WO2010004925A1 - Method of recovering silicon, titanium, and fluorine - Google Patents
Method of recovering silicon, titanium, and fluorine Download PDFInfo
- Publication number
- WO2010004925A1 WO2010004925A1 PCT/JP2009/062095 JP2009062095W WO2010004925A1 WO 2010004925 A1 WO2010004925 A1 WO 2010004925A1 JP 2009062095 W JP2009062095 W JP 2009062095W WO 2010004925 A1 WO2010004925 A1 WO 2010004925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- silicon
- aqueous solution
- precipitate
- fluoride
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
- C01B33/186—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof from or via fluosilicic acid or salts thereof by a wet process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/20—Fluorine
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/02—Halides of titanium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
- C02F2101/14—Fluorine or fluorine-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
Definitions
- the present invention relates to a method for recovering silicon, titanium and fluorine from an aqueous solution containing silicon and / or titanium fluoride.
- Hydrofluoric acid is used for etching processing and surface cleaning of silicate glass (that is, silicate-based glass: hereinafter simply referred to as glass).
- silicate glass that is, silicate-based glass: hereinafter simply referred to as glass.
- silicon dioxide (SiO 2 ) which is the main component of glass, reacts and dissolves with hydrofluoric acid (HF) as shown in the following formula (1) to form hexafluorosilicic acid (H 2 SiF 6 ) and water (H 2 O) are produced.
- the concentration of hydrofluoric acid in the aqueous solution used to dissolve the glass decreases as the amount of glass dissolved increases, and the dissolving ability of the aqueous solution also decreases. Therefore, as a result of research on a method for recovering the dissolving ability, for example, in JP-A-2000-72482 and JP-T-2005-534595, an electrolyte such as fluoride is added to restore the dissolving ability. Is disclosed.
- potassium hexafluorosilicate produced as a by-product by the above method is used as an enamel or as a preservative, but its amount is not so large, so when it is produced in large quantities from glass etching and cleaning processes Can only consume part of it. Furthermore, since potassium hexafluorosilicate is a toxic substance, it requires a great deal of cost to be disposed of without causing pollution.
- the treatment for recovering the dissolving ability of the mixed acid waste liquid is not performed and the waste is disposed after the neutralization treatment with an alkali. Then, when this inventor performed the process which adds electrolytes, such as a fluoride, instead of the neutralization process by an alkali, it turned out that the melt
- nitric hydrofluoric acid a mixed acid of nitric acid and hydrofluoric acid (hereinafter referred to as nitric hydrofluoric acid) or hydrofluoric acid is performed. Yes.
- nitric hydrofluoric acid titanium dissolves as a tetravalent fluoride, and when it is pickled with an aqueous solution of hydrofluoric acid not containing nitric acid, it dissolves as a trivalent fluoride.
- Titanium alloys are alloys containing metals such as aluminum, vanadium, tin, and palladium in addition to titanium, but most of the composition is titanium, so pickling with nitric hydrofluoric acid or hydrofluoric acid is possible. As in the case of pure titanium, titanium dissolves as a tetravalent or trivalent fluoride.
- the present inventor has studied various means for precipitating titanium while maintaining the acidity without neutralizing the aqueous solution containing the fluoride of titanium with an alkali such as ammonia.
- an alkali such as ammonia.
- the titanium dissolved when pickled with nitric hydrofluoric acid is usually contained in part or in large part as hexafluorotitanic acid (H 2 TiF 6 ). It has been found that it can be precipitated as hexafluorotitanate by reacting with a cation.
- titanium when potassium fluoride (KF) or potassium nitrate (KNO 3 ) is used as the electrolyte, titanium is converted to potassium hexafluorotitanate (K 2 TiF 6 ) by the reaction of the following formulas (4) and (5). ). Moreover, since the hydrogen fluoride (HF) and nitric acid (HNO 3 ) are produced by this precipitation reaction, the pickling ability of titanium is enhanced. H 2 TiF 6 + 2KF ⁇ K 2 TiF 6 + 2HF (4) Formula H 2 TiF 6 + 2KNO 3 ⁇ K 2 TiF 6 + 2HNO 3 (5)
- TiF 3 trivalent fluoride
- various oxidizing agents can be used.
- nitric acid or oxygen (O 2 ) when used, nitric acid or oxygen (O 2 ) is used, hexafluorotitanic acid is produced by the reaction of the following formulas (6) and (7). Presumed to be generated.
- Formula 4TiF 3 + O 2 + 12HF ⁇ 4H 2 TiF 6 + 2H 2 O (7) Formula
- potassium hexafluorotitanate produced by the reaction of the above formulas (4) and (5) is used for toxicity, etc., it is not necessary, so a large amount from the pickling process of titanium or titanium alloy. However, only a part of it can be consumed. Furthermore, since potassium hexafluorotitanate is a toxic substance, it requires a great deal of cost to be disposed of without causing pollution.
- the problem to be solved by the present invention is hexafluorosilicate produced by dissolving glass, silicon, titanium, titanium alloy, etc. in an aqueous solution containing hydrofluoric acid, and then adding an electrolyte or a cation. And hexafluorotitanate is changed to a versatile substance to expand the usage and usage.
- the present inventors have studied a method of chemically decomposing and separating hexafluorosilicate or hexafluorotitanate, which has been precipitated and separated, into a versatile substance. I found a way. One of these is the addition of ammonia (NH 3 ) and water to these salts to convert them into precipitates of colloidal silicic acid (SiO 2 .nH 2 O) or titanium hydroxide (Ti (OH) 4 ). Is separated from the aqueous solution, washed with water, etc., and then heated and baked to change to silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ). Ammonia may be added either as an aqueous solution or as a gas.
- silicon contained in potassium hexafluorosilicate precipitates as glued silicic acid
- titanium contained in potassium hexafluorotitanate is titanium hydroxide.
- fluorine and potassium are converted into potassium fluoride (KF) or ammonium fluoride (NH 4 F) and dissolved in the aqueous solution
- silicic acid or titanium hydroxide can be separated from the aqueous solution by a method such as filtration. .
- the separated silicic acid or titanium hydroxide can be changed into silicon dioxide or titanium dioxide by washing with water or the like and then heating and baking. Silicon dioxide can be reused for additives such as glass raw materials and rubber, and titanium dioxide can be reused for applications such as white pigments and photocatalysts.
- Ammonia produced by these reactions is separated and recovered by a method such as steam distillation and can be reused for the reaction of the above formula (8) or (9). Further, the precipitate of calcium fluoride produced by the reaction of the formula (13) can be separated by a method such as filtration and reused as a raw material for hydrofluoric acid production. Further, the aqueous solution after separation of silicic acid, titanium hydroxide, ammonia and calcium fluoride produced by the reactions of the above formulas (8), (9), (12) and (13) is fluorided. Since only potassium is included, it can be reused for the reactions of formulas (2) and (4).
- an aqueous solution of hydrofluoric acid and potassium hydroxide can be obtained by subjecting this aqueous solution to electrodialysis treatment or ion exchange treatment. By these treatments, one molecule of hydrogen fluoride and one molecule of potassium hydroxide are generated from one molecule of potassium fluoride.
- the obtained aqueous solution of hydrogen fluoride (that is, hydrofluoric acid) can be reused for dissolution of glass and silicon metal, and potassium hydroxide can be reused for the reaction of the above formula (12). .
- Another method that the present inventors have found as a useful method for chemically decomposing hexafluorosilicate or hexafluorotitanate is by decomposing these salts by heating to tetrafluorosilicate.
- This is a method of generating a gas of elemental (SiF 4 ) or titanium tetrafluoride (TiF 4 ).
- the decomposition reaction when these salts are potassium salts is presumed to be according to the following formula (14) or (15).
- K 2 TiF 6 ⁇ TiF 4 + 2KF (15)
- Hexafluorosilicate precipitated from a hydrofluoric acid-containing aqueous solution in which glass is dissolved may be contaminated by metal elements such as aluminum, iron, and zinc contained in the glass.
- the treatment method including hexafluorosilicic acid with less impurities can be obtained. Therefore, if an electrolyte or a cation is added to the obtained aqueous solution of hexafluorosilicate, potassium hexafluorosilicate that does not contain aluminum or the like can be precipitated, for example, by the reaction of the above formula (2).
- hexafluorotitanate precipitated from an aqueous solution of nitric hydrofluoric acid obtained by pickling a titanium alloy containing a large amount of aluminum may be contaminated with elements such as aluminum.
- hexafluorotitanic acid with less impurities can be obtained. Therefore, if an electrolyte or a cation is added to the obtained aqueous solution of hexafluorotitanate, for example, potassium hexafluorotitanate that does not contain aluminum or the like can be precipitated by the reaction of the above formula (4).
- high purity silicon dioxide or high purity titanium dioxide can be obtained by heating and baking.
- potassium hydroxide or calcium hydroxide is added to an aqueous solution from which colloidal silicic acid or titanium hydroxide is separated, and ammonium fluoride is converted to ammonia and fluoride by the reaction of the above formulas (12) and (13). It can be changed to potassium or calcium fluoride and reused.
- the present invention has been completed on the basis of the above studies, and is summarized in the following methods (1) to (7) for recovering silicon, titanium and fluorine.
- Silicon or / and titanium fluoride produced by dissolving a substance containing silicon or / and titanium using an aqueous solution containing hydrofluoric acid is converted to hexafluorosilicate or / and hexafluoro.
- Step A Step of changing the valence of titanium contained in the aqueous solution to tetravalent as necessary:
- Step B Step of adding hydrogen fluoride and / or fluoride to the aqueous solution as necessary :
- Step C A step of adding an electrolyte or / and a cation to the aqueous solution as required: and
- Step D a step of separating the precipitate generated in the steps A to C.
- Step E Step of recovering elemental, titanium and fluorine
- Step F The process of isolate
- step K Method for recovering elemental, titanium and fluorine (step K): heating to a temperature higher than the temperature at which silicon tetrafluoride or / and titanium tetrafluoride is generated: (Step L) Absorbing and / or absorbing the gas generated by Step K or / and the solid formed by the condensation thereof into an aqueous solution or water containing hydrogen fluoride or / and fluoride or / and electrolyte or / and cation.
- Step M Step of adding hydrogen fluoride or / and fluoride as required:
- Step N Step of adding electrolyte or / and cation as required:
- Step O After separating the precipitate generated by the above-mentioned Step L and Steps M and N, which are performed as necessary, the precipitate is partially or entirely of Steps E to J of (3) above.
- the process processed by the method including the process of.
- Step P The method described in (1) and (2) above, wherein the method including the chemical decomposition step is a method including a part or all of the following steps P to V.
- Method for recovering elemental, titanium and fluorine step P: heating to a temperature higher than the temperature at which silicon tetrafluoride or / and titanium tetrafluoride is generated:
- Step Q The step of reacting the gas produced in the step P or / and the solid produced by the condensation with water and ammonia:
- Step R Step of separating the precipitate generated in the step Q:
- Step S Steps of heating and baking after washing the precipitate separated in the step R:
- Step T Step of separating ammonia after adding an alkali metal hydroxide and / or an alkaline earth metal hydroxide, if necessary, to the aqueous solution from which the precipitate has been separated in the step R:
- Step U Step of separating the precipitate generated in the step T:
- Silicon of the present invention the separation of titanium and fluorine, by the recovery method, an aqueous solution containing etching or surface cleaning of the glass, the etching of Shirikon'u et Doha, or hydrofluoric acid used in the pickling of titanium or a titanium alloy Titanium dioxide, glass, silicon, which is useful as a raw material for glass, white pigments, etc., as well as by-products generated during the recycling process.
- hydrofluoric acid used for dissolving titanium, etc., or calcium fluoride used as a raw material for producing hydrofluoric acid can be obtained. Further, along with this, the amount of industrial waste generated is greatly reduced, and the burden on the environment is reduced. Therefore, a great industrial and social effect can be obtained.
- FIG. 1 is an explanatory view showing an example of a procedure of a method for recovering silicon and fluorine after melting glass with a hydrofluoric acid-containing aqueous solution.
- Example 1 FIG. 2 is an explanatory view showing an example of a procedure of a method for recovering silicon and fluorine after dissolving silicon metal with a hydrofluoric acid-containing aqueous solution.
- FIG. 3 is an explanatory view showing an example of a procedure of a method for recovering titanium and fluorine from an aqueous solution obtained by pickling titanium with nitric hydrofluoric acid. (Example 3) FIG.
- FIG. 4 is an explanatory view showing an example of a procedure of a method for recovering titanium and fluorine from an aqueous solution obtained by pickling titanium with hydrofluoric acid.
- FIG. 5 is an explanatory view showing an example of a procedure of a method for separating and recovering silicon and fluorine after melting glass with a hydrofluoric acid-containing aqueous solution.
- Example 4 6 after pickling of titanium with et Tsu quenching effluent Shirikon'u et Doha, silicon, titanium and fluorine separation is an explanatory view showing an example of a procedure of a method of recovering.
- FIG. 4 is an explanatory view showing an example of a procedure of a method of recovering.
- FIG. 7 is a cross-sectional view schematically showing the structure of an apparatus used for chemical reaction and distillation.
- FIG. 8 is a cross-sectional view schematically showing the structure of an apparatus for thermally decomposing hexafluorosilicate and hexafluorotitanate and recovering them as a fluoride of silicon and titanium.
- FIG. 9 is a cross-sectional view schematically showing the structure of the electrodialysis apparatus.
- FIG. 10 is a cross-sectional view schematically showing the structure of an ion exchange column.
- the hydrofluoric acid concentration of the aqueous solution used for dissolving glass, silicon, titanium and titanium alloy is usually a concentration used industrially, and does not need to be strictly limited.
- silicon and titanium in order for silicon and titanium to dissolve as hexafluorosilicic acid and hexafluorotitanic acid, 6 mol of hydrogen fluoride is required for 1 mol of silicon and titanium.
- an aqueous solution containing only hydrofluoric acid can be used, but an acid such as sulfuric acid may be included in addition to the aqueous solution.
- Sulfuric acid has no direct effect on the formation of hexafluorosilicic acid, but when glass containing barium or lead is dissolved, it reacts with sulfuric acid in aqueous solution to form a poorly soluble sulfate. , The formation of fluoride is suppressed and the consumption of hydrofluoric acid is saved.
- the hexafluorosilicate is prevented from being contaminated with barium or lead. be able to.
- Doha single crystal usually, high concentrations (e.g., 10 ⁇ 40 mass%) hydrofluoric acid, although mixed acid of nitric acid and acetic acid are used, the polycrystal silicon metal In order to dissolve, a high concentration of mixed acid is not necessarily required, and addition of acetic acid is not essential. Conditions such as the acid concentration and processing temperature may be appropriately selected in consideration of the purpose of etching and dissolution.
- a mixed acid of hydrofluoric acid and sulfuric acid can be used in addition to nitric hydrofluoric acid and hydrofluoric acid.
- aluminum fluoride and the like may precipitate, so before adding the electrolyte to precipitate hexafluorotitanate, separate and remove these insolubles. If so, the hexafluorotitanate can be prevented from being contaminated with aluminum or the like.
- oxidizing agent such as nitric acid or oxygen.
- the appropriate addition amount of these oxidizing agents is desirably determined using the redox potential of the solution as a guideline, and the redox potential can be measured using a commercially available redox potential meter.
- the step of changing the valence of titanium contained in the aqueous solution to tetravalent the step of adding hydrofluoric acid or fluoride, the electrolyte and the positive If a step of adding ions is necessary, these steps may be performed in any order. If the reaction of the step of changing the valence of titanium to tetravalent is difficult to proceed, this step is performed. This should be done last.
- an alkali metal fluoride having a high solubility in water is preferable.
- Alkali metal fluorides are not only electrolytes but also fluorides.
- potassium fluoride when potassium fluoride is used, potassium hexafluorosilicate or potassium hexafluorotitanate having a relatively low solubility is generated, so that separation from an aqueous solution can be performed relatively easily.
- hydrofluoric acid is produced
- rubidium fluoride (RbF) and cesium fluoride (CsF) can also be suitably used, but the price is relatively high.
- potassium sulfate (K 2 SO 4 ), rubidium sulfate (Rb 2 SO 4 ), and cesium sulfate (Cs 2 SO 4 ) can be suitably used for an aqueous solution containing sulfuric acid.
- potassium nitrate (KNO 3 ), rubidium nitrate (RbNO 3 ), and cesium nitrate (CsNO 3 ) can be preferably used.
- sodium fluoride (NaF) or ammonium fluoride (NH 4 F) can be used as an electrolyte other than these compounds.
- the former has a considerably low solubility, it is necessary to adjust the addition amount so that it does not precipitate together with sodium hexafluorosilicate (Na 2 SiF 6 ) or sodium hexafluorotitanate (Na 2 TiF 6 ).
- the solubility of ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) and ammonium hexafluorotitanate ((NH 4 ) 2 TiF 6 ) is high, Separation tends to be incomplete.
- the appropriate amount of electrolyte added depends on the type of electrolyte and the types of hexafluorosilicate and hexafluorotitanate to be precipitated, but when potassium hexafluorosilicate is deposited using potassium fluoride, potassium and silicate are added. It is desirable that the molar ratio (K / Si molar ratio) of the element is 3 or more and the concentration of potassium in the aqueous solution is 0.3 mol / dm 3 or more. When potassium hexafluorotitanate is precipitated, the molar ratio of potassium to titanium (K / Ti molar ratio) is 6 or more and the concentration of potassium in the aqueous solution is 0.6 mol / dm 3 or more.
- potassium hexafluorosilicate or potassium hexafluorotitanate precipitates (the amount of precipitation is relatively small).
- potassium fluoride in an aqueous solution having a concentration of about 1 to 2 mol / dm 3 , but in order to reduce the concentration of the aqueous solution as much as possible, it can be added and dissolved with potassium fluoride chemicals. Also good.
- a filtration separation method which is usually used industrially can be applied.
- hexafluorosilicate has a relatively strong caking property, it solidifies when strongly compressed by suction filtration or the like, and the process of dispersing it in water and reacting with ammonia does not proceed smoothly.
- Solid-liquid separation methods other than filtration can also be applied, but it is necessary to select a separation method and conditions so that the precipitated hexafluorosilicate is not solidified.
- the purity of silicon dioxide produced in the subsequent step can be increased by washing with an appropriate washing solution.
- hexafluorosilicate is partly dissolved by washing, in order to reduce the loss due to dissolution, it is better to wash with the aqueous electrolyte solution used to precipitate these salts than to wash with water. Good.
- Hexafluorosilicate and hexafluorotitanate separated from the aqueous solution and optionally washed can be chemically decomposed by treatment with ammonia and water as described above.
- these salts are transferred to a suitable container, and water is added and mixed.
- the amount of water to be added does not need to be particularly strictly defined, but about 200 to 1000 times the weight of silicon or titanium in the precipitate is appropriate.
- ammonia is added while stirring the solution, and the pH of the solution is adjusted to 9 or higher (preferably 10 or higher).
- Ammonia is conveniently added in a 10 to 28% aqueous solution, but ammonia gas generated in a later step may be blown.
- the solution After adding and mixing ammonia, the solution needs to be heated to 60 to 100 ° C. and held for about 30 minutes to 2 hours. Then, after cooling to room temperature to about 50 ° C. and measuring the pH again, if the pH is less than 9, the ammonia is added after adding ammonia so that it is 9 or more (preferably 10 or more).
- the acid or titanium hydroxide precipitate is separated by a method such as filtration. These separated precipitates are thoroughly washed with water and then converted to silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) by heating at 800 to 1000 ° C. for 1 to 5 hours using an electric furnace or the like. Can do.
- FIG. 7 An apparatus having a schematic cross-sectional view shown in Fig. 7 is recommended.
- a mixture of hexafluorosilicate or hexafluorotitanate precipitate and water After that, the solution is stirred by the stirrer 2-1, and at the same time, the pH of the solution is measured using the pH sensor 5 and ammonia water is added from the feed pipe 10.
- ammonia water or together with ammonia water
- ammonia gas may be blown from the gas inlet pipe 12.
- the solution When the pH of the solution reaches 9-10, the solution is heated using the heater 3 and held at 60-100 ° C. for 30 minutes to 2 hours. Thereafter, the pH is measured while cooling to room temperature to around 50 ° C., and when the pH is less than 9, after adding ammonia so that it becomes 9 or more, the generated silicic acid or titanium hydroxide is precipitated.
- the solution is discharged from the discharge pipe 11 together with the solution and transferred to a filtration device or the like.
- the ammonia gas evaporated together with the water vapor from the liquid level is led from the gas discharge pipe 13 to the cooler 6 to become ammonia water, which is stored in the distillate receiving tank 8.
- the apparatus in FIG. 7 can also be used for ammonia distillation. That is, the solution after separating the precipitate of silicic acid or titanium hydroxide is charged into the treatment tank 1 from the feed pipe 10, and then the temperature of the solution is used using the heater 3 while stirring the solution with the stirrer 2-1. Is heated to 80-100 ° C. Further, air and water vapor at around 100 ° C. are sent from the gas charging pipe 12 to evaporate the ammonia dissolved in the solution together with the water vapor. Store in the drainage tank 8.
- an apparatus for electrodialyzing a solution obtained by distilling and separating ammonia and then filtering and separating a precipitate of an alkaline earth metal fluoride as necessary for example, an apparatus as shown in a schematic diagram (side view) in FIG. Is recommended.
- the electrolytic cell 24 of this apparatus is composed of four cells (chambers) 31 to 34 separated by two cation exchange membranes 27-1 and 27-2 and one anion exchange membrane 28.
- a DC voltage is supplied to the cathode 26 from a DC power supply 29 through a conducting wire 30.
- an aqueous solution of acid such as sulfuric acid (H 2 SO 4 ) is placed in the cell 33 provided with the anode 25, and an aqueous solution of low concentration potassium hydroxide (KOH) is placed in the cell 34 provided with the cathode 26.
- a cell 31 formed between the cation exchange membrane 27-2 and the anion exchange membrane 28 is filled with a solution obtained by distilling and separating ammonia (FIG. 9 shows an example of an aqueous potassium fluoride solution).
- the cell 32 formed between the cation exchange membrane 27-1 and the anion exchange membrane 28 is filled with a low concentration hydrofluoric acid aqueous solution or pure water.
- hydroxide ions (OH ⁇ ) are generated on the cathode surface by the electrode reaction shown in the following formula (21) (at the same time, hydrogen gas is generated).
- the concentration of the potassium hydroxide aqueous solution in the cell 34 becomes higher as electrodialysis proceeds. It can be reused for the ammonia distillation treatment by the reaction of formula).
- an apparatus for ion-exchange treatment of a solution from which ammonia has been separated for example, an apparatus having a schematic diagram (cross-sectional view) shown in FIG. 10 is recommended.
- the solution injected from the liquid inlet pipe 37 at the upper part of the apparatus flows out of the liquid discharge pipe 38 at the lower part of the apparatus through the porous plate 36-1, the ion exchange resin 39 and the porous plate 36-2.
- the ion exchange resin either a cation exchange resin or an anion exchange resin may be used.
- an anion exchange resin a functional group whose functional group has been converted to OH-type in advance is used.
- Fluoride ions (F ⁇ ) generated by dissociation of potassium fluoride in a solution obtained by distilling and separating ammonia are hydroxide ions (OH) trapped in the functional groups of the anion exchange resin.
- - ) Is replaced with potassium hydroxide (KOH) as shown in the following formula (23), which can be reused for the ammonia distillation treatment by the reaction of the formula (12). .
- R + represents a positively charged anion exchange resin substrate.
- fluoride ions (F ⁇ ) captured by the functional group of the anion exchange resin are expressed by the following formula (24).
- hydrofluoric acid (HF) flows out and can be reused to dissolve glass or silicon metal.
- the anion exchange resin returns to the OH ⁇ type again.
- these salts separated from an aqueous solution and washed as needed are about 100 to 110 ° C. After sufficiently drying using a drier adjusted to a temperature of 1, it is decomposed by heating to a high temperature of about 600 to 1000 ° C.
- FIG. 8 schematically shows the structure of an apparatus for performing such a thermal decomposition process.
- the dried hexafluorosilicate or hexafluorotitanate is put in the thermal decomposition vessel 15, placed on the vessel support 16, and set in the heating section in the heating tube 17.
- platinum or nickel is recommended as the material for the electrothermal decomposition container 15.
- the electric furnace 18 is used to heat the heating tube, and at the same time, argon gas, nitrogen gas, air or the like is supplied from the carrier gas supply tube 19, and silicon tetrafluoride or four produced by the thermal decomposition reaction are introduced. Titanium fluoride gas is fed into condenser 21 through conduit 20-1.
- the conduit 20-1 is heated using an electric heater or the like so that the inner surface temperature is maintained at about 300 ° C. or higher, and the condenser 21 has an inner surface temperature of at least 250 ° C., preferably 50 ° C. It is necessary to cool it to about 100 ° C.
- silicon tetrafluoride gas is fed into the absorbing liquid 22 through the conduit 20-2.
- the absorbing solution is stirred using a stirrer 2-2. Water may be used instead of the absorbing liquid.
- both hexafluorosilicate and hexafluorotitanate are pyrolyzed, and the generated silicon tetrafluoride and titanium tetrafluoride are absorbed or dissolved in separate absorption liquids or water.
- the condenser 21 is not necessarily required when it is not necessary to separate silicon tetrafluoride and titanium tetrafluoride or when the hexafluorotitanate is not thermally decomposed.
- an aqueous solution containing 2 moles or more of hydrofluoric acid per mole of silicon or / and titanium or 2 moles Hexafluorosilicate and / or hexafluorotitanate can also be produced by absorption or dissolution in an aqueous solution containing the above hydrofluoric acid and 2 moles or more of cations.
- silicon tetrafluoride and / or titanium tetrafluoride is reacted with water and ammonia to change to silicic acid or / and titanium hydroxide
- silicon tetrafluoride and / or titanium tetrafluoride is used.
- a method of adding or dissolving ammonia in water and then adding ammonia and a method of absorbing or dissolving silicon tetrafluoride and / or titanium tetrafluoride in aqueous ammonia can be applied.
- ammonia so that the pH of the solution is 9 or more (preferably 10 or more).
- Ammonia is conveniently added in a 10 to 28% aqueous solution, but ammonia gas generated in a later step may be blown.
- the amount of water added to adjust the concentration does not need to be strictly defined, but is appropriately about 200 to 1000 times the weight of silicon or titanium in the solution.
- the solution After adding and mixing ammonia, the solution needs to be heated to 60 to 100 ° C. and held for about 30 minutes to 2 hours. Then, after cooling to room temperature to about 50 ° C. and measuring the pH again, if the pH is less than 9, the ammonia is added after adding ammonia so that it is 9 or more (preferably 10 or more).
- the acid or titanium hydroxide precipitate is separated by a method such as filtration. These separated precipitates are thoroughly washed with water and then converted to silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) by heating at 800 to 1000 ° C. for 1 to 5 hours using an electric furnace or the like. Can do.
- Aqueous solution A is a general-purpose plate glass dissolved in a hydrofluoric acid aqueous solution
- Aqueous solution B is a CRT (cathode ray tube) panel glass dissolved in a mixed aqueous solution of hydrofluoric acid and sulfuric acid
- aqueous solution C is silicon metal. Is dissolved with a mixed acid of hydrofluoric acid, nitric acid and acetic acid. The content of silicon dioxide in the glass, the amount of glass and metal silicon dissolved, and the composition of the aqueous solution for dissolution are as shown in Table 1. is there.
- sample solutions was filtered using a filter paper, its 50 cm 3 or 100 cm 3 was fractionated was transferred to a plastic container, and dissolving an electrolyte compound 0.05 ⁇ 0.10 mol of water volume 70cm 3 Things were added and mixed.
- sample solutions A and B filtration was omitted and 100 cm 3 was immediately collected, and the same operation was performed thereafter.
- sample solutions A and C were also tested in which the solution was suction filtered to solidify the precipitate and in which the precipitate was dried after filtration.
- ammonia water having a concentration of about 15% was added to adjust the pH to 6.5 to 10.2.
- the solution in 19 containers was heated to 90 to 99 ° C., and the solution in 2 containers was kept at room temperature (23 to 25 ° C.) for 1 or 2 hours, then cooled to room temperature and adjusted to pH 6 with aqueous ammonia. Adjusted to .5 to 10.1.
- the precipitate (silicic acid) on the filter paper was thoroughly washed with water, and then transferred to a platinum crucible together with the filter paper. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (silicon dioxide) was measured. Test conditions and measurement results are shown in Table 2. Note that the SiO 2 recovery in the table shows the percentage of SiO 2 weight measurement for the weight when the silicon of the dissolved glass or metal silicon Motochu is all recovered as SiO 2.
- test numbers 4 and 18 had initial and final pH less than 9 and test numbers 5 and 19 were not heated after the addition of ammonia
- test numbers 10 and 20 were potassium hexafluorosilicates separated by suction filtration. Since the precipitate solidified, Test Nos. 11 and 21 dried the separated precipitate of potassium hexafluorosilicate, and therefore, no SiO 2 powder was obtained. The reason why the SiO 2 recovery rate of Test No. 8 was slightly lower than that of Test Nos. 3, 6 and 7 was presumed to be that the solubility of the produced sodium hexafluorosilicate was higher than that of potassium salt or rubidium salt.
- the reason why the SiO 2 recovery rate of Test No. 8 was slightly lower than that of Test Nos. 3, 6 and 7 was presumed to be that the solubility of the produced sodium hexafluorosilicate was higher than that of potassium salt or rubidium salt.
- the recovery rate under optimum conditions reached 95% or more, whereas in the case of glass, it was less than 82%. This is presumably because alkali metal elements, alkaline earth metal elements, aluminium, and the like contained in the glass formed hexafluorosilicate and deposited, and were removed when the insoluble materials were separated.
- insoluble materials when the material to be dissolved was glass contained a large amount of calcium fluoride, barium sulfate, lead sulfate and the like in addition to hexafluorosilicate.
- the solutions of Test Nos. 3, 13 and 17 were made of glass. It was transferred to a container, and air and water vapor at around 100 ° C. were blown in for about 1 hour while heating to around 100 ° C. with a heater. After cooling to room temperature, the pH of each solution was measured (measured value 7.2), diluted to 1 dm 3 accurately with water, and then the ammonium ion concentration was measured by the Nessler method.
- the filtrate after filtering and separating the calcium fluoride precipitate is put into the cell 31 of the apparatus having the same structure as that shown in FIG. 9.
- the cell 32 is pure water
- the cell 33 is sulfuric acid having a concentration of 100 g / dm 3 .
- a DC voltage of 3.2 V was applied between the anode 25 (titanium plate coated with iridium oxide) and the cathode 26 (nickel plate). Hold for 2 hours.
- the cation exchange membranes 27-1 and 27-2 are used as Neoceptor CM-1 manufactured by Tokuyama Corporation, and the same AM-1 is used as the anion exchange membrane 28. It was.
- the hydrofluoric acid concentration in the aqueous solution in the cell 32 was quantitatively analyzed by acetylacetone iron complex absorptiometry, and the amount of hydrogen fluoride produced by the electrodialysis treatment was calculated.
- all silicon in the aliquot of dissolved material becomes potassium hexafluorosilicate, all of which is converted to potassium fluoride, and 200/1000 of that is recovered as hydrogen fluoride by electrodialysis.
- the calculated theoretical value and the percentage of the measured value with respect to the theoretical value (recovery rate) were calculated. These numerical values are shown together in Table 3.
- the solution was filtered using filter paper, and the precipitate (hexafluorotitanate) on the filter paper was washed into water and transferred to a plastic container.
- Water was added to the precipitate to adjust the liquid volume to about 700 cm 3 , and then aqueous ammonia having a concentration of about 15% was added to adjust the pH to 6.5 to 10.2.
- the solution in 13 containers was heated to 90-99 ° C., and the solution in 1 container was kept at room temperature (25 ° C.) for 1 or 2 hours, then cooled to room temperature, and the pH was adjusted to 6.5 with aqueous ammonia. Adjusted to ⁇ 10.1.
- the precipitate (titanium hydroxide) on the filter paper was thoroughly washed with water, and then transferred to a platinum crucible together with the filter paper. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (titanium dioxide) was measured. Test conditions and measurement results are shown in Table 5. Note that the TiO 2 recovery in the table shows the percentage of TiO 2 weight measurement for the weight of the case of titanium in the sample solution 100 cm 3 is all recovered as TiO 2.
- Test No. 4 had an initial and final pH of less than 9, and Test No. 5 was not heated after the addition of ammonia, the TiO 2 recovery rate was significantly lower in both cases. Moreover, the TiO 2 recovery rates of Test Nos. 7 and 8 were lower than those of Test Nos. 3 and 6 because the solubility of the produced sodium hexafluorotitanate and ammonium hexafluorotitanate was higher than that of potassium salt and rubidium salt. Is presumed to be the cause.
- the TiO 2 recovery rate of Test No. 9 was lower than that of Test No. 10, whereas the latter added 0.30 mol of hydrofluoric acid so that the F / Ti molar ratio was 6 or more, Since the former was not added, it is estimated that the F / Ti molar ratio was 6 or less.
- the reason why the TiO 2 recovery rate of Test No. 11 was relatively low is assumed to be due to the same reason.
- the TiO 2 recovery rate of Test Nos. 12 and 13 exceeded 100% because the recovered TiO 2 contained impurities (mainly oxides of aluminum), and the TiO 2 recovery rate of Test No. 14 Is estimated to be about 12% because the addition of nitric acid was omitted.
- the nickel container was placed on the container support of the thermal decomposition apparatus having the structure shown in FIG. 8 and set in the heating section of the heating tube, and then the heating tube was heated to 900 ° C. using an electric furnace.
- argon gas was fed from the carrier gas feed pipe, and silicon tetrafluoride or titanium tetrafluoride gas generated by the pyrolysis reaction was sent to the condenser and the absorbing solution.
- the condenser was water-cooled from the outside so that the inner surface temperature was about 50 to 100 ° C., and pure water was used as the absorbent.
- the heating tube was turned off and allowed to cool to room temperature.
- the condenser was removed from the thermal decomposition apparatus, the valve was opened, 500 cm 3 of pure water was injected from the water injection tube, and the condensed titanium tetrafluoride was dissolved while gently shaking.
- the absorption solution in which silicon tetrafluoride has been absorbed and the solution in which titanium tetrafluoride is dissolved are transferred to separate containers, respectively, and a solution in which the inner surface of the absorption liquid container or the condenser inner surface is washed with about 100 cm 3 of pure water, and After adding pure water to adjust the liquid volume to about 700 cm 3 , ammonia water having a concentration of about 14% was added to adjust the pH of the solution to 6.3 to 10.2.
- the solution in 18 containers was heated to 90-99 ° C., the solution in 2 containers was kept at room temperature (25 ° C.) for 1 or 2 hours, then cooled to room temperature, and the pH was adjusted to 6.5 with aqueous ammonia. Adjusted to ⁇ 10.1.
- the mixture was filtered using filter paper, and the precipitate (silicic acid or titanium dioxide) on the filter paper was thoroughly washed with water, and then transferred together with the filter paper into a platinum crucible. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (silicon dioxide or titanium dioxide) was measured. Test conditions and measurement results are shown in Tables 7-9. Note that the SiO 2 recovery in the table shows the percentage of SiO 2 recovery amount with respect to the weight of the case of silicon of dissolved glass or metal silicon Motochu is all recovered as SiO 2. Similarly, the TiO 2 recovery shows the percentage of TiO 2 recovery amount with respect to the weight of the case of titanium dissolved titanium or a titanium alloy is all recovered as TiO 2.
- sample solution A the material to be dissolved is glass
- metal silicon sample solution B
- the thermal decomposition treatment was omitted for comparison. That is, potassium hexafluorosilicate and / or potassium hexafluorotitanate separated by filtration is transferred to a plastic container, mixed with about 700 cm 3 of water, and then added with aqueous ammonia having a concentration of about 14%. The pH of the solution was adjusted to 9 or higher. Thereafter, the solution in the container was kept at 90 ° C. for 2 hours, then cooled to room temperature, and the pH was adjusted to 9 or more with aqueous ammonia.
- the mixture was filtered using filter paper, and the precipitate (silicic acid or / and titanium hydroxide) on the filter paper was thoroughly washed with water, and then transferred together with the filter paper into a platinum crucible.
- the product was cooled in a drier and the weight of the fired product (silicon dioxide and / or titanium dioxide) was measured.
- the obtained SiO 2 recovery amount and / or TiO 2 recovery amount showed a higher numerical value than when the thermal decomposition treatment was performed. In the case of test number 20, silicon dioxide and titanium dioxide could not be separated and recovered.
- Table 10 shows the results of analyzing the aluminum and potassium contents contained in silicon dioxide or titanium dioxide recovered by the tests of Test Nos. 4, 5, 16, and 17 by ICP emission spectroscopy.
- the recovered silicon dioxide contained 0.6 mass% of potassium.
- the silicon dioxide recovered in the test of test number 4 in which the pyrolysis process was performed was used.
- the potassium content was less than 0.1 mass%.
- the titanium dioxide recovered in the test No. 17 omitting the thermal decomposition treatment contained 3.1 mass% aluminum and 0.1 mass% potassium, but the test No. 16 in which the thermal decomposition treatment was performed.
- the aluminum and potassium contents of the titanium dioxide recovered in step 1 were both less than 0.1 mass%.
- the method for recovering silicon, titanium and fluorine according to the present invention can be used to significantly reduce the cost of melting glass, metal silicon, titanium and a titanium alloy using an aqueous solution containing hydrofluoric acid. It is also highly likely to be used for industrial waste reduction and resource saving.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- Hydrology & Water Resources (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicon Compounds (AREA)
Abstract
The hexafluorosilicic acid salt or hexafluorotitanic acid salt produced in a regeneration treatment of an aqueous solution containing hydrofluoric acid is converted to a versatile substance to expand applications and increase use amount. The hexafluorosilicic acid salt or hexafluorotitanic acid salt is pyrolyzed to produce silicon tetrafluoride or titanium tetrafluoride, and the tetrafluoride is reacted with water and ammonia to turn the tetrafluoride into a precipitate of either silicic acid or titanium hydroxide. Alternatively, these salts are directly reacted with water and ammonia to turn each salt into a precipitate of either silicic acid or titanium hydroxide. The precipitate is heated/burned to yield silicon dioxide or titanium dioxide. An alkali is added to the aqueous solution resulting from the separation of the precipitate, and the resultant mixture is distilled to obtain ammonia water and the fluoride of an alkaline earth metal. The aqueous solution obtained by the distillation is subjected to electrodialysis or ion exchange to obtain hydrofluoric acid and an alkali.
Description
本発明は、けい素または/およびチタンのふっ化物を含む水溶液から、けい素、チタンおよびふっ素を回収するための方法に関するものである。
The present invention relates to a method for recovering silicon, titanium and fluorine from an aqueous solution containing silicon and / or titanium fluoride.
ふっ化水素酸はけい酸塩ガラス(すなわち、けい酸塩を主成分とするガラス:以後、単に、ガラスと呼ぶ)のエッチング加工や表面洗浄のために利用されている。これらの処理においては、ガラスの主成分である二酸化けい素(SiO2)がふっ化水素酸(HF)と下記の(1)式のように反応して溶解し、ヘキサフルオロけい酸(H2SiF6)と水(H2O)を生成する。
SiO2+6HF→H2SiF6+2H2O (1)式 Hydrofluoric acid is used for etching processing and surface cleaning of silicate glass (that is, silicate-based glass: hereinafter simply referred to as glass). In these treatments, silicon dioxide (SiO 2 ), which is the main component of glass, reacts and dissolves with hydrofluoric acid (HF) as shown in the following formula (1) to form hexafluorosilicic acid (H 2 SiF 6 ) and water (H 2 O) are produced.
SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (1) Formula
SiO2+6HF→H2SiF6+2H2O (1)式 Hydrofluoric acid is used for etching processing and surface cleaning of silicate glass (that is, silicate-based glass: hereinafter simply referred to as glass). In these treatments, silicon dioxide (SiO 2 ), which is the main component of glass, reacts and dissolves with hydrofluoric acid (HF) as shown in the following formula (1) to form hexafluorosilicic acid (H 2 SiF 6 ) and water (H 2 O) are produced.
SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (1) Formula
従って、ガラスを溶解するために用いた水溶液中のふっ化水素酸の濃度は、ガラスの溶解量が増すにつれて低下し、水溶液の溶解能力も低下する。そこで、この溶解能力を回復させるための方法が研究された結果、例えば、特開2000-72482号公報や特表2005-534595号公報には、ふっ化物等の電解質を添加して溶解能力を回復させる方法が開示されている。
Therefore, the concentration of hydrofluoric acid in the aqueous solution used to dissolve the glass decreases as the amount of glass dissolved increases, and the dissolving ability of the aqueous solution also decreases. Therefore, as a result of research on a method for recovering the dissolving ability, for example, in JP-A-2000-72482 and JP-T-2005-534595, an electrolyte such as fluoride is added to restore the dissolving ability. Is disclosed.
これらの方法によれば、例えば、ふっ化物としてふっ化カリウム(KF)を用いた場合には、ガラスの溶解によって生成したヘキサフルオロけい酸が、下記の(2)式の反応により、難溶性のヘキサフルオロけい酸カリウム(K2SiF6)の沈殿として除かれ、同時にふっ化水素酸が生成するので、水溶液のガラス溶解能力は回復する。
H2SiF6+2KF→K2SiF6+2HF (2)式 According to these methods, for example, when potassium fluoride (KF) is used as the fluoride, hexafluorosilicic acid produced by melting the glass is hardly soluble by the reaction of the following formula (2). Since it is removed as a precipitate of potassium hexafluorosilicate (K 2 SiF 6 ) and hydrofluoric acid is formed at the same time, the glass dissolving ability of the aqueous solution is restored.
H 2 SiF 6 + 2KF → K 2 SiF 6 + 2HF (2) Formula
H2SiF6+2KF→K2SiF6+2HF (2)式 According to these methods, for example, when potassium fluoride (KF) is used as the fluoride, hexafluorosilicic acid produced by melting the glass is hardly soluble by the reaction of the following formula (2). Since it is removed as a precipitate of potassium hexafluorosilicate (K 2 SiF 6 ) and hydrofluoric acid is formed at the same time, the glass dissolving ability of the aqueous solution is restored.
H 2 SiF 6 + 2KF → K 2 SiF 6 + 2HF (2) Formula
しかし、上記の方法により副産物として生成するヘキサフルオロけい酸カリウムは、エナメルの製造や防腐剤としての用途はあるものの、その必要量は多くないので、ガラスのエッチングや洗浄工程から大量に生成した場合には、その一部しか消費できない。さらに、ヘキサフルオロけい酸カリウムは有毒物質なので、公害を発生させることなく廃棄するには、多大のコストを要する。
However, potassium hexafluorosilicate produced as a by-product by the above method is used as an enamel or as a preservative, but its amount is not so large, so when it is produced in large quantities from glass etching and cleaning processes Can only consume part of it. Furthermore, since potassium hexafluorosilicate is a toxic substance, it requires a great deal of cost to be disposed of without causing pollution.
一方、半導体製造産業のシリコンウエーハ製造工程においては、硝酸、ふっ化水素酸および酢酸の混酸を用いた、化学的なエッチングが行なわれている。この場合には、シリコン(Si)が混酸中のふっ化水素酸および硝酸(HNO3)と下記の(3)式のように反応して溶解し、ヘキサフルオロけい酸、亜硝酸(HNO2)および水を生成するので、シリコンウエーハをエッチングするために用いた混酸中のふっ化水素酸および硝酸の濃度は、シリコンの溶解量が増すにつれて低下し、混酸の溶解能力も低下する。
Si+6HF+2HNO3→H2SiF6+2HNO2+2H2O (3)式 On the other hand, in Shirikon'u et Doha manufacturing steps of the semiconductor manufacturing industry, nitric acid, was used mixed acid of hydrofluoric acid and acetic acid, chemical etching is performed. In this case, silicon (Si) reacts with hydrofluoric acid and nitric acid (HNO 3 ) in the mixed acid as shown in the following formula (3) to dissolve, and hexafluorosilicic acid, nitrous acid (HNO 2 ) and because it produces a water fluoride concentrations of hydrochloric acid and nitric acid in a mixed acid used to etch the Shirikon'u error over Ha, decreases as the dissolved amount of silicon is increased, also reduced dissolution ability of the mixed acid.
Si + 6HF + 2HNO 3 → H 2 SiF 6 + 2HNO 2 + 2H 2 O (3) Formula
Si+6HF+2HNO3→H2SiF6+2HNO2+2H2O (3)式 On the other hand, in Shirikon'u et Doha manufacturing steps of the semiconductor manufacturing industry, nitric acid, was used mixed acid of hydrofluoric acid and acetic acid, chemical etching is performed. In this case, silicon (Si) reacts with hydrofluoric acid and nitric acid (HNO 3 ) in the mixed acid as shown in the following formula (3) to dissolve, and hexafluorosilicic acid, nitrous acid (HNO 2 ) and because it produces a water fluoride concentrations of hydrochloric acid and nitric acid in a mixed acid used to etch the Shirikon'u error over Ha, decreases as the dissolved amount of silicon is increased, also reduced dissolution ability of the mixed acid.
Si + 6HF + 2HNO 3 → H 2 SiF 6 + 2HNO 2 + 2H 2 O (3) Formula
従来は、この混酸廃液の溶解能力を回復させる処理は行なわずに、アルカリによる中和処理後に廃棄しているので、中和スラジの埋め立て処理や排水処理のために多大の費用を要する。そこで、本発明者が、アルカリによる中和処理の代わりに、ふっ化物等の電解質を添加する処理を行なったところ、混酸の溶解能力が回復することがわかった。
Conventionally, the treatment for recovering the dissolving ability of the mixed acid waste liquid is not performed and the waste is disposed after the neutralization treatment with an alkali. Then, when this inventor performed the process which adds electrolytes, such as a fluoride, instead of the neutralization process by an alkali, it turned out that the melt | dissolution ability of mixed acid recovers.
例えば、電解質としてふっ化カリウムを用いた場合には、上記の(3)式の反応で生成したヘキサフルオロけい酸が(2)式の反応によってヘキサフルオロけい酸カリウムとして析出し、同時にふっ化水素酸が生成するものと推測される。このようにして溶解能力の回復した混酸は、チタンやステンレス鋼の酸洗のために利用できることを本発明者は見出し
た。 For example, when potassium fluoride is used as the electrolyte, hexafluorosilicate produced by the reaction of the above formula (3) is precipitated as potassium hexafluorosilicate by the reaction of the formula (2), and at the same time, hydrogen fluoride. It is assumed that an acid is generated. The present inventor has found that the mixed acid whose melting ability has been recovered in this way can be used for pickling of titanium and stainless steel.
た。 For example, when potassium fluoride is used as the electrolyte, hexafluorosilicate produced by the reaction of the above formula (3) is precipitated as potassium hexafluorosilicate by the reaction of the formula (2), and at the same time, hydrogen fluoride. It is assumed that an acid is generated. The present inventor has found that the mixed acid whose melting ability has been recovered in this way can be used for pickling of titanium and stainless steel.
一方、金属チタン(以後、単にチタンと呼ぶ)の板等の製造工程においては、硝酸とふっ化水素酸の混酸(以後、硝ふっ酸と呼ぶ)またはふっ化水素酸による酸洗が行なわれている。硝ふっ酸による酸洗の場合には、チタンは4価のふっ化物として溶解し、硝酸を含まないふっ化水素酸の水溶液で酸洗した場合には3価のふっ化物として溶解する。
On the other hand, in the production process of a plate of metal titanium (hereinafter simply referred to as titanium), pickling with a mixed acid of nitric acid and hydrofluoric acid (hereinafter referred to as nitric hydrofluoric acid) or hydrofluoric acid is performed. Yes. In the case of pickling with nitric hydrofluoric acid, titanium dissolves as a tetravalent fluoride, and when it is pickled with an aqueous solution of hydrofluoric acid not containing nitric acid, it dissolves as a trivalent fluoride.
また、チタン合金はチタンの外にアルミニウム、バナジウム、すず、パラジウムなどの金属を含む合金であるが、組成としては大部分がチタンなので、硝ふっ酸やふっ化水素酸による酸洗が可能であり、純チタンの場合と同様に、チタンは4価や3価のふっ化物として溶解する。
Titanium alloys are alloys containing metals such as aluminum, vanadium, tin, and palladium in addition to titanium, but most of the composition is titanium, so pickling with nitric hydrofluoric acid or hydrofluoric acid is possible. As in the case of pure titanium, titanium dissolves as a tetravalent or trivalent fluoride.
以上のように、チタンやチタン合金を硝ふっ酸やふっ化水素酸で酸洗することにより、硝酸やふっ化水素酸が消費されるので、酸洗処理量が増すにつれて酸洗能力が低下する。そこで、新しい酸を追加して酸洗能力を回復させたり、酸洗液の一部または全部に水酸化カルシウム等のアルカリを添加して残存する遊離酸を中和した後、廃棄する処理が行なわれてきた。
As described above, by pickling titanium or titanium alloy with nitric hydrofluoric acid or hydrofluoric acid, nitric acid or hydrofluoric acid is consumed, so the pickling performance decreases as the pickling amount increases. . Therefore, it is possible to recover the pickling ability by adding new acid, or to neutralize the remaining free acid by adding an alkali such as calcium hydroxide to part or all of the pickling solution, and then discarding it. I have been.
ところが、近年は公害防止や省資源の必要性が高まるにつれて、廃酸の有効利用が研究されるようになり、実用化も徐々に進んでいる。本発明者も、かつて、チタンの酸洗に用いた廃酸をアンモニアで中和してチタンを水酸化物の沈殿として回収し、加熱・焼成して二酸化チタンを得る研究を行なった。しかし、この方法によれば、廃酸中の遊離酸がアンモニアによって中和されるので、遊離酸とアンモニアが無駄に消費される。
However, in recent years, as the need for pollution prevention and resource saving increases, the effective use of waste acid has been studied, and its practical application is gradually progressing. The present inventor also conducted research to obtain titanium dioxide by neutralizing waste acid used for the pickling of titanium with ammonia, recovering titanium as a precipitate of hydroxide, and heating and baking. However, according to this method, since the free acid in the waste acid is neutralized by ammonia, the free acid and ammonia are wasted.
そこで、本発明者は、チタンのふっ化物を含む水溶液をアンモニアのようなアルカリで中和することなく、酸性のままでチタンを沈殿させる手段を種々検討した。その結果、硝ふっ酸を用いて酸洗した時に溶解したチタンは、通常、その一部または大部分がヘキサフルオロチタン酸(H2TiF6)として含まれているので、これに適当な電解質または陽イオンを反応させることにより、ヘキサフルオロチタン酸塩として析出させることができることを見出した。
Therefore, the present inventor has studied various means for precipitating titanium while maintaining the acidity without neutralizing the aqueous solution containing the fluoride of titanium with an alkali such as ammonia. As a result, the titanium dissolved when pickled with nitric hydrofluoric acid is usually contained in part or in large part as hexafluorotitanic acid (H 2 TiF 6 ). It has been found that it can be precipitated as hexafluorotitanate by reacting with a cation.
例えば、電解質としてふっ化カリウム(KF)や硝酸カリウム(KNO3)を用いた場合には、下記の(4)式や(5)式の反応により、チタンはヘキサフルオロチタン酸カリウム(K2TiF6)として析出する。また、この析出反応によって、ふっ化水素(HF)や硝酸(HNO3)が生み出されるので、チタンの酸洗能力が高まる。
H2TiF6+2KF→K2TiF6+2HF (4)式
H2TiF6+2KNO3→K2TiF6+2HNO3 (5)式 For example, when potassium fluoride (KF) or potassium nitrate (KNO 3 ) is used as the electrolyte, titanium is converted to potassium hexafluorotitanate (K 2 TiF 6 ) by the reaction of the following formulas (4) and (5). ). Moreover, since the hydrogen fluoride (HF) and nitric acid (HNO 3 ) are produced by this precipitation reaction, the pickling ability of titanium is enhanced.
H 2 TiF 6 + 2KF → K 2 TiF 6 + 2HF (4) Formula H 2 TiF 6 + 2KNO 3 → K 2 TiF 6 + 2HNO 3 (5)
H2TiF6+2KF→K2TiF6+2HF (4)式
H2TiF6+2KNO3→K2TiF6+2HNO3 (5)式 For example, when potassium fluoride (KF) or potassium nitrate (KNO 3 ) is used as the electrolyte, titanium is converted to potassium hexafluorotitanate (K 2 TiF 6 ) by the reaction of the following formulas (4) and (5). ). Moreover, since the hydrogen fluoride (HF) and nitric acid (HNO 3 ) are produced by this precipitation reaction, the pickling ability of titanium is enhanced.
H 2 TiF 6 + 2KF → K 2 TiF 6 + 2HF (4) Formula H 2 TiF 6 + 2KNO 3 → K 2 TiF 6 + 2HNO 3 (5)
一方、硝酸を含まないふっ化水素酸の水溶液でチタンの酸洗が行なわれる場合には、前述のように、チタンは3価のふっ化物(TiF3)として溶解しているので、これを酸化して4価のチタンに変える必要がある。そのための酸化剤としては、種々のものが利用できるが、例えば、硝酸や酸素(O2)を用いた場合には、下記の(6)式や(7)式の反応によってヘキサフルオロチタン酸が生成すると推測される。
2TiF3+HNO3+6HF→2H2TiF6+HNO2+H2O (6)式
4TiF3+O2+12HF→4H2TiF6+2H2O (7)式 On the other hand, when the pickling of titanium is performed with an aqueous solution of hydrofluoric acid that does not contain nitric acid, titanium is dissolved as a trivalent fluoride (TiF 3 ) as described above. Therefore, it is necessary to change to tetravalent titanium. For this purpose, various oxidizing agents can be used. For example, when nitric acid or oxygen (O 2 ) is used, hexafluorotitanic acid is produced by the reaction of the following formulas (6) and (7). Presumed to be generated.
2TiF 3 + HNO 3 + 6HF → 2H 2 TiF 6 + HNO 2 + H 2 O (6) Formula 4TiF 3 + O 2 + 12HF → 4H 2 TiF 6 + 2H 2 O (7) Formula
2TiF3+HNO3+6HF→2H2TiF6+HNO2+H2O (6)式
4TiF3+O2+12HF→4H2TiF6+2H2O (7)式 On the other hand, when the pickling of titanium is performed with an aqueous solution of hydrofluoric acid that does not contain nitric acid, titanium is dissolved as a trivalent fluoride (TiF 3 ) as described above. Therefore, it is necessary to change to tetravalent titanium. For this purpose, various oxidizing agents can be used. For example, when nitric acid or oxygen (O 2 ) is used, hexafluorotitanic acid is produced by the reaction of the following formulas (6) and (7). Presumed to be generated.
2TiF 3 + HNO 3 + 6HF → 2H 2 TiF 6 + HNO 2 + H 2 O (6) Formula 4TiF 3 + O 2 + 12HF → 4H 2 TiF 6 + 2H 2 O (7) Formula
前記の(4)式や(5)式の反応によって生成するヘキサフルオロチタン酸カリウムは、毒性を利用した用途等はあるものの、必要量は多くないので、チタンやチタン合金の酸洗工程から大量に生成した場合には、その一部しか消費できない。さらに、ヘキサフルオロ
チタン酸カリウムは有毒物質なので、公害を発生させることなく廃棄するには、多大のコストを要する。 Although potassium hexafluorotitanate produced by the reaction of the above formulas (4) and (5) is used for toxicity, etc., it is not necessary, so a large amount from the pickling process of titanium or titanium alloy. However, only a part of it can be consumed. Furthermore, since potassium hexafluorotitanate is a toxic substance, it requires a great deal of cost to be disposed of without causing pollution.
チタン酸カリウムは有毒物質なので、公害を発生させることなく廃棄するには、多大のコストを要する。 Although potassium hexafluorotitanate produced by the reaction of the above formulas (4) and (5) is used for toxicity, etc., it is not necessary, so a large amount from the pickling process of titanium or titanium alloy. However, only a part of it can be consumed. Furthermore, since potassium hexafluorotitanate is a toxic substance, it requires a great deal of cost to be disposed of without causing pollution.
そこで、本発明が解決しようとする課題は、ふっ化水素酸を含む水溶液でガラス、シリコン、チタン、チタン合金等を溶解した後、電解質や陽イオンを添加することによって生成したヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩を汎用性のある物質に変えて、用途および使用量を拡大することである。
Accordingly, the problem to be solved by the present invention is hexafluorosilicate produced by dissolving glass, silicon, titanium, titanium alloy, etc. in an aqueous solution containing hydrofluoric acid, and then adding an electrolyte or a cation. And hexafluorotitanate is changed to a versatile substance to expand the usage and usage.
本発明者は上記の課題を解決するため、析出させて分離したヘキサフルオロけい酸塩またはヘキサフルオロチタン酸塩を化学的に分解して汎用性のある物質に変える方法を研究した結果、いくつかの方法を見出した。その一つは、これらの塩にアンモニア(NH3)と水を添加して膠状のけい酸(SiO2・nH2O)または水酸化チタン(Ti(OH)4)の沈殿に変え、これらを水溶液から分離して水等で洗浄した後、加熱、焼成して二酸化けい素(SiO2)または二酸化チタン(TiO2)に変える方法である。なお、アンモニアは水溶液またはガスのいずれで添加してもよい。
In order to solve the above problems, the present inventors have studied a method of chemically decomposing and separating hexafluorosilicate or hexafluorotitanate, which has been precipitated and separated, into a versatile substance. I found a way. One of these is the addition of ammonia (NH 3 ) and water to these salts to convert them into precipitates of colloidal silicic acid (SiO 2 .nH 2 O) or titanium hydroxide (Ti (OH) 4 ). Is separated from the aqueous solution, washed with water, etc., and then heated and baked to change to silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ). Ammonia may be added either as an aqueous solution or as a gas.
アルカリ金属としてカリウムを用いた場合の一連の反応は下記の(8)~(11)式によると推測される(ただし、n=0.5~1.0)。
K2SiF6+4NH3+4H2O→SiO2・nH2O+2KF+4NH4F
+(2-n)H2O (8)式
K2TiF6+4NH3+4H2O→Ti(OH)4+2KF+4NH4F (9)式
SiO2・nH2O→SiO2+nH2O (10)式
Ti(OH)4→TiO2+2H2O (11)式 A series of reactions when potassium is used as the alkali metal is presumed to be according to the following formulas (8) to (11) (where n = 0.5 to 1.0).
K 2 SiF 6 + 4NH 3 + 4H 2 O → SiO 2 .nH 2 O + 2KF + 4NH 4 F
+ (2-n) H 2 O (8) Formula K 2 TiF 6 + 4NH 3 + 4H 2 O → Ti (OH) 4 + 2KF + 4NH 4 F (9) Formula SiO 2 · nH 2 O → SiO 2 + nH 2 O (10) Formula Ti (OH) 4 → TiO 2 + 2H 2 O (11) Formula
K2SiF6+4NH3+4H2O→SiO2・nH2O+2KF+4NH4F
+(2-n)H2O (8)式
K2TiF6+4NH3+4H2O→Ti(OH)4+2KF+4NH4F (9)式
SiO2・nH2O→SiO2+nH2O (10)式
Ti(OH)4→TiO2+2H2O (11)式 A series of reactions when potassium is used as the alkali metal is presumed to be according to the following formulas (8) to (11) (where n = 0.5 to 1.0).
K 2 SiF 6 + 4NH 3 + 4H 2 O → SiO 2 .nH 2 O + 2KF + 4NH 4 F
+ (2-n) H 2 O (8) Formula K 2 TiF 6 + 4NH 3 + 4H 2 O → Ti (OH) 4 + 2KF + 4NH 4 F (9) Formula SiO 2 · nH 2 O → SiO 2 + nH 2 O (10) Formula Ti (OH) 4 → TiO 2 + 2H 2 O (11) Formula
上記の(8)式および(9)式に示したように、ヘキサフルオロけい酸カリウムに含まれるけい素は膠状のけい酸として沈殿し、ヘキサフルオロチタン酸カリウムに含まれるチタンは水酸化チタンとして沈殿する。同時に、ふっ素およびカリウムはふっ化カリウム(KF)またはふっ化アンモニウム(NH4F)となって水溶液中に溶解するので、ろ過等の方法によってけい酸または水酸化チタンを水溶液から分離することができる。そして、分離したけい酸または水酸化チタンは、水等で洗浄した後、加熱、焼成することによって二酸化けい素または二酸化チタンに変えることができる。二酸化けい素はガラスの原料やゴム等への添加剤、二酸化チタンは白色顔料や光触媒などの用途に再利用することができる。
As shown in the above formulas (8) and (9), silicon contained in potassium hexafluorosilicate precipitates as glued silicic acid, and titanium contained in potassium hexafluorotitanate is titanium hydroxide. As precipitate. At the same time, since fluorine and potassium are converted into potassium fluoride (KF) or ammonium fluoride (NH 4 F) and dissolved in the aqueous solution, silicic acid or titanium hydroxide can be separated from the aqueous solution by a method such as filtration. . The separated silicic acid or titanium hydroxide can be changed into silicon dioxide or titanium dioxide by washing with water or the like and then heating and baking. Silicon dioxide can be reused for additives such as glass raw materials and rubber, and titanium dioxide can be reused for applications such as white pigments and photocatalysts.
一方、けい酸または水酸化チタンを分離した後の水溶液に水酸化カリウム(KOH)のようなアルカリ金属の水酸化物を添加すると、下記の(12)式のように、ふっ化アンモニウムと水酸化カリウムが反応して、ふっ化カリウムとアンモニアが生成する。また、水酸化カリウムの代わりに水酸化カルシウム(Ca(OH)2)のようなアルカリ土類金属の水酸化物を添加すると、下記の(13)式のように、ふっ化アンモニウムと水酸化カルシウムが反応して、ふっ化カルシウム(CaF2)とアンモニアが生成する。
NH4F+KOH→KF+NH3+H2O (12)
2NH4F+Ca(OH)2→CaF2+2NH3+2H2O (13) On the other hand, when an alkali metal hydroxide such as potassium hydroxide (KOH) is added to the aqueous solution after separating silicic acid or titanium hydroxide, ammonium fluoride and hydroxide are expressed as shown in the following formula (12). Potassium fluoride reacts to produce potassium fluoride and ammonia. Further, when an alkaline earth metal hydroxide such as calcium hydroxide (Ca (OH) 2 ) is added instead of potassium hydroxide, ammonium fluoride and calcium hydroxide are expressed as shown in the following formula (13). React to produce calcium fluoride (CaF 2 ) and ammonia.
NH 4 F + KOH → KF + NH 3 + H 2 O (12)
2NH 4 F + Ca (OH) 2 → CaF 2 + 2NH 3 + 2H 2 O (13)
NH4F+KOH→KF+NH3+H2O (12)
2NH4F+Ca(OH)2→CaF2+2NH3+2H2O (13) On the other hand, when an alkali metal hydroxide such as potassium hydroxide (KOH) is added to the aqueous solution after separating silicic acid or titanium hydroxide, ammonium fluoride and hydroxide are expressed as shown in the following formula (12). Potassium fluoride reacts to produce potassium fluoride and ammonia. Further, when an alkaline earth metal hydroxide such as calcium hydroxide (Ca (OH) 2 ) is added instead of potassium hydroxide, ammonium fluoride and calcium hydroxide are expressed as shown in the following formula (13). React to produce calcium fluoride (CaF 2 ) and ammonia.
NH 4 F + KOH → KF + NH 3 + H 2 O (12)
2NH 4 F + Ca (OH) 2 → CaF 2 + 2NH 3 + 2H 2 O (13)
これらの反応によって生成したアンモニアは水蒸気蒸留等の方法で分離・回収し、上記の(8)式または(9)式の反応のために再利用できる。また、(13)式の反応で生成したふっ化カルシウムの沈殿はろ過等の方法で分離して、ふっ化水素酸製造の原料として再利用できる。さらに、上記の(8)式、(9)式、(12)式および(13)式の反応によって生成したけい酸、水酸化チタン、アンモニアおよびふっ化カルシウムを分離した後の水溶液にはふっ化カリウムのみが含まれるので、これを(2)式および(4)式の反応のために再利用できる。
Ammonia produced by these reactions is separated and recovered by a method such as steam distillation and can be reused for the reaction of the above formula (8) or (9). Further, the precipitate of calcium fluoride produced by the reaction of the formula (13) can be separated by a method such as filtration and reused as a raw material for hydrofluoric acid production. Further, the aqueous solution after separation of silicic acid, titanium hydroxide, ammonia and calcium fluoride produced by the reactions of the above formulas (8), (9), (12) and (13) is fluorided. Since only potassium is included, it can be reused for the reactions of formulas (2) and (4).
また、この水溶液を電気透析処理またはイオン交換処理することにより、ふっ化水素酸と水酸化カリウムの水溶液を得ることもできる。これらの処理により、1分子のふっ化カリウムから1分子のふっ化水素と1分子の水酸化カリウムが生成する。得られたふっ化水素の水溶液(すなわち、ふっ化水素酸)はガラスや金属けい素の溶解に再利用することができ、水酸化カリウムは上記の(12)式の反応のために再利用できる。
Further, an aqueous solution of hydrofluoric acid and potassium hydroxide can be obtained by subjecting this aqueous solution to electrodialysis treatment or ion exchange treatment. By these treatments, one molecule of hydrogen fluoride and one molecule of potassium hydroxide are generated from one molecule of potassium fluoride. The obtained aqueous solution of hydrogen fluoride (that is, hydrofluoric acid) can be reused for dissolution of glass and silicon metal, and potassium hydroxide can be reused for the reaction of the above formula (12). .
ヘキサフルオロけい酸塩またはヘキサフルオロチタン酸塩を化学的に分解するための有用な方法として本発明者が見出したもう一つの方法は、これらの塩を加熱することによって分解し、四ふっ化けい素(SiF4)または四ふっ化チタン(TiF4)の気体を発生させる方法である。これらの塩がカリウム塩の場合の分解反応は下記の(14)式または(15)式によると推測される。
K2SiF6→SiF4+2KF (14)
K2TiF6→TiF4+2KF (15) Another method that the present inventors have found as a useful method for chemically decomposing hexafluorosilicate or hexafluorotitanate is by decomposing these salts by heating to tetrafluorosilicate. This is a method of generating a gas of elemental (SiF 4 ) or titanium tetrafluoride (TiF 4 ). The decomposition reaction when these salts are potassium salts is presumed to be according to the following formula (14) or (15).
K 2 SiF 6 → SiF 4 + 2KF (14)
K 2 TiF 6 → TiF 4 + 2KF (15)
K2SiF6→SiF4+2KF (14)
K2TiF6→TiF4+2KF (15) Another method that the present inventors have found as a useful method for chemically decomposing hexafluorosilicate or hexafluorotitanate is by decomposing these salts by heating to tetrafluorosilicate. This is a method of generating a gas of elemental (SiF 4 ) or titanium tetrafluoride (TiF 4 ). The decomposition reaction when these salts are potassium salts is presumed to be according to the following formula (14) or (15).
K 2 SiF 6 → SiF 4 + 2KF (14)
K 2 TiF 6 → TiF 4 + 2KF (15)
発生させた四ふっ化けい素または四ふっ化チタンを水に吸収させると、下記の(16)式または(17)式の反応によってヘキサフルオロけい酸と二酸化けい素またはヘキサフルオロチタン酸と二酸化チタンに変る。次に、これらの溶液にふっ化水素酸を添加し、前記の(1)式の反応によって二酸化けい素をヘキサフルオロけい酸に変え、下記の(18)式の反応によって二酸化チタンをヘキサフルオロチタン酸に変えることができる。
3SiF4+2H2O→2H2SiF6+SiO2 (16)
3TiF4+2H2O→2H2TiF6+TiO2 (17)
TiO2+6HF→H2TiF6+2H2O (18) When the generated silicon tetrafluoride or titanium tetrafluoride is absorbed in water, hexafluorosilicic acid and silicon dioxide or hexafluorotitanic acid and titanium dioxide are reacted by the reaction of the following formula (16) or (17): It turns into. Next, hydrofluoric acid is added to these solutions, silicon dioxide is changed to hexafluorosilicic acid by the reaction of the above formula (1), and titanium dioxide is converted to hexafluorotitanium by the reaction of the following formula (18). Can be converted to acid.
3SiF 4 + 2H 2 O → 2H 2 SiF 6 + SiO 2 (16)
3TiF 4 + 2H 2 O → 2H 2 TiF 6 + TiO 2 (17)
TiO 2 + 6HF → H 2 TiF 6 + 2H 2 O (18)
3SiF4+2H2O→2H2SiF6+SiO2 (16)
3TiF4+2H2O→2H2TiF6+TiO2 (17)
TiO2+6HF→H2TiF6+2H2O (18) When the generated silicon tetrafluoride or titanium tetrafluoride is absorbed in water, hexafluorosilicic acid and silicon dioxide or hexafluorotitanic acid and titanium dioxide are reacted by the reaction of the following formula (16) or (17): It turns into. Next, hydrofluoric acid is added to these solutions, silicon dioxide is changed to hexafluorosilicic acid by the reaction of the above formula (1), and titanium dioxide is converted to hexafluorotitanium by the reaction of the following formula (18). Can be converted to acid.
3SiF 4 + 2H 2 O → 2H 2 SiF 6 + SiO 2 (16)
3TiF 4 + 2H 2 O → 2H 2 TiF 6 + TiO 2 (17)
TiO 2 + 6HF → H 2 TiF 6 + 2H 2 O (18)
ガラスを溶解したふっ化水素酸含有水溶液から析出させたヘキサフルオロけい酸塩は、ガラス中に含まれるアルミニウム、鉄、亜鉛等の金属元素で汚染されることがあるが、上記の熱分解工程を含む処理方法を適用することによって、不純物の少ないヘキサフルオロけい酸が得られる。そこで、得られたヘキサフルオロけい酸の水溶液に電解質や陽イオンを添加すれば、例えば、前記の(2)式の反応によって、アルミニウム等を含まないヘキサフルオロけい酸カリウムを析出させることができる。
Hexafluorosilicate precipitated from a hydrofluoric acid-containing aqueous solution in which glass is dissolved may be contaminated by metal elements such as aluminum, iron, and zinc contained in the glass. By applying the treatment method including, hexafluorosilicic acid with less impurities can be obtained. Therefore, if an electrolyte or a cation is added to the obtained aqueous solution of hexafluorosilicate, potassium hexafluorosilicate that does not contain aluminum or the like can be precipitated, for example, by the reaction of the above formula (2).
また、アルミニウムなどを多量に含むチタン合金を酸洗した硝ふっ酸水溶液から析出させたヘキサフルオロチタン酸塩は、アルミニウム等の元素で汚染されることがあるが、上記の熱分解工程を含む処理方法を適用することによって不純物の少ないヘキサフルオロチタン酸が得られる。そこで、得られたヘキサフルオロチタン酸の水溶液に電解質や陽イオンを添加すれば、例えば、前記の(4)式の反応によって、アルミニウム等を含まないヘキサフルオロチタン酸カリウムを析出させることができる。
In addition, hexafluorotitanate precipitated from an aqueous solution of nitric hydrofluoric acid obtained by pickling a titanium alloy containing a large amount of aluminum may be contaminated with elements such as aluminum. By applying the method, hexafluorotitanic acid with less impurities can be obtained. Therefore, if an electrolyte or a cation is added to the obtained aqueous solution of hexafluorotitanate, for example, potassium hexafluorotitanate that does not contain aluminum or the like can be precipitated by the reaction of the above formula (4).
これらの高純度のヘキサフルオロけい酸カリウムまたはヘキサフルオロチタン酸カリウムの沈殿を水溶液から分離した後、アンモニアと水を添加し、前記の(8)式または(9)式の反応によって膠状のけい酸または水酸化チタンに変え、さらに、これらを水溶液か
ら分離した後、加熱・焼成することにより、前記の(10)式または(11)式の反応によって高純度の二酸化けい素または高純度の二酸化チタンを得ることができる。 These high-purity potassium hexafluorosilicate or potassium hexafluorotitanate precipitates are separated from the aqueous solution, then ammonia and water are added, and a gelatinous silicate is obtained by the reaction of the above formula (8) or (9). By changing to acid or titanium hydroxide, and separating them from the aqueous solution, followed by heating and firing, high purity silicon dioxide or high purity silicon dioxide is obtained by the reaction of the above formula (10) or (11). Titanium can be obtained.
ら分離した後、加熱・焼成することにより、前記の(10)式または(11)式の反応によって高純度の二酸化けい素または高純度の二酸化チタンを得ることができる。 These high-purity potassium hexafluorosilicate or potassium hexafluorotitanate precipitates are separated from the aqueous solution, then ammonia and water are added, and a gelatinous silicate is obtained by the reaction of the above formula (8) or (9). By changing to acid or titanium hydroxide, and separating them from the aqueous solution, followed by heating and firing, high purity silicon dioxide or high purity silicon dioxide is obtained by the reaction of the above formula (10) or (11). Titanium can be obtained.
一方、前記の(14)式または(15)式の反応によって発生させた四ふっ化けい素または四ふっ化チタンを水およびアンモニアと反応させて、膠状のけい酸または水酸化チタンを得ることも可能であり、この場合の反応は下記の(19)式または(20)式によると推測される。
SiF4+4NH3+4H2O→SiO2・nH2O+4NH4F
+(2-n)H2O (19)
TiF4+4NH3+4H2O→Ti(OH)4+4NH4F (20) On the other hand, by reacting silicon tetrafluoride or titanium tetrafluoride generated by the reaction of the above formula (14) or (15) with water and ammonia, a gelatinous silicic acid or titanium hydroxide is obtained. The reaction in this case is presumed to be according to the following formula (19) or (20).
SiF 4 + 4NH 3 + 4H 2 O → SiO 2 .nH 2 O + 4NH 4 F
+ (2-n) H 2 O (19)
TiF 4 + 4NH 3 + 4H 2 O → Ti (OH) 4 + 4NH 4 F (20)
SiF4+4NH3+4H2O→SiO2・nH2O+4NH4F
+(2-n)H2O (19)
TiF4+4NH3+4H2O→Ti(OH)4+4NH4F (20) On the other hand, by reacting silicon tetrafluoride or titanium tetrafluoride generated by the reaction of the above formula (14) or (15) with water and ammonia, a gelatinous silicic acid or titanium hydroxide is obtained. The reaction in this case is presumed to be according to the following formula (19) or (20).
SiF 4 + 4NH 3 + 4H 2 O → SiO 2 .nH 2 O + 4NH 4 F
+ (2-n) H 2 O (19)
TiF 4 + 4NH 3 + 4H 2 O → Ti (OH) 4 + 4NH 4 F (20)
このようにして得られた膠状のけい酸または水酸化チタンを水溶液から分離した後、加熱・焼成することによって高純度の二酸化けい素または高純度の二酸化チタンを得ることができる。また、膠状のけい酸または水酸化チタンを分離した水溶液に水酸化カリウムや水酸化カルシウムを添加し、前記の(12)式や(13)式の反応によって、ふっ化アンモニウムをアンモニアおよびふっ化カリウムまたはふっ化カルシウムに変え、再利用することができる。
After separating the gelatinous silicic acid or titanium hydroxide thus obtained from the aqueous solution, high purity silicon dioxide or high purity titanium dioxide can be obtained by heating and baking. In addition, potassium hydroxide or calcium hydroxide is added to an aqueous solution from which colloidal silicic acid or titanium hydroxide is separated, and ammonium fluoride is converted to ammonia and fluoride by the reaction of the above formulas (12) and (13). It can be changed to potassium or calcium fluoride and reused.
本発明は、以上の検討に基づいて完成した発明であって、後記(1)~(7)のけい素、チタンおよびふっ素の回収方法を要旨としている。
The present invention has been completed on the basis of the above studies, and is summarized in the following methods (1) to (7) for recovering silicon, titanium and fluorine.
(1)ふっ化水素酸を含む水溶液を用いて、けい素または/およびチタンを含む物質を溶解することによって生成したけい素または/およびチタンのふっ化物をヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩として析出させて分離した後、化学的分解工程を含む方法で処理することを特徴とする、けい素、チタンおよびふっ素の回収方法。
(1) Silicon or / and titanium fluoride produced by dissolving a substance containing silicon or / and titanium using an aqueous solution containing hydrofluoric acid is converted to hexafluorosilicate or / and hexafluoro. A method for recovering silicon, titanium and fluorine, characterized by depositing and separating the titanate and then treating it by a method including a chemical decomposition step.
(2)水溶液中のけい素または/およびチタンのふっ化物をヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩として析出させて分離するために、該水溶液を下記工程A~Dで処理することを特徴とする、前記の(1)に記載のけい素、チタンおよびふっ素の回収方法。
(工程A)必要に応じて、該水溶液中に含まれるチタンの原子価を4価に変える工程: (工程B)必要に応じて、該水溶液にふっ化水素または/およびふっ化物を添加する工程:
(工程C)必要に応じて、該水溶液に電解質または/および陽イオンを添加する工程:および
(工程D)前記工程A~Cによって生じた沈殿物を分離する工程。 (2) In order to precipitate and separate silicon and / or titanium fluoride in an aqueous solution as hexafluorosilicate or / and hexafluorotitanate, the aqueous solution is treated in the following steps AD. The method for recovering silicon, titanium and fluorine as described in (1) above.
(Step A) Step of changing the valence of titanium contained in the aqueous solution to tetravalent as necessary: (Step B) Step of adding hydrogen fluoride and / or fluoride to the aqueous solution as necessary :
(Step C) A step of adding an electrolyte or / and a cation to the aqueous solution as required: and (Step D) a step of separating the precipitate generated in the steps A to C.
(工程A)必要に応じて、該水溶液中に含まれるチタンの原子価を4価に変える工程: (工程B)必要に応じて、該水溶液にふっ化水素または/およびふっ化物を添加する工程:
(工程C)必要に応じて、該水溶液に電解質または/および陽イオンを添加する工程:および
(工程D)前記工程A~Cによって生じた沈殿物を分離する工程。 (2) In order to precipitate and separate silicon and / or titanium fluoride in an aqueous solution as hexafluorosilicate or / and hexafluorotitanate, the aqueous solution is treated in the following steps AD. The method for recovering silicon, titanium and fluorine as described in (1) above.
(Step A) Step of changing the valence of titanium contained in the aqueous solution to tetravalent as necessary: (Step B) Step of adding hydrogen fluoride and / or fluoride to the aqueous solution as necessary :
(Step C) A step of adding an electrolyte or / and a cation to the aqueous solution as required: and (Step D) a step of separating the precipitate generated in the steps A to C.
(3)化学的分解工程を含む方法が、下記工程E~Jの一部の工程または全部の工程を含む方法であることを特徴とする、前記の(1)および(2)に記載のけい素、チタンおよびふっ素の回収方法
(工程E)水およびアンモニアを添加する工程:
(工程F)前記工程Eにより生じた沈殿物を分離する工程:
(工程G)前記工程Fにより分離した沈殿物を洗浄した後、加熱、焼成する工程:
(工程H)前記工程Fにより沈殿物を分離した水溶液に、必要に応じて、アルカリ金属の水酸化物、または/およびアルカリ土類金属の水酸化物を添加した後、アンモニアを分離する工程:
(工程I)前記工程Hにより生じた沈殿物を分離する工程:
(工程J)前記工程H、または前記工程HおよびIにより得られた水溶液を電気透析処理またはイオン交換処理する工程。 (3) The method described in (1) and (2) above, wherein the method including the chemical decomposition step is a method including a part or all of the following steps E to J: Method for recovering elemental, titanium and fluorine (Step E) Step of adding water and ammonia:
(Process F) The process of isolate | separating the deposit produced by the said process E:
(Step G) Steps of heating and baking after washing the precipitate separated in Step F:
(Step H) Step of separating ammonia after adding an alkali metal hydroxide or / and an alkaline earth metal hydroxide, if necessary, to the aqueous solution from which the precipitate has been separated in the step F:
(Step I) Step of separating the precipitate generated in the step H:
(Step J) A step of subjecting the aqueous solution obtained in Step H or Steps H and I to an electrodialysis treatment or an ion exchange treatment.
(工程E)水およびアンモニアを添加する工程:
(工程F)前記工程Eにより生じた沈殿物を分離する工程:
(工程G)前記工程Fにより分離した沈殿物を洗浄した後、加熱、焼成する工程:
(工程H)前記工程Fにより沈殿物を分離した水溶液に、必要に応じて、アルカリ金属の水酸化物、または/およびアルカリ土類金属の水酸化物を添加した後、アンモニアを分離する工程:
(工程I)前記工程Hにより生じた沈殿物を分離する工程:
(工程J)前記工程H、または前記工程HおよびIにより得られた水溶液を電気透析処理またはイオン交換処理する工程。 (3) The method described in (1) and (2) above, wherein the method including the chemical decomposition step is a method including a part or all of the following steps E to J: Method for recovering elemental, titanium and fluorine (Step E) Step of adding water and ammonia:
(Process F) The process of isolate | separating the deposit produced by the said process E:
(Step G) Steps of heating and baking after washing the precipitate separated in Step F:
(Step H) Step of separating ammonia after adding an alkali metal hydroxide or / and an alkaline earth metal hydroxide, if necessary, to the aqueous solution from which the precipitate has been separated in the step F:
(Step I) Step of separating the precipitate generated in the step H:
(Step J) A step of subjecting the aqueous solution obtained in Step H or Steps H and I to an electrodialysis treatment or an ion exchange treatment.
(4)化学的分解工程を含む方法が、下記工程K~Oの一部の工程または全部の工程を含む方法であることを特徴とする、前記の(1)および(2)に記載のけい素、チタンおよびふっ素の回収方法
(工程K)四ふっ化けい素または/および四ふっ化チタンが発生する温度以上に加熱する工程:
(工程L)前記工程Kにより生じた気体または/およびそれが凝結して生じた固体をふっ化水素または/およびふっ化物または/および電解質または/および陽イオンを含む水溶液または水に吸収または/および溶解させる工程:
(工程M)必要に応じて、ふっ化水素または/およびふっ化物を添加する工程:
(工程N)必要に応じて、電解質または/および陽イオンを添加する工程:
(工程O)前記の工程L、および必要に応じて行なう工程MおよびNにより生じた沈殿物を分離した後、該沈殿物を前記の(3)の工程E~Jの一部の工程または全部の工程を含む方法で処理する工程。 (4) The method described in (1) and (2) above, wherein the method including the chemical decomposition step is a method including a part or all of the following steps K to O: Method for recovering elemental, titanium and fluorine (step K): heating to a temperature higher than the temperature at which silicon tetrafluoride or / and titanium tetrafluoride is generated:
(Step L) Absorbing and / or absorbing the gas generated by Step K or / and the solid formed by the condensation thereof into an aqueous solution or water containing hydrogen fluoride or / and fluoride or / and electrolyte or / and cation. Step of dissolving:
(Step M) Step of adding hydrogen fluoride or / and fluoride as required:
(Step N) Step of adding electrolyte or / and cation as required:
(Step O) After separating the precipitate generated by the above-mentioned Step L and Steps M and N, which are performed as necessary, the precipitate is partially or entirely of Steps E to J of (3) above. The process processed by the method including the process of.
(工程K)四ふっ化けい素または/および四ふっ化チタンが発生する温度以上に加熱する工程:
(工程L)前記工程Kにより生じた気体または/およびそれが凝結して生じた固体をふっ化水素または/およびふっ化物または/および電解質または/および陽イオンを含む水溶液または水に吸収または/および溶解させる工程:
(工程M)必要に応じて、ふっ化水素または/およびふっ化物を添加する工程:
(工程N)必要に応じて、電解質または/および陽イオンを添加する工程:
(工程O)前記の工程L、および必要に応じて行なう工程MおよびNにより生じた沈殿物を分離した後、該沈殿物を前記の(3)の工程E~Jの一部の工程または全部の工程を含む方法で処理する工程。 (4) The method described in (1) and (2) above, wherein the method including the chemical decomposition step is a method including a part or all of the following steps K to O: Method for recovering elemental, titanium and fluorine (step K): heating to a temperature higher than the temperature at which silicon tetrafluoride or / and titanium tetrafluoride is generated:
(Step L) Absorbing and / or absorbing the gas generated by Step K or / and the solid formed by the condensation thereof into an aqueous solution or water containing hydrogen fluoride or / and fluoride or / and electrolyte or / and cation. Step of dissolving:
(Step M) Step of adding hydrogen fluoride or / and fluoride as required:
(Step N) Step of adding electrolyte or / and cation as required:
(Step O) After separating the precipitate generated by the above-mentioned Step L and Steps M and N, which are performed as necessary, the precipitate is partially or entirely of Steps E to J of (3) above. The process processed by the method including the process of.
(5)化学的分解工程を含む方法が、下記工程P~Vの一部の工程または全部の工程を含む方法であることを特徴とする、前記の(1)および(2)に記載のけい素、チタンおよびふっ素の回収方法
(工程P)四ふっ化けい素または/および四ふっ化チタンが発生する温度以上に加熱する工程:
(工程Q)前記工程Pにより生じた気体または/およびそれが凝結して生じた固体を水およびアンモニアと反応させる工程:
(工程R)前記工程Qにより生じた沈殿物を分離する工程:
(工程S)前記工程Rにより分離した沈殿物を洗浄した後、加熱、焼成する工程:
(工程T)前記工程Rにより沈殿物を分離した水溶液に、必要に応じて、アルカリ金属の水酸化物、または/およびアルカリ土類金属の水酸化物を添加した後、アンモニアを分離する工程:
(工程U)前記工程Tにより生じた沈殿物を分離する工程:
(工程V)前記工程T、または前記工程TおよびUにより得られた水溶液を電気透析処理またはイオン交換処理する工程。 (5) The method described in (1) and (2) above, wherein the method including the chemical decomposition step is a method including a part or all of the following steps P to V. Method for recovering elemental, titanium and fluorine (step P): heating to a temperature higher than the temperature at which silicon tetrafluoride or / and titanium tetrafluoride is generated:
(Step Q) The step of reacting the gas produced in the step P or / and the solid produced by the condensation with water and ammonia:
(Step R) Step of separating the precipitate generated in the step Q:
(Step S) Steps of heating and baking after washing the precipitate separated in the step R:
(Step T) Step of separating ammonia after adding an alkali metal hydroxide and / or an alkaline earth metal hydroxide, if necessary, to the aqueous solution from which the precipitate has been separated in the step R:
(Step U) Step of separating the precipitate generated in the step T:
(Step V) A step of subjecting the aqueous solution obtained by the step T or the steps T and U to an electrodialysis treatment or an ion exchange treatment.
(工程P)四ふっ化けい素または/および四ふっ化チタンが発生する温度以上に加熱する工程:
(工程Q)前記工程Pにより生じた気体または/およびそれが凝結して生じた固体を水およびアンモニアと反応させる工程:
(工程R)前記工程Qにより生じた沈殿物を分離する工程:
(工程S)前記工程Rにより分離した沈殿物を洗浄した後、加熱、焼成する工程:
(工程T)前記工程Rにより沈殿物を分離した水溶液に、必要に応じて、アルカリ金属の水酸化物、または/およびアルカリ土類金属の水酸化物を添加した後、アンモニアを分離する工程:
(工程U)前記工程Tにより生じた沈殿物を分離する工程:
(工程V)前記工程T、または前記工程TおよびUにより得られた水溶液を電気透析処理またはイオン交換処理する工程。 (5) The method described in (1) and (2) above, wherein the method including the chemical decomposition step is a method including a part or all of the following steps P to V. Method for recovering elemental, titanium and fluorine (step P): heating to a temperature higher than the temperature at which silicon tetrafluoride or / and titanium tetrafluoride is generated:
(Step Q) The step of reacting the gas produced in the step P or / and the solid produced by the condensation with water and ammonia:
(Step R) Step of separating the precipitate generated in the step Q:
(Step S) Steps of heating and baking after washing the precipitate separated in the step R:
(Step T) Step of separating ammonia after adding an alkali metal hydroxide and / or an alkaline earth metal hydroxide, if necessary, to the aqueous solution from which the precipitate has been separated in the step R:
(Step U) Step of separating the precipitate generated in the step T:
(Step V) A step of subjecting the aqueous solution obtained by the step T or the steps T and U to an electrodialysis treatment or an ion exchange treatment.
(6)けい素または/およびチタンを含む物質が、金属けい素、けい酸塩ガラス、金属チタン、チタン合金の1種または2種以上であることを特徴とする前記の(1)~(5)に記載のけい素、チタンおよびふっ素の回収方法。
(6) The above-mentioned (1) to (5), wherein the substance containing silicon or / and titanium is one or more of metal silicon, silicate glass, metal titanium and titanium alloy. ) For recovering silicon, titanium and fluorine.
(7)ヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩がカリウム塩であることを特徴とする前記の(1)~(6)に記載のけい素、チタンおよびふっ素の回収方法。
(7) The method for recovering silicon, titanium and fluorine as described in (1) to (6) above, wherein the hexafluorosilicate or / and hexafluorotitanate is a potassium salt.
本発明のけい素、チタンおよびふっ素の分離、回収方法により、ガラスのエッチング加工や表面洗浄、シリコンウエーハのエッチング、あるいは、チタンやチタン合金の酸洗に用いたふっ化水素酸を含む水溶液の廃液を再生して、有効に再利用できるばかりでなく、再生処理の過程で発生する副産物からも、ガラスの原料等として有用な二酸化けい素、白色顔料等として有用な二酸化チタン、ガラス、シリコン、チタン等の溶解等に用いるふっ化水素酸、あるいはふっ化水素酸製造の原料等に使用されるふっ化カルシウムを得ることができる。また、これに伴って、産業廃棄物の発生量が大幅に削減され、環境に対する負荷が軽減されるので、工業的あるいは社会的に大きな効果が得られる。
Silicon of the present invention, the separation of titanium and fluorine, by the recovery method, an aqueous solution containing etching or surface cleaning of the glass, the etching of Shirikon'u et Doha, or hydrofluoric acid used in the pickling of titanium or a titanium alloy Titanium dioxide, glass, silicon, which is useful as a raw material for glass, white pigments, etc., as well as by-products generated during the recycling process. In addition, hydrofluoric acid used for dissolving titanium, etc., or calcium fluoride used as a raw material for producing hydrofluoric acid can be obtained. Further, along with this, the amount of industrial waste generated is greatly reduced, and the burden on the environment is reduced. Therefore, a great industrial and social effect can be obtained.
本発明法において、ガラス、シリコン、チタンおよびチタン合金の溶解に用いる水溶液のふっ化水素酸濃度は、通常、工業的に用いられている濃度でよく、厳密に限定する必要は無い。ただし、けい素やチタンがヘキサフルオロけい酸やヘキサフルオロチタン酸として溶解するためには、1モルのけい素やチタンに対して6モルのふっ化水素が必要なので、これよりふっ化水素酸が不足している場合には、ふっ化水素酸やふっ化物を追加することが望ましい。
In the method of the present invention, the hydrofluoric acid concentration of the aqueous solution used for dissolving glass, silicon, titanium and titanium alloy is usually a concentration used industrially, and does not need to be strictly limited. However, in order for silicon and titanium to dissolve as hexafluorosilicic acid and hexafluorotitanic acid, 6 mol of hydrogen fluoride is required for 1 mol of silicon and titanium. When it is insufficient, it is desirable to add hydrofluoric acid or fluoride.
ガラスの溶解には、ふっ化水素酸のみの水溶液を用いることができるが、その外に硫酸等の酸が含まれてもよい。硫酸はヘキサフルオロけい酸の生成に直接的な影響は及ぼさないが、バリウムや鉛を含むガラスを溶解した場合には、これらが水溶液中の硫酸と反応して難溶性の硫酸塩を生成するので、ふっ化物の生成が抑制され、ふっ化水素酸の消費が節約される。また、電解質や陽イオンを添加してヘキサフルオロけい酸塩を析出させる前に、これらの硫酸塩を分離、除去しておけば、ヘキサフルオロけい酸塩がバリウムや鉛で汚染されるのを防ぐことができる。
In order to dissolve the glass, an aqueous solution containing only hydrofluoric acid can be used, but an acid such as sulfuric acid may be included in addition to the aqueous solution. Sulfuric acid has no direct effect on the formation of hexafluorosilicic acid, but when glass containing barium or lead is dissolved, it reacts with sulfuric acid in aqueous solution to form a poorly soluble sulfate. , The formation of fluoride is suppressed and the consumption of hydrofluoric acid is saved. Also, by separating and removing these sulfates before adding the electrolyte or cation to precipitate the hexafluorosilicate, the hexafluorosilicate is prevented from being contaminated with barium or lead. be able to.
単結晶のシリコンウエーハをエッチングするためには、通常、高濃度(例えば、10~40mass%)のふっ化水素酸、硝酸および酢酸の混酸が使用されるが、多結晶の金属けい素を溶解するためには、必ずしも高濃度の混酸は必要無く、酢酸の添加も必須ではない。これらの酸の濃度や処理温度等の条件は、エッチングや溶解の目的を考慮して、適宜選択すればよい。
To etch the Shirikon'u error Doha single crystal, usually, high concentrations (e.g., 10 ~ 40 mass%) hydrofluoric acid, although mixed acid of nitric acid and acetic acid are used, the polycrystal silicon metal In order to dissolve, a high concentration of mixed acid is not necessarily required, and addition of acetic acid is not essential. Conditions such as the acid concentration and processing temperature may be appropriately selected in consideration of the purpose of etching and dissolution.
チタンやチタン合金の酸洗のためには、硝ふっ酸やふっ化水素酸以外に、ふっ化水素酸と硫酸の混酸を用いることもできる。また、チタン合金の酸洗においては、アルミニウムのふっ化物等が析出することがあるので、電解質を添加してヘキサフルオロチタン酸塩を析出させる前に、これらの不溶解物を分離、除去しておけば、ヘキサフルオロチタン酸塩がアルミニウム等で汚染されるのを防ぐことができる。
For pickling titanium and titanium alloys, a mixed acid of hydrofluoric acid and sulfuric acid can be used in addition to nitric hydrofluoric acid and hydrofluoric acid. Also, in titanium alloy pickling, aluminum fluoride and the like may precipitate, so before adding the electrolyte to precipitate hexafluorotitanate, separate and remove these insolubles. If so, the hexafluorotitanate can be prevented from being contaminated with aluminum or the like.
水溶液中に3価のチタンのふっ化物が含まれる場合には、前述のように、硝酸や酸素のような酸化剤を用いて4価のチタンのふっ化物に変える必要がある。これらの酸化剤の適正
添加量は、溶液の酸化還元電位を指針として決めることが望ましく、酸化還元電位は市販の酸化還元電位計を用いて測定することができる。 When trivalent titanium fluoride is contained in the aqueous solution, as described above, it is necessary to change to tetravalent titanium fluoride using an oxidizing agent such as nitric acid or oxygen. The appropriate addition amount of these oxidizing agents is desirably determined using the redox potential of the solution as a guideline, and the redox potential can be measured using a commercially available redox potential meter.
添加量は、溶液の酸化還元電位を指針として決めることが望ましく、酸化還元電位は市販の酸化還元電位計を用いて測定することができる。 When trivalent titanium fluoride is contained in the aqueous solution, as described above, it is necessary to change to tetravalent titanium fluoride using an oxidizing agent such as nitric acid or oxygen. The appropriate addition amount of these oxidizing agents is desirably determined using the redox potential of the solution as a guideline, and the redox potential can be measured using a commercially available redox potential meter.
水溶液中のチタンのふっ化物をヘキサフルオロチタン酸塩として析出させるために、水溶液中に含まれるチタンの原子価を4価に変える工程、ふっ化水素酸やふっ化物を添加する工程および電解質や陽イオンを添加する工程が必要である場合には、これらの工程をどのような順序で行なってもよいが、もしチタンの原子価を4価に変える工程の反応が進みにくいならば、この工程を最後に行なうのがよい。
In order to precipitate the titanium fluoride in the aqueous solution as hexafluorotitanate, the step of changing the valence of titanium contained in the aqueous solution to tetravalent, the step of adding hydrofluoric acid or fluoride, the electrolyte and the positive If a step of adding ions is necessary, these steps may be performed in any order. If the reaction of the step of changing the valence of titanium to tetravalent is difficult to proceed, this step is performed. This should be done last.
ヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩を析出させるために添加する電解質としては、水への溶解度が大きいアルカリ金属のふっ化物が好適である。アルカリ金属のふっ化物は電解質であると同時にふっ化物でもある。特に、ふっ化カリウムを用いた場合には、溶解度が比較的小さいヘキサフルオロけい酸カリウムやヘキサフルオロチタン酸カリウムが生成するので、水溶液からの分離が比較的容易に実施できる。また、同時にふっ化水素酸が生成するので、ガラス、シリコン、チタンおよびチタン合金の溶解能力が高まる。同様の理由で、ふっ化ルビジウム(RbF)やふっ化セシウム(CsF)も好適に利用できるが、比較的価格が高いのが難点である。
As the electrolyte added to precipitate hexafluorosilicate or hexafluorotitanate, an alkali metal fluoride having a high solubility in water is preferable. Alkali metal fluorides are not only electrolytes but also fluorides. In particular, when potassium fluoride is used, potassium hexafluorosilicate or potassium hexafluorotitanate having a relatively low solubility is generated, so that separation from an aqueous solution can be performed relatively easily. Moreover, since hydrofluoric acid is produced | generated simultaneously, the melt | dissolution capability of glass, a silicon | silicone, titanium, and a titanium alloy increases. For the same reason, rubidium fluoride (RbF) and cesium fluoride (CsF) can also be suitably used, but the price is relatively high.
ふっ化物以外の電解質としては、硫酸を含む水溶液に対しては、硫酸カリウム(K2SO4)、硫酸ルビジウム(Rb2SO4)、硫酸セシウム(Cs2SO4)が好適に利用できる。また、硝酸を含む水溶液に対しては、硝酸カリウム(KNO3)、硝酸ルビジウム(RbNO3)、硝酸セシウム(CsNO3)が好適に利用できる。
As an electrolyte other than fluoride, potassium sulfate (K 2 SO 4 ), rubidium sulfate (Rb 2 SO 4 ), and cesium sulfate (Cs 2 SO 4 ) can be suitably used for an aqueous solution containing sulfuric acid. For aqueous solutions containing nitric acid, potassium nitrate (KNO 3 ), rubidium nitrate (RbNO 3 ), and cesium nitrate (CsNO 3 ) can be preferably used.
これらの化合物以外の電解質としては、例えば、ふっ化ナトリウム(NaF)やふっ化アンモニウム(NH4F)が利用できる。ただし、前者は溶解度がかなり小さいので、ヘキサフルオロけい酸ナトリウム(Na2SiF6)やヘキサフルオロチタン酸ナトリウム(Na2TiF6)と共に析出しないように、添加量を調節する必要がある。また、後者を用いた場合には、生成するヘキサフルオロけい酸アンモニウム((NH4)2SiF6)やヘキサフルオロチタン酸アンモニウム((NH4)2TiF6)の溶解度が大きいので、水溶液からの分離が不完全になりやすい。
As an electrolyte other than these compounds, for example, sodium fluoride (NaF) or ammonium fluoride (NH 4 F) can be used. However, since the former has a considerably low solubility, it is necessary to adjust the addition amount so that it does not precipitate together with sodium hexafluorosilicate (Na 2 SiF 6 ) or sodium hexafluorotitanate (Na 2 TiF 6 ). When the latter is used, the solubility of ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) and ammonium hexafluorotitanate ((NH 4 ) 2 TiF 6 ) is high, Separation tends to be incomplete.
なお、ヘキサフルオロけい酸やヘキサフルオロチタン酸を塩として析出させるためには、理論的には、水素イオン以外の陽イオンが必要であり、電解質を添加することはその一つの手段であるが、それ以外の手段で陽イオンを添加することによって生成したヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩であっても、本発明法によって、けい素、チタンおよびふっ素を分離、回収することができる。
In addition, in order to precipitate hexafluorosilicic acid or hexafluorotitanic acid as a salt, theoretically, a cation other than hydrogen ions is required, and adding an electrolyte is one means. Even in the case of hexafluorosilicate and hexafluorotitanate produced by adding a cation by other means, silicon, titanium and fluorine can be separated and recovered by the method of the present invention.
電解質の適正添加量は電解質の種類や析出するヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩の種類によっても異なるが、ふっ化カリウムを用いてヘキサフルオロけい酸カリウムを析出させる場合には、カリウムとけい素のモル比(K/Siモル比)が3以上で、水溶液中のカリウムの濃度が0.3モル/dm3以上になるようにするのが望ましい。また、ヘキサフルオロチタン酸カリウムを析出させる場合には、カリウムとチタンのモル比(K/Tiモル比)が6以上で、水溶液中のカリウムの濃度が0.6モル/dm3以上になるようにするのが望ましい。ただし、これらの条件に満たない添加量であっても、ヘキサフルオロけい酸カリウムやヘキサフルオロチタン酸カリウムは析出する(析出量は比較的少ない)。また、ふっ化カリウムは1~2mol/dm3程度の濃度の水溶液で添加するのが簡便であるが、水溶液の濃度をなるべく薄めないためには、ふっ化カリウムの薬品で添加して溶解してもよい。
The appropriate amount of electrolyte added depends on the type of electrolyte and the types of hexafluorosilicate and hexafluorotitanate to be precipitated, but when potassium hexafluorosilicate is deposited using potassium fluoride, potassium and silicate are added. It is desirable that the molar ratio (K / Si molar ratio) of the element is 3 or more and the concentration of potassium in the aqueous solution is 0.3 mol / dm 3 or more. When potassium hexafluorotitanate is precipitated, the molar ratio of potassium to titanium (K / Ti molar ratio) is 6 or more and the concentration of potassium in the aqueous solution is 0.6 mol / dm 3 or more. It is desirable to make it. However, even if the addition amount does not satisfy these conditions, potassium hexafluorosilicate or potassium hexafluorotitanate precipitates (the amount of precipitation is relatively small). In addition, it is easy to add potassium fluoride in an aqueous solution having a concentration of about 1 to 2 mol / dm 3 , but in order to reduce the concentration of the aqueous solution as much as possible, it can be added and dissolved with potassium fluoride chemicals. Also good.
析出したヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩を水溶液から分離する方法
としては、通常、工業的に用いられているろ過分離法が適用できる。ただし、ヘキサフルオロけい酸塩は比較的、粘結性が強いので、吸引ろ過等によって強く圧縮すると固形化し、これを水に分散してアンモニアと反応させる工程が円滑に進まなくなる。ろ過以外の固液分離法も適用できるが、析出したヘキサフルオロけい酸塩が固形化しないように分離方法や条件を選ぶ必要がある。 As a method for separating the precipitated hexafluorosilicate or hexafluorotitanate from the aqueous solution, a filtration separation method which is usually used industrially can be applied. However, since hexafluorosilicate has a relatively strong caking property, it solidifies when strongly compressed by suction filtration or the like, and the process of dispersing it in water and reacting with ammonia does not proceed smoothly. Solid-liquid separation methods other than filtration can also be applied, but it is necessary to select a separation method and conditions so that the precipitated hexafluorosilicate is not solidified.
としては、通常、工業的に用いられているろ過分離法が適用できる。ただし、ヘキサフルオロけい酸塩は比較的、粘結性が強いので、吸引ろ過等によって強く圧縮すると固形化し、これを水に分散してアンモニアと反応させる工程が円滑に進まなくなる。ろ過以外の固液分離法も適用できるが、析出したヘキサフルオロけい酸塩が固形化しないように分離方法や条件を選ぶ必要がある。 As a method for separating the precipitated hexafluorosilicate or hexafluorotitanate from the aqueous solution, a filtration separation method which is usually used industrially can be applied. However, since hexafluorosilicate has a relatively strong caking property, it solidifies when strongly compressed by suction filtration or the like, and the process of dispersing it in water and reacting with ammonia does not proceed smoothly. Solid-liquid separation methods other than filtration can also be applied, but it is necessary to select a separation method and conditions so that the precipitated hexafluorosilicate is not solidified.
ヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩を分離した後、適当な洗浄液を用いて洗浄することによって、後の工程で製造される二酸化けい素の純度を高めることができる。ただし、洗浄によってヘキサフルオロけい酸塩が一部溶解するので、溶解による損失を少なくするためには、水で洗浄するより、これらの塩を析出させるために用いた電解質の水溶液で洗浄する方がよい。
After separating hexafluorosilicate or hexafluorotitanate, the purity of silicon dioxide produced in the subsequent step can be increased by washing with an appropriate washing solution. However, since hexafluorosilicate is partly dissolved by washing, in order to reduce the loss due to dissolution, it is better to wash with the aqueous electrolyte solution used to precipitate these salts than to wash with water. Good.
水溶液から分離され、必要に応じて洗浄されたヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩は、前述のように、アンモニアと水で処理することによって化学的に分解することができる。この場合には、これらの塩を適当な容器に移し入れ、水を添加して混合する。添加する水の量は特に厳密に規定する必要はないが、沈殿中のけい素やチタンの重量の200~1000倍程度が適当である。次に、溶液を撹拌しながらアンモニアを添加し、溶液のpHが9以上(望ましくは、10以上)になるように調節する。アンモニアは10~28%の水溶液で添加するのが簡便であるが、後の工程で生成するアンモニアガスを吹き込んでもよい。
Hexafluorosilicate and hexafluorotitanate separated from the aqueous solution and optionally washed can be chemically decomposed by treatment with ammonia and water as described above. In this case, these salts are transferred to a suitable container, and water is added and mixed. The amount of water to be added does not need to be particularly strictly defined, but about 200 to 1000 times the weight of silicon or titanium in the precipitate is appropriate. Next, ammonia is added while stirring the solution, and the pH of the solution is adjusted to 9 or higher (preferably 10 or higher). Ammonia is conveniently added in a 10 to 28% aqueous solution, but ammonia gas generated in a later step may be blown.
アンモニアを添加して混合した後、溶液を60~100℃に加熱して30分間~2時間程度保持する必要がある。その後、常温~50℃付近まで冷却して再びpHを測定し、pHが9未満になった場合には、9以上(望ましくは、10以上)になるようにアンモニアを追加した後、生成したけい酸または水酸化チタンの沈殿をろ過等の方法で分離する。分離したこれらの沈殿は水で十分に洗浄した後、電気炉などを用いて800~1000℃で1~5時間加熱することによって二酸化けい素(SiO2)または二酸化チタン(TiO2)に変えることができる。
After adding and mixing ammonia, the solution needs to be heated to 60 to 100 ° C. and held for about 30 minutes to 2 hours. Then, after cooling to room temperature to about 50 ° C. and measuring the pH again, if the pH is less than 9, the ammonia is added after adding ammonia so that it is 9 or more (preferably 10 or more). The acid or titanium hydroxide precipitate is separated by a method such as filtration. These separated precipitates are thoroughly washed with water and then converted to silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) by heating at 800 to 1000 ° C. for 1 to 5 hours using an electric furnace or the like. Can do.
上記の処理において、アンモニアを添加した溶液のpHが9未満であったり、アンモニア添加後の加熱を省略した場合には、生成したけい酸や水酸化チタンの沈殿に多くのふっ素が含まれるため、これを加熱・焼成する際に、けい素やチタンの一部が四ふっ化けい素(SiF4)または四ふっ化チタン(TiF4)として揮散し、回収率が低下する。また、ヘキサフルオロけい酸塩を分離する際に固形化させたり、分離したヘキサフルオロけい酸塩を乾燥させた場合にも、生成したけい酸の沈殿にふっ素が多く含まれるので、けい素の回収率が低下する。
In the above treatment, when the pH of the solution to which ammonia is added is less than 9 or when heating after the addition of ammonia is omitted, a large amount of fluorine is contained in the generated silicic acid and titanium hydroxide precipitates. When this is heated and fired, part of silicon and titanium is volatilized as silicon tetrafluoride (SiF 4 ) or titanium tetrafluoride (TiF 4 ), and the recovery rate decreases. In addition, when the hexafluorosilicate is solidified when it is separated, or when the separated hexafluorosilicate is dried, the generated silicic acid precipitate contains a large amount of fluorine. The rate drops.
さらに、ふっ化水素酸を含む水溶液でガラスを溶解した場合には、ガラス中に含まれるカルシウム、マグネシウム、バリウム、アルミニウム、鉛等の成分がふっ化物として析出することがある。これらのふっ化物をヘキサフルオロけい酸塩の沈殿と共に溶液から分離して、けい素およびふっ素の分離、回収処理を行なうと、得られたけい酸の沈殿に多くのふっ素(ふっ化物)が含まれるため、前述の理由により二酸化けい素の回収率が低下し、純度も悪くなる。従って、ガラスを溶解した水溶液中にふっ化物等の不溶解物がある場合には、あらかじめ、これらを分離、除去した後に、電解質を添加してヘキサフルオロけい酸塩を析出させる必要がある。
Furthermore, when glass is melted with an aqueous solution containing hydrofluoric acid, components such as calcium, magnesium, barium, aluminum, and lead contained in the glass may precipitate as fluorides. When these fluorides are separated from the solution together with the hexafluorosilicate precipitate, and silicon and fluorine are separated and recovered, the resulting silicic acid precipitate contains a large amount of fluorine (fluoride). For this reason, the recovery rate of silicon dioxide is lowered and the purity is also deteriorated. Therefore, if there is an insoluble material such as fluoride in an aqueous solution in which glass is dissolved, it is necessary to separate and remove these in advance, and then add an electrolyte to precipitate hexafluorosilicate.
次に、ヘキサフルオロけい酸塩またはヘキサフルオロチタン酸塩の沈殿に水およびアンモニアを添加してけい酸または水酸化チタンの沈殿を生成させる処理を工業的に行なうための装置としては、例えば、図7に断面の模式図を示すような装置が推奨される。ヘキサフルオロけい酸塩またはヘキサフルオロチタン酸塩の沈殿と水を混合したものを送入管10
から処理槽1に装入した後、撹拌機2-1で溶液を撹拌し、同時にpHセンサー5を用いて溶液のpHを測定しながら、送入管10からアンモニア水を添加する。アンモニア水の代わりに(または、アンモニア水と共に)、ガス送入管12からアンモニアガスを吹き込んでもよい。 Next, as an apparatus for industrially performing a process for adding silicic acid or titanium hydroxide by adding water and ammonia to a precipitate of hexafluorosilicate or hexafluorotitanate, for example, FIG. An apparatus having a schematic cross-sectional view shown in Fig. 7 is recommended. A mixture of hexafluorosilicate or hexafluorotitanate precipitate and water
After that, the solution is stirred by the stirrer 2-1, and at the same time, the pH of the solution is measured using thepH sensor 5 and ammonia water is added from the feed pipe 10. Instead of ammonia water (or together with ammonia water), ammonia gas may be blown from the gas inlet pipe 12.
から処理槽1に装入した後、撹拌機2-1で溶液を撹拌し、同時にpHセンサー5を用いて溶液のpHを測定しながら、送入管10からアンモニア水を添加する。アンモニア水の代わりに(または、アンモニア水と共に)、ガス送入管12からアンモニアガスを吹き込んでもよい。 Next, as an apparatus for industrially performing a process for adding silicic acid or titanium hydroxide by adding water and ammonia to a precipitate of hexafluorosilicate or hexafluorotitanate, for example, FIG. An apparatus having a schematic cross-sectional view shown in Fig. 7 is recommended. A mixture of hexafluorosilicate or hexafluorotitanate precipitate and water
After that, the solution is stirred by the stirrer 2-1, and at the same time, the pH of the solution is measured using the
溶液のpHが9~10になったらヒーター3を用いて溶液を加熱し、60~100℃で30分間~2時間程度保持する。その後、常温~50℃付近まで冷却しながらpHを測定し、pHが9未満になった場合には、9以上になるようにアンモニアを追加した後、生成したけい酸または水酸化チタンの沈殿を溶液と共に排出管11から装置外へ排出し、ろ過装置等へ移し入れる。なお、液面から水蒸気と共に蒸発したアンモニアガスはガス排出管13から冷却器6に導かれてアンモニア水となり、留出液受槽8に蓄えられる。
When the pH of the solution reaches 9-10, the solution is heated using the heater 3 and held at 60-100 ° C. for 30 minutes to 2 hours. Thereafter, the pH is measured while cooling to room temperature to around 50 ° C., and when the pH is less than 9, after adding ammonia so that it becomes 9 or more, the generated silicic acid or titanium hydroxide is precipitated. The solution is discharged from the discharge pipe 11 together with the solution and transferred to a filtration device or the like. The ammonia gas evaporated together with the water vapor from the liquid level is led from the gas discharge pipe 13 to the cooler 6 to become ammonia water, which is stored in the distillate receiving tank 8.
図7の装置はアンモニアの蒸留のためにも利用できる。すなわち、けい酸または水酸化チタンの沈殿を分離した後の溶液を送入管10から処理槽1に装入した後、撹拌機2-1で溶液を撹拌しながらヒーター3を用いて溶液の温度が80~100℃になるように加熱する。さらに、ガス装入管12から空気と100℃付近の水蒸気を送り込んで、溶液中に溶け込んでいるアンモニアを水蒸気と共に蒸発させ、これをガス排出管13から冷却器6に導いてアンモニア水とし、留出液受槽8に蓄える。
7 The apparatus in FIG. 7 can also be used for ammonia distillation. That is, the solution after separating the precipitate of silicic acid or titanium hydroxide is charged into the treatment tank 1 from the feed pipe 10, and then the temperature of the solution is used using the heater 3 while stirring the solution with the stirrer 2-1. Is heated to 80-100 ° C. Further, air and water vapor at around 100 ° C. are sent from the gas charging pipe 12 to evaporate the ammonia dissolved in the solution together with the water vapor. Store in the drainage tank 8.
溶液中のアンモニアが全て蒸発し、溶液のpHが中性付近になったことを確認した後、処理槽内の溶液を少量採取してアンモニウムイオン濃度を分析し、液量に乗じてアンモニウムイオン量を算出する。次に、前述の(12)式または(13)式の反応によって、このアンモニウムイオン(すなわち、ふっ化アンモニウム)を全てアンモニアとアルカリ金属またはアルカリ土類金属のふっ化物に変えるのに必要な量のアルカリ金属またはアルカリ土類金属の水酸化物の水溶液または懸濁液を送入管10から添加した後、撹拌機2-1で溶液を撹拌しながらヒーター3を用いて溶液の温度が80~100℃になるように加熱する。さらに、ガス装入管12から空気と100℃付近の水蒸気を送り込んで、溶液中のアンモニアを水蒸気と共に蒸発させ、これをガス排出管13から冷却器6に導いてアンモニア水とし、留出液受槽8に蓄える。
After confirming that the ammonia in the solution has all evaporated and the pH of the solution is near neutral, a small amount of the solution in the treatment tank is collected and analyzed for the ammonium ion concentration. Is calculated. Next, the amount of the ammonium ion (that is, ammonium fluoride) required to convert all of the ammonium ions (that is, ammonium fluoride) into ammonia and an alkali metal or alkaline earth metal fluoride by the reaction of the above formula (12) or (13) After adding an aqueous solution or suspension of an alkali metal or alkaline earth metal hydroxide from the feed pipe 10, the temperature of the solution is adjusted to 80-100 using the heater 3 while stirring the solution with the stirrer 2-1. Heat to ℃. Further, air and water vapor at around 100 ° C. are sent from the gas charging pipe 12 to evaporate ammonia in the solution together with the water vapor, and this is led from the gas discharge pipe 13 to the cooler 6 to become ammonia water. Save to 8.
アンモニアを蒸留分離した後、必要に応じてアルカリ土類金属のふっ化物の沈殿をろ過分離した溶液を電気透析処理する装置としては、例えば、図9に模式図(側面図)を示すような装置が推奨される。本装置の電解槽24は2枚の陽イオン交換膜27-1および27-2と1枚の陰イオン交換膜28で区切られた4個のセル(室)31~34から成り、陽極25および陰極26へは導線30を通して直流電源29から直流電圧が供給される。
As an apparatus for electrodialyzing a solution obtained by distilling and separating ammonia and then filtering and separating a precipitate of an alkaline earth metal fluoride as necessary, for example, an apparatus as shown in a schematic diagram (side view) in FIG. Is recommended. The electrolytic cell 24 of this apparatus is composed of four cells (chambers) 31 to 34 separated by two cation exchange membranes 27-1 and 27-2 and one anion exchange membrane 28. A DC voltage is supplied to the cathode 26 from a DC power supply 29 through a conducting wire 30.
ここで、陽極25を備えたセル33には硫酸(H2SO4)等の酸の水溶液を入れ、陰極26を備えたセル34には低濃度の水酸化カリウム(KOH)の水溶液を入れる。また、陽イオン交換膜27-2と陰イオン交換膜28との間に形成されるセル31にはアンモニアを蒸留分離した後の溶液(図9では、ふっ化カリウム水溶液の例を示す)を入れ、陽イオン交換膜27-1と陰イオン交換膜28との間に形成されるセル32には低濃度のふっ化水素酸水溶液または純水を入れる。
Here, an aqueous solution of acid such as sulfuric acid (H 2 SO 4 ) is placed in the cell 33 provided with the anode 25, and an aqueous solution of low concentration potassium hydroxide (KOH) is placed in the cell 34 provided with the cathode 26. A cell 31 formed between the cation exchange membrane 27-2 and the anion exchange membrane 28 is filled with a solution obtained by distilling and separating ammonia (FIG. 9 shows an example of an aqueous potassium fluoride solution). The cell 32 formed between the cation exchange membrane 27-1 and the anion exchange membrane 28 is filled with a low concentration hydrofluoric acid aqueous solution or pure water.
この状態で、陽極25と陰極26の間に直流電圧を加えると、セル31の水溶液中のふっ化カリウムが解離して生じたふっ化物イオン(F-)は電気的な力によって陽極方向へ移動し、陰イオン交換膜28を通ってセル32へ入る。同時に、セル33中の硫酸が解離して生じた水素イオン(H+)は電気的な力によって陰極方向へ移動し、陽イオン交換膜27-1を通ってセル32へ入る。このようにして、セル32に入ったふっ化物イオンと水素イオンが結合してふっ化水素酸(HF)が生成し、電気透析が進むにつれてその濃度が高まるので、適当な濃度に達したら、これを金属等の酸洗のために再利用することができ
る。 In this state, when a DC voltage is applied between theanode 25 and the cathode 26, fluoride ions (F − ) generated by dissociation of potassium fluoride in the aqueous solution of the cell 31 move toward the anode by electric force. And enters the cell 32 through the anion exchange membrane 28. At the same time, hydrogen ions (H + ) generated by the dissociation of sulfuric acid in the cell 33 move toward the cathode by an electric force, and enter the cell 32 through the cation exchange membrane 27-1. In this way, fluoride ions and hydrogen ions entering the cell 32 are combined to produce hydrofluoric acid (HF), and its concentration increases as electrodialysis proceeds. Can be reused for pickling metals.
る。 In this state, when a DC voltage is applied between the
また、セル31の水溶液中のふっ化カリウムが解離して生じたカリウムイオン(K+)は電気的な力によって陰極方向へ移動し、陽イオン交換膜27-2を通ってセル34へ入る。この時、セル34では、陰極表面で下記の(21)式に示す電極反応によって水酸イオン(OH-)が生成する(同時に、水素ガスが発生する)ので、これがセル31から入ってきたカリウムイオンと結合して水酸化カリウム(KOH)を生成する。
2H2O+2e→2OH-+H2 (21)式
このようにして、セル34中の水酸化カリウム水溶液の濃度は電気透析が進むにつれて高くなるので、適当な濃度に達したら、これを前述の(12)式の反応によるアンモニア蒸留処理のために再利用することができる。 Further, potassium ions (K + ) generated by dissociation of potassium fluoride in the aqueous solution of thecell 31 move toward the cathode by an electric force, and enter the cell 34 through the cation exchange membrane 27-2. At this time, in the cell 34, hydroxide ions (OH − ) are generated on the cathode surface by the electrode reaction shown in the following formula (21) (at the same time, hydrogen gas is generated). Combines with ions to form potassium hydroxide (KOH).
2H 2 O + 2e → 2OH − + H 2 (21) Thus, the concentration of the potassium hydroxide aqueous solution in thecell 34 becomes higher as electrodialysis proceeds. It can be reused for the ammonia distillation treatment by the reaction of formula).
2H2O+2e→2OH-+H2 (21)式
このようにして、セル34中の水酸化カリウム水溶液の濃度は電気透析が進むにつれて高くなるので、適当な濃度に達したら、これを前述の(12)式の反応によるアンモニア蒸留処理のために再利用することができる。 Further, potassium ions (K + ) generated by dissociation of potassium fluoride in the aqueous solution of the
2H 2 O + 2e → 2OH − + H 2 (21) Thus, the concentration of the potassium hydroxide aqueous solution in the
一方、セル33では陽極25の表面で下記の(22)式に示す電極反応によって水素イオン(H+)が生成し(同時に、酸素ガスが発生し)、セル32へ入った水素イオンが補充されるので、硫酸の濃度はほとんど変化しない。
2H2O→4H++O2+4e (22)式 On the other hand, in thecell 33, hydrogen ions (H + ) are generated on the surface of the anode 25 by the electrode reaction shown in the following formula (22) (at the same time, oxygen gas is generated), and the hydrogen ions entering the cell 32 are replenished. Therefore, the concentration of sulfuric acid hardly changes.
2H 2 O → 4H + + O 2 + 4e (22)
2H2O→4H++O2+4e (22)式 On the other hand, in the
2H 2 O → 4H + + O 2 + 4e (22)
次に、アンモニアを分離した溶液をイオン交換処理する装置としては、例えば、図10に模式図(断面図)を示すような装置が推奨される。装置上部の液送入管37から注入された溶液は多孔板36-1、イオン交換樹脂39および多孔板36-2を通って、装置下部の液排出管38から流れ出る。イオン交換樹脂としては、陽イオン交換樹脂と陰イオン交換樹脂のいずれを用いてもよいが、陰イオン交換樹脂の場合には、あらかじめその官能基をOH-型に転換したものを用いる。
Next, as an apparatus for ion-exchange treatment of a solution from which ammonia has been separated, for example, an apparatus having a schematic diagram (cross-sectional view) shown in FIG. 10 is recommended. The solution injected from the liquid inlet pipe 37 at the upper part of the apparatus flows out of the liquid discharge pipe 38 at the lower part of the apparatus through the porous plate 36-1, the ion exchange resin 39 and the porous plate 36-2. As the ion exchange resin, either a cation exchange resin or an anion exchange resin may be used. In the case of an anion exchange resin, a functional group whose functional group has been converted to OH-type in advance is used.
アンモニアを蒸留分離した溶液(例えば、ふっ化カリウム水溶液)中のふっ化カリウムが解離して生じたふっ化物イオン(F-)は陰イオン交換樹脂の官能基に捕捉された水酸化物イオン(OH-)と入れ替わり、下記の(23)式に示すように、水酸化カリウム(KOH)が生成するので、これを前述の(12)式の反応によるアンモニア蒸留処理のために再利用することができる。なお、(23)式においてR+は正電荷を帯びた陰イオン交換樹脂の基体を示す。
KF+R+OH-→KOH+R+F- (23)式 Fluoride ions (F − ) generated by dissociation of potassium fluoride in a solution obtained by distilling and separating ammonia (for example, potassium fluoride aqueous solution) are hydroxide ions (OH) trapped in the functional groups of the anion exchange resin. - ) Is replaced with potassium hydroxide (KOH) as shown in the following formula (23), which can be reused for the ammonia distillation treatment by the reaction of the formula (12). . In the equation (23), R + represents a positively charged anion exchange resin substrate.
KF + R + OH − → KOH + R + F − (23)
KF+R+OH-→KOH+R+F- (23)式 Fluoride ions (F − ) generated by dissociation of potassium fluoride in a solution obtained by distilling and separating ammonia (for example, potassium fluoride aqueous solution) are hydroxide ions (OH) trapped in the functional groups of the anion exchange resin. - ) Is replaced with potassium hydroxide (KOH) as shown in the following formula (23), which can be reused for the ammonia distillation treatment by the reaction of the formula (12). . In the equation (23), R + represents a positively charged anion exchange resin substrate.
KF + R + OH − → KOH + R + F − (23)
次に、装置上部の液送入管37から水(H2O)を注入すると、陰イオン交換樹脂の官能基に捕捉されたふっ化物イオン(F-)は、下記の(24)式に示すように、ふっ化水素酸(HF)となって流出するので、これをガラスや金属けい素を溶解するために再利用することができる。なお、陰イオン交換樹脂は再びOH-型に戻る。
H2O+R+F-→HF+R+OH- (24)式 Next, when water (H 2 O) is injected from theliquid inlet tube 37 at the top of the apparatus, fluoride ions (F − ) captured by the functional group of the anion exchange resin are expressed by the following formula (24). As described above, hydrofluoric acid (HF) flows out and can be reused to dissolve glass or silicon metal. The anion exchange resin returns to the OH − type again.
H 2 O + R + F − → HF + R + OH − (24) Formula
H2O+R+F-→HF+R+OH- (24)式 Next, when water (H 2 O) is injected from the
H 2 O + R + F − → HF + R + OH − (24) Formula
ヘキサフルオロけい酸塩およびヘキサフルオロチタン酸塩を加熱することによって化学的に分解する方法を適用する場合には、水溶液から分離され、必要に応じて洗浄されたこれらの塩を100~110℃程度の温度に調節された乾燥機を用いて十分に乾燥した後、600~1000℃程度の高温に加熱して分解させる。
When applying a method in which hexafluorosilicate and hexafluorotitanate are chemically decomposed by heating, these salts separated from an aqueous solution and washed as needed are about 100 to 110 ° C. After sufficiently drying using a drier adjusted to a temperature of 1, it is decomposed by heating to a high temperature of about 600 to 1000 ° C.
図8は、このような熱分解処理を行なうための装置の構造を模式的に示したものである。乾燥後のヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩を熱分解用容器15に入れ、容器支持台16に乗せて、加熱管17の中の加熱部にセットする。なお、電熱分解用容器15の材質としては、白金またはニッケルが推奨される。
FIG. 8 schematically shows the structure of an apparatus for performing such a thermal decomposition process. The dried hexafluorosilicate or hexafluorotitanate is put in the thermal decomposition vessel 15, placed on the vessel support 16, and set in the heating section in the heating tube 17. Note that platinum or nickel is recommended as the material for the electrothermal decomposition container 15.
次に、電気炉18を用いて加熱管を加熱し、同時に、キャリヤガス送入管19からアルゴンガス、窒素ガス、空気等を送入し、熱分解反応によって生成した四ふっ化けい素や四ふ
っ化チタンの気体を、導管20-1を通して、凝結器21へ送り込む。なお、導管20-1は、内面の温度が約300℃以上に保たれるように、電気ヒーター等を用いて加熱し、凝結器21は、内面の温度が少なくとも250℃以下、望ましくは、50~100℃程度になるように冷却しておく必要がある。 Next, theelectric furnace 18 is used to heat the heating tube, and at the same time, argon gas, nitrogen gas, air or the like is supplied from the carrier gas supply tube 19, and silicon tetrafluoride or four produced by the thermal decomposition reaction are introduced. Titanium fluoride gas is fed into condenser 21 through conduit 20-1. The conduit 20-1 is heated using an electric heater or the like so that the inner surface temperature is maintained at about 300 ° C. or higher, and the condenser 21 has an inner surface temperature of at least 250 ° C., preferably 50 ° C. It is necessary to cool it to about 100 ° C.
っ化チタンの気体を、導管20-1を通して、凝結器21へ送り込む。なお、導管20-1は、内面の温度が約300℃以上に保たれるように、電気ヒーター等を用いて加熱し、凝結器21は、内面の温度が少なくとも250℃以下、望ましくは、50~100℃程度になるように冷却しておく必要がある。 Next, the
凝結器21で、四ふっ化チタンを凝結させて除去した後、四ふっ化けい素の気体を、導管20-2を通して、吸収液22の中へ送り込む。同時に、四ふっ化けい素の吸収を促進するため、撹拌機2-2を用いて吸収液を撹拌する。なお、吸収液の代わりに水を用いてもよい。ヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩が全て熱分解した後、加熱管の加熱を止め、凝結器のバルブ14-3を開いて、水注入管23から水を注入し、凝結した四ふっ化チタンを溶解する。
After the titanium tetrafluoride is condensed and removed by the condenser 21, silicon tetrafluoride gas is fed into the absorbing liquid 22 through the conduit 20-2. At the same time, in order to promote absorption of silicon tetrafluoride, the absorbing solution is stirred using a stirrer 2-2. Water may be used instead of the absorbing liquid. After all the hexafluorosilicate and hexafluorotitanate have been pyrolyzed, the heating tube is turned off, the condenser valve 14-3 is opened, water is injected from the water injection tube 23, and the condensed four fluorine Dissolve titanium fluoride.
以上の説明においては、ヘキサフルオロけい酸塩とヘキサフルオロチタン酸塩の両方を熱分解し、発生した四ふっ化けい素と四ふっ化チタンを別々の吸収液または水に吸収または溶解する場合の処理手順について述べたが、四ふっ化けい素と四ふっ化チタンを分離する必要が無い場合やヘキサフルオロチタン酸塩を熱分解しない場合には、凝結器21は必ずしも必要無い。
In the above description, both hexafluorosilicate and hexafluorotitanate are pyrolyzed, and the generated silicon tetrafluoride and titanium tetrafluoride are absorbed or dissolved in separate absorption liquids or water. Although the processing procedure has been described, the condenser 21 is not necessarily required when it is not necessary to separate silicon tetrafluoride and titanium tetrafluoride or when the hexafluorotitanate is not thermally decomposed.
発生した四ふっ化けい素または/および四ふっ化チタンを水に吸収または溶解した場合には、けい素または/およびチタンの1モルに対して2モル以上のふっ化水素酸を添加してけい素または/およびチタンをヘキサフルオロけい酸または/およびヘキサフルオロチタン酸に変えた後、2モル以上の陽イオンを添加してヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩に変えることができる。
When the generated silicon tetrafluoride and / or titanium tetrafluoride is absorbed or dissolved in water, 2 mol or more of hydrofluoric acid is added to 1 mol of silicon or / and titanium. After converting elemental or / and titanium to hexafluorosilicate or / and hexafluorotitanate, two or more moles of cation can be added to convert to hexafluorosilicate or / and hexafluorotitanate .
発生した四ふっ化けい素または/および四ふっ化チタンを水に吸収または溶解する代わりに、けい素または/およびチタンの1モルに対して2モル以上のふっ化水素酸を含む水溶液または2モル以上のふっ化水素酸と2モル以上の陽イオンを含む水溶液に吸収または溶解することによっても、ヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩を生成させることができる。
Instead of absorbing or dissolving the generated silicon tetrafluoride and / or titanium tetrafluoride in water, an aqueous solution containing 2 moles or more of hydrofluoric acid per mole of silicon or / and titanium or 2 moles Hexafluorosilicate and / or hexafluorotitanate can also be produced by absorption or dissolution in an aqueous solution containing the above hydrofluoric acid and 2 moles or more of cations.
一方、発生した四ふっ化けい素または/および四ふっ化チタンを水およびアンモニアと反応させてけい酸または/および水酸化チタンに変える場合には、四ふっ化けい素または/および四ふっ化チタンをいったん水に吸収または溶解した後、アンモニアを添加する方法と四ふっ化けい素または/および四ふっ化チタンをアンモニア水に吸収または溶解する方法が適用できる。
On the other hand, when the generated silicon tetrafluoride and / or titanium tetrafluoride is reacted with water and ammonia to change to silicic acid or / and titanium hydroxide, silicon tetrafluoride and / or titanium tetrafluoride is used. A method of adding or dissolving ammonia in water and then adding ammonia and a method of absorbing or dissolving silicon tetrafluoride and / or titanium tetrafluoride in aqueous ammonia can be applied.
いずれの方法を適用しても、アンモニアは溶液のpHが9以上(望ましくは、10以上)になるように添加する必要がある。アンモニアは10~28%の水溶液で添加するのが簡便であるが、後の工程で生成するアンモニアガスを吹き込んでもよい。濃度を調節するために添加する水の量は、特に厳密に規定する必要はないが、溶液中のけい素やチタンの重量の200~1000倍程度が適当である。
Regardless of which method is applied, it is necessary to add ammonia so that the pH of the solution is 9 or more (preferably 10 or more). Ammonia is conveniently added in a 10 to 28% aqueous solution, but ammonia gas generated in a later step may be blown. The amount of water added to adjust the concentration does not need to be strictly defined, but is appropriately about 200 to 1000 times the weight of silicon or titanium in the solution.
アンモニアを添加して混合した後、溶液を60~100℃に加熱して30分間~2時間程度保持する必要がある。その後、常温~50℃付近まで冷却して再びpHを測定し、pHが9未満になった場合には、9以上(望ましくは、10以上)になるようにアンモニアを追加した後、生成したけい酸または水酸化チタンの沈殿をろ過等の方法で分離する。分離したこれらの沈殿は水で十分に洗浄した後、電気炉などを用いて800~1000℃で1~5時間加熱することによって二酸化けい素(SiO2)または二酸化チタン(TiO2)に変えることができる。
After adding and mixing ammonia, the solution needs to be heated to 60 to 100 ° C. and held for about 30 minutes to 2 hours. Then, after cooling to room temperature to about 50 ° C. and measuring the pH again, if the pH is less than 9, the ammonia is added after adding ammonia so that it is 9 or more (preferably 10 or more). The acid or titanium hydroxide precipitate is separated by a method such as filtration. These separated precipitates are thoroughly washed with water and then converted to silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) by heating at 800 to 1000 ° C. for 1 to 5 hours using an electric furnace or the like. Can do.
上記の処理において、アンモニアを添加した溶液のpHが9未満であったり、アンモニア添加後の加熱を省略した場合には、生成したけい酸や水酸化チタンの沈殿に多くのふっ素が含まれるため、これを加熱・焼成して二酸化けい素や二酸化チタンを得る際に、けい素やチタンの一部が四ふっ化けい素や四ふっ化チタンとして揮散し、回収率が低下する。
In the above treatment, when the pH of the solution to which ammonia is added is less than 9 or when heating after the addition of ammonia is omitted, a large amount of fluorine is contained in the generated silicic acid and titanium hydroxide precipitates. When this is heated and baked to obtain silicon dioxide or titanium dioxide, a part of silicon or titanium is volatilized as silicon tetrafluoride or titanium tetrafluoride, and the recovery rate decreases.
2種類のガラスまたは金属けい素を、容量1dm3のふっ化水素酸を含む3種類の水溶液に溶解し、表1に示す3種類の試料溶液A、BおよびCを調製した。水溶液Aは汎用の板ガラスをふっ化水素酸水溶液で溶解したもの、水溶液BはCRT(陰極線管)のパネル用ガラスをふっ化水素酸と硫酸の混合水溶液で溶解したもの、水溶液Cは金属けい素をふっ化水素酸、硝酸および酢酸の混酸で溶解したものであり、ガラス中の二酸化けい素の含有率、ガラスや金属けい素の溶解量、溶解用水溶液の組成は表1に記載したとおりである。
Two kinds of glass or metal silicon were dissolved in three kinds of aqueous solutions containing hydrofluoric acid having a capacity of 1 dm 3 to prepare three kinds of sample solutions A, B and C shown in Table 1. Aqueous solution A is a general-purpose plate glass dissolved in a hydrofluoric acid aqueous solution, Aqueous solution B is a CRT (cathode ray tube) panel glass dissolved in a mixed aqueous solution of hydrofluoric acid and sulfuric acid, and aqueous solution C is silicon metal. Is dissolved with a mixed acid of hydrofluoric acid, nitric acid and acetic acid. The content of silicon dioxide in the glass, the amount of glass and metal silicon dissolved, and the composition of the aqueous solution for dissolution are as shown in Table 1. is there.
これらの試料溶液を、ろ紙を用いてろ過した後、その50cm3または100cm3を分取してプラスチック製容器に移し入れ、電解質化合物0.05~0.10molを容量70cm3の水に溶解したものを添加して混合した。比較のために、試料溶液AおよびBについては、ろ過を省略して直ちに100cm3を分取し、以後同様に操作したものも試験した。
These sample solutions was filtered using a filter paper, its 50 cm 3 or 100 cm 3 was fractionated was transferred to a plastic container, and dissolving an electrolyte compound 0.05 ~ 0.10 mol of water volume 70cm 3 Things were added and mixed. For comparison, for sample solutions A and B, filtration was omitted and 100 cm 3 was immediately collected, and the same operation was performed thereafter.
約30分間放置した後、ろ紙を用いて溶液をろ過し、ろ紙上の沈殿(ヘキサフルオロけい酸塩)を水で洗い流しながらプラスチック製容器に移し入れた。比較のために、試料溶液AおよびCについては、溶液を吸引ろ過して沈殿を固形化させたもの、およびろ過後に沈殿を乾燥させたものも試験した。
After standing for about 30 minutes, the solution was filtered using filter paper, and the precipitate (hexafluorosilicate) on the filter paper was washed into water and transferred to a plastic container. For comparison, sample solutions A and C were also tested in which the solution was suction filtered to solidify the precipitate and in which the precipitate was dried after filtration.
沈殿に水を加えて液量を約500cm3に調節した後、濃度が約15%のアンモニア水を添加して、pHを6.5~10.2に調節した。19個の容器の溶液を90~99℃に加熱し、2個の容器の溶液は室温(23~25℃)で、1または2時間保持した後、室温まで冷却し、アンモニア水でpHを6.5~10.1に調節した。
After adding water to the precipitate to adjust the liquid volume to about 500 cm 3 , ammonia water having a concentration of about 15% was added to adjust the pH to 6.5 to 10.2. The solution in 19 containers was heated to 90 to 99 ° C., and the solution in 2 containers was kept at room temperature (23 to 25 ° C.) for 1 or 2 hours, then cooled to room temperature and adjusted to pH 6 with aqueous ammonia. Adjusted to .5 to 10.1.
ろ紙を用いてろ過し、ろ紙上の沈殿(けい酸)を水で十分に洗浄した後、ろ紙と共に白金製るつぼに移し入れた。電気炉を用いて1000℃で2時間加熱・焼成した後、乾燥器中で冷却し、焼成物(二酸化けい素)の重量を測定した。試験条件および測定結果を表2に示す。なお、表中のSiO2回収率とは、溶解したガラスまたは金属けい素中のけい素が全てSiO2として回収された場合の重量に対するSiO2重量測定値の百分率を示している。
After filtration using filter paper, the precipitate (silicic acid) on the filter paper was thoroughly washed with water, and then transferred to a platinum crucible together with the filter paper. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (silicon dioxide) was measured. Test conditions and measurement results are shown in Table 2. Note that the SiO 2 recovery in the table shows the percentage of SiO 2 weight measurement for the weight when the silicon of the dissolved glass or metal silicon Motochu is all recovered as SiO 2.
試験番号3、6,7,13および17の試験においては、分取した試料溶液中のけい素のモル数の3倍以上のモル数のカリウムまたはルビジウムが添加され、初期および最終pHが共に9以上であり、90~91℃で2時間または98℃で1時間加熱した試験であるが、いずれのSiO2回収率も、3種類の試験溶液のそれぞれについては、最高水準の測定値を示した。これに対して、試験番号1、2、12、15および16の試験においては、けい素のモル数の3倍以下のモル数のカリウムが添加されたので、SiO2回収率は低い測定値を示した。
In tests Nos. 3, 6, 7, 13 and 17, potassium or rubidium having a molar number of 3 or more times the molar number of silicon in the sample solution was added, and the initial and final pH were both 9 The above test was conducted by heating at 90 to 91 ° C. for 2 hours or 98 ° C. for 1 hour. All SiO 2 recoveries showed the highest level of measurement values for each of the three types of test solutions. . In contrast, in the tests of Test Nos. 1, 2, 12, 15 and 16, since potassium having a mole number not more than 3 times the number of moles of silicon was added, the SiO 2 recovery rate was low. Indicated.
試験番号4および18は初期および最終pHが9未満であったために、試験番号5および19はアンモニア添加後に加熱しなかったために、試験番号10および20は吸引ろ過によって分離したヘキサフルオロけい酸カリウムの沈殿が固形化したために、試験番号11および21は分離したヘキサフルオロけい酸カリウムの沈殿を乾燥させたために、いずれもSiO2の粉末は得られなかった。また、試験番号8のSiO2回収率が試験番号3、6および7に比べて少し低かったのは、生成したヘキサフルオロけい酸ナトリウムの溶解度がカリウム塩やルビジウム塩より大きいことが原因と推測される。
Since test numbers 4 and 18 had initial and final pH less than 9 and test numbers 5 and 19 were not heated after the addition of ammonia, test numbers 10 and 20 were potassium hexafluorosilicates separated by suction filtration. Since the precipitate solidified, Test Nos. 11 and 21 dried the separated precipitate of potassium hexafluorosilicate, and therefore, no SiO 2 powder was obtained. The reason why the SiO 2 recovery rate of Test No. 8 was slightly lower than that of Test Nos. 3, 6 and 7 was presumed to be that the solubility of the produced sodium hexafluorosilicate was higher than that of potassium salt or rubidium salt. The
さらに、被溶解物が金属けい素の場合には、最適条件での回収率が95%以上に達したのに対して、ガラスの場合には82%未満であった。これは、ガラスに含まれるアルカリ金属元素、アルカリ土類金属元素、アムミニウムなどがヘキサフルオロけい酸塩を形成して析出し、不溶解物を分離した際に除去されたためと推測される。なお、被溶解物がガラスの場合の不溶解物には、ヘキサフルオロけい酸塩以外に、多量のふっ化カルシウム、硫酸バリウム、硫酸鉛などが含まれていた。
Furthermore, when the material to be dissolved was silicon metal, the recovery rate under optimum conditions reached 95% or more, whereas in the case of glass, it was less than 82%. This is presumably because alkali metal elements, alkaline earth metal elements, aluminium, and the like contained in the glass formed hexafluorosilicate and deposited, and were removed when the insoluble materials were separated. In addition, insoluble materials when the material to be dissolved was glass contained a large amount of calcium fluoride, barium sulfate, lead sulfate and the like in addition to hexafluorosilicate.
実施例1の試験において、アンモニア水を添加して生じたけい酸の沈殿をろ過・分離した後の溶液の内、試験番号3、13および17の溶液(各液量約700cm3)をガラス製容器に移し入れ、ヒーターで100℃付近まで加熱しながら約1時間、空気と100℃付近の水蒸気を吹き込んだ。室温まで冷却して各溶液のpHを測定し(測定値7.2)、水で正確に1dm3に希釈した後、アンモニウムイオン濃度をネスラー法で測定した。これより正確に200cm3を分取し、表3に示す量の水酸化カルシウムを水50cm3と混合したものを添加した後、ヒーターで100℃付近まで加熱しながら約1時間、空気と100℃付近の水蒸気を吹き込んだ。なお、水酸化カルシウムの添加量は、前述の(13)式の反応により、ネスラー法で測定したアンモニウムイオン(すなわち、ふっ化アンモニウム)の量と過不足無く反応する水酸化カルシウムの量として計算したものである。
In the test of Example 1, among the solutions after filtration and separation of the silicic acid precipitate generated by adding ammonia water, the solutions of Test Nos. 3, 13 and 17 (each liquid amount of about 700 cm 3 ) were made of glass. It was transferred to a container, and air and water vapor at around 100 ° C. were blown in for about 1 hour while heating to around 100 ° C. with a heater. After cooling to room temperature, the pH of each solution was measured (measured value 7.2), diluted to 1 dm 3 accurately with water, and then the ammonium ion concentration was measured by the Nessler method. More precisely, 200 cm 3 was taken out, and after adding a mixture of calcium hydroxide in the amount shown in Table 3 with 50 cm 3 of water, the mixture was heated to about 100 ° C. with a heater for about 1 hour with air and 100 ° C. Nearby steam was blown. The amount of calcium hydroxide added was calculated as the amount of calcium hydroxide that reacted without excess or deficiency with the amount of ammonium ion (that is, ammonium fluoride) measured by the Nessler method by the reaction of the above equation (13). Is.
次に、溶液を室温まで冷却した後、pHを測定し(測定値:7.5~7.7)、ろ紙を用いてろ過した。ろ紙上のふっ化カルシウムの沈殿を水で洗浄した後、ろ紙と共に磁器製るつぼに移し入れ、電気炉を用いて800℃で2時間加熱・焼成した。乾燥器中で冷却した後、焼成物(ふっ化カルシウム)の重量を測定した結果を表3に示す。なお、表3には、被溶解物の分取量中のけい素が全てヘキサフルオロけい酸カリウムとなり、その中のふっ素の4/6がふっ化アンモニウムに変った後、その200/1000が全てふっ化カルシウムとして回収された場合の理論値、およびその理論値に対する測定値の百分率を回収率として示した。
Next, after the solution was cooled to room temperature, the pH was measured (measured value: 7.5 to 7.7), and filtered using a filter paper. The calcium fluoride precipitate on the filter paper was washed with water, transferred to a porcelain crucible with the filter paper, and heated and fired at 800 ° C. for 2 hours using an electric furnace. Table 3 shows the results of measuring the weight of the fired product (calcium fluoride) after cooling in the dryer. In Table 3, all of the silicon in the aliquot of the substance to be dissolved becomes potassium hexafluorosilicate, and after 4/6 of the fluorine is changed to ammonium fluoride, 200/1000 is all. The theoretical value when recovered as calcium fluoride and the percentage of the measured value relative to the theoretical value are shown as the recovery rate.
上記のふっ化カルシウムの沈殿をろ過・分離した後のろ液を前述の図9と同じ構造の装置のセル31に入れ、セル32には純水、セル33に濃度が100g/dm3の硫酸、セル34に濃度が50g/dm3の水酸化カリウム水溶液を入れた後、陽極25(酸化イリジウムを被覆したチタン板)と陰極26(ニッケル板)の間に3.2Vの直流電圧をかけて2時間保持した。なお、本実施例で使用した電気透析装置には、陽イオン交換膜27-1および27-2として、(株)トクヤマ製ネオセプタCM-1、陰イオン交換膜28として、同AM-1を用いた。
The filtrate after filtering and separating the calcium fluoride precipitate is put into the cell 31 of the apparatus having the same structure as that shown in FIG. 9. The cell 32 is pure water, and the cell 33 is sulfuric acid having a concentration of 100 g / dm 3 . Then, after putting a potassium hydroxide aqueous solution having a concentration of 50 g / dm 3 into the cell 34, a DC voltage of 3.2 V was applied between the anode 25 (titanium plate coated with iridium oxide) and the cathode 26 (nickel plate). Hold for 2 hours. In the electrodialysis apparatus used in this example, the cation exchange membranes 27-1 and 27-2 are used as Neoceptor CM-1 manufactured by Tokuyama Corporation, and the same AM-1 is used as the anion exchange membrane 28. It was.
上記の電気透析処理後に、セル32中の水溶液中のふっ化水素酸濃度をアセチルアセトン鉄錯体吸光光度法で定量分析し、電気透析処理によって生成したふっ化水素の量を算出した。また、被溶解物の分取量中のけい素が全てヘキサフルオロけい酸カリウムとなり、その中のカリウムが全てふっ化カリウムに変り、その200/1000が電気透析処理によって全てふっ化水素として回収された場合の理論値、およびその理論値に対する測定値の百分率(回収率)を計算した。これらの数値を、併せて、表3に示す。
After the electrodialysis treatment, the hydrofluoric acid concentration in the aqueous solution in the cell 32 was quantitatively analyzed by acetylacetone iron complex absorptiometry, and the amount of hydrogen fluoride produced by the electrodialysis treatment was calculated. In addition, all silicon in the aliquot of dissolved material becomes potassium hexafluorosilicate, all of which is converted to potassium fluoride, and 200/1000 of that is recovered as hydrogen fluoride by electrodialysis. The calculated theoretical value and the percentage of the measured value with respect to the theoretical value (recovery rate) were calculated. These numerical values are shown together in Table 3.
工業用純チタンおよびチタン合金(Ti-6%Al-4%V)を硝ふっ酸またはふっ化水
素酸で酸洗し、表4のA~Dに示す4種類の試料溶液(容量1dm3)を調製した。酸洗による工業用純チタンおよびチタン合金の溶解量、酸洗液の組成および試料溶液中のチタンの濃度は表4に記載したとおりである。 Pure titanium and titanium alloys for industrial use (Ti-6% Al-4% V) are pickled with nitric hydrofluoric acid or hydrofluoric acid, and four types of sample solutions shown in Table 4A to D (capacity 1 dm 3 ) Was prepared. The amount of industrial pure titanium and titanium alloy dissolved by pickling, the composition of the pickling solution and the concentration of titanium in the sample solution are as shown in Table 4.
素酸で酸洗し、表4のA~Dに示す4種類の試料溶液(容量1dm3)を調製した。酸洗による工業用純チタンおよびチタン合金の溶解量、酸洗液の組成および試料溶液中のチタンの濃度は表4に記載したとおりである。 Pure titanium and titanium alloys for industrial use (Ti-6% Al-4% V) are pickled with nitric hydrofluoric acid or hydrofluoric acid, and four types of sample solutions shown in Table 4A to D (capacity 1 dm 3 ) Was prepared. The amount of industrial pure titanium and titanium alloy dissolved by pickling, the composition of the pickling solution and the concentration of titanium in the sample solution are as shown in Table 4.
これらの試料溶液から100cm3を分取してプラスチック製容器に移し入れ、一部の試料溶液にはふっ化水素酸を0.15または0.30molを添加した後、試料溶液BおよびDの一部には硝酸を添加して、チタンを4価に酸化した。なお、硝酸は、溶液の酸化還元電位が貴方向へ急変すると共に、酸化窒素のガスが発生しなくなるまで添加した。次に、5種類の電解質化合物の試薬0.07~0.30molを添加して溶解し、水を加えて液量を約200cm3に調節した。
100 cm 3 was sampled from these sample solutions, transferred to a plastic container, 0.15 or 0.30 mol of hydrofluoric acid was added to some sample solutions, and then one of sample solutions B and D was added. Nitric acid was added to the part to oxidize titanium to tetravalent. Nitric acid was added until the oxidation-reduction potential of the solution suddenly changed in the noble direction and no nitrogen oxide gas was generated. Next, 0.07 to 0.30 mol of five kinds of electrolyte compound reagents were added and dissolved, and water was added to adjust the liquid volume to about 200 cm 3 .
約30分間放置した後、ろ紙を用いて溶液をろ過し、ろ紙上の沈殿(ヘキサフルオロチタン酸塩)を水で洗い流しながらプラスチック製容器に移し入れた。沈殿に水を加えて液量を約700cm3に調節した後、濃度が約15%のアンモニア水を添加して、pHを6.5~10.2に調節した。13個の容器の溶液を90~99℃に加熱し、1個の容器の溶液は室温(25℃)で、1または2時間保持した後、室温まで冷却し、アンモニア水でpHを6.5~10.1に調節した。
After standing for about 30 minutes, the solution was filtered using filter paper, and the precipitate (hexafluorotitanate) on the filter paper was washed into water and transferred to a plastic container. Water was added to the precipitate to adjust the liquid volume to about 700 cm 3 , and then aqueous ammonia having a concentration of about 15% was added to adjust the pH to 6.5 to 10.2. The solution in 13 containers was heated to 90-99 ° C., and the solution in 1 container was kept at room temperature (25 ° C.) for 1 or 2 hours, then cooled to room temperature, and the pH was adjusted to 6.5 with aqueous ammonia. Adjusted to ˜10.1.
ろ紙を用いてろ過し、ろ紙上の沈殿(水酸化チタン)を水で十分に洗浄した後、ろ紙と共に白金製るつぼに移し入れた。電気炉を用いて1000℃で2時間加熱・焼成した後、乾燥器中で冷却し、焼成物(二酸化チタン)の重量を測定した。試験条件および測定結果を表5に示す。なお、表中のTiO2回収率とは、試料溶液100cm3中のチタンが全てTiO2として回収された場合の重量に対するTiO2重量測定値の百分率を示している。
After filtration using filter paper, the precipitate (titanium hydroxide) on the filter paper was thoroughly washed with water, and then transferred to a platinum crucible together with the filter paper. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (titanium dioxide) was measured. Test conditions and measurement results are shown in Table 5. Note that the TiO 2 recovery in the table shows the percentage of TiO 2 weight measurement for the weight of the case of titanium in the sample solution 100 cm 3 is all recovered as TiO 2.
試験番号3、6および10の試験においては、分取した試料溶液中のチタンのモル数の6倍以上のモル数のカリウムまたはルビジウムが添加され、初期および最終pHが共に9以上であり、90で2時間加熱した試験であるが、いずれのTiO2回収率も97%以上であった。これに対して、試験番号1および2の試験においては、チタンのモル数の6倍以下のモル数のカリウムが添加されたので、TiO2回収率は比較的低い値を示した。
In the tests of test numbers 3, 6 and 10, potassium or rubidium having a mole number of 6 or more times the number of moles of titanium in the collected sample solution was added, the initial and final pH were both 9 or more, 90 The TiO 2 recovery rate was 97% or more. On the other hand, in the tests of Test Nos. 1 and 2, TiO 2 recovery was relatively low because potassium having a mole number equal to or less than 6 times the mole of titanium was added.
試験番号4は初期および最終pHが9未満であったために、試験番号5はアンモニア添加後に加熱しなかったために、いずれもTiO2回収率は大幅に低くなった。また、試験番号7および8のTiO2回収率が試験番号3および6に比べて低かったのは、生成したヘキサフルオロチタン酸ナトリウムやヘキサフルオロチタン酸アンモニウムの溶解度がカリウム塩やルビジウム塩より大きいことが原因と推測される。
Since Test No. 4 had an initial and final pH of less than 9, and Test No. 5 was not heated after the addition of ammonia, the TiO 2 recovery rate was significantly lower in both cases. Moreover, the TiO 2 recovery rates of Test Nos. 7 and 8 were lower than those of Test Nos. 3 and 6 because the solubility of the produced sodium hexafluorotitanate and ammonium hexafluorotitanate was higher than that of potassium salt and rubidium salt. Is presumed to be the cause.
試験番号9のTiO2回収率が試験番号10に比べて低かったのは、後者はF/Tiモル比が6以上になるように0.30molのふっ化水素酸を添加したのに対して、前者は添加しなかったので、F/Tiモル比が6以下であったためと推測される。試験番号11のTiO2回収率が比較的低かったのも、同じ理由によるものと推測される。
The TiO 2 recovery rate of Test No. 9 was lower than that of Test No. 10, whereas the latter added 0.30 mol of hydrofluoric acid so that the F / Ti molar ratio was 6 or more, Since the former was not added, it is estimated that the F / Ti molar ratio was 6 or less. The reason why the TiO 2 recovery rate of Test No. 11 was relatively low is assumed to be due to the same reason.
さらに、試験番号12および13のTiO2回収率が100%を越えたのは、回収されたTiO2に不純物(主としてアルミニウムの酸化物)が含まれるためであり、試験番号14のTiO2回収率が12%程度になったのは、硝酸の添加を省略したためと推測される。
Furthermore, the TiO 2 recovery rate of Test Nos. 12 and 13 exceeded 100% because the recovered TiO 2 contained impurities (mainly oxides of aluminum), and the TiO 2 recovery rate of Test No. 14 Is estimated to be about 12% because the addition of nitric acid was omitted.
汎用ガラス、金属けい素、工業用純チタンまたはチタン合金を4種類のふっ化水素酸含有水溶液に溶解して、表6に示すA~Eの5種類の試料溶液を調製した。試料溶液の容量はいずれも1dm3であり、試料溶液AおよびDには、不溶解物が認められたので、これらをろ過・分離した。また、被溶解物の種類と溶解量、および溶解用水溶液の組成は表6に記載したとおりである。
General-purpose glass, metallic silicon, industrial pure titanium or titanium alloy was dissolved in four types of hydrofluoric acid-containing aqueous solutions to prepare five types of sample solutions A to E shown in Table 6. The volume of the sample solution was 1 dm 3 , and insoluble matters were observed in the sample solutions A and D, and these were filtered and separated. Further, the type and amount of the substance to be dissolved and the composition of the aqueous solution for dissolution are as described in Table 6.
これらの試料溶液から50cm3または100cm3を分取してプラスチック製容器に移し入れ、電解質化合物0.06~0.30molを容量70cm3の水に溶解したものを添加して混合した。約30分間放置した後、ろ紙を用いて溶液をろ過し、ろ紙上の沈殿(ヘキサフルオロけい酸塩またはヘキサフルオロチタン酸塩)の大部分をニッケル製容器(るつぼ)に移し入れ、乾燥機中で105℃に加熱して完全に乾燥した。また、沈殿が付着したろ紙は、105℃で乾燥した後、電気炉中で400~500℃程度に加熱して灰化し、前記のニッケル製容器に加えた。
From these sample solutions, 50 cm 3 or 100 cm 3 was separated and transferred to a plastic container, and 0.06 to 0.30 mol of the electrolyte compound dissolved in water having a capacity of 70 cm 3 was added and mixed. After standing for about 30 minutes, the solution is filtered using filter paper, and most of the precipitate (hexafluorosilicate or hexafluorotitanate) on the filter paper is transferred to a nickel container (crucible) in the dryer. To 105 ° C. and completely dried. The filter paper to which the precipitate adhered was dried at 105 ° C., then heated to about 400 to 500 ° C. in an electric furnace to be ashed, and added to the nickel container.
図8に構造を示す熱分解装置の容器支持台の上に前記のニッケル製容器を乗せ、加熱管の加熱部にセットした後、電気炉を用いて加熱管を900℃に加熱した。同時に、キャリヤガス送入管からアルゴンガスを送入し、熱分解反応によって生成した四ふっ化けい素や四ふっ化チタンの気体を凝結器および吸収液へ送り込んだ。なお、凝結器は、内面温度が50~100℃程度になるように外側から水冷し、吸収液として純水を用いた。
The nickel container was placed on the container support of the thermal decomposition apparatus having the structure shown in FIG. 8 and set in the heating section of the heating tube, and then the heating tube was heated to 900 ° C. using an electric furnace. At the same time, argon gas was fed from the carrier gas feed pipe, and silicon tetrafluoride or titanium tetrafluoride gas generated by the pyrolysis reaction was sent to the condenser and the absorbing solution. The condenser was water-cooled from the outside so that the inner surface temperature was about 50 to 100 ° C., and pure water was used as the absorbent.
ヘキサフルオロけい酸塩やヘキサフルオロチタン酸塩が全て熱分解した後(加熱管の加熱開始から1時間後)、加熱管の加熱を止め、室温まで放冷した。熱分解装置から凝結器を取り外し、バルブを開いて水注入管から純水500cm3を注入し、軽く振り混ぜながら凝結した四ふっ化チタンを溶解した。
After all hexafluorosilicate and hexafluorotitanate were thermally decomposed (one hour after the heating tube started heating), the heating tube was turned off and allowed to cool to room temperature. The condenser was removed from the thermal decomposition apparatus, the valve was opened, 500 cm 3 of pure water was injected from the water injection tube, and the condensed titanium tetrafluoride was dissolved while gently shaking.
四ふっ化けい素を吸収した吸収液および四ふっ化チタンを溶解した溶液は、それぞれ別の容器に移し入れ、約100cm3の純水で吸収液の容器内面または凝結器内面を洗浄した溶液および純水を加えて液量を約700cm3に調節した後、濃度が約14%のアンモニア水を添加して、溶液のpHが6.3~10.2になるように調節した。18個の容器の溶液を90~99℃に加熱し、2個の容器の溶液は室温(25℃)で、1または2時間保持した後、室温まで冷却し、アンモニア水でpHを6.5~10.1に調節した。
The absorption solution in which silicon tetrafluoride has been absorbed and the solution in which titanium tetrafluoride is dissolved are transferred to separate containers, respectively, and a solution in which the inner surface of the absorption liquid container or the condenser inner surface is washed with about 100 cm 3 of pure water, and After adding pure water to adjust the liquid volume to about 700 cm 3 , ammonia water having a concentration of about 14% was added to adjust the pH of the solution to 6.3 to 10.2. The solution in 18 containers was heated to 90-99 ° C., the solution in 2 containers was kept at room temperature (25 ° C.) for 1 or 2 hours, then cooled to room temperature, and the pH was adjusted to 6.5 with aqueous ammonia. Adjusted to ˜10.1.
ろ紙を用いてろ過し、ろ紙上の沈殿(けい酸または二酸化チタン)を水で十分に洗浄した後、ろ紙と共に白金製るつぼに移し入れた。電気炉を用いて1000℃で2時間加熱・焼成した後、乾燥器中で冷却し、焼成物(二酸化けい素または二酸化チタン)の重量を測定
した。試験条件および測定結果を表7~9に示す。なお、表中のSiO2回収率とは、溶解したガラスまたは金属けい素中のけい素が全てSiO2として回収された場合の重量に対するSiO2回収量の百分率を示している。同様に、TiO2回収率とは、溶解したチタンまたはチタン合金中のチタンが全てTiO2として回収された場合の重量に対するTiO2回収量の百分率を示している。 The mixture was filtered using filter paper, and the precipitate (silicic acid or titanium dioxide) on the filter paper was thoroughly washed with water, and then transferred together with the filter paper into a platinum crucible. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (silicon dioxide or titanium dioxide) was measured. Test conditions and measurement results are shown in Tables 7-9. Note that the SiO 2 recovery in the table shows the percentage of SiO 2 recovery amount with respect to the weight of the case of silicon of dissolved glass or metal silicon Motochu is all recovered as SiO 2. Similarly, the TiO 2 recovery shows the percentage of TiO 2 recovery amount with respect to the weight of the case of titanium dissolved titanium or a titanium alloy is all recovered as TiO 2.
した。試験条件および測定結果を表7~9に示す。なお、表中のSiO2回収率とは、溶解したガラスまたは金属けい素中のけい素が全てSiO2として回収された場合の重量に対するSiO2回収量の百分率を示している。同様に、TiO2回収率とは、溶解したチタンまたはチタン合金中のチタンが全てTiO2として回収された場合の重量に対するTiO2回収量の百分率を示している。 The mixture was filtered using filter paper, and the precipitate (silicic acid or titanium dioxide) on the filter paper was thoroughly washed with water, and then transferred together with the filter paper into a platinum crucible. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (silicon dioxide or titanium dioxide) was measured. Test conditions and measurement results are shown in Tables 7-9. Note that the SiO 2 recovery in the table shows the percentage of SiO 2 recovery amount with respect to the weight of the case of silicon of dissolved glass or metal silicon Motochu is all recovered as SiO 2. Similarly, the TiO 2 recovery shows the percentage of TiO 2 recovery amount with respect to the weight of the case of titanium dissolved titanium or a titanium alloy is all recovered as TiO 2.
表7の試験番号2、4および8の試験においては、分取した試料溶液中のけい素のモル数
の3倍以上のモル数のカリウムまたはルビジウムを添加し、表8の試験番号11および16の試験においては、分取した試料溶液中のチタンのモル数の6倍以上のモル数のカリウムを添加するとともに、初期および最終pHを共に9以上とし、90℃で2時間または99℃で1時間加熱した結果、いずれのSiO2回収率およびTiO2回収率も、4種類の試験溶液のそれぞれについては、最高水準の測定値を示した。 In the tests of Test Nos. 2, 4 and 8 in Table 7, potassium or rubidium having a mole number more than 3 times the number of moles of silicon in the sample solution was added, and Test Nos. 11 and 16 in Table 8 were added. In the above test, potassium having a molar number of 6 or more times the molar number of titanium in the collected sample solution is added, the initial and final pH are both 9 or more, and 90 ° C for 2 hours or 99 ° C for 1 hour. As a result of heating for a period of time, the SiO 2 recovery rate and the TiO 2 recovery rate were the highest measured values for each of the four types of test solutions.
の3倍以上のモル数のカリウムまたはルビジウムを添加し、表8の試験番号11および16の試験においては、分取した試料溶液中のチタンのモル数の6倍以上のモル数のカリウムを添加するとともに、初期および最終pHを共に9以上とし、90℃で2時間または99℃で1時間加熱した結果、いずれのSiO2回収率およびTiO2回収率も、4種類の試験溶液のそれぞれについては、最高水準の測定値を示した。 In the tests of Test Nos. 2, 4 and 8 in Table 7, potassium or rubidium having a mole number more than 3 times the number of moles of silicon in the sample solution was added, and Test Nos. 11 and 16 in Table 8 were added. In the above test, potassium having a molar number of 6 or more times the molar number of titanium in the collected sample solution is added, the initial and final pH are both 9 or more, and 90 ° C for 2 hours or 99 ° C for 1 hour. As a result of heating for a period of time, the SiO 2 recovery rate and the TiO 2 recovery rate were the highest measured values for each of the four types of test solutions.
これに対して、試験番号1および3の試験においては、けい素のモル数の3倍以下のモル数のカリウムを添加したので、SiO2回収率は低い測定値を示し、試験番号10および15の試験においては、チタンのモル数の6倍以下のモル数のカリウムを添加したので、TiO2回収率は低い測定値を示した。また、試験番号6および12は初期および最終pHが9未満であったために、試験番号7および13はアンモニア添加後に加熱しなかったために、いずれもSiO2の粉末が得られないか、低い値のTiO2回収率を示した。
On the other hand, in the tests of Test Nos. 1 and 3, since potassium having a mole number equal to or less than 3 times the number of moles of silicon was added, the SiO 2 recovery rate showed a low measured value. In this test, potassium was added in a number of moles equal to or less than 6 times the number of moles of titanium, so that the TiO 2 recovery was low. In addition, since Test Nos. 6 and 12 had initial and final pH values of less than 9, and Test Nos. 7 and 13 were not heated after the addition of ammonia, neither SiO 2 powder was obtained or low values were obtained. TiO 2 recovery was shown.
一方、試験番号9のSiO2回収率が試験番号4および8に比べて低かったのは、生成したヘキサフルオロけい酸ナトリウムの溶解度がカリウム塩やルビジウム塩より大きいことが原因と推測される。また、試験番号14のTiO2回収率が試験番号11に比べて低かったのも、生成したヘキサフルオロチタン酸アンモニウムの溶解度がカリウム塩より大きいことが原因と推測される。さらに、被溶解物がガラスの場合(試料溶液A)のSiO2回収率が金属けい素の場合(試料溶液B)より低目となった理由は、ガラスに含まれるアルカリ金属元素、アルカリ土類金属元素、アムミニウムなどの一部がヘキサフルオロけい酸塩を形成して析出し、不溶解物を分離した際に除去されたためと推測される。
On the other hand, the reason why the SiO 2 recovery rate of Test No. 9 was lower than that of Test Nos. 4 and 8 is presumed to be that the solubility of the produced sodium hexafluorosilicate is larger than that of potassium salt or rubidium salt. The reason why the recovery rate of TiO 2 in Test No. 14 was lower than that in Test No. 11 is presumed to be because the solubility of the produced ammonium hexafluorotitanate is higher than that of the potassium salt. Furthermore, the reason why the SiO 2 recovery rate in the case where the material to be dissolved is glass (sample solution A) is lower than that in the case of metal silicon (sample solution B) is that alkali metal elements and alkaline earth contained in the glass It is presumed that a part of the metal element, aluminium, and the like formed and precipitated hexafluorosilicate and were removed when the insoluble material was separated.
次に、表9の試験は、シリコンウエーハのエツチング廃液を用いてチタンを酸洗した水溶液からけい素およびチタンを回収する場合を模擬したものであるが、試験番号19においては、分取した試料溶液中のけい素のモル数の3倍とチタンのモル数の6倍の合計以上のモル数のカリウムを添加するとともに、初期および最終pHを共に9以上とし、90で2時間加熱した結果、95%以上のSiO2回収率と97%以上のTiO2回収率が得られた。これに対して、試験番号18では、カリウムの添加量が不足したので、SiO2回収率は95%以上であったが、TiO2回収率が約92%となった。
Next, the test of Table 9, but is obtained by simulating the case of recovering silicon and titanium from an aqueous solution obtained by pickling of titanium with et Tsu quenching effluent Shirikon'u et Doha, in Test No. 19, Add potassium of more than the total number of moles of silicon 3 times the number of moles of silicon and 6 times the number of moles of titanium in the fractionated sample solution, and make both the initial and final pH 9 or more, 90 for 2 hours As a result of heating, a SiO 2 recovery rate of 95% or more and a TiO 2 recovery rate of 97% or more were obtained. On the other hand, in Test No. 18, since the amount of potassium added was insufficient, the SiO 2 recovery rate was 95% or more, but the TiO 2 recovery rate was about 92%.
表7の試験番号5、表8の試験番号17および表9の試験番号20においては、比較のために、熱分解処理を省略した。すなわち、ろ過分離したヘキサフルオロけい酸カリウムまたは/およびヘキサフルオロチタン酸カリウムをプラスチック製容器に移し入れ、約700cm3の水を加えて混合した後、濃度が約14%のアンモニア水を添加して、溶液のpHが9以上になるように調節した。その後、容器の溶液を90℃で2時間保持した後、室温まで冷却し、アンモニア水でpHを9以上に調節した。
In the test number 5 in Table 7, the test number 17 in Table 8, and the test number 20 in Table 9, the thermal decomposition treatment was omitted for comparison. That is, potassium hexafluorosilicate and / or potassium hexafluorotitanate separated by filtration is transferred to a plastic container, mixed with about 700 cm 3 of water, and then added with aqueous ammonia having a concentration of about 14%. The pH of the solution was adjusted to 9 or higher. Thereafter, the solution in the container was kept at 90 ° C. for 2 hours, then cooled to room temperature, and the pH was adjusted to 9 or more with aqueous ammonia.
次に、ろ紙を用いてろ過し、ろ紙上の沈殿(けい酸または/および水酸化チタン)を水で十分に洗浄した後、ろ紙と共に白金製るつぼに移し入れた。電気炉を用いて1000℃で2時間加熱・焼成した後、乾燥器中で冷却し、焼成物(二酸化けい素または/および二酸化チタン)の重量を測定した。得られたSiO2回収量または/およびTiO2回収量は、熱分解処理を実施した場合に比べて高目の数値を示した。また、試験番号20の場合は、二酸化けい素と二酸化チタンを分離して回収することはできなかった。
Next, the mixture was filtered using filter paper, and the precipitate (silicic acid or / and titanium hydroxide) on the filter paper was thoroughly washed with water, and then transferred together with the filter paper into a platinum crucible. After heating and firing at 1000 ° C. for 2 hours using an electric furnace, the product was cooled in a drier and the weight of the fired product (silicon dioxide and / or titanium dioxide) was measured. The obtained SiO 2 recovery amount and / or TiO 2 recovery amount showed a higher numerical value than when the thermal decomposition treatment was performed. In the case of test number 20, silicon dioxide and titanium dioxide could not be separated and recovered.
試験番号4、5、16および17の試験によって回収された二酸化けい素または二酸化チタンに含まれるアルミニウムおよびカリウム含有率をICP発光分光分析法で分析した結果を表10に示す。試験番号5の試験では、熱分解処理を省略したため、回収した二酸化けい素にカリウムが0.6mass%含まれていたが、熱分解処理を実施した試験番号4の試験で回収した二酸化けい素のカリウム含有率は0.1mass%未満であった。
Table 10 shows the results of analyzing the aluminum and potassium contents contained in silicon dioxide or titanium dioxide recovered by the tests of Test Nos. 4, 5, 16, and 17 by ICP emission spectroscopy. In the test of test number 5, since the pyrolysis treatment was omitted, the recovered silicon dioxide contained 0.6 mass% of potassium. However, the silicon dioxide recovered in the test of test number 4 in which the pyrolysis process was performed was used. The potassium content was less than 0.1 mass%.
また、熱分解処理を省略した試験番号17の試験で回収した二酸化チタンにはアルミニウムが3.1mass%、カリウムが0.1mass%含まれていたが、熱分解処理を実施した試験番号16の試験で回収した二酸化チタンのアルミニウムおよびカリウム含有率はいずれも0.1mass%未満であった。
The titanium dioxide recovered in the test No. 17 omitting the thermal decomposition treatment contained 3.1 mass% aluminum and 0.1 mass% potassium, but the test No. 16 in which the thermal decomposition treatment was performed. The aluminum and potassium contents of the titanium dioxide recovered in step 1 were both less than 0.1 mass%.
本発明のけい素、チタンおよびふっ素の回収方法は、ふっ化水素酸を含む水溶液を用いてガラス、金属けい素、チタンおよびチタン合金を溶解する際のコストを大幅に低減するために利用できる。また、産業廃棄物の削減および省資源のためにも利用される可能性が大きい。
The method for recovering silicon, titanium and fluorine according to the present invention can be used to significantly reduce the cost of melting glass, metal silicon, titanium and a titanium alloy using an aqueous solution containing hydrofluoric acid. It is also highly likely to be used for industrial waste reduction and resource saving.
1 処理槽
2-1、2 撹拌機
3 ヒーター
4 温度センサー
5 pHセンサー
6 冷却器
7 冷却水
8 留出液受槽
9 留出液
10 送入管
11 排出管
12 ガス送入管
13 ガス排出管
14-1~4 バルブ
15 熱分解用容器
16 容器支持台
17 加熱管
18 電気炉
19 キャリヤガス送入管
20-1、2 導管
21 凝結器
22 吸収液
23 水注入管
24 電解槽
25 陽極
26 陰極
27-1、2 陽イオン交換膜
28 陰イオン交換膜
29 直流電源
30 導線
31~34 セル(小室)
35 イオン交換樹脂容器
36-1、2 多孔板
37 液送入管
38 液排出管
39 イオン交換樹脂 DESCRIPTION OF SYMBOLS 1 Processing tank 2-1 and 2Stirrer 3 Heater 4 Temperature sensor 5 pH sensor 6 Cooler 7 Cooling water 8 Distillate receiving tank 9 Distillate liquid 10 Feed pipe 11 Discharge pipe 12 Gas feed pipe 13 Gas exhaust pipe 14 -1 to 4 Valve 15 Pyrolysis vessel 16 Vessel support base 17 Heating tube 18 Electric furnace 19 Carrier gas inlet tube 20-1, 2 Conduit 21 Condenser 22 Absorbing liquid 23 Water injection tube 24 Electrolyzer 25 Anode 26 Cathode 27 -1,2 Cation exchange membrane 28 Anion exchange membrane 29 DC power supply 30 Lead wires 31 to 34 Cell (small chamber)
35 ion exchange resin container 36-1, 2 perforatedplate 37 liquid inlet pipe 38 liquid outlet pipe 39 ion exchange resin
2-1、2 撹拌機
3 ヒーター
4 温度センサー
5 pHセンサー
6 冷却器
7 冷却水
8 留出液受槽
9 留出液
10 送入管
11 排出管
12 ガス送入管
13 ガス排出管
14-1~4 バルブ
15 熱分解用容器
16 容器支持台
17 加熱管
18 電気炉
19 キャリヤガス送入管
20-1、2 導管
21 凝結器
22 吸収液
23 水注入管
24 電解槽
25 陽極
26 陰極
27-1、2 陽イオン交換膜
28 陰イオン交換膜
29 直流電源
30 導線
31~34 セル(小室)
35 イオン交換樹脂容器
36-1、2 多孔板
37 液送入管
38 液排出管
39 イオン交換樹脂 DESCRIPTION OF SYMBOLS 1 Processing tank 2-1 and 2
35 ion exchange resin container 36-1, 2 perforated
Claims (7)
- ふっ化水素酸を含む水溶液を用いて、けい素または/およびチタンを含む物質を溶解することによって生成したけい素または/およびチタンのふっ化物をヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩として析出させて分離した後、化学的分解工程を含む方法で処理することを特徴とする、けい素、チタンおよびふっ素の回収方法。 Silicon or / and titanium fluoride produced by dissolving a substance containing silicon or / and titanium using an aqueous solution containing hydrofluoric acid is converted to hexafluorosilicate or / and hexafluorotitanate. A method for recovering silicon, titanium and fluorine, characterized by depositing and separating as follows, followed by a method including a chemical decomposition step.
- 水溶液中のけい素または/およびチタンのふっ化物をヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩として析出させて分離するために、該水溶液を下記工程A、B、CおよびDで処理することを特徴とする、請求項1に記載のけい素、チタンおよびふっ素の回収方法。
(工程A)必要に応じて、該水溶液中に含まれるチタンの原子価を4価に変える工程: (工程B)必要に応じて、該水溶液にふっ化水素または/およびふっ化物を添加する工程:
(工程C)必要に応じて、該水溶液に電解質または/および陽イオンを添加する工程:および
(工程D)前記工程A、B、およびCによって生じた沈殿物を分離する工程。 In order to precipitate and / or separate silicon and / or titanium fluoride in aqueous solution as hexafluorosilicate or / and hexafluorotitanate, the aqueous solution is treated in steps A, B, C and D below. The method for recovering silicon, titanium and fluorine according to claim 1, wherein:
(Step A) Step of changing the valence of titanium contained in the aqueous solution to tetravalent as necessary: (Step B) Step of adding hydrogen fluoride and / or fluoride to the aqueous solution as necessary :
(Step C) A step of adding an electrolyte or / and a cation to the aqueous solution as necessary: (Step D) A step of separating the precipitate produced by the steps A, B, and C. - 化学的分解工程を含む方法が、下記工程E、F、G、H、IおよびJの一部の工程または全部の工程を含む方法であることを特徴とする、請求項1および2に記載のけい素、チタンおよびふっ素の回収方法
(工程E)水およびアンモニアを添加する工程:
(工程F)前記工程Eにより生じた沈殿物を分離する工程:
(工程G)前記工程Fにより分離した沈殿物を洗浄した後、加熱、焼成する工程:
(工程H)前記工程Fにより沈殿物を分離した水溶液に、必要に応じて、アルカリ金属の水酸化物、または/およびアルカリ土類金属の水酸化物を添加した後、アンモニアを分離する工程:
(工程I)前記工程Hにより生じた沈殿物を分離する工程:
(工程J)前記工程H、または前記工程HおよびIにより得られた水溶液を電気透析処理またはイオン交換処理する工程。 3. The method according to claim 1, wherein the method including the chemical decomposition step is a method including a part or all of the following steps E, F, G, H, I, and J: Method for recovering silicon, titanium and fluorine (Step E) Step of adding water and ammonia:
(Process F) The process of isolate | separating the deposit produced by the said process E:
(Step G) Steps of heating and baking after washing the precipitate separated in Step F:
(Step H) Step of separating ammonia after adding an alkali metal hydroxide or / and an alkaline earth metal hydroxide, if necessary, to the aqueous solution from which the precipitate has been separated in the step F:
(Step I) Step of separating the precipitate generated in the step H:
(Step J) A step of subjecting the aqueous solution obtained by the step H or the steps H and I to an electrodialysis treatment or an ion exchange treatment. - 化学的分解工程を含む方法が、下記工程K、L、M、NおよびOの一部の工程または全部の工程を含む方法であることを特徴とする、請求項1および2に記載のけい素、チタンおよびふっ素の回収方法
(工程K)四ふっ化けい素または/および四ふっ化チタンが発生する温度以上に加熱する工程:
(工程L)前記工程Kにより生じた気体または/およびそれが凝結して生じた固体をふっ化水素または/およびふっ化物または/および電解質または/および陽イオンを含む水溶液または水に吸収または/および溶解させる工程:
(工程M)必要に応じて、ふっ化水素または/およびふっ化物を添加する工程:
(工程N)必要に応じて、電解質または/および陽イオンを添加する工程:
(工程O)前記の工程L、および必要に応じて行なう工程MおよびNにより生じた沈殿物を分離した後、該沈殿物を請求項3の工程E、F、G、H、IおよびJの一部の工程または全部の工程を含む方法で処理する工程。 3. The silicon according to claim 1, wherein the method including the chemical decomposition step is a method including a part or all of the following steps K, L, M, N and O: , Titanium and Fluorine Recovery Method (Step K) Heating to a Temperature More than the Temperature at which Silicon Tetrafluoride or / and Titanium Tetrafluoride is Generated:
(Step L) Absorbing and / or absorbing the gas generated by Step K or / and the solid formed by the condensation thereof into an aqueous solution or water containing hydrogen fluoride or / and fluoride or / and electrolyte or / and cation. Step of dissolving:
(Step M) Step of adding hydrogen fluoride or / and fluoride as required:
(Step N) Step of adding electrolyte or / and cation as required:
(Step O) After separating the precipitate produced by Step L and Steps M and N which are performed as necessary, the precipitate is separated from those of Steps E, F, G, H, I and J of Claim 3. The process of processing by the method including a one part process or all the processes. - 化学的分解工程を含む方法が、下記工程P、Q、R、S、T、UおよびVの一部の工程または全部の工程を含む方法であることを特徴とする、請求項1および2に記載のけい素、チタンおよびふっ素の回収方法
(工程P)四ふっ化けい素または/および四ふっ化チタンが発生する温度以上に加熱する工程:
(工程Q)前記工程Pにより生じた気体または/およびそれが凝結して生じた固体を水およびアンモニアと反応させる工程:
(工程R)前記工程Qにより生じた沈殿物を分離する工程:
(工程S)前記工程Rにより分離した沈殿物を洗浄した後、加熱、焼成する工程:
(工程T)前記工程Rにより沈殿物を分離した水溶液に、必要に応じて、アルカリ金属の水酸化物、または/およびアルカリ土類金属の水酸化物を添加した後、アンモニアを分離する工程:
(工程U)前記工程Tにより生じた沈殿物を分離する工程:
(工程V)前記工程T、または前記工程TおよびUにより得られた水溶液を電気透析処理またはイオン交換処理する工程。 The method including a chemical decomposition step is a method including a part or all of the following steps P, Q, R, S, T, U and V: Method for recovering silicon, titanium and fluorine as described (Step P) Heating to a temperature higher than the temperature at which silicon tetrafluoride or / and titanium tetrafluoride is generated:
(Step Q) The step of reacting the gas produced in the step P or / and the solid produced by the condensation with water and ammonia:
(Step R) Step of separating the precipitate generated in the step Q:
(Step S) Steps of heating and baking after washing the precipitate separated in the step R:
(Step T) Step of separating ammonia after adding an alkali metal hydroxide and / or an alkaline earth metal hydroxide, if necessary, to the aqueous solution from which the precipitate has been separated in the step R:
(Step U) Step of separating the precipitate generated in the step T:
(Step V) A step of subjecting the aqueous solution obtained by the step T or the steps T and U to an electrodialysis treatment or an ion exchange treatment. - けい素または/およびチタンを含む物質が、金属けい素、けい酸塩ガラス、金属チタン、チタン合金の1種または2種以上であることを特徴とする請求項1~5に記載のけい素、チタンおよびふっ素の回収方法。 The silicon according to any one of claims 1 to 5, wherein the substance containing silicon or / and titanium is one or more of metal silicon, silicate glass, metal titanium and titanium alloy, Titanium and fluorine recovery method.
- ヘキサフルオロけい酸塩または/およびヘキサフルオロチタン酸塩がカリウム塩であることを特徴とする請求項1~6に記載のけい素、チタンおよびふっ素の回収方法。
The method for recovering silicon, titanium and fluorine according to claim 1, wherein the hexafluorosilicate or / and hexafluorotitanate is a potassium salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010519752A JP5392576B2 (en) | 2008-07-09 | 2009-07-02 | Method for recovering silicon, titanium and fluorine |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008178617 | 2008-07-09 | ||
JP2008178616 | 2008-07-09 | ||
JP2008-178617 | 2008-07-09 | ||
JP2008-178616 | 2008-07-09 | ||
JP2008201437 | 2008-08-05 | ||
JP2008-201437 | 2008-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010004925A1 true WO2010004925A1 (en) | 2010-01-14 |
Family
ID=41507040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062095 WO2010004925A1 (en) | 2008-07-09 | 2009-07-02 | Method of recovering silicon, titanium, and fluorine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5392576B2 (en) |
WO (1) | WO2010004925A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013046888A (en) * | 2011-08-29 | 2013-03-07 | Anakku:Kk | Regeneration method and regeneration apparatus of treatment liquid containing hydrofluoric acid |
WO2014083716A1 (en) * | 2012-11-30 | 2014-06-05 | 株式会社 東芝 | Method for treating fluorine-containing wastewater, and apparatus for treating fluorine-containing wastewater |
JP2015142921A (en) * | 2015-03-27 | 2015-08-06 | 株式会社東芝 | Method and apparatus for treating fluorine-containing waste water |
JP2018080086A (en) * | 2016-11-17 | 2018-05-24 | 東邦チタニウム株式会社 | Method for recovering titanium compound, method for producing titanium oxide, and method for producing alkali titanate |
CN110562988A (en) * | 2019-09-12 | 2019-12-13 | 青岛美高集团有限公司 | Heat insulation material and production method thereof |
CN114291959A (en) * | 2022-03-09 | 2022-04-08 | 中国电子工程设计院有限公司 | Preparation method of ultrapure water capable of effectively removing total organic carbon and weakly ionized impurities |
CN114477280A (en) * | 2020-10-27 | 2022-05-13 | 中国科学院过程工程研究所 | Method for preparing nano titanium dioxide by fluorination method |
CN116002691A (en) * | 2022-12-01 | 2023-04-25 | 航天特种材料及工艺技术研究所 | Method for removing high-valence metal ion impurities in silicic acid |
US11767320B2 (en) | 2020-10-02 | 2023-09-26 | Incyte Corporation | Bicyclic dione compounds as inhibitors of KRAS |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111777074A (en) * | 2020-06-15 | 2020-10-16 | 冷水江三A新材料科技有限公司 | Preparation method of silicon dioxide for calcium ion efficient adsorbent |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60231417A (en) * | 1984-04-28 | 1985-11-18 | Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk | Manufacture of metallic fluoride |
JPH04175218A (en) * | 1990-11-08 | 1992-06-23 | Nissan Chem Ind Ltd | Production of high-purity silica |
JP2000072482A (en) * | 1998-08-26 | 2000-03-07 | Matsushita Electronics Industry Corp | Regenerating method of glass cleaning solution, regenerating device therefor, cleaning method of silicate glass and cleaning device therefor |
JP2000265223A (en) * | 1999-03-18 | 2000-09-26 | Sumitomo Metal Ind Ltd | Method for recovering titanium |
JP2003230888A (en) * | 2002-02-08 | 2003-08-19 | Sumitomo Metal Ind Ltd | Method for treating aqueous solution containing metal fluoride |
JP2003236564A (en) * | 2002-02-15 | 2003-08-26 | Sumitomo Metal Ind Ltd | Treating method for aqueous solution containing metal fluoride |
JP2004358445A (en) * | 2003-04-10 | 2004-12-24 | Miyama Kk | Treatment method of boron and/or fluorine |
JP2005052794A (en) * | 2003-08-07 | 2005-03-03 | Shigeru Kitani | Method and apparatus for treating aqueous solution |
JP2005534595A (en) * | 2002-06-24 | 2005-11-17 | ゼルツレ,エリッヒ | Process for reducing and controlling the concentration of hexafluorosilicate during polishing of glass articles in polishing baths containing sulfuric acid and hydrofluoric acid |
-
2009
- 2009-07-02 WO PCT/JP2009/062095 patent/WO2010004925A1/en active Application Filing
- 2009-07-02 JP JP2010519752A patent/JP5392576B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60231417A (en) * | 1984-04-28 | 1985-11-18 | Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk | Manufacture of metallic fluoride |
JPH04175218A (en) * | 1990-11-08 | 1992-06-23 | Nissan Chem Ind Ltd | Production of high-purity silica |
JP2000072482A (en) * | 1998-08-26 | 2000-03-07 | Matsushita Electronics Industry Corp | Regenerating method of glass cleaning solution, regenerating device therefor, cleaning method of silicate glass and cleaning device therefor |
JP2000265223A (en) * | 1999-03-18 | 2000-09-26 | Sumitomo Metal Ind Ltd | Method for recovering titanium |
JP2003230888A (en) * | 2002-02-08 | 2003-08-19 | Sumitomo Metal Ind Ltd | Method for treating aqueous solution containing metal fluoride |
JP2003236564A (en) * | 2002-02-15 | 2003-08-26 | Sumitomo Metal Ind Ltd | Treating method for aqueous solution containing metal fluoride |
JP2005534595A (en) * | 2002-06-24 | 2005-11-17 | ゼルツレ,エリッヒ | Process for reducing and controlling the concentration of hexafluorosilicate during polishing of glass articles in polishing baths containing sulfuric acid and hydrofluoric acid |
JP2004358445A (en) * | 2003-04-10 | 2004-12-24 | Miyama Kk | Treatment method of boron and/or fluorine |
JP2005052794A (en) * | 2003-08-07 | 2005-03-03 | Shigeru Kitani | Method and apparatus for treating aqueous solution |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013046888A (en) * | 2011-08-29 | 2013-03-07 | Anakku:Kk | Regeneration method and regeneration apparatus of treatment liquid containing hydrofluoric acid |
WO2014083716A1 (en) * | 2012-11-30 | 2014-06-05 | 株式会社 東芝 | Method for treating fluorine-containing wastewater, and apparatus for treating fluorine-containing wastewater |
JP2014108366A (en) * | 2012-11-30 | 2014-06-12 | Toshiba Corp | Method and apparatus for treating fluorine-containing waste water |
JP2015142921A (en) * | 2015-03-27 | 2015-08-06 | 株式会社東芝 | Method and apparatus for treating fluorine-containing waste water |
JP2018080086A (en) * | 2016-11-17 | 2018-05-24 | 東邦チタニウム株式会社 | Method for recovering titanium compound, method for producing titanium oxide, and method for producing alkali titanate |
CN110562988A (en) * | 2019-09-12 | 2019-12-13 | 青岛美高集团有限公司 | Heat insulation material and production method thereof |
CN110562988B (en) * | 2019-09-12 | 2023-10-31 | 青岛美高集团有限公司 | Heat insulation material and production method thereof |
US11767320B2 (en) | 2020-10-02 | 2023-09-26 | Incyte Corporation | Bicyclic dione compounds as inhibitors of KRAS |
CN114477280B (en) * | 2020-10-27 | 2023-04-28 | 中国科学院过程工程研究所 | Method for preparing nano titanium dioxide by fluorination method |
CN114477280A (en) * | 2020-10-27 | 2022-05-13 | 中国科学院过程工程研究所 | Method for preparing nano titanium dioxide by fluorination method |
CN114291959A (en) * | 2022-03-09 | 2022-04-08 | 中国电子工程设计院有限公司 | Preparation method of ultrapure water capable of effectively removing total organic carbon and weakly ionized impurities |
CN114291959B (en) * | 2022-03-09 | 2022-07-01 | 中国电子工程设计院有限公司 | Preparation method of ultrapure water capable of effectively removing total organic carbon and weakly ionized impurities |
CN116002691A (en) * | 2022-12-01 | 2023-04-25 | 航天特种材料及工艺技术研究所 | Method for removing high-valence metal ion impurities in silicic acid |
Also Published As
Publication number | Publication date |
---|---|
JP5392576B2 (en) | 2014-01-22 |
JPWO2010004925A1 (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5392576B2 (en) | Method for recovering silicon, titanium and fluorine | |
CN106435221A (en) | Method for preparing nuclear-grade sponge zirconium and nuclear-grade sponge hafnium | |
CN104843712A (en) | Industrial fluosilicic acid purification and white carbon black co-production method | |
JP4363494B2 (en) | Aqueous solution for pickling, method for producing the same and resource recovery method | |
CN110980739A (en) | Method for recycling high-purity product from pickling waste liquid step by step | |
TW200930663A (en) | Method of recycling fluoride from a waste solution including hydrofluoric acid to produce fluosilicate | |
KR101523978B1 (en) | Treatment of minerals | |
JP5103541B2 (en) | Niobium separation and purification method and production method | |
JPH01176227A (en) | High-purity chromium chloride water solution and production therefof | |
JP4843895B2 (en) | Aqueous solution processing method and apparatus | |
TWI763694B (en) | Purified potassium hexafluoromanganate and methods for purifying potassium hexafluoromanganate | |
CN109384259B (en) | Method for preparing high-purity sodium fluotitanate | |
JP4292454B2 (en) | Method for treating aqueous solution containing metal fluoride | |
CN116119710B (en) | Preparation method of potassium fluotitanate | |
CN109368691A (en) | A method of stannous fluoride is prepared by stannic oxide | |
CN103864078B (en) | A kind of method removing residual fluorinated hydrogen in silicofluoric acid | |
TWI518041B (en) | A method of recycling sodium hexafluoroaluminate from hydrofluoric acid waste liquid | |
RU2355634C1 (en) | Method of high-purity silica preparation | |
RU2289638C1 (en) | Method for waste acidic solution regeneration after etching titanium alloys | |
JP5742130B2 (en) | Method for producing vanadium pentoxide | |
RU2367605C1 (en) | Method for processing of titanium-containing concentrate | |
JP2001146424A (en) | Method for producing niobium oxide and/or tantalum oxide | |
JP4322008B2 (en) | Method for recovering tantalum compound and / or niobium compound | |
JP4241257B2 (en) | Method for producing high purity aluminum fluoride | |
JPH0524207B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09794371 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010519752 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09794371 Country of ref document: EP Kind code of ref document: A1 |