[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010021205A1 - Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery - Google Patents

Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery Download PDF

Info

Publication number
WO2010021205A1
WO2010021205A1 PCT/JP2009/061849 JP2009061849W WO2010021205A1 WO 2010021205 A1 WO2010021205 A1 WO 2010021205A1 JP 2009061849 W JP2009061849 W JP 2009061849W WO 2010021205 A1 WO2010021205 A1 WO 2010021205A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid electrolyte
secondary battery
layer
electrolyte secondary
Prior art date
Application number
PCT/JP2009/061849
Other languages
French (fr)
Japanese (ja)
Inventor
光靖 小川
進啓 太田
上村 卓
良子 神田
吉田 健太郎
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN200980100740XA priority Critical patent/CN101828295B/en
Priority to US12/743,287 priority patent/US20100279176A1/en
Priority to EP09808141.7A priority patent/EP2315298A4/en
Publication of WO2010021205A1 publication Critical patent/WO2010021205A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a solid electrolyte layer, and a method for producing the same.
  • the present invention relates to a non-aqueous electrolyte secondary battery that can smoothly exchange lithium ions between a positive electrode and a solid electrolyte layer, that is, has an improved internal resistance.
  • Non-aqueous electrolyte secondary batteries especially lithium ion secondary batteries, have a long life, high efficiency, and high capacity, and are used as power sources for mobile phones, laptop computers, digital cameras, and the like.
  • a non-aqueous electrolyte secondary battery performs charge and discharge by exchanging lithium ions between a positive electrode and a negative electrode through an electrolyte layer.
  • nonaqueous electrolyte secondary batteries using non-flammable inorganic solid electrolytes instead of organic solvent electrolytes have been proposed (see, for example, Patent Documents 1 to 4).
  • Patent Documents 1 to 4 disclose that a sintered body produced by firing a positive electrode active material powder is used for the positive electrode.
  • Non-Patent Documents 1 and 2 describe that the surface of LiCoO 2 powder is used by electrostatic spraying for the purpose of reducing the interface resistance at the interface between LiCoO 2 (positive electrode active material) and sulfide solid electrolyte. Describes forming a buffer layer of Li 4 Ti 5 O 12 or LiNbO 3 .
  • a non-aqueous electrolyte secondary battery using a solid electrolyte since all the materials constituting the battery are solid, the interface between the positive electrode and the solid electrolyte layer is a bonding surface between solids.
  • a positive electrode made of a sintered body is porous, when viewed microscopically, the surface roughness is rough, and numerous fine pores exist on the surface. Therefore, in the conventional non-aqueous electrolyte secondary battery, it is difficult to form a good bonding interface between the positive electrode and the solid electrolyte layer, so that the lithium ion migration resistance at the interface increases, and as a result The internal resistance of the battery increases.
  • the present invention has been made in view of the above circumstances, and one of its purposes is that lithium ions can be exchanged smoothly between the positive electrode and the solid electrolyte layer, that is, the internal resistance is improved. It is to provide a nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between these positive and negative electrodes.
  • a positive electrode is equipped with the positive electrode sintered compact formed by baking the powder containing a positive electrode active material, and is equipped with the coating layer containing a positive electrode active material on the surface at the side of the solid electrolyte layer of this positive electrode sintered body. .
  • the non-aqueous electrolyte secondary battery manufacturing method of the present invention includes a sintering step in which a powder containing a positive electrode active material is fired to form a positive electrode sintered body, and a surface on the solid electrolyte layer side of the positive electrode sintered body. And a coating step of forming a coating layer containing a positive electrode active material using a vapor phase method.
  • the coating layer is formed on the surface of the positive electrode sintered body on the solid electrolyte layer side, the conventional positive electrode using the sintered body without the coating layer formed.
  • the surface of the positive electrode on the solid electrolyte layer side can have a smooth and dense surface structure. Accordingly, since a good bonding interface can be formed between the positive electrode and the solid electrolyte layer, the lithium ion migration resistance (interface resistance) at the interface is reduced. As a result, lithium ions can be exchanged smoothly between the positive electrode and the solid electrolyte layer.
  • the soot coating layer is a smooth and dense layer, and has excellent surface smoothness compared to the positive electrode sintered body.
  • a coating layer can be formed using a vapor phase method or the like.
  • the vapor phase method include a physical vapor deposition (PVD) method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, and a pulse laser deposition method, and a chemical vapor deposition (CVD) method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the vapor phase method is considered to be most suitable, but besides the vapor phase method, a coating layer is formed by using a sol-gel method or a spin coating method. Also good.
  • the surface roughness of the coating layer is preferably 0.1 ⁇ m or less in terms of Ra.
  • the surface roughness mentioned here is based on the definition of arithmetic mean roughness (Ra) according to JIS B 0601: 2001.
  • Positive electrode active materials constituting the positive electrode sintered body and the coating layer include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 , LiMnO 2 ), lithium nickel manganate ( LiNi 0.5 Mn 0.5 O 2 ), nickel cobalt lithium manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) and oxides such as manganese oxide (MnO 2 ), phosphate compounds such as olivine-type lithium iron phosphate (LiFePO 4 ) Alternatively, a mixture of these can be used.
  • sulfur S
  • sulfides such as iron sulfide (FeS), iron disulfide (FeS 2 ), lithium sulfide (Li 2 S) and titanium sulfide (TiS 2 ), or mixtures thereof Also good.
  • the positive electrode sintered body and the coating layer may be composed of different types of positive electrode active materials.
  • the positive electrode sintered body and the coating layer are composed of different types of positive electrode active materials, for example, the positive electrode sintered body is composed of a high capacity or low cost material, and the coating layer has a small lithium ion migration resistance.
  • the positive electrode sintered body is made of LiMn 2 O 4 and the coating layer is made of LiCoO 2 can be mentioned.
  • the positive electrode sintered body and the coating layer may further contain a conductive additive.
  • a conductive additive carbon black such as acetylene black, natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, metal fiber such as aluminum and nickel, and the like can be used.
  • the coating layer contains a compound having a layered rock salt type structure as the positive electrode active material, and the c-axis direction of the crystal of the compound is not oriented perpendicular to the surface of the positive electrode sintered body. preferable.
  • the compound having a layered rock salt structure has high lithium ion mobility due to its crystal structure, and contributes to the improvement of the discharge characteristics of the battery.
  • the coating layer includes a compound having a layered rock salt structure
  • the c-axis direction of the crystal of the compound is not oriented perpendicularly to the surface of the positive electrode sintered body. Since the insertion and removal of lithium ions on the surface is easy, the interface resistance becomes smaller.
  • the c-axis direction of the crystal is not oriented perpendicularly to the surface of the positive electrode sintered body” means that the c-axis of the crystal is inclined with respect to the surface of the positive electrode sintered body, It means that the crystal structure is oriented more strongly in the ab axis direction than in the c axis direction.
  • the ratio of peak intensities as measured by X-ray diffraction (XRD) satisfies (003) / (101) ⁇ 2.
  • LiCoO 2 , LiNiO 2 , or a mixture thereof having a layered rock salt structure is particularly suitable as a positive electrode active material because it can obtain a high voltage and is excellent in electron and lithium ion conductivity.
  • Examples of the method for making the crystal structure of the positive electrode active material constituting the cocoon coating layer into a layered rock salt structure include a method in which the coating layer is annealed after the coating layer is formed by using the above-described vapor phase method.
  • the annealing conditions are preferably 400 to 700 ° C. and 1 to 10 hours, for example.
  • the thickness of the coating layer is preferably 0.02 ⁇ m or more.
  • the thickness of the coating layer By setting the thickness of the coating layer to 0.02 ⁇ m or more, a coating layer having sufficient surface smoothness is formed, so that the surface of the positive electrode on the solid electrolyte layer side can be easily made a smooth and dense surface structure.
  • the upper limit of the thickness of the coating layer is not particularly limited, but is preferably 10 ⁇ m or less from the viewpoint of thinning the battery and productivity.
  • the solid electrolyte layer contains a sulfide-based solid electrolyte.
  • the solid electrolyte constituting the solid electrolyte layer a Li-PS or Li-PSO sulfide solid electrolyte, or a Li-PO or Li-PON oxide solid electrolyte can be used.
  • the sulfide-based solid electrolyte is suitable as a material constituting the solid electrolyte layer because it exhibits high lithium ion conductivity.
  • Li 2 S-P 2 S 5 based solid electrolyte mainly composed of Li 2 S and P 2 S 5, Li 2 S-P 2 S 5 containing SiS 2 those -SiS 2 system, further Al 2 S 3 that of the Li 2 S-P 2 S 5 -SiS 2 -Al 2 S 3 system comprising, or P 2 O containing 5 Li 2 S-P 2 S 5 - those of P 2 O 5 systems.
  • a buffer layer for reducing the interface resistance is provided between the positive electrode and the solid electrolyte layer.
  • the oxide ion attracts lithium ions more strongly than the sulfide ion, so that the solid electrolyte layer at the junction interface between the positive electrode and the solid electrolyte layer.
  • Lithium ions may move from the anode to the positive electrode.
  • a charge depletion layer is formed in the vicinity of the interface of the solid electrolyte layer in contact with the positive electrode due to the occurrence of charge bias, and the interface resistance increases. Accordingly, the interface resistance can be further reduced by providing a buffer layer between the positive electrode and the solid electrolyte layer.
  • the thickness of the buffer layer is preferably 2 nm or more in order to obtain the effect of reducing the interface resistance. From the viewpoint of thinning the battery and ensuring the mobility of lithium ions during charge / discharge, the thickness is preferably less than 1 ⁇ m. In the present invention, since the solid electrolyte layer side of the positive electrode is excellent in surface smoothness, even with such a thin buffer layer, the solid electrolyte side surface of the positive electrode can be uniformly coated. Therefore, the interface resistance can be effectively reduced.
  • the thickness of the buffer layer is more preferably 5 nm or more and 50 nm or less.
  • the battery of the present invention is excellent in productivity.
  • the thickness of the positive electrode can be reduced.
  • carbon (C) such as graphite, silicon (Si), and indium (In) are used in addition to lithium metal (Li metal simple substance) or lithium alloy (alloy composed of Li and an additive element).
  • Li metal simple substance lithium metal simple substance
  • lithium alloy alloy composed of Li and an additive element.
  • a material containing lithium, particularly metallic lithium is preferable because it is advantageous in terms of increasing the capacity and voltage of the battery.
  • an additive element of the lithium alloy aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), zinc (Zn), indium (In), or the like can be used.
  • the nonaqueous electrolyte secondary battery of the present invention is provided with a coating layer on the surface of the positive electrode sintered body on the solid electrolyte side, so that the interface resistance between the positive electrode and the solid electrolyte layer is reduced. As a result, lithium ions can be exchanged smoothly between the positive electrode and the solid electrolyte layer. That is, the internal resistance of the battery can be reduced.
  • a non-aqueous electrolyte secondary battery with improved internal resistance can be manufactured.
  • FIG. 1 is a schematic sectional view showing an example of the nonaqueous electrolyte secondary battery of the present invention.
  • the basic structure of the nonaqueous electrolyte secondary battery of the present invention is a structure in which a positive electrode 1, an electrolyte layer 3, and a negative electrode 2 are laminated in this order.
  • the positive electrode 1 includes a positive electrode sintered body 10 and a coating layer 11 formed on the surface of the positive electrode sintered body 10 on the solid electrolyte layer 3 side.
  • FIG. 1 shows a configuration in which a buffer layer 4 is further provided between the positive electrode 1 and the solid electrolyte layer 3.
  • Example 1 A lithium ion secondary battery having a laminated structure shown in FIG. 1 was produced, and the internal resistance of the battery was evaluated by conducting a charge / discharge cycle test.
  • ⁇ Battery preparation procedure> 0.5 g of LiCoO 2 powder was weighed, placed in a 20 mm diameter mold, and pressurized with a pressure of 300 MPa to obtain a pressure molded body. The pressure-molded body was placed in an electric furnace and fired at 1100 ° C. for 6 hours to produce a positive electrode sintered body 10. The surface of the positive electrode sintered body 10 was polished to a thickness of 200 ⁇ m.
  • the positive electrode 1 is completed by performing an annealing treatment at 500 ° C. for 3 hours. It was. At this time, the coating layer 11 was formed by inclining the coating surface of the positive electrode sintered body 10 on which the coating layer 11 is formed by 60 ° with respect to the vapor deposition source. The thickness of the coating layer 11 was 1 ⁇ m.
  • XRD X-ray diffraction
  • the peak intensity ratio (003) / (101) of (003) to (101) was 1.7. Furthermore, the surface roughness Ra of the covering layer 11 was measured using a surface roughness measuring instrument (product name “DEKTAK3030” manufactured by Sloan Co.) in accordance with JIS B 0601: 2001, and was 20 nm.
  • a buffer layer 4 made of LiNbO 3 was formed on the positive electrode 1 (coating layer 11) by sputtering.
  • the thickness of the buffer layer 4 was 20 nm.
  • a solid electrolyte layer 3 made of a Li 2 S—P 2 S 5 based solid electrolyte was formed on the buffer layer 4 using a vacuum deposition method.
  • the thickness of the solid electrolyte layer 3 was 10 ⁇ m.
  • a negative electrode active material layer made of Li metal was formed on the solid electrolyte layer 3 using a vacuum deposition method.
  • This negative electrode active material layer was designated as negative electrode 2.
  • the thickness of the negative electrode 2 was 10 ⁇ m.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the c-axis direction of the crystal structure of the coating layer 11 was oriented perpendicularly to the surface of the positive electrode sintered body 10. At this time, the coating layer 11 was formed by making the coating surface of the positive electrode sintered body 10 on which the coating layer 11 is formed face the vapor deposition source. Further, the peak intensity ratio (003) / (101) of the coating layer 11 was 2.8. The surface roughness of the coating layer 11 was 20 nm in Ra.
  • Example 1 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the formation of the coating layer 11 and the annealing treatment were not performed. At this time, the surface roughness of the positive electrode 1 (positive electrode sintered body 10) was 310 nm in Ra. The surface roughness is a value measured after the surface of the positive electrode sintered body 10 is polished.
  • the batteries of Examples 1 and 2 180Omucm 2 internal resistance value, respectively, is 620Omucm 2, were both low resistance.
  • the battery of Comparative Example 1 had a high resistance with an internal resistance value of 28000 ⁇ cm 2 .
  • the nonaqueous electrolyte secondary battery of the present invention is provided with the coating layer 11 having excellent smoothness on the surface of the solid electrolyte layer 3 side of the positive electrode sintered body 10, whereby the positive electrode 1 and the solid electrolyte layer 3 are provided.
  • the internal resistance can be reduced because the interfacial resistance is reduced and, as a result, lithium ions move smoothly.
  • the interface resistance is smaller when the c-axis direction of the crystal of the coating layer 11 is not oriented perpendicularly to the surface of the positive electrode sintered body 10, and as a result, the internal resistance can be further reduced.
  • Example 3 Each battery was fabricated in the same manner as in Example 1 except that the thickness of the covering layer 11 was changed. The internal resistance value of each battery was calculated by performing a charge / discharge cycle test under the same conditions as above for each obtained battery. The results are shown in Table 1.
  • the thickness of the coating layer is preferably 0.02 ⁇ m or more and 3.0 ⁇ m or less.
  • the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention.
  • the thickness of the coating layer may be changed as appropriate, or a material other than LiCoO 2 may be used as the positive electrode active material.
  • the non-aqueous electrolyte secondary battery of the present invention can be suitably used for a power source of an electric vehicle, in addition to a mobile phone, a notebook computer, a digital camera.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a rechargeable battery with a nonaqueous electrolyte that can realize smooth exchange of lithium ions between a positive electrode and a solid electrolyte layer and has an improved internal resistance. The rechargeable battery with a nonaqueous electrolyte comprises a positive electrode (1), a negative electrode (2), and a solid electrolyte layer (3) interposed between the positive and negative electrodes (1, 2).  The positive electrode (1) is formed of a positive electrode sintered compact (10) produced by firing a powder containing a positive electrode active material.  A covering layer (11) containing a positive electrode active material is provided on the surface of the positive electrode sintered compact (10) on the solid electrolyte layer (3) side.  Preferably, the covering layer (11) comprises a compound having a layered rock-salt structure, and the c-axis direction of a crystal of the compound is not aligned perpendicularly to the surface of the positive electrode sintered compact.  More preferably, a buffer layer (4) formed of LiNbO3 is provided between the positive electrode (1) and the solid electrolyte layer (3) from the viewpoint of lowering interfacial resistance.

Description

非水電解質二次電池及びその製造方法Non-aqueous electrolyte secondary battery and manufacturing method thereof
  本発明は、正極、負極、及び固体電解質層を有する非水電解質二次電池並びにその製造方法に関する。特に、本発明は、正極と固体電解質層との間でのリチウムイオンのやり取りをスムーズに行うことができる、すなわち、内部抵抗が改善された非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a solid electrolyte layer, and a method for producing the same. In particular, the present invention relates to a non-aqueous electrolyte secondary battery that can smoothly exchange lithium ions between a positive electrode and a solid electrolyte layer, that is, has an improved internal resistance.
  非水電解質二次電池、特にリチウムイオン二次電池は、長寿命・高効率・高容量であり、携帯電話、ノートパソコン、デジタルカメラなどの電源に利用されている。 Non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, have a long life, high efficiency, and high capacity, and are used as power sources for mobile phones, laptop computers, digital cameras, and the like.
  非水電解質二次電池は、正極と負極との間で電解質層を介してリチウムイオンをやり取りすることによって、充放電を行う。最近では、安全性を高めるため、有機溶媒電解液に代えて不燃性の無機固体電解質を用いた非水電解質二次電池が提案されている(例えば、特許文献1~4参照)。 A non-aqueous electrolyte secondary battery performs charge and discharge by exchanging lithium ions between a positive electrode and a negative electrode through an electrolyte layer. Recently, in order to improve safety, nonaqueous electrolyte secondary batteries using non-flammable inorganic solid electrolytes instead of organic solvent electrolytes have been proposed (see, for example, Patent Documents 1 to 4).
  また、特許文献1~4には、正極活物質の粉末を焼成することで作製した焼結体を正極に用いることが開示されている。一方、非特許文献1、2には、LiCoO2(正極活物質)と硫化物系固体電解質との界面における界面抵抗を低減することを目的として、静電噴霧法を用いて、LiCoO2粉末表面にLi4Ti5O12或いはLiNbO3の緩衝層を形成することが記載されている。 Patent Documents 1 to 4 disclose that a sintered body produced by firing a positive electrode active material powder is used for the positive electrode. On the other hand, Non-Patent Documents 1 and 2 describe that the surface of LiCoO 2 powder is used by electrostatic spraying for the purpose of reducing the interface resistance at the interface between LiCoO 2 (positive electrode active material) and sulfide solid electrolyte. Describes forming a buffer layer of Li 4 Ti 5 O 12 or LiNbO 3 .
特開2000‐164217号公報JP 2000-164217 A 特開2007‐258148号公報JP 2007-258148 A 特開2007‐258165号公報JP 2007-258165 A 特開2007‐5279号公報JP 2007-5279 A
  固体電解質を用いた非水電解質二次電池は、電池を構成する材料が全て固体であるため、正極と固体電解質層との界面が固体同士の接合面となる。通常、焼結体からなる正極は、多孔質であるため、微視的に見れば、表面粗さが粗く、表面に無数の微細な孔が存在する。したがって、従来の非水電解質二次電池では、正極と固体電解質層との間に良好な接合界面を形成することが困難であるため、該界面でのリチウムイオンの移動抵抗が大きくなり、その結果、電池の内部抵抗が増大する。 In a non-aqueous electrolyte secondary battery using a solid electrolyte, since all the materials constituting the battery are solid, the interface between the positive electrode and the solid electrolyte layer is a bonding surface between solids. Usually, since a positive electrode made of a sintered body is porous, when viewed microscopically, the surface roughness is rough, and numerous fine pores exist on the surface. Therefore, in the conventional non-aqueous electrolyte secondary battery, it is difficult to form a good bonding interface between the positive electrode and the solid electrolyte layer, so that the lithium ion migration resistance at the interface increases, and as a result The internal resistance of the battery increases.
  本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、正極と固体電解質層との間でのリチウムイオンのやり取りをスムーズに行うことができる、すなわち、内部抵抗が改善された非水電解質二次電池を提供することにある。 The present invention has been made in view of the above circumstances, and one of its purposes is that lithium ions can be exchanged smoothly between the positive electrode and the solid electrolyte layer, that is, the internal resistance is improved. It is to provide a nonaqueous electrolyte secondary battery.
  本発明の非水電解質二次電池は、正極、負極、及びこれら正負極間に介在される固体電解質層を有する。そして、正極は、正極活物質を含む粉末を焼成してなる正極焼結体を備え、この正極焼結体の固体電解質層側の表面に正極活物質を含む被覆層を備えることを特徴とする。 The nonaqueous electrolyte secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between these positive and negative electrodes. And a positive electrode is equipped with the positive electrode sintered compact formed by baking the powder containing a positive electrode active material, and is equipped with the coating layer containing a positive electrode active material on the surface at the side of the solid electrolyte layer of this positive electrode sintered body. .
  また、本発明の非水電解質二次電池の製造方法は、正極活物質を含む粉末を焼成して正極焼結体を形成する焼結工程と、この正極焼結体の固体電解質層側の表面に気相法を用いて正極活物質を含む被覆層を形成する被覆工程と、を含むことを特徴とする。 The non-aqueous electrolyte secondary battery manufacturing method of the present invention includes a sintering step in which a powder containing a positive electrode active material is fired to form a positive electrode sintered body, and a surface on the solid electrolyte layer side of the positive electrode sintered body. And a coating step of forming a coating layer containing a positive electrode active material using a vapor phase method.
  本発明の非水電解質二次電池によれば、正極焼結体の固体電解質層側の表面に被覆層が形成されているので、被覆層が形成されていない焼結体を用いた従来の正極と比較して、正極の固体電解質層側表面を平滑でかつ緻密な表面構造とすることができる。したがって、正極と固体電解質層との間に良好な接合界面を形成することができるため、上記界面でのリチウムイオンの移動抵抗(界面抵抗)が小さくなる。その結果、正極と固体電解質層との間でリチウムイオンのやり取りをスムーズに行うことができる。 According to the nonaqueous electrolyte secondary battery of the present invention, since the coating layer is formed on the surface of the positive electrode sintered body on the solid electrolyte layer side, the conventional positive electrode using the sintered body without the coating layer formed. As compared with the above, the surface of the positive electrode on the solid electrolyte layer side can have a smooth and dense surface structure. Accordingly, since a good bonding interface can be formed between the positive electrode and the solid electrolyte layer, the lithium ion migration resistance (interface resistance) at the interface is reduced. As a result, lithium ions can be exchanged smoothly between the positive electrode and the solid electrolyte layer.
  被覆層は、平滑で緻密な層であり、正極焼結体に比べて、表面平滑性に優れている。このような被覆層は、気相法などを用いて形成することができる。気相法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、及びパルスレーザーデポジション法といった物理的蒸着(PVD)法や、化学的蒸着(CVD)法が挙げられる。また、平滑で緻密な層を形成するという観点では、気相法が最も適していると考えられるけれども、気相法以外にも、ゾルゲル法やスピンコート法などを用いて被覆層を形成してもよい。特に、被覆層の表面粗さは、Raで0.1μm以下であることが好ましい。但し、ここでいう表面粗さとは、JIS  B  0601:2001による算術平均粗さ(Ra)の定義による。更に、被覆層は、正極焼結体の固体電解質層側表面を研磨することにより正極焼結体の表面性状を高めた後、形成してもよい。 The soot coating layer is a smooth and dense layer, and has excellent surface smoothness compared to the positive electrode sintered body. Such a coating layer can be formed using a vapor phase method or the like. Examples of the vapor phase method include a physical vapor deposition (PVD) method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, and a pulse laser deposition method, and a chemical vapor deposition (CVD) method. In addition, from the viewpoint of forming a smooth and dense layer, the vapor phase method is considered to be most suitable, but besides the vapor phase method, a coating layer is formed by using a sol-gel method or a spin coating method. Also good. In particular, the surface roughness of the coating layer is preferably 0.1 μm or less in terms of Ra. However, the surface roughness mentioned here is based on the definition of arithmetic mean roughness (Ra) according to JIS B 0601: 2001. Furthermore, you may form a coating layer, after improving the surface property of a positive electrode sintered compact by grind | polishing the solid electrolyte layer side surface of a positive electrode sintered compact.
  正極焼結体及び被覆層を構成する正極活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4、LiMnO2)、ニッケルマンガン酸リチウム(LiNi0.5Mn0.5O2)、ニッケルコバルトマンガン酸リチウム(LiNi0.33Co0.33Mn0.33O2)及び酸化マンガン(MnO2)などの酸化物、オリビン型鉄リン酸リチウム(LiFePO4)などのリン酸化合物、或いはこれらの混合物を利用することができる。その他、イオウ(S)や、硫化鉄(FeS)、二硫化鉄(FeS2)、硫化リチウム(Li2S)及び硫化チタニウム(TiS2)などの硫化物や、或いはこれらの混合物を利用してもよい。 Positive electrode active materials constituting the positive electrode sintered body and the coating layer include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 , LiMnO 2 ), lithium nickel manganate ( LiNi 0.5 Mn 0.5 O 2 ), nickel cobalt lithium manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) and oxides such as manganese oxide (MnO 2 ), phosphate compounds such as olivine-type lithium iron phosphate (LiFePO 4 ) Alternatively, a mixture of these can be used. In addition, using sulfur (S), sulfides such as iron sulfide (FeS), iron disulfide (FeS 2 ), lithium sulfide (Li 2 S) and titanium sulfide (TiS 2 ), or mixtures thereof Also good.
  正極焼結体及び被覆層を構成する正極活物質としては、互いに異なる種類のものを用いてもよい。正極焼結体及び被覆層を異種の正極活物質で構成する場合としては、例えば、正極焼結体を高容量或いは低コストのもので構成し、且つ、被覆層をリチウムイオンの移動抵抗の小さいもので構成する場合が挙げられる。具体的には、正極焼結体をLiMn2O4で構成し、且つ、被覆層をLiCoO2で構成する場合が挙げられる。 Different types of positive electrode active materials constituting the positive electrode sintered body and the coating layer may be used. In the case where the positive electrode sintered body and the coating layer are composed of different types of positive electrode active materials, for example, the positive electrode sintered body is composed of a high capacity or low cost material, and the coating layer has a small lithium ion migration resistance. The case where it comprises with a thing is mentioned. Specifically, a case where the positive electrode sintered body is made of LiMn 2 O 4 and the coating layer is made of LiCoO 2 can be mentioned.
  また、正極焼結体及び被覆層は、さらに導電助剤を含有していてもよい。導電助剤としては、アセチレンブラックといったカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウムやニッケルといった金属繊維などを利用することができる。 Moreover, the positive electrode sintered body and the coating layer may further contain a conductive additive. As the conductive aid, carbon black such as acetylene black, natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, metal fiber such as aluminum and nickel, and the like can be used.
  本発明において、被覆層が、上記正極活物質として層状岩塩型構造の化合物を含み、該化合物の結晶のc軸方向が、上記正極焼結体の表面に対して垂直に配向していないことが好ましい。 In the present invention, the coating layer contains a compound having a layered rock salt type structure as the positive electrode active material, and the c-axis direction of the crystal of the compound is not oriented perpendicular to the surface of the positive electrode sintered body. preferable.
  上記正極活物質のうち、層状岩塩型構造を有する化合物は、その結晶構造上、リチウムイオンの移動性が高く、電池の放電特性の向上に寄与する。特に、被覆層が層状岩塩型構造の化合物を含む場合、該化合物の結晶のc軸方向が、上記正極焼結体の表面に対して垂直に配向していない方が、正極の固体電解質層側表面においてリチウムイオンの挿入・脱離が容易なため、界面抵抗がより小さくなる。ここで、「結晶のc軸方向が、上記正極焼結体の表面に対して垂直に配向していない」とは、正極焼結体の表面に対して結晶のc軸が傾斜しており、結晶構造がc軸方向よりもab軸方向に強く配向していることを意味する。特に、X線回折(XRD)測定によるピーク強度の比が(003)/(101)<2を満たすことが好ましい。 の う ち Among the positive electrode active materials, the compound having a layered rock salt structure has high lithium ion mobility due to its crystal structure, and contributes to the improvement of the discharge characteristics of the battery. In particular, when the coating layer includes a compound having a layered rock salt structure, the c-axis direction of the crystal of the compound is not oriented perpendicularly to the surface of the positive electrode sintered body. Since the insertion and removal of lithium ions on the surface is easy, the interface resistance becomes smaller. Here, “the c-axis direction of the crystal is not oriented perpendicularly to the surface of the positive electrode sintered body” means that the c-axis of the crystal is inclined with respect to the surface of the positive electrode sintered body, It means that the crystal structure is oriented more strongly in the ab axis direction than in the c axis direction. In particular, it is preferable that the ratio of peak intensities as measured by X-ray diffraction (XRD) satisfies (003) / (101) <2.
  中でも、層状岩塩型構造を有するLiCoO2、LiNiO2、又はこれらの混合物は、高電圧が得られ、電子及びリチウムイオン伝導性にも優れる点で、正極活物質として特に好適である。 Among them, LiCoO 2 , LiNiO 2 , or a mixture thereof having a layered rock salt structure is particularly suitable as a positive electrode active material because it can obtain a high voltage and is excellent in electron and lithium ion conductivity.
  被覆層を構成する正極活物質の結晶構造を層状岩塩型構造にする方法としては、上述の気相法を用いて被覆層を形成した後に被覆層をアニール処理する方法が挙げられる。前記アニール処理の条件は、例えば、400~700℃、1~10時間が好ましい。 Examples of the method for making the crystal structure of the positive electrode active material constituting the cocoon coating layer into a layered rock salt structure include a method in which the coating layer is annealed after the coating layer is formed by using the above-described vapor phase method. The annealing conditions are preferably 400 to 700 ° C. and 1 to 10 hours, for example.
  本発明において、被覆層の厚みが、0.02μm以上であることが好ましい。 In the present invention, the thickness of the coating layer is preferably 0.02 μm or more.
  被覆層の厚みを0.02μm以上とすることにより、十分な表面平滑性を有する被覆層が形成されるので、正極の固体電解質層側表面を平滑でかつ緻密な表面構造とし易い。なお、被覆層の厚みの上限は特に限定されないが、電池の薄型化や生産性という観点から、10μm以下が好ましい。 By setting the thickness of the coating layer to 0.02 μm or more, a coating layer having sufficient surface smoothness is formed, so that the surface of the positive electrode on the solid electrolyte layer side can be easily made a smooth and dense surface structure. The upper limit of the thickness of the coating layer is not particularly limited, but is preferably 10 μm or less from the viewpoint of thinning the battery and productivity.
  本発明において、固体電解質層が、硫化物系固体電解質を含むことが好ましい。 In the present invention, it is preferable that the solid electrolyte layer contains a sulfide-based solid electrolyte.
  固体電解質層を構成する固体電解質としては、Li-P-S系やLi-P-S-O系の硫化物系固体電解質、Li-P-O系やLi-P-O-N系の酸化物系固体電解質を利用することができる。中でも、硫化物系固体電解質は、高いリチウムイオン伝導性を示すので、固体電解質層を構成する材料として好適である。具体的な硫化物系固体電解質としては、Li2SとP2S5を主成分とするLi2S‐P2S5系固体電解質の他、SiS2を含むLi2S‐P2S5‐SiS2系のもの、更にAl2S3を含むLi2S‐P2S5‐SiS2‐Al2S3系のもの、或いはP2O5を含むLi2S‐P2S5‐P2O5系のものが挙げられる。 As the solid electrolyte constituting the solid electrolyte layer, a Li-PS or Li-PSO sulfide solid electrolyte, or a Li-PO or Li-PON oxide solid electrolyte can be used. Among these, the sulfide-based solid electrolyte is suitable as a material constituting the solid electrolyte layer because it exhibits high lithium ion conductivity. Specific sulfide-based solid electrolyte, other Li 2 S-P 2 S 5 based solid electrolyte mainly composed of Li 2 S and P 2 S 5, Li 2 S-P 2 S 5 containing SiS 2 those -SiS 2 system, further Al 2 S 3 that of the Li 2 S-P 2 S 5 -SiS 2 -Al 2 S 3 system comprising, or P 2 O containing 5 Li 2 S-P 2 S 5 - those of P 2 O 5 systems.
  本発明において、正極と固体電解質層との間に界面抵抗を低減するための緩衝層が設けられていることが好ましい。 In the present invention, it is preferable that a buffer layer for reducing the interface resistance is provided between the positive electrode and the solid electrolyte layer.
  例えば、正極活物質に酸化物、固体電解質層に硫化物を利用した場合、酸化物イオンが硫化物イオンに比べてリチウムイオンを強く引き付けるため、正極と固体電解質層と接合界面において、固体電解質層から正極にリチウムイオンが移動することがある。その結果、正極と接する固体電解質層の界面近傍において、電荷の偏りが起こることが原因で電荷空乏層が形成されるため、界面抵抗が増大する。そこで、正極と固体電解質層との間に緩衝層を設けることにより、界面抵抗を更に低減することができる。 For example, when an oxide is used for the positive electrode active material and a sulfide is used for the solid electrolyte layer, the oxide ion attracts lithium ions more strongly than the sulfide ion, so that the solid electrolyte layer at the junction interface between the positive electrode and the solid electrolyte layer. Lithium ions may move from the anode to the positive electrode. As a result, a charge depletion layer is formed in the vicinity of the interface of the solid electrolyte layer in contact with the positive electrode due to the occurrence of charge bias, and the interface resistance increases. Accordingly, the interface resistance can be further reduced by providing a buffer layer between the positive electrode and the solid electrolyte layer.
  緩衝層を構成する材料としては、Li4Ti5O12、LiNbO3、LixLa(2-x)/3TiO3(x=0.1~0.5)、Li7+xLa3Zr2O12+(x/2)(-5≦x≦3)、Li3.6Si0.6P0.4O4、Li1.3Al0.3Ti1.7(PO4)3、Li1.8Cr0.8Ti1.2(PO4)3、Li1.4In0.4Ti1.6(PO4)3、LiTaO3を利用することができる。 The material constituting the buffer layer is Li 4 Ti 5 O 12 , LiNbO 3 , Li x La (2-x) / 3 TiO 3 (x = 0.1 to 0.5), Li 7 + x La 3 Zr 2 O 12+ (x / 2) (-5 ≦ x ≦ 3), Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.8 Cr 0.8 Ti 1.2 (PO 4 ) 3 , Li 1.4 In 0.4 Ti 1.6 (PO 4 ) 3 or LiTaO 3 can be used.
  緩衝層の厚みは、界面抵抗の低減効果を得るために、2nm以上が好ましい。また電池の薄型化や充放電時におけるリチウムイオンの移動性の確保という観点から、1μm未満が好ましい。本発明では、正極の固体電解質層側が表面平滑性に優れていることから、このような薄い緩衝層であっても、正極の固体電解質側表面を均一に被覆することが可能である。従って、界面抵抗を効果的に低減することができる。より好ましい緩衝層の厚みは、5nm以上50nm以下である。 The thickness of the buffer layer is preferably 2 nm or more in order to obtain the effect of reducing the interface resistance. From the viewpoint of thinning the battery and ensuring the mobility of lithium ions during charge / discharge, the thickness is preferably less than 1 μm. In the present invention, since the solid electrolyte layer side of the positive electrode is excellent in surface smoothness, even with such a thin buffer layer, the solid electrolyte side surface of the positive electrode can be uniformly coated. Therefore, the interface resistance can be effectively reduced. The thickness of the buffer layer is more preferably 5 nm or more and 50 nm or less.
  更に、緩衝層は、正極と固体電解質層との間に少なくとも一層設けられていればよい。また、従来技術のように個々の正極活物質の粉末表面に形成する必要がない。従って、本発明の電池は生産性に優れている。また、本発明の電池では正極の厚みを薄くすることが可能になる。 Furthermore, it is sufficient that at least one buffer layer is provided between the positive electrode and the solid electrolyte layer. Moreover, it is not necessary to form on the powder surface of each positive electrode active material like the prior art. Therefore, the battery of the present invention is excellent in productivity. In the battery of the present invention, the thickness of the positive electrode can be reduced.
  その他、負極活物質としては、金属リチウム(Li金属単体)又はリチウム合金(Liと添加元素からなる合金)の他、グラファイトなどの炭素(C)や、シリコン(Si)、インジウム(In)を用いることができる。中でも、リチウムを含む材料、特に金属リチウムは、電池の高容量化及び高電圧化の点で優位であるため好適である。リチウム合金の添加元素としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、亜鉛(Zn)及びインジウム(In)などを用いることができる。 In addition, as the negative electrode active material, carbon (C) such as graphite, silicon (Si), and indium (In) are used in addition to lithium metal (Li metal simple substance) or lithium alloy (alloy composed of Li and an additive element). be able to. Among them, a material containing lithium, particularly metallic lithium is preferable because it is advantageous in terms of increasing the capacity and voltage of the battery. As an additive element of the lithium alloy, aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), zinc (Zn), indium (In), or the like can be used.
  本発明の非水電解質二次電池は、正極焼結体の固体電解質側表面に被覆層を備えることにより、正極と固体電解質層との間の界面抵抗が小さくなる。その結果、正極と固体電解質層との間でリチウムイオンのやり取りをスムーズに行うことができる。すなわち、電池の内部抵抗を低減することができる。 非 The nonaqueous electrolyte secondary battery of the present invention is provided with a coating layer on the surface of the positive electrode sintered body on the solid electrolyte side, so that the interface resistance between the positive electrode and the solid electrolyte layer is reduced. As a result, lithium ions can be exchanged smoothly between the positive electrode and the solid electrolyte layer. That is, the internal resistance of the battery can be reduced.
  また、本発明の非水電解質二次電池の製造方法によれば、内部抵抗を改善した非水電解質二次電池を製造することができる。 In addition, according to the method for manufacturing a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery with improved internal resistance can be manufactured.
本発明の非水電解質二次電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the nonaqueous electrolyte secondary battery of this invention.
  図1は、本発明の非水電解質二次電池の一例を示す概略断面図である。本発明の非水電解質二次電池の基本構造は、図1に示すように、正極1、電解質層3、負極2を順に積層した構造である。また、正極1は、正極焼結体10及び該正極焼結体10の固体電解質層3側表面に形成された被覆層11を備える。図1では、正極1と固体電解質層3との間に更に緩衝層4が設けられた構成を示している。 FIG. 1 is a schematic sectional view showing an example of the nonaqueous electrolyte secondary battery of the present invention. As shown in FIG. 1, the basic structure of the nonaqueous electrolyte secondary battery of the present invention is a structure in which a positive electrode 1, an electrolyte layer 3, and a negative electrode 2 are laminated in this order. Further, the positive electrode 1 includes a positive electrode sintered body 10 and a coating layer 11 formed on the surface of the positive electrode sintered body 10 on the solid electrolyte layer 3 side. FIG. 1 shows a configuration in which a buffer layer 4 is further provided between the positive electrode 1 and the solid electrolyte layer 3.
  (実施例1)
  図1に示す積層構造のリチウムイオン二次電池を作製して、充放電サイクル試験を行うことにより電池の内部抵抗を評価した。
Example 1
A lithium ion secondary battery having a laminated structure shown in FIG. 1 was produced, and the internal resistance of the battery was evaluated by conducting a charge / discharge cycle test.
  <電池の作製手順>
  LiCoO2の粉末0.5gを秤量し、直径20mmの金型に入れ、300MPaの圧力で加圧して加圧成形体を得た。この加圧成形体を、電気炉に入れ、1100℃で6時間焼成することで正極焼結体10を作製した。この正極焼結体10の表面を研磨し、厚みを200μmとした。
<Battery preparation procedure>
0.5 g of LiCoO 2 powder was weighed, placed in a 20 mm diameter mold, and pressurized with a pressure of 300 MPa to obtain a pressure molded body. The pressure-molded body was placed in an electric furnace and fired at 1100 ° C. for 6 hours to produce a positive electrode sintered body 10. The surface of the positive electrode sintered body 10 was polished to a thickness of 200 μm.
  その後、正極焼結体10の上に、パルスレーザーデポジション法を用いて、LiCoO2からなる被覆層11を形成した後、500℃で3時間のアニール処理を行うことで、正極1を完成させた。このとき、被覆層11の形成は、被覆層11が形成される正極焼結体10の被覆面を蒸着源に対して60°傾斜させることで行った。また、被覆層11の厚みは1μmとした。この被覆層11のX線回折(XRD)を測定したところ、被覆層11は、層状岩塩型構造を有するLiCoO2からなり、その結晶のc軸方向が正極焼結体10の表面に対して垂直に配向していないことが確認された。また、(003)の(101)に対するピーク強度比(003)/(101)は1.7であった。更に、この被覆層11の表面粗さRaを、JIS  B  0601:2001に準拠して、表面粗さ測定器(製品名「DEKTAK3030」Sloan社製)を用いて測定したところ、20nmであった。 Then, after forming the coating layer 11 made of LiCoO 2 on the positive electrode sintered body 10 by using the pulse laser deposition method, the positive electrode 1 is completed by performing an annealing treatment at 500 ° C. for 3 hours. It was. At this time, the coating layer 11 was formed by inclining the coating surface of the positive electrode sintered body 10 on which the coating layer 11 is formed by 60 ° with respect to the vapor deposition source. The thickness of the coating layer 11 was 1 μm. When X-ray diffraction (XRD) of the coating layer 11 was measured, the coating layer 11 was made of LiCoO 2 having a layered rock salt structure, and the c-axis direction of the crystal was perpendicular to the surface of the positive electrode sintered body 10. It was confirmed that they were not oriented. The peak intensity ratio (003) / (101) of (003) to (101) was 1.7. Furthermore, the surface roughness Ra of the covering layer 11 was measured using a surface roughness measuring instrument (product name “DEKTAK3030” manufactured by Sloan Co.) in accordance with JIS B 0601: 2001, and was 20 nm.
  正極1上に固体電解質層3を形成する前に、正極1(被覆層11)の上に、スパッタリング法を用いて、LiNbO3からなる緩衝層4を形成した。緩衝層4の厚みは20nmとした。 Before forming the solid electrolyte layer 3 on the positive electrode 1, a buffer layer 4 made of LiNbO 3 was formed on the positive electrode 1 (coating layer 11) by sputtering. The thickness of the buffer layer 4 was 20 nm.
  次に、緩衝層4の上に、真空蒸着法を用いてLi2S‐P2S5系固体電解質からなる固体電解質層3を形成した。固体電解質層3の厚みは10μmとした。 Next, a solid electrolyte layer 3 made of a Li 2 S—P 2 S 5 based solid electrolyte was formed on the buffer layer 4 using a vacuum deposition method. The thickness of the solid electrolyte layer 3 was 10 μm.
  次いで、固体電解質層3の上に、真空蒸着法を用いて、Li金属からなる負極活物質層を形成した。この負極活物質層を負極2とした。負極2の厚みは10μmであった。 Next, a negative electrode active material layer made of Li metal was formed on the solid electrolyte layer 3 using a vacuum deposition method. This negative electrode active material layer was designated as negative electrode 2. The thickness of the negative electrode 2 was 10 μm.
  最後に、上記で得られた積層体をケースに収容して、コイン型のリチウムイオン二次電池を完成させた。 Finally, the laminate obtained above was accommodated in a case to complete a coin-type lithium ion secondary battery.
  (実施例2)
  被覆層11の結晶構造のc軸方向を正極焼結体10の表面に対して垂直に配向させた以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。このとき、被覆層11の形成は、被覆層11が形成される正極焼結体10の被覆面を蒸着源に対向させることにより行った。また、被覆層11のピーク強度比(003)/(101)は2.8であった。被覆層11の表面粗さはRaで20nmであった。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the c-axis direction of the crystal structure of the coating layer 11 was oriented perpendicularly to the surface of the positive electrode sintered body 10. At this time, the coating layer 11 was formed by making the coating surface of the positive electrode sintered body 10 on which the coating layer 11 is formed face the vapor deposition source. Further, the peak intensity ratio (003) / (101) of the coating layer 11 was 2.8. The surface roughness of the coating layer 11 was 20 nm in Ra.
  (比較例1)
  被覆層11の形成及びアニール処理を行わなかった以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。このとき、正極1(正極焼結体10)の表面粗さはRaで310nmであった。なお、この表面粗さは、正極焼結体10の表面を研磨した後に測定した値である。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the formation of the coating layer 11 and the annealing treatment were not performed. At this time, the surface roughness of the positive electrode 1 (positive electrode sintered body 10) was 310 nm in Ra. The surface roughness is a value measured after the surface of the positive electrode sintered body 10 is polished.
  <電池の評価>
  実施例1、2及び比較例1の各電池について、カットオフ電圧:3V~4.2V、電流密度:0.05mA/cm2の条件で充放電サイクル試験を実施した。放電開始後60秒間の電圧降下を測定することにより電池の内部抵抗値を算出した。
<Battery evaluation>
The batteries of Examples 1 and 2 and Comparative Example 1 were subjected to a charge / discharge cycle test under the conditions of cut-off voltage: 3 V to 4.2 V and current density: 0.05 mA / cm 2 . The internal resistance value of the battery was calculated by measuring the voltage drop for 60 seconds after the start of discharge.
  その結果、実施例1、2の電池は、内部抵抗値がそれぞれ180Ωcm2、620Ωcm2であり、いずれも低抵抗であった。これに対し、比較例1の電池は、内部抵抗値が28000Ωcm2であり、高抵抗であった。 As a result, the batteries of Examples 1 and 2, 180Omucm 2 internal resistance value, respectively, is 620Omucm 2, were both low resistance. In contrast, the battery of Comparative Example 1 had a high resistance with an internal resistance value of 28000 Ωcm 2 .
  以上の結果から、本発明の非水電解質二次電池は、正極焼結体10の固体電解質層3側表面に平滑性に優れる被覆層11を備えることにより、正極1と固体電解質層3との間の界面抵抗を低減し、結果、リチウムイオンの移動がスムーズになるため、内部抵抗を低減できことが分かる。また、被覆層11の結晶のc軸方向が正極焼結体10の表面に対して垂直に配向していない方が、界面抵抗が小さくなり、結果、内部抵抗をより低減できることが分かる。 From the above results, the nonaqueous electrolyte secondary battery of the present invention is provided with the coating layer 11 having excellent smoothness on the surface of the solid electrolyte layer 3 side of the positive electrode sintered body 10, whereby the positive electrode 1 and the solid electrolyte layer 3 are provided. It can be seen that the internal resistance can be reduced because the interfacial resistance is reduced and, as a result, lithium ions move smoothly. It can also be seen that the interface resistance is smaller when the c-axis direction of the crystal of the coating layer 11 is not oriented perpendicularly to the surface of the positive electrode sintered body 10, and as a result, the internal resistance can be further reduced.
  (実施例3)
  被覆層11の厚みを変えた以外は実施例1と同様にして各電池を作製した。得られた各電池について上記と同じ条件の充放電サイクル試験を実施することにより、各電池の内部抵抗値を算出した。その結果を表1に示す。
(Example 3)
Each battery was fabricated in the same manner as in Example 1 except that the thickness of the covering layer 11 was changed. The internal resistance value of each battery was calculated by performing a charge / discharge cycle test under the same conditions as above for each obtained battery. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  表1の結果から、被覆層の厚みは0.02μm以上3.0μm以下が好ましいことが分かる。 From the results in Table 1, it is understood that the thickness of the coating layer is preferably 0.02 μm or more and 3.0 μm or less.
  なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、被覆層の厚みを適宜変更したり、正極活物質としてLiCoO2以外の材料を用いてもよい。 Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the thickness of the coating layer may be changed as appropriate, or a material other than LiCoO 2 may be used as the positive electrode active material.
  本発明の非水電解質二次電池は、携帯電話、ノートパソコン、デジタルカメラの他、電気自動車などの電源に好適に利用することができる。 非 The non-aqueous electrolyte secondary battery of the present invention can be suitably used for a power source of an electric vehicle, in addition to a mobile phone, a notebook computer, a digital camera.
  1  正極    10  正極焼結体    11  被覆層
  2  負極
  3  固体電解質層
  4  緩衝層
1 Positive electrode 10 Positive electrode sintered body 11 Cover layer 2 Negative electrode 3 Solid electrolyte layer 4 Buffer layer

Claims (8)

  1.   正極、負極、及びこれら正負極間に介在される固体電解質層を有する非水電解質二次電池であって、
      前記正極は、正極活物質を含む粉末を焼成してなる正極焼結体を備え、この正極焼結体の固体電解質層側の表面に正極活物質を含む被覆層を備えることを特徴とする非水電解質二次電池。
    A non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the positive and negative electrodes,
    The positive electrode is provided with a positive electrode sintered body obtained by firing a powder containing a positive electrode active material, and a coating layer containing the positive electrode active material is provided on the surface of the positive electrode sintered body on the solid electrolyte layer side. Water electrolyte secondary battery.
  2.   前記被覆層が、層状岩塩型構造の化合物を含み、該化合物の結晶のc軸方向が、上記正極焼結体の表面に対して垂直に配向していないことを特徴とする請求項1に記載の非水電解質二次電池。 The said coating layer contains the compound of a layered rock-salt structure, The c-axis direction of the crystal | crystallization of this compound is not orientating perpendicularly | vertically with respect to the surface of the said positive electrode sintered compact. Non-aqueous electrolyte secondary battery.
  3.   前記被覆層の厚みが、0.02μm以上であることを特徴とする請求項1又は2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the coating layer has a thickness of 0.02 µm or more.
  4.   前記化合物が、コバルト酸リチウム、ニッケル酸リチウム、又はこれらの混合物であることを特徴とする請求項2又は3に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 2 or 3, wherein the compound is lithium cobaltate, lithium nickelate, or a mixture thereof.
  5.   前記固体電解質層が、硫化物系固体電解質を含むことを特徴とする請求項1~4のいずれか一項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the solid electrolyte layer contains a sulfide solid electrolyte.
  6.   前記正極と前記固体電解質層との間に界面抵抗を低減するための緩衝層が設けられていることを特徴とする請求項1~5のいずれか一項に記載の非水電解質二次電池。 6. The nonaqueous electrolyte secondary battery according to claim 1, wherein a buffer layer for reducing an interface resistance is provided between the positive electrode and the solid electrolyte layer.
  7.   正極と負極、及びこれら正負極間に介在される固体電解質層を有する非水電解質二次電池の製造方法であって、
      正極活物質を含む粉末を焼成して正極焼結体を形成する焼結工程と、
      前記正極焼結体の固体電解質層側の表面に気相法を用いて正極活物質を含む被覆層を形成する被覆工程と、
    を含むことを特徴とする非水電解質二次電池の製造方法。
    A method for producing a non-aqueous electrolyte secondary battery having a positive electrode and a negative electrode, and a solid electrolyte layer interposed between the positive and negative electrodes,
    A sintering step of firing a powder containing a positive electrode active material to form a positive electrode sintered body;
    A coating step of forming a coating layer containing a positive electrode active material on the surface of the positive electrode sintered body on the solid electrolyte layer side using a vapor phase method;
    The manufacturing method of the nonaqueous electrolyte secondary battery characterized by the above-mentioned.
  8.   前記被覆層をアニール処理することを特徴とする請求項7に記載の非水電解質二次電池の製造方法。 The method for manufacturing a nonaqueous electrolyte secondary battery according to claim 7, wherein the coating layer is annealed.
PCT/JP2009/061849 2008-08-18 2009-06-29 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery WO2010021205A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980100740XA CN101828295B (en) 2008-08-18 2009-06-29 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
US12/743,287 US20100279176A1 (en) 2008-08-18 2009-06-29 Nonaqueous electrolyte secondary battery and method for producing the same
EP09808141.7A EP2315298A4 (en) 2008-08-18 2009-06-29 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008210131 2008-08-18
JP2008-210131 2008-08-18
JP2009-105601 2009-04-23
JP2009105601 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010021205A1 true WO2010021205A1 (en) 2010-02-25

Family

ID=41707084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061849 WO2010021205A1 (en) 2008-08-18 2009-06-29 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery

Country Status (6)

Country Link
US (1) US20100279176A1 (en)
EP (1) EP2315298A4 (en)
JP (1) JP2010272494A (en)
KR (1) KR20100057678A (en)
CN (1) CN101828295B (en)
WO (1) WO2010021205A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121978A1 (en) * 2010-11-17 2012-05-17 Ngk Insulators, Ltd. Lithium secondary battery cathode
CN103534863A (en) * 2011-05-18 2014-01-22 丰田自动车株式会社 Method of producing solid sulfide electrolyte material and solid sulfide electrolyte material
JP2015028854A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery
US9356279B2 (en) 2012-08-03 2016-05-31 Toyota Jidosha Kabushiki Kaisha Electrode body, method for producing electrode body, and battery provided with electrode body
CN112635815A (en) * 2019-10-09 2021-04-09 中国科学院宁波材料技术与工程研究所 Composite electrolyte material with electrochemical buffer layer, preparation method thereof and lithium metal battery
WO2024190265A1 (en) * 2023-03-10 2024-09-19 国立大学法人東北大学 Arrangement structure of solid electrolyte in all-solid-state cell, and battery

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250278B (en) * 2010-12-10 2015-07-01 丰田自动车株式会社 Electrode body and all-olid-state battery
JP5556797B2 (en) * 2010-12-17 2014-07-23 トヨタ自動車株式会社 Secondary battery
KR101440886B1 (en) 2011-06-22 2014-09-18 삼성에스디아이 주식회사 Solid electrolyte, manufacturing method thereof, and lithium battery employing the same
JP5141805B1 (en) * 2011-08-02 2013-02-13 トヨタ自動車株式会社 Solid secondary battery and battery system
JP6016597B2 (en) * 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 Method for producing positive electrode for lithium ion secondary battery
JP5943624B2 (en) * 2012-02-10 2016-07-05 日立造船株式会社 Coated positive electrode active material and all solid lithium secondary battery using the coated positive electrode active material
EP2811570B1 (en) * 2012-04-17 2016-09-14 LG Chem, Ltd. Lithium secondary battery exhibiting excellent performance
KR101502832B1 (en) * 2012-04-17 2015-03-17 주식회사 엘지화학 Lithium Battery Having Higher Performance
JP5846307B2 (en) 2012-06-28 2016-01-20 株式会社村田製作所 All solid battery
WO2014002857A1 (en) * 2012-06-29 2014-01-03 株式会社 村田製作所 All-solid-state battery
JP6109672B2 (en) * 2012-11-07 2017-04-05 日本碍子株式会社 Ceramic cathode-solid electrolyte composite
JP6168690B2 (en) * 2012-11-07 2017-07-26 日本碍子株式会社 Ceramic cathode-solid electrolyte composite
US9761861B1 (en) 2013-06-25 2017-09-12 Quantumscape Corporation Pulse plating of lithium material in electrochemical devices
US9692041B2 (en) 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
JP6340955B2 (en) * 2014-07-01 2018-06-13 株式会社豊田中央研究所 Method for producing composite laminate, composite laminate and lithium battery
US10116003B2 (en) 2015-02-03 2018-10-30 Quantumscape Corporation Metal sulfide anolytes for electrochemical cells
JP6565207B2 (en) * 2015-02-20 2019-08-28 富士通株式会社 All solid battery
KR102435473B1 (en) 2015-08-04 2022-08-23 삼성전자주식회사 Cathode including sintered poly crystalline material, secondary battery including the cathode, and method of manufacturing the cathode
JP6264350B2 (en) * 2015-09-24 2018-01-24 トヨタ自動車株式会社 Electrode laminate and method for producing all solid state battery
JPWO2017065034A1 (en) * 2015-10-15 2018-08-02 日本碍子株式会社 Manufacturing method of all-solid-state lithium battery
JP6730584B2 (en) * 2016-02-19 2020-07-29 富士通株式会社 All-solid-state battery and method of manufacturing all-solid-state battery
CN109643824A (en) * 2016-06-28 2019-04-16 加利福尼亚大学董事会 Battery and method with molybdenum sulphide electrode
DE102016015191B3 (en) 2016-12-21 2018-06-14 Forschungszentrum Jülich GmbH Lithium-ion solid-state accumulator and method for producing the same
WO2018165606A1 (en) 2017-03-10 2018-09-13 Quantumscape Corporation Metal negative electrode ultrasonic charging
CN109935796A (en) * 2017-12-19 2019-06-25 成都亦道科技合伙企业(有限合伙) A kind of total oxygen compound solid state lithium battery structure and preparation method thereof
JP7269020B2 (en) * 2019-01-31 2023-05-08 株式会社日本マイクロニクス secondary battery
CN110416637B (en) * 2019-06-28 2022-08-12 上海空间电源研究所 Preparation method and application of solid-state battery buffer layer
WO2021038860A1 (en) * 2019-08-30 2021-03-04 株式会社 東芝 Electrode, laminate, and secondary battery
CN117096425A (en) * 2020-05-12 2023-11-21 苹果公司 Positive electrode of solid lithium battery
CN113140784A (en) * 2021-04-20 2021-07-20 惠州亿纬锂能股份有限公司 Modified solid electrolyte and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164217A (en) 1998-11-27 2000-06-16 Kyocera Corp Lithium battery
JP2001126758A (en) * 1999-10-28 2001-05-11 Kyocera Corp Lithium battery
JP2003346901A (en) * 2002-05-30 2003-12-05 Ohara Inc Lithium ion secondary battery
JP2007005279A (en) 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
WO2007066539A1 (en) * 2005-12-09 2007-06-14 Idemitsu Kosan Co., Ltd. Lithium ion conductive sulfide-based solid electrolyte and all-solid lithium battery using same
JP2007258165A (en) 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007258148A (en) 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007329107A (en) * 2006-06-09 2007-12-20 Arisawa Mfg Co Ltd Lithium ion secondary battery
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402795B1 (en) * 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
JP4174816B2 (en) * 2001-02-28 2008-11-05 住友電気工業株式会社 Inorganic solid electrolyte and lithium battery member
WO2005101549A1 (en) * 2004-04-01 2005-10-27 Sumitomo Electric Industries Ltd. Negative electrode member for secondary lithium battery and process for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164217A (en) 1998-11-27 2000-06-16 Kyocera Corp Lithium battery
JP2001126758A (en) * 1999-10-28 2001-05-11 Kyocera Corp Lithium battery
JP2003346901A (en) * 2002-05-30 2003-12-05 Ohara Inc Lithium ion secondary battery
JP2007005279A (en) 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
WO2007066539A1 (en) * 2005-12-09 2007-06-14 Idemitsu Kosan Co., Ltd. Lithium ion conductive sulfide-based solid electrolyte and all-solid lithium battery using same
JP2007258165A (en) 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007258148A (en) 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007329107A (en) * 2006-06-09 2007-12-20 Arisawa Mfg Co Ltd Lithium ion secondary battery
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADVANCED MATERIALS, vol. 18, 2006, pages 2226
See also references of EP2315298A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121978A1 (en) * 2010-11-17 2012-05-17 Ngk Insulators, Ltd. Lithium secondary battery cathode
US8628881B2 (en) * 2010-11-17 2014-01-14 Ngk Insulators, Ltd. Lithium secondary battery cathode
CN103534863A (en) * 2011-05-18 2014-01-22 丰田自动车株式会社 Method of producing solid sulfide electrolyte material and solid sulfide electrolyte material
US9356279B2 (en) 2012-08-03 2016-05-31 Toyota Jidosha Kabushiki Kaisha Electrode body, method for producing electrode body, and battery provided with electrode body
JP2015028854A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery
CN112635815A (en) * 2019-10-09 2021-04-09 中国科学院宁波材料技术与工程研究所 Composite electrolyte material with electrochemical buffer layer, preparation method thereof and lithium metal battery
WO2024190265A1 (en) * 2023-03-10 2024-09-19 国立大学法人東北大学 Arrangement structure of solid electrolyte in all-solid-state cell, and battery

Also Published As

Publication number Publication date
EP2315298A4 (en) 2014-04-02
CN101828295B (en) 2013-07-03
CN101828295A (en) 2010-09-08
KR20100057678A (en) 2010-05-31
JP2010272494A (en) 2010-12-02
US20100279176A1 (en) 2010-11-04
EP2315298A1 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2010021205A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
US10985407B2 (en) All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
CN111864207B (en) All-solid battery
KR101714882B1 (en) Solid lithium secondary battery and method of manufacturing same
WO2011145462A1 (en) Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
JP5348607B2 (en) All-solid lithium secondary battery
JP5623360B2 (en) All solid battery
JP6362371B2 (en) Oxide-based solid electrolyte and its use
WO2012077225A1 (en) Electrode body and all-solid-state battery
JP6102859B2 (en) Positive electrode active material for lithium battery, lithium battery, and method for producing positive electrode active material for lithium battery
JP2011096630A (en) Solid-state lithium secondary battery, and method for producing the same
WO2012099178A1 (en) Nonaqueous electrolyte battery
JP5682318B2 (en) All solid battery
JP2011044368A (en) Nonaqueous electrolyte battery
US11374257B2 (en) Softened solid-state electrolytes for lithium ion batteries
CN112868122A (en) Solid electrolyte material with improved chemical stability
JP6748348B2 (en) All solid state battery
JP2013089417A (en) Nonaqueous electrolyte battery
KR20180082902A (en) Deposition of LiF on Li metal surface and Li secondary battery using thereof
JP2021034199A (en) All-solid battery
JP2017147205A (en) All-solid battery
JP2015072816A (en) Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity
JP7017137B2 (en) Manufacturing method of all-solid-state secondary battery
JP5556252B2 (en) Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
JP2015115103A (en) Manufacturing method of electrode for all-solid-state battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100740.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107007561

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009808141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12743287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE