WO2010023757A1 - 酸化チタン粒子の製造方法 - Google Patents
酸化チタン粒子の製造方法 Download PDFInfo
- Publication number
- WO2010023757A1 WO2010023757A1 PCT/JP2008/065565 JP2008065565W WO2010023757A1 WO 2010023757 A1 WO2010023757 A1 WO 2010023757A1 JP 2008065565 W JP2008065565 W JP 2008065565W WO 2010023757 A1 WO2010023757 A1 WO 2010023757A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas containing
- titanium oxide
- water vapor
- titanium tetrachloride
- oxide particles
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 108
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 97
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 17
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 86
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 83
- 230000001590 oxidative effect Effects 0.000 claims abstract description 47
- 239000007789 gas Substances 0.000 claims description 146
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 48
- 239000001301 oxygen Substances 0.000 claims description 47
- 229910052760 oxygen Inorganic materials 0.000 claims description 47
- 238000004519 manufacturing process Methods 0.000 claims description 36
- 239000000126 substance Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 abstract description 23
- 238000001816 cooling Methods 0.000 abstract description 6
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 239000012808 vapor phase Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 39
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000000843 powder Substances 0.000 description 12
- 239000011261 inert gas Substances 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- 239000006200 vaporizer Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000011027 product recovery Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/07—Producing by vapour phase processes, e.g. halide oxidation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
- Y10S977/775—Nanosized powder or flake, e.g. nanosized catalyst
- Y10S977/776—Ceramic powder or flake
Definitions
- the present invention relates to a method for producing titanium oxide particles having a decahedron box shape.
- decahedron titanium oxide particles having a decahedral shape and mainly composed of anatase crystals
- Patent Document 1 titanium oxide particles having a decahedral shape and mainly composed of anatase crystals
- Patent Document 1 titanium oxide particles having a decahedral shape and mainly composed of anatase crystals
- Patent Document 2 Non-Patent Document 1
- decahedral titanium oxide particles have high activity as a photocatalyst.
- the method for producing decahedral titanium oxide particles reported in the above literature is a method in which a gas containing titanium tetrachloride and oxygen is rapidly heated and rapidly cooled under certain conditions.
- most of the decahedral titanium oxide particles obtained by this method have a particle diameter of 100 nm or more. Therefore, in the conventional manufacturing method, it is difficult to selectively obtain decahedral titanium oxide particles having a particle size of 100 nm or less, and it is a problem to reduce the particle size while maintaining the box shape of the decahedral shape. It has become.
- Patent Document 3 As a method for obtaining fine particle titanium oxide, a method is known in which oxygen and water vapor are used as oxidizing gases when titanium tetrachloride is oxidized in a gas phase (see Patent Document 3).
- International Publication No. 04/063431 Pamphlet JP 2006-52099 A Japanese Patent No. 3656355 Kusano / Terada / Abe / Otani, The 98th Catalysis Conference (September 2006)
- the present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide a method for producing titanium oxide particles capable of selectively producing small-diameter decahedral titanium oxide particles selectively. Is to provide.
- the present inventors have conducted rapid heating and rapid cooling methods when oxidizing titanium tetrachloride at a high temperature in the gas phase, and water vapor as an oxidizing gas. It has been found that when a method to be used is used under certain conditions, decahedral titanium oxide particles having a particle diameter of 100 nm or less can be selectively obtained.
- a gas containing titanium tetrachloride vapor preheated to 500 ° C. or more and an oxidizing gas containing water vapor are mixed and heated to 800 ° C. or more.
- the manufacturing method of the titanium oxide particle including the process sent to an area
- [6] The method for producing titanium oxide particles according to any one of [1] to [5], wherein the concentration of titanium tetrachloride in the gas containing titanium tetrachloride vapor is 3 to 40% by volume.
- the ratio of (oxygen (O 2 equivalent) substance amount [mol]) / (titanium tetrachloride substance amount [mol]) in the gas containing titanium tetrachloride vapor is 0.1 to 7.
- [8] The method for producing titanium oxide particles according to any one of [1] to [7], wherein a concentration of water vapor in the oxidizing gas containing water vapor is 10 to 80% by volume.
- the ratio of (oxygen (O 2 equivalent) substance amount [mol]) / (water vapor substance amount [mol]) in the oxidizing gas containing water vapor is 0.1 to 5 [1] ]
- the method for producing titanium oxide particles according to one item.
- the method for producing titanium oxide particles according to the present invention includes a method of rapid heating and rapid cooling when oxidizing titanium tetrachloride at a high temperature in a gas phase, and a method of using water vapor as an oxidizing gas.
- a method of rapid heating and rapid cooling when oxidizing titanium tetrachloride at a high temperature in a gas phase and a method of using water vapor as an oxidizing gas.
- the obtained titanium oxide particles having a small particle diameter are suitable as a photocatalytic material. Therefore, according to the present invention, it is possible to industrially produce decahedral titanium oxide particles suitable as such a photocatalytic material.
- FIG. 1 is a block diagram showing an example of a reaction apparatus used for producing titanium oxide particles to which the present invention is applied.
- a gas containing titanium tetrachloride vapor and an oxidizing gas containing water vapor are brought into contact with each other, thereby having a decahedron box shape and a particle diameter of 1 nm to 100 nm.
- the “decahedral titanium oxide particle” in the present invention means a titanium oxide particle having a decahedron box shape, similar to the titanium oxide particle defined in Patent Document 1 described above.
- “selectively producing decahedral titanium oxide particles” in the present invention means that the obtained titanium oxide powder is arbitrarily sampled and observed in an arbitrary field of view when observed with an electron microscope. It means that at least 80% or more of the titanium particles meet the above conditions.
- the “oxidizing gas containing water vapor” in the present invention means a gas containing water vapor and generating titanium oxide when it comes into contact with titanium tetrachloride vapor at a high temperature.
- the oxidizing gas containing water vapor is preferably a gas containing at least two components of oxygen and water vapor.
- Specific examples of the oxidizing gas containing water vapor include a gas containing oxygen (O 2 ) and water vapor, or a gas containing ozone (O 3 ) and water vapor.
- the oxidizing gas containing water vapor may be a mixture of these gases, or may be a gas obtained by diluting these gases with an inert gas.
- a mixed gas of water vapor and oxygen a mixed gas of water vapor and an inert gas
- a mixed gas of water vapor, oxygen and an inert gas can be used.
- Air may be used as a mixed gas of methane and inert gas.
- the gas containing titanium tetrachloride vapor for example, a mixed gas of titanium tetrachloride vapor and inert gas
- a mixed gas of titanium tetrachloride vapor and oxygen titanium tetrachloride vapor and oxygen and inert gas
- a mixed gas with gas can be used.
- air may be used as a mixed gas of oxygen and inert gas.
- the gas containing titanium tetrachloride vapor does not generate titanium oxide in the preheating step.
- the gas containing titanium tetrachloride vapor described above is a gas obtained by mixing only titanium tetrachloride vapor and an inert gas, if the mixed gas is sent to a region heated to 800 ° C. or higher, titanium tetrachloride Mixing of steam and oxygen becomes insufficient, making it difficult to selectively obtain a decahedron shape.
- a mixed gas of titanium tetrachloride vapor and oxygen or a mixed gas of titanium tetrachloride vapor, oxygen and inert gas as the gas containing titanium tetrachloride vapor.
- the temperature at the time of contact is important. Specifically, the titanium tetrachloride vapor and the oxidizing gas containing water vapor need to be preheated to 500 ° C. or more before contacting each other. When preheating is performed at a temperature lower than 500 ° C., good decahedral titanium oxide particles cannot be obtained when a gas containing titanium tetrachloride vapor comes into contact with a gas containing water vapor.
- the gas containing titanium tetrachloride vapor and the gas containing water vapor come into contact with each other, these gases need to be sent to a region heated to 800 ° C. or higher. After contact, it is preferably sent immediately to an area heated to 800 ° C. or higher.
- the residence time of the gas in the region heated to 800 ° C. or higher is preferably 300 milliseconds or less, and more preferably 100 milliseconds or less. When the gas residence time exceeds 300 milliseconds, the particle diameter of the titanium oxide particles obtained is increased and the rutile type crystal is also increased, so that it is difficult to obtain good decahedral titanium oxide particles.
- the concentration of titanium tetrachloride in the gas containing titanium tetrachloride vapor is preferably 3 to 40% by volume.
- the concentration of titanium tetrachloride in the gas containing titanium tetrachloride vapor is preferably in the range of 3 to 40% by volume, more preferably in the range of 15 to 30% by volume.
- the ratio of (oxygen (O 2 equivalent) substance amount [mol]) / (titanium tetrachloride substance amount [mol]) in the gas containing titanium tetrachloride vapor is 0.1 to 7. It is preferable. When this value is less than 0.1, the proportion of the resulting decahedral titanium oxide particles decreases. On the other hand, when this value exceeds 7, the particle diameter of the titanium oxide particles increases. Accordingly, the ratio of (oxygen (O 2 equivalent) substance amount [mol]) / (titanium tetrachloride substance amount [mol]) in the gas containing titanium tetrachloride vapor is in the range of 0.1 to 7. More preferably, it is in the range of 2-5.
- the concentration of water vapor in the oxidizing gas containing water vapor is preferably 10 to 80% by volume.
- the concentration of water vapor in the oxidizing gas containing water vapor is preferably in the range of 10 to 80% by volume, more preferably in the range of 15 to 40% by volume.
- the ratio of (oxygen (O 2 equivalent) substance amount [mol]) / (water vapor substance amount [mol]) in the oxidizing gas containing water vapor is preferably 0.1 to 5. .
- the ratio of (oxygen (O 2 equivalent) substance amount [mol]) / (steam substance amount [mol]) in the oxidizing gas containing water vapor is preferably in the range of 0.1 to 5. More preferably, it is in the range of 0.5-3.
- the amount of the oxidizing gas containing water vapor is preferably 0.5 to 5 times as much as the volume ratio of the gas containing titanium tetrachloride vapor.
- this volume ratio is less than 0.5 times, the particle diameter of the titanium oxide particles increases.
- this volume ratio exceeds 5 times, the proportion of decahedral titanium oxide particles will decrease. Therefore, the amount of the oxidizing gas containing water vapor is preferably in the range of 0.5 to 5 times by volume with respect to the amount of the gas containing titanium tetrachloride vapor, more preferably 0.8 to 2 range.
- the volume ratio (titanium tetrachloride: oxygen: water vapor) of titanium tetrachloride, oxygen, and water vapor in the gas containing the gas containing titanium tetrachloride vapor and the gas containing water vapor is 1: 0.5.
- Preferably in the range of 13 to 0.3 to 5 (volume ratio), more preferably in the range of titanium tetrachloride: oxygen: water vapor 1: 1 to 6: 0.5 to 3 (volume ratio). is there. Outside this range, it is difficult to selectively obtain decahedral titanium oxide particles.
- the method for producing titanium oxide particles to which the present invention is applied includes a method of rapid heating and rapid cooling when oxidizing titanium tetrachloride at a high temperature in a gas phase, and water vapor as an oxidizing gas.
- a method of rapid heating and rapid cooling when oxidizing titanium tetrachloride at a high temperature in a gas phase, and water vapor as an oxidizing gas In combination with the above method under the above conditions, it is possible to selectively and efficiently produce decahedral titanium oxide particles having a particle diameter in the range of 1 nm to 100 nm. Further, the obtained titanium oxide particles having a small particle diameter are suitable as a photocatalytic material. Therefore, according to the present invention, it is possible to industrially produce decahedral titanium oxide particles suitable as such a photocatalytic material.
- this reaction apparatus includes a reaction tube 1 for reacting a gas containing titanium tetrachloride vapor and an oxidizing gas containing water vapor, and a part of the reaction tube 1 (referred to as a heating unit 1a). ) Is locally heated, and a product recovery unit 3 for recovering titanium oxide powder generated in the reaction tube 1 is provided.
- reaction tube 1 for example, a cylindrical tube made of quartz or the like can be used.
- an introduction pipe 4 for introducing an oxidizing gas containing water vapor is connected to the one end side (upstream side) of the reaction pipe 1 and an introduction pipe for introducing a gas containing titanium tetrachloride vapor. 5 is inserted into the inside from one end side (upstream side).
- an introduction port 4a into which water, oxygen (O 2 ), and nitrogen are introduced, and a vaporizer 6 that vaporizes water introduced from the introduction port 4a are provided on the upstream side of the introduction pipe 4.
- the oxidizing gas containing water vapor introduced from the introduction port 4a (containing water vapor, oxygen (O 2 ), and nitrogen) passes through the vaporizer 6, thereby causing water vapor, oxygen (O 2 ), and The gas is mixed with nitrogen and introduced into the reaction tube 1 from the introduction tube 4.
- a vaporizer 7 for vaporizing titanium (TiCl 4 ) is provided. Then, the gas containing titanium tetrachloride vapor introduced from the introduction port 5a (containing titanium tetrachloride vapor and oxygen (O 2 )) passes through the vaporizer 6, thereby causing titanium tetrachloride vapor and oxygen ( It becomes a mixed gas with O 2 ) and is introduced into the reaction tube 1 from the introduction tube 5.
- the introduction tube 5 is accommodated in the reaction tube 1 from one end side (upstream side) of the reaction tube 1. Then, infrared light is irradiated from the infrared electric furnace 2 to the tip of the introduction tube 5.
- a baffle 8 is inserted from the other end side (downstream side) of the reaction tube 1.
- the baffle 8 guides the gas introduced into the reaction tube 1 to the outer peripheral side of the reaction tube 1 that becomes high temperature.
- the baffle 8 is formed by closing the tip of a quartz tube in a sharp shape.
- the tip of the baffle 8 faces the tip of the introduction tube 5 in the reaction tube 1.
- the leading end portion of the introduction tube 5 and the leading end portion of the baffle 8 are located in the heating unit 1 a of the reaction tube 1.
- the baffle 8 also contributes to shortening the gas residence time in the reaction zone B described later.
- a platinum plate is wound around the reaction tube 1 of the heating unit 1a.
- the heating unit 1a enables rapid heating and rapid cooling by the combination of the platinum plate and the infrared electric furnace 2. That is, when the platinum plate absorbs infrared rays irradiated from the infrared electric furnace 2 and generates heat, only the portion in contact with the platinum is locally heated. Thereby, it is possible to heat the heating part 1a to about 1200 degreeC.
- the temperature of the heating part 1a can be arbitrarily set by controlling the infrared irradiation by the infrared electric furnace 2 with a temperature controller (not shown).
- the portion up to the leading end of the introduction pipe 5 is a portion (referred to as a preheating zone A) where the gas containing titanium tetrachloride vapor and the oxidizing gas containing water vapor are preheated.
- the portion downstream of the introduction tube 5, more specifically, from the tip of the introduction tube 5 to the end of the heating portion 1 a is a portion (referred to as reaction zone B) that oxidizes titanium tetrachloride at a high temperature in a gas phase. .
- the product recovery unit 3 is a bag filter or the like, and recovers titanium oxide powder generated in the reaction tube 1 through a discharge tube 9 connected to the other end side (downstream side) of the reaction tube 1.
- recovery part 3 it is preferable to attract
- the oxidizing gas containing water vapor introduced into the reaction tube 1 from the introduction pipe 4 and the gas containing titanium tetrachloride vapor passing through the introduction pipe 5 are 500 in the preheating zone A. After being preheated to more than 0 ° C., they are mixed in reaction zone B and heated to 800 ° C. or more. The gas containing titanium tetrachloride vapor and the oxidizing gas containing water vapor react immediately upon contact in reaction zone B, and the resulting reaction gas passes through reaction zone B with a residence time of 300 milliseconds or less. The gas that has passed through the reaction zone B is immediately cooled and sent to the product recovery unit 3.
- Example 1 titanium oxide powder was actually produced under the following conditions using the reaction apparatus shown in FIG. That is, a platinum plate is wound about 10 cm around the heating portion 1a of the reaction tube 1, and the infrared heating furnace 2 is controlled by a temperature controller so that the infrared rays from the infrared heating furnace 2 hit this portion (heating portion 1a).
- the surface temperature of the platinum plate was set to 1200 ° C.
- a quartz tube having an inner diameter of 21.4 mm was used as the reaction tube 1.
- the baffle 8 a quartz tube having an outer diameter of 12.7 mm was used, and its tip was closed to a sharp shape of about 30 °.
- the cross-sectional area of the heating part 1a is 2.3 cm 2 .
- the tip of the introduction tube 5 for introducing the gas containing titanium tetrachloride vapor is 6 cm downstream from the upstream tip of the heating part 1a wound with a platinum plate (the width of the heating part 1a is also 10 cm because the width of the platinum plate is 10 cm).
- the area up to here is designated as a preheating zone A.
- a high-temperature reaction zone B (4 cm) was provided downstream from the tip of the introduction tube 5 and to the downstream tip of the heating unit 1a.
- As the oxidizing gas containing water vapor a mixed gas containing water vapor, oxygen (O 2 ), and nitrogen was used.
- a mixed gas of water, oxygen, and nitrogen was introduced from the inlet 4a, passed through the vaporizer 6, and then introduced into the reaction tube 1 as an oxidizing gas containing water vapor from the tip of the inlet tube 5.
- As the gas containing titanium tetrachloride vapor a mixed gas of titanium tetrachloride vapor and oxygen (O 2 ) was used.
- TiCl 4 was introduced from the introduction port 5a, oxygen (O 2 ) was introduced from the introduction port 5b, passed through the vaporizer 7, and then introduced into the reaction tube 1 from the tip of the introduction tube 5.
- Example 1 The titanium oxide powders obtained in Example 1, Comparative Example 1 and Comparative Example 2 were observed with an electron microscope. Table 1 below summarizes the manufacturing conditions of Example 1, Comparative Example 1 and Comparative Example 2, and the observation results of the obtained titanium oxide particles.
- As the titanium oxide powder three arbitrarily sampled powders were taken, introduced into the sample chamber of the scanning electron microscope, and observed in five or more fields of view.
- the titanium oxide powder obtained in Example 1 was decahedral titanium oxide particles having a particle diameter in the range of 50 to 90 nm.
- the titanium oxide powder obtained in Comparative Example 1 was not a decahedral titanium oxide particle, and showed a wide distribution in a particle size range of 30 to 200 nm.
- the titanium oxide powder obtained in Comparative Example 2 was a decahedral titanium oxide particle, it showed a wide distribution in the particle size range of 70 to 150 nm, and included particles having a large particle size.
- the production method of the present invention it is possible to selectively and efficiently produce decahedral titanium oxide particles having a particle diameter in the range of 1 nm to 100 nm. Further, the obtained titanium oxide particles having a small particle diameter are suitable as a photocatalytic material. Therefore, according to the present invention, it is possible to industrially produce decahedral titanium oxide particles suitable as such a photocatalytic material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
[1] 四塩化チタン蒸気を含むガスと、水蒸気を含む酸化性ガスとを接触させることによって、10面体の箱型形状を有し、粒子径が1nm~100nmの範囲にある10面体酸化チタン粒子を選択的に製造する酸化チタン粒子の製造方法であって、それぞれ500℃以上に予熱された四塩化チタン蒸気を含むガスと水蒸気を含む酸化性ガスとが混合され、800℃以上に加熱された領域へと送られる工程を含む酸化チタン粒子の製造方法。
[2] 前記四塩化チタン蒸気を含むガスが、四塩化チタン蒸気と酸素とを含む混合ガスである前項[1]に記載の酸化チタン粒子の製造方法。
[3] 前記水蒸気を含む酸化性ガスが、水蒸気と酸素との混合ガスである前項[1]又は[2]に記載の酸化チタン粒子の製造方法。
[4] 前記800℃以上に加熱された領域におけるガスの滞留時間が300ミリ秒以下である前項[1]乃至[3]の何れか一項に記載の酸化チタン粒子の製造方法。
[5] 前記滞留時間が100ミリ秒以下である前項[4]に記載の酸化チタン粒子の製造方法。
[6] 前記四塩化チタン蒸気を含むガス中の四塩化チタン濃度が、3~40体積%である前項[1]乃至[5]の何れか一項に記載の酸化チタン粒子の製造方法。
[7] 前記四塩化チタン蒸気を含むガス中の(酸素(O2 換算)の物質量[mol])/(四塩化チタンの物質量[mol])の比が、0.1~7である前項[1]乃至[6]の何れか一項に記載の酸化チタン粒子の製造方法。
[8] 前記水蒸気を含む酸化性ガス中の水蒸気の濃度が、10~80体積%である前項[1]乃至[7]の何れか一項に記載の酸化チタン粒子の製造方法。
[9] 前記水蒸気を含む酸化性ガス中の(酸素(O2 換算)の物質量[mol])/(水蒸気の物質量[mol])の比が、0.1~5である前項[1]乃至[8]の何れか一項に記載の酸化チタン粒子の製造方法。
[10] 前記水蒸気を含む酸化性ガスの量が、四塩化チタン蒸気を含むガスの量に対して、体積比で、0.5~5倍である前項[1]乃至[9]の何れか一項に記載の酸化チタン粒子の製造方法。
[11] 前記四塩化チタン蒸気を含むガスと水蒸気を含むガスとを併せたガスの組成が、四塩化チタン:酸素:水蒸気=1:0.5~13:0.3~5(体積比)である前項[1]乃至[10]の何れか一項に記載の酸化チタン粒子の製造方法。
[12] 前記四塩化チタン蒸気を含むガスと水蒸気を含むガスとを併せたガスの組成が、四塩化チタン:酸素:水蒸気=1:1~6:0.3~3(体積比)である前項[11]に記載の酸化チタン粒子の製造方法。
3…生成物回収部 4,5…導入管 6,7…気化器
8…バッフル 9…排出管
本発明の酸化チタン粒子の製造方法は、四塩化チタン蒸気を含むガスと、水蒸気を含む酸化性ガスとを接触させることによって、10面体の箱型形状を有し、粒子径が1nm~100nmの範囲にある10面体酸化チタン粒子を選択的に製造する酸化チタン粒子の製造方法であって、それぞれ500℃以上に予熱された四塩化チタン蒸気を含むガスと水蒸気を含む酸化性ガスとが混合され、800℃以上に加熱された領域へと送られる工程を含むことを特徴とする。
また、本発明における「10面体酸化チタン粒子を選択的に製造する」とは、得られた酸化チタン粉末を任意にサンプリングし、電子顕微鏡にて観察した際に、任意の視野において観察される酸化チタン粒子の少なくとも80%以上が、上記条件に該当することを意味する。
しかしながら、上述した四塩化チタン蒸気を含むガスが、四塩化チタン蒸気と不活性ガスのみを混合したガスである場合、その混合ガスが800℃以上に加熱された領域に送られると、四塩化チタン蒸気と酸素との混合が不十分となり、10面体形状を選択的に得ることが困難となる。
したがって、本発明では、四塩化チタン蒸気を含むガスとして、四塩化チタン蒸気と酸素との混合ガス、又は四塩化チタン蒸気と酸素と不活性ガスとの混合ガスの何れかを用いることが好ましい。
この値が0.1未満になると、得られる10面体酸化チタン粒子の割合が少なくなる。一方、この値が7を超えると、酸化チタン粒子の粒子径が大きくなる。したがって、四塩化チタン蒸気を含むガス中の(酸素(O2 換算)の物質量[mol])/(四塩化チタンの物質量[mol])の比は、0.1~7の範囲であることが好ましく、より好ましくは2~5の範囲である。
この範囲を外れると、10面体酸化チタン粒子を選択的に得難い。この原因については不明であるが、四塩化チタンが水蒸気によって加水分解される際の濃度、速度、加水分解以降の未反応四塩化チタンと酸素との反応速度、および反応ゾーンでの滞留時間などが関与していると推定される。
この反応装置は、図1に示すように、四塩化チタン蒸気を含むガスと水蒸気を含む酸化性ガスとを反応させるための反応管1と、この反応管1の一部(加熱部1aという。)を局所的に加熱するための赤外線電気炉2と、反応管1内で生成された酸化チタンの粉末を回収するための生成物回収部3とを備えている。
実施例1では、上述した図1に示す反応装置を用いて、以下の条件の下で実際に酸化チタンの粉末を製造した。
すなわち、反応管1の加熱部1aに白金板を10cmほど巻きつけ、この部分(加熱部1a)に赤外線加熱炉2からの赤外線が当たるようにして、赤外線加熱炉2を温度制御器で制御しながら、白金板の表面温度が1200℃になるようにした。
反応管1として内径21.4mmの石英管を使用した。バッフル8としては、外径12.7mmの石英管を使用し、その先端を約30°の尖った形状に閉塞させた。また、加熱部1aの断面積は、2.3cm2である。
四塩化チタン蒸気を含むガスを導入する導入管5の先端は、白金板を巻き付けた加熱部1a(白金板の幅は10cmであるから、加熱部1aの幅も10cm)の上流先端から6cm下流に配置し、ここまでを予熱ゾーンAとした。導入管5の先端から下流であって、加熱部1aの下流先端までを高熱の反応ゾーンB(4cm)とした。
水蒸気を含む酸化性ガスには、水蒸気と、酸素(O2 )と、窒素とを含む混合ガスを用いた。水と、酸素と、窒素との混合ガスを導入口4aから導入し、気化器6を通過させた後、導入管5の先端から水蒸気を含む酸化性ガスとして反応管1へと導入した。また、気化器6を通過した後の混合ガスの組成は、水蒸気:酸素:窒素=20:20:60(体積比)とし、流量が合計で600NmL/minとなるように混合ガスを導入した。
四塩化チタン蒸気を含むガスには、四塩化チタン蒸気と酸素(O2 )の混合ガスを用いた。TiCl4 を導入口5aから導入し、酸素(O2 )を導入口5bから導入し、気化器7を通過させた後、導入管5の先端から反応管1へと導入した。また、気化器7を通過した後の混合ガスの組成は、四塩化チタン:酸素=20:80(体積比)とし、流量が合計で600NmL/minとなるように混合ガスを導入した。
また、全反応ガスの組成は、四塩化チタン:酸素:水蒸気=1:5:1とし、反応ゾーンBにおける反応ガスの滞留時間は、約50ミリ秒とした。
水蒸気を含む酸化性ガスの代わりに、水蒸気を含まない酸化性ガス、すなわち酸素と窒素との混合ガスを導入口4aから導入した以外は、実施例1と同様の条件下で酸化チタンの粉末を製造した。
水蒸気を含む酸化性ガスを導入せずに、四塩化チタン蒸気と酸素(O2 )との混合ガス(四塩化チタン濃度が6%)のみを導入管5からゆっくり(300NmL/min)導入した以外は、実施例1と同様の条件下で酸化チタンの粉末を製造した。
以下、実施例1、比較例1及び比較例2の各製造条件と、得られた酸化チタン粒子の観察結果をまとめたものを表1に示す。なお、酸化チタン粉末は、任意にサンプリングした3箇所の粉末を取り、それぞれ走査型電子顕微鏡の試料室に導入し、5箇所以上の視野にて観察した。
一方、比較例1で得られた酸化チタン粉末は、10面体酸化チタン粒子ではなく、粒子径も30~200nmの範囲で広い分布を示した。
また、比較例2で得られた酸化チタン粉末は、10面体酸化チタン粒子であったが、粒子径が70~150nmの範囲で広い分布を示し、粒子径が大きいものが含まれていた。
以上のように、本発明によれば、10面体の箱型形状を有し、粒子径が1nm~100nmの範囲にある10面体酸化チタン粒子を選択的に効率よく製造することが可能である。
Claims (12)
- 四塩化チタン蒸気を含むガスと、水蒸気を含む酸化性ガスとを接触させることによって、10面体の箱型形状を有し、粒子径が1nm~100nmの範囲にある10面体酸化チタン粒子を選択的に製造する酸化チタン粒子の製造方法であって、それぞれ500℃以上に予熱された四塩化チタン蒸気を含むガスと水蒸気を含む酸化性ガスとが混合され、800℃以上に加熱された領域へと送られる工程を含む酸化チタン粒子の製造方法。
- 前記四塩化チタン蒸気を含むガスが、四塩化チタン蒸気と酸素とを含む混合ガスである請求項1に記載の酸化チタン粒子の製造方法。
- 前記水蒸気を含む酸化性ガスが、水蒸気と酸素との混合ガスである請求項1に記載の酸化チタン粒子の製造方法。
- 前記800℃以上に加熱された領域おけるガスの滞留時間が300ミリ秒以下である請求項1に記載の酸化チタン粒子の製造方法。
- 前記滞留時間が100ミリ秒以下である請求項4に記載の酸化チタン粒子の製造方法。
- 前記四塩化チタン蒸気を含むガス中の四塩化チタン濃度が、3~40体積%である請求項1に記載の酸化チタン粒子の製造方法。
- 前記四塩化チタン蒸気を含むガス中の(酸素(O2 換算)の物質量[mol])/(四塩化チタンの物質量[mol])の比が、0.1~7である請求項1に記載の酸化チタン粒子の製造方法。
- 前記水蒸気を含む酸化性ガス中の水蒸気の濃度が、10~80体積%である請求項1に記載の酸化チタン粒子の製造方法。
- 前記水蒸気を含む酸化性ガス中の(酸素(O2 換算)の物質量[mol])/(水蒸気の物質量[mol])の比が、0.1~5である請求項1に記載の酸化チタン粒子の製造方法。
- 前記水蒸気を含む酸化性ガスの量が、四塩化チタン蒸気を含むガスの量に対して、体積比で、0.5~5倍である請求項1に記載の酸化チタン粒子の製造方法。
- 前記四塩化チタン蒸気を含むガスと水蒸気を含むガスを併せたガスの組成が、四塩化チタン:酸素:水蒸気=1:0.5~13:0.3~5(体積比)である請求項1に記載の酸化チタン粒子の製造方法。
- 前記四塩化チタン蒸気を含むガスと水蒸気を含むガスを併せたガスの組成が、四塩化チタン:酸素:水蒸気=1:1~6:0.3~3(体積比)である請求項11に記載の酸化チタン粒子の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200880114417A CN101842320A (zh) | 2008-08-29 | 2008-08-29 | 制造氧化钛粒子的方法 |
PCT/JP2008/065565 WO2010023757A1 (ja) | 2008-08-29 | 2008-08-29 | 酸化チタン粒子の製造方法 |
KR1020107009437A KR101153654B1 (ko) | 2008-08-29 | 2008-08-29 | 산화티탄 입자의 제조 방법 |
US12/738,251 US8178074B2 (en) | 2008-08-29 | 2008-08-29 | Method for producing titanium oxide particles |
EP08809632A EP2221277A4 (en) | 2008-08-29 | 2008-08-29 | PROCESS FOR PREPARING TITANIUM DIOXIDE PARTICLES |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/065565 WO2010023757A1 (ja) | 2008-08-29 | 2008-08-29 | 酸化チタン粒子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010023757A1 true WO2010023757A1 (ja) | 2010-03-04 |
Family
ID=41720947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/065565 WO2010023757A1 (ja) | 2008-08-29 | 2008-08-29 | 酸化チタン粒子の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8178074B2 (ja) |
EP (1) | EP2221277A4 (ja) |
KR (1) | KR101153654B1 (ja) |
CN (1) | CN101842320A (ja) |
WO (1) | WO2010023757A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184235A (ja) * | 2010-03-08 | 2011-09-22 | Hokkaido Univ | 金属酸化物粒子の製造方法及び製造装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102583531B (zh) * | 2012-01-20 | 2014-03-05 | 锦州钛业有限公司 | 一种粒度可控二氧化钛的生产方法 |
KR101282142B1 (ko) * | 2012-02-15 | 2013-07-04 | 한국과학기술연구원 | 복합 나노입자의 제조장치 및 제조방법 |
JP6243649B2 (ja) * | 2013-07-30 | 2017-12-06 | 昭和電工株式会社 | 酸化チタン粒子及びその製造方法 |
CN111847507A (zh) * | 2020-07-06 | 2020-10-30 | 南通江山农药化工股份有限公司 | 一种气相法纳米二氧化钛的制备工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004063431A1 (ja) | 2003-01-09 | 2004-07-29 | Fujikura Ltd. | 酸化チタン粒子およびその製造方法、製造装置ならびにこの酸化チタンを用いた処理方法 |
JP3656355B2 (ja) | 1997-03-10 | 2005-06-08 | 昭和電工株式会社 | 塩素含有量の少ない微粒子酸化チタン粉末及びその製造法 |
JP2005306728A (ja) * | 2004-03-25 | 2005-11-04 | Showa Denko Kk | チタン含有ペロブスカイト型化合物およびその製造方法 |
JP2006052099A (ja) | 2004-08-10 | 2006-02-23 | Fujikura Ltd | 酸化チタン粒子とその製造方法及びその利用 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100491344B1 (ko) | 1999-08-30 | 2005-05-24 | 쇼와 덴코 가부시키가이샤 | 산화 티탄 미립자 및 그를 함유하는 조성물 |
US6544493B1 (en) * | 1999-08-30 | 2003-04-08 | Showa Denko Kabushiki Kaisha | Ultrafine particulate titanium oxide and production process therof |
AU775479B2 (en) * | 1999-09-27 | 2004-08-05 | Showa Denko Kabushiki Kaisha | Fine particulate titanium oxide and method for producing the same |
US6824758B2 (en) * | 2000-09-15 | 2004-11-30 | Showa Denko K.K. | Particulate titanium oxide and production process therefor |
US6548169B2 (en) * | 2000-04-25 | 2003-04-15 | Showa Denko Kabushiki Kaisha | Production process for ultrafine particulate complex oxide containing titanium oxide |
JP4979174B2 (ja) | 2000-04-25 | 2012-07-18 | 昭和電工株式会社 | 酸化チタン含有微粒子状酸化物複合体の製造方法 |
AU2003210015B2 (en) * | 2002-03-06 | 2006-04-06 | Showa Denko K.K. | Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof |
WO2003078327A1 (en) * | 2002-03-20 | 2003-09-25 | Showa Denko K. K. | High purity titanium oxide and production process thereof |
EP1683763A4 (en) * | 2003-10-01 | 2010-07-07 | Toho Titanium Co Ltd | TITANIUM DIOXIDE POWDER AND MANUFACTURING METHOD THEREFOR |
US7208126B2 (en) * | 2004-03-19 | 2007-04-24 | E. I. Du Pont De Nemours And Company | Titanium dioxide nanopowder manufacturing process |
WO2005092796A2 (en) * | 2004-03-25 | 2005-10-06 | Showa Denko K.K. | Titanium-containing perovskite compound and production method thereof |
TWI314919B (en) * | 2005-02-28 | 2009-09-21 | Showa Denko Kk | Fine particulate titanium dioxide, and production process and uses thereof |
US7476378B2 (en) * | 2005-10-27 | 2009-01-13 | E.I. Dupont Denemours & Company | Process for producing titanium dioxide |
JP5259767B2 (ja) | 2011-04-01 | 2013-08-07 | 株式会社フジクラ | 酸化チタン粒子の結晶性評価方法、及び酸化チタン粒子の表面欠陥密度測定方法 |
-
2008
- 2008-08-29 WO PCT/JP2008/065565 patent/WO2010023757A1/ja active Application Filing
- 2008-08-29 KR KR1020107009437A patent/KR101153654B1/ko not_active IP Right Cessation
- 2008-08-29 EP EP08809632A patent/EP2221277A4/en not_active Withdrawn
- 2008-08-29 CN CN200880114417A patent/CN101842320A/zh active Pending
- 2008-08-29 US US12/738,251 patent/US8178074B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3656355B2 (ja) | 1997-03-10 | 2005-06-08 | 昭和電工株式会社 | 塩素含有量の少ない微粒子酸化チタン粉末及びその製造法 |
WO2004063431A1 (ja) | 2003-01-09 | 2004-07-29 | Fujikura Ltd. | 酸化チタン粒子およびその製造方法、製造装置ならびにこの酸化チタンを用いた処理方法 |
JP2005306728A (ja) * | 2004-03-25 | 2005-11-04 | Showa Denko Kk | チタン含有ペロブスカイト型化合物およびその製造方法 |
JP2006052099A (ja) | 2004-08-10 | 2006-02-23 | Fujikura Ltd | 酸化チタン粒子とその製造方法及びその利用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2221277A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184235A (ja) * | 2010-03-08 | 2011-09-22 | Hokkaido Univ | 金属酸化物粒子の製造方法及び製造装置 |
WO2011111848A3 (en) * | 2010-03-08 | 2011-11-10 | National University Corporation Hokkaido University | Method and apparatus for producing metal oxide particles |
CN102781822A (zh) * | 2010-03-08 | 2012-11-14 | 国立大学法人北海道大学 | 生产金属氧化物颗粒的方法和装置 |
KR101388904B1 (ko) | 2010-03-08 | 2014-04-23 | 쇼와 덴코 가부시키가이샤 | 금속 산화물 입자의 제조 방법 및 제조 장치 |
US9352965B2 (en) | 2010-03-08 | 2016-05-31 | National University Corporation Hokkaido University | Method and apparatus for producing metal oxide particles |
Also Published As
Publication number | Publication date |
---|---|
KR20100061852A (ko) | 2010-06-09 |
KR101153654B1 (ko) | 2012-06-18 |
US8178074B2 (en) | 2012-05-15 |
US20100209334A1 (en) | 2010-08-19 |
CN101842320A (zh) | 2010-09-22 |
EP2221277A4 (en) | 2011-03-09 |
EP2221277A1 (en) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010023757A1 (ja) | 酸化チタン粒子の製造方法 | |
US20030143153A1 (en) | Plasma synthesis of metal oxide nanopowder and apparatus therefor | |
TW201004867A (en) | Continuous method and apparatus for functionalizing carbon nanotube | |
JP4997552B2 (ja) | 酸化チタン粒子の製造方法 | |
AU775479B2 (en) | Fine particulate titanium oxide and method for producing the same | |
TWI382960B (zh) | 金屬氧化物粒子之製造方法及製造裝置 | |
JP6243649B2 (ja) | 酸化チタン粒子及びその製造方法 | |
JP4979174B2 (ja) | 酸化チタン含有微粒子状酸化物複合体の製造方法 | |
WO2011024617A1 (ja) | 金属酸化物粒子の製造方法及び製造装置 | |
KR101388904B1 (ko) | 금속 산화물 입자의 제조 방법 및 제조 장치 | |
US20020106321A1 (en) | Particulate titanium oxide and production process therefor | |
KR101753665B1 (ko) | 열플라즈마 제트를 이용한 아나타제 상과 루타일 상 이산화티탄 나노 분말의 선택적 제조방법 및 이에 따라 제조되는 이산화티탄 나노 분말 | |
JP4812213B2 (ja) | 微粒子状酸化チタン及びその製造方法 | |
KR102044380B1 (ko) | 티타니아 나노입자의 제조방법 | |
JP6423501B2 (ja) | 酸化チタン粒子及びその製造方法 | |
WO2016114177A1 (ja) | 金属酸化物粒子の製造方法 | |
JP2009240874A (ja) | カーボンナノコイル製造用触媒 | |
JPH01294540A (ja) | 酸化ルテニウム微粒子の製造方法 | |
Peluso et al. | Synthesis of Carbon Nanotubes by Thermal Defloruration of Ptfe with Silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880114417.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008809632 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12738251 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08809632 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107009437 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |