[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010023766A1 - Displacement sensor - Google Patents

Displacement sensor Download PDF

Info

Publication number
WO2010023766A1
WO2010023766A1 PCT/JP2008/065692 JP2008065692W WO2010023766A1 WO 2010023766 A1 WO2010023766 A1 WO 2010023766A1 JP 2008065692 W JP2008065692 W JP 2008065692W WO 2010023766 A1 WO2010023766 A1 WO 2010023766A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitance
displacement
displacement sensor
movable structure
Prior art date
Application number
PCT/JP2008/065692
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 石杜
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/065692 priority Critical patent/WO2010023766A1/en
Publication of WO2010023766A1 publication Critical patent/WO2010023766A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Definitions

  • the present invention relates to a displacement sensor that measures the displacement of a movable part based on a change in capacitance.
  • Non-Patent Document 1 describes a capacitance-type displacement sensor in which comb-shaped electrodes in which linear electrodes are periodically arranged are formed below the movable structure.
  • Patent Document 1 describes a technique for realizing a capacitor by forming concave and convex grooves in a movable structure.
  • Non-Patent Document 1 may cause a phase error or a capacitance error due to processing variations or misalignment. In this case, the displacement sensor is affected by these errors, and the accuracy (sensitivity) of displacement measurement decreases. Further, since the cycle of the electrodes used in this displacement sensor is set to be equal to or greater than the maximum displacement of the movable structure, it is impossible to detect a highly sensitive displacement when the maximum displacement is large. Non-Patent Document 1 does not describe any of these problems.
  • Patent Document 1 the capacitor described in Patent Document 1 is used only as an actuator and is not used as a sensor.
  • Examples of problems to be solved by the present invention include the above. It is an object of the present invention to realize high-resolution detection even for large displacements while reducing phase errors and capacitance errors caused by processing variations and misalignment in a capacitance type displacement sensor. And
  • a displacement sensor that measures displacement based on a change in capacitance, the first electrode having comb teeth formed on the same surface according to a predetermined period, and the first electrode A second electrode having comb teeth that are alternately arranged on the same plane as the comb teeth of the electrode, and a facing surface parallel to the first and second electrodes at a predetermined interval, and the surface of the facing surface A movable structure that is displaced inwardly, the movable structure being adjacent to the first region and the first region arranged at the predetermined period on the facing surface. And a second region formed alternately with each other, and the capacitance per unit area of the capacitor formed by the first region and the first electrode is the second region. Different from the capacitance per unit area of the capacitor formed by the first electrode And wherein the door.
  • a displacement sensor that measures displacement based on a change in capacitance, the first electrode having comb teeth formed on the same surface according to a predetermined period, and the first electrode A second electrode having comb teeth that are alternately arranged on the same plane as the comb teeth of the electrode, and a facing surface parallel to the first and second electrodes at a predetermined interval, and within the surface of the facing surface A movable structure that is displaced in a direction, wherein the movable structure has a first region that is arranged at the predetermined period on the facing surface, and is adjacent to the first region and the first region. Second regions formed alternately, and the capacitance per unit area of the capacitor formed by the first region and the first electrode is the second region and the second region. It differs from the capacitance per unit area of the capacitor formed by the first electrode.
  • the above displacement sensor has a first electrode, a second electrode, and a movable structure, and detects the displacement of the movable structure.
  • the first electrode has a plurality of comb teeth formed on the same surface according to a predetermined cycle.
  • the second electrode has comb teeth that are alternately arranged on the same plane as the comb teeth of the first electrode.
  • the movable structure has a facing surface parallel to the first and second electrodes at a predetermined interval, and is displaced in the in-plane direction.
  • the movable structure is formed on the opposite side, the first region arranged at the same period as the period of the comb teeth of the first electrode, adjacent to the first region, and alternately arranged with the first region. And a second region.
  • the first and second electrodes form a capacitor with the first and second regions.
  • the capacitance per unit area of the capacitor formed by the first region and the first electrode is different from the capacitance per unit area of the capacitor formed by the second region and the first electrode. .
  • the capacitance per unit area of the capacitor formed by the first region and the second electrode is equal to the capacitance per unit area of the capacitor formed by the second region and the second electrode.
  • the displacement sensor can differentially detect the displacement based on the capacitance detected from the first electrode and the capacitance detected from the second electrode. Further, by performing differential detection, in-phase noise based on temperature fluctuations, vibrations, and the like can be removed. Furthermore, by arranging the comb teeth of the first electrode and the comb teeth of the second electrode alternately, the displacement sensor also reduces phase errors and capacitance errors due to processing variations and misalignment. can do.
  • the facing surface has a concavo-convex structure
  • the first region is a convex portion of the concavo-convex structure
  • the second region is a concave portion of the concavo-convex structure.
  • the convex portion and the concave portion are the same member.
  • the capacitance of the capacitor is inversely proportional to the distance between the pair of electrodes constituting the capacitor. Therefore, according to this aspect, the displacement sensor has a capacitance per unit area of the capacitor formed by the first region and the first electrode, and a unit of the capacitor formed by the second region and the first electrode. A difference can be provided between the capacitance per area.
  • the first region is defined by an electrode foil formed on the movable structure.
  • the electrode foil is periodically formed on the surface facing the first and second electrodes of the movable structure.
  • This electrode foil is formed, for example, by a method such as vapor deposition of metal particles through a mask, sputtering, or etching.
  • the displacement sensor can perform differential detection by making the movable structure an insulator.
  • the rate of change in capacitance with respect to the displacement can be increased. That is, the displacement sensor can perform differential detection with high sensitivity.
  • the predetermined period is smaller than the maximum displacement of the movable structure in the direction in which the comb teeth are arranged.
  • the period of the comb teeth is reduced, and the rate of change in capacitance with respect to the amount of displacement is increased.
  • the displacement sensor can perform differential detection with high sensitivity.
  • the first capacitance that is electrically connected to the first and second electrodes and is detected from the first electrode, and the detection is performed from the second electrode.
  • a detection unit that detects the amount of displacement of the movable structure based on the second capacitance.
  • the detection unit converts the first capacitance and the second capacitance into voltage values and differentially amplifies the output voltage values. Based on this, the amount of displacement is detected.
  • the detection unit calculates the output voltage value by converting the first capacitance and the second capacitance into voltage values and differentially amplifying them. This output voltage value changes periodically based on the amount of displacement. Further, the cycle of the output voltage value has a correspondence relationship with the cycle of the voltage line arrangement. Therefore, the detection unit can appropriately detect the displacement amount by monitoring the output voltage value.
  • the detection unit detects a displacement based on the number of fluctuation periods of the output voltage value and the output voltage value. By doing in this way, the detection part can detect a displacement appropriately also with respect to the large displacement more than the period of the arrangement
  • FIG. 1 shows an example of an exploded perspective view of a displacement sensor 100 in the present embodiment.
  • FIG. 2 shows an example of a cross-sectional view taken along a cutting plane AA ′ of the displacement sensor 100.
  • the displacement sensor 100 includes a movable structure 1, a support substrate 2, a frame portion 3, a support spring 4, and an electrode pair 10.
  • the displacement sensor 100 is a sensor that detects the displacement of the movable structure 1 in the x-axis direction.
  • the displacement sensor 100 performs differential detection based on the capacitance detected from the electrode pair 10 as will be described later.
  • the movable structure 1 is a member (electrode) that can be displaced in the x-axis direction and the y-axis direction shown in FIG.
  • the movable structure 1 is connected to the support spring 4 and is displaced within the space defined by the frame portion 3.
  • the movable structure 1, the frame portion 3, and the support spring 4 are made of, for example, a silicon substrate, and more specifically, are formed by performing MEMS (Micro Electro Mechanical Systems) processing on the silicon substrate.
  • MEMS Micro Electro Mechanical Systems
  • An uneven portion 11 is formed on the lower surface of the movable structure 1, that is, on the surface (facing the surface) facing the electrode pair 10 and the support substrate 2.
  • the concavo-convex portion 11 includes a convex portion 11a and a concave portion 11b.
  • the concavo-convex part 11 is arranged so as to face the electrode pair 10 in parallel, that is, to face each other. Thereby, the uneven part 11 and the electrode pair 10 form a capacitor. That is, the concavo-convex portion 11 made of a silicon material functions as a capacitor electrode.
  • the concavo-convex portion 11 is made of the same member as the movable structure 1.
  • the convex part 11a corresponds to the 1st area
  • the recessed part 11b corresponds to the 2nd area
  • the frame 3 is connected to the support spring 4 and is formed so as to surround the movable structure 1. As shown in FIG. 2, the frame portion 3 is joined to the support substrate 2 so that the concavo-convex portion 11 and the electrode pair 10 face each other. Specifically, the frame portion 3 and the support substrate 2 are bonded using a bonding technique such as anodic bonding, fusion bonding, direct bonding, or plasma activated bonding.
  • a bonding technique such as anodic bonding, fusion bonding, direct bonding, or plasma activated bonding.
  • the support substrate 2 is made of glass, for example, and has a rectangular recess (indentation) 7 on the upper surface portion facing the movable structure 1.
  • the recess 7 of the support substrate 2 has a larger area than the lower surface of the movable structure 1 as shown in FIG.
  • the electrode pair 10 is disposed in the recess 7.
  • the electrode pair 10 includes a first electrode 10a and a second electrode 10b.
  • the first electrode 10a has a comb-tooth structure. That is, the surface of the first electrode 10a has a plurality of comb teeth 10ax that are located in parallel with the xy plane in FIG. 1 and extend in the negative direction of the y-axis.
  • the second electrode 10b Similar to the first electrode 10a, the second electrode 10b has a comb-tooth structure. That is, the surface of the second electrode 10b has a plurality of comb teeth 10bx that are located in parallel with the xy plane in FIG. 1 and extend in the positive direction of the y-axis.
  • the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b are alternately arranged on the same plane (xy plane), that is, comb each other. It arrange
  • the electrode pair 10 is made of, for example, platinum and chromium, or aluminum, or platinum and titanium.
  • FIG. 3 is an example of an enlarged view of a part of the capacitor formed by the electrode pair 10 and the uneven portion 11.
  • FIG. 3 for convenience of illustration, only the convex portion 11a of the concave and convex portion 11 is illustrated.
  • the plurality of comb teeth 10 ax of the first electrode 10 a are formed with a predetermined period P.
  • the plurality of comb teeth 10bx of the second electrode 10b are formed with the same period P.
  • the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b are arranged alternately in the x direction on the same plane.
  • the concavo-convex portion 11 is formed with a period P as shown in FIG.
  • the convex portion 11a faces the comb teeth 10ax in a state where the movable structure 1 is not displaced. That is, each convex part 11a has the largest overlap (opposite area) in the xy plane with the comb teeth 10ax of the first electrode 10a. And the recessed part 11b opposes the comb-tooth 10bx of the 2nd electrode 10b in the state without a displacement.
  • the capacitor formed by the electrode pair 10 and the concavo-convex portion 11 has a predetermined capacitance.
  • first capacitance C1 the capacitance of the capacitor formed by the first electrode 10a and the concavo-convex portion 11
  • second capacitance C2 the capacitance of the capacitor formed by the second electrode 10b and the concavo-convex portion 11
  • FIG. 4A shows an example of a graph of changes in the first capacitance C1 and the second capacitance C2 due to the displacement of the movable structure 1.
  • a horizontal axis shows the displacement amount of the movable structure 1
  • shaft shows an electrostatic capacitance.
  • the “displacement amount” indicates a value (distance) by which the movable structure 1 is displaced in the detection direction, that is, the x-axis direction in which the comb teeth 10ax and 10bx are arranged.
  • the distance between the electrode pair 10 and the convex portion 11a is smaller than the distance between the electrode pair 10 and the concave portion 11b.
  • the electrostatic capacity is inversely proportional to the distance between the pair of electrodes constituting the capacitor, and the convex portion 11a is the same member as the concave portion 11b. Accordingly, the capacitance per unit area of the capacitor formed by the convex portion 11 a and the electrode pair 10 is larger than the capacitance per unit area of the capacitor formed by the concave portion 11 b and the electrode pair 10.
  • the first electrode 10a faces the convex portion 11a and forms a capacitor with the convex portion 11a in a state where there is no displacement.
  • the first capacitance C1 takes the maximum value “Cmax” as shown in FIG. 4A in a state where there is no displacement.
  • the second electrode 10b is opposed to the recess 11b and forms a capacitor with the recess 11b. Therefore, the second capacitance C2 takes the minimum value “Cmin” in a state where there is no displacement. Note that the phases of the capacitances C1 and C2 in a state where there is no displacement are not limited to those in FIG. 4 and may be set to any state.
  • the area of the capacitor formed by the first electrode 10a and the recess 11b increases, and the first The area of the capacitor formed by the electrode 10a and the convex portion 11a (that is, the area where the first electrode 10a and the plurality of concave portions 11b face each other) decreases. Therefore, the first capacitance C1 decreases until the displacement amount reaches P / 2, that is, until the area where the comb teeth 10ax of the first electrode 10a face the recess 11b is maximized.
  • the first capacitance C1 takes the minimum value Cmin when the displacement is P / 2. Then, as shown in FIG.
  • the first capacitance C1 alternately takes a maximum value Cmax and a minimum value Cmin every time the displacement amount increases by P / 2.
  • the second capacitance C2 alternately takes the maximum value Cmax and the minimum value Cmin every time the displacement amount increases by P / 2. Therefore, as shown in FIG. 4A, the first capacitance C1 is 180 degrees out of phase with the second capacitance C2.
  • FIG. 5 shows an example of a system for calculating the displacement amount.
  • the detection unit 15 is arranged in the system.
  • the detector 15 is electrically connected to the first electrode 10a and electrically connected to the second electrode 10b.
  • the detection unit 15 detects the first capacitance C1 from the first electrode 10a, and detects the second capacitance C2 from the second electrode 10b.
  • the detection unit 15 calculates the displacement amount of the movable structure 1 based on the detected first capacitance C1 and second capacitance C2. That is, the detection unit 15 differentially detects the displacement amount of the movable structure 1 based on the first capacitance C1 and the second capacitance C2.
  • FIG. 4B shows a graph in which the first capacitance C1 and the second capacitance C2 shown in FIG. 4A are converted into voltage values (CV conversion).
  • the voltage value calculated from the first capacitance C1 is expressed as a voltage value “V1”
  • the voltage value calculated from the second capacitance C2 is expressed as a voltage value “V2”.
  • the voltage value is inversely proportional to the capacitance. Accordingly, as shown in FIG. 4B, when the first capacitance C1 is larger than the second capacitance C2, the voltage value V1 becomes smaller than the voltage value V2. Similarly, when the second capacitance C1 is smaller than the second capacitance C2, the voltage value V1 is larger than the voltage value V2.
  • FIG. 6A shows a voltage value obtained by differential amplification after converting the first capacitance C1 and the second capacitance C2 into voltage values (hereinafter simply referred to as “output voltage value”).
  • output voltage value a voltage value obtained by differential amplification after converting the first capacitance C1 and the second capacitance C2 into voltage values
  • the first capacitance C1 takes the maximum value Cmax, and the second capacitance C2 takes the minimum value Cmin. That is, in this case, the voltage value V1 takes the minimum value, and the voltage value V2 takes the maximum value. Therefore, the output voltage value takes the minimum value “Vmin” in a state where there is no displacement.
  • the first capacitance C1 decreases and the second capacitance C2 increases until the amount of displacement reaches P / 2 from the state where there is no displacement. That is, the voltage value V1 increases and the voltage value V2 decreases. Therefore, in this case, the output voltage value increases.
  • the displacement amount is P / 2
  • the output voltage value takes the maximum value “Vmax”.
  • the output voltage value decreases again, and takes the minimum value Vmin when the displacement amount is P.
  • the output voltage value has a maximum value Vmax and a minimum value every time the displacement amount changes by P / 2.
  • the value Vmin is alternately taken. That is, the output voltage value periodically changes as the displacement amount changes.
  • the output voltage value changes periodically every time the displacement amount changes by the period P.
  • the detection unit 15 stores a map of the output voltage value and the displacement as shown in FIG. 6A in the memory in advance, and estimates the displacement amount by comparing with the detected output voltage value. Can do.
  • the detection unit 15 performs differential detection based on the first capacitance C1 and the second capacitance C2, it removes common-mode noise caused by temperature fluctuations, vibrations, changes in airflow, and the like. be able to. That is, the detection unit 15 can measure the displacement by performing differential detection without being affected by the common-mode noise.
  • the detection unit 15 detects an error (hereinafter referred to as “alignment error”) caused by a positional relationship deviation (alignment deviation) between the electrode pair 10 and the concavo-convex part 11 that occurs during manufacturing by the above-described differential detection. Can be reduced.
  • an error hereinafter referred to as “alignment error”
  • a positional relationship deviation (alignment deviation) between the electrode pair 10 and the concavo-convex part 11 that occurs during manufacturing by the above-described differential detection. Can be reduced.
  • FIG. 7 is an example showing the positional relationship between the electrode pair 10 and the concavo-convex portion 11 when alignment misalignment occurs.
  • the first electrode 10a and the second electrode 10b are arranged close to each other without being close to each other (hereinafter referred to as “comparative example”).
  • phase between the capacitances C1 and C2 and the phase of the output voltage value in a state where there is no displacement may be set arbitrarily. For example, in addition to the case where the phase difference is 180 ° as described above, an arbitrary phase difference can be provided in consideration of the offset. In this case, it is necessary to consider that a phase offset is necessary and that the output voltage value is reduced. However, the phase may be set within a possible range where an output voltage value necessary for detection can be obtained.
  • the electrode pair 10 is shifted by the inclination ⁇ with respect to the concavo-convex portion 11.
  • the convex portion 11a and the first electrode 10a which should originally completely face each other, are caused by the misalignment rather than the area where the first electrode 10a is no longer opposed on the xy plane.
  • the area where the convex portion 11a and the second electrode 10b, which should not be opposed to each other, are opposed to each other in the xy plane is larger.
  • the displacement sensor 100 forms a reverse phase in which the first capacitance C1 and the second capacitance C2 are shifted by 180 degrees even when there is an alignment shift compared to the comparative example.
  • the difference between the maximum value Cmax and the minimum value Cmin can be increased. Therefore, the displacement sensor 100 can reduce alignment errors.
  • the displacement sensor 100 is configured by alternately arranging the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b in the x-axis direction, thereby processing the electrode pair 10 in the manufacturing process. Variation is reduced. Specifically, when the electrode pair 10 is manufactured using a process technique such as photolithography, the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b are alternately arranged. Thus, the electrode pair 10 is simultaneously formed using one mask. As a result, variations in processing occur in the first electrode 10a and the second electrode 10b substantially the same.
  • the displacement sensor 100 can reduce the influence of processing variations in displacement detection by performing differential detection using the electrode pair 10 manufactured in this way.
  • the period P of the comb teeth 10ax and 10bx is created within a range of 50 ⁇ m, for example, by MEMS (Micro Electro Mechanical Systems) processing, it is possible to manufacture the displacement sensor 100 with high accuracy.
  • the period P is set to be equal to or less than the maximum displacement amount (hereinafter simply referred to as “maximum displacement”) in the x-axis direction (detection direction) in which the comb teeth are arranged.
  • maximum displacement is constrained by the space or the like partitioned by the frame portion 3 as described above.
  • the detection unit 15 can, for example, determine the number of times the minimum value Vmin is reached again, that is, the number of fluctuation periods of the output voltage value and the final output voltage value. Based on this, it is possible to detect a large displacement of the period P or more.
  • the detection unit 15 can also measure the large displacement of the movable structure 1 by counting the number of fluctuation periods of the output voltage value. Therefore, the displacement sensor 100 can be used as a linear encoder.
  • the detection unit 15 can measure the large displacement of the movable structure 1 with high resolution by making the period P smaller than the maximum displacement.
  • FIG. 6B shows a graph of the actual measurement value of the output voltage value with respect to the displacement amount of the movable structure 1.
  • FIG. 6B shows the measurement by moving the movable structure 1 every 20 nm, and the period P of the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b at this time is 20 ⁇ m. It is.
  • the displacement sensor according to the present invention includes the first electrode, the second electrode, and the movable structure, and detects the displacement of the movable structure.
  • the first electrode has a so-called comb tooth structure, and has a plurality of comb teeth formed on the same surface according to a predetermined cycle.
  • the second electrode has a comb-tooth structure, and has a plurality of comb teeth that are alternately arranged on the same plane as the comb teeth of the first electrode.
  • the movable structure has a facing surface parallel to the first and second electrodes at a predetermined interval, and is displaced in the in-plane direction.
  • a movable structure has a convex part arrange
  • the first and second electrodes form a concavo-convex portion and a capacitor.
  • the capacitance per unit area of the capacitor formed by the convex portion and the first electrode is different from the capacitance per unit area of the capacitor formed by the concave portion and the first electrode.
  • the capacitance per unit area of the capacitor formed by the convex portion and the second electrode is different from the capacitance per unit area of the capacitor formed by the concave portion and the second electrode.
  • the displacement sensor can differentially detect the displacement based on the capacitance detected from the first electrode and the capacitance detected from the second electrode. Further, by performing differential detection, in-phase noise based on temperature fluctuations, vibrations, and the like can be removed. Furthermore, by arranging the comb teeth of the first electrode and the comb teeth of the second electrode alternately, the displacement sensor also reduces phase errors and capacitance errors due to processing variations and misalignment. can do.
  • the support substrate 2 has a recess 7 having a larger area than the lower surface of the movable structure 1.
  • the configuration of the displacement sensor 100 to which the present invention is applicable is not limited to this.
  • FIG. 8 is a cross-sectional view of the displacement sensor 100a according to the second embodiment.
  • the upper surface of the support substrate 2 (the surface on the side facing the movable structure 1) is flat, and does not have the concave portion 7 as in the first embodiment.
  • the support substrate 2 is connected to the frame portion 3 at the edge of the upper surface.
  • An electrode pair 10 is disposed on the upper surface of the support substrate 2.
  • the movable structure 1 and the support spring 4 are arranged with a predetermined distance with respect to the support substrate 2 and the electrode pair 10. That is, the lower surface of the movable structure 1 and the support spring 4, that is, the surface facing the support substrate 2 is recessed from the lower surface of the frame portion 3. Even in such a configuration, the displacement sensor 100a can detect the displacement of the movable structure 1 appropriately.
  • Example 3 In the displacement sensor 100 of Example 1, only one pair of electrode pairs 10 is arranged on the support substrate 2.
  • the configuration of the displacement sensor 100 to which the present invention can be applied is not limited to this, and the displacement sensor 100 may include a plurality of electrode pairs 10.
  • FIG. 9 shows an example of an exploded perspective view of the displacement sensor according to the third embodiment.
  • FIG. 9A shows an exploded perspective view of a displacement sensor 100b in which two pairs of electrodes 10 for measuring the amount of displacement in the x-axis direction are arranged.
  • FIG. 9B shows an exploded perspective view of a displacement sensor 100c in which two pairs of electrodes 10x that measure the amount of displacement in the x-axis direction and two pairs of electrodes 10y that measure the amount of displacement in the y-axis direction are arranged. .
  • the displacement sensor 100b includes a plurality of electrode pairs 10 that detect the amount of displacement in the same axial direction, whereby a higher-resolution sensor can be configured. Further, for example, one electrode pair 10 is used for measuring the positive direction of the x-axis and the other electrode pair 10 is used for measuring the negative direction of the x-axis. It is also detected whether it is displaced in the negative direction.
  • the displacement sensor 100c includes an electrode pair 10x for detecting the displacement amount in the x-axis direction and an electrode pair 10y for detecting the displacement amount in the y-axis direction. Have both. Thereby, the displacement sensor 100c can measure the displacement amount of the movable structure 1 in the x-axis direction and the y-axis direction which is the vertical direction.
  • the movable structure 1 has the concavo-convex portion 11 on the lower surface, and the concavo-convex portion 11 and the electrode pair 10 form a capacitor.
  • the configuration of the displacement sensor 100 to which the present invention can be applied is not limited to this, and the movable structure 1 does not necessarily have the uneven portion 11.
  • FIG. 10 shows an example of an enlarged view of the capacitor portion of the displacement sensor in the fourth embodiment.
  • the movable structure 1 does not have an uneven portion on its lower surface.
  • the movable structure 1 is formed with electrode foils 20 such as metal thin films that form electrodes on the lower surface thereof in a predetermined cycle.
  • the electrode foil 20 is formed in a region corresponding to a convex portion, and can be specifically formed by evaporating metal particles through a mask. Further, it can be formed by etching after the lift-off method or metal thin film formation. Thereby, the 1st area
  • the electrode foil 20 is disposed so as to face the first electrode 10a in a state where there is no displacement. Therefore, the electrode foil 20 is arranged for each period P.
  • the movable structure 1 is an insulator such as lead zirconate titanate.
  • the first electrode 10a and the second electrode 10b form a capacitor with the electrode foil 20 and have a capacitance.
  • the first electrode 10 a and the second electrode 10 b do not have a capacitance with the movable structure 1. Therefore, as shown in FIG. 10A, in the state where there is no displacement, the first electrode 10a is opposed to the electrode foil 20, so that a capacitor is formed and a predetermined capacitance is generated.
  • the second electrode 10b does not oppose the electrode foil 20, but opposes the movable structure 1 made of an insulator member, so that the capacitance is zero.
  • the displacement sensor 100d can perform differential detection based on the first electrostatic capacitance C1 and the second electrostatic capacitance C2. Further, by appropriately selecting the member of the electrode foil 20, the displacement sensor 100d can increase the maximum value Cmax of the capacitance, and the difference between the maximum value Cmax and the minimum value Cmin (here, 0) is obtained. Can be bigger. Therefore, the displacement sensor 100d can detect the displacement amount with higher accuracy.
  • the displacement sensor 100e in FIG. 10B a concave space for fitting the electrode foil 20 is formed on the lower surface of the movable structure 1 in accordance with a predetermined cycle. Therefore, the lower surface of the movable structure 1 and the lower surface portion of the electrode foil 20 are configured on the same surface. Therefore, the movable structure 1 and the electrode foil 20 do not have a concavo-convex structure facing the movable structure 1. Even if comprised in this way, the displacement sensor 100e can detect differentially based on the 1st electrostatic capacitance C1 and the 2nd electrostatic capacitance C2 similarly to the displacement sensor 100d.
  • the present invention can be used for a displacement sensor for detecting a displacement amount. Further, it can be widely applied to acceleration sensors, pressure sensors, force sensors and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)

Abstract

A displacement sensor has a first electrode, a second electrode and a movable structure and detects displacement of the movable structure. The first electrode has comb teeth formed according to a predetermined cycle on the same surface. The second electrode has comb teeth arranged alternately with the comb teeth of the first electrode on the same surface. The movable structure has an opposed surface parallel to the first and second electrodes at predetermined intervals and is displaced in an inplane direction. The movable structure, in the opposed surface, has first areas at each cycle equal to the cycle and second areas which are adjacent to the first areas and arranged alternately with the first areas. Then, the first and second electrodes form capacitors with the first and second areas. A capacitance per the unit area of a capacitor formed of the first area and the first electrode is different from that per the unit area of a capacitor formed of the second area and the first electrode.

Description

変位センサDisplacement sensor
 本発明は、静電容量の変化に基づき可動部分の変位を測定する変位センサに関する。 The present invention relates to a displacement sensor that measures the displacement of a movable part based on a change in capacitance.
 静電容量の検出値に基づき可動構造(可動電極)の変位を検出する静電容量型変位センサが既知である。例えば、非特許文献1には、可動構造下部に線状電極が周期的に並ぶ櫛歯電極が形成された静電容量型変位センサが記載されている。また、特許文献1には、可動構造に凹凸の溝を構成することでコンデンサを実現する技術が記載されている。 An electrostatic capacitance type displacement sensor that detects the displacement of the movable structure (movable electrode) based on the detected capacitance value is known. For example, Non-Patent Document 1 describes a capacitance-type displacement sensor in which comb-shaped electrodes in which linear electrodes are periodically arranged are formed below the movable structure. Patent Document 1 describes a technique for realizing a capacitor by forming concave and convex grooves in a movable structure.
特開平10-332384号公報Japanese Patent Laid-Open No. 10-332384
 しかし、非特許文献1等に記載の変位センサは、加工ばらつきやアライメントずれに起因して位相誤差や静電容量の誤差が生じる可能性がある。この場合、変位センサは、これらの誤差の影響を受け、変位計測の精度(感度)が低下する。また、この変位センサに用いられる電極の周期は可動構造の最大変位以上に設定されるため、最大変位が大きい場合、感度の高い変位検出を行うことができない。非特許文献1には、これらの問題は何ら記載されていない。 However, the displacement sensor described in Non-Patent Document 1 or the like may cause a phase error or a capacitance error due to processing variations or misalignment. In this case, the displacement sensor is affected by these errors, and the accuracy (sensitivity) of displacement measurement decreases. Further, since the cycle of the electrodes used in this displacement sensor is set to be equal to or greater than the maximum displacement of the movable structure, it is impossible to detect a highly sensitive displacement when the maximum displacement is large. Non-Patent Document 1 does not describe any of these problems.
 また、特許文献1に記載されるコンデンサは、あくまでアクチュエータとして用いられており、センサとしては用いられていない。 In addition, the capacitor described in Patent Document 1 is used only as an actuator and is not used as a sensor.
 本発明が解決しようとする課題としては、上記のようなものが例として挙げられる。本発明は、静電容量型の変位センサにおいて、加工ばらつきやアライメントずれに起因する位相誤差や静電容量の誤差を軽減しつつ、大変位に対しても分解能の高い検出を実現することを目的とする。 Examples of problems to be solved by the present invention include the above. It is an object of the present invention to realize high-resolution detection even for large displacements while reducing phase errors and capacitance errors caused by processing variations and misalignment in a capacitance type displacement sensor. And
 請求項1に記載の発明では、静電容量の変化に基づき変位を測定する変位センサであって、同一面上に所定の周期に従って形成された櫛歯を有する第1の電極と、前記第1の電極の櫛歯と同一面上に交互に並んで配置される櫛歯を有する第2の電極と、前記第1及び第2の電極と所定間隔をもって平行する対面を有し、当該対面の面内方向に変位する可動構造と、を備え、前記可動構造は、前記対面において、前記所定の周期で配置される第1の領域と、前記第1の領域と隣接し、かつ前記第1の領域と交互に並んで形成される第2の領域と、を有し、前記第1の領域と前記第1の電極とが形成するコンデンサの単位面積あたりの静電容量は、前記第2の領域と前記第1の電極とが形成するコンデンサの単位面積あたりの静電容量と異なることを特徴とする。 According to the first aspect of the present invention, there is provided a displacement sensor that measures displacement based on a change in capacitance, the first electrode having comb teeth formed on the same surface according to a predetermined period, and the first electrode A second electrode having comb teeth that are alternately arranged on the same plane as the comb teeth of the electrode, and a facing surface parallel to the first and second electrodes at a predetermined interval, and the surface of the facing surface A movable structure that is displaced inwardly, the movable structure being adjacent to the first region and the first region arranged at the predetermined period on the facing surface. And a second region formed alternately with each other, and the capacitance per unit area of the capacitor formed by the first region and the first electrode is the second region. Different from the capacitance per unit area of the capacitor formed by the first electrode And wherein the door.
変位センサの分解斜視図の一例を示す図である。It is a figure which shows an example of the exploded perspective view of a displacement sensor. 変位センサの断面図の一例を示す図である。It is a figure which shows an example of sectional drawing of a displacement sensor. 変位センサのコンデンサ部分の構造を示す図である。It is a figure which shows the structure of the capacitor | condenser part of a displacement sensor. 変位量に対する静電容量及び電圧値の変化のグラフを示す図である。It is a figure which shows the graph of the electrostatic capacitance and the change of a voltage value with respect to the displacement amount. 変位量を検出するシステムの一例を示す図である。It is a figure which shows an example of the system which detects a displacement amount. 変位量に対する出力電圧値の変化のグラフの一例を示す図である。It is a figure which shows an example of the graph of the change of the output voltage value with respect to displacement. アライメントずれについて示した図である。It is the figure shown about the alignment shift. 実施例2における変位センサの断面図の一例を示す図である。It is a figure which shows an example of sectional drawing of the displacement sensor in Example 2. FIG. 実施例3における変位センサの分解斜視図の一例を示す図である。It is a figure which shows an example of the disassembled perspective view of the displacement sensor in Example 3. FIG. 実施例4における変位センサの一部を拡大した図である。It is the figure which expanded a part of displacement sensor in Example 4.
符号の説明Explanation of symbols
 1 可動構造
 2 支持基板
 3 枠部
 4 支持ばね
 10 電極対
 11 凹凸部
 15 検出部
 20 電極箔
 100、100a~100e 変位センサ
DESCRIPTION OF SYMBOLS 1 Movable structure 2 Support substrate 3 Frame part 4 Support spring 10 Electrode pair 11 Concavity and convexity part 15 Detection part 20 Electrode foil 100, 100a-100e Displacement sensor
 本発明の1つの観点では、静電容量の変化に基づき変位を測定する変位センサであって、同一面上に所定の周期に従って形成された櫛歯を有する第1の電極と、前記第1の電極の櫛歯と同一面上に交互に並んで配置される櫛歯を有する第2の電極と、前記第1及び第2の電極と所定間隔をもって平行する対面を有し、当該対面の面内方向に変位する可動構造と、を備え、前記可動構造は、前記対面において、前記所定の周期で配置される第1の領域と、前記第1の領域と隣接し、かつ前記第1の領域と交互に並んで形成される第2の領域と、を有し、前記第1の領域と前記第1の電極とが形成するコンデンサの単位面積あたりの静電容量は、前記第2の領域と前記第1の電極とが形成するコンデンサの単位面積あたりの静電容量と異なる。 In one aspect of the present invention, a displacement sensor that measures displacement based on a change in capacitance, the first electrode having comb teeth formed on the same surface according to a predetermined period, and the first electrode A second electrode having comb teeth that are alternately arranged on the same plane as the comb teeth of the electrode, and a facing surface parallel to the first and second electrodes at a predetermined interval, and within the surface of the facing surface A movable structure that is displaced in a direction, wherein the movable structure has a first region that is arranged at the predetermined period on the facing surface, and is adjacent to the first region and the first region. Second regions formed alternately, and the capacitance per unit area of the capacitor formed by the first region and the first electrode is the second region and the second region. It differs from the capacitance per unit area of the capacitor formed by the first electrode.
 上記の変位センサは、第1の電極と、第2の電極と、可動構造とを有し、可動構造の変位を検出する。第1の電極は、同一面上に所定の周期に従って形成された複数の櫛歯を有する。第2の電極は、第1の電極の櫛歯と同一面上に交互に並んで配置される櫛歯を有する。可動構造は、第1及び第2の電極と所定間隔をもって平行する対面を有し、面内方向において変位する。可動構造は、対面において、第1の電極の櫛歯の周期と同一周期ごとに配置される第1の領域と、第1の領域と隣接し、かつ第1の領域と交互に並んで形成される第2の領域と、を有する。そして、第1及び第2の電極は、第1及び第2の領域とコンデンサを形成する。そして、第1の領域と第1の電極とが形成するコンデンサの単位面積あたりの静電容量は、第2の領域と第1の電極とが形成するコンデンサの単位面積あたりの静電容量と異なる。言い換えると、第1の領域と第2の電極とが形成するコンデンサの単位面積あたりの静電容量は、第2の領域と第2の電極とが形成するコンデンサの単位面積あたりの静電容量と異なる。このようにすることで、変位センサは、第1の電極から検出される静電容量と、第2の電極から検出される静電容量と、に基づき変位を差動検出することができる。また、差動検出を行うことにより、温度変動や振動等に基づく同相ノイズを除去することができる。さらに、第1の電極の櫛歯と第2の電極の櫛歯とが交互に並んで配置されることにより、変位センサは、加工ばらつきやアライメントずれに基づく位相誤差及び静電容量の誤差も軽減することができる。 The above displacement sensor has a first electrode, a second electrode, and a movable structure, and detects the displacement of the movable structure. The first electrode has a plurality of comb teeth formed on the same surface according to a predetermined cycle. The second electrode has comb teeth that are alternately arranged on the same plane as the comb teeth of the first electrode. The movable structure has a facing surface parallel to the first and second electrodes at a predetermined interval, and is displaced in the in-plane direction. The movable structure is formed on the opposite side, the first region arranged at the same period as the period of the comb teeth of the first electrode, adjacent to the first region, and alternately arranged with the first region. And a second region. The first and second electrodes form a capacitor with the first and second regions. The capacitance per unit area of the capacitor formed by the first region and the first electrode is different from the capacitance per unit area of the capacitor formed by the second region and the first electrode. . In other words, the capacitance per unit area of the capacitor formed by the first region and the second electrode is equal to the capacitance per unit area of the capacitor formed by the second region and the second electrode. Different. By doing so, the displacement sensor can differentially detect the displacement based on the capacitance detected from the first electrode and the capacitance detected from the second electrode. Further, by performing differential detection, in-phase noise based on temperature fluctuations, vibrations, and the like can be removed. Furthermore, by arranging the comb teeth of the first electrode and the comb teeth of the second electrode alternately, the displacement sensor also reduces phase errors and capacitance errors due to processing variations and misalignment. can do.
 上記の変位センサの一態様では、前記対面は凹凸構造を有し、前記第1の領域は前記凹凸構造の凸部であり、前記第2の領域は前記凹凸構造の凹部である。 In one aspect of the displacement sensor, the facing surface has a concavo-convex structure, the first region is a convex portion of the concavo-convex structure, and the second region is a concave portion of the concavo-convex structure.
 上記の変位センサの好適な例では、前記凸部と前記凹部は同一部材である。コンデンサの静電容量はコンデンサを構成する一対の電極の距離に反比例する。従って、変位センサは、この態様により、第1の領域と第1の電極とが形成するコンデンサの単位面積あたりの静電容量と、第2の領域と第1の電極とが形成するコンデンサの単位面積あたりの静電容量とに差を設けることができる。 In a preferred example of the above displacement sensor, the convex portion and the concave portion are the same member. The capacitance of the capacitor is inversely proportional to the distance between the pair of electrodes constituting the capacitor. Therefore, according to this aspect, the displacement sensor has a capacitance per unit area of the capacitor formed by the first region and the first electrode, and a unit of the capacitor formed by the second region and the first electrode. A difference can be provided between the capacitance per area.
 上記の変位センサの他の一態様では、前記第1の領域は、前記可動構造に形成された電極箔により区画されてなる。この態様では、可動構造の第1及び第2の電極と対向面に周期的に電極箔が形成されている。この電極箔は、例えばマスクを介した金属粒子の蒸着、スパッタ法、あるいはエッチングなどの方法により形成される。これにより、例えば可動構造を絶縁体にすることで、変位センサは、差動検出を実行することができる。さらに、接着させる電極箔を適切に選択することで、変位量に対する静電容量の変化の割合を大きくすることができる。即ち、変位センサは、感度の高い差動検出を行うことが可能となる。 In another aspect of the above displacement sensor, the first region is defined by an electrode foil formed on the movable structure. In this aspect, the electrode foil is periodically formed on the surface facing the first and second electrodes of the movable structure. This electrode foil is formed, for example, by a method such as vapor deposition of metal particles through a mask, sputtering, or etching. Thereby, for example, the displacement sensor can perform differential detection by making the movable structure an insulator. Furthermore, by appropriately selecting the electrode foil to be bonded, the rate of change in capacitance with respect to the displacement can be increased. That is, the displacement sensor can perform differential detection with high sensitivity.
 上記の変位センサの他の一態様では、前記所定の周期は、前記櫛歯が並ぶ方向における前記可動構造の最大変位より小さい。この態様では、櫛歯の周期を小さくし、変位量に対する静電容量の変化の割合を大きくする。これにより、変位センサは、感度の高い差動検出を実行できる。また、第1の電極から検出される静電容量と第2の電極から検出される静電容量とを電圧値に変換し、差動増幅することにより得られた出力電圧値と、その変動周期を数えることで、変位センサは、櫛歯の周期より大きい大変位も適切に検出することができる。 In another aspect of the above displacement sensor, the predetermined period is smaller than the maximum displacement of the movable structure in the direction in which the comb teeth are arranged. In this embodiment, the period of the comb teeth is reduced, and the rate of change in capacitance with respect to the amount of displacement is increased. Thereby, the displacement sensor can perform differential detection with high sensitivity. In addition, the output voltage value obtained by converting the capacitance detected from the first electrode and the capacitance detected from the second electrode into a voltage value and differentially amplifying it, and its fluctuation cycle By counting, the displacement sensor can appropriately detect a large displacement larger than the comb tooth period.
 上記の変位センサの他の一態様では、前記第1及び第2の電極と電気的に接続し、前記第1の電極から検出される第1の静電容量と、前記第2の電極から検出される第2の静電容量とに基づき前記可動構造の変位量を検出する検出部をさらに備える。 In another mode of the above displacement sensor, the first capacitance that is electrically connected to the first and second electrodes and is detected from the first electrode, and the detection is performed from the second electrode. And a detection unit that detects the amount of displacement of the movable structure based on the second capacitance.
 上記の変位センサの他の一態様では、前記検出部は、前記第1の静電容量と、前記第2の静電容量とを電圧値に変換し差動増幅して算出した出力電圧値に基づき前記変位量を検出する。この態様では、検出部は、第1の静電容量と、第2の静電容量とを電圧値に変換し、差動増幅させることで出力電圧値を算出する。この出力電圧値は、変位量に基づき周期的に変化する。また、出力電圧値の周期は電圧線の配列の周期と対応関係を有する。従って、検出部は、出力電圧値を監視することで、変位量を適切に検出することができる。 In another aspect of the displacement sensor, the detection unit converts the first capacitance and the second capacitance into voltage values and differentially amplifies the output voltage values. Based on this, the amount of displacement is detected. In this aspect, the detection unit calculates the output voltage value by converting the first capacitance and the second capacitance into voltage values and differentially amplifying them. This output voltage value changes periodically based on the amount of displacement. Further, the cycle of the output voltage value has a correspondence relationship with the cycle of the voltage line arrangement. Therefore, the detection unit can appropriately detect the displacement amount by monitoring the output voltage value.
 上記の変位センサの他の一態様では、前記検出部は、前記出力電圧値の変動周期数及び前記出力電圧値に基づき変位量を検出する。このようにすることで、検出部は、電圧線の配列の周期以上の大変位に対しても適切に変位を検出することができる。 In another aspect of the displacement sensor, the detection unit detects a displacement based on the number of fluctuation periods of the output voltage value and the output voltage value. By doing in this way, the detection part can detect a displacement appropriately also with respect to the large displacement more than the period of the arrangement | sequence of a voltage line.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [実施例1]
 (概略構成)
 図1は、本実施例における変位センサ100の分解斜視図の一例を示す。また、図2は、変位センサ100の切断面A-A´における断面図の一例を示す。図1及び図2に示すように、変位センサ100は、可動構造1と、支持基板2と、枠部3と、支持ばね4と、電極対10と、を有する。
[Example 1]
(Outline configuration)
FIG. 1 shows an example of an exploded perspective view of a displacement sensor 100 in the present embodiment. FIG. 2 shows an example of a cross-sectional view taken along a cutting plane AA ′ of the displacement sensor 100. As shown in FIGS. 1 and 2, the displacement sensor 100 includes a movable structure 1, a support substrate 2, a frame portion 3, a support spring 4, and an electrode pair 10.
 変位センサ100は、可動構造1のx軸方向における変位を検出するセンサである。変位センサ100は、後述するように、電極対10から検出される静電容量に基づき、差動検出を行う。 The displacement sensor 100 is a sensor that detects the displacement of the movable structure 1 in the x-axis direction. The displacement sensor 100 performs differential detection based on the capacitance detected from the electrode pair 10 as will be described later.
 可動構造1は、図1に示すx軸方向及びy軸方向、即ち面内方向に変位可能な部材(電極)である。可動構造1は、支持ばね4と接続し、枠部3が仕切る空間の範囲内において変位する。可動構造1、枠部3、及び支持ばね4は、例えばシリコン基板により構成され、より具体的にはシリコン基板にMEMS(Micro Electro Mechanical Systems)加工を施すことにより形成される。 The movable structure 1 is a member (electrode) that can be displaced in the x-axis direction and the y-axis direction shown in FIG. The movable structure 1 is connected to the support spring 4 and is displaced within the space defined by the frame portion 3. The movable structure 1, the frame portion 3, and the support spring 4 are made of, for example, a silicon substrate, and more specifically, are formed by performing MEMS (Micro Electro Mechanical Systems) processing on the silicon substrate.
 可動構造1の下面、即ち、電極対10及び支持基板2と向かい合う面(対面)上には、凹凸部11が形成されている。凹凸部11は、凸部11aと凹部11bとからなる。凹凸部11は、電極対10と平行して向かい合うように、即ち、対向するように配置される。これにより、凹凸部11と電極対10とは、コンデンサを形成する。即ち、シリコン材料からなる凹凸部11は、コンデンサの電極として機能する。本実施例において、凹凸部11は、可動構造1と同一部材からなる。なお、凸部11aは、本発明における第1の領域に該当し、凹部11bは、本発明における第2の領域に該当する。 An uneven portion 11 is formed on the lower surface of the movable structure 1, that is, on the surface (facing the surface) facing the electrode pair 10 and the support substrate 2. The concavo-convex portion 11 includes a convex portion 11a and a concave portion 11b. The concavo-convex part 11 is arranged so as to face the electrode pair 10 in parallel, that is, to face each other. Thereby, the uneven part 11 and the electrode pair 10 form a capacitor. That is, the concavo-convex portion 11 made of a silicon material functions as a capacitor electrode. In this embodiment, the concavo-convex portion 11 is made of the same member as the movable structure 1. In addition, the convex part 11a corresponds to the 1st area | region in this invention, and the recessed part 11b corresponds to the 2nd area | region in this invention.
 枠部3は、支持ばね4と接続し、可動構造1を囲むように形成される。図2に示すように、枠部3は、凹凸部11と電極対10とが対向するように、支持基板2と接合している。具体的には、枠部3と支持基板2は、陽極接合、溶融接合、直接接合、またはプラズマ活性化接合などの接合技術を用いて接合される。 The frame 3 is connected to the support spring 4 and is formed so as to surround the movable structure 1. As shown in FIG. 2, the frame portion 3 is joined to the support substrate 2 so that the concavo-convex portion 11 and the electrode pair 10 face each other. Specifically, the frame portion 3 and the support substrate 2 are bonded using a bonding technique such as anodic bonding, fusion bonding, direct bonding, or plasma activated bonding.
 支持基板2は、例えばガラスからなり、可動構造1と向かい合う上面部分において、矩形の凹部(くぼみ)7を有する。この支持基板2の凹部7は、図2に示すように、可動構造1の下面よりも大きな面積を有する。そして、支持基板2は、凹部7に電極対10が配置されている。 The support substrate 2 is made of glass, for example, and has a rectangular recess (indentation) 7 on the upper surface portion facing the movable structure 1. The recess 7 of the support substrate 2 has a larger area than the lower surface of the movable structure 1 as shown in FIG. In the support substrate 2, the electrode pair 10 is disposed in the recess 7.
 電極対10は、第1の電極10aと、第2の電極10bと、からなる。第1の電極10aは櫛歯構造を有する。即ち、第1の電極10aの面は、図1において、xy面と平行に位置し、y軸の負の方向に延在する複数の櫛歯10axを有する。第2の電極10bは、第1の電極10aと同様に、櫛歯構造を有する。即ち、第2の電極10bの面は、図1において、xy面と平行に位置し、y軸の正の方向に延在する複数の櫛歯10bxを有する。 The electrode pair 10 includes a first electrode 10a and a second electrode 10b. The first electrode 10a has a comb-tooth structure. That is, the surface of the first electrode 10a has a plurality of comb teeth 10ax that are located in parallel with the xy plane in FIG. 1 and extend in the negative direction of the y-axis. Similar to the first electrode 10a, the second electrode 10b has a comb-tooth structure. That is, the surface of the second electrode 10b has a plurality of comb teeth 10bx that are located in parallel with the xy plane in FIG. 1 and extend in the positive direction of the y-axis.
 図1及び図2に示すように、第1の電極10aの櫛歯10axと、第2の電極10bの櫛歯10bxとは、同一面(xy面)上に交互に並んで、即ち、互いに櫛歯間の空間を埋めるようにして配置される。また、櫛歯10ax及び10bxが並ぶ方向は、変位を検出する方向(以後、単に「検出方向」と呼ぶ。)と一致する。電極対10は、例えば、白金及びクロム、またはアルミ、若しくは白金及びチタンによりなる。 As shown in FIGS. 1 and 2, the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b are alternately arranged on the same plane (xy plane), that is, comb each other. It arrange | positions so that the space between teeth may be filled. Further, the direction in which the comb teeth 10ax and 10bx are arranged coincides with the direction in which the displacement is detected (hereinafter simply referred to as “detection direction”). The electrode pair 10 is made of, for example, platinum and chromium, or aluminum, or platinum and titanium.
 (コンデンサの構造及び差動検出)
 図3は、電極対10と凹凸部11とにより形成されるコンデンサの一部を拡大した図の一例である。なお、図3においては、図示の便宜上、凹凸部11の凸部11aのみを図示している。図3に示すように、第1の電極10aの複数の櫛歯10axは、所定の周期Pを有して形成される。同様に、第2の電極10bの複数の櫛歯10bxは、同じ周期Pを有して形成される。そして、上述のように、第1の電極10aの櫛歯10axと、第2の電極10bの櫛歯10bxは、同一面上においてx方向に交互に並んで配置されている。
(Capacitor structure and differential detection)
FIG. 3 is an example of an enlarged view of a part of the capacitor formed by the electrode pair 10 and the uneven portion 11. In FIG. 3, for convenience of illustration, only the convex portion 11a of the concave and convex portion 11 is illustrated. As shown in FIG. 3, the plurality of comb teeth 10 ax of the first electrode 10 a are formed with a predetermined period P. Similarly, the plurality of comb teeth 10bx of the second electrode 10b are formed with the same period P. As described above, the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b are arranged alternately in the x direction on the same plane.
 凹凸部11は、図3に示すように、周期Pを有して形成される。本実施例において、凸部11aは、可動構造1の変位がない状態において、櫛歯10axと対向する。即ち、各凸部11aは、第1の電極10aの櫛歯10axとxy平面における重なり(対向面積)が最大となっている。そして、凹部11bは、変位がない状態において、第2の電極10bの櫛歯10bxと対向する。 The concavo-convex portion 11 is formed with a period P as shown in FIG. In the present embodiment, the convex portion 11a faces the comb teeth 10ax in a state where the movable structure 1 is not displaced. That is, each convex part 11a has the largest overlap (opposite area) in the xy plane with the comb teeth 10ax of the first electrode 10a. And the recessed part 11b opposes the comb-tooth 10bx of the 2nd electrode 10b in the state without a displacement.
 電極対10と凹凸部11とにより形成されるコンデンサは、所定の静電容量を有する。以後、第1の電極10aと凹凸部11とにより形成されるコンデンサの静電容量を「第1の静電容量C1」と表現する。同様に、第2の電極10bと凹凸部11とにより形成されるコンデンサの静電容量を「第2の静電容量C2」と表現する。 The capacitor formed by the electrode pair 10 and the concavo-convex portion 11 has a predetermined capacitance. Hereinafter, the capacitance of the capacitor formed by the first electrode 10a and the concavo-convex portion 11 is expressed as “first capacitance C1”. Similarly, the capacitance of the capacitor formed by the second electrode 10b and the concavo-convex portion 11 is expressed as “second capacitance C2”.
 第1の静電容量C1及び第2の静電容量C2は、可動構造1が変位することにより値が変化する。これについて、図4(a)を用いて説明する。図4(a)は、可動構造1の変位に伴う第1の静電容量C1及び第2の静電容量C2の変化のグラフの一例を示す。図4(a)において、横軸は、可動構造1の変位量を示し、縦軸は、静電容量を示す。ここで、「変位量」は、検出方向、即ち、櫛歯10ax、10bxが並ぶ方向であるx軸方向において可動構造1が変位した値(距離)を示す。 The values of the first capacitance C1 and the second capacitance C2 change when the movable structure 1 is displaced. This will be described with reference to FIG. FIG. 4A shows an example of a graph of changes in the first capacitance C1 and the second capacitance C2 due to the displacement of the movable structure 1. In Fig.4 (a), a horizontal axis shows the displacement amount of the movable structure 1, and a vertical axis | shaft shows an electrostatic capacitance. Here, the “displacement amount” indicates a value (distance) by which the movable structure 1 is displaced in the detection direction, that is, the x-axis direction in which the comb teeth 10ax and 10bx are arranged.
 ここで、電極対10と凸部11aとの距離は、電極対10と凹部11bとの距離よりも小さい。また、静電容量はコンデンサを構成する一対の電極の距離に反比例し、凸部11aは凹部11bと同一部材である。従って、凸部11aが電極対10と形成するコンデンサの単位面積あたりの静電容量は、凹部11bが電極対10と形成するコンデンサの単位面積あたりの静電容量よりも大きい。そして、本実施例では、変位がない状態において、第1の電極10aは、凸部11aと対向し、凸部11aとコンデンサを形成する。従って、第1の静電容量C1は、変位がない状態において、図4(a)に示すように最大値「Cmax」をとる。一方、変位がない状態において、第2の電極10bは、凹部11bと対向し、凹部11bとコンデンサを形成する。従って、第2の静電容量C2は、変位がない状態において、最小値「Cmin」をとる。なお、変位がない状態における静電容量C1とC2との位相は図4に限られず任意の状態に設定してもよい。 Here, the distance between the electrode pair 10 and the convex portion 11a is smaller than the distance between the electrode pair 10 and the concave portion 11b. The electrostatic capacity is inversely proportional to the distance between the pair of electrodes constituting the capacitor, and the convex portion 11a is the same member as the concave portion 11b. Accordingly, the capacitance per unit area of the capacitor formed by the convex portion 11 a and the electrode pair 10 is larger than the capacitance per unit area of the capacitor formed by the concave portion 11 b and the electrode pair 10. In the present embodiment, the first electrode 10a faces the convex portion 11a and forms a capacitor with the convex portion 11a in a state where there is no displacement. Accordingly, the first capacitance C1 takes the maximum value “Cmax” as shown in FIG. 4A in a state where there is no displacement. On the other hand, in a state where there is no displacement, the second electrode 10b is opposed to the recess 11b and forms a capacitor with the recess 11b. Therefore, the second capacitance C2 takes the minimum value “Cmin” in a state where there is no displacement. Note that the phases of the capacitances C1 and C2 in a state where there is no displacement are not limited to those in FIG. 4 and may be set to any state.
 そして、変位量が増加するに従い、第1の電極10aと凹部11bとが形成するコンデンサの面積(即ち、第1の電極10aと複数の凹部11bとが対向する面積)が増えるとともに、第1の電極10aと凸部11aとが形成するコンデンサの面積(即ち、第1の電極10aと複数の凹部11bとが対向する面積)が減少する。従って、第1の静電容量C1は、変位量がP/2に達するまで、即ち、第1の電極10aの櫛歯10axが凹部11bと対向する面積が最大になるまで減少する。第1の静電容量C1は、変位量がP/2の場合において、最小値Cminをとる。そして、第1の静電容量C1は、図4(a)に示すように、変位量がP/2増加するごとに最大値Cmaxと最小値Cminとを交互にとる。同様に、第2の静電容量C2は、変位量がP/2増加するごとに最大値Cmaxと最小値Cminとを交互にとる。従って、図4(a)に示すように、第1の静電容量C1は、第2の静電容量C2と位相が180度異なっている。 As the amount of displacement increases, the area of the capacitor formed by the first electrode 10a and the recess 11b (that is, the area where the first electrode 10a and the plurality of recesses 11b face each other) increases, and the first The area of the capacitor formed by the electrode 10a and the convex portion 11a (that is, the area where the first electrode 10a and the plurality of concave portions 11b face each other) decreases. Therefore, the first capacitance C1 decreases until the displacement amount reaches P / 2, that is, until the area where the comb teeth 10ax of the first electrode 10a face the recess 11b is maximized. The first capacitance C1 takes the minimum value Cmin when the displacement is P / 2. Then, as shown in FIG. 4A, the first capacitance C1 alternately takes a maximum value Cmax and a minimum value Cmin every time the displacement amount increases by P / 2. Similarly, the second capacitance C2 alternately takes the maximum value Cmax and the minimum value Cmin every time the displacement amount increases by P / 2. Therefore, as shown in FIG. 4A, the first capacitance C1 is 180 degrees out of phase with the second capacitance C2.
 変位センサ100は、検出した第1の静電容量C1と第2の静電容量C2とに基づき、可動構造1の変位を測定する。図5は、変位量を算出するシステムの一例を示す。図5に示すように、当該システムには、検出部15が配置されている。検出部15は、第1の電極10aと電気的に接続するとともに、第2の電極10bと電気的に接続する。検出部15は、第1の電極10aから第1の静電容量C1を検出し、第2の電極10bから第2の静電容量C2を検出する。検出部15は、検出した第1の静電容量C1及び第2の静電容量C2に基づき、可動構造1の変位量を算出する。即ち、検出部15は、可動構造1の変位量を、第1の静電容量C1と第2の静電容量C2とに基づき差動検出する。 The displacement sensor 100 measures the displacement of the movable structure 1 based on the detected first capacitance C1 and second capacitance C2. FIG. 5 shows an example of a system for calculating the displacement amount. As shown in FIG. 5, the detection unit 15 is arranged in the system. The detector 15 is electrically connected to the first electrode 10a and electrically connected to the second electrode 10b. The detection unit 15 detects the first capacitance C1 from the first electrode 10a, and detects the second capacitance C2 from the second electrode 10b. The detection unit 15 calculates the displacement amount of the movable structure 1 based on the detected first capacitance C1 and second capacitance C2. That is, the detection unit 15 differentially detects the displacement amount of the movable structure 1 based on the first capacitance C1 and the second capacitance C2.
 まず、検出部15は、第1の静電容量C1と、第2の静電容量C2とをそれぞれ電圧値に変換する。図4(b)は、図4(a)に示す第1の静電容量C1及び第2の静電容量C2を電圧値に変換(CV変換)したグラフを示す。以後、第1の静電容量C1から算出される電圧値を電圧値「V1」と表現し、第2の静電容量C2から算出される電圧値を電圧値「V2」と表現する。電圧値は静電容量に反比例する。従って、図4(b)に示すように、第1の静電容量C1が第2の静電容量C2よりも大きい場合、電圧値V1は電圧値V2よりも小さくなる。同様に、第2の静電容量C1が第2の静電容量C2よりも小さい場合、電圧値V1は電圧値V2よりも大きくなる。 First, the detection unit 15 converts the first capacitance C1 and the second capacitance C2 into voltage values, respectively. FIG. 4B shows a graph in which the first capacitance C1 and the second capacitance C2 shown in FIG. 4A are converted into voltage values (CV conversion). Hereinafter, the voltage value calculated from the first capacitance C1 is expressed as a voltage value “V1”, and the voltage value calculated from the second capacitance C2 is expressed as a voltage value “V2”. The voltage value is inversely proportional to the capacitance. Accordingly, as shown in FIG. 4B, when the first capacitance C1 is larger than the second capacitance C2, the voltage value V1 becomes smaller than the voltage value V2. Similarly, when the second capacitance C1 is smaller than the second capacitance C2, the voltage value V1 is larger than the voltage value V2.
 次に、検出部15は、電圧値V1と電圧値V2とを差動増幅する。図6(a)は、第1の静電容量C1と第2の静電容量C2とを電圧値に変換後、差動増幅して得られた電圧値(以後、単に「出力電圧値」と呼ぶ。)のグラフの一例を示す。 Next, the detection unit 15 differentially amplifies the voltage value V1 and the voltage value V2. FIG. 6A shows a voltage value obtained by differential amplification after converting the first capacitance C1 and the second capacitance C2 into voltage values (hereinafter simply referred to as “output voltage value”). An example of a graph of
 上述したように、変位がない状態において、第1の静電容量C1は最大値Cmaxをとり、第2の静電容量C2は最小値Cminをとる。即ち、この場合、電圧値V1は最小値をとり、電圧値V2は最大値をとる。よって、出力電圧値は、変位がない状態において、最小値「Vmin」をとる。そして、変位がない状態から変位量がP/2に達するまで、第1の静電容量C1は減少し、第2の静電容量C2は増加する。即ち、電圧値V1は増加し、電圧値V2は減少する。従って、この場合、出力電圧値は増加する。そして、変位量がP/2のとき、出力電圧値は最大値「Vmax」をとる。出力電圧値は、その後、再び減少し、変位量がPのとき、最小値Vminをとる。このように、出力電圧値は、第1の静電容量C1と第2の静電容量C2との位相が180度異なるため、変位量がP/2変動するごとに、最大値Vmaxと、最小値Vminとを交互にとる。即ち、出力電圧値は、変位量の変化に伴い周期的に値が変化する。そして、出力電圧値は、変位量が周期Pだけ変化するごとに周期的に変化する。従って、検出部15は、図6(a)に示すような出力電圧値と変位とのマップをメモリに予め保持しておき、検出した出力電圧値と比較することで、変位量を推定することができる。さらに、検出部15は、第1の静電容量C1及び第2の静電容量C2に基づき差動検出を行っているため、温度変動や振動、または気流の変化等により生じる同相ノイズを除去することができる。即ち、検出部15は、差動検出を行うことで、同相ノイズの影響を受けることなく、変位を計測することができる。 As described above, in a state where there is no displacement, the first capacitance C1 takes the maximum value Cmax, and the second capacitance C2 takes the minimum value Cmin. That is, in this case, the voltage value V1 takes the minimum value, and the voltage value V2 takes the maximum value. Therefore, the output voltage value takes the minimum value “Vmin” in a state where there is no displacement. The first capacitance C1 decreases and the second capacitance C2 increases until the amount of displacement reaches P / 2 from the state where there is no displacement. That is, the voltage value V1 increases and the voltage value V2 decreases. Therefore, in this case, the output voltage value increases. When the displacement amount is P / 2, the output voltage value takes the maximum value “Vmax”. Thereafter, the output voltage value decreases again, and takes the minimum value Vmin when the displacement amount is P. Thus, since the phase of the first electrostatic capacitance C1 and the second electrostatic capacitance C2 is 180 degrees different, the output voltage value has a maximum value Vmax and a minimum value every time the displacement amount changes by P / 2. The value Vmin is alternately taken. That is, the output voltage value periodically changes as the displacement amount changes. The output voltage value changes periodically every time the displacement amount changes by the period P. Accordingly, the detection unit 15 stores a map of the output voltage value and the displacement as shown in FIG. 6A in the memory in advance, and estimates the displacement amount by comparing with the detected output voltage value. Can do. Furthermore, since the detection unit 15 performs differential detection based on the first capacitance C1 and the second capacitance C2, it removes common-mode noise caused by temperature fluctuations, vibrations, changes in airflow, and the like. be able to. That is, the detection unit 15 can measure the displacement by performing differential detection without being affected by the common-mode noise.
 また、検出部15は、上述の差動検出により、製作時に生じる電極対10と凹凸部11との位置関係のずれ(アライメントずれ)に起因した誤差(以後、「アライメント誤差」と呼ぶ。)を軽減することができる。これについて、図7を用いて説明する。図7は、アライメントずれが生じた場合の電極対10と凹凸部11との位置関係を示す一例である。具体的には、図7(a)は、本実施例と異なり第1の電極10aと第2の電極10bとをそれぞれ近接させず離して配置した場合(以後、「比較例」と呼ぶ。)において、アライメントずれが生じた場合の電極対10と凹凸部11との位置関係を示す。図7(b)は、本実施例において、アライメントずれが生じた場合の電極対10と凹凸部11との位置関係を示す。なお変位がない状態における静電容量C1とC2との位相や出力電圧値の位相は任意に設定してもよい。例えば上記のように位相差が180°となる場合の他に、オフセットを考慮して任意の位相差を設けることもできる。この場合は位相のオフセットが必要であることと、出力電圧値は低減することを加味しなければならないが、検出に必要な出力電圧値が得られる可能な範囲で位相を設定してもよい。 In addition, the detection unit 15 detects an error (hereinafter referred to as “alignment error”) caused by a positional relationship deviation (alignment deviation) between the electrode pair 10 and the concavo-convex part 11 that occurs during manufacturing by the above-described differential detection. Can be reduced. This will be described with reference to FIG. FIG. 7 is an example showing the positional relationship between the electrode pair 10 and the concavo-convex portion 11 when alignment misalignment occurs. Specifically, in FIG. 7A, unlike the present embodiment, the first electrode 10a and the second electrode 10b are arranged close to each other without being close to each other (hereinafter referred to as “comparative example”). 5 shows the positional relationship between the electrode pair 10 and the concavo-convex portion 11 when an alignment shift occurs. FIG. 7B shows the positional relationship between the electrode pair 10 and the concavo-convex portion 11 when an alignment shift occurs in this embodiment. Note that the phase between the capacitances C1 and C2 and the phase of the output voltage value in a state where there is no displacement may be set arbitrarily. For example, in addition to the case where the phase difference is 180 ° as described above, an arbitrary phase difference can be provided in consideration of the offset. In this case, it is necessary to consider that a phase offset is necessary and that the output voltage value is reduced. However, the phase may be set within a possible range where an output voltage value necessary for detection can be obtained.
 図7(a)及び図7(b)に示すように、比較例及び本実施例において、電極対10は凹凸部11に対し傾きαだけずれている。このとき、比較例において、アライメントずれに起因して、本来完全に対向すべきである凸部11aと第1の電極10aとがxy平面において対向しなくなった面積よりも、アライメントずれに起因して本来対向すべきでない凸部11aと第2の電極10bとがxy平面において対向するようになった面積の方が大きい。 As shown in FIGS. 7A and 7B, in the comparative example and this example, the electrode pair 10 is shifted by the inclination α with respect to the concavo-convex portion 11. At this time, in the comparative example, due to the misalignment, the convex portion 11a and the first electrode 10a, which should originally completely face each other, are caused by the misalignment rather than the area where the first electrode 10a is no longer opposed on the xy plane. The area where the convex portion 11a and the second electrode 10b, which should not be opposed to each other, are opposed to each other in the xy plane is larger.
 これに対し、本実施例においては、アライメントずれに起因して本来完全に対向すべき凸部11aと第1の電極10aとが対向しなくなった面積と、アライメントずれに起因して本来対向すべきでない凸部11aと第2の電極10bとが対向するようになった面積とは同一である。従って、本実施例における変位センサ100は、比較例と比べ、アライメントずれが存在する場合においても、第1の静電容量C1と第2の静電容量C2とが180度ずれた逆相を形成しやすいとともに、最大値Cmaxと最小値Cminとの差を大きくすることができる。従って、変位センサ100は、アライメント誤差を軽減することができる。 On the other hand, in the present embodiment, the area where the convex portion 11a that should originally completely face due to misalignment and the first electrode 10a do not face each other, and should originally be opposed due to misalignment. The area where the non-convex convex portion 11a and the second electrode 10b are opposed to each other is the same. Therefore, the displacement sensor 100 according to the present embodiment forms a reverse phase in which the first capacitance C1 and the second capacitance C2 are shifted by 180 degrees even when there is an alignment shift compared to the comparative example. The difference between the maximum value Cmax and the minimum value Cmin can be increased. Therefore, the displacement sensor 100 can reduce alignment errors.
 さらに、変位センサ100は、第1の電極10aの櫛歯10axと第2の電極10bの櫛歯10bxとがx軸方向に交互に並べて構成されることにより、製造過程において、電極対10の加工ばらつきが軽減される。具体的には、フォトリソグラフィなどのプロセス技術を用いて電極対10を製作する場合、第1の電極10aの櫛歯10axと第2の電極10bの櫛歯10bxとが交互に並んで配置されるように、1枚のマスクを用いて電極対10を同時形成する。これにより、加工の変動が第1の電極10aと第2の電極10bとにおいてほぼ同一に生じる。言い換えると、加工にずれが生じた場合でも、第1の電極10aが保持可能な静電容量と、第2の電極10bが保持可能な静電容量とはほぼ同一になる。従って、変位センサ100は、このように製作された電極対10を用いて差動検出を行うことで、変位検出における加工ばらつきの影響を軽減することができる。特に、MEMS(Micro Electro Mechanical Systems)加工により櫛歯10ax、10bxの周期Pを例えば50μm以内の範囲で作成する場合においても、精度が高い変位センサ100を製作することが可能となる。 Further, the displacement sensor 100 is configured by alternately arranging the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b in the x-axis direction, thereby processing the electrode pair 10 in the manufacturing process. Variation is reduced. Specifically, when the electrode pair 10 is manufactured using a process technique such as photolithography, the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b are alternately arranged. Thus, the electrode pair 10 is simultaneously formed using one mask. As a result, variations in processing occur in the first electrode 10a and the second electrode 10b substantially the same. In other words, even when a deviation occurs in processing, the capacitance that can be held by the first electrode 10a and the capacitance that can be held by the second electrode 10b are substantially the same. Therefore, the displacement sensor 100 can reduce the influence of processing variations in displacement detection by performing differential detection using the electrode pair 10 manufactured in this way. In particular, even when the period P of the comb teeth 10ax and 10bx is created within a range of 50 μm, for example, by MEMS (Micro Electro Mechanical Systems) processing, it is possible to manufacture the displacement sensor 100 with high accuracy.
 また、本実施例において、周期Pは、櫛歯が並ぶx軸方向(検出方向)における変位量の最大値(以後、単に「最大変位」と呼ぶ。)以下に設定される。なお、最大変位は、上述したように、枠部3によって仕切られた空間等に拘束される。このように周期Pを最大変位以下に構成することで、検出部15は、例えば、再び最小値Vminになった回数、即ち、出力電圧値の変動周期数と、最終的な出力電圧値とに基づき周期P以上の大変位についても検出することができる。即ち、検出部15は、周期Pが最大変位より十分小さく設計された場合であっても、出力電圧値の変動周期数をカウントすることで、可動構造1の大変位も計測することができる。従って、変位センサ100は、リニアエンコーダとして用いることができる。 Further, in the present embodiment, the period P is set to be equal to or less than the maximum displacement amount (hereinafter simply referred to as “maximum displacement”) in the x-axis direction (detection direction) in which the comb teeth are arranged. Note that the maximum displacement is constrained by the space or the like partitioned by the frame portion 3 as described above. By configuring the period P to be equal to or less than the maximum displacement in this way, the detection unit 15 can, for example, determine the number of times the minimum value Vmin is reached again, that is, the number of fluctuation periods of the output voltage value and the final output voltage value. Based on this, it is possible to detect a large displacement of the period P or more. That is, even when the period P is designed to be sufficiently smaller than the maximum displacement, the detection unit 15 can also measure the large displacement of the movable structure 1 by counting the number of fluctuation periods of the output voltage value. Therefore, the displacement sensor 100 can be used as a linear encoder.
 また、周期Pが小さく設計された場合、変位に対する静電容量変化の割合は大きくなる。即ち、図4(a)に示すように、周期Pの値が小さいほど、同一の変位量に対する第1の静電容量C1及び第2の静電容量C2の変化の割合が大きくなる。従って、検出部15は、周期Pを最大変位より小さくすることで、可動構造1の大変位を高い分解能で計測することができる。 In addition, when the period P is designed to be small, the ratio of the capacitance change to the displacement increases. That is, as shown in FIG. 4A, the smaller the value of the period P, the larger the rate of change of the first capacitance C1 and the second capacitance C2 with respect to the same displacement amount. Therefore, the detection unit 15 can measure the large displacement of the movable structure 1 with high resolution by making the period P smaller than the maximum displacement.
 図6(b)は、可動構造1の変位量に対する出力電圧値の実測値のグラフを示す。図6(b)は、20nmごとに可動構造1を移動させて計測したものであり、このときの第1の電極10aの櫛歯10ax及び第2の電極10bの櫛歯10bxの周期Pは20μmである。図6(b)に示すように、出力電圧値は、周期P(=20μm)で波形を描いている。従って、検出部15は、出力電圧値の変動周期数及び変位後の出力電圧値に基づき、高い精度で変位量を算出することができる。 FIG. 6B shows a graph of the actual measurement value of the output voltage value with respect to the displacement amount of the movable structure 1. FIG. 6B shows the measurement by moving the movable structure 1 every 20 nm, and the period P of the comb teeth 10ax of the first electrode 10a and the comb teeth 10bx of the second electrode 10b at this time is 20 μm. It is. As shown in FIG. 6B, the output voltage value has a waveform with a period P (= 20 μm). Therefore, the detection unit 15 can calculate the displacement amount with high accuracy based on the number of fluctuation periods of the output voltage value and the output voltage value after displacement.
 以上に述べたように、本発明に係る変位センサは、第1の電極と、第2の電極と、可動構造とを有し、可動構造の変位を検出する。第1の電極は、いわゆる櫛歯構造を有し、同一面上に所定の周期に従って形成された複数の櫛歯を有する。第2の電極は、櫛歯構造を有し、第1の電極の櫛歯と同一面上に交互に並んで配置される複数の櫛歯を有する。可動構造は、第1及び第2の電極と所定間隔をもって平行する対面を有し、面内方向において変位する。可動構造は、対面において、上記複数の櫛歯の周期と同一周期で配置される凸部と、凸部と隣接し、かつ凸部と交互に並んで形成される凹部と、を有する。第1及び第2の電極は、凹凸部とコンデンサを形成する。凸部と第1の電極とが形成するコンデンサの単位面積あたりの静電容量は、凹部と第1の電極とが形成するコンデンサの単位面積あたりの静電容量と異なる。言い換えると、凸部と第2の電極とが形成するコンデンサの単位面積あたりの静電容量は、凹部と第2の電極とが形成するコンデンサの単位面積あたりの静電容量と異なる。このようにすることで、変位センサは、第1の電極から検出される静電容量と、第2の電極から検出される静電容量と、に基づき変位を差動検出することができる。また、差動検出を行うことにより、温度変動や振動等に基づく同相ノイズを除去することができる。さらに、第1の電極の櫛歯と第2の電極の櫛歯とが交互に並んで配置されることにより、変位センサは、加工ばらつきやアライメントずれに基づく位相誤差及び静電容量の誤差も軽減することができる。 As described above, the displacement sensor according to the present invention includes the first electrode, the second electrode, and the movable structure, and detects the displacement of the movable structure. The first electrode has a so-called comb tooth structure, and has a plurality of comb teeth formed on the same surface according to a predetermined cycle. The second electrode has a comb-tooth structure, and has a plurality of comb teeth that are alternately arranged on the same plane as the comb teeth of the first electrode. The movable structure has a facing surface parallel to the first and second electrodes at a predetermined interval, and is displaced in the in-plane direction. A movable structure has a convex part arrange | positioned with the period same as the period of the said several comb tooth in a facing, and the recessed part adjacent to a convex part and formed in a line with a convex part alternately. The first and second electrodes form a concavo-convex portion and a capacitor. The capacitance per unit area of the capacitor formed by the convex portion and the first electrode is different from the capacitance per unit area of the capacitor formed by the concave portion and the first electrode. In other words, the capacitance per unit area of the capacitor formed by the convex portion and the second electrode is different from the capacitance per unit area of the capacitor formed by the concave portion and the second electrode. By doing so, the displacement sensor can differentially detect the displacement based on the capacitance detected from the first electrode and the capacitance detected from the second electrode. Further, by performing differential detection, in-phase noise based on temperature fluctuations, vibrations, and the like can be removed. Furthermore, by arranging the comb teeth of the first electrode and the comb teeth of the second electrode alternately, the displacement sensor also reduces phase errors and capacitance errors due to processing variations and misalignment. can do.
 [実施例2]
 実施例1の変位センサ100において、支持基板2は、可動構造1の下面よりも大きな面積を有する凹部7が形成されていた。しかし、本発明が適用可能な変位センサ100の構成はこれに限定されない。
[Example 2]
In the displacement sensor 100 according to the first embodiment, the support substrate 2 has a recess 7 having a larger area than the lower surface of the movable structure 1. However, the configuration of the displacement sensor 100 to which the present invention is applicable is not limited to this.
 図8は、実施例2に係る変位センサ100aの断面図を示す。図8に示すように、変位センサ100aは、支持基板2の上面(可動構造1と対向する側の面)は平坦であり、実施例1の如き凹部7を有しない。そして、支持基板2は、上面の縁において、枠部3と接続している。支持基板2の上面には、電極対10が配置されている。可動構造1及び支持ばね4は、支持基板2及び電極対10に対し、所定の距離を有して配置されている。つまり、可動構造1及び支持ばね4の下面、即ち、支持基板2との対向面は、枠部3の下面より引っ込んでいる。このように構成した場合においても、変位センサ100aは、適切に可動構造1の変位を検出することができる。 FIG. 8 is a cross-sectional view of the displacement sensor 100a according to the second embodiment. As shown in FIG. 8, in the displacement sensor 100a, the upper surface of the support substrate 2 (the surface on the side facing the movable structure 1) is flat, and does not have the concave portion 7 as in the first embodiment. The support substrate 2 is connected to the frame portion 3 at the edge of the upper surface. An electrode pair 10 is disposed on the upper surface of the support substrate 2. The movable structure 1 and the support spring 4 are arranged with a predetermined distance with respect to the support substrate 2 and the electrode pair 10. That is, the lower surface of the movable structure 1 and the support spring 4, that is, the surface facing the support substrate 2 is recessed from the lower surface of the frame portion 3. Even in such a configuration, the displacement sensor 100a can detect the displacement of the movable structure 1 appropriately.
 [実施例3]
 実施例1の変位センサ100において、電極対10は支持基板2上に1対のみ配置されていた。しかし、本発明が適用可能な変位センサ100の構成はこれに限定されず、変位センサ100は、電極対10を複数有してもよい。
[Example 3]
In the displacement sensor 100 of Example 1, only one pair of electrode pairs 10 is arranged on the support substrate 2. However, the configuration of the displacement sensor 100 to which the present invention can be applied is not limited to this, and the displacement sensor 100 may include a plurality of electrode pairs 10.
 図9は、実施例3に係る変位センサの分解斜視図の一例を示す。具体的には、図9(a)は、x軸方向の変位量を計測する電極対10が2対配置された変位センサ100bの分解斜視図を示す。図9(b)は、x軸方向の変位量を計測する電極対10xが2対、y軸方向の変位量を計測する電極対10yが2対配置された変位センサ100cの分解斜視図を示す。 FIG. 9 shows an example of an exploded perspective view of the displacement sensor according to the third embodiment. Specifically, FIG. 9A shows an exploded perspective view of a displacement sensor 100b in which two pairs of electrodes 10 for measuring the amount of displacement in the x-axis direction are arranged. FIG. 9B shows an exploded perspective view of a displacement sensor 100c in which two pairs of electrodes 10x that measure the amount of displacement in the x-axis direction and two pairs of electrodes 10y that measure the amount of displacement in the y-axis direction are arranged. .
 図9(a)に示すように、変位センサ100bは、同一軸方向の変位量を検出する電極対10を複数有することで、より高分解能のセンサを構成することができる。また、例えば、一方の電極対10をx軸の正方向を計測するために使用し、他方の電極対10をx軸の負方向を計測するために使用する等により、x軸の正方向または負方向のいずれに変位したかについても検出する。 As shown in FIG. 9A, the displacement sensor 100b includes a plurality of electrode pairs 10 that detect the amount of displacement in the same axial direction, whereby a higher-resolution sensor can be configured. Further, for example, one electrode pair 10 is used for measuring the positive direction of the x-axis and the other electrode pair 10 is used for measuring the negative direction of the x-axis. It is also detected whether it is displaced in the negative direction.
 また、図9(b)に示すように、変位センサ100cは、x軸方向の変位量を検出するための電極対10xと、y軸方向の変位量を検出するための電極対10yと、の両方を有する。これにより、変位センサ100cは、x軸方向、及びその垂直方向であるy軸方向における可動構造1の変位量を計測することが可能となる。 Further, as shown in FIG. 9B, the displacement sensor 100c includes an electrode pair 10x for detecting the displacement amount in the x-axis direction and an electrode pair 10y for detecting the displacement amount in the y-axis direction. Have both. Thereby, the displacement sensor 100c can measure the displacement amount of the movable structure 1 in the x-axis direction and the y-axis direction which is the vertical direction.
 [実施例4]
 上述の実施例では、可動構造1がその下面において凹凸部11を有し、凹凸部11と電極対10とによりコンデンサが形成されていた。しかし、本発明が適用可能な変位センサ100の構成はこれに限定されず、可動構造1は、必ずしも凹凸部11を有しなくてもよい。
[Example 4]
In the embodiment described above, the movable structure 1 has the concavo-convex portion 11 on the lower surface, and the concavo-convex portion 11 and the electrode pair 10 form a capacitor. However, the configuration of the displacement sensor 100 to which the present invention can be applied is not limited to this, and the movable structure 1 does not necessarily have the uneven portion 11.
 図10は、実施例4における変位センサのコンデンサ部分の拡大図の一例を示す。図10(a)に示す変位センサ100dにおいて、可動構造1は、その下面に凹凸部を有しない。その代わりに可動構造1は、その下面に電極を形成する金属薄膜などの電極箔20が所定の周期で形成されている。例えばこの電極箔20は凸部に相当する領域に形成され、具体的にはマスクを介して金属粒子を蒸着することにより形成することができる。また、リフトオフ法や金属薄膜形成後、エッチングすることにより形成することも可能である。これにより電極箔20からなる第一の領域が区画される。図10(a)において、電極箔20は、変位がない状態において、第1の電極10aと対向するように配置されている。従って、電極箔20は、周期Pごとに配置されている。そして、実施例4において、可動構造1は、チタン酸ジルコン酸鉛などの絶縁体である。 FIG. 10 shows an example of an enlarged view of the capacitor portion of the displacement sensor in the fourth embodiment. In the displacement sensor 100d shown in FIG. 10A, the movable structure 1 does not have an uneven portion on its lower surface. Instead, the movable structure 1 is formed with electrode foils 20 such as metal thin films that form electrodes on the lower surface thereof in a predetermined cycle. For example, the electrode foil 20 is formed in a region corresponding to a convex portion, and can be specifically formed by evaporating metal particles through a mask. Further, it can be formed by etching after the lift-off method or metal thin film formation. Thereby, the 1st area | region which consists of electrode foil 20 is divided. In FIG. 10A, the electrode foil 20 is disposed so as to face the first electrode 10a in a state where there is no displacement. Therefore, the electrode foil 20 is arranged for each period P. In Example 4, the movable structure 1 is an insulator such as lead zirconate titanate.
 このように変位センサ100dを構成することで、第1の電極10a及び第2の電極10bは、電極箔20とコンデンサを形成し静電容量を有する。一方、第1の電極10a及び第2の電極10bは、可動構造1との間で静電容量を有しない。従って、図10(a)に示すように、変位がない状態において、第1の電極10aは、電極箔20と対向するため、コンデンサを形成し、所定の静電容量が生じる。一方、第2の電極10bは、電極箔20と対向せず、絶縁体部材からなる可動構造1と対向するため、静電容量が0である。従って、実施例4においても、変位センサ100dは、第1の静電容量C1と第2の静電容量C2とに基づく差動検出をすることができる。また、電極箔20の部材を適切に選択することで、変位センサ100dは、静電容量の最大値Cmaxを大きくすることができ、最大値Cmaxと最小値Cmin(ここでは0)との差分を大きくすることができる。従って、変位センサ100dは、より精度高く変位量を検出することが可能となる。 By configuring the displacement sensor 100d in this way, the first electrode 10a and the second electrode 10b form a capacitor with the electrode foil 20 and have a capacitance. On the other hand, the first electrode 10 a and the second electrode 10 b do not have a capacitance with the movable structure 1. Therefore, as shown in FIG. 10A, in the state where there is no displacement, the first electrode 10a is opposed to the electrode foil 20, so that a capacitor is formed and a predetermined capacitance is generated. On the other hand, the second electrode 10b does not oppose the electrode foil 20, but opposes the movable structure 1 made of an insulator member, so that the capacitance is zero. Accordingly, also in the fourth embodiment, the displacement sensor 100d can perform differential detection based on the first electrostatic capacitance C1 and the second electrostatic capacitance C2. Further, by appropriately selecting the member of the electrode foil 20, the displacement sensor 100d can increase the maximum value Cmax of the capacitance, and the difference between the maximum value Cmax and the minimum value Cmin (here, 0) is obtained. Can be bigger. Therefore, the displacement sensor 100d can detect the displacement amount with higher accuracy.
 一方、図10(b)における変位センサ100eは、可動構造1の下面において、電極箔20を嵌め込むための凹状の空間が所定の周期に従って形成されている。従って、可動構造1の下面と、電極箔20の下面部分は同一面上に構成される。従って、可動構造1と電極箔20は、可動構造1との対面において、凹凸構造を有しない。このように構成しても、変位センサ100eは、変位センサ100dと同様、第1の静電容量C1と第2の静電容量C2とに基づき差動検出をすることができる。 On the other hand, in the displacement sensor 100e in FIG. 10B, a concave space for fitting the electrode foil 20 is formed on the lower surface of the movable structure 1 in accordance with a predetermined cycle. Therefore, the lower surface of the movable structure 1 and the lower surface portion of the electrode foil 20 are configured on the same surface. Therefore, the movable structure 1 and the electrode foil 20 do not have a concavo-convex structure facing the movable structure 1. Even if comprised in this way, the displacement sensor 100e can detect differentially based on the 1st electrostatic capacitance C1 and the 2nd electrostatic capacitance C2 similarly to the displacement sensor 100d.
 本発明は、変位量を検出する変位センサに利用することができる。また、加速度センサ、圧力センサ、力センサなどにも幅広く応用することができる。 The present invention can be used for a displacement sensor for detecting a displacement amount. Further, it can be widely applied to acceleration sensors, pressure sensors, force sensors and the like.

Claims (8)

  1.  静電容量の変化に基づき変位を測定する変位センサであって、
     同一面上に所定の周期に従って形成された櫛歯を有する第1の電極と、
     前記第1の電極の櫛歯と同一面上に交互に並んで配置される櫛歯を有する第2の電極と、
     前記第1及び第2の電極と所定間隔をもって平行する対面を有し、当該対面の面内方向に変位する可動構造と、を備え、
     前記可動構造は、前記対面において、前記所定の周期で配置される第1の領域と、
     前記第1の領域と隣接し、かつ前記第1の領域と交互に並んで形成される第2の領域と、を有し、
     前記第1の領域と前記第1の電極とが形成するコンデンサの単位面積あたりの静電容量は、前記第2の領域と前記第1の電極とが形成するコンデンサの単位面積あたりの静電容量と異なることを特徴とする変位センサ。
    A displacement sensor that measures displacement based on a change in capacitance,
    A first electrode having comb teeth formed according to a predetermined period on the same surface;
    A second electrode having comb teeth arranged alternately on the same plane as the first electrode comb teeth;
    A movable structure having facing surfaces parallel to the first and second electrodes at a predetermined interval, and being displaced in an in-plane direction of the facing surfaces,
    The movable structure has a first region arranged at the predetermined period on the facing side;
    A second region adjacent to the first region and formed alternately with the first region,
    The capacitance per unit area of the capacitor formed by the first region and the first electrode is the capacitance per unit area of the capacitor formed by the second region and the first electrode. Displacement sensor characterized by being different from
  2.  前記対面は凹凸構造を有し、前記第1の領域は前記凹凸構造の凸部であり、前記第2の領域は前記凹凸構造の凹部であることを特徴とする請求項1に記載の変位センサ。 The displacement sensor according to claim 1, wherein the facing surface has a concavo-convex structure, the first region is a convex portion of the concavo-convex structure, and the second region is a concave portion of the concavo-convex structure. .
  3.  前記凸部と前記凹部は同一部材であることを特徴とする請求項2に記載の変位センサ。 The displacement sensor according to claim 2, wherein the convex portion and the concave portion are the same member.
  4.  前記第1の領域は、前記可動構造に形成された電極箔により区画されてなることを特徴とする請求項1に記載の変位センサ。 The displacement sensor according to claim 1, wherein the first region is partitioned by an electrode foil formed in the movable structure.
  5.  前記所定の周期は、前記櫛歯が並ぶ方向における前記可動構造の最大変位より小さいことを特徴とする請求項1乃至4のいずれか一項に記載の変位センサ。 5. The displacement sensor according to claim 1, wherein the predetermined period is smaller than a maximum displacement of the movable structure in a direction in which the comb teeth are arranged.
  6.  前記第1及び第2の電極と電気的に接続し、前記第1の電極から検出される第1の静電容量と、前記第2の電極から検出される第2の静電容量とに基づき前記可動構造の変位量を検出する検出部をさらに備えることを特徴とする請求項1乃至5のいずれか一項に記載の変位センサ。 Electrically connected to the first and second electrodes and based on a first capacitance detected from the first electrode and a second capacitance detected from the second electrode The displacement sensor according to claim 1, further comprising a detection unit that detects a displacement amount of the movable structure.
  7.  前記検出部は、前記第1の静電容量と、前記第2の静電容量とを電圧値に変換し差動増幅して算出した出力電圧値に基づき前記変位量を検出することを特徴とする請求項6に記載の変位センサ。 The detection unit detects the displacement amount based on an output voltage value calculated by converting the first capacitance and the second capacitance into a voltage value and differentially amplifying the voltage value. The displacement sensor according to claim 6.
  8.  前記検出部は、前記出力電圧値の変動周期数及び前記出力電圧値に基づき変位量を検出することを特徴とする請求項7に記載の変位センサ。 The displacement sensor according to claim 7, wherein the detection unit detects a displacement amount based on a fluctuation period number of the output voltage value and the output voltage value.
PCT/JP2008/065692 2008-09-01 2008-09-01 Displacement sensor WO2010023766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065692 WO2010023766A1 (en) 2008-09-01 2008-09-01 Displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065692 WO2010023766A1 (en) 2008-09-01 2008-09-01 Displacement sensor

Publications (1)

Publication Number Publication Date
WO2010023766A1 true WO2010023766A1 (en) 2010-03-04

Family

ID=41720956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065692 WO2010023766A1 (en) 2008-09-01 2008-09-01 Displacement sensor

Country Status (1)

Country Link
WO (1) WO2010023766A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130421A (en) * 2011-12-20 2013-07-04 Nippon Telegr & Teleph Corp <Ntt> Oscillation sensor
WO2014117158A1 (en) * 2013-01-28 2014-07-31 Si-Ware Systems Self calibration for mirror positioning in optical mems interferometers
US9658053B2 (en) 2010-03-09 2017-05-23 Si-Ware Systems Self calibration for mirror positioning in optical MEMS interferometers
EP3246667A1 (en) * 2016-05-17 2017-11-22 Université Grenoble Alpes Capacitive detection device and measurement device including same
JP2018084453A (en) * 2016-11-22 2018-05-31 キヤノン株式会社 Displacement detector and lens barrel including the same, and imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934850A (en) * 1972-07-24 1974-03-30
JPH03125917A (en) * 1989-10-12 1991-05-29 Tokin Corp Capacitance type linear encoder
JPH095111A (en) * 1995-06-12 1997-01-10 Hewlett Packard Co <Hp> Position detector, positioning device and media-movement type memory device
JP2003009502A (en) * 2001-05-31 2003-01-10 Hewlett Packard Co <Hp> Position detection for microelectromechanical system element
JP2008125231A (en) * 2006-11-10 2008-05-29 Olympus Corp Inertia driving actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934850A (en) * 1972-07-24 1974-03-30
JPH03125917A (en) * 1989-10-12 1991-05-29 Tokin Corp Capacitance type linear encoder
JPH095111A (en) * 1995-06-12 1997-01-10 Hewlett Packard Co <Hp> Position detector, positioning device and media-movement type memory device
JP2003009502A (en) * 2001-05-31 2003-01-10 Hewlett Packard Co <Hp> Position detection for microelectromechanical system element
JP2008125231A (en) * 2006-11-10 2008-05-29 Olympus Corp Inertia driving actuator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9658053B2 (en) 2010-03-09 2017-05-23 Si-Ware Systems Self calibration for mirror positioning in optical MEMS interferometers
JP2013130421A (en) * 2011-12-20 2013-07-04 Nippon Telegr & Teleph Corp <Ntt> Oscillation sensor
WO2014117158A1 (en) * 2013-01-28 2014-07-31 Si-Ware Systems Self calibration for mirror positioning in optical mems interferometers
CN105103030A (en) * 2013-01-28 2015-11-25 斯维尔系统 Self calibration for mirror positioning in optical MEMS interferometers
CN105103030B (en) * 2013-01-28 2018-07-06 斯维尔系统 Self-alignment MEMS device
EP3246667A1 (en) * 2016-05-17 2017-11-22 Université Grenoble Alpes Capacitive detection device and measurement device including same
FR3051553A1 (en) * 2016-05-17 2017-11-24 Univ Grenoble Alpes CAPACITIVE DETECTION DEVICE AND MEASURING DEVICE INCLUDING THE SAME
US10697818B2 (en) 2016-05-17 2020-06-30 Université Grenoble Alpes Capacitive detection device and measuring device including same
JP2018084453A (en) * 2016-11-22 2018-05-31 キヤノン株式会社 Displacement detector and lens barrel including the same, and imaging device
WO2018097105A1 (en) * 2016-11-22 2018-05-31 キヤノン株式会社 Displacement detection device, lens barrel provided with same, and image pickup device

Similar Documents

Publication Publication Date Title
JP3941694B2 (en) Acceleration sensor
JP5125327B2 (en) Acceleration sensor
JP4595862B2 (en) Capacitive sensor
KR100513346B1 (en) A capacitance accelerometer having a compensation elctrode
WO2010023766A1 (en) Displacement sensor
CN111766404B (en) Rigidity coupling-based low-stress Z-axis MEMS accelerometer
US20120160029A1 (en) Acceleration sensor
JP2016125849A (en) Sensor and method for manufacturing the same
JP2012163507A (en) Acceleration sensor
WO2016097127A1 (en) A quadrature compensation method for mems gyroscopes and a gyroscope sensor
US20050039530A1 (en) Micromechanical sensor having a self-test function and optimization method
US9823266B2 (en) Capacitive physical quantity sensor
JP2014219321A (en) Capacity type physical quantity sensor and method for manufacturing the same
JP2008170402A (en) Capacitance sensing type physical quantity sensor
US8371180B2 (en) Micromechanical sensor element for capacitive differential pressure detection
JP2008275325A (en) Sensor device
US8220337B2 (en) Micromechanical sensor element for capacitive pressure detection
US9612254B2 (en) Microelectromechanical systems devices with improved lateral sensitivity
WO2014156119A1 (en) Physical quantity sensor
WO2010023767A1 (en) Displacement sensor
US8833135B2 (en) Sensor system and method for calibrating a sensor system
JP2008292426A (en) Electrostatic capacity type sensor
JP3944509B2 (en) Tilt sensor
JP5783201B2 (en) Capacitive physical quantity sensor
JP5900398B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08809750

Country of ref document: EP

Kind code of ref document: A1