュール。 - 周縁が封筒状に閉じられた2枚の脱気膜と、
前記封筒状に閉じられた封筒状脱気膜の内側に形成され被脱気液体から脱気された気体の気体流路を形成する気体流路形成部材と、
前記封筒状脱気膜の外側に前記被脱気液体の流路を形成する液体流路形成部材と、
前記封筒状脱気膜の端部に前記気体流路に連通して設けられ前記被脱気液体から前記気体流路に脱気された気体を吸引除去する吸引管と、
前記吸引管を中心として前記封筒状脱気膜と液体流路形成部材を重ね合わせ、スパイラル状に巻回した状態で、前記封筒状脱気膜を収納し、被脱気液体の供給口が一端側に形成されると共に脱気された脱気液体の排出口が他端側に形成されたハウジングと、
前記液体流路形成部材上に並設され、前記封筒状脱気膜の少なくとも一方の外側面に対し前記供給口側から前記排出口側に向けて徐々に幅広になる複数本のテーパー状凸部と、
前記スパイラル状に巻回された封筒状脱気膜と前記テーパー状凸部によって形成され、被脱気液供給口側から排出口側に向け幅狭になるテーパー状溝の液体流路と、を備え、
該液体流路の供給口側の流路断面積をAとし、排出口側の流路断面積をBとしたときに、該液体流路の流路断面積は前記供給口側から排出口側に向けて、(B/A)×100が40%以上80%以下となるという条件を満たす、
膜脱気モジュール。 - 前記気体流路形成部材のテーパー状凸部が複数本、等間隔で配置されている、請求項1の膜脱気モジュール。
- 前記液体流路形成部材のテーパー状凸部が複数本、等間隔で配置されている、請求項2の膜脱気モジュール。
- 前記液体流路の前記供給口側の前記流路断面積Aは0.01mm2~5mm2の範囲であり、
前記排出口側の前記流路断面積Bは0.005mm2~4mm2の範囲である、請求項1~4の何れか1に記載の膜脱気モジュール。 - 前記脱気膜全体の表面積は、前記テーパー状凸部全体の表面積よりも4%以上大きいが、前記テーパー状凸部全体の表面積よりも10%を超えて大きくはない、請求項1~5の何れかに1に記載の膜脱気モジュール。
- 前記並設された複数本の液体流路において、前記供給口側のピッチ幅は、0.25mm以上6mm以下である、請求項1~6の何れか1に記載の膜脱気モジュール。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-222776 | 2008-08-29 | ||
JP2008222776A JP2010051933A (ja) | 2008-08-29 | 2008-08-29 | 膜脱気モジュール |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010024291A1 true WO2010024291A1 (ja) | 2010-03-04 |
Family
ID=41721458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064860 WO2010024291A1 (ja) | 2008-08-29 | 2009-08-26 | 膜脱気モジュール |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010051933A (ja) |
WO (1) | WO2010024291A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012057902A1 (en) * | 2010-10-28 | 2012-05-03 | General Electric Company | Membrane separation module |
WO2015107820A1 (ja) * | 2014-01-20 | 2015-07-23 | 富士フイルム株式会社 | 酸性ガス分離用スパイラル型モジュールおよび製造方法 |
WO2017085698A1 (en) * | 2015-11-20 | 2017-05-26 | Water Research Commission | Microfiltration assembly and method of manufacture |
US10843136B2 (en) | 2018-08-20 | 2020-11-24 | Hamilton Sundstrand Corporation | Selectively permeable membrane devices |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG185557A1 (en) * | 2010-06-03 | 2012-12-28 | Toray Industries | Separation membrane element |
JP7231419B2 (ja) * | 2019-01-22 | 2023-03-01 | 日東電工株式会社 | 分離膜モジュール及びそれを用いた液体処理システム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0924255A (ja) * | 1995-07-12 | 1997-01-28 | Kurita Water Ind Ltd | スパイラル膜モジュール |
JPH11267406A (ja) * | 1998-03-20 | 1999-10-05 | Japan Gore Tex Inc | 脱気装置 |
-
2008
- 2008-08-29 JP JP2008222776A patent/JP2010051933A/ja active Pending
-
2009
- 2009-08-26 WO PCT/JP2009/064860 patent/WO2010024291A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0924255A (ja) * | 1995-07-12 | 1997-01-28 | Kurita Water Ind Ltd | スパイラル膜モジュール |
JPH11267406A (ja) * | 1998-03-20 | 1999-10-05 | Japan Gore Tex Inc | 脱気装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012057902A1 (en) * | 2010-10-28 | 2012-05-03 | General Electric Company | Membrane separation module |
WO2015107820A1 (ja) * | 2014-01-20 | 2015-07-23 | 富士フイルム株式会社 | 酸性ガス分離用スパイラル型モジュールおよび製造方法 |
WO2017085698A1 (en) * | 2015-11-20 | 2017-05-26 | Water Research Commission | Microfiltration assembly and method of manufacture |
US10843136B2 (en) | 2018-08-20 | 2020-11-24 | Hamilton Sundstrand Corporation | Selectively permeable membrane devices |
Also Published As
Publication number | Publication date |
---|---|
JP2010051933A (ja) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010024291A1 (ja) | 膜脱気モジュール | |
TWI648172B (zh) | 外部灌流型中空絲膜模組以及具有該模組的噴墨列印機 | |
JP5671004B2 (ja) | 多孔性複合膜 | |
US20040060858A1 (en) | Multi-layer pleat support filter construction | |
JP2011092905A (ja) | 脱気膜の製造方法、封筒状物、および該封筒状物を用いた脱気装置 | |
WO2016067917A1 (ja) | 濾過モジュール及び濾過装置 | |
WO2005099877A1 (ja) | プリーツ型カートリッジフィルタ装置 | |
US7387661B2 (en) | Pleated construction for effecting gas transfer membrane | |
EP3542890B1 (en) | Raw water flow path spacer and spiral membrane element provided with same | |
JP6788014B2 (ja) | 外部潅流型中空糸膜モジュール | |
JPWO2007122909A1 (ja) | プリーツ型フィルタカートリッジ | |
TW201720516A (zh) | 氣泡液濃縮裝置、氣泡液濃縮方法及高密度微細氣泡液生成裝置 | |
JP2008238003A (ja) | カートリッジフィルタ及びそれを用いた濾過装置 | |
JP4437527B2 (ja) | 膜ろ過モジュール | |
JP4634890B2 (ja) | プリーツ型カートリッジフィルタ装置 | |
JP2009195870A (ja) | スパイラル型膜エレメント | |
WO2016088579A1 (ja) | 濾過モジュール及び濾過装置 | |
JP3224409B2 (ja) | 脱気用中空糸膜モジュール | |
JP2007209956A (ja) | スパイラル型分離膜エレメント | |
JP4489545B2 (ja) | フィルタ要素とそれを用いたフィルタカートリッジ | |
JP2019181356A (ja) | 外部潅流型中空糸膜モジュール | |
JP2003181227A (ja) | フィルタカートリッジ | |
JP2000117068A (ja) | 膜脱気モジュール | |
JP2004181344A (ja) | 積層型フィルタ膜エレメントとそれを使用したフィルタカートリッジ | |
JP7116618B2 (ja) | 中空糸膜モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09809942 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09809942 Country of ref document: EP Kind code of ref document: A1 |