[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010010802A1 - P-CHANNEL THIN-FILM TRANSISTOR AND PROCESS FOR PRODUCING THE p-CHANNEL THIN-FILM TRANSISTOR - Google Patents

P-CHANNEL THIN-FILM TRANSISTOR AND PROCESS FOR PRODUCING THE p-CHANNEL THIN-FILM TRANSISTOR Download PDF

Info

Publication number
WO2010010802A1
WO2010010802A1 PCT/JP2009/062196 JP2009062196W WO2010010802A1 WO 2010010802 A1 WO2010010802 A1 WO 2010010802A1 JP 2009062196 W JP2009062196 W JP 2009062196W WO 2010010802 A1 WO2010010802 A1 WO 2010010802A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
sno
substrate
channel
film transistor
Prior art date
Application number
PCT/JP2009/062196
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 細野
利夫 神谷
正浩 平野
洋一 小郷
研二 野村
秀典 平松
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to JP2010521665A priority Critical patent/JP5168605B2/en
Publication of WO2010010802A1 publication Critical patent/WO2010010802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to a p-channel thin film transistor having a stannous oxide (SnO) semiconductor as an active layer and a method for manufacturing the same.
  • SnO stannous oxide
  • Non-Patent Documents 1 to 3, Patent Documents). 1-3 Since a TFT having zinc oxide as an active layer uses a wide gap semiconductor as an active layer, a transparent TFT that transmits visible light can be formed. Therefore, it is expected that the aperture ratio of the liquid crystal element can be improved by replacing a silicon TFT, which is currently widely used as a switching transistor of a liquid crystal display, with a zinc oxide TFT.
  • zinc oxide has a low electron carrier concentration, and in order to obtain a zinc oxide thin film close to an intrinsic semiconductor, an expensive single crystal substrate or a high-temperature film forming process is required (Non-patent Documents 4 and 5).
  • Non-patent Documents 6 and 7, Patent Document 4 The present inventors announced a TFT having an amorphous oxide semiconductor as an active layer in 2004 (Non-patent Documents 6 and 7, Patent Document 4).
  • This TFT uses an amorphous oxide (a-IGZO) made of indium, gallium, and zinc as an active layer, and an amorphous channel layer can be produced without heating the substrate.
  • a-IGZO amorphous oxide
  • TFT with a-IGZO as a channel has a field effect mobility ( ⁇ EF ) of about 10 cm 2 (Vs) ⁇ 1 , which is a physical property value indicating the mobility of carriers in the channel, and an on / off ratio. Shows excellent transistor characteristics of about 10 6 .
  • ⁇ EF field effect mobility
  • Vs cm 2
  • Non-patent Document 8 Non-patent Document 8
  • the hole mobility may be 0.1 cm 2 / V ⁇ second or more.
  • a p-channel transistor that can couple the positive electrode (cathode) of the OLED and the anode of the TFT has an advantage over the n-channel transistor.
  • the hole mobility of the p-channel material needs to be 0.5 cm 2 / V ⁇ second or more.
  • Non-Patent Documents 9 to 12 have conducted intensive research and development on p-type conductive oxide compounds indispensable for p-channel transistors, and in line with the development guidelines for mixing 3d electron orbitals into 2p orbitals of oxygen constituting the valence band. Thus far, many novel p-type conductive oxides have been discovered and reported (Non-Patent Documents 9 to 12). *
  • Non-patent Document 13 oxychalcogenides whose valence band is composed of s orbitals exhibit p-type conductivity.
  • stannous oxide (SnO) whose valence band top is composed of 5s orbitals becomes a p-type semiconductor.
  • Non-patent Document 15 the defect generation energy of SnO has been reported.
  • Non-patent Document 16 XQPan et al. Use sintered stannic oxide (SnO 2 ) as a target, grow an SnO thin film by an electron beam evaporation method, and are amorphous when grown at a low temperature. It is reported that an ⁇ -SnO phase having a PbO structure is obtained at a substrate temperature of about 350 ° C., and an epitaxial ⁇ -SnO thin film is obtained at 600 ° C. In addition, a method of manufacturing a polycrystalline SnO film by spraying a solution in which SnF 2 is dissolved on the surface of a substrate has been proposed (Patent Document 5).
  • Non-patent Document 17 CW. Ou et al. Have reported that a TFT using a SnO 2 thin film annealed after deposition with stannic oxide (SnO 2 ) as a target operates as a p-type TFT (Non-patent Document 18). However, the obtained TFT has a small electric field mobility of less than 0.1 cm 2 / V ⁇ sec.
  • JP 2000-150900 A Japanese Patent Laid-Open No. 2002-076356 JP 2002-319682 A WO2005 / 088726 JP 2002-235177 A
  • TFTs thin film transistors
  • oxide semiconductors oxide semiconductors
  • TFT thin film transistors
  • n-channel TFTs that operate in p-channels, that is, oxides that conduct electricity using holes as carriers.
  • TFT is not realized.
  • the valence band of the metal oxide is mainly composed of oxygen 2p orbitals and is strongly localized, so that p-type conductivity is difficult to realize, and even p-type conductivity is realized. Even so, the field effect mobility of hole carriers is small, and the transistor does not operate.
  • Non-patent Document 18 have reported a p-type TFT having a stannic oxide (SnO 2 ) thin film as a channel, and its field-effect mobility is 0.011 cm 2 (Vs) ⁇ 1. This is a very small value and cannot be used in the practical circuit as described above.
  • the hole field-effect mobility needs to be 0.1 cm 2 (Vs) ⁇ 1 or more, and for that purpose, the hole mobility is 0.1 cm 2 (Vs) ⁇ 1 or more. It is essential to grow a thin film.
  • Tin oxide includes SnO and SnO 2 compounds, but the stable valence of tin is tetravalent (Sn 4+ ), and the state of SnO 2 is common.
  • Sn 4+ tetravalent
  • the electron configuration of Sn 4+ is (Kr) 5s 0 5p 0
  • an empty 5s5p orbital forms a conduction band and exhibits n-type conductivity.
  • Sn 2+ is obtained.
  • the crystal structure of SnO is the space group P4 / nmm, but the crystal structure of SnO 2 is the space group P42 / mnm and has a different crystal structure.
  • Sn 2+ stannous oxide
  • Sn 0 tin metal
  • Sn 4+ and Sn 0 can be controlled by using a pulsed laser deposition method (PLD method) or a sputtering method that can control the oxygen partial pressure in the film forming chamber atmosphere, that is, the degree of oxidation of Sn. It is preferable to produce a SnO thin film having a total content of less than 10 atomic%. Note that the film formation method is not limited to the PLD method or the sputtering method as long as the film formation method can control the degree of oxidation of Sn.
  • the present inventors measured the hard X-ray photoelectron spectrum of the SnO thin film prepared by the method shown in Experimental Example 1 described later, and confirmed that the Sn5s level was present above the 02p level as the valence band. . That is, the valence band top was composed of 5s orbitals. Further, from the measurement of the Seebeck coefficient and the Hall effect of the SnO thin film, it was confirmed that the thin film showed p-type conductivity.
  • the hole mobility was 2.4 cm 2 V ⁇ 1 s ⁇ 1 and the hole concentration was 2.5 ⁇ 10 17 cm -3 .
  • the magnitude of hole mobility of the obtained SnO thin film is superior to that of amorphous silicon and is comparable to that of p-type ZnO.
  • the present inventors fabricated a top gate transistor (FIG. 1) having an SnO thin film as an active layer and an amorphous alumina thin film as an insulating layer by the method shown in Example 1 described later.
  • a current modulation of 14 ⁇ A was obtained under the condition that the applied voltage between the gate and the source was 10V and the applied voltage between the drain and the source was 10V.
  • the field-effect mobility 1.0 cm 2 V -1 s -1 in the linear region, 0.7 cm 2 V -1 s -1 in the saturation region, the ON-OFF (On / Off) ratio was 10 2.
  • the transistor has a hole field effect mobility of 0.5 cm 2 V ⁇ 1 s ⁇ 1 or more, and can be used as a p-channel TFT for a CMOS circuit and a TFT for driving an OLED.
  • the present invention is (1) a p-channel thin film transistor characterized in that a stannous oxide (SnO) thin film is deposited on a thin film transistor substrate to form a channel layer.
  • the present invention provides: (2) the content of Sn 4+ and Sn 0 (tin metal) in the stannous oxide thin film is less than 10 atomic% in total; A channel thin film transistor.
  • the present invention is also the p-channel thin film transistor according to (1) above, wherein (3) the substrate is a (001) YSZ single crystal substrate and the SnO thin film is an epitaxial film.
  • the present invention is (4) the p-channel thin film transistor according to (1) above, wherein the substrate is made of glass or plastic, and the SnO thin film is an amorphous film.
  • the present invention is also (5) the p-channel thin film transistor according to (1) above, wherein the hole mobility is 0.1 cm 2 / V ⁇ sec or more.
  • (6) in the vapor phase method SnO is used as a target, the degree of oxidation of Sn deposited on the substrate is controlled by the substrate temperature and the atmospheric oxygen partial pressure, and the Sn 2+ ion content is 90%.
  • the gas phase method is a pulsed laser deposition method (PLD method), and a (001) YSZ single crystal substrate is used as the substrate, and the substrate temperature is 550 ° C. or higher.
  • An epitaxial film is deposited at a temperature of 590 ° C. or lower, which is a method for manufacturing a p-channel thin film transistor having the structure of (3) above.
  • the gas phase method is a pulsed laser deposition method (PLD method), and a glass or plastic substrate is used as a soot substrate, and the substrate temperature is not intentionally heated.
  • PLD method pulsed laser deposition method
  • the present invention has a remarkable effect that it can provide an oxide TFT having a hole mobility of 0.1 cm 2 (Vs) ⁇ 1 or more which can be used in a practical circuit such as a CMOS circuit and operates in a p-channel.
  • 4A is a four-axis X-ray diffraction pattern of an epitaxial SnO thin film.
  • FIG. 1 shows an example of the structure of a TFT having a SnO epitaxial thin film of the present invention as a channel, a channel layer 2 formed on a substrate 1, and a source electrode 4 formed with a gate insulating layer 3 sandwiched between both sides of the channel layer.
  • FIG. 2 is a schematic diagram of a top-gate transistor including a drain electrode 5 and a gate electrode 6 formed on the gate insulating layer 3.
  • the present invention is characterized by the material of the channel layer.
  • the TFT of the present invention is not limited to the top gate structure, and various structures can be adopted.
  • the film thickness of the SnO thin film used as the channel of the thin film transistor is preferably 10 nm to 60 nm, particularly preferably 15 nm to 50 nm. If it is less than 10 nm, the on-current decreases, and if it exceeds 60 nm, the off-current increases, which is not preferable.
  • the channel layer 2 of the thin film transistor of the present invention is formed by depositing an SnO epitaxial thin film on a (001) YSZ single crystal substrate using SnO as a target by a PLD method or a sputtering method in a vacuum vessel. It can be formed by a process. An amorphous state in which no crystal grain boundary exists in the SnO thin film may be used. In this case, glass or plastic can be used for the substrate.
  • the substrate temperature is set to a range of 550 ° C. to 590 ° C. It is necessary to set the pressure within an appropriate range, that is, to control the oxidation degree of Sn so as to form stannous oxide having a high purity.
  • the oxygen partial pressure means a partial pressure of oxygen gas intentionally introduced into the film formation chamber by the flow control device. When the oxygen partial pressure is too low, metallic tin is likely to precipitate, and when the oxygen partial pressure is too high, Sn 4+ is likely to precipitate.
  • the crystal structure of the SnO epitaxial thin film changes, and p-type conductivity is not exhibited. Therefore, the total content of Sn 4+ and Sn 0 (tin metal) in the SnO thin film needs to be less than 10 atomic%.
  • the most suitable range of oxygen partial pressure at which p-type conductivity can be obtained can be experimentally determined in advance, the preferred range is more than 1 ⁇ 10 ⁇ 2 Pa and less than 1 ⁇ 10 ⁇ 1 Pa.
  • a PLD in which a target disposed opposite to a substrate is irradiated with a pulse of high energy density laser light, and atoms and molecules are converted into plasma from the target surface and deposited on the opposite substrate.
  • the method is preferred. However, if control the degree of oxidation to stabilize the Sn 2+, it may be other film formation method such as sputtering.
  • an oxygen partial pressure is controlled within an appropriate range by using a SnO sintered body or a green compact as a target on a (001) YSZ single crystal substrate maintained at 550 ° C. or more and 590 ° C. or less.
  • the partial pressure of oxygen gas is controlled by introducing O 2 gas into the film formation chamber through a flow meter.
  • an SnO phase cannot be obtained. If the substrate temperature exceeds 590 ° C., an SnO phase is obtained, but Sn 4+ starts to precipitate, and when the substrate temperature is 700 ° C., the growth rate is 0.
  • the SnO film does not grow at 1 nmt / min or less. This is considered to be because SnO has a melting point of 700 to 950 ° C., and SnO decomposes at 700 ° C. or higher.
  • the oxygen partial pressure during film formation is 1 ⁇ 10 -2 Although the SnO phase exists below Pa, metal Sn is contained in the film. In addition, an SnO layer containing a large amount of Sn 4+ grows at an oxygen partial pressure of 1 ⁇ 10 ⁇ 1 Pa or higher.
  • the (001) YSZ single crystal substrate is the most preferable among the known deposition substrates.
  • An epitaxial film cannot be obtained with a single crystal substrate such as (001) MgO, (001) STO, (1-102) Al 2 O 3 or the like.
  • the substrate Prior to the film formation step, the substrate is preferably subjected to a surface cleaning treatment by a heat treatment at a high temperature, an etching treatment with an acid, or the like.
  • a SnO (001) plane grows on the YSZ (100) plane
  • the SnO (100) plane shows the same 4-fold symmetry as the YSZ (1-10) plane
  • the SnO film is a YSZ single crystal substrate. It can be seen that heteroepitaxial growth has occurred. In the plane, the YSZ (1-10) plane and the SnO (100) plane grow in parallel.
  • the SnO thin film growth method described above it is possible to obtain a SnO thin film having a crystal structure belonging to the space group P4 / nmm, containing Sn 2+ of 90 atomic% or more.
  • the obtained thin film exhibits p-type conductivity and has a hole mobility of 0.1 cm 2 (Vs) ⁇ 1 or more, more preferably 0.5 cm 2 (Vs) ⁇ 1 or more, and further 2.0 cm.
  • An SnO thin film channel of 2 (Vs) ⁇ 1 or more can be formed.
  • the substrate is preferably subjected to a surface cleaning treatment by a heat treatment at a high temperature, an etching treatment with an acid, or the like.
  • a PLD in which a target disposed opposite to a substrate is irradiated with a pulse of high energy density laser light, and atoms and molecules are converted into plasma from the target surface and deposited on the opposite substrate.
  • the method is preferred.
  • other film forming methods such as sputtering may be used as long as the degree of oxidation can be controlled so as to stabilize Sn 2+ .
  • the substrate temperature is set to a temperature at which the substrate is not intentionally heated, a SnO sintered body or a green compact is used as a target on the substrate, and the oxygen partial pressure is controlled within an appropriate range to form a film.
  • the partial pressure of oxygen gas is controlled by introducing O 2 gas into the film formation chamber through a flow meter.
  • the oxygen partial pressure during film formation is 1 ⁇ 10 -2 If it is less than Pa, Sn 2+ exists, but metal Sn is contained in the film. If it is 1 ⁇ 10 ⁇ 2 Pa or more and less than 1 ⁇ Pa, the film is black and contains Sn 2+ in excess of 90%, indicating p-type conductivity. Hole mobility is 0.1cm 2 (Vs) -1 greater.
  • Vs 0.1cm 2
  • the source electrode, the drain electrode, and the gate insulating layer may be formed using a commonly used material and method.
  • As the gate insulating layer amorphous alumina (a-Al 2 O 3 ), Si 3 N 4 , or SiO 2 can be used, but since a-Al 2 O 3 does not have a large dielectric constant (about 9), It is preferable to use HfO 2 , Ta 2 O 5 , ZrO 2 or the like, which is a high-k material having a large dielectric constant, as the gate insulating layer.
  • heat treatment is preferably performed in a vacuum at a temperature of about 150 to 300 ° C. in order to reduce gate leakage current.
  • this invention is demonstrated based on an experiment example, a comparative experiment example, and an Example. [Experimental example]
  • a SnO thin film was deposited on a (001) YSZ single crystal substrate by the PLD method.
  • the (001) YSZ single crystal substrate was previously heat-treated at 1380 ° C. in the air.
  • a laser ablation film forming apparatus manufactured by ULVAC was used.
  • KrF excimer laser wavelength: 248 nm, pulse width: 8 ns was irradiated for ablation.
  • the distance between the substrate and the target was 4 cm.
  • Film formation was performed under the conditions of a substrate temperature of 575 ° C., an oxygen partial pressure of 4 ⁇ 10 ⁇ 2 Pa, a repetition frequency of 2 Hz, and an intensity of about 1.5 Jcm ⁇ 2 pulse ⁇ 1 , and the film formation rate was 5.6 nm / min.
  • the film thickness was 19 nm.
  • Phase identification by X-ray diffractometer, confirmation of growth orientation (2) Observation of valence band by hard X-ray photoelectron spectroscopy at beam line BL47XU at SPring8 (Hyogo), (3 ) Observation of thin film surface with atomic force microscope, (4) Measurement of light absorption spectrum in ultraviolet-near infrared region (wavelength range 200-2500nm), (5) Temperature range from room temperature to 80K by van der pauw method Hall effect measurement was performed.
  • FIG. 2 shows the result of X-ray diffraction. From the results of X-ray diffraction, it was found that when the oxygen partial pressure during film formation was 1 ⁇ 10 ⁇ 2 Pa (Comparative Experimental Example 2) or less, SnO phase was present but metal Sn was contained in the film. In addition, the SnO layer was epitaxially grown at an oxygen partial pressure of 4 ⁇ 10 ⁇ 2 Pa (experimental example). However, when the oxygen partial pressure was set to 1 ⁇ 10 ⁇ 1 Pa (Comparative Experimental Example 1) or higher, a polycrystalline SnO layer containing more than 5 atomic% of Sn 4+ began to grow, and a SnO 2 phase was generated.
  • the growth orientation of the SnO thin film formed and epitaxially grown at an oxygen partial pressure of 4 ⁇ 10 ⁇ 2 Pa in the experimental example was confirmed by a 4-axis X-ray diffractometer.
  • the SnO (001) plane is grown on the YSZ (100) plane, and the YSZ (1-10) plane and the SnO (100) plane are oriented in the same direction.
  • the half-value widths of the rocking curves of 002SnO diffraction and 200SnO diffraction were 0.46 ° and 0.7 °, respectively.
  • the SnO (100) plane shows the same 4-fold symmetry as the YSZ (1-10) plane (FIG.
  • FIG. 4 shows a valence band hard X-ray photoelectron spectrum of the SnO thin film when the binding energy is determined so that the 01s peak is 531 eV.
  • a new level was formed on the 02p orbit in the spectrum of SnO having the (Kr) 5s 2 electron configuration.
  • the Fermi level of the SnO thin film has a density of states of zero, that is, is at the top position of the valence band.
  • the Fermi level is at the bottom of the conduction band.
  • the measurement result of hard X-ray photoelectron spectroscopy shows that Sn5s level is present on the high energy side of the 02p orbital in SnO and a valence band is formed.
  • FIG. 5 shows an atomic force microscope image of the surface of the SnO thin film produced under the conditions shown in the experimental example.
  • a step having a height corresponding to the c-axis length of SnO of about 0.5 nm is observed on the thin film surface.
  • a uniform surface was observed in the 10 ⁇ m square image, and the maximum height difference was 3.3 nm.
  • the image observed at 1 ⁇ m square a fine island-like structure was observed, and when the cross-sectional height difference was further enlarged, a step with a height of about 0.5 nm was observed.
  • the observed height 0.5 nm of the step was in good agreement with the SnO (001) plane spacing of 0.4836 nm, indicating that the thin film had a step-and-terrace structure.
  • FIG. 6 shows the relationship between the light absorption coefficient ⁇ and the photon energy h ⁇ of the epitaxial SnO thin film.
  • the direct transition optical gap estimated from the ( ⁇ h ⁇ ) 2 -h ⁇ plot shown in FIG. 6B is about 2.7 eV, which has been reported (R. Sivaramasubramaniam et al., Phys. Stat. Sol., (A ) 136,215 (1993)) values.
  • the light absorption coefficient rises gently from around the photon energy of 1.6 eV, and it is considered that there is an indirect transition with a low transition probability.
  • the result of the first principle calculation indicates the existence of an indirect gap, and the indirect gap is determined to be about 0.3 eV, and the direct gap is determined to be about 2.2 eV (Non-patent Document 15).
  • First-principles calculations tend to estimate the band gap smaller than the experimental value, and SnO is considered an indirect semiconductor having an indirect gap.
  • the Seebeck effect measurement and the Hall effect measurement were performed.
  • hole mobility and hole concentration were calculated from the Hall effect measurement results in the temperature range of room temperature to 80K.
  • the hole mobility and hole concentration at room temperature were 2.4 cm 2 (Vs) ⁇ 1 and 2.5 ⁇ 10 17 cm -3 , respectively.
  • the hole concentration showed a thermally activated type that increased with temperature, and the activation energy of the hole concentration was 45.6 mV / K. Also, the hole mobility increased with temperature.
  • a top gate type TFT having the structure shown in FIG. 1 was produced.
  • an SnO layer having a thickness of 19 nm was formed on a (001) YSZ single crystal substrate as a TFT channel under the conditions of the experimental example.
  • a source electrode and a drain electrode composed of an Au (20 nmt) / Ni (8 nmt) layer were produced by photolithography and electron beam evaporation.
  • an amorphous alumina (a-Al 2 O 3 ) gate insulating layer was formed on the source electrode, the drain electrode, and the channel by a PLD method.
  • the output characteristics and transfer characteristics of the TFT heat-treated at 200 ° C. were analyzed in the air and in the dark. As shown in FIG. 9, it can be seen that it operates on the p-channel. Further, as shown by the output characteristics shown in FIG. 9A, a current modulation of 14 ⁇ A was obtained under a bias condition where the applied voltage between the gate and the source was 10V and the applied voltage between the drain and the source was 10V.
  • (I DS ) threshold voltage obtained from 1/2 -V G plot is about + 4.8 V, it can be seen that the TFT is a p-channel depletion type.
  • the field effect mobility of the TFT was 1.2 cm 2 (Vs) ⁇ 1 in the linear region, 0.7 cm 2 V ⁇ 1 s ⁇ 1 in the saturation region, and the on / off ratio was about 10 2 .
  • a YSZ Y stable zirconia
  • Organic LED (OLED) devices are easier to wire with p-channel TFT drive than with n-channel TFT drive. Further, a p-channel TFT is indispensable for constituting a CMOS circuit such as a peripheral circuit element of a flat panel display. The present invention is particularly useful for these devices and circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Disclosed are a p-channel thin-film transistor and process for producing the transistor, which can overcome problems in the past such that a CMOS circuit could not have been prepared with an oxide TFT due to the absence of p-type TFT and a simple AM-OLED drive circuit comprising TFT connected directly to an anode could not have been constructed. The p-channel thin-film transistor is characterized in that a thin film of stannous oxide (SnO) having a total content of Sn4+ and Sn0 (tin metal) of less than 10 atom% is deposited on a substrate of a thin-film transistor to form a channel layer.  In a gas phase method, SnO is used as a target, and a film is formed while regulating the degree of oxidation of Sn deposited on the substrate by utilizing the temperature of the substrate and the partial pressure of oxygen in the atmosphere.

Description

pチャネル薄膜トランジスタとその製造方法P-channel thin film transistor and manufacturing method thereof
 本発明は、酸化第一スズ(SnO)半導体を活性層としたpチャネル薄膜トランジスタとその製造方法に関する。 The present invention relates to a p-channel thin film transistor having a stannous oxide (SnO) semiconductor as an active layer and a method for manufacturing the same.
 アモルファスSi又は多結晶Siに代り、酸化物を活性層とする薄膜トランジスタ(TFT)については、近年、酸化亜鉛を活性層とするトランジスタの研究開発がなされている(非特許文献1~3、特許文献1~3)。酸化亜鉛を活性層とするTFTはワイドギャップ半導体を活性層としているため、可視光を透過する透明TFTが作成できる。従って、液晶ディスプレイのスイッチングトランジスタとして、現在、広く実用化されているシリコンTFTを、酸化亜鉛TFTで置き換えることにより、液晶素子の開口率を向上させることができると期待されている。しかし、酸化亜鉛は電子キャリア濃度が小さく、真性半導体に近い酸化亜鉛薄膜を得るためには、高価な単結晶基板の使用や高温成膜プロセスが必要となる(非特許文献4,5)。 As for thin film transistors (TFTs) using oxide as an active layer instead of amorphous Si or polycrystalline Si, research and development of transistors using zinc oxide as an active layer have been recently conducted (Non-Patent Documents 1 to 3, Patent Documents). 1-3). Since a TFT having zinc oxide as an active layer uses a wide gap semiconductor as an active layer, a transparent TFT that transmits visible light can be formed. Therefore, it is expected that the aperture ratio of the liquid crystal element can be improved by replacing a silicon TFT, which is currently widely used as a switching transistor of a liquid crystal display, with a zinc oxide TFT. However, zinc oxide has a low electron carrier concentration, and in order to obtain a zinc oxide thin film close to an intrinsic semiconductor, an expensive single crystal substrate or a high-temperature film forming process is required (Non-patent Documents 4 and 5).
 本発明者らは2004年にアモルファス酸化物半導体を活性層とするTFTを発表した(非特許文献6,7、特許文献4)。このTFTはアモルファスのインジウム・ガリウム・亜鉛からなる酸化物(a-IGZO)を活性層として用いており、基板加熱なしにアモルファス状態のチャネル層を作製することが出来る。 The present inventors announced a TFT having an amorphous oxide semiconductor as an active layer in 2004 (Non-patent Documents 6 and 7, Patent Document 4). This TFT uses an amorphous oxide (a-IGZO) made of indium, gallium, and zinc as an active layer, and an amorphous channel layer can be produced without heating the substrate.
 a-IGZOをチャネルとするTFTはチャネル中のキャリアの動き易さを表す物性値である電界効果移動度(μEF)が約10cm2(Vs)-1、オン・オフ(On/Off)比が約106という優れたトランジスタ特性を示す。また、チャネルがアモルファス状態であり結晶粒界を含まないことから、試作されたTFT間のトランジスタ特性のばらつきが極めて少ないことが報告されている(非特許文献8)。従って、a-IGZOをチャネルとすれば、大面積でも特性が均一なTFTが作製できるので、大面積ディスプレイのスイッチングTFTとしての応用を目指した開発が精力的に進められている。 TFT with a-IGZO as a channel has a field effect mobility (μ EF ) of about 10 cm 2 (Vs) −1 , which is a physical property value indicating the mobility of carriers in the channel, and an on / off ratio. Shows excellent transistor characteristics of about 10 6 . In addition, since the channel is in an amorphous state and does not include a crystal grain boundary, it has been reported that there is very little variation in transistor characteristics between the fabricated TFTs (Non-patent Document 8). Therefore, if a-IGZO is used as a channel, a TFT having uniform characteristics even in a large area can be manufactured. Therefore, development aiming at application as a switching TFT of a large area display has been vigorously advanced.
 以上の様に、2000年以降、酸化物半導体をチャネルとするトランジスタが活発に研究され、実用レベルのn型チャンネルTFTが作成されてきたが、pチャネルで動作するTFTは作成されていない。その理由は金属酸化物では、伝導帯を構成する電子軌道は金属のs軌道であり、電子移動度の大きな化合物が多く存在するのに対して、価電子帯は酸素の2p軌道で構成されているために、価電子帯に存在する正孔の局在性が強く、正孔注入が難しく、また、たとえ注入されても、正孔移動度が小さいためと考えられる。 As described above, since 2000, transistors using an oxide semiconductor as a channel have been actively researched and an n-type TFT having a practical level has been created, but a TFT operating in a p-channel has not been created. The reason for this is that in metal oxides, the electron orbits constituting the conduction band are metal s orbitals, and many compounds with high electron mobility exist, whereas the valence band is constituted by oxygen 2p orbitals. Therefore, it is considered that the presence of holes in the valence band is strong, hole injection is difficult, and the hole mobility is low even if injected.
 pチャンネルTFTの必要性は、次の二つがある。すなわち、第一に、CMOS回路を形成するためには、nチャネルTFT及びpチャネルTFTの両者が不可欠である。CMOS回路用pチャネルTFT用材料では、正孔移動度が、0.1cm/V・秒以上あればよい。第二に、有機発光ダイオード(OLED)の駆動には、OLEDの正電極(カソード)とTFTのアノードが結合できるpチャネルトランジスタが、nチャネルトランジスタに比較して、優位性がある。この用途では、OLEDは、電流駆動デバイスであるために、pチャネル材料のホール移動度が、0.5cm/V・秒以上であることが必要となる。 There are two necessity for the p-channel TFT as follows. That is, first, in order to form a CMOS circuit, both an n-channel TFT and a p-channel TFT are indispensable. In the material for p-channel TFTs for CMOS circuits, the hole mobility may be 0.1 cm 2 / V · second or more. Second, for driving an organic light emitting diode (OLED), a p-channel transistor that can couple the positive electrode (cathode) of the OLED and the anode of the TFT has an advantage over the n-channel transistor. In this application, since the OLED is a current-driven device, the hole mobility of the p-channel material needs to be 0.5 cm 2 / V · second or more.
 本発明者らは、pチャネルのトランジスタに不可欠なp型伝導性酸化物化合物に関して、鋭意研究開発を行い、価電子帯を構成する酸素の2p軌道に3d電子軌道を混入させるという開発指針に沿って、これまでに、多くの新規のp型導電性酸化物を発見、報告してきた(非特許文献9~12)。   The present inventors have conducted intensive research and development on p-type conductive oxide compounds indispensable for p-channel transistors, and in line with the development guidelines for mixing 3d electron orbitals into 2p orbitals of oxygen constituting the valence band. Thus far, many novel p-type conductive oxides have been discovered and reported (Non-Patent Documents 9 to 12). *
 さらに、発明者らは、s軌道から価電子帯が構成されるオキシカルコゲナイドは、p型伝導性を示すことを報告してきた(非特許文献13)。実際に、価電子帯トップが5s軌道から構成される酸化第一スズ(SnO)は、p型半導体になると報告されている(非特許文献14)。また、SnOの欠陥生成エネルギーについて報告されている(非特許文献15)。 Furthermore, the inventors have reported that oxychalcogenides whose valence band is composed of s orbitals exhibit p-type conductivity (Non-patent Document 13). In fact, it has been reported that stannous oxide (SnO) whose valence band top is composed of 5s orbitals becomes a p-type semiconductor (Non-Patent Document 14). In addition, the defect generation energy of SnO has been reported (Non-patent Document 15).
 SnOの薄膜成長に関しては、NaCl基板又はサファイヤ基板を用いたエピタキシャル薄膜成長がV.Krasevecらによって報告されている(非特許文献16)。また、前記非特許文献14で、X.Q.Panらは、焼成した酸化第二スズ(SnO2)をターゲットとして用い、電子線蒸着法で、SnO薄膜の成長を行い、低温成長した場合はアモルファスであるが、約350℃の基板温度ではPbO構造のα-SnO相が得られ、600℃では、エピタキシャルα-SnO薄膜が得られると報告している。また、SnF2が溶解した溶液を基材の表面に吹き付けて多結晶のSnO膜を製造する方法が提案されている(特許文献5)。 Regarding SnO thin film growth, epitaxial thin film growth using a NaCl substrate or a sapphire substrate has been reported by V. Krasevec et al. (Non-patent Document 16). Further, in Non-Patent Document 14, XQPan et al. Use sintered stannic oxide (SnO 2 ) as a target, grow an SnO thin film by an electron beam evaporation method, and are amorphous when grown at a low temperature. It is reported that an α-SnO phase having a PbO structure is obtained at a substrate temperature of about 350 ° C., and an epitaxial α-SnO thin film is obtained at 600 ° C. In addition, a method of manufacturing a polycrystalline SnO film by spraying a solution in which SnF 2 is dissolved on the surface of a substrate has been proposed (Patent Document 5).
 しかし、これらの文献でSnOと記載されている薄膜のホール移動度、キャリア濃度などの半導体電気特性は明らかにされておらず、さらに、これらの薄膜の伝導のタイプ(n又はp)も示されていない。また、SnO薄膜をチャネルとするTFTが報告されている(非特許文献17)。C-W.Ouらは、酸化第二スズ(SnO2)をターゲットとして堆積後アニーリングしたSnO薄膜をチャネルとするTFTがp型TFTとして動作することを報告している(非特許文献18)。しかし、得られたTFTは、電界移動度は、0.1cm/V・秒未満と小さい。 However, semiconductor electrical properties such as hole mobility and carrier concentration of thin films described as SnO in these documents have not been clarified, and the conductivity type (n or p) of these thin films is also shown. Not. In addition, a TFT using a SnO 2 thin film as a channel has been reported (Non-patent Document 17). CW. Ou et al. Have reported that a TFT using a SnO 2 thin film annealed after deposition with stannic oxide (SnO 2 ) as a target operates as a p-type TFT (Non-patent Document 18). However, the obtained TFT has a small electric field mobility of less than 0.1 cm 2 / V · sec.
特開2000-150900号公報JP 2000-150900 A 特開2002-076356号公報Japanese Patent Laid-Open No. 2002-076356 特開2002-319682号公報JP 2002-319682 A WO2005/088726WO2005 / 088726 特開2002-235177号公報JP 2002-235177 A
 2000年以降、酸化物半導体をチャネルとする薄膜トランジスタ(TFT)は活発に研究されているが、その全てはnチャネルTFTであり、pチャネルで動作する、すなわち正孔をキャリアとして電気伝導する酸化物TFTは実現していない。その理由は金属酸化物の価電子帯は、主として、酸素の2p軌道で構成されており強く局在しているために、p型伝導性を実現しにくい、また、たとえp型伝導性を実現しても、正孔キャリアの電界効果移動度が小さく、トランジスタ動作しないためである。 Since 2000, thin film transistors (TFTs) using oxide semiconductors as channels have been actively researched, but all of them are n-channel TFTs that operate in p-channels, that is, oxides that conduct electricity using holes as carriers. TFT is not realized. The reason is that the valence band of the metal oxide is mainly composed of oxygen 2p orbitals and is strongly localized, so that p-type conductivity is difficult to realize, and even p-type conductivity is realized. Even so, the field effect mobility of hole carriers is small, and the transistor does not operate.
 p型TFTが存在しないため、これまで、酸化物TFTでは、CMOS回路を作成することができなかった。また、陽極に直接TFTを接続させる単純なAM-OLEDの駆動回路を構成できなかった。C-W.Ouら(非特許文献18)は、酸化第二スズ(SnO2)薄膜をチャネルとするp型TFTを報告しているが、その電界効果移動度は0.011cm2(Vs)-1と非常に小さい値であり、上記の様な実用回路には用いることができない。CMOS回路用には、正孔電界効果移動度は0.1cm2(Vs)-1以上であることが必要であり、そのためには、正孔移動度が0.1cm2(Vs)-1以上である薄膜を育成することが不可欠である。 Since there is no p-type TFT, a CMOS circuit could not be formed with an oxide TFT until now. In addition, a simple AM-OLED drive circuit in which the TFT is directly connected to the anode could not be constructed. CW.Ou et al. (Non-patent Document 18) have reported a p-type TFT having a stannic oxide (SnO 2 ) thin film as a channel, and its field-effect mobility is 0.011 cm 2 (Vs) −1. This is a very small value and cannot be used in the practical circuit as described above. For CMOS circuits, the hole field-effect mobility needs to be 0.1 cm 2 (Vs) −1 or more, and for that purpose, the hole mobility is 0.1 cm 2 (Vs) −1 or more. It is essential to grow a thin film.
 酸化スズには、SnOとSnO2の化合物があるが、スズの安定な価数は4価(Sn4+)であり、SnO2の状態が一般的である。SnO2の組成では、スズは4価陽イオンとして存在し、Sn4+の電子配置は(Kr)5s05p0であり、空の5s5p軌道が伝導帯を形成し、n型伝導性を示す。5s軌道を価電子帯として利用するためには、5s軌道を電子で満たす必要があり、5s軌道を全部電子で満たすとSn2+となる。すなわち、価電子帯がs軌道から構成されるp型伝導体を実現するためには、SnO化合物薄膜を作成することが必要である。なお、SnOの結晶構造は空間群P4/nmmであるが、SnOの結晶構造は、空間群P42/mnmであり、異なる結晶構造を有する。 Tin oxide includes SnO and SnO 2 compounds, but the stable valence of tin is tetravalent (Sn 4+ ), and the state of SnO 2 is common. In the composition of SnO 2 , tin exists as a tetravalent cation, the electron configuration of Sn 4+ is (Kr) 5s 0 5p 0 , and an empty 5s5p orbital forms a conduction band and exhibits n-type conductivity. In order to use the 5s orbital as a valence band, it is necessary to fill the 5s orbital with electrons, and when all the 5s orbitals are filled with electrons, Sn 2+ is obtained. That is, in order to realize a p-type conductor whose valence band is composed of s orbitals, it is necessary to create a SnO compound thin film. The crystal structure of SnO is the space group P4 / nmm, but the crystal structure of SnO 2 is the space group P42 / mnm and has a different crystal structure.
 酸化第一スズ(SnO)中の2価のスズイオン(Sn2+)は、酸化物として安定な4価と、金属として安定な0価(Sn0=錫金属)の中間にあるために、酸素分圧が大きい強い酸化雰囲気でも、また、真空中で高温のような強い還元雰囲気でも、価数を2価に保つことが困難である。すなわち、酸素分圧が小さいときは、酸化度が弱く、Sn0が生じやすい。逆に、酸素分圧が大きいときは、酸化度が強く、Sn4+が生成する。従って、成膜室内雰囲気の酸素分圧の制御可能な、すなわち、Snの酸化度合いの制御が可能なパルスレーザ堆積法(PLD法)やスパッタ法を用いることにより、Sn4+及びSn(錫金属)の含有量が、合計で10原子%未満のSnO薄膜を作製することが好ましい。なお、Snの酸化度合いの制御が可能な成膜法であれば、成膜方法はPLD法やスパッタ法に限られるものではない。 The divalent tin ion (Sn 2+ ) in stannous oxide (SnO) is in the middle of the tetravalent metal oxide and the zero metal metal (Sn 0 = tin metal). Even in a strong oxidizing atmosphere with a large partial pressure or in a strong reducing atmosphere such as a high temperature in a vacuum, it is difficult to keep the valence to be divalent. That is, when the oxygen partial pressure is small, the degree of oxidation is weak and Sn 0 tends to occur. Conversely, when the oxygen partial pressure is large, the degree of oxidation is strong and Sn 4+ is generated. Therefore, Sn 4+ and Sn 0 (tin metal) can be controlled by using a pulsed laser deposition method (PLD method) or a sputtering method that can control the oxygen partial pressure in the film forming chamber atmosphere, that is, the degree of oxidation of Sn. It is preferable to produce a SnO thin film having a total content of less than 10 atomic%. Note that the film formation method is not limited to the PLD method or the sputtering method as long as the film formation method can control the degree of oxidation of Sn.
 本発明者らは、後述の実験例1に示す方法で作成したSnO薄膜の硬X線光電子スペクトルを測定し、価電子帯として、02p準位の上にSn5s準位が存在することを確認した。すなわち、価電子帯トップは、5s軌道から構成されていた。また、SnO薄膜のゼーベック(Seebeck)係数及びホール(Hall)効果の測定から、該薄膜がp型伝導性を示すことを確認した。ホール移動度は、2.4cm2V-1s-1、正孔濃度は、2.5×1017cm-3であった。得られたSnO薄膜の正孔移動度の大きさは、アモルファスシリコンより優れており、p型ZnOと同程度である。 The present inventors measured the hard X-ray photoelectron spectrum of the SnO thin film prepared by the method shown in Experimental Example 1 described later, and confirmed that the Sn5s level was present above the 02p level as the valence band. . That is, the valence band top was composed of 5s orbitals. Further, from the measurement of the Seebeck coefficient and the Hall effect of the SnO thin film, it was confirmed that the thin film showed p-type conductivity. The hole mobility was 2.4 cm 2 V −1 s −1 and the hole concentration was 2.5 × 10 17 cm -3 . The magnitude of hole mobility of the obtained SnO thin film is superior to that of amorphous silicon and is comparable to that of p-type ZnO.
 次に、本発明者らは、後述の実施例1に示す方法でSnO薄膜を活性層、アモルファスアルミナ薄膜を絶縁層とするトップゲート構造のトランジスタ(図1)を作製した。該トランジスタは、ゲート-ソース間の印加電圧が10V、ドレイン-ソース間の印加電圧が10Vの条件下で14μAの電流変調が得られた。電界効果移動度は線形領域で1.0cm2V-1s-1、飽和領域で0.7cm2V-1s-1、オン・オフ(On/Off)比は102であった。該トランジスタは、正孔電界効果移動度が0.5cm2V-1s-1以上であり、CMOS回路用のpチャネルTFT及びOLED駆動用のTFTとして用いることができる。 Next, the present inventors fabricated a top gate transistor (FIG. 1) having an SnO thin film as an active layer and an amorphous alumina thin film as an insulating layer by the method shown in Example 1 described later. In the transistor, a current modulation of 14 μA was obtained under the condition that the applied voltage between the gate and the source was 10V and the applied voltage between the drain and the source was 10V. The field-effect mobility 1.0 cm 2 V -1 s -1 in the linear region, 0.7 cm 2 V -1 s -1 in the saturation region, the ON-OFF (On / Off) ratio was 10 2. The transistor has a hole field effect mobility of 0.5 cm 2 V −1 s −1 or more, and can be used as a p-channel TFT for a CMOS circuit and a TFT for driving an OLED.
 すなわち、本発明は、(1)酸化第一スズ(SnO)薄膜を薄膜トランジスタの基板上に堆積し、チャネル層としたことを特徴とするpチャネル薄膜トランジスタ、である。また、本発明は、(2)前記酸化第一スズ薄膜中のSn4+及びSn(錫金属)の含有量が、合計で10原子%未満であることを特徴とする上記(1)のpチャネル薄膜トランジスタ、である。また、本発明は、(3)基板が(001)YSZ単結晶基板であり、SnO薄膜がエピタキシャル膜であることを特徴とする上記(1)のpチャネル薄膜トランジスタ、である。また、本発明は、(4)基板がガラス又はプラスチックであり、SnO薄膜がアモルファス膜であることを特徴とする上記(1)のpチャネル薄膜トランジスタ、である。また、本発明は、(5)正孔移動度が0.1cm/V・秒以上であることを特徴とする上記(1)のpチャネル薄膜トランジスタ、である。
That is, the present invention is (1) a p-channel thin film transistor characterized in that a stannous oxide (SnO) thin film is deposited on a thin film transistor substrate to form a channel layer. In addition, the present invention provides: (2) the content of Sn 4+ and Sn 0 (tin metal) in the stannous oxide thin film is less than 10 atomic% in total; A channel thin film transistor. The present invention is also the p-channel thin film transistor according to (1) above, wherein (3) the substrate is a (001) YSZ single crystal substrate and the SnO thin film is an epitaxial film. The present invention is (4) the p-channel thin film transistor according to (1) above, wherein the substrate is made of glass or plastic, and the SnO thin film is an amorphous film. The present invention is also (5) the p-channel thin film transistor according to (1) above, wherein the hole mobility is 0.1 cm 2 / V · sec or more.
 さらに、本発明は、(6)気相法において、SnOをターゲットとして用いて、基板上に堆積するSnの酸化度合いを基板温度及び雰囲気酸素分圧により制御し、Sn2+イオンの含有量が90原子%以上のSnO薄膜を成膜することによりチャネル層を形成することを特徴とする上記(1)のpチャネル薄膜トランジスタの製造方法、である。 Further, in the present invention, (6) in the vapor phase method, SnO is used as a target, the degree of oxidation of Sn deposited on the substrate is controlled by the substrate temperature and the atmospheric oxygen partial pressure, and the Sn 2+ ion content is 90%. A method for producing a p-channel thin film transistor according to (1) above, wherein a channel layer is formed by depositing a SnO thin film of at least atomic%.
 また、本発明は、(7)上記(6)の方法において、気相法がパルスレーザ堆積法(PLD法)であり、 基板として(001)YSZ単結晶基板を用い、基板温度550℃以上、590℃以下としてエピタキシャル膜を堆積することを特徴とする上記(3)の構造のpチャネル薄膜トランジスタの製造方法、である。 In the method of (7), the gas phase method is a pulsed laser deposition method (PLD method), and a (001) YSZ single crystal substrate is used as the substrate, and the substrate temperature is 550 ° C. or higher. An epitaxial film is deposited at a temperature of 590 ° C. or lower, which is a method for manufacturing a p-channel thin film transistor having the structure of (3) above.
 また、本発明は、(8)上記(6)の方法において、気相法がパルスレーザ堆積法(PLD法)であり、 基板としてガラス又はプラスチック基板を用い、基板温度を意図的に加熱しない温度としてアモルファス膜を堆積することを特徴とする上記(4)の構造のpチャネル薄膜トランジスタの製造方法、である。 In the method of (6), the gas phase method is a pulsed laser deposition method (PLD method), and a glass or plastic substrate is used as a soot substrate, and the substrate temperature is not intentionally heated. A method for producing a p-channel thin film transistor having the structure of (4) above, characterized in that an amorphous film is deposited.
 本発明は、CMOS回路用など実用回路に用いることができるpチャネルで動作する正孔移動度が0.1cm2(Vs)-1以上の酸化物TFTを提供できるという顕著な効果を奏する。 The present invention has a remarkable effect that it can provide an oxide TFT having a hole mobility of 0.1 cm 2 (Vs) −1 or more which can be used in a practical circuit such as a CMOS circuit and operates in a p-channel.
本発明のSnO薄膜をチャネルとするTFTの構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of TFT which makes the SnO thin film of this invention a channel. 酸素分圧による酸化スズ(SnO、SnO)薄膜のX線回折パターンである((a)は、2θ/θスキャン、(b)は、2θスキャン、θ=0.5°)。Tin oxide (SnO, SnO 2) with oxygen partial pressure is an X-ray diffraction pattern of the film ((a) is, 2 [Theta] / theta scan, (b) is, 2 [Theta] scan, θ = 0.5 °). エピタキシャルSnO薄膜の4軸X線回折パターンである((a)は、YSZ、MgO、STO、サファイヤ単結晶基板上に成膜したSnO薄膜のOut-of-planeXRDパターン、(b) は、YSZ単結晶基板上に成膜したSnO薄膜のOut-of-plane XRDパターン及び002回折のロッキングカーブ、(c) は、YSZ単結晶基板上に成膜したSnO薄膜のIn-planeXRDパターン及び200回折のロッキングカーブ、 (d)は、002回折のロッキングカーブ)。4A is a four-axis X-ray diffraction pattern of an epitaxial SnO thin film. Out-of-plane XRD pattern and 002 diffraction rocking curve of SnO thin film formed on crystal substrate, (c) shows in-plane XRD pattern and 200 diffraction rocking of SnO thin film formed on YSZ single crystal substrate Curve, (d) is 002 diffraction rocking curve). 酸化スズ(SnO、SnO)の価電子帯硬X線光電子スペクトルである。It is a valence band hard X-ray photoelectron spectrum of tin oxide (SnO, SnO 2 ). SnOエピタキシャル薄膜表面の図面代用原子間力顕微鏡像((a)は、10μm角、(b)は 、1μm角、(c)は、0.5μm角)である。The drawing substitute atomic force microscope image of the SnO epitaxial thin film surface ((a) is 10 μm square, (b) is, 1 μm square, (c) is 0.5 μm square). SnOエピタキシャル薄膜の光吸収スペクトル((a) は、α-hνプロット、(b) は、(αhν)2-hνプロット、(c)は、(αhν)1/2-hνプロット、(d) は、α1/2-hνプロット)。Light absorption spectrum of SnO epitaxial thin film ((a) is α-hν plot, (b) is (αhν) 2 -hν plot, (c) is (αhν) 1/2 -hν plot, (d) is , α 1/2 -hν plot). SnOエピタキシャル薄膜の電気特性のグラフである((a)は、 熱起電力測定、(b)は、ホール効果測定)。It is a graph of the electrical property of a SnO epitaxial thin film ((a) is an electromotive force measurement, (b) is a Hall effect measurement). 熱処理前後でのエピタキシャルSnO薄膜をチャネルとするTFT特性のグラフである( (a)、(c)、 (e) は、出力特性、 (b)、(d)、(f)は、伝達特性)。It is a graph of TFT characteristics using an epitaxial SnO thin film as a channel before and after heat treatment ((a), (c), (e) are output characteristics, (b), (d), (f) are transfer characteristics) . エピタキシャルSnO薄膜をチャネルとするTFTの動作特性のグラフである((a)は、出力特性、 (b)は、伝達特性、(c)は、|IDS|1/2-VGSプロット、(d)は、線形領域での電界効果移動度)。It is a graph of an operating characteristic of a TFT having an epitaxial SnO thin film as a channel ((a) is an output characteristic, (b) is a transfer characteristic, (c) is an | I DS | 1/2 −V GS plot, ( d) Field effect mobility in the linear region).
 図1は、本発明のSnOエピタキシャル薄膜をチャネルとするTFTの構造の一例であり、基板1上に成膜したチャネル層2、チャネル層の両側にゲート絶縁層3を挟んで形成したソース電極4、ドレイン電極5、ゲート絶縁層3上に形成したゲート電極6からなるトップゲート構造のトランジスタの模式図を示している。本発明は、チャネル層の材料に特徴を有するものであり、本発明のTFTはトップゲート構造に限らず、種々の構造を採用し得る。薄膜トランジスタのチャネルとするSnO薄膜の膜厚は、10nm以上60nm以下、特に15nm以上50nm以下が好ましい。10nm未満では、オン電流が減少し、また、60nm超では、オフ電流が大きくなり、好ましくない。 FIG. 1 shows an example of the structure of a TFT having a SnO epitaxial thin film of the present invention as a channel, a channel layer 2 formed on a substrate 1, and a source electrode 4 formed with a gate insulating layer 3 sandwiched between both sides of the channel layer. FIG. 2 is a schematic diagram of a top-gate transistor including a drain electrode 5 and a gate electrode 6 formed on the gate insulating layer 3. The present invention is characterized by the material of the channel layer. The TFT of the present invention is not limited to the top gate structure, and various structures can be adopted. The film thickness of the SnO thin film used as the channel of the thin film transistor is preferably 10 nm to 60 nm, particularly preferably 15 nm to 50 nm. If it is less than 10 nm, the on-current decreases, and if it exceeds 60 nm, the off-current increases, which is not preferable.
 本発明の薄膜トランジスタのチャネル層2は、真空容器中で、好ましくは、(001)YSZ単結晶基板上に、SnOをターゲットとして用いて、SnOエピタキシャル薄膜をPLD法やスパッタ法などで堆積させる成膜工程により形成できる。SnO薄膜中に、結晶粒界が存在しないアモルファス状態でもよい。この場合には、基板はガラスやプラスチックを用いることができる。 The channel layer 2 of the thin film transistor of the present invention is formed by depositing an SnO epitaxial thin film on a (001) YSZ single crystal substrate using SnO as a target by a PLD method or a sputtering method in a vacuum vessel. It can be formed by a process. An amorphous state in which no crystal grain boundary exists in the SnO thin film may be used. In this case, glass or plastic can be used for the substrate.
 このSnOエピタキシャル薄膜の成膜工程では、Sn2+を安定化させ、純度の高い酸化第一スズを形成するために、基板温度を550℃から590℃以下の範囲とし、成膜室内雰囲気の酸素分圧を適正な範囲に設定する、すなわちSnの酸化度合いを純度の高い酸化第一スズを形成するようにコントロールする必要がある。なお、酸素分圧とは、流量制御装置により成膜室内に意図的に導入された酸素ガスの分圧のことを意味する。酸素分圧が小さ過ぎるときは、金属錫が析出し易く、また、酸素分圧が大きすぎるときは、Sn4+が析出し易い。金属錫及びSn4+がそれぞれ5原子%以上析出すると、SnOエピタキシャル薄膜の結晶構造が変化し、p型伝導性を示さなくなる。したがって、SnO薄膜中のSn4+及びSn(錫金属)の含有量が、合計で10原子%未満とする必要がある。p型伝導性が得られる最も適切な酸素分圧の範囲は予め実験的に求めることができるが、好ましい範囲は1×10-2Pa超、1×10-1Pa未満である。   In this SnO epitaxial thin film formation process, in order to stabilize Sn 2+ and form high-purity stannous oxide, the substrate temperature is set to a range of 550 ° C. to 590 ° C. It is necessary to set the pressure within an appropriate range, that is, to control the oxidation degree of Sn so as to form stannous oxide having a high purity. Note that the oxygen partial pressure means a partial pressure of oxygen gas intentionally introduced into the film formation chamber by the flow control device. When the oxygen partial pressure is too low, metallic tin is likely to precipitate, and when the oxygen partial pressure is too high, Sn 4+ is likely to precipitate. When metal tin and Sn 4+ are each deposited in an amount of 5 atomic% or more, the crystal structure of the SnO epitaxial thin film changes, and p-type conductivity is not exhibited. Therefore, the total content of Sn 4+ and Sn 0 (tin metal) in the SnO thin film needs to be less than 10 atomic%. Although the most suitable range of oxygen partial pressure at which p-type conductivity can be obtained can be experimentally determined in advance, the preferred range is more than 1 × 10 −2 Pa and less than 1 × 10 −1 Pa.
 SnOエピタキシャル薄膜の成膜方法としては、基板に対向して配置したターゲットに高エネルギー密度のレーザー光をパルス状に照射し、ターゲット表面から原子、分子をプラズマ化して対向する基板上に蒸着させるPLD
法が好ましい。しかし、Sn2+を安定化するように酸化の度合いを制御できれば、スパッタ法など他の成膜法でもよい。
As a method for forming a SnO epitaxial thin film, a PLD in which a target disposed opposite to a substrate is irradiated with a pulse of high energy density laser light, and atoms and molecules are converted into plasma from the target surface and deposited on the opposite substrate.
The method is preferred. However, if control the degree of oxidation to stabilize the Sn 2+, it may be other film formation method such as sputtering.
 PLD法の好ましい条件としては、550℃以上590℃以下に保持した(001)YSZ単結晶基板上にSnOの焼結体や圧粉体などをターゲットとして用い、酸素分圧を適切な範囲に制御して成膜する。酸素ガスの分圧の制御は、流量計を通して、Oガスを成膜室内に導入して行う。 As a preferable condition of the PLD method, an oxygen partial pressure is controlled within an appropriate range by using a SnO sintered body or a green compact as a target on a (001) YSZ single crystal substrate maintained at 550 ° C. or more and 590 ° C. or less. To form a film. The partial pressure of oxygen gas is controlled by introducing O 2 gas into the film formation chamber through a flow meter.
 基板温度が550℃未満では、SnO相が得られず、基板温度が590℃超では、SnO相は得られるものの、Sn4+が析出しはじめ、基板温度700℃の場合には成長速度が0.1nmt/min以下になりSnO膜が成長しなくなる。これはSnOの融点が700~ 950℃であり、700℃以上ではSnOが分解することが理由であると考えられる。成膜時の酸素分圧が1×10-2
Pa以下ではSnO相は存在するものの、膜内に金属Snが含まれる。また、1×10-1 Pa以上の酸素分圧ではSn4+を多く含むSnO層が成長する。
If the substrate temperature is less than 550 ° C., an SnO phase cannot be obtained. If the substrate temperature exceeds 590 ° C., an SnO phase is obtained, but Sn 4+ starts to precipitate, and when the substrate temperature is 700 ° C., the growth rate is 0. The SnO film does not grow at 1 nmt / min or less. This is considered to be because SnO has a melting point of 700 to 950 ° C., and SnO decomposes at 700 ° C. or higher. The oxygen partial pressure during film formation is 1 × 10 -2
Although the SnO phase exists below Pa, metal Sn is contained in the film. In addition, an SnO layer containing a large amount of Sn 4+ grows at an oxygen partial pressure of 1 × 10 −1 Pa or higher.
 SnOエピタキシャル薄膜を成膜するには、基板は、これまで知られている成膜基板の中では(001)YSZ単結晶基板が最も好ましい。(001)MgO、(001)STO、(1-102)Al23等の単結晶基板ではエピタキシャル膜は得られない。基板は、成膜工程に先立ち、高温における熱処理、酸によるエッチング処理などにより表面清浄化処理をしておくことが好ましい。この方法により、YSZ(100)面上にSnO(001)面が成長し、SnO(100)面はYSZ(1-10)面と同様の4回対称性を示し、SnO膜がYSZ単結晶基板上にヘテロエピタキシャル成長したことが分かる。面内では、YSZ(1-10)面とSnO(100)面が平行になるように成長する。 In order to form a SnO epitaxial thin film, the (001) YSZ single crystal substrate is the most preferable among the known deposition substrates. An epitaxial film cannot be obtained with a single crystal substrate such as (001) MgO, (001) STO, (1-102) Al 2 O 3 or the like. Prior to the film formation step, the substrate is preferably subjected to a surface cleaning treatment by a heat treatment at a high temperature, an etching treatment with an acid, or the like. By this method, a SnO (001) plane grows on the YSZ (100) plane, the SnO (100) plane shows the same 4-fold symmetry as the YSZ (1-10) plane, and the SnO film is a YSZ single crystal substrate. It can be seen that heteroepitaxial growth has occurred. In the plane, the YSZ (1-10) plane and the SnO (100) plane grow in parallel.
 以上説明したSnO薄膜の成長方法により、Sn2+を90原子%以上含む、空間群P4/nmmに属する結晶構造を有するSnO薄膜を得ることができる。得られた薄膜は、p型伝導性を示し、正孔移動度が0.1cm2(Vs)-1以上、より好ましくは、0.5cm2(Vs)-1以上、さらには、2.0cm2(Vs)-1以上のSnO薄膜チャネルを形成することができる。 By the SnO thin film growth method described above, it is possible to obtain a SnO thin film having a crystal structure belonging to the space group P4 / nmm, containing Sn 2+ of 90 atomic% or more. The obtained thin film exhibits p-type conductivity and has a hole mobility of 0.1 cm 2 (Vs) −1 or more, more preferably 0.5 cm 2 (Vs) −1 or more, and further 2.0 cm. An SnO thin film channel of 2 (Vs) −1 or more can be formed.
 SnOアモルファス薄膜を成膜するには、基板は、ガラス、プラスチックなどを使用することができるが、価格、化学的安定性、表面平坦性の観点から、ガラスが最も好ましい。基板は、成膜工程に先立ち、高温における熱処理、酸によるエッチング処理などにより表面清浄化処理をしておくことが好ましい。SnOアモルファスの成膜方法としては、基板に対向して配置したターゲットに高エネルギー密度のレーザー光をパルス状に照射し、ターゲット表面から原子、分子をプラズマ化して対向する基板上に蒸着させるPLD
法が好ましい。しかし、Sn2+を安定化するように酸化の度合いを制御できれば、スパッタ法など他の成膜法でもよい。
In order to form a SnO amorphous thin film, glass, plastic, or the like can be used as the substrate, but glass is most preferable from the viewpoint of price, chemical stability, and surface flatness. Prior to the film formation step, the substrate is preferably subjected to a surface cleaning treatment by a heat treatment at a high temperature, an etching treatment with an acid, or the like. As a method for forming an SnO amorphous film, a PLD in which a target disposed opposite to a substrate is irradiated with a pulse of high energy density laser light, and atoms and molecules are converted into plasma from the target surface and deposited on the opposite substrate.
The method is preferred. However, other film forming methods such as sputtering may be used as long as the degree of oxidation can be controlled so as to stabilize Sn 2+ .
 PLD法の好ましい条件としては、基板温度を意図的に加熱しない温度とし、基板上にSnOの焼結体や圧粉体などをターゲットとして用い、酸素分圧を適切な範囲に制御して成膜する。酸素ガスの分圧の制御は、流量計を通して、Oガスを成膜室内に導入して行う。成膜時の酸素分圧が1×10-2
Pa未満ではSn2+存在するものの、膜内に金属Snが含まれる。1×10-2 Pa以上、1×Pa未満では、膜は黒色を呈し、Sn2+が90%超含まれており、p型伝導性を示す。正孔移動度は、0.1cm2(Vs)-1超である。また、1Pa以上の酸素分圧ではSn4+を多く含むSnO膜が成長し、n型伝導を示す。
As a preferable condition of the PLD method, the substrate temperature is set to a temperature at which the substrate is not intentionally heated, a SnO sintered body or a green compact is used as a target on the substrate, and the oxygen partial pressure is controlled within an appropriate range to form a film. To do. The partial pressure of oxygen gas is controlled by introducing O 2 gas into the film formation chamber through a flow meter. The oxygen partial pressure during film formation is 1 × 10 -2
If it is less than Pa, Sn 2+ exists, but metal Sn is contained in the film. If it is 1 × 10 −2 Pa or more and less than 1 × Pa, the film is black and contains Sn 2+ in excess of 90%, indicating p-type conductivity. Hole mobility is 0.1cm 2 (Vs) -1 greater. In addition, when the oxygen partial pressure is 1 Pa or more, a SnO film containing a large amount of Sn 4+ grows and exhibits n-type conduction.
 ソース電極、ドレイン電極、ゲート絶縁層の形成は通常採用されている材料、方法を用いればよい。ゲート絶縁層としては、アモルファスアルミナ(a-Al),Si34,SiO2を用いることができるが、a-Alは誘電率(約9)が大きくないため、より誘電率の大きいHigh-k材料であるHfO2,Ta25,ZrO2などをゲート絶縁層として用いることが好ましい。ソース電極、ドレイン電極及びゲート電極を形成した後に、ゲートリーク電流を低減するために真空中で、150~300℃程度の温度で熱処理を行うことが好ましい。さらに詳しく、実験例、比較実験例、実施例に基づいて本発明を説明する。
[実験例]
The source electrode, the drain electrode, and the gate insulating layer may be formed using a commonly used material and method. As the gate insulating layer, amorphous alumina (a-Al 2 O 3 ), Si 3 N 4 , or SiO 2 can be used, but since a-Al 2 O 3 does not have a large dielectric constant (about 9), It is preferable to use HfO 2 , Ta 2 O 5 , ZrO 2 or the like, which is a high-k material having a large dielectric constant, as the gate insulating layer. After forming the source electrode, the drain electrode, and the gate electrode, heat treatment is preferably performed in a vacuum at a temperature of about 150 to 300 ° C. in order to reduce gate leakage current. In more detail, this invention is demonstrated based on an experiment example, a comparative experiment example, and an Example.
[Experimental example]
 (001)YSZ単結晶基板上にPLD法でSnO薄膜を堆積した。(001)YSZ単結晶基板は、予め大気中にて1380℃で加熱処理を行なった。PLD装置としてはULVAC社製レーザアブレーション成膜装置を用いた。ターゲットにはSnO焼結体(高純度化学研究所社製の粉末原料を焼結して作成)を用いて、KrFエキシマレーザ(波長248nm,パルス幅8ns)を照射してアブレーションを行った。基板とターゲット間の距離は4cmとした。基板温度575℃、酸素分圧4×10-2Pa、繰り返し周波数2Hz、強度約1.5Jcm-2pulse-1の条件で成膜を行い、成膜速度は5.6nm/minであった。膜厚は、19nmであった。
[比較実験例1~3]
A SnO thin film was deposited on a (001) YSZ single crystal substrate by the PLD method. The (001) YSZ single crystal substrate was previously heat-treated at 1380 ° C. in the air. As the PLD apparatus, a laser ablation film forming apparatus manufactured by ULVAC was used. Using a SnO sintered body (prepared by sintering powder raw material manufactured by Kojundo Chemical Laboratory Co., Ltd.) as a target, KrF excimer laser (wavelength: 248 nm, pulse width: 8 ns) was irradiated for ablation. The distance between the substrate and the target was 4 cm. Film formation was performed under the conditions of a substrate temperature of 575 ° C., an oxygen partial pressure of 4 × 10 −2 Pa, a repetition frequency of 2 Hz, and an intensity of about 1.5 Jcm −2 pulse −1 , and the film formation rate was 5.6 nm / min. The film thickness was 19 nm.
[Comparative Experimental Examples 1 to 3]
 酸素分圧をそれぞれ、1×10-1Pa(比較実験例1) 、1×10-2Pa(比較実験例2)、4×10-3Pa(比較実験例3)とした以外は実験例と同じ条件で成膜を行った。
[比較実験例4~6]
Experimental examples except that the oxygen partial pressures were 1 × 10 −1 Pa (Comparative Experimental Example 1), 1 × 10 −2 Pa (Comparative Experimental Example 2), and 4 × 10 −3 Pa (Comparative Experimental Example 3), respectively. Film formation was performed under the same conditions as those described above.
[Comparative Experimental Examples 4 to 6]
 (001)YSZ単結晶基板に代えて、それぞれ、(001)MgO単結晶基板(比較実験例4)、(001)STO単結晶基板(比較実験例5)、(102)Al23単結晶基板(比較実験例6)を用いた以外は実験例と同じ条件で成膜を行った。 Instead of the (001) YSZ single crystal substrate, the (001) MgO single crystal substrate (Comparative Experimental Example 4), the (001) STO single crystal substrate (Comparative Experimental Example 5), and (102) Al 2 O 3 single crystal, respectively. Film formation was performed under the same conditions as in the experimental example except that the substrate (Comparative Experimental Example 6) was used.
 作製した薄膜について、(1)X線回折計による相の同定、成長方位の確認、(2)SPring8(兵庫県)のビームラインBL47XUでの硬X線光電子分光による価電子帯の観測、(3)原子間力顕微鏡による薄膜表面の観察、(4)紫外-近赤外域(波長範囲200~2500nm)での光吸収スペクトルの測定、(5)van der pauw法による室温から80Kまでの温度範囲でのホール(Hall)効果測定を行った。 (1) Phase identification by X-ray diffractometer, confirmation of growth orientation, (2) Observation of valence band by hard X-ray photoelectron spectroscopy at beam line BL47XU at SPring8 (Hyogo), (3 ) Observation of thin film surface with atomic force microscope, (4) Measurement of light absorption spectrum in ultraviolet-near infrared region (wavelength range 200-2500nm), (5) Temperature range from room temperature to 80K by van der pauw method Hall effect measurement was performed.
 図2に、X線回折の結果を示す。X線回折の結果から成膜時の酸素分圧が1×10-2 Pa(比較実験例2)以下ではSnO相は存在するものの、膜内に金属Snが含まれることが分かった。また、酸素分圧が4×10-2Pa(実験例)ではSnO層がエピタキシャル成長した。しかし、酸素分圧を1×10-1Pa(比較実験例1)以上にすると、Sn4+を5原子%超含む多結晶SnO層が成長しはじめ、SnO相が生成した。 FIG. 2 shows the result of X-ray diffraction. From the results of X-ray diffraction, it was found that when the oxygen partial pressure during film formation was 1 × 10 −2 Pa (Comparative Experimental Example 2) or less, SnO phase was present but metal Sn was contained in the film. In addition, the SnO layer was epitaxially grown at an oxygen partial pressure of 4 × 10 −2 Pa (experimental example). However, when the oxygen partial pressure was set to 1 × 10 −1 Pa (Comparative Experimental Example 1) or higher, a polycrystalline SnO layer containing more than 5 atomic% of Sn 4+ began to grow, and a SnO 2 phase was generated.
 次に、実験例の酸素分圧4×10-2 Paで成膜しエピタキシャル成長したSnO薄膜について、4軸X線回折計により成長方位の確認を行った。図3に示すように、YSZ(100)面上にSnO(001)面が成長しており、YSZ(1-10)面とSnO(100)面が同じ方向を向いていることを示している。002SnO回折、200SnO回折のロッキングカーブの半値幅はそれぞれ0.46°、0.7°であった。また、SnO(100)面はYSZ(1-10)面と同様の4回対称性を示しており(図3(d))、SnO膜がYSZ単結晶基板上にヘテロエピタキシャル成長していることが分かった。エピタキシャル関係は、(001)SnO//(001)YSZ,(100)SnO//(1-10)YSZであった。 Next, the growth orientation of the SnO thin film formed and epitaxially grown at an oxygen partial pressure of 4 × 10 −2 Pa in the experimental example was confirmed by a 4-axis X-ray diffractometer. As shown in FIG. 3, the SnO (001) plane is grown on the YSZ (100) plane, and the YSZ (1-10) plane and the SnO (100) plane are oriented in the same direction. . The half-value widths of the rocking curves of 002SnO diffraction and 200SnO diffraction were 0.46 ° and 0.7 °, respectively. In addition, the SnO (100) plane shows the same 4-fold symmetry as the YSZ (1-10) plane (FIG. 3 (d)), and the SnO film is heteroepitaxially grown on the YSZ single crystal substrate. I understood. The epitaxial relationship was (001) SnO // (001) YSZ, (100) SnO // (1-10) YSZ.
 比較実験例4~6の(001)MgO、(001)STO、(1-102)Al23単結晶基板上にSnO薄膜成長を行なった場合は、図3(a)に示すとおり、いずれの場合もYSZ基板上に比べて、X線回折強度で2桁程度低下しておりYSZ基板上に作製した場合のようなエピタキシャル膜は得られなかった。 When SnO thin film growth was performed on the (001) MgO, (001) STO, and (1-102) Al 2 O 3 single crystal substrates of Comparative Experimental Examples 4 to 6, as shown in FIG. In this case, the X-ray diffraction intensity was reduced by about two orders of magnitude compared with that on the YSZ substrate, and an epitaxial film as produced on the YSZ substrate could not be obtained.
 図4に、01sピークが531eVとなるように結合エネルギーを決定した場合のSnO薄膜の価電子帯硬X線光電子分光スペクトルを示す。参照試料として測定したSnO2のスペクトルと比較して、(Kr)5s2電子配置であるSnOのスペクトルでは02p軌道の上に新しい準位が形成された。また、SnO薄膜のフェルミ準位は状態密度がゼロになる、すなわち価電子帯のトップの位置にある。代表的なn型導電性酸化物であるSnO2の場合は、フェルミ準位は、伝導帯のボトムの位置にある。硬X線光電子分光の測定結果は、SnOにおいて02p軌道の高エネルギー側にSn5s準位が存在し、価電子帯を形成したことを示すものである。  FIG. 4 shows a valence band hard X-ray photoelectron spectrum of the SnO thin film when the binding energy is determined so that the 01s peak is 531 eV. Compared with the spectrum of SnO 2 measured as a reference sample, a new level was formed on the 02p orbit in the spectrum of SnO having the (Kr) 5s 2 electron configuration. Further, the Fermi level of the SnO thin film has a density of states of zero, that is, is at the top position of the valence band. In the case of SnO 2 which is a typical n-type conductive oxide, the Fermi level is at the bottom of the conduction band. The measurement result of hard X-ray photoelectron spectroscopy shows that Sn5s level is present on the high energy side of the 02p orbital in SnO and a valence band is formed.
 実験例に示す条件で作製したSnO薄膜表面の原子間力顕微鏡像を図5に示す。SnOのc軸長約0.5nmに相当する高さのステップが薄膜表面に見られる。10μm四方の像では一様の表面が観察され、最大高低差は3.3nmであった。1μm四方で観察した像では細かい島状の構造が観察され、さらに拡大して断面高低差を見ると約0.5nm高さの段差が観察された。観察された段差の高さ0.5nmはSnO(001)面の間隔0.4836nmとよく一致しており、薄膜がステップ・テラス構造をしていることが分かった。 FIG. 5 shows an atomic force microscope image of the surface of the SnO thin film produced under the conditions shown in the experimental example. A step having a height corresponding to the c-axis length of SnO of about 0.5 nm is observed on the thin film surface. A uniform surface was observed in the 10 μm square image, and the maximum height difference was 3.3 nm. In the image observed at 1 μm square, a fine island-like structure was observed, and when the cross-sectional height difference was further enlarged, a step with a height of about 0.5 nm was observed. The observed height 0.5 nm of the step was in good agreement with the SnO (001) plane spacing of 0.4836 nm, indicating that the thin film had a step-and-terrace structure.
 図6に、エピタキシャルSnO薄膜の光吸収係数αと光子エネルギーhνの関係を示す。図6(b)に示す(αhν)2-hνプロットから見積もった直接遷移光学ギャップは2.7eV程度であり、報告されている(R. Sivaramasubramaniam et al., Phys. stat. sol.,(a)136,215(1993))値と一致した。 FIG. 6 shows the relationship between the light absorption coefficient α and the photon energy hν of the epitaxial SnO thin film. The direct transition optical gap estimated from the (αhν) 2 -hν plot shown in FIG. 6B is about 2.7 eV, which has been reported (R. Sivaramasubramaniam et al., Phys. Stat. Sol., (A ) 136,215 (1993)) values.
 しかし、光吸収係数は光子エネルギー1.6eV付近から緩やかに立ち上がっており、遷移確率の低い間接遷移があることが考えられる。第一原理計算の結果は、間接ギャップの存在を示しており、間接ギャップは約0.3eV 、直接ギャップは約2.2eVと求められている(非特許文献15)。第一原理計算は実験値よりもバンドギャップを小さく見積もる傾向があり、SnOは間接ギャップを有する間接半導体と考えられる。 However, the light absorption coefficient rises gently from around the photon energy of 1.6 eV, and it is considered that there is an indirect transition with a low transition probability. The result of the first principle calculation indicates the existence of an indirect gap, and the indirect gap is determined to be about 0.3 eV, and the direct gap is determined to be about 2.2 eV (Non-patent Document 15). First-principles calculations tend to estimate the band gap smaller than the experimental value, and SnO is considered an indirect semiconductor having an indirect gap.
 実験例において作製したSnOエピタキシャル薄膜の電気特性を明らかにするためにゼーベック(Seebeck)効果測定、ホール(Hall)効果測定を行った。図7(a)に示すように、室温でのゼーベック(Seebeck)係数はS=+1024mVK-1であり、SnO薄膜が正孔をキャリアとして電気伝導しているp型伝導体であることが示された。さらに、室温~80Kの温度範囲でホール(Hall)効果測定結果から、正孔移動度、正孔濃度を算出した。室温での正孔移動度、正孔濃度はそれぞれ2.4cm2(Vs)-1、2.5×1017cm-3であった。図7(b)に示すとおり、正孔濃度は、温度とともに増大する熱活性型を示し、正孔濃度の活性化エネルギーは45.6mV/Kであった。また、正孔移動度も温度とともに増大した。 In order to clarify the electrical characteristics of the SnO epitaxial thin film prepared in the experimental example, the Seebeck effect measurement and the Hall effect measurement were performed. As shown in FIG. 7A, the Seebeck coefficient at room temperature is S = + 1024 mVK −1 , indicating that the SnO thin film is a p-type conductor that conducts electricity using holes as carriers. It was. Further, hole mobility and hole concentration were calculated from the Hall effect measurement results in the temperature range of room temperature to 80K. The hole mobility and hole concentration at room temperature were 2.4 cm 2 (Vs) −1 and 2.5 × 10 17 cm -3 , respectively. As shown in FIG. 7B, the hole concentration showed a thermally activated type that increased with temperature, and the activation energy of the hole concentration was 45.6 mV / K. Also, the hole mobility increased with temperature.
 エピタキシャルSnO薄膜をチャネルとして、図1に示す構造のトップゲート型TFTを作製した。まず、TFTのチャネルとして(001)YSZ単結晶基板上に実験例の条件で厚さ19nmのSnO層を成膜した。次に、フォトリソグラフィーと電子線蒸着法によりAu(20nmt)/Ni(8nmt)層からなるソース電極及びドレイン電極を作製した。その後、ソース電極、ドレイン電極及びチャネル上にPLD法によりアモルファスアルミナ(a-Al)ゲート絶縁層を成膜した。 Using the epitaxial SnO thin film as a channel, a top gate type TFT having the structure shown in FIG. 1 was produced. First, an SnO layer having a thickness of 19 nm was formed on a (001) YSZ single crystal substrate as a TFT channel under the conditions of the experimental example. Next, a source electrode and a drain electrode composed of an Au (20 nmt) / Ni (8 nmt) layer were produced by photolithography and electron beam evaporation. Thereafter, an amorphous alumina (a-Al 2 O 3 ) gate insulating layer was formed on the source electrode, the drain electrode, and the channel by a PLD method.
 a-Alゲート絶縁層の成膜条件は、基板温度20℃、酸素分圧2Pa、ArFレーザー繰り返し周波数10Hz 、強度約2Jcm-2pulse-1として、絶縁層膜厚は210nmとした。その後、フォトリソグラフィーと電子線蒸着法によりAu(20nmt)/Ni(8nmt)層からなるゲート電極を作製した。チャネル長(L)及びチャネル幅(W)はL/W=50/300μmとした。ソース電極、ドレイン電極及びゲート電極を形成した後に、ゲートリーク電流を低減するために真空中で、150℃、5分間の条件と200℃、5分間の条件で、赤外線ランプ加熱による高速熱処理を行った。図8に示すように、200℃で熱処理することにより10nAであったリーク電流を0.1nA未満に低減することが出来た。 The film formation conditions for the a-Al 2 O 3 gate insulating layer were as follows: the substrate temperature was 20 ° C., the oxygen partial pressure was 2 Pa, the ArF laser repetition frequency was 10 Hz, the intensity was about 2 Jcm −2 pulse −1 , and the insulating layer thickness was 210 nm. Thereafter, a gate electrode composed of an Au (20 nmt) / Ni (8 nmt) layer was produced by photolithography and electron beam evaporation. The channel length (L) and channel width (W) were L / W = 50/300 μm. After forming the source electrode, drain electrode, and gate electrode, rapid heat treatment is performed by heating with an infrared lamp in vacuum at 150 ° C. for 5 minutes and at 200 ° C. for 5 minutes in order to reduce gate leakage current. It was. As shown in FIG. 8, the leakage current, which was 10 nA, was reduced to less than 0.1 nA by heat treatment at 200 ° C.
 200℃で熱処理したTFTに関して、大気中、暗所にて、出力特性、伝達特性の解析を行った。図9に示すとおり、pチャネルで動作することが分かる。また、図9(a)に示す出力特性で示されるように、ゲート-ソース間の印加電圧が10V、ドレイン-ソース間の印加電圧が10Vのバイアス条件下で14μAの電流変調が得られた。 The output characteristics and transfer characteristics of the TFT heat-treated at 200 ° C. were analyzed in the air and in the dark. As shown in FIG. 9, it can be seen that it operates on the p-channel. Further, as shown by the output characteristics shown in FIG. 9A, a current modulation of 14 μA was obtained under a bias condition where the applied voltage between the gate and the source was 10V and the applied voltage between the drain and the source was 10V.
 図9(c)に示すように、(IDS)1/2-VGプロットから求めた閾値電圧は+4.8V程度であり、該TFTはpチャネルディプレッション型であることがわかる。 As shown in FIG. 9 (c), (I DS ) threshold voltage obtained from 1/2 -V G plot is about + 4.8 V, it can be seen that the TFT is a p-channel depletion type.
 TFTの電界効果移動度は、線形領域で1.2cm2(Vs)-1 、飽和領域で0.7cm2V-1s-1、オン・オフ比は約102であった。飽和領域の移動度が線形領域の移動度より小さくなっているが、これはゲートに印加した電圧ではチャネルをピンチオフさせることができないためと考えられる。すなわち、該TFTのチャネルには高濃度のキャリア(約2.5×1017cm-3)が含まれており、アモルファスアルミナゲート絶縁膜では誘電率が十分大きくない(誘電率=約9)ために、チャネルをピンチオフすることができず、また、空乏層を作ることが出来なかったために、小さい飽和移動度、小さいオン・オフ比という結果をもたらしていると考えられる。 The field effect mobility of the TFT was 1.2 cm 2 (Vs) −1 in the linear region, 0.7 cm 2 V −1 s −1 in the saturation region, and the on / off ratio was about 10 2 . The mobility of the saturation region is smaller than that of the linear region, which is considered to be because the channel cannot be pinched off by the voltage applied to the gate. That is, the channel of the TFT contains a high concentration of carriers (about 2.5 × 10 17 cm −3 ), and the dielectric constant of the amorphous alumina gate insulating film is not sufficiently large (dielectric constant = about 9). The channel could not be pinched off and a depletion layer could not be formed, which is considered to result in a low saturation mobility and a low on / off ratio.
 線形領域、飽和領域での電界効果移動度μlin.及びμsat.は、それぞれgm=(W/L)μlin.C0VGS、IDS=(Wμsat.C0/2L)(VGS-VT)2で定義される。ここで、gm、C0、VTは、それぞれ伝達コンダクタンス、単位面積あたりのゲート容量、閾値電圧であり、伝達コンダクタンスgmは、gm=∂IDS/∂VGSで与えられる。 Field effect mobility in the linear region and saturation region μ lin. And μ sat. Are defined by g m = (W / L) μ lin. C 0 V GS and I DS = (W μ sat. C 0 / 2L) (V GS −V T ) 2 , respectively. Here, g m , C 0 , and V T are transfer conductance, gate capacitance per unit area, and threshold voltage, respectively, and transfer conductance g m is given by g m = ∂I DS / ∂V GS .
 実施例1より誘電率の大きいHigh-k材料を絶縁層としてTFTを作製した。YSZ(001)単結晶基板上にSnO(001)/ZrO2:YSZ(001)/ITO(001)/YSZ(001)からなるチャネル層-絶縁層-ゲート電極層の全てをエピタキシャル成長させた10mm角の積層膜を作製し、ボトムゲート型のTFTを作製した。絶縁層以外の層の形成は実施例1と同様に行った。該TFTでは、誘電率が大きな(=約25)YSZ(Y安定ジルコニア)エピタキシャル薄膜をゲート絶縁膜として使用しているため、飽和移動度及びオン・オフ比が増大した。 A TFT was manufactured using a high-k material having a dielectric constant higher than that of Example 1 as an insulating layer. 10 mm square in which all of channel layer-insulating layer-gate electrode layer made of SnO (001) / ZrO 2 : YSZ (001) / ITO (001) / YSZ (001) are epitaxially grown on a YSZ (001) single crystal substrate A bottom gate type TFT was produced. Formation of layers other than the insulating layer was performed in the same manner as in Example 1. In the TFT, a YSZ (Y stable zirconia) epitaxial thin film having a large dielectric constant (= about 25) is used as a gate insulating film, so that the saturation mobility and the on / off ratio are increased.
 有機LED(OLED)デバイスは、pチャネルTFT駆動の方が、nチャネルTFT駆動に比べて、配線が容易である。また、フラットパネルディスプレイの周辺回路素子など、CMOS回路を構成するために、pチャネルTFTは不可欠である。本発明は、特にこれらのデバイス、回路に有用である。 Organic LED (OLED) devices are easier to wire with p-channel TFT drive than with n-channel TFT drive. Further, a p-channel TFT is indispensable for constituting a CMOS circuit such as a peripheral circuit element of a flat panel display. The present invention is particularly useful for these devices and circuits.

Claims (8)

  1.  酸化第一スズ(SnO)薄膜を薄膜トランジスタの基板上に堆積し、チャネル層としたことを特徴とするpチャネル薄膜トランジスタ。 A p-channel thin film transistor, wherein a stannous oxide (SnO) thin film is deposited on a thin film transistor substrate to form a channel layer.
  2.  前記酸化第一スズ薄膜中のSn4+及びSn(錫金属)の含有量が、合計で10原子%未満であることを特徴とする請求項1記載のpチャネル薄膜トランジスタ。 2. The p-channel thin film transistor according to claim 1, wherein the total content of Sn 4+ and Sn 0 (tin metal) in the stannous oxide thin film is less than 10 atomic%.
  3.  基板が(001)YSZ単結晶基板であり、SnO薄膜がエピタキシャル膜であることを特徴とする請求項1記載のpチャネル薄膜トランジスタ。 2. The p-channel thin film transistor according to claim 1, wherein the substrate is a (001) YSZ single crystal substrate and the SnO thin film is an epitaxial film.
  4.  基板がガラス又はプラスチックであり、SnO薄膜がアモルファス膜であることを特徴とする請求項1記載のpチャネル薄膜トランジスタ。 2. The p-channel thin film transistor according to claim 1, wherein the substrate is made of glass or plastic, and the SnO thin film is an amorphous film.
  5.  正孔移動度が0.1cm/V・秒以上であることを特徴とする請求項1記載のpチャネル薄膜トランジスタ。  2. The p-channel thin film transistor according to claim 1, wherein the hole mobility is 0.1 cm 2 / V · second or more.
  6.  気相法において、SnOをターゲットとして用いて、基板上に堆積するSnの酸化度合いを基板温度及び雰囲気酸素分圧により制御し、Sn2+イオンの含有量が90原子%以上のSnO薄膜を成膜することによりチャネル層を形成することを特徴とする請求項1又は2記載のpチャネル薄膜トランジスタの製造方法。 In the vapor phase method, using SnO as a target, the degree of oxidation of Sn deposited on the substrate is controlled by the substrate temperature and the atmospheric oxygen partial pressure, and a SnO thin film having a Sn 2+ ion content of 90 atomic% or more is formed. 3. A method of manufacturing a p-channel thin film transistor according to claim 1 or 2, wherein a channel layer is formed.
  7.  請求項6記載の方法において、気相法がパルスレーザ堆積法(PLD法)であり、 基板として(001)YSZ単結晶基板を用い、基板温度550℃以上、590℃以下としてエピタキシャル膜を堆積することを特徴とする請求項3記載のpチャネル薄膜トランジスタの製造方法。 7. The method according to claim 6, wherein the vapor phase method is a pulse laser deposition method (PLD method), an (001) YSZ single crystal substrate is used as the eaves substrate, and an epitaxial film is deposited at a substrate temperature of 550 ° C. or higher and 590 ° C. or lower. The method for producing a p-channel thin film transistor according to claim 3.
  8.  請求項6記載の方法において、気相法がパルスレーザ堆積法(PLD法)であり、 基板としてガラス又はプラスチック基板を用い、基板温度を意図的に加熱しない温度としてアモルファス膜を堆積することを特徴とする請求項4記載のpチャネル薄膜トランジスタの製造方法。 7. The method according to claim 6, wherein the vapor phase method is a pulsed laser deposition method (PLD method), a glass or plastic substrate is used as a soot substrate, and an amorphous film is deposited at a temperature at which the substrate temperature is not intentionally heated. A method for producing a p-channel thin film transistor according to claim 4.
PCT/JP2009/062196 2008-07-24 2009-07-03 P-CHANNEL THIN-FILM TRANSISTOR AND PROCESS FOR PRODUCING THE p-CHANNEL THIN-FILM TRANSISTOR WO2010010802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010521665A JP5168605B2 (en) 2008-07-24 2009-07-03 P-channel thin film transistor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-191496 2008-07-24
JP2008191496 2008-07-24

Publications (1)

Publication Number Publication Date
WO2010010802A1 true WO2010010802A1 (en) 2010-01-28

Family

ID=41570266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062196 WO2010010802A1 (en) 2008-07-24 2009-07-03 P-CHANNEL THIN-FILM TRANSISTOR AND PROCESS FOR PRODUCING THE p-CHANNEL THIN-FILM TRANSISTOR

Country Status (2)

Country Link
JP (1) JP5168605B2 (en)
WO (1) WO2010010802A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212285A (en) * 2009-03-06 2010-09-24 Canon Inc Method for forming semiconductor element and semiconductor element
JP2012182329A (en) * 2011-03-01 2012-09-20 Tokyo Institute Of Technology Ambipolar field-effect transistor and method of manufacturing the same
WO2013008419A1 (en) * 2011-07-08 2013-01-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
WO2013081169A1 (en) * 2011-11-30 2013-06-06 Ricoh Company, Ltd. P-type oxide, composition for producing p-type oxide, method for producing p-type oxide, semiconductor element, display element, image display device, and system
CN104124281A (en) * 2014-08-01 2014-10-29 中国科学院宁波材料技术与工程研究所 Bipolar thin film transistor and preparation method thereof
US9082643B2 (en) 2012-08-24 2015-07-14 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
US9190475B2 (en) 2012-09-14 2015-11-17 Renesas Electronics Corporation Semiconductor device and semiconductor device manufacturing method
JP2018014472A (en) * 2016-07-22 2018-01-25 株式会社リコー Manufacturing method for semiconductor element
JP2018509748A (en) * 2014-12-30 2018-04-05 スナップトラック・インコーポレーテッド Atomic layer deposition of p-type oxide semiconductor thin films
RU2660407C2 (en) * 2013-12-26 2018-07-06 Рикох Компани, Лтд. P-type oxide semiconductor, composition for producing p-type oxide semiconductor, method for producing r-type oxide semiconductor, semiconductor element, display element, image display device and system
WO2018155034A1 (en) 2017-02-23 2018-08-30 国立研究開発法人産業技術総合研究所 Oxide semiconductor and semiconductor device
WO2018155033A1 (en) 2017-02-23 2018-08-30 国立研究開発法人産業技術総合研究所 Oxide semiconductor and semiconductor device
US11183596B2 (en) 2019-01-07 2021-11-23 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Thin film transistor and method for fabricating same
JP2022008633A (en) * 2017-11-15 2022-01-13 学校法人加計学園 Manufacturing method of rare earth hydride, hydrogen sensor, and thin film transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982828B1 (en) * 2017-07-27 2019-05-27 중앙대학교 산학협력단 Method to manufacture p type oxide TFT using argon plasma treatment
JP7055535B2 (en) 2018-09-20 2022-04-18 株式会社東芝 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235177A (en) * 2001-02-07 2002-08-23 Star Micronics Co Ltd SnO FILM AND PREPARING METHOD THEREFOR
JP2007258223A (en) * 2006-03-20 2007-10-04 Canon Inc Thin-film transistor and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235177A (en) * 2001-02-07 2002-08-23 Star Micronics Co Ltd SnO FILM AND PREPARING METHOD THEREFOR
JP2007258223A (en) * 2006-03-20 2007-10-04 Canon Inc Thin-film transistor and display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X.Q.PAN ET AL.: "Tin Oxide Thin Films Grown on the (1012)Sapphire Substrate", JOURNAL OF ELECTROCERAMICS, no. 7, 2001, pages 35 - 46 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212285A (en) * 2009-03-06 2010-09-24 Canon Inc Method for forming semiconductor element and semiconductor element
JP2012182329A (en) * 2011-03-01 2012-09-20 Tokyo Institute Of Technology Ambipolar field-effect transistor and method of manufacturing the same
WO2013008419A1 (en) * 2011-07-08 2013-01-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
WO2013081169A1 (en) * 2011-11-30 2013-06-06 Ricoh Company, Ltd. P-type oxide, composition for producing p-type oxide, method for producing p-type oxide, semiconductor element, display element, image display device, and system
JP2013138165A (en) * 2011-11-30 2013-07-11 Ricoh Co Ltd p-TYPE OXIDE, COMPOSITION FOR p-TYPE OXIDE MANUFACTURING, p-TYPE OXIDE MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT, DISPLAY ELEMENT, IMAGE DISPLAY DEVICE AND SYSTEM
CN104094407A (en) * 2011-11-30 2014-10-08 株式会社理光 P-type oxide, composition for producing P-type oxide, method for producing P-type oxide, semiconductor element, display element, image display device, and system
US9536957B2 (en) 2011-11-30 2017-01-03 Ricoh Company, Ltd. P-type oxide, composition for producing p-type oxide, method for producing p-type oxide, semiconductor element, display element, image display device, and system
TWI496294B (en) * 2011-11-30 2015-08-11 Ricoh Co Ltd P-type oxide, composition for producing p-type oxide, method for producing p-type oxide, semiconductor element, display element, image display device, and system
US9230865B2 (en) 2012-08-24 2016-01-05 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
US9082643B2 (en) 2012-08-24 2015-07-14 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
US9356026B2 (en) 2012-09-14 2016-05-31 Renesas Electronics Corporation Semiconductor device and semiconductor device manufacturing method
US9190475B2 (en) 2012-09-14 2015-11-17 Renesas Electronics Corporation Semiconductor device and semiconductor device manufacturing method
RU2660407C2 (en) * 2013-12-26 2018-07-06 Рикох Компани, Лтд. P-type oxide semiconductor, composition for producing p-type oxide semiconductor, method for producing r-type oxide semiconductor, semiconductor element, display element, image display device and system
CN104124281A (en) * 2014-08-01 2014-10-29 中国科学院宁波材料技术与工程研究所 Bipolar thin film transistor and preparation method thereof
JP2018509748A (en) * 2014-12-30 2018-04-05 スナップトラック・インコーポレーテッド Atomic layer deposition of p-type oxide semiconductor thin films
JP2018014472A (en) * 2016-07-22 2018-01-25 株式会社リコー Manufacturing method for semiconductor element
WO2018155034A1 (en) 2017-02-23 2018-08-30 国立研究開発法人産業技術総合研究所 Oxide semiconductor and semiconductor device
WO2018155033A1 (en) 2017-02-23 2018-08-30 国立研究開発法人産業技術総合研究所 Oxide semiconductor and semiconductor device
US11239322B2 (en) 2017-02-23 2022-02-01 National Institute Of Advanced Industrial Science And Technology P-type oxide semiconductor and semiconductor device having pyrochlore structure
JP2022008633A (en) * 2017-11-15 2022-01-13 学校法人加計学園 Manufacturing method of rare earth hydride, hydrogen sensor, and thin film transistor
JP7219930B2 (en) 2017-11-15 2023-02-09 学校法人加計学園 Method for producing rare earth hydride, hydrogen sensor and thin film transistor
US11183596B2 (en) 2019-01-07 2021-11-23 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Thin film transistor and method for fabricating same

Also Published As

Publication number Publication date
JPWO2010010802A1 (en) 2012-01-05
JP5168605B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5168605B2 (en) P-channel thin film transistor and manufacturing method thereof
US9196689B2 (en) P-type oxide alloys based on copper oxides, tin oxides, tin—copper alloy oxides and metal alloy thereof, and nickel oxide, with embedded metals thereof, fabrication process and use thereof
Wang et al. Recent developments in p‐Type oxide semiconductor materials and devices
JP5725698B2 (en) Amorphous oxide semiconductor and thin film transistor using the amorphous oxide semiconductor
Kim et al. Low-temperature solution processing of AlInZnO/InZnO dual-channel thin-film transistors
TWI453915B (en) Thin film transistor
KR101078509B1 (en) Method of manufacturing thin film transistor
Oh et al. High-performance ZnO thin-film transistor fabricated by atomic layer deposition
JP5735306B2 (en) Simultaneous bipolar field effect transistor and method of manufacturing the same
Furuta et al. Electrical properties of the thin-film transistor with an indium–gallium–zinc oxide channel and an aluminium oxide gate dielectric stack formed by solution-based atmospheric pressure deposition
KR101284587B1 (en) P-type transparent oxide semiconductor, transistor having the same, and manufacture method of the same
JP2009164393A (en) Amorphous oxide and field effect transistor
JP2004103957A (en) Transparent thin film field effect type transistor using homologous thin film as active layer
Park et al. The structural, optical and electrical characterization of high-performance, low-temperature and solution-processed alkali metal-doped ZnO TFTs
JP2010205798A (en) Method of manufacturing thin-film transistor
Li et al. Preparation and characterization of solution-processed nanocrystalline p-Type CuAlO 2 thin-film transistors
JP5168599B2 (en) Thin film transistor manufacturing method
Hwang et al. Fabrication and characterization of sol-gel-derived zinc oxide thin-film transistor
Yap et al. Recent advances of In2O3-based thin-film transistors: A review
Jang et al. Combustion-assisted low-temperature solution process for high-performance SnO2 thin-film transistors
JP6036984B2 (en) Oxynitride semiconductor thin film
KR102389220B1 (en) Thin film transistor including crystalline izto oxide semiconductor and fabrication method for the same
Keerthi et al. Electrical conductivity tuning in p-type transparent conducting AgGaO2 and in quaternary AgInGaO2 thin films
Ali et al. Low-Cost and High-Performance, Back-Channel Etched InGaZnO Thin Film Transistors by Spray Pyrolysis
Wang P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521665

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800316

Country of ref document: EP

Kind code of ref document: A1