[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010012128A1 - 原著染色的渐层色纤维及其制造方法 - Google Patents

原著染色的渐层色纤维及其制造方法 Download PDF

Info

Publication number
WO2010012128A1
WO2010012128A1 PCT/CN2008/001402 CN2008001402W WO2010012128A1 WO 2010012128 A1 WO2010012128 A1 WO 2010012128A1 CN 2008001402 W CN2008001402 W CN 2008001402W WO 2010012128 A1 WO2010012128 A1 WO 2010012128A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
copolymer
color
gradation
resin
Prior art date
Application number
PCT/CN2008/001402
Other languages
English (en)
French (fr)
Inventor
陈义勇
Original Assignee
Chen Yiyung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Yiyung filed Critical Chen Yiyung
Priority to JP2011520301A priority Critical patent/JP2011529534A/ja
Priority to US13/056,549 priority patent/US20110210462A1/en
Priority to EP08783592A priority patent/EP2309041A4/en
Priority to CN2008801301348A priority patent/CN102076893A/zh
Priority to PCT/CN2008/001402 priority patent/WO2010012128A1/zh
Publication of WO2010012128A1 publication Critical patent/WO2010012128A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/06Dyes

Definitions

  • the invention relates to a gradation color fiber and a manufacturing method thereof, in particular to a gradual color fiber obtained by dyeing a thermoplastic fiber by using a dyeing method of original dyeing, by controlling at least one spinning condition and Production method. Background technique
  • Chinese patent CN2564602Y discloses a gradual dyeing device, which discloses the use of a dyeing method to achieve the purpose of gradual color fiber.
  • its production rate is slower and the color fastness is poor.
  • French patent FR 2682130 proposes another technique to achieve the purpose of gradual color fiber.
  • the technique is to fix the dyed object on the support first.
  • the dyeing time is different by different heights.
  • this method relies on bath dyeing and dyeing, which will generate a large amount of waste water, which will be a major damage to the environment.
  • Canadian Patent CA 224221 1 discloses that it is also possible to control the dyeing time of fabrics of different heights by gradually discharging the bath dyeing solution to achieve a gradation effect.
  • this method also uses bath dyeing and dyeing, which also produces a large amount of waste water.
  • the object of the present invention is to apply at least one component to the original dyeing when producing the fiber, and to control the at least one spinning condition to obtain the gradation-colored fiber and Fabrics, which produce gradual color fibers in rapid production and without the discharge of large amounts of sewage.
  • the present invention provides an original dyed gradation fiber and a method of producing the same, characterized in that a thermoplastic fiber contains more than one component and has at least one component. The portion is subjected to dyeing by the original, by changing the color of the color of the color of the gradation of the fiber.
  • the present invention can be dyed in a thermoplastic fiber by a dyeing method of the original dyeing, by controlling at least one of the following spinning conditions to obtain a gradation-colored fiber, and using the fiber to form a woven fabric.
  • At least one of the melt extruders is subjected to the original dyeing when the fiber is produced, and the at least one color meter metering color content is continuously changed.
  • the content of at least one colorant is continuously changed.
  • melt extruders For a single component fiber and a composite fiber of two or more components, at least one of the melt extruders is subjected to the original dyeing when the fiber is produced, and the amount of discharge of at least one melt extruder is continuously controlled. The ground changes, and the gradual colored fibers are obtained.
  • any component of the thermoplastic fiber is formed of a thermoplastic resin.
  • the polymer of the thermoplastic resin is selected from the group consisting of a polyester resin, a copolymer of a polyester, a polyamide resin, a copolymer of a polyamide, a polypropylene resin, a copolymer of polypropylene, a copolymer of a polyethylene resin, and polyethylene. And one of a mixture of the above polymers.
  • thermoplastic fiber When the thermoplastic fiber is dyed with the at least one dye or pigment, the color of the fiber is also changed by changing the content of any one of the pigments, and by gradually changing the content of at least one of the pigments, a gradation of the colored fiber can be obtained.
  • the method for controlling the change of the colorant content is as follows:
  • At least one of the melt extruders is subjected to the original dyeing, and the toner content is continuously and periodically changed by continuously and periodically changing the discharge amount of the at least one melt extruder.
  • thermoplastic fiber when the thermoplastic fiber is dyed with at least one dye or pigment, the fiber fineness (or denier number) is changed, and the fiber color is also changed. By continuously changing the fiber fineness, a gradation color can be obtained.
  • the method for controlling the change in fiber fineness is:
  • the continuous discharge amount of the melt extruder is continuously and periodically changed (at least one of the melt extruders continuously changes the discharge amount).
  • Gradient-colored fibers and their fabrics can be obtained by controlling at least one of the following spinning conditions:
  • Constantly changing the metering color content of at least one meter When only one meter is used to measure the colorant content, the control continuously changes the metering color content of the meter, and only the gradient with the color density change can be obtained. Color fiber. When two or more meters are used to meter the colorant content, the control continuously changes the metering colorant content of at least one of the meters to obtain a gradual color fiber having a significant hue change.
  • the colorant includes at least one dye, pigment
  • the color concentration is high, the composition is high.
  • the range of the depth change is small.
  • the composite thermoplastic fiber When at least two components of the composite thermoplastic fiber are respectively composed of different color materials (meaning at least one dye, the composition of the pigment is different), when the original dyeing is performed, one of the components has the original dyeing component melting extruder
  • the greater the proportion of the discharge amount the closer the hue of the fiber is to the original dyed hue of the composition, and the closer the color is to the original dyed hue of the other composition; when the proportion of each component is continuously changed, the hue of the fiber will continue to appear.
  • the ground layer is changed, and the gradation color composite fiber having a hue change can be obtained by continuously changing the discharge amount of at least one component having the original dyeing.
  • thermoplastic plastic fiber when at least one component of the thermoplastic plastic fiber is dyed with at least one dye or pigment, and is extended in fiber elongation or fiber false twisting, The smaller the magnification, the larger the fiber fineness (the fiber denier), and the higher the color density of the fiber.
  • magnification the larger the fiber fineness (the fiber denier), and the higher the color density of the fiber.
  • the fiber When the fiber is stretched or the fiber is false, the greater the stretching ratio, the fineness of the fiber.
  • the smaller the Widenier number the lower the color density of the fibers.
  • the total coloring matter content of the component is in the range of 0.01% to 10% by weight of the component.
  • an advantage of the present invention is that the present invention discloses an original dyed gradation fiber that continuously and periodically changes at least one meter to meter the colorant content, or at least one melt extruder discharge amount is continuously and periodically The change of the fiber, or the fiber fineness is continuously and periodically changed in any other extension manner or false twisting manner to obtain the color variability of the gradation color, so the original dyed gradation composite fiber of the present invention is suitable for For the application of any thermoplastic chemical fiber, at least one component of the fiber is subjected to the original dyeing, and at least one spinning condition is controlled to obtain the gradual color fiber and its fabric, and the rapid production and non-emission of a large amount of sewage are obtained. In the case of gradual color fiber production.
  • Figure 1 is a schematic diagram showing the linear relationship between the metering color content of the meter and the spinning time
  • Figure 2 is a schematic diagram showing the nonlinear relationship between the metering color content and the spinning time of the meter
  • Figure 3 is a schematic diagram showing the linear relationship between fiber fineness and spinning time
  • Figure 4 is a schematic diagram showing the nonlinear relationship between fiber fineness and spinning time
  • Figure 5 is a schematic diagram showing the linear relationship between the discharge amount of the melt extruder and the spinning time
  • Figure 6 is a schematic diagram showing the nonlinear relationship between the discharge amount of the melt extruder and the spinning time.
  • the present invention utilizes an original dyed fiber which continuously changes the colorant content or the amount of spinning discharge or changes the fineness of the fiber in any other manner of extension, which is characterized in that at least one melt extruder has at least one dye. , the pigment is dyed by the original, and the gradation of the fiber is obtained in at least one of the following ways:
  • the content of at least one original dyed pigment is gradually changed linearly by changing the content of the at least one meter (as shown in Fig. 1, the horizontal axis is the spinning time, and the vertical axis is the metering color of the meter) Material content); or gradually change in a nonlinear relationship (as shown in Figure 2, the horizontal axis is the spinning time, and the vertical axis is the metering color content of the meter).
  • the effect of the implementation is as in Example 1.
  • the fiber fineness can be gradually changed according to the linear relationship (as shown in Fig. 3, the horizontal axis is the spinning time, and the vertical axis is the fiber fineness); or gradually changes according to the nonlinear relationship (as shown in Fig. 4, the horizontal axis is spinning) Silk time, the vertical axis is fiber fineness).
  • the discharge amount of the melt extruder gradually changes in a linear relationship (as shown in Fig. 5, the horizontal axis is the spinning time, and the vertical axis is the discharge amount); or gradually Change (as shown in Figure 6, the horizontal axis is the spinning time and the vertical axis is the discharge amount).
  • At least one of the components of the melt extruder discharge amount gradually changes in a linear relationship (as shown in Fig. 5); or gradually changes in a nonlinear relationship (as shown in Fig. 6). As in the examples 2, 3, 4, 5, 6.
  • the total color content of the component is in the range of 0.01% to 10% by weight of the component.
  • the original dyed gradation fibers of the present invention can be produced by any spinning method including, but not limited to, staple fibers, melt blown spinning, single filaments, multiple filaments, carpet filaments ( BCF), and so on. It can also be processed by any extension or false house method.
  • the original dyed gradation fiber of the present invention is a polymer of a thermoplastic resin, and each component can be copolymerized by a polyester resin, a polyester copolymer, a polyamide resin, or a polyamide.
  • each component can be added with additives such as heat stabilizer, fire retardant, antibacterial agent, etc. according to different needs.
  • any composite method can be applied to the gradation composite fiber disclosed in the present invention, such as side by side > sheath core, sea-island, and sheath core.
  • the composite method, the partial core portion protrudes from the outer sheath core composite manner, and the like.
  • the hue (L, a, b) and color intensity comparisons in the examples are obtained by taking the specified spinning time and taking a silk sample and winding it on a white cardboard, by Datacolor spectrometer.
  • Model SF600 is measured on a D65 source with a wavelength of 400-700 nm.
  • the L value refers to the brightness of the color model CIE
  • the a value refers to the chroma component from green to red
  • the b value refers to the chroma component from blue to yellow.
  • Example 1 A single component of an original dyed gradient polyester fiber.
  • the fiber component was 0.3% by weight of semi-dull PET and applied to the original dye by a two-component color meter.
  • Meter A measured the weight percentage at the beginning of spinning at the fiber 0.4% color index Solvent Blue 45, the color of the material was measured in 480 seconds, gradually enlarged to the weight percent by 0.56% of the fiber color index Solvent Blue 45, metering At the beginning of spinning, the weight percentage of the fiber was 0.6% carbon black, and the color was measured in 480 seconds, gradually decreasing to a weight percentage of 0.36% carbon black.
  • the spinning conditions are: 285 ° (melting temperature, spinning speed 3200 m / min, part of the forward original yarn (POY).
  • the fiber Danny's number is 3.3 denier / polyester fiber per filament.
  • the following table compares the silk-like hue (L, a, b) and color intensity at the beginning of spinning and spinning at 25,600 m (480 sec), and continuously changes the color metering to obtain a gradation color with a color change. fiber.
  • Example 2 is a fully extended, original dyed, gradient color composite polyester fiber.
  • the component A is a polyester resin and is dyed by the original dye to make it contain a weight percentage of the component A 0.6% color index No. Pigment Red 214, component B is a polyester resin without being dyed by the original.
  • the proportion of the output of the melter A in the initial spinning of the component A is 60% of the total discharge amount of the composite fiber, and the ratio of the discharge amount is 90 seconds, which gradually enlarges to the ratio of the discharge amount to the total of the composite fiber.
  • the discharge amount is 70%, and the proportion of the discharge of the melter B in the initial spinning of the component B accounts for 40% of the total discharge amount of the composite fiber, and the discharge amount is gradually reduced to the discharge amount within 90 seconds.
  • the proportion accounts for 30% of the total output of composite fibers.
  • the spinning conditions were: 285 ° C melting temperature, spinning speed 4500 m / min, 2.9 times extension.
  • the composite fiber having a Danny's number at the time of initial spinning was 3 denier per filament of composite polyester fiber.
  • the following table shows the comparison of the silky hue (L, a, b) and the color intensity at the beginning of spinning and spinning at 6750 m (90 sec). By continuously changing the ratio of the discharge amount, the gradual change with the depth can be obtained.
  • Layered composite fiber Hue (L, a, b), Chromaticity L ab Color Intensity Start Spinning Mesh 50.58 42.21 17.81 As Standard Spinning 6750 m Wire Sample 49.48 43.30 19.44 1 14.3%
  • Example 3 is a progressive color composite polyester fiber dyed by the original.
  • the component A is a polyester resin and is dyed by the original dye to contain 1.7% by weight of the titanium oxide of the component A.
  • the component B is a polyester resin and is dyed by the original to make it contain a weight percentage component.
  • the discharge ratio is within 120 seconds, gradually The ratio of the output to the discharge amount accounts for 50% of the total discharge amount of the composite fiber, and the proportion of the discharge amount of the melt extruder B at the initial spinning of the component B accounts for 70% of the total discharge amount of the composite fiber, and the ratio of the discharge amount thereof Within 120 seconds, gradually reduce to the discharge amount of 50% of the total output of the composite fiber.
  • the spinning conditions are: 285. C melting temperature, spinning speed 3200 m / min, part of the forward strand (POY).
  • the composite fiber Danny number at the start of spinning was 4.5 denier per composite polyester fiber per filament.
  • the following table compares the silky hue (L, a, b) and color intensity at the initial spinning and spinning 3200 m (60 sec) and 6400 m (120 sec), by continuously changing the discharge ratio. A gradation-color composite fiber having a hue change is obtained.
  • Example 4 is a progressive dyed composite polyester fiber.
  • the component A is a polyester resin and is dyed by the original dye so as to contain a weight percentage of the component A 0.48%.
  • the index number Pigment Blue 15:3 and the weight percentage of the component part A 0.3% of the titanium dioxide, the component B It is a polyester resin and is dyed by the original dye to make it contain 906% by weight of the component B.
  • the proportion of the melt fraction of the melter A at the initial spinning of the component A accounts for the total output of the composite fiber. 50%, The ratio of the discharge amount is 180 seconds, and the proportion of the discharge amount is gradually increased to 80% of the total discharge amount of the composite fiber, and the proportion of the discharge amount of the melt extruder B when the component B is initially spun is the total of the composite fiber.
  • the discharge amount is 50%, and the discharge amount ratio is within 180 seconds, and gradually decreases to the discharge amount ratio of 20% of the total discharge amount of the composite fiber.
  • the spinning conditions were: 285 ° C melting temperature, spinning speed 3200 m / min, part of the forward strand (POY).
  • the composite fiber Danny number at the start of spinning was 5 denier per composite polyester fiber.
  • the following table shows the silky hue (L, a, b) and color strength of the initial spinning and spinning 3200 m (60 sec), spinning 6400 m (120 sec), spinning 9600 m (180 sec).
  • a gradation-color composite fiber having a hue change is obtained by continuously changing the ratio of the discharge amount.
  • Example 5 is a progressive color composite polyester fiber dyed by the original.
  • Component A is a polyester resin and is dyed by original dye to contain a weight percentage of component A 0.51%.
  • component B is polyester The resin is applied with the original dye to make it contain the weight percentage of the component B 0.17%.
  • the color index is Disperse Violet 57 and the weight percentage is the component B 0.3% titanium dioxide, and the component A is in the initial spinning melt extruder.
  • the ratio of A discharge amount accounts for 50% of the total discharge amount of composite fiber, and the ratio of discharge amount is within 180 seconds, which gradually enlarges to the ratio of discharge amount to 80% of the total discharge amount of composite fiber, and component B starts from spinning.
  • the ratio of the discharge amount of the melt extruder B is 50% of the total discharge amount of the composite fiber, and the ratio of the discharge amount is within 180 seconds, which is gradually reduced to the ratio of the discharge amount to 20% of the total discharge amount of the
  • the spinning conditions are: 285. C melting temperature, spinning speed 3200 m / min, part of the forward strand (POY).
  • the composite fiber Danny number at the start of spinning was 4.5 denier per composite polyester fiber per filament.
  • the following table shows the silky hue (L, a, b) and color strength of the initial spinning and spinning 3200 m (60 sec), spinning 6400 m (120 sec), spinning 9600 m (180 sec).
  • a gradation-color composite fiber having a hue change is obtained by continuously changing the ratio of the discharge amount.
  • Hue (L, a, b) Chromaticity L ab Color Intensity Start Spinning Mesh 39.78 19.22 -7.85
  • Standard Spinning 3200 m Filament 40.92 23.94 -0.42 109.5%
  • Example 6 is a gradation-color composite polyamide fiber (or nylon fiber) dyed by the original.
  • Component A is a polyamide resin and is subjected to original dyeing so as to contain a weight percentage of component A 0.5% color index No. Pigment Blue 15:3, component B is a polyamide resin and subjected to original dyeing It contains the weight percentage of the component B 0.5% color index No. Pigment Green 7, the component A is the initial spinning, the melt extruder A discharge ratio accounts for 50% of the total output of the composite fiber, and its discharge The ratio is gradually increased to 180%, and the proportion of the discharge amount accounts for 80% of the total discharge amount of the composite fiber. The proportion of the discharge amount of the melt extruder B during the initial spinning of the component B accounts for the total discharge amount of the composite fiber. 50%, the ratio of the discharge amount in 180 seconds, gradually reduced to the discharge ratio of 20% of the total output of composite fibers.
  • the spinning conditions were: 280 ° C melting temperature, spinning speed 4,300 m / min, 2.5 times extension.
  • the composite fiber Dani number at the initial spinning was 4.5 denier per filament of composite polyamide fibers.
  • the following table shows the silky hue (L, a, b) and color strength of the initial spinning and spinning 4300 m (60 sec), 8600 m (120 sec) spinning, and 12900 m (180 sec) spinning.
  • a gradation-color composite fiber having a hue change is obtained by continuously changing the ratio of the discharge amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Description

原著染色的渐层色纤维及其制造方法 技术领域
本发明涉及一种渐层色纤维及其制造方法, 尤指一种运用原著染色的染色 方式染于热可塑性纤维中, 经由控制至少一项纺丝条件, 用以得到的渐层色纤 维及其制造方法。 背景技术
为使纤维及织物的颜色更生动、 更富于变化, 以往有些运用印染或浴染染 色来达到渐层色效果。 然而, 印染及浴染的染色方法产生许多废污水, 导致环 保问题。
其中中国专利 CN2564602Y 揭示一种渐变的染色装置, 该专利技术揭露运 用一种喷染方式上色方法来达到渐层色纤维的目的。 但是其生产速度较慢, 且 染色牢度较差。
另外, 法国专利 FR 2682130 提出另一技术来达到渐层色纤维的目的, 该 技术是将被染物先固定于支架上, 当支架渐渐放入浴染缸时, 藉由不同高度的 织物染色时间不同, 用以达到渐层色效果。 然而, 该方法依赖浴染染色方式, 会产生大量废污水, 对环境将是一大破坏。
相同的, 加拿大专利 CA 224221 1 中揭露, 也是经由渐渐排放浴染染液来 控制不同高度的织物染色时间, 以达到渐层色效果。 然而, 该方法亦使用浴染 染色方式, 也是会产生大量废污水。
因此, 如何在快速生产与不排放大量污水的情况下达到渐层色纤维的产出, 将是渐层色纤维及其制造方法的重要课题。 发明内容
于是, 为解决上述的缺失, 避免缺失存在, 本发明的目的是在生产纤维时 至少有一个组成部份施以原著染色, 经由控制至少一项纺丝条件, 以得到渐层 色的纤维及其织物, 在快速生产与不排放大量污水的情况下达到渐层色纤维的 产出。
为达上述的目的, 本发明提出一种原著染色的渐层色纤维及其制造方法, 其特征在于一热可塑性纤维, 其含有一个以上组成部份, 且至少有一个组成部 份被施以原著染色, 经由改变色料在纤维的色浓度的渐层色纤维。 本发明可运 用原著染色的染色方式染于热可塑性纤维中, 经由控制下列至少一项纺丝条件, 以得到渐层色的纤维, 及使用该纤维做成织物。
(1) 针对单一组成份的纤维及二个以上组成份的复合纤维,在生产该纤维时 至少有一个熔融压出机施以原著染色, 且不断地改变至少一个色料计量器计量 色料含量, 以改变至少一种色料的含量, 而得到具有颜色变化的渐层色纤维。
(2)针对单一组成份的纤维及二个以上组成份的复合纤维, 在生产该纤维时 至少有一个熔融压出机施以原著染色, 且于纤维延伸或纤维假捻时, 不断地改 变延伸倍率, 而得到具有色浓度变化的渐层色的纤维。
(3) 针对单一组成份的纤维及二个以上组成份的复合纤维,在生产该纤维时 至少有一个熔融压出机施以原著染色, 且经由控制至少一个熔融压出机出料量 的不断地改变, 而得到渐层色的纤维。
其中, 该热可塑性纤维的任何组成分是为热可塑性树脂所形成。 热可塑性 树脂的聚合物是选自聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚丙烯树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合 物的混合物其中之一。
当热可塑性纤维以至少一种染料、颜料进行原著染色时, 任何一种色料含量 改变则纤维颜色亦会改变, 经由连续地改变至少一种色料含量, 则可以得到渐 层色纤维。 其控制色料含量改变的方法为:
(1)不断地且周期性地改变至少一个计量器计量色料含量。
(2)至少有一个熔融压出机施以原著染色, 经由不断地且周期性地改变至少 一个熔融压出机的出料量, 则色料含量便不断地且周期性地改变。
或 (3)以上二种方式的组合运用。
或是, 当热可塑性纤维以至少一种染料、颜料进行原著染色时,纤维细度 (或 称丹尼尔数)改变则纤维颜色亦会改变, 经由连续地改变纤维细度, 则可以得到 渐层色的纤维。 其控制纤维细度改变的方法为:
(1)经由不断地且周期性地改变熔融压出机的总出料量 (至少有一个熔融压 出机的出料量不断地改变)。
(2)以其它任何延伸方式、 假捻方式不断地且周期性地改变延伸倍率。
或 (3)以上二种方式的组合运用。
综合以上所述, 当热可塑性纤维至少有一个组成部份施以原著染色, 再经 由控制下列至少一项纺丝条件, 可得到渐层色的纤维及其织物:
(1)不断地且周期性地改变至少一个计量器计量色料含量。
(2)不断地且周期性地改变至少一个熔融压出机的出料量。 (总出料量可以 保持不变或不断地改变)
(3)以其它任何延伸方式、 假捻方式不断地且周期性地改变纤维细度。
然而, 不同的方式所得到的渐层色效果亦有所不同, 最大的差异是, 有些 明显的色相渐层变化。 以下就此三种方式详细说明的:
(1) 不断地改变至少一个计量器计量色料含量: 当只有使用一个计量器计量 色料含量时, 控制不断地改变该计量器计量色料含量, 则只能得到具有色浓度 变化的渐层色纤维。 当使用二个计量器以上计量色料含量时, 控制不断地改变 至少一个计量器计量色料含量, 则可得到明显的色相变化的渐层色纤维。
(2) 不断地改变至少一个熔融压出机的出料量: 当热可塑性纤维其中只有一 个组成部份以至少一种染料、 颜料进行原著染色时, 且当该具有原著染色的组 成部份熔融压出机出料量越大, 则颜色越深, 当该具有原著染色的组成部份熔 融压出机出料量越小, 则颜色越浅, 经由不断地改变出料量, 则可以得到具有 色浓度渐层变化的渐层色纤维。
当复合热可塑性纤维中至少有二个组成部份分别以相同色料 (色料包括至 少一种染料、 颜料) 但至少一种染料、 颜料的浓度不同进行原著染色时, 当色 浓度高的组成部份熔融压出机出料量越大, 则颜色越深, 反之则颜色越浅, 然 而此种方式, 色浓度虽有渐层变化但深浅变化范围较小。
当复合热可塑性纤维中至少有二个组成部份分别以不同色料组成 (指至少 一种染料、 颜料的组成不同) 进行原著染色时, 当其中一个具有原著染色的组 成部份熔融压出机出料量比例越大, 则纤维的色相越接近该组成的原著染色色 相, 反之则颜色越接近其它组成的原著染色色相; 当各组成部份的比例不断地 改变则纤维显现的色相便会不断地改变, 经由不断地改变至少一个具有原著染 色的组成部份出料量, 则可以得到具有色相变化的渐层色复合纤维。
(3)以其它任何延伸方式、 假捻方式改变纤维细度: 当热可塑性纤维其中有 至少一个组成部份以至少一种染料、 颜料进行原著染色, 且于纤维延伸或纤维 假捻时, 延伸倍率越小, 则纤维细度 (指纤维丹尼尔数) 会越大, 此时其纤维 的色浓度越高, 当纤维延伸或纤维假捻时, 延伸倍率越大, 则纤维细度(指纤 维丹尼尔数)会越小, 此时其纤维的色浓度越低。 经由不断地改变延伸倍率, 则可以得到具有色浓度渐层变化的渐层色纤维。
任何组成部份当具有原著染色的染色方式时, 该组成部份的总色料含量占 该组成部份的重量百分比范围为 0.01%至 10%。
本发明的优点在于, 本发明揭露原著染色的渐层色纤维, 经由控制不断地 且周期性地改变至少一个计量器计量色料含量, 或至少一个熔融压出机出料量 不断地且周期性地改变, 或以其它任何延伸方式、 假捻方式不断地且周期性地 改变纤维细度, 以得到渐层色的颜色变化性, 故本发明所述的原著染色的渐层 色复合纤维适用于任何热可塑性化学纤维的应用, 在生产纤维时至少有一个组 成部份施以原著染色, 经由控制至少一项纺丝条件, 以得到渐层色纤维及其织 物, 在快速生产与不排放大量污水的情况下达到渐层色纤维的产出。 附图说明
图 1为计量器计量色料含量与紡丝时间的线性关系示意图;
图 2为计量器计量色料含量与纺丝时间的非线性关系示意图;
图 3为纤维细度与纺丝时间的线性关系示意图;
图 4为纤维细度与纺丝时间的非线性关系示意图;
图 5为熔融压出机出料量与纺丝时间的线性关系示意图;
图 6为熔融压出机出料量与纺丝时间的非线性关系示意图。 具体实施方式
有关本发明的详细内容及技术说明, 现以实施例来作进一步说明, 但应了 解的是, 该实施例仅为例示说明之用, 而不应被解释为本发明实施的限制。
本发明利用一种不断改变色料含量或纺丝出料量或以其它任何延伸方式、 假捻方式改变纤维细度的原著染色纤维, 其特征在于, 至少一个熔融压出机以 至少一种染料、 颜料进行原著染色, 再以下列至少一种方式得到渐层色的纤维:
(一) 至少一个原著染色的色料含量藉由改变至少一个计量器计量色料含 量, 以线性关系逐渐改变 (如图 1 所示, 横轴为纺丝时间, 纵轴为该计量器计 量色料含量) ; 或以非线性关系逐渐改变 (如图 2 所示, 横轴为纺丝时间, 纵 轴为该计量器计量色料含量) 。 其实施效果如实施例 1。
(二) 于纤维延伸或纤维假捻时, 不断地改变延伸倍率, 此时纤维细度会 因延伸倍率改变而逐渐改变, 而得到具有色浓度变化的渐层色纤维。 其纤维细 度可以依线性关系逐渐改变(如图 3所示,横轴为纺丝时间,纵轴为纤维细度); 或依非线性关系逐渐改变 (如图 4所示, 横轴为纺丝时间, 纵轴为纤维细度) 。
(三)单一组成的纺丝时其熔融压出机出料量以线性关系逐渐改变(如图 5 所示, 横轴为纺丝时间, 纵轴为出料量) ; 或以非线性关系逐渐改变 (如图 6 所示, 横轴为纺丝时间, 纵轴为出料量) 。
(四) 复合纺丝时其中至少一个组成部份熔融压出机出料量以线性关系逐 渐改变(如图 5所示); 或以非线性关系逐渐改变(如图 6所示)。 如实施例 2、 3、 4、 5、 6。
(五) 上述至少二种改变方式的组合运用。
藉此, 经由控制不断地改变至少一个计量器计量色料含量, 或至少一个 熔融压出机出料量不断地改变, 或以其它任何延伸方式、 假捻方式改变纤维 细度, 其原著染色纤维, 可以得到渐层色的纤维。
其中, 任何组成部份当施以原著染色的染色方式时, 该组成部份的总色 料含量占该組成部份的重量百分比范围为 0.01 %至 10%。 且本发明的原著染 色的渐层色纤维可以用任何纺丝方式来生产, 包括而不受限地, 如短纤、 熔 喷纺丝、 单条数长纤、 多条数长纤、 地毯丝 (BCF) ,等等。 也可以再经由任何 延伸、 假捨方式来加工。
又, 本发明所述的原著染色的渐层色纤维是为热可塑性树脂的聚合物, 各 组成部份可分别由聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚丙烯树脂、 聚丙烯的共聚物, 聚乙烯树脂、 聚乙烯的共聚物, 以及上述的混 合物所形成。 且各组成部份皆可以依据不同需求而加入如热安定剂、 防火剂、 抗菌剂等的助剂。
任何复合方式皆可以适用于本发明所揭露的渐层色复合纤维、 如并列复 合方式(side by side) >鞘蕊复合方式(sheath core) ,海岛形复合方式(sea-island)、 异形鞘蕊复合方式、 部份蕊部突出于外的鞘蕊复合方式等等。
现以实施例说明本发明的效果, 其中实施例中各项色相 (L,a,b ) 、 色强 度比较是将指定纺丝时间取得丝样并绕卷于白色硬纸板后, 由 Datacolor分光 仪型号 SF600在 D65光源 , 光波波长 400-700nm所测得。 L值是指颜色模型 CIE的明亮度, a值是指彩度成份由绿到红, b值是指彩度成份由蓝到黄。 (实施例 1)
实施例 1 为单一组成份的原著染色的渐层色聚酯纤维。 纤维成份为含有 0.3 %重量百分比的半钝光聚酯树脂(semi-dull PET)并以二组色料计量器施以 原著染色。
计量器 A 于起始纺丝时计量重量百分比占纤维 0.4%色索引号 Solvent Blue 45 , 其色料计量于 480秒内, 渐渐放大到计量重量百分比占纤维 0.56% 色索引号 Solvent Blue 45 , 计量器 B 于起始纺丝时计量重量百分比占纤维 0.6% 碳黑,其色料计量于 480秒内,渐渐减少到计量重量百分比占纤维 0.36% 碳黑。
纺丝条件为: 285 °( 熔融温度,纺丝速度 3200米 /分,部份顺向原丝(POY)。 纤雉丹尼数为 3.3 丹尼尔 /每条丝的聚酯纤维。.
下表为起始纺丝与纺丝 25600米 (480秒)时的丝样色相 (L,a,b ) 、 色强度 的比较, 经由不断地改变色料计量, 得到具有颜色变化的渐层色纤维。
Figure imgf000008_0001
(实施例 2)
实施例 2 为全延伸的原著染色的渐层色复合聚酯纤维。 组成部份 A 为 聚酯树脂并施以原著染色使其含有重量百分比占组成部份 A 0.6% 色索引号 Pigment Red 214, 组成部份 B为聚酯树脂而不施以原著染色。
组成部份 A于起始纺丝时熔融压出机 A出料量比例占复合纤维总出料量 60%, 其出料量比例于 90秒内, 渐渐放大到出料量比例占复合纤维总出料量 70%, 组成部份 B于起始纺丝时熔融压出机 B 出料量比例占复合纤维总出料 量 40%, 其出料量于 90 秒内, 渐渐减少到出料量比例占复合纤维总出料量 30%。
纺丝条件为: 285°C熔融温度, 纺丝速度 4500米 /分, 2.9 倍延伸。 起始 纺丝时的复合纤维丹尼数为 3丹尼尔 /每条丝的复合聚酯纤维。
下表为起始纺丝与纺丝 6750米 (90秒)时的丝样色相 (L,a,b ) 、 色强度的 比较, 经由不断地改变出料量比例, 可得到具有深浅变化的渐层色复合纤维。 色相 (L,a,b ) 、 色度 L a b 色强度 起始纺丝丝样 50.58 42.21 17.81 As Standard 纺丝 6750米的丝样 49.48 43.30 19.44 1 14.3%
(实施例 3)
实施例 3 为原著染色的渐层色复合聚酯纤维。组成部份 A为聚酯树脂并 施以原著染色使其含有重量百分比占组成部份 A 1.7%的二氧化钛, 组成部 份 B为聚酯树脂并施以原著染色使其含有重量百分比占组成部份 B 0.8% 色 索引号 Solvent Red 135, 组成部份 A于起始纺丝时熔融压出机 A出料量比例 占复合纤维总出料量 30% , 其出料量比例于 120秒内, 渐渐放大到出料量比 例占复合纤维总出料量 50%, 组成部份 B于起始纺丝时熔融压出机 B出料量 比例占复合纤维总出料量 70%, 其出料量比例于 120秒内, 渐渐减少到出料 量比例占复合纤维总出料量 50%。
纺丝条件为: 285。C熔融温度,纺丝速度 3200米 /分,部份顺向原丝( POY)。 起始纺丝时的复合纤维丹尼数为 4.5 丹尼尔 /每条丝的复合聚酯纤维。
下表为起始纺丝与纺丝 3200米( 60秒) 、 6400米( 120秒)时的丝样色相 ( L,a,b )、 色强度的比较, 经由不断地改变出料量比例, 得到具有色相变化的 渐层色复合纤维。
Figure imgf000009_0001
(实施例 4)
实施例 4 为原著染色的渐层色复合聚酯纤维。组成部份 A为聚酯树脂并 施以原著染色使其含有重量百分比占组成部份 A 0.48% ^索引号 Pigment Blue 15:3 与重量百分比占组成部份 A 0.3% 的二氧化钛, 组成部份 B为聚 酯树脂并施以原著染色使其含有重量百分比占组成部份 B 0.96% 碳黑, 组 成部份 A 于起始纺丝时熔融压出机 A 出料量比例占复合纤维总出料量 50%, 其出料量比例于 180秒内, 渐渐放大到出料量比例占复合纤维总出料量 80% , 组成部份 B于起始纺丝时熔融压出机 B出料量比例占复合纤维总出料量 50%, 其出料量比例于 180秒内, 渐渐减少到出料量比例占复合纤维总出料量 20%。
纺丝条件为: 285°C熔融温度,纺丝速度 3200米 /分,部份顺向原丝( POY)。 起始纺丝时的复合纤维丹尼数为 5 丹尼尔 /每条丝的复合聚酯纤维。
下表为起始纺丝与纺丝 3200米(60秒) 、纺丝 6400米(120秒)、纺丝 9600 米(180秒)时的丝样色相 (L,a,b ) 、 色强度的比较, 经由不断地改变出料量比 例, 得到具有色相变化的渐层色复合纤维。
Figure imgf000010_0001
(实施例 5)
实施例 5 为原著染色的渐层色复合聚酯纤维。 组成部份 A为聚酯树脂并 施以原著染色使其含有重量百分比占组成部份 A 0.51% 色索引号 Pigment Red 214 与重量百分比占组成部份 A 0.3% 二氧化钛,组成部份 B为聚酯树 脂并施以原著染色使其含有重量百分比占组成部份 B 0.17% 色索引号 Disperse Violet 57与重量百分比占组成部份 B 0.3% 二氧化钛,组成部份 A于 起始纺丝时熔融压出机 A出料量比例占复合纤维总出料量 50% , 其出料量比 例于 180秒内,渐渐放大到出料量比例占复合纤维总出料量 80% ,组成部份 B 于起始纺丝时熔融压出机 B 出料量比例占复合纤维总出料量 50% , 其出料量 比例于 180秒内, 渐渐减少到出料量比例占复合纤维总出料量 20%。
纺丝条件为: 285。C熔融温度,纺丝速度 3200米 /分,部份顺向原丝( POY)。 起始纺丝时的复合纤维丹尼数为 4.5 丹尼尔 /每条丝的复合聚酯纤维。
下表为起始纺丝与纺丝 3200米(60秒) 、纺丝 6400米(120秒)、纺丝 9600 米(180秒)时的丝样色相 (L,a,b ) 、 色强度的比较, 经由不断地改变出料量比 例, 得到具有色相变化的渐层色复合纤维。 色相 (L,a,b ) 、 色度 L a b 色强度 起始纺丝丝样 39.78 19.22 -7.85 As Standard 纺丝 3200米的丝样 40.92 23.94 -0.42 109.5% 纺丝 6400米的丝样 41.3 1 26.72 5.40 122.6% 纺丝 9600米的丝样 43.38 30.36 10.26 123.1%
(实施例 6)
实施例 6 为原著染色的渐层色复合聚酰氨纤维 (或称尼龙纤维)。 组成部 份 A为聚酰氨树脂并施以原著染色使其含有重量百分比占组成部份 A 0.5% 色索引号 Pigment Blue 15:3, 组成部份 B为聚酰氨树脂并施以原著染色使其 含有重量百分比占组成部份 B 0.5% 色索引号 Pigment Green 7,组成部份 A 于起始纺丝时熔融压出机 A 出料量比例占复合纤维总出料量 50%, 其出料量 比例于 180秒内, 渐渐放大到出料量比例占复合纤维总出料量 80%, 组成部 份 B于起始纺丝时熔融压出机 B出料量比例占复合纤维总出料量 50% , 其出 料量比例于 180秒内, 渐渐减少到出料量比例占复合纤维总出料量 20%。
纺丝条件为: 280°C熔融温度, 纺丝速度 4300米 /分, 2.5倍延伸。 起始 纺丝时的复合纤维丹尼数为 4.5丹尼尔 /每条丝的复合聚酰氨纤维。
下表为起始纺丝与纺丝 4300米( 60秒) 、 纺丝 8600米(120秒) 、 纺丝 12900米(180秒)时的丝样色相 (L,a,b ) 、 色强度的比较, 经由连续地改变出 料量比例, 得到具有色相变化的渐层色复合纤维。
Figure imgf000011_0001
以上所述, 仅为本发明的较佳实施例而已, 当不能以此限定本发明实施 的范围, 即大凡依本发明权利要求及发明说明内容所作的简单的等效变化与 修饰, 皆仍属本发明专利涵盖的范围内。

Claims

权利要求
1.一种原著染色的渐层色纤维, 其特征在于:
一种热可塑性纤维, 其含有一个以上组成部份, 且至少有一个组成部份被施以 原著染色, 经由不断地且周期性地改变色料在纤维的色浓度的渐层色纤维。
2.如权利要求 1所述的渐层色纤维, 其中, 该热可塑性纤维各组成部份的聚合 物是选自聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚丙烯树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合物的混合物其中之
3.—种由权利要求 1所述的原著染色的渐层色纤维所制成的织物。
4.一种原著染色的渐层色纤维的制造方法, 其特征在于:
. 针对单一组成份的热可塑性纤维及二个以上组成份的复合热可塑性纤维, 在生 产该热可塑性纤维时以一个色料计量器施以原著染色, 同时不断地且周期性地改 变该色料计量器计量色料含量,改变色料的量,而得到具有颜色变化的渐层色纤维。
5.如权利要求 4所述的渐层色纤维的制造方法, 其中, 该热可塑性纤维各组成 部份的聚合物是选自聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚 丙烯树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合物的混 合物其中之一。
6.—种原著染色的渐层色纤维的制造方法, 其特征在于:
针对单一组成份的热可塑性纤维及二个以上组成份的复合热可塑性纤维, 在生 产该热可塑性纤维时以至少二个色料计量器施以原著染色, 同时不断地且周期性 地改变至少一个色料计量器计量色料含量, 改变色料的量, 而得到具有颜色变化的 渐层色纤维。
7. 如权利要求 6所述的渐层色纤维的制造方法,其中,该热可塑性纤维各组成 部份的聚合物是选自聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚 丙烯树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合物的混 合物其中之一。
8.—种原著染色的渐层色纤维的制造方法, 其特征在于:
针对单一组成份的热可塑性纤维及二个以上组成份的复合热可塑性纤维, 在生 产该热可塑性纤维时至少有一个熔融压出机施以原著染色, 且于纤维延伸或纤维假 捻时, 不断地且周期性地改变延伸倍率, 而得到具有色浓度变化的渐层色的纤维。
9.如权利要求 8所述的渐层色纤维的制造方法, 其中, 该热可塑性纤维各组成 部份的聚合物是选自聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚 丙烯树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合物的混 合物其中之一。
10.—种原著染色的渐层色纤维的制造方法, 其特征在于:
针对单一组成份的热可塑性纤维及二个以上组成份的复合热可塑性纤维, 在生 产该热可塑性纤维时有一个熔融压出机施以原著染色, 且经由控制该熔融压出机出 料量的不断地且周期性地改变, 而得到渐层色的纤维。
11.如权利要求 10所述的渐层色纤维的制造方法, 其中, 该热可塑性纤维各组 成部份的聚合物是选自聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚丙烯树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合物的 混合物其中之一。
12.—种原著染色的渐层色纤维的制造方法, 其特征在于:
针对单一组成份的热可塑性纤维及二个以上组成份的复合热可塑性纤维, 在生 产该热可塑性纤维时至少有二个熔融压出机以相同色料, 但至少一种染料、 颜料 的浓度不同分别施以原著染色,且经由控制至少一个熔融压出机出料量的不断地且 周期性地改变, 而得到渐层色的纤维。
13.如权利要求 12所述的渐层色纤维的制造方法, 其中, 该热可塑性纤维各組 成部份的聚合物是选自聚酯树脂、 聚酯的共聚物、 聚酰氨树脂、 聚酰氨的共聚物、 聚丙晞树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合物的 混合物其中之一。
14.一种原著染色的渐层色纤维的制造方法, 其特征在于:
针对单一组成份的热可塑性纤维及二个以上组成份的复合热可塑性纤维, 在生 产该热可塑性纤维时至少有二个熔融压出机以不同色料组成分别施以原著染色,且 经由控制至少一个熔融压出机出料量的不断地且周期性地改变, 而得到渐层色的纤 维。
15.如权利要求 14 所述的渐层色纤维的制造方法, 其中, 该热可塑性纤维各 组成部份的聚合物是选自聚酯树脂、聚酯的共聚物、聚酰氨树脂、聚酰氨的共聚物、 聚丙烯树脂、 聚丙烯的共聚物、 聚乙烯树脂、 聚乙烯的共聚物, 以及上述聚合物的 混合物其中之一。
PCT/CN2008/001402 2008-07-31 2008-07-31 原著染色的渐层色纤维及其制造方法 WO2010012128A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011520301A JP2011529534A (ja) 2008-07-31 2008-07-31 原着染色のグラデーション・カラー繊維およびその製造方法
US13/056,549 US20110210462A1 (en) 2008-07-31 2008-07-31 Spin-Dyed Gradient-Color Fiber and Method for Fabricating the Same
EP08783592A EP2309041A4 (en) 2008-07-31 2008-07-31 SPIN-COLORED CHROMATOGRAPHIEFASER AND MANUFACTURING METHOD THEREFOR
CN2008801301348A CN102076893A (zh) 2008-07-31 2008-07-31 原著染色的渐层色纤维及其制造方法
PCT/CN2008/001402 WO2010012128A1 (zh) 2008-07-31 2008-07-31 原著染色的渐层色纤维及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001402 WO2010012128A1 (zh) 2008-07-31 2008-07-31 原著染色的渐层色纤维及其制造方法

Publications (1)

Publication Number Publication Date
WO2010012128A1 true WO2010012128A1 (zh) 2010-02-04

Family

ID=41609912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001402 WO2010012128A1 (zh) 2008-07-31 2008-07-31 原著染色的渐层色纤维及其制造方法

Country Status (5)

Country Link
US (1) US20110210462A1 (zh)
EP (1) EP2309041A4 (zh)
JP (1) JP2011529534A (zh)
CN (1) CN102076893A (zh)
WO (1) WO2010012128A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113782A1 (de) 2014-09-23 2016-03-24 Yi-yung Chen STOFF MIT EINEM GLEICHMÄßIGEN GRADIENTENEFFEKT
CN111876841A (zh) * 2020-07-28 2020-11-03 江苏恒泽复合材料科技有限公司 颜色渐变的再生聚酯纤维的制备方法
CN116676676A (zh) * 2023-06-02 2023-09-01 浙江古纤道股份有限公司 一种变色丝的加工方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517756A (zh) * 2011-12-28 2012-06-27 无锡诺赛净科技有限公司 一种零排放色织梭织面料的生产方法
CN111172789A (zh) * 2020-01-19 2020-05-19 常州旭荣针织印染有限公司 渐层织物及其制备方法
CN112126992B (zh) * 2020-07-28 2021-07-23 东华大学 颜色渐变纤维的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011192A (en) * 1970-12-15 1977-03-08 Imperial Chemical Industries Limited Colored yarns
EP0494432A2 (en) * 1991-01-07 1992-07-15 Basf Corporation Melt-colored thick and thin yarn
FR2682130A1 (fr) 1991-10-08 1993-04-09 Gand Teinturerie Apprets Procede de teinture pour l'obtention de degrades de couleurs differentes et dispositif de mise en óoeuvre.
CN1170050A (zh) * 1996-03-04 1998-01-14 巴斯福公司 生产用于合成丝的添加剂和在热塑性成丝聚合物材料中加入这些添加剂的方法
WO2000034555A1 (en) * 1998-12-04 2000-06-15 E.I. Du Pont De Nemours And Company Colored monofilaments, their manufacture and articles made therefrom
CN2564602Y (zh) 2002-03-19 2003-08-06 河北启发纺织集团公司 渐变染色装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769380A (en) * 1971-05-03 1973-10-30 Cosden Oil & Chem Co Method for extruding synthetic thermoplastic sheet material having a variegated colored pattern
SE403141B (sv) * 1973-02-05 1978-07-31 American Cyanamid Co Smeltspinningsforfarande for framstellning av en akrylnitrilpolymerfiber
US4301107A (en) * 1978-08-30 1981-11-17 American Cyanamid Company Melt-spinning a plurality of acrylonitrile polymer fibers
US4271056A (en) * 1979-09-17 1981-06-02 American Cyanamid Company Hydrophilic acrylonitrile polymers for melt-spinning
JPS575916A (en) * 1980-06-13 1982-01-12 Teijin Ltd Polyester fiber with soft touch and production of knitted and woven fabrics therefrom
US4791026A (en) * 1986-11-27 1988-12-13 Teijin Limited Synthetic polymer multifilament yarn useful for bulky yarn and process for producing the same
JPH01104813A (ja) * 1987-10-14 1989-04-21 Teijin Ltd 複合繊維及びその製造方法
US5932309A (en) * 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
US6232371B1 (en) * 1996-03-04 2001-05-15 Basf Corporation Dispersible additive systems for polymeric materials, and methods of making and incorporating the same in such polymeric materials
DE19706787A1 (de) * 1997-02-20 1998-08-27 Hahl Erwin Gmbh Angeldrähte und Verfahren zur Herstellung von Angeldrähten
JP2001254229A (ja) * 2000-03-08 2001-09-21 Unitica Fibers Ltd ポリエステル原着複合繊維の製造法
JP3978119B2 (ja) * 2002-11-25 2007-09-19 日本エステル株式会社 混繊糸用紡糸口金及びこれを用いた異染性混繊糸の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011192A (en) * 1970-12-15 1977-03-08 Imperial Chemical Industries Limited Colored yarns
EP0494432A2 (en) * 1991-01-07 1992-07-15 Basf Corporation Melt-colored thick and thin yarn
FR2682130A1 (fr) 1991-10-08 1993-04-09 Gand Teinturerie Apprets Procede de teinture pour l'obtention de degrades de couleurs differentes et dispositif de mise en óoeuvre.
CN1170050A (zh) * 1996-03-04 1998-01-14 巴斯福公司 生产用于合成丝的添加剂和在热塑性成丝聚合物材料中加入这些添加剂的方法
WO2000034555A1 (en) * 1998-12-04 2000-06-15 E.I. Du Pont De Nemours And Company Colored monofilaments, their manufacture and articles made therefrom
CN2564602Y (zh) 2002-03-19 2003-08-06 河北启发纺织集团公司 渐变染色装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113782A1 (de) 2014-09-23 2016-03-24 Yi-yung Chen STOFF MIT EINEM GLEICHMÄßIGEN GRADIENTENEFFEKT
CN111876841A (zh) * 2020-07-28 2020-11-03 江苏恒泽复合材料科技有限公司 颜色渐变的再生聚酯纤维的制备方法
CN111876841B (zh) * 2020-07-28 2022-08-30 江苏恒泽复合材料科技有限公司 颜色渐变的再生聚酯纤维的制备方法
CN116676676A (zh) * 2023-06-02 2023-09-01 浙江古纤道股份有限公司 一种变色丝的加工方法
CN116676676B (zh) * 2023-06-02 2024-03-19 浙江古纤道股份有限公司 一种变色丝的加工方法

Also Published As

Publication number Publication date
CN102076893A (zh) 2011-05-25
EP2309041A1 (en) 2011-04-13
US20110210462A1 (en) 2011-09-01
JP2011529534A (ja) 2011-12-08
EP2309041A4 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US9938642B2 (en) Preparation method for multifunctional polyester fibre
WO2010012128A1 (zh) 原著染色的渐层色纤维及其制造方法
TWI775744B (zh) 可染性聚烯烴纖維及由其構成之纖維構造體
JP5105619B2 (ja) 原着ポリエチレンテレフタレート仮撚糸及びその製造方法並びにそれを用いたカーペット
CN105862148A (zh) 一种单板多异聚酯纤维的加工工艺
ES2397083T3 (es) Procedimiento para producir alfombras teñidas uniformemente y estables a la luz
US6312783B1 (en) Polypropylene-based carpet yarn
ITTO950651A1 (it) Materiali lineari con lucentezza perlacea per chiusure e procedimento per la loro produzione.
JP2013060678A (ja) 黒原着ポリエステル繊維
CN105908286A (zh) 一种同板双色超细复合加弹丝的加工工艺
US20150093953A1 (en) Waterless dyeing method and yarn produced by waterless dyeing
CN110483959A (zh) 纤维用高浓度高色牢度母粒的制备方法
KR101317606B1 (ko) 폴리에스테르 원착사 및 그의 제조방법
KR100828904B1 (ko) 고강력 폴리에스테르 멀티필라멘트 원착사 및 그 제조방법
TW201005143A (en) Dope-dyed gradient color fiber and method of manufacturing the same
JP2003293214A (ja) 原着糸の製造方法および溶融紡糸・巻取装置
JP2013060677A (ja) 黒原着ポリエステル繊維
TWI794291B (zh) 聚丙烯樹脂組成物、聚丙烯樹脂成形體及聚丙烯樹脂成形體之製造方法
TWI339223B (zh)
KR20180075148A (ko) 형광 폴리프로필렌 원착사의 제조방법 및 그 원착사
JP2010077540A (ja) 染色性良好な高強力繊維およびその製造方法
JP2008223172A (ja) 防汚性原着繊維
JP4198328B2 (ja) ポリエステル混繊糸
WO2009146575A1 (zh) 原著染色的鞘蕊型复合纤维及其织物
JPH09228146A (ja) カーペット用ポリエステル連続嵩高糸の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130134.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 499/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13056549

Country of ref document: US

Ref document number: 2008783592

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011520301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE